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[llustration of a point force which is acting on a viscous fluid at ry, when
a background flow is imposed at far-field with the velocity and pressure of
u® and p>, respectively. The flow at any point ¢ around the point force
can be determined using the vectorr —rg. . . . .. ...
Stokeslet. In the figures above, the fluid velocity and pressure field due
to the effect of a point force on a viscous fluid are illustrated. Here, the
point force with strength f = 87y (1,0, 1) is placed at the origin of the 3-
dimensional euclidean space. 2.1 The contour plot for the logarithm of the
velocity magnitude or log,,(|ul) is shown in which the colours ranging from
blue to red correspond to low and high velocity magnitudes, respectively.
Note that the velocity behaves singular at r = ry where the point force
is located. 2.1 The velocity streamlines are shown in which the black
arrow is oriented along the direction of the point force f. 2.1 The pressure
associated with the Green’s function of the Stokes flow in the presence of
a point force is shown. Here, the contours are illustrated for p/u and the
colors ranging from blue to red correspond to the negative and positive
pressure, respectively. . . . . . ...
A 3D surface plot for the velocity field attributed to the equation (2.19)
or (2.5) is illustrated. It is shown that the velocity behaves singular at its
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2.7 Stokeslet in the presence of a no-slip plane wall. The fluid velocity and the
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pressure field due to a point force acting on a viscous fluid that is bounded
by a rigid plane wall, are illustrated. The solid line in the middle of each
figure represents the rigid wall and the bottom part of the wall represents
the contribution of image singularities to the Stokeslet singularity located
on the top of the wall. In the first row, the point force with f = 87w (1,0, 0)
is placed at ro = (0,0, d) where d is chosen to be 0.25 for this simulation,
and the image which is placed at r{™ = (0,0, —d) is oriented in parallel to
the wall with strength —f. In the second row, only the point force acts
perpendicularly to the plane wall with f = 87 (0,0, 1).2.4,2.4 The contour
plot for the logarithm of the velocity magnitude or log,,(|u|) is shown in
which the colours ranging from blue to red correspond to the low and
high velocity magnitudes, respectively. 2.4,2.4 The velocity streamlines
are shown in which the black arrows are oriented along the direction of
the point force and its image, respectively. 2.4,2.4 The pressure associated
with the Green’s function of the Stokes flow in the presence of four point
forces are shown. Here, the contours are illustrated for p/u and the colors
ranging from blue to red correspond to the negative and positive pressure,
respectively. . . . . . . L
Point Source. In the figures above, the fluid velocity field due to the
effect of a point source on a viscous fluid are illustrated. Here, the point
source with strength ¢ = 47 is placed at the origin of the 3-dimensional
euclidean space. 2.5 The contour plot for the logarithm of the velocity
magnitude or log;,(|ul) is shown in which the colours ranging from blue
to red correspond to the low and high velocity magnitudes, respectively.
Note that the velocity behaves singular at r = ry = 0 where the point
source is located. 2.5 The velocity streamlines are illustrated. . . . . . .
Potential Dipole. Here, the fluid velocity due to the effect of the poten-
tial dipole singularity —also referred to as point source doublet— is illus-
trated using contour plots and streamlines. Note that the point source
with strength d = 47(1,0,1) is placed at the origin of the 3-dimensional
euclidean space. 2.5 The contour plot for the logarithm of the velocity
magnitude or log,,(|u|) is shown in which the colours ranging from blue
to red correspond to the low and high velocity magnitudes, respectively.
Remember that the velocity behaves singular at r = ry = 0 where the
potential dipole is located.2.5 The velocity streamlines are illustrated.
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the contour plot and streamlines of the fluid velocity due to a point source
above the rigid plane wall, are illustrated. Here, the point source with
strength ¢ = 4 is placed at ro = (0,0, d) where d is chosen to be 0.25. 2.6
The contour plot for the logarithm of the velocity magnitude or log,,(|ul)
is shown in which the colours ranging from blue to red correspond to the
low and high velocity magnitudes, respectively. Note that the velocity
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wall with d = 47(0,0,1).2.6,2.6 The contour plot for the logarithm of
the velocity magnitude or log,,(|ul) is shown in which the colours ranging
from blue to red correspond to the low and high velocity magnitudes, re-
spectively. 2.6,2.6 The velocity streamlines are shown in which the black
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simulations are in 3D but here we have only illustrated the solutions on a
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on a 2D XZ-plane that cuts across the symmetry axis of the Cylinder. . .
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6.1

Initially, at time zero the filament is vertically straight. Buckling insta-
bilities begin due to the effect of non-conservative follower forces which
are distributed loads oriented tangentially to the deflection curve of the
filament. Here, streamlines of velocity around a filament with Stokeslets
distributed along the center-line, as well as the shape of the filament for
three sequences of time are demonstrated. However, the bottom parts of
the black line in the middle of the figures which demonstrate the presence
of a solid wall, don’t have any physical meaning but mathematically rep-
resent the contribution of image Stokeslets and image doublets to the fun-
damental solution of the Stokes flow. In this case, a filament with length
of | = 2um, slenderness ratio of 40 and elastic modulus F = 3.06 x 10° Pa,
immersed in a fluid of viscosity p = 0.001Pa.s with Re < 0 and sub-
jected to follower forces of 65 pN/m is simulated. (Left) filament at time
= 0.002s (Middle) filament at time = 0.007s (Right) filament at time =
0.0158 . . . . e
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Abstract

Some hair-like biofilaments such as cilia and flagella, experience structural instability
that results in complex dynamic behaviors. They deform due to active shearing
or movement of molecular motors along the filament. This is also a reason for the
wave-like motion of the microorganism in its surrounding fluid. Predicting the beating
pattern of such elastic slender filaments in a dissipative viscous liquid at low Reynolds
numbers requires a robust computational model that can both capture the dynamics
of an elastic filament as well as the hydrodynamic interactions between the structure
and the fluid. To address such an elastohydrodynamic problem, we have developed a
computational rod model to capture the structural dynamics of an elastic filament.
We then use slender body theory (SBT) to determine the hydrodynamic interactions
of the filament with the viscous fluid and combine it with our computational rod
model. At low Reynolds numbers where the Stokes equations govern the motion of
the fluid, viscous forces are dominant over inertial forces, which results in a linear
relationship between the hydrodynamic drag force and the cross-sectional velocity of
the filament. However, depending on the shape of the filament, the drag coefficient on
each cross-section can vary along the centerline. Not only the shape but the presence
of other no-slip boundaries such as a rigid plane wall or another nearby slender object
can affect both the magnitude and the distribution of the hydrodynamic drag force
across the centerline of the filament. However, the SBT model is capable of handling
such nonlocal hydrodynamic interactions between the filament, the wall, and the
fluid. We provide an iterative spatio-temporal procedure through which we obtain
the hydrodynamic drag forces and the shape of the filament at each time step. The
fluid-structure interaction model presented here can be used to mimic the motion of
actual cilia, flagella. However, as an additional contribution, we analyzed the accuracy
of the slender body formulations. Although SBT is computationally faster than other
hydrodynamic drag models, it may not provide accurate solutions for filaments with a
small length-over-radius ratio. Thus, to estimate the error associated with the SBT at
different slenderness ratios, we employ a computational fluid dynamic solver (CFD)
and compare the results.
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Chapter 1

Introduction

1.1 Motivation

Active matter systems are groups of active agents, consuming energy and converting
it into mechanical energy. For instance, a flock of birds, a swarm of bees, bacte-
ria colonies, and actin-myosin-based systems are all considered as active matter|76,
72, 86]. In the active matter systems, each component is separately active and in-
teracts with its surrounding environment. To understand active matter and their
collective behavior, one approach is to study single active components. On small
scales, microorganisms are considered as single active agents. They are interesting
for biomedical studies and investigation of them is a natural step towards making
synthetic prototypes. There are also many potential applications in drug delivery
and programmable systems [30, 68, 71].

Many microorganisms such as bacteria [60], planktons [41], cilia and flagella [97],
and spermatozoa [33] can be modeled as slender particles swimming through a vis-
cous environment. Flagella and cilia are organelles found in humans and most of
the mammalian cells. It has been observed that such hair-like filaments demonstrate
regular beating and rotating patterns due to the sophisticated activity inside their
microtubule-based structure called axoneme [49, 75]. The sliding motion of motor
proteins called dynein along the filament induces shearing between the cross-linked
microtubules and forces the structure to bend and buckle [96, 100, 79]. The follower
forces are imposed to the structure due to the back-and-forth movement of dynein
arms along the filament are a reason for the wavelike motion of flagella or cilia in its
surrounding fluid. Malfunctioning of cilia or flagella in the body can cause a wide
range of issues such as blindness, syndromic developmental disorders, polycystic kid-
ney disease, infertility, and olfactory disorders and many more [1, 13]. Therefore, a
thorough understanding of their working mechanism can help human to prevent a lot
of health-threatening problems [46, 93, 2, 6, 7].



Although many research studies on cilia and flagella are conducted in cellular and
biological contexts, mimicking their beating patterns has given rise to new applica-
tions in drug delivery, microfluidic devices, and cargo transport [75, 74, 14]. The
research on artificial cilia started less than two decades ago and is attracting more
attention every year [98, 37]. In a recent study by [44], synthetic magnetic cilia are
fabricated and planted in multi-row arrays within the microchannels. Inducing the
ciliary arrays by a rotating magnet can force the fluid to be propelled through the
microchannels. Surface fouling is a problem that affects most of the lab-on-chip de-
vices and marine sensors. Thanks to the versatility of the cilia in the manipulation
of fluids and particles, artificially ciliating the surfaces can advert the attachment
of biofouling agents and stop their sedimentation on the surface of interest[107, 106,
108, 87]. The actuation of the magnetic artificial cilia can be used as a self-cleaning
and antifouling strategy with up to 99% of efficiency[107].

The motivation for understanding the dynamics of micro-swimmers and slender
bio-filaments such as flagella and cilia in the fluid has given rise to many mathematical
modelings [26]. Those models have continuously attempted to discover: What corre-
lation is between the beating patterns and the force generation mechanism of a cilium
or flagellum? By which mechanism the collective beating patterns of cilia produce
metachronal waves? What are the reasons for the stability of the metachronal waves?
What are the relationships between the frequency of oscillations and the movement
of molecular motors? What are the mechanical properties of the cilia/flagella and
how do they depend on the frequency and amplitude of the beating patterns?[104,
24, 70, 57, 25, 88, 91] Advances in computing technology during the past 50 years,
helped scientists to solve more complex problems that are not feasible to be answered
analytically. As a step forward towards addressing the aforementioned questions, we
have developed a computational model through which the behavior of the slender
filaments can be analyzed [69, 42]. In most scenarios, the slender filaments are inter-
acting with the viscous fluid around them. Therefore, the model should capture both
the structural dynamics of the filament and the hydrodynamic interactions between
the filament and the surrounding fluid.

Taylor was among the pioneers who studied the hydrodynamic modeling of slen-
der microorganisms at low Reynolds numbers [48]. Since then, many research studies
have been conducted on the simulation of microfilaments in viscous fluids at low
Reynolds numbers [61]. At low Reynolds numbers or namely Stokes regime where
most of the biological microorganisms move, viscous forces are the highly dominant
terms and eliminate the effect of inertia in Navier-Stokes equations. This results in
sets of linear differential equations usually referred to as Stokes equations or creeping
flow equations. Gray and Hancock [40] were also among the pioneers of the classical
work in micro swimming kinematics in the 1950s and proposed resistive force theory



(RFT) for flagellar propulsion. RFT [12, 85, 102, 20, 52] establishes a local linear
relationship between the hydrodynamic drag force and the velocity of the rod at each
cross-section of the filament. They suggested constant normal and tangential drag
coefficients that have a logarithmic proportionality to the slenderness ratio of the
filament [5, 99, 63]. In this theory, the effect of the shape or curvature of the filament
on hydrodynamic drag coefficients is neglected. Moreover, the RF'T model does not
predict the hydrodynamic interactions with other filaments or rigid objects such as a
cargo located at the tail[45], and a rigid wall close to the filament. However, resistive
drag coefficients provide an appropriate approximation for the hydrodynamic drag
force on a single filament with a high slenderness ratio. Therefore, to determine the
hydrodynamic loads on a filament whether in presence of a wall or other neighboring
filaments, a higher-order model is required to address the aforementioned shortcom-
ings[31, 55].

More complex mathematical models have been developed to capture the nonlo-
cal hydrodynamic interactions between the flexible filaments and the Stokesian fluid.
As of now, boundary element method (BEM)[82, 80, 50, 101, 67, 94, 23], slender
body theory (SBT) [83, 84, 81, 43, 20, 4, 63, 45, 12, 53, 61|, immersed bound-
ary method (IBM)[23, 105, 105, 54], bead-rod model [22, 21, 65], and regularized
stokeslet method (RSM) [94, 23, 16, 17, 18, 19] are among the most popular theories
[23]. To accurately determine the fluid velocity field around any arbitrary structure at
low Reynolds numbers, BEM can be used. In BEM, the boundary integral equations
that are the exact solutions to the Stokes flow need to be solved[59, 73, 83]. This
method, however, provides more accuracy but computationally is intensive especially
when there are multiple structures with complex geometries [99]. Alternatively, the
singularity method —also known as the method of fundamental solutions — is in-
troduced to circumvent the computational difficulties associated with the boundary
element method [83, 99]. In this manner, the flow is represented by a line integral or
point-wise distribution of appropriate singularity solutions instead of a surface singu-
larity distribution on the structure. Exclusively for a filament with a large but finite
length-over-radius ratio, the distribution of stokeslets and potential dipoles along the
center-line of the filament is necessary. In essence, SBT is the representation of the
flow past the slender filament[83, 84] using the singularity solutions of the Stokes flow.

In this thesis, we employ the SBT method to determine the hydrodynamic interac-
tions of a filament with its surrounding Stokesian fluid. To obtain the dynamics of the
filament we introduce our computational rod model and then combined it with SBT.
Using the combined fluid-structure interaction model, a lot of interesting questions
in engineering and biology that we discussed earlier can be answered.



1.2 Chapters Overview

Chapter 2: we introduce the Stokes equations that govern the fluid motion at very
low Reynolds numbers. Since at low Reynolds numbers viscous forces are dominant
over the inertial forces, the nonlinear inertial term in the Navier-Stokes equation can
be neglected, which results in the remaining sets of linear differential equations known
as the Stokes equations. Next, by taking the divergence of the Stokes equation we
derive its Green’s function referred to as the Stokeslet, which is the singularity solu-
tion to the Stokes equations in free-space. Similarly, using the Green’s function of
the Stokes equations we obtain the velocity and pressure field associated with a point
force acting on the viscous fluid in an arbitrary direction, and then illustrate them
using streamlines and contour plots. The linearity of the Stokes differential equa-
tions allows the superposition of the singularity solutions, thus the solution for a flow
with multiple point forces of different strengths and directions can be found through
the summation of all singularity solutions. However, the flow in proximity of a rigid
boundary requires the fluid velocity to vanish on the surface of the rigid structure and
therefore the solution to the Stokes flow cannot be determined through the free-space
Green’s function. We use the method of images inspired by the electrostatics and
developed by Blake [8] for the first time, to satisfy the no-slip boundary condition
on the surface of the rigid plane wall. In this manner, we employ the higher-order
singularity solutions namely Stokes doublet and potential dipole, which are respec-
tively found through the derivative and the Laplacian of the Stokeslet, and present
the Green’s function of the Stokes flow in presence of an infinite no-slip plane wall.
The velocity and the pressure field subjected to a point force acting in parallel and
perpendicular to the plane wall are then demonstrated. Last but not least, we explore
the irrotational singularity solutions to the Stokes equations in which the pressure is
assumed to be constant. The first singularity solution for the irrotational Stokes flow
is named a Source and its higher-order solution a source doublet or potential dipole.
It should be noted that the potential dipole and its derivatives can respectively be
found through the Laplacian of the Stokeslet and its derivatives. Consequently, the
source singularity solutions in presence of a no-slip plane wall are obtained and illus-
trated.

Chapter 3: In this chapter, we employ the singularity solutions, which are thor-
oughly discussed in chapter II, to determine the nonlocal hydrodynamic disturbances
produced by a slender filament attached to a plane wall while immersed in a viscous
fluid. The nonlocal Slender Body Theory (SBT) is then introduced to investigate
such hydrodynamic interactions between the filament and the fluid. In the SBT,
the singularity solutions; Stokeslets and potential dipoles of unknown strengths are
distributed along the center-line of the filament. We first determine the singularity
strengths which are the same as the hydrodynamic forces on each cross-section of the
rod and then through the found force densities we obtain the velocity field around



the slender filament. We also discuss the Slender body theory of Cox [20] in which
he uses an asymptotic expansion analysis in terms of the slenderness of the rod to
obtain an expression for the force density distribution along the center-line of the
rod. Next, using the Cox formulation we neglect the higher-order terms to provide
a linear relationship between the drag force and the velocity of each cross-section,
which is referred to as the Resistive Force Theory (RFT) or the Local Slender Body
Theory. The work of Cox, however, is only applied to a single filament away from
any rigid boundary including a no-slip plane wall, and limits our exploration towards
the multi-filament or wall-filament studies.

Chapter 4: Now that the hydrodynamic analysis of slender rods is completely
discussed in the previous chapters, we would turn our attention towards the dynamics
of slender elastic filaments. To capture any small or large deflection of the filament
subjected to external forces or moments, we use the Kirchhoff inextensible rod model
in which the equations of linear and angular momentum along with the appropriate
compatibility equations are written for an infinitesimal cross-section of the rod. The
partial differential equations are then combined into a large assembled matrix and
solved using the generalized-a method, which is a robust time integrator algorithm
that guarantees the stability of the solution. However, at each temporal step, we
iterate the solutions within the Newton-Raphson loop until the error to the solution
of unknown vectors is sufficiently small. Once the solution at each time step is con-
verged, we employ the method of incremental rotations to obtain the shape of the
filament at the corresponding time.

Chapter 5: A survey on the accuracy of the slender body theory (SBT) is con-
ducted. We use a computational fluid dynamic model (CFD) to fully solve the Navier-
Stokes equations and obtain the total hydrodynamic drag force on filaments at dif-
ferent slenderness ratios. All the CFD problems are solved using the commercial
software, COMSOL Multiphysics v 5.3. In addition to the CFD simulations, we in-
clude the local hydrodynamic models that are usually referred to as resistive force
theory (RFT). In three different scenarios, the drag force on the rigid filaments is
computed: a filament moving in an unbounded domain of fluid away from any rigid
boundary, a free-free filament moving in the proximity of a no-slip plane wall, and
a fixed-free filament attached to a no-slip wall which is subjected to shear flow. For
each scenario, we employ our slender body formulations and illustrate the fluid flow
around the filament using the velocity contour plots as well as the velocity streamlines.
Then, the comparative graphs are included through which the total hydrodynamic
forces versus the slenderness ratios of the filaments are demonstrated.

Chapter 6: An abstract of the work we were supposed to present in the European
Nonlinear Dynamics Conference is attached to this chapter of my thesis as a reference
for the readers. The conference was supposed to be held in Lyon, France in July 2020



but it was canceled due to the 2019-2020 pandemic. In this abstract, we present
the formulations that govern both the dynamics and hydrodynamics of a slender fil-
ament that is immersed in a fluid at low Reynold’s numbers. The filament becomes
unstable and buckles once the non-conservative follower-forces impose external loads
to the center-line of the filament. At each time-step, our computational rod model
is in charge of capturing the slender rod’s deflections/position, linear and angular
velocities as well as the internal forces and moments on each cross-section of the rod,
which of course depends on the external forces and torques exerted on the filament.
In our simulations, the external follower-forces that are directed tangentially to the
center-line of the rod at each cross-section are predetermined by the user. Moreover,
we employ slender body theory through which we compute the non-uniform hydro-
dynamic loads imposed from the nearby fluid on each cross-section of the rod. As
a result, at each temporal step, the dynamical and hydrodynamical equations are
iteratively solved to ensure convergence.

Chapter 7: The conclusion and future work has been discussed.

Before we proceed further, let us introduce the following abbreviations that will
be used throughout this thesis:

e CFD (Computational Fluid Dynamics): Results of hydrodynamic loads on a
slender cylinder obtained from the COMSOL Multiphysics® v. 5.3 as our
CFD solver

e SBT (Slender Body Theory): Results of the hydrodynamic loads on an un-
bounded cylindrical filament, obtained from our computational model solved
via MATLAB®) v. R2018b [81, 23]

e W-SBT (Wall-Slender Body Theory): Results of the hydrodynamic loads on a
cylindrical filament bounded by a no-slip wall, obtained from our computational
model solved via MATLAB®) v. R2018b [8, 9, 45]

e RFT (Resistive Force Theory): The leading-order hydrodynamic loads on an
unbounded cylindrical filament obtained from SBT formulations [96, 20]

e W-RFT (Wall-Resistive Force Theory): The leading-order hydrodynamic loads
on a cylindrical filament bounded by a no-slip wall obtained from W-SBT [12]



Chapter 2

Singularity solutions to the Stokes
equations

2.1 Green’s Function for Singularly Forced
Stokes Flow in Unbounded domain

Navier-Stokes equations are fundamental nonlinear equations that govern the motion
of fluid in 3-dimensional space. Here, in equation (2.1) the Navier-Stokes equation
along with the continuity equation for an incompressible fluid are given:

ou

ot

in which p is the fluid density, p is the fluid viscosity, ¢ is the time, p is the

pressure, and u represents the fluid velocity field. Using non-dimensional parameters

V. and L, that are the characteristic velocity and length-scale respectively, the non-

dimensionalized Navier—Stokes and continuity equation for an incompressible fluid
yield:

+p(u-Viu=-Vp+uV?u , V-u=0 (2.1)

Re <8altl* T (u* . V*>u*> — _V*p* 4 V*Qu* ’ V- -u' =0 (22)

where * denotes the non-demiensionalizad form of each variable and Re is the
Reynolds number given by Re = pV,.L./p. In equation (2.2) the velocity is scaled
by V., the pressure p by uV./L., time ¢t by L./V., and the Del operator V by 1/L..
At low Reynolds numbers limit where Re < 1, the term on the left side of equation
(2.2) vanishes and the nonlinear Navier-Stokes equations can be reduced to linear
Stokes equations, which are solved by a number of methods[99, 66]. Equation (2.3)
represents the Stokes equations in the presence of a point force, accompanied by the
corresponding boundary conditions, in which u* and p™ are the velocity and the
pressure associated with the background flow respectively, r defines the position of



any point in 3-dimensional space, and ry defines the position where the point force is
located while both r and ry are taken relative to the inertial reference frame X,Y, 7
fixed at the origin (see FIG. 2.1). Mathematically the point force in the Stokes
equations can be represented by a 3-dimensional Dirac delta function.

wp Z A
—> . .
. Point Force, x = T — T0 f (Arbitrary point)
—
— » Y N
LY
X
_____ - >

Figure 2.1: Illustration of a point force which is acting on a viscous fluid at ry, when
a background flow is imposed at far-field with the velocity and pressure of u™ and
p>°, respectively. The flow at any point ¢ around the point force can be determined
using the vector r — ry.

~Vp+uVu+fir—ry))=0 , V-u=0

N (2.3)
u—u and P — P GS T — 0O

Here, ¢ is the 3-dimensional Dirac delta function with the property §(r —rg) = 0
when r # rq. The 3-dimensional Dirac delta function also satisfies [;, d(r—ro) dV =1,
where V' shows any volume that contains the point at which r = ry. Correspondingly,
f6(r — ro) represents a point force with strength f acting on the fluid at r = ry.
The boundary conditions defined for the Stokes flow, enforce the velocity u and the
pressure p to respectively match the velocity and the pressure of the background flow
as the position vector r moves away from the concentrated force which is located
at ro. For instance, if there is no background flow and u* is zero, the velocity u
should completely vanish at infinity. The Green’s function for the Stokes equations in
the presence of a singularity, is referred to as the fundamental solution to the Stokes
equations or the so-called Stokeslet singularity or the Oseen-Burger Tensor[78]. In
the Equation (2.4), G(r,r) represents the Green’s function for the Stokes equations
for a fluid in an unbounded or infinite domain, where I is the 3-by-3 identity matrix,
and r = |r — ro|. Higher-order singularity solutions may also be obtained from the



derivative of the fundamental solution that will be discussed later in this chapter.

S

(2.4)

Here, ® represents the dyadic products of the vectors, and from now on we drop
this notation for any dyadic vector product. Consequently, the fluid velocity field u,
which satisfies the aforementioned boundary conditions of the Stokes flow, is given
by (2.5):

1

u(r) =u™ + Snh

G(r,ro) - f(ro) (2.5)

Physically, equation (2.5) represents the fluid velocity field around a point force
with strength f placed at ro. In (2.5) the velocity of the fluid w can be computed at
any observation point r around the point force except at the source point rq where the
Stokeslet exhibits singular behaviour. Note that, this is only because of the linearity
of the Stokes equations that the solution due to the point force can separately be
computed and summed to the solution imposed by the background flow.
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T 05 0 05 1

-1 -05 0.5 1
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(a) velocity contour plot (b) velocity streamlines (c) pressure contour plot

Figure 2.2: Stokeslet. In the figures above, the fluid velocity and pressure field due
to the effect of a point force on a viscous fluid are illustrated. Here, the point force
with strength f = 87 (1,0,1) is placed at the origin of the 3-dimensional euclidean
space. 2.1 The contour plot for the logarithm of the velocity magnitude or log;,(|ul)
is shown in which the colours ranging from blue to red correspond to low and high
velocity magnitudes, respectively. Note that the velocity behaves singular at r = ry
where the point force is located. 2.1 The velocity streamlines are shown in which
the black arrow is oriented along the direction of the point force f. 2.1 The pressure
associated with the Green’s function of the Stokes flow in the presence of a point
force is shown. Here, the contours are illustrated for p/u and the colors ranging from
blue to red correspond to the negative and positive pressure, respectively.



The pressure at any point associated with the flow in equation (2.3) is given by

(2.6):

1
p(r) =p> + gP(r, ro) - £(ro) (2.6)
where the vector P can be obtained through (2.7):
(r —ro)
P(r,ry) =2 = (2.7)

For the rest of our study, we restrict ourselves to zero u> and p> that are asso-
ciated with the velocity and pressure of the background flow, respectively. It should
also be noted that the Stokeslet singularity decays as r~! at far-field, and higher-order
singularities that can be constructed from the derivatives of the stokeslet decay faster
than the stokeslet singularity. Now, for the purpose of illustration, in FIG. 2.2 the
contour plot and the streamlines for the fluid velocity field along with the pressure
around a single point force with strength f = 87y (1,0, 1) are shown. To illustrate the
velocity contour plots associated with the singularity solutions more appropriately,
the logio|ul is selected to smoothen the sharp decay of the velocity. For the illustra-
tion of each figure in this chapter, —except the schematics figures— the X Z plane is
discretized in with 401 x 401 grid points within the domain [—1,1] for both the X
and the Z directions.

2.2 Derivation of the Stokeslet from the Stokes
Equations

In general, the Green’s function for the Stokes equations in which a concentrated
force acts on the fluid at an specific location, —in this literature £f6(r — ry) represents
the concentrated force— has been derived through a number of methods [66]. Here,
we present the method provided by [83, 73|, in which the divergence of the Stokes
equations leads us towards the proof of the Green’s function given in equation (2.4).
we rewrite the Stokes equations which are also given by equation (2.3):

~Vp+uVu+fir—r)=0 , V-u=0 (2.8)
Now, by taking the divergence of the Stokes equation we arrive at:

~V - Vp+puV - -Vu+ V- (f5(r — 1)) =0 (2.9)

Considering the commutative property of the Laplacian and the divergence op-

erators which reminds V - (V?u) = V*(V - u), and using the continuity equation
V - u = 0 we obtain the following equation:

Vi —f-Vi(r—ry) =0 (2.10)
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Now, let us define the scalar functions K and H such that they satisfy the following
equations, respectively:

VK =4(r—r,) , K=V’H (2.11)

Therefore, equation (2.10) can be rewritten in terms of K as:

Vp—f-VV’K =0 (2.12)

that results in an expression for the pressure:

p=f VK (2.13)

In order to obtain an expression for the velocity u, we need to determine the gradient
of the pressure from the equation (2.13), which yields:

Vp=f-V(VK) (2.14)

and substitute (2.14) in the Stokes equation given by (2.8). After rearranging the
new equation, and letting I denote the identity matrix, we obtain:

1
Viu = ;f (VV —IVHK (2.15)

Now, defining K in terms of the Laplacian of H as is shown in (2.11) we acquire an
expression for the velocity field u which is:

1
u= ;f (VV —IV*)H (2.16)

We recall that the harmonic expression on the left side of (2.11) represents the Pois-
son’s equation and K is the fundamental solution of the Poisson’s equation, which is
given as:
e (2.17)
Ay '

where r = |r — rg|. In a similar manner, H can be constructed from K using the
relation defined on the right side of (2.11), which yields:

T

T8

As a result, by substituting (2.18) into (2.16) we obtain the velocity field at any
point around the concentrated force, which is represented in Einstein notation as:

(2.18)

ui(r) = %Gﬁ(r —19) f; (2.19)

11
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Figure 2.3: A 3D surface plot for the velocity field attributed to the equation (2.19)
or (2.5) is illustrated. It is shown that the velocity behaves singular at its pole ry,

but remains regular at the other points around the singularity. A similar plot but in
2D can be found in FIG. 2.2 as well.

where G is called the Stokeslet and given by:

Gij(x) = =L + —* 2.20
)= 4 T8 (2.20)
in which d;; represents the Kronecker delta, x = r —rg, and r = |[r — ro| =

x? + 23 4+ x3. Both the velocity and the Green’s function in (2.19) and (2.20) are
also given in vectorial and tensorial representations by equations (2.5) and (2.4),
respectively.

2.3 Multiple Point Forces in Stokes Flow

In the Stokes equations, it is convenient to consider a point force as the force exerted
by an infinitesimal particle that is immersed in a viscous fluid. When many small
particles approach each other, the flow field around one particle will be affected by
the other particles. Similarly, the flow field in proximity of a point force cannot
be obtained through the equation (2.5) in which the Green’s function for a single
point force has been used. However, the linearity of the Stokes equations allows the
superposition of singularity solutions. Thus, to obtain the solution of the Stokes
equations due to the presence of n point forces with strengths f;, f5, ..., f, in a
viscous fluid, the solutions for the velocity and the pressure obtained by equations

12



(2.5) and (2.6) due to each singularity, are only required to be summed with the rest
of singularity solutions so that the velocity and the pressure field affected by multiple
singularities can readily be determined. In this section, we investigate the effect of
two and four point forces on the velocity field and illustrate the corresponding flow
fields using streamlines and contour plots. Now, let the two point forces with strength
f) and £, act on the viscous flow at two different locations rg ; and rg». In this limit, to
obtain the velocity field around the singularities, the equation (2.5) can be modified
into equation (2.21):

u(r) = — Y G(r,ro;) - f; (2.21)

with n = 2. Similarly, in order to obtain the pressure field, the equation (2.6) can
be modified into the equation (2.22):

p(r) = 8% > Plrre,) f (2.92)

In FIG. 2.5 the flow fields due to the presence of two point forces with same
magnitude but opposite directions are illustrated. In the first example, f; is aligned
with the f; and in the second example f; is taken to be in parallel with f5.

13
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Figure 2.4: In the figures above, the fluid velocity and pressure field due to two point
forces acting on a viscous fluid are illustrated. In the first row, one of the point
forces with f; = 8ru(—1,0,—1) is placed at ro; = (—d,0,d) and the second point
force with fa = 8mpu(1,0,1) which acts in parallel but on the opposite direction of
f,, is placed at roo = (d,0, —d) where d is chosen to be 0.15 for this simulation. In
the second row, the orientation of the point forces are chosen to be aligned but in
opposite with each other such that f; = 87u(—1,0,1) and fs = 87pu(1,0,—1). 2.3,2.3
The contour plot for the logarithm of the velocity magnitude or log;,(|u|) is shown
in which the colours ranging from blue to red correspond to low and high velocity
magnitudes, respectively. Note that the velocity behaves singular at ro; and rgs where
the point forces are located. 2.3,2.3 The velocity streamlines are shown in which the
black arrows are oriented along the direction of each point force f; and f5. 2.3,2.3
The pressure associated with the Green’s function of the Stokes flow in the presence
of two point forces are shown. Here, the contours are illustrated for p/u and the
colors ranging from blue to red correspond to the negative and positive pressure,
respectively.
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Figure 2.5: In the figures above, the fluid velocity and the pressure field due to four
point forces acting on a viscous fluid are illustrated. The first row is attributed to the
point forces with strengths f; = 8wu(1,0,1), f3 = 8wu(1,0,—1), f5 = 8wu(—1,0,—1),
fs = 8mu(—1,0,1) are positioned at ro; = (—d,0,0), roo = (0,d,0), ro3 = (d,0,0),
ros = (0,—d,0), respectively, where d is chosen to be 0.25 for both simulations
in the first and the second row. The second row is attributed to the point
forces with strengths f; = 8wu(—1,0,—1), f2 = 8mu(1,0,—1), f3 = 8wu(1,0,1),
fs = 8mu(—1,0,1) that are located at the same locations in the figures of the first
row, respectively. 2.3,2.3The contour plot for the logarithm of the velocity magnitude
or log;y(Ju|) is shown in which the colours ranging from blue to red correspond to
the low and high velocity magnitudes, respectively. 2.3,2.3 The velocity streamlines
are shown in which the black arrows are oriented along the direction of each one of
the point forces. 2.3,2.3 The pressure associated with the Green’s function of the
Stokes flow in the presence of four point forces are shown. Here, the contours are
illustrated for p/p and the colors ranging from blue to red correspond to the negative
and positive pressure, respectively.
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2.4 Singularly Forced Stokes Flow Bounded by
an Infinite No-slip Plane Wall

In the previous sections, we first introduced the Green’s function for the Stokes equa-
tions in presence of a point force acting on the fluid at the origin of the reference frame.
Then taking advantage of the linearity of the Stokes equations, we showed the singu-
larity solutions for multiple point forces acting on the Stokes flow using the equation
(2.21) and (2.22) associated with the velocity and pressure fields, respectively. The
Green’s function in equation (2.4) is only a solution to the Stokes equations when
no rigid boundary affects the flow. The presence of a rigid boundary requires the
Stokes equations to satisfy the no-slip boundary condition on the surface of the rigid
body. Therefore, Green’s function (2.4) is not the correct choice for the Stokes flow
bounded by a rigid body and a different Green’s function is required. In this section,
we consider the semi-infinite Stokes flow in which the flow has been bounded by a
rigid plane wall at one side. Then, we assume that a point force with strength f and at
distance h from the plane wall acts on the fluid. The appropriate form of the Green’s
function that satisfies the no-slip boundary condition on the surface of the rigid wall
is given by Blake[8]. Blake’s method is similar to the method of images in electro-
statics and uses image systems (see FIG. 2.6) to obtain the solution for the velocity
and the pressure around a point force consistent with the boundary condition on an
infinite plane wall. The appropriate form of Green’s function that satisfies the no-slip
boundary condition on the surface of the wall is obtained through a combination of
Stokeslet, image Stokeslet, image potential dipole, and image Stokeslet doublet. The
potential dipole is an irrotational source singularity which can be obtained using the
laplacian of the Stokeslet, and the Stokes doublet is the higher-order solution for the
Stokes equations and is simply obtained from the derivative of the Stokeslet with
respect to its pole rg. The Green’s function in equation (2.23) for the semi-infinite
flow bounded by a rigid plane wall is given by [83, 35, 8] but here, the expression
provided by Pozrikidis[83] is selected (please note that for the sake of consistency in
this chapter, equations provided by Pozrikidis are modified based on our own refer-
ence frame and then the corresponding formulations are presented. However, for the
wall-corrected Green’s function of the Stokes equations, we have directly derived and
used the original formulations given by Blake that can be found in [8, 9] ):
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Figure 2.6: The position of the point force and its image with respect to the rigid
plane wall in 3-dimensional space are illustrated. It is shown that ro and ri™ are the
vectors that respectively mark the position of the point force and its image positioned
at distance h from the rigid wall, and vector r maps the position of any arbitrary
point ¢ in 3-dimensional space.

Image Point Force

G"(r,ry) = G(r,ro) — G(r,ri™) — 2hG5P (r,rim™) 4 202 GPP (r, ri™) (2.23)

where G(r, 1) is the Stokeslet and G(r,r{™) is the image of the Stokeslet with
respect to the rigid wall, which is located at Z = 0. The G°P and G are associated
with the Stokeslet doublet and the potential dipole respectively, and for any vector
y = (y1,y2,y3) where y =r —ri™ and R = |r — r{"| = \/y? + y5 + y3 they are given
in Einstein notation by (2.24) and (2.25):

. Ot iy
G (x, ") :ijD<y>=y305D<y>i( s Ry) (2.24)
im 0ij YiYs
GPP(r,xf") = GEP(y) = + (—R;, -3 R;) (2.25)

with negative sign for 7 = 3 which is associated with the Z direction, and positive
sign for j = 1,2 corresponding to the X and Y directions where d;; represents the
Kronecker delta. Note that the singularity is located at ro = (rq,, ro,, 1), remembering
that h represents the distance from the plane wall located at Z = 0 so that the image
singularity with respect to the wall should be found at ry™ = (rq,,7o,, —h). The
pressure corresponding to the Green’s function (2.23) is expressed in (2.26):

17



-100 -50 0 50 100

! \Q/// e ——

0 0.5 1 1.5 2

| EEEaE——— ]

1 1

05
05 05
N o L L]
N 0 — N 0

05 05 /( N/ \\\\ 05 a‘
-1 -1 -1

-1 -05 0 0.5 1 - -0.5 0 0.5 1

X X

1 -1 -05 0 0.5 1
X

(a) Velocity contour plots (b) Velocity Streamlines (c) Pressure contour plots
0 0.5 1 1.5 2 -100 -50 0 50 100
[ EE—— | ! [ EEEEE—— |
1 1

0.5
05 05
N 0 Noo = N 0 ,
-05 03 ‘ -05 t

-1 -1 -1 s

-1 05 0 05 1 -1 05 0 0.5 1 -1 05 0 05 1
X X X
(d) Velocity contour plots (e) Velocity Streamlines (f) Pressure contour plots

Figure 2.7: Stokeslet in the presence of a no-slip plane wall. The fluid velocity and
the pressure field due to a point force acting on a viscous fluid that is bounded by a
rigid plane wall, are illustrated. The solid line in the middle of each figure represents
the rigid wall and the bottom part of the wall represents the contribution of image
singularities to the Stokeslet singularity located on the top of the wall. In the first
row, the point force with f = 8wu(1,0,0) is placed at ro = (0,0, d) where d is chosen
to be 0.25 for this simulation, and the image which is placed at ri™ = (0,0, —d) is
oriented in parallel to the wall with strength —f. In the second row, only the point
force acts perpendicularly to the plane wall with f = 87p(0,0,1).2.4,2.4 The contour
plot for the logarithm of the velocity magnitude or log;,(Ju|) is shown in which the
colours ranging from blue to red correspond to the low and high velocity magnitudes,
respectively. 2.4,2.4 The velocity streamlines are shown in which the black arrows
are oriented along the direction of the point force and its image, respectively. 2.4,2.4
The pressure associated with the Green’s function of the Stokes flow in the presence
of four point forces are shown. Here, the contours are illustrated for p/u and the
colors ranging from blue to red correspond to the negative and positive pressure,
respectively.
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P“(r,ry) = P(r,ro) — P(r,ri™) — 2hP5P (v, rim) (2.26)

where P50 is:

Po(rr) = PV(y) = 2 (5 - 32 ) (227)

R3 R>
again with negative sign for ¢ = 3 which is associated with the Z direction, and
positive sign for ¢ = 1,2 corresponding to the X and Y direction of the Cartesian
coordinate system. We end up this section with the illustration of the velocity and
pressure field for a point force which acts on the viscous flow in parallel, and perpen-
dicular to the rigid plane wall.

2.5 Irrotational Singularities of Unbounded
Stokes Flow

In the proceeding sections, we solved the Stokes equations in the presence of a point
force while the pressure was assumed to be non-constant throughout the domain
in which the fluid flow exists. In this section, we turn our attention towards the
potential theory and identify the source singularity solutions for the Stokes flow. We
begin with selecting the simplest choice for the pressure that is p = ¢ in which ¢
is a constant[83, 84]. Then, by substituting Vp = 0 in the Stokes equation, we will
obtain a harmonic equation for the velocity V?u = 0 . Now, let a scalar function ¢,
which is referred to as the potential function, be defined such that the velocity field
can be determined through:

u=Ve¢ (2.28)

Using the equation (2.28), the irrotationality of the potential flow is guaranteed since
the curl of the gradient of any scalar function is zero, which means:

Vxu=VxVe¢=0. (2.29)

Taking the particular choice of ¢ = —1/47r for the potential function in which
r = |r —rg|, the velocity field due to a point source that is also illustrated in FIG.
2.8 can be identified through

u= iS(r,rg) (2.30)

in which ¢ represents a constant and the point source S centered at rg, is given
by:

r —TIp

S(r,rg) =

5 (2.31)
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Figure 2.8: Point Source. In the figures above, the fluid velocity field due to the
effect of a point source on a viscous fluid are illustrated. Here, the point source with
strength ¢ = 4 is placed at the origin of the 3-dimensional euclidean space. 2.5 The
contour plot for the logarithm of the velocity magnitude or log,(|u|) is shown in
which the colours ranging from blue to red correspond to the low and high velocity
magnitudes, respectively. Note that the velocity behaves singular at r = ry = 0 where
the point source is located. 2.5 The velocity streamlines are illustrated.

Higher-order source singularity solutions namely, point source dipole, point source
quadruple, point source octuple —alternatively in some literature potential dipole,
potential quadruple, potential octuple are used— are constructed from the derivatives
of the the point source with respect to the ry. Since, we have confined our study to
the use of potential dipole, which its application to slender body hydrodynamics will
be discussed in the next chapter, the reader is referred to [83, 9, 95] for the complete
expression of the higher-order singularities. The first derivative of the point source
therefore provides an expression for the potential dipole, that may be written as:

0S(r,ry) I (r —rg)(r —rp)
D(I‘,ro) = a—ro = —ﬁ + 3 7“5 (232)
and the flow due to the potential dipole is given by
1
u=—D(r,rg) - d(rp) (2.33)

47

where d represents a constant vector. Alternatively, it can be shown that the potential
dipole can be found by from the Laplacian of the Stokeslet multiplied by —1/2,
which means D = —%V2G. In a similar manner, higher-order source singularities
can be obtained from the Laplacian of the derivatives of the point force singularities
of the Stokes equations. In FIG. 2.9 the flow due to a potential dipole of strength
d = 47(1,0,1) is illustrated. However, the aforementioned source singularities are
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only attributed to a viscous flow in which the fluid is not bounded by any rigid
boundary. The presence of a rigid boundary in the flow requires the fluid velocity to
vanish on the surface of the boundary, therefore, the source singularity solutions of
the Stokes flow in unbounded domain are not correct choices in representation of the
velocity. In the next section, using the image system we explore the source singularity
solutions that satisfy the no-slip boundary condition on the surface of the plane wall.

@'
e

o
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X

(a) Velocity contour plots (b) Velocity Streamlines

Figure 2.9: Potential Dipole. Here, the fluid velocity due to the effect of the potential
dipole singularity —also referred to as point source doublet— is illustrated using contour
plots and streamlines. Note that the point source with strength d = 47(1,0,1) is
placed at the origin of the 3-dimensional euclidean space. 2.5 The contour plot for the
logarithm of the velocity magnitude or log,,(|u|) is shown in which the colours ranging
from blue to red correspond to the low and high velocity magnitudes, respectively.
Remember that the velocity behaves singular at r = rqg = 0 where the potential dipole
is located.2.5 The velocity streamlines are illustrated.

2.6 Irrotational Singularities of bounded Stokes
Flow

The source singularities of the Stokes flow within a domain where the fluid is bounded
by a rigid plane wall, not only exhibit vanishing velocity at infinity but also are
required to satisfy the no-slip boundary condition on the surface of the wall. Similar to
the point force singularities in the presence of a no-slip plane wall that is discussed in
section 2.4, [9] agian exploited the method of images to distribute the same and higher-
order singularities at the point where the image of the main source is positioned, to
satisfy the no-slip boundary condition on the surface of the plane wall. Consequently,
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the velocity for a point source close to a wall is obtained through (2.34):

c
u= ESW(I‘, r)) (2.34)

in which the decomposition of the S* is represented by [83] as:

S¥(r, 1) = Si(r,r0) — Si(r, Th™) + 2GR, (x, vi™) — 2hDy3(r, T™) (2.35)

where the last two singularities respectively the Stokeslet doublet G” and the
potential dipole D are oriented perpendicular to the wall. The stokeslet doublet
GP(r,ri™) is written as:

§ijyl - 5ilyj - 5jlyz' YiYiyi
ngl = J7B +3 7 (2.36)
however, the S* is also directly obtained and given as:
w 1 3 iz YiY3
S :——Fﬁ‘i‘Qyz(_ﬁ—i_B}p)_zh( R3+3R5 (2.37)
considering the definition for x = (z1,22,23) = r — 1y Where r=|r—ry =

Vot +ai+ 22 andy = (y1,y2,43) =1 — " where R = |r — vi"| = \/y? + v3 + 3,
along with d;; that represents the Kronecker delta. In FIG. 2.10 the flow due to a
point source in the presence of a rigid wall is illustrated.

To obtain the potential dipole above a plane wall, the point source above a wall
S*(r,rp) should be derived with respect to its pole ry. The expression for the potential
dipole that satisfies the no-slip boundary condition on the surface of the wall is given
by [9, 83] as:

D}‘J’»(r, rg) = D;j(r, ro)i<Di]~(r, ry") + 2Gl33] (r, ro ") — 2hQis4 (T, rf)m)> —20;3 Dys(r,rg™)
(2.38)

with the negative sign for j = 3 and positive sign for j = 1,2. In (2.38) the G? is
referred to the Stokeslet quadruple which is a tensor of rank four and is obtained by
two times deriving the Stokeslet with respect to its pole at ry. Here, with the same
definition for x and y as explained earlier, the Stokeslet quadruple is given by [83] as:

G?jlm = R3 (6ll5jm + 51,m5]l 51]51771)

YiliYiYm
~ (Bim¥Yi¥; + Om¥Yiti + 01YiYm + Oim¥iYi + 0y Ym — Oijiym) + 15]—l
‘) 20)
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Figure 2.10: Point Source in the presence of a no-slip plane wall. In the figures above,
the contour plot and streamlines of the fluid velocity due to a point source above the
rigid plane wall, are illustrated. Here, the point source with strength ¢ = 47 is placed
at ro = (0,0, d) where d is chosen to be 0.25. 2.6 The contour plot for the logarithm
of the velocity magnitude or log;y(Ju|) is shown in which the colours ranging from
blue to red correspond to the low and high velocity magnitudes, respectively. Note
that the velocity behaves singular at r = rq where the point source is located. 2.6
The velocity streamlines are illustrated.

Also the term Q(r,ry™) in equation (2.38) is called the potential quadruple, which
can be obtained from the deriative of the potential dipole with respect to the pole ry.
The expression for the potential quadruple is given by [83] as:

dijyi + 0ay; + 01y YiY;Yi
Qijl - —3 R5 + ].5 R7

Consequently, the velocity due to a potential dipole above a plane wall with strength
d is written as:

(2.40)

1 w
u= ED (r,ro) - d(ro) (2.41)

In this chapter, we investigated the singularity solutions for the Stokes equations
including the Stokeslet, Source, source doublet (or potential dipole) both in free-space
and above a no-slip plane wall. In the next chapter, we introduce the singularity
method and slender body theory by which we explore how singularity solutions of
the Stokes flow are employed to determine the hydrodynamic drag load on slender

filaments.
f
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Figure 2.11: Potential dipole in the presence of a no-slip plane wall. The velocity
contours and streamlines due to a potential dipole acting on a viscous fluid close to a
rigid plane wall, are illustrated. The solid line in the middle of each figure represents
the rigid wall and the bottom part of the wall represents the contribution of image
singularities to the main source singularity located on the top of the wall. In the first
row, the potential dipole strength with d = 47 (1,0, 0) is placed at rq = (0,0, d) where
d is chosen to be 0.25 for this simulation, and the image, which is placed at " =
(0,0, —d), is oriented in parallel to the plane wall with strength —d. In the second row,
the potential dipole acts perpendicular to the plane wall with d = 47(0,0,1).2.6,2.6
The contour plot for the logarithm of the velocity magnitude or log,,(|u|) is shown in
which the colours ranging from blue to red correspond to the low and high velocity
magnitudes, respectively. 2.6,2.6 The velocity streamlines are shown in which the
black arrows are oriented along the direction of the potential dipole strength and its
image, respectively.
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Chapter 3

Hydrodynamics of Slender Rigid
Rods Using Slender Body Theory

3.1 Singularity Methods for Slender Bodies

In this chapter, we consider a slender rigid rod with arc length s that is immersed in
a viscous fluid and aim to compute the hydrodynamic loads exerted on each cross-
section of the rod. In general, to determine the fluid velocity field around any arbitrary
structure, one approach is to use the boundary integral method and fully solve the
integral equations on the surface of the body[99, 59, 73, 83]. This method, however,
provides more accuracy but computationally is intensive especially when there are
multiple structures with complex geometries. Alternatively, the singularity method
—also known as the method of fundamental solutions— is introduced to circumvent
the computational difficulties associated with the boundary integral method. In this
manner, the flow is represented by a line integral or point-wise distribution of ap-
propriate singularities instead of a surface singularity distribution on the structure.
Exclusively for a filament with a small but finite slenderness ratio, distribution of
Stokeslets and potential dipoles along the center-line are necessary for the represen-
tation of the flow past the filament[83].

Here, we use slender body theory (SBT) which takes advantage of both the sin-
gularity method and the slenderness of the filament to reduce the boundary integral
formulations into a single integral along the center-line of the filament. In SBT, the
key idea is that the Stokeslets and potential dipoles with unknown strength can be
distributed along the center-line of a slender filament. However, [40, 63, 45] showed
that satisfying the no-slip boundary condition on the surface of a slender body of
finite slenderness, requires the potential dipole’s strength to be proportional to the
perpendicular components of the Stokeslet’s strength by a factor of —a?/4u. The
determination of each Stokeslet’s strength f is crucial since it represents the hydro-
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dynamic load per unit arc length exerted from the fluid on the corresponding cross-
section of the filament. There is a various number of analytical methods presented in
which an asymptotic expansion in terms of the slenderness ratio of the filament is used
to examine the drag force distribution along the center-line of the filament[20, 4, 53,
56]. Later in this chapter, the theory of Cox, which employs the method of matched
asymptotic expansion to analytically determine the hydrodynamic load exerted on
the slender body from the nearby viscous fluid, will be discussed. In this section, we
explore SBT and present a numerical algorithm for obtaining the stokeslets’ strengths
from which the fluid flow around the body will be identified.

Thanks to the linearity of the Stokes equations, the fluid velocity field around
a slender filament can be determined at any arbitrary point ¢ using the superposi-
tion of all singularity solutions distributed along the center-line of the filament. As
discussed earlier in the previous chapter, the Green’s function and the source sin-
gularities of the Stokes equations along with their higher-order derivatives, are all
solutions to the Stokes flow. Higher-order singularity solutions for both source and
force singularities including Dipoles, Quadrupoles, and Octupoles are well demon-
strated by [95] and [83]. It is also shown that the Stokeslet Dipoles, Quadrupoles,
etc. are found by taking the gradient (V) while source singularities —except the
point source— by taking the laplacian (V,?) of the Stokes equation Green’s function
G(r,rg) = % + Ww where subscript 0 is used to show that the operators are
applied at ro where the singularity exists. For instance, taking the laplacian of the
Stokeslet and using the relation D(r,ro) = —1V{G(r,ry) which is given by (3.2),
the potential dipole D(r,ry) can be derived from the Stokeslet. In the context of this
study, we confine our computations to the use of Stokeslets and potential dipoles only
and neglect the inclusion of higher-order singularity solutions.

Now, by distributing the appropriate singularities along the center-line of the
filament the velocity of the fluid at any arbitrary point ¢ which will be marked by
the vector r, (see FIG. 2.1) is determined through:

u(r) = u™( 8”#/ G(r,ro(s ds+—/ D(r,ro(s)) - d(s)ds (3.1)
where the potential dipole is given by:
I _ _
D(r,ry) = — & 4 3T =T0)r = T0) (3.2)

r3 rd

and given by [63] the potential dipole strength d(s) is related to the normal
component of the Stokeslets’ strength f | (s) through:

d(s) = (;7) £ (s) (33)
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Where, s is the arc length along the center-line, a is the radius, L is the length
of the filament, and D is the potential dipole with strength d. Note that, equation
(6.4) is only valid for a filament immersed in an infinite unbounded fluid away from
any rigid boundary.

In many applications, for instance the dense population of slender nanotubes
attached to a solid plane forming nanocarpets [81, 77, 80] or slender bio-filaments
cilia and flagella found attached or swimming close to a rigid wall [61], the presence
of the rigid plane wall affects the hydrodynamic interactions between the filaments
and the fluid. Thus, an extra no-slip boundary condition on the surface the rigid plane
wall should be satisfied by the Stokes equations (2.3). Blake [8] used the method of
images to satisfy the no-slip boundary condition on the surface of a rigid wall where
the flow is induced by a point force placed at a distance h from the wall. He derived
the appropriate singularity solutions G*(r, ro(s), ri™(s)) and D¥(r, ro(s), ri™(s)) that
are associated with the point force and the source doublet —also called the potential
dipole— above the plane wall, respectively, in which the superscript ¢m denotes the
image of singularity solutions with respect to the wall (see FIG. 2.6). Replacing
G(r,ro(s),ri"(s)) with G¥(r,ro(s),ri"(s)) and D(r,ro(s)) with D¥(r,ro(s), ri"(s))
in equation (6.4) the fluid velocity field near the filament will be determined. The
G" and D" are discussed in the previous chapter and are also given by [83, 43, 95].
Therefore, the fluid velocity field at any arbitrary point ¢, which will be marked by
the vector r, in the presence of an slender body swimming close to a plane wall yields:

00 1 g w m
u(r) =u (r)+%/0 GY(r,ro(s),ry"(s)) - £(s) ds+

1 (3.4)
yym i D" (r,1o(s), ry™(s)) - d(s) ds

The solution of (3.4) requires the point force density f(s) to be determined at each
cross-section of the rod. To evaluate the strength and the direction of the force at
each cross-section, the no-slip boundary condition on the surface of the rod, which
states the velocity of each cross-section should match the summation of induced fluid
velocities by the rest of the Stokeslets at that specific material point, should be
satisfied. Given the velocity of each infinitesimal cross-section of the rod v, equation
(3.5) provides us with a system of linear equations that needs to be inverted to
obtain the hydrodynamic load f at each cross-section of the rod. Now, to present an
integrable numerical method, we follow the method by [84, 43] and use equation (3.5)
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in which 1 <4,7 < N:

ols) (s + (£ >)+(§”fu<si>)+

! 3 w im
S Z# G (x(s0), ro(s), 1" (5)) - £(5,) A+ (35)
47r Z D*(r(s), ro(s;), r5"(s;)) - d(s;) As
j=1,j#i

where f, and f, denote the normal and tangential components of the force, ¢|
and ¢, are the resistive drag coefficients for each small section of the rod given by
2mp/(In (2g/a)—0.5) and 47 p/(In (2q/a)+0.5) respectively, in which ¢ = §/e = 0.82a
is a natural cut-off length. For f € R? | (3.5) provides us with 3N linear equations
that can be inverted to obtain the 3N unknown force strengths. In this manner,
we find the 3N vector B, which includes all the unknown force strengths, through
B = A~'C in which A is the 3Nx3N coefficient matrix, and C identifies a 3N vector
that includes the known values of the relative velocity at each cross-sections along
the filament.

To construct the components of the coefficient matrix A let 1 < n,k < 3 then
following [51, 81] we introduce (3.6):

A3(i—1)4n3G-1)+k =
'L(f:ﬁ)T + LA -8+
— [GZ"JZ( (5:), 74" () + == Din(x(s:), vi (s;)) (T — EE)} ifi =
(3.6)
= [Gﬁk(r(si)v ro(s;), t"(s5)) + =5 Dty (x(si),vo(s;), 1" (s5)) (T — EE)]
\ ife # j

Let define G™ and D™ such that G"™ = G¥ — G and D™ = D¥ — D when G
and G" are given by equations (2.4) and (2.23), and D and D" given by (2.32) and
(2.38), respectively. Here I = t€+nn+bb while £ , i, and b denote the unit tangent,
normal, and binormal vectors evaluated at s = s; , respectively. The 3N vector C
consisting the known relative velocities between the filament and the far-field flow at
each cross section is given by:

Chiimtyn = vn(51) = w2(s1) (3.7)



therefore the 3N vector B = [f; £, ... f N]T which includes the unknowns Stokeslets
strengths will be found.

Now, the results from slender body theory (SBT) which are obtained computa-
tionally, are compared with the resistive force theory (RFT). In the following cases,
the rod is taken to be straight while moving perpendicular to the flow with a prede-
fined velocity profile. In FIG. 3.1, an straight rigid filament is subjected to a shear
flow in which the velocity profile is linearly changing from zero at the base up to the
tip of the filament and the corresponding force densities are obtained using RF'T and
SBT.

Figure 3.1: Computation of the hydrodynamic loads on each cross-section of a straight
rod attached to a plane wall using slender body theory (SBT) and resistive force
theory (RFT)

3.2 Slender Body Theory of Cox

The general slender body theory (SBT) presented by Cox [20] considers all the dis-
turbances produced by a slender body which is immersed in an unbounded viscous
fluid at low Reynolds numbers. An analytical solution for the drag force per unit arc
length along the body of the slender filament is found using asymptotic methods in
terms of the slenderness ratio of the rod. The expression for the drag force provided
by Cox is valid when the filament has a small slenderness ratio ¢ = a/L in which a
is the maximum radius and L is the length of the filament so that the corresponding
error approximation will be found in the order of 1/(In¢)3. Implementation of the
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Cox SBT requires the geometry of the rod to be known so that the drag force per unit
arc length of the rod f(s) at each cross-section of the rod can be computed, in which
s denotes the arc length of the rigid filament. Here, we first consider a vertical rigid
rod with a constant circular cross-section in an unbounded fluid, which undergoes a
uniform translation perpendicular to the center-line of the rod. We then compute the
hydrodynamic drag force that is exerted on each cross-section of the rigid rod.

The formulation in equation (3.8) explicitly defines the local drag force per unit
arc length f(s), in terms of the relative velocity of the fluid u™(s) — v(s) at each
cross-section of the rigid rod. Here, u®(s) denotes the fluid velocity at far-field, and
v(s) represents the velocity of the cross-section located at s, which due to the no-
slip boundary condition is equivalent to the velocity of the fluid on the body of the
filament at the similar point. The force distribution along the rigid filament with
constant radius of a at any cross-section, yields:

f(s) _ (u>(s) —v(s)  J(s) + (u™(s) — v(s))In(2¢)
2T ( Ine " (Ine)?

)-(tt—?l)

w(s) — v(s) (3:8)

1
TSR (3tt — 2I) + O (—(m 5)3)

Where I is the identity tensor, and t = t(s) represents the unit tangent vector
along the filament at s. The vector J is also given by :

1] [ L1 /1 &%
J(s) = —= -
¥)=" Uo +/s+j (r T

in which £ = t(5), the vector & = ry(§) —ro(s) with # = |&|, and € be an arbitrary
parameter chosen between 0 < ¢ < 1. It should be noted that the formulations above
given for non-local hydrodynamic interactions are only valid approximations when
the body does not experience any self-interactions, otherwise, the singular solutions
may arise[96]. The integration in equation (3.9) should also be taken with care since
a singularity exists at s = §. To avoid the numerical issues, the € should be chosen
such that € = As where As denotes the length of each element after discretization
of the rod. Therefore, the smaller the value of the €, the smaller the value of As is
required to be employed, which may be accompanied by higher computational costs
especially for the simulation of multiple arrays of filaments.

Analytically integrating the equation (3.8,3.9) for a straight rigid rod such that
t holds a constant value, the total drag force can readily be determined. The total
hydrodynamic load acting on the rod can be written as

) « (1— %Ef) CWR() —v()dE (3.9)

F=§U-t)t+&(U-nn+&(U-b)b (3.10)

where t, n, and b respectively denote the unit tangent vector, unit normal vector,
and the unit bi-normal vector along the straight rod. Then let U = u® — v while
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Figure 3.2: In the following figures, a rigid circular cylinder is assumed to be sedi-
menting perpendicular to the unit tangent vector of the slender body with velocity
U = |U| in an unbounded fluid at rest. On the left side, the non-dimensional drag
force per unit arc length of the rigid rod using RF'T and SBT, are compared. On the
right side, the integrand of J(s), which is denoted by J(3), at a typical point s = 0.5
is shown. The simulation parameters for this figure are as follows: the slenderness
e = 0.01, e = As = 0.01 while the position of each cross-section is marked with s
where —1 < s < 1.

both u™ and v are assumed to be constant along s. Here, &, &,, and &, represent the
drag coefficients along the unit vectors t, n, and b, respectively, and are given as:

. 2m L
&= "1z e+ (3.11)
e Al
=8 = "1y )1 7% (3.12)

It is shown that for a circular cylinder Z; = —0.81 and Zy = Z;+1. We should note
that for a slender body the drag coefficients along n and b do not vary significantly
thus we can write &, = &. Local drag coefficients are also obtained through the
leading order term in equation (3.8). For an infinitely long slender filament, the
higher-order terms of the expansion can be neglected since the first term which is of
order 1/(Ine) becomes the dominant term[96]. Thus, the drag force per unit length
for an slender filament with small slenderness ratio ¢ = a/L < 1, will reduce to
& = —2mp/In (e Ywhile & = & = 2. In this case, the SBT is reduced to the
resistive force theory or (RFT) where a linear relationship between the drag force
and the fluid velocity per unit arc length of the filament is maintained. Generally,
RFT is considered as a simpler version of the slender body theory (SBT) with the
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contribution of the leading order terms only, which provides less complexity and
accuracy to the problem. It should also be noted that Gray and Hancock [40] was
the first who introduced the local hydrodynamic drag coefficients using the linear
superposition of singularities along the center-line of the filament.
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Chapter 4

Dynamics of Slender elastic
filaments

4.1 Computational Rod Model

Now in this chapter, we turn our attention towards the dynamics of slender struc-
tures. A continuum rod model that captures the dynamics of the elastic rod, in
general, employs the dynamic equilibrium equations and the compatibility equations
that should be solved together whether symbolically or numerically. However, the
symbolic approach should be avoided due to the intensive computational costs, and
instead, a robust numerical method must be developed to computationally solve the
sets of nonlinear differential equations[27]. Besides, the constitutive equation, which
defines the relation between the internal moments and the curvature along the elastic
rod, completes the required equations for integration with respect to space and time
once the appropriate boundary and initial conditions are readily at hand. It should
be noted that the identification of the constitutive parameters might be challenging,
especially for biological filaments that are consist of complex internal structures. In
such sophisticated systems, inverse approaches as introduced by [27, 28] can be imple-
mented to determine the exact functional form of the constitutive parameters which
may vary along the filament.

Here, the continuum rod model that we use for tracking the elastic deformations
of a slender filament follows the classical approach of the Kirchhoff [58] which assumes
each cross-section of the rod to be rigid. Thus, the rod needs to be the discretized in
space and time so that the equations of equilibrium and compatibility along with the
constitutive equation can be solved simultaneously at each cross-section of the rod
to determine the unknown information. Following [38, 28, 27, 92, 34], equations of
equilibrium (4.1) and (4.2) along with the equations of compatibility (4.3) and (4.4)

33



are given below:

m(%anxv)—(g—f—k&xf)—fm:O (4.1)
Imaa—i+wamw—(%+nxq)—rsxf—qe‘”t:() (4.2)
%’;S+wxrs—(g—2’+nxv):o (4.3)

X kxw)=0 (4.4)

The first two equations respectively represent the balance of linear and angular
momentum, in which ¢ is time, s is the arc length along the center-line, m is the mass
per unit length of the rod, I, is the 3 by 3 tensor of moment of inertia per unit
length, and the spatial derivative of vector ry(s,t), which marks the position of each
cross-section here, is denoted by the vector rs. The vectors v(s,t) and w(s,t) capture
the linear and angular velocity of the cross-sections respectively, &(s,t) defines the
curvature and the twist vectors, and the net internal force and internal moment over
each cross-section of the rod are denoted by vectors f(s,t) and q(s,t), respectively
[27, 28]. The constitutive law with an algebraic form of g(s,t) = B(s)(k(s,t) — Ko(s))
is used where the matrix B encodes the bending and torsional stiffness moduli of the
rod, and Ko(s) describes the initial stress-free curvature and twist vector. Thus, the
internal restoring moment q(s,t) can readily be substituted in the equation (4.2).
In the context of this study, we limit ourselves to the use of zero initial curvature
and twist configuration ko(s) = 0, along with the choice of constant constitutive
properties, which are given as:

EL, 0 0
B=| 0 EL 0 (4.5)
0 0 GI

in which I, I, denote the second moment of area along the bending axes within the
body-fixed frame which are represented by the normal n and bi-normal b unit vectors,
and I3 along the twist axis, which is represented by the unit vector t. Any external
forces and moments imposed on cross-sections are captured by vectors f¢**(s,t) and
q°“!(s,t) respectively. In our fluid-structure interaction model, the fluid and the
structure communicate with each other through the vectors £ and ¢°* in which the
external hydrodynamic loads can be computed by the slender-body theory. Moreover,
we should note that at low Reynolds numbers regime where the inertial effects are
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very negligible the general form of equations (4.1-4.4) can specifically be reduced to
the following sets of equations:

0
(8—£+mx i+ =0 (4.6)
Ok ext
(BEJrann)thquLq =0 (4.7)
(g—qunxv)—th:O (4.8)
Ow oK
(%“—HXW)—E:O (4.9)

In equation (4.8), the inextensibility constraint conserves the arc length locally
by imposing r; = t where t = (0,0, 1) represents the unit tangent vector along the
center-line of the slender rod when measured with respect to the body fixed frame.
Thus, the unshearability constraint 85; = 0 will be satisfied as well. Also note that
in equation (4.7), the net internal moment g is directly replaced with Bk where B
holds the constant values of constitutive parameters corresponding to the bending
and torsional stiffness, identified by the equation (4.5). Now, four partial differential
equations in 3-dimensional space are left, and the four unknown vectors v(s, t), w(s,t),
K(s,t), and f(s,t) need to be determined. The aforementioned assembled system of
equations presented by [34, 38, 28] is used and combined with a numerical integration
scheme by which the unknown vectors will be obtained at each time step and at every
node along the flexible slender rod.

4.2 System of Assembled Equations

Rearranging equations (4.6-4.9) that represent the equations of motion for an inex-
tensible/unshearable rod with negligible inertia, they are written in a more compact
form as:

Y oY

In which, Y holds a 12 x 1 column vector of unknowns given by:

Y = (4.11)

X € <

Note that we have rearranged the sets of partial differential equations in the
following order: equation (4.8) first, (4.9) second, (4.7) third, and (4.6) which is
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settled as the last equation. This is done to fill the diagonal inputs of the matrix K
with the corresponding coefficients rather than the off-diagonal terms. The M and
K that we respectively call the mass and stiffness matrix, are 12 x 12 matrices that
contain the coefficients of the partial differentials of the unknown vectors:

00 0 O 1 00O
00 10 01 0O

M=1oo0oo0oo0ol|  ¥=loosBo (4.12)
00 O O 00O I

where I represents the 3 x 3 identity matrix and O shows a null 3 x 3 matrix. The
12 x 1 column vector F contains all of the non-homogeneous terms, and is expressed
through:

KXv—wXt
KXW
kX Bk +tx f+q“
K,Xf—l—fezt

Now, the partial differential equations need to be integrated in space and time but
the nonlinearity of the non-homogeneous vector F requires us to employ an iterative
procedure which will be discussed next.

F = (4.13)

4.3 Numerical Algorithm

Generalized-o. method is a robust integration algorithm [15] that we adopt to solve the
sets of slender rod equations given in a compact form by equation (4.10). However,
obtaining the solution for the 12 unknowns in equation (4.10) requires 12 boundary
conditions to be determined and implemented in the problem at each time step (re-
call that each unknown vector contains 3 unknowns in 3-dimensional space so that 4
unknown vectors v, w, k, and f overall have 12 unknowns and therefore 12 boundary
conditions are required). We also use the method of incremental rotation [10, 39, 29]
to transform the body-fixed frame to the inertial reference frame.

Using the Generalized-a algorithm, discretization of the equation (4.10) yields:

oY\ '™ oY\
1-B¢ 1-B¢ 1-B8: __

Let the following notation for any quantity W [38, 27] represent:

1—ag

Wlfa
Wl—a

(1—a)W'+aW'!
(1 — O./)Wj + OéWj_l

(4.15)
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such that ¢ defines a grid point discretized in time and j in space. In this study,
we use linear and homogeneous constitutive parameters and rod properties, thus the
mass M and the stiffness K matrices are constant and do not vary with the time ¢
and space s. The equation above can be written in the simplified form of:

oY\ oY\
M [ —— K(— FI% — 9 4.1
(%), x(%),, (410

To solve equation (4.16), first we need to discretize it in space and construct
the assembled matrices in terms of Y and %. Here, we choose the parameters
as = B, = 0.5 to evaluate each differential equation at the middle of grid-points j
and j — 1. In this manner, equation (4.17) needs to be discretized in space first:

l—as

M <Y>; + K(Y’)l n (F) —0 (4.17)

2

N

where the notations Y = % for the time derivatives and Y’ = %—Z for the spatial

derivatives are used. Extensively for the spatial derivative at each mid grid-point we
define:

Y. —Y _,
Y), =2 4.18
(), =~ (118)
but for (Y) and <F> | we follow the generalized-a discretization instruction
provided by (4.15). As a resiﬂt, we arrive at the following equation:
1 . . 1 1
M (Y54 Y50) + K (Y= Y ) + 5 (Fi+ Fy) =0 (4.19)

Let the filament be discretized into N — 1 segments such that the index j takes the
values 1 < j < N. Now, the whole 12 x (N — 1) PDEs along with the 12 boundary
equations can be written in using the following assembled matrices:

(M M O --- O]
- O M M O
M= : .. 0 )
0] O M M
. O -0 0 4 12nx128 (4 20)
T -K K O -- O '
(0] -K K O
K. 2 .
As B O
O —-K
| I (%) IR(%) d 12N x12N
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where O denotes a 12 x 12 null matrix. The vectors Y, {(, and F are given by:

. F,+F,
Yl Yy Fy; + F3
0y Y2 ~ Y2 ~ .
Y = ) , Y = ) , F= : (4.21)
5 : Fy_1+Fy
Yy 12N Yy 12N BC .

The last row represents the 12 required equations for the boundary conditions.
In the context of this study, we consider a filament which is clamped at s = 0 and
free at the other end s = L. Therefore, the boundary conditions appropriate to such
problem requires v = w =0at s =0, and Kk = f =0 at s = L. Thus, the 12 x 12
matrices I, and Ig, along with the 12 x 1 vector BC , become:

I O
O 1
OO

QO
QO

I, = , Ip= (4.22)

clojeNe)
cloloNe)
=00
~ O OO0
ololoNe)

OO0 0O

in which I is 3 x 3 identity matrix. As a result, the compact form equations can
be written as:

MY +KY +F =0 (4.23)

However, equation (4.23) is continuous in time [64] and needs to be integrated.
Following the generalized-ae method we obtain:

(M\?)l_at v (f{\?)l_ﬁt v (ﬁ)l_ﬁt —0 (4.24)

The matrices M and K are constant and do not change with time, thus (4.24)
reduces to:

~i—1

(-0 s 008 ) R (=A%) (0 05 0
(4.25)
Again using the Newmark algorithm, the time derivative can be approximated by:
-\ ¢ Yz — Yifl 1 — Yt N i—1
Y) = - (¥) 4.26
( ')/tAt Ve ( )
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substituting (4.26) into (4.25) yields:

— T \ o~ g ~ N\
(M(l —ay)( )+ K(1 - ﬁt)> Y+ (M(l — ay)( )+ K(ﬁt)> Yt
YAt ‘ YAt (4.27)
o~ Y — 1 o =i Sie1 '
M((1=a)(P==) + () Y+ (1= B)F + (B)F") =0
Tt g
=s
which can be written in a compact form as
~. ~. Tl ~. ~.
EY T HEY T HEY +(1-B)F 4+ (B)FT =0 (4.28)

Therefore, to determine the unknown vector Y?, equation (4.28) needs to be
solved. However, the presence of the nonlinear and unknown term F' in the equation,
requires an iterative numerical algorithm that is able to enforce the convergence.
Here, the Newton-Raphson iterative procedure is used, which necessitates the lin-
earization of (4.28) in terms of the guessed solution. For convenience, in *Y* let the
left superscript £ denote Y! after k-th iteration within the Newton-Raphson loop. At
each time step denoted by i, the solution vector Y* can be guessed through [39, 29,
64]:

-1

by — k=1yi (k—lji)—l (51 YL S,V L EY 4 (1-8) =1 (5t)ﬁi—1>

(4.29)
In which J denotes the Jacobian matrix which is defined as
- 8k—1ﬁz’
k=171 __ - —
T =0=B) = + 5 (4.30)
where the assembled matrix associated with g—g can be constructed by:
i FYi FY% O st O i
=~ O Fyi Fys o :
. OF? Y Y5
Fyi = a_N — : . . . o (4.31)
v : . . :
o - O | vuion
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in which Fy is defined through:

TN
Fy=1'0 "0 _Bul+[.B [t. (4.32)
O O —[f]« K]

12x12
It should be noted that, the operator []x transforms a vector into the associated
skew-symmetric matrix [32]. For instance, consider the velocity vector v € R? given
by v = (v, v, v3) for which the corresponding skew-symmetric matrix [v]x € R3*3 is
found through

0 —Us (%)
W]« = | vs 0 —u (4.33)
—V2 U1 0

4.4 Post-processing Output

Once the differential equations were sufficiently integrated through time and the so-
lution vector Y is found at each temporal step, we employ the method of incremen-
tal rotation to construct the transformation matrices through which the geometrical
shape of the filament will be obtained [11, 29, 64]. In this method, the matrix expo-
nential is used to capture the rotations of each cross-section through the space and
time [3, 62, 36, 32]. Let L denote the transformation matrix and 6 be the angle that
represents the rotation about the unit vector axis , then we have:

L = (7612 (4.34)
where [.]« represents the skew-symmetric operator and 6 is defined :
i _As i

We then obtain the exponential matrix using the Rodrigues formula [89, 32] and
compute the transformation matrix L using the following formula:

L’ = expm (—6%) L}_, (4.36)

where expm represents the exponential matrix operator.

4.5 The Combined Elastohydrodynamic Model

To summarize the procedure for combining the computational rod model with SBT,
we first review the two important equations provided in chapter 4 and 3 that respec-
tively capture the structural dynamics of the filament and the nonlocal hydrodynamic
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loading imposed by the surrounding fluid on the filament. Here, we rewrite the two
important equations, the first of which is attributed to the SBT for the hydrodynamic
analysis that first is defined in (3.5)

ol =)+ (1) ) + (Al ) +

Si_i[ D GU(r(se)sro(sy)rg"(s)) - £ (s5) + (4.37)
j=1,j#i
= Dw<r<si>,ro(sj>,rém<sj>>-f’i“j)}

2
J=1,j#q

where 1 < ¢, 7 < Nin which N shows the number of cross-sections, and f" denotes
the hydrodynamic force exerted from the cross-section on the fluid. The second
equation from (4.29) that through the 12 x 1 vector Y = (v,w, k, f)1 determines
the four vector quantities namely linear velocity v, angular velocity w, curvature
along the filament K, and the net internal force at each cross-section f, at all spatial
and temporal nodes:

) E s ()F)
(4.38)

where Y' = (Y, Y5, ... ,Y%)" holds Y at all nodes in space but at t = i At. Now,
we follow the procedure in the following order:

byt = kelyi (kL)1 <E1 b-lyi =Yl 4 2

15: start by setting 1 = 1
279d: yse the known velocity of cross-sections v obtained from the previous time
step then invert the equation (4.37) as explained in chapter 3, to compute the hydro-

dynamic forces f" at all spatial nodes

3rd: update the vector of non-homogeneous terms Fi-l simply by substituting
oo = — f" inside of each F;-_l

4*": start the Newton-Raphson iterations beginning with k = 1

5% update the vector of non-homogeneous terms k=1 using the known infor-
mation at *1Y"
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6%8: iterate equation (4.38) by setting k = k+1 until the convergence is guaranteed

7th: set i =i + 1 and start over to determine the solution in the Next time step
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Chapter 5

Accuracy of the Slender Body
Theory compared to CFD and
Local Hydrodynamic models

Here in this chapter, we consider multiple case studies to examine the range in which
Slender Body Theory (SBT) provides a reliable solution for the hydrodynamic loads
exerted on the filament. It is important to mention again that all the simulations in
this thesis and more specifically this chapter, are conducted for filaments that move
at low Reynolds numbers where inertial forces of fluid are very small compared to
the viscous forces in the Navier-Stokes equations. This reduces the nonlinear Navier-
Stokes differential equations into the linear Stokes equations where the solution is
mathematically obtainable. SBT takes advantage of the linearity of the Stokes equa-
tions and employs the singularity solutions discussed in detail in chapter 2 and 3 to
determine the velocity and pressure field in the domain of interest around the slen-
der filament. In essence, the theory provides an exact solution when the slenderness
ratio of the filament, which is the length over the radius ratio, is infinitely large.
Typically the range in which slender objects such as Carbon Nanotubes (CNTs) and
flagellar filaments exist, the slenderness ratio is found to be in the order of ~ O(10)
to ~ (1000). Therefore, it would be worth investigating the accuracy of the SBT
and estimate the error at different slenderness ratio values. A Computational Fluid
Dynamic (CFD) solver would indeed be a reliable benchmark, which can provide a
reasonably accurate solution to the fluid flow around the corresponding slender ob-
jects. Here, we used COMSOL Multiphysics@®) v. 5.3 as our finite element CFD
solver and compared the results with SBT. In some case studies, rather than the SBT
and CFD solutions, we include the lower order SBT solutions, namely, the Resistive
Force Theory (RFT) and the Wall-Resistive Force Theory (W-RFT). The resistive
forces or local hydrodynamic solutions are the most basic solutions of SBT that ne-
glect higher-order nonlocal terms in the integral formulations of SBT resulting in the
leading-order terms be the only contributors to the hydrodynamic drag force. More

43



specifically, the RFT solutions provide a linear relationship between the local veloc-
ity of each segment of the filament and the hydrodynamic drag force imposed by the
nearby fluid. The RFT solutions indeed will not account for the nonlocal interactions
arising from the incompressibility of the fluid and therefore is accompanied by more
error when the filament is highly curved or surrounded by other no-slip bounderies[23].

In the following sections of this chapter, the CFD simulations are involved and
the total hydrodynamic drag forces on each filament are compared with the local
and nonlocal hydrodynamic models. In three different scenarios of a filament in an
unbounded domain, in the proximity of a no-slip infinite plane wall, and attached
to a no-slip plane wall, we investigate the total drag force exerted on each filament.
We then compare the results of our slender body formulations with those obtained
by Pozrikidis (2011) in [81], where the hydrodynamic forces per unit arc-length are
computed for three rods of different slenderness ratios attached to a no-slip wall. Let
us again review the abbreviations used throughout this chapter of the thesis:

e CFD (Computational Fluid Dynamics): Results of hydrodynamic loads on a
slender cylinder obtained from the COMSOL Multiphysics® v. 5.3 as our
CFD solver

e SBT (Slender Body Theory): Results of the hydrodynamic loads on an un-
bounded cylindrical filament, obtained from our computational model solved
via MATLAB®) v. R2018b [81, 23]

e W-SBT (Wall-Slender Body Theory): Results of the hydrodynamic loads on a
cylindrical filament bounded by a no-slip wall, obtained from our computational
model solved via MATLAB®) v. R2018b [8, 9, 45]

e RFT (Resistive Force Theory): The leading-order hydrodynamic loads on an
unbounded cylindrical filament obtained from SBT formulations [96, 20]

e W-RFT (Wall-Resistive Force Theory): The leading-order hydrodynamic loads
on a cylindrical filament bounded by a no-slip wall obtained from W-SBT [12]
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Figure 5.1: Schematic of the cylinder close to the no-slip wall

In addition to the short forms of the most used definitions discussed above, FIG.
5.1 introduces the cylinder by its radius a and length L where the slenderness ratio
is defined by n = L/a = 7! (in chapter 2 we employed ¢ to represent the slenderness
ratio but in this chapter it would be more convenient to work with 7 the length-over-
radius ratio). For the case of a filament moving in the proximity of a no-slip plane
wall, the gap between the center-line of the filament and the rigid wall is defined
by h. The following properties for the fluid are considered; u[pa.s] is the dynamic
viscosity, p[kg.m™3] is the density of the fluid, u™[m.s™!] represents the velocity of
the fluid in far-field while V[m.s™!] denotes the velocity assigned to the stokeslets.
For more realistic choice of parameters, we take the example of primary cilia [90]
moving in liquid water. The length of the filament is chosen to be L = 107[m], so
that the change in radius a, defines the slenderness ratio of the filament n. Moreover,
the viscosity u = 1073[pa.s] and density p = 103[kg.m 3] represent the properties
of liquid water. Typically the values assigned to the far-field velocity of the fluid
or the velocity of the stokeslets are in the order of O(1073[m.s™!]). Therefore the
maximum Reynolds’ number Re = pV' D/ for the fluid passing around the filaments
will be found in ~ O(10™*) or smaller, which ensures that the Stokes’ flow equations
govern the motion of the fluid. Although, we choose dimensional parameters that can
represent a physical system, but we will report all the results using nondimensionalized
values.

5.1 Flow Passing An Unbounded Sphere

To understand the error associated with the CFD simulations, we first study two
cases where the fluid passes a sphere with the Reynolds’ numbers of Re = 0.001
and Re = 0.002 corresponding to the diameters of D = 1[um]| and D = 2[um],
respectively. The advantage to such a case study is that the total drag force computed
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by the CFD simulations can directly be compared to its theoretical value known as
the Stokes’s law:

F =3rDpV (5.1)

to measure the error associated with each choice of mesh size in the computational
domain. Meshing in COMSOL is mainly associated with multiple built-in tools that
provide users with more flexibility and functionality. In our CFD simulations, we have
considered two separate meshing domains; the first is attributed to the sphere for
which the total drag force will be calculated, and the next is the domain in which the
fluid flows. To maintain the accuracy of the CFD results with the least computational
costs, a spatial adaptive mesh is applied to the computational domain. Since the CFD
solution is of higher importance in the proximity of the sphere, a very fine mesh size
is assigned to the boundary of the sphere and coarser mesh size to the fluid domain.
This mesh refinement technique will ensure that the elements closer to the sphere have
the least mesh sizes but they gradually shift toward coarser meshes as they move away
from the sphere boundary. To control the meshing parameters in COMSOL, we use
the extremely fine mesh size for the sphere with manually adjustable values for the
maximum mesh size, along with the fine mesh size for the fluid domain. As a result,
both spheres with mesh sizes of 0.05, 0.075, 0.1, 0.2,and 0.5 meters (see FIG. 5.2 and
FIG. 5.3) are placed in the middle of a sufficiently large channel where the fluid with
u® = (1,0,0)[mm.s"!] flows around the sphere. The theoretical values suggest that
the total drag force on the sphere with D = 1[um] and D = 2[um]| should respectively
match F; = 9.424[pN] and Fy = 18.849[pNV].
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(¢) Max Mesh Size = 0.1

(e) Max Mesh Size = 0.5

Figure 5.2: Different mesh sizes on a sphere with D = 1[um] (all values in micron-
meters)
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Figure 5.3: Different mesh sizes on a sphere with D = 2[um] (all values in micron-
meters)
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As is shown in FIG. 5.4, the results suggest that the error has been reduced to
~ 0.2% for the sphere with D = 2[um| and ~ 2.6% for the sphere with D = 1[um)|
when the max mesh size is kept 0.05[um|. Typically the error below the 5% is con-
sidered to be reasonable for our CFD simulations. We should also note that the flow
past the filaments with higher slenderness ratios, may require more mesh refinements
and smaller mesh sizes. In the 3D simulations in COMSOL, meshing the objects
with aspect-ratios (length over the radius) more than 100 should be avoided since
solving the resulting system of equations would become harder as the aspect ratio
increases[103]. Therefore, errors associated with a high slenderness ratio obtained
by our CFD simulations are inevitable but with some mesh refinement techniques at
higher aspect ratios we kept the error around or below 5%. The sphere case stud-
ies helped us understand the range in which the error lies below the 5%. Last but
not least, in the whole CFD simulations in this chapter, a fully-coupled stationary
solver (also referred to as the steady-state solver) with tolerance set to 0.001 is used.
For further information about the solver and the termination criteria, the reader is
referred to [47].

50.00
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Figure 5.4: Error analysis for the total drag force computed by the CFD simulations
compared to the theoretical values obtained from the Stokes’ drag force on the sphere.

5.2 Total Hydrodynamic Force on a Free-Free
Filament in Unbounded Flow

The total hydrodynamic drag load on a filament moving in an unbounded domain,
away from any other rigid boundary is evaluated at different slenderness ratios. In
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these simulations, the rod is moving with V' = 1 [mm.s"!] in the Z direction and
perpendicular to its central X-axis. Note that the fluid around the rod is initially at
rest and all the disturbances in the fluid domain are produced by the motion of the
filament after the movement. In FIG. 5.5 the velocity contours and streamlines for
the filament with 1 = 50 are illustrated. Next in the FIG. 5.6, the total hydrodynamic
force on each filament versus their slenderness ratios of n = 20, 30, 40, 50, 75, and 100
using the SBT, RFT, and CFD methods are determined and the difference percentage
with respect to the SBT is reported.

-
T

N 0
_'1 -
- -2
2 -1 0 1 2 -2 -1 0 1 2
X X
(a) Velocity Contours (b) Velocity Streamlines

Figure 5.5: SBT for an unbounded slender filament in Stokes flow: The velocity
field around a slender rod of n = 50 using SBT is demonstrated. Here, a straight
slender filament with velocity V' = 1[mm.s™!] which is immersed in a fluid with
p = 1073[pa.s], is moving perpendicular to its x-axis. The simulations are in 3D but
here we have only illustrated the solutions on a 2D XZ-plane that cuts across the
symmetry axis of the Cylinder.

The FIG. 5.6 (a), shows a logarithmic reduction in the drag force as the slenderness
increases. The reason for the logarithmic decrease of the drag can readily be verified
by looking at the lowest order drag force approximation equation (3.12) in which the
drag force is proportional to 1/In(n). The FIG. 5.6 (b) also implies that the reduction
in the difference percentage is achievable with the increase in the slenderness ratio.
A quantitative analysis on the same figure suggests that at the lowest slenderness
ratio n = 20, SBT predicts 6.5% difference compared to the CFD results while at
the highest slenderness ratio n = 100 it has been reduced to less than 2%. The SBT
versus RFT comparisons signifies that the difference is ~ 1% for n = 20 but drops to
~ 0.5% for higher slenderness ratios.
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Figure 5.6: (Left)The total non-dimensionalized hydrodynamic drag force on slender
filaments of different slenderness ratios n are computed using SBT, CFD, and RFT.
(Right) The difference percentage associated with the SBT compared to RFT and
CFD are shown in the graph.

5.3 Total Hydrodynamic Force on a Free-Free

Filament Moving in Proximity of a No-slip
Plane Wall

As discussed thoroughly in chapter 2 and 3, the presence of any boundary in the prox-
imity of the singularity solutions, imposes another boundary condition to the system
of equations that needs to be satisfied in the final solution. Here, the singularity
solutions that are distributed along the center-line of the filament, are moving close
to a rigid plane wall located at Z = 0 with no-slip boundary condition on its surface.
Thus, we need to employ the image singularities G* and D" and use the equation
(3.4) which unconditionally satisfies the no-slip boundary condition on the surface of
the plane wall. In this problem the filament is located on top of the wall with the gap
distance h = 0.2[um] and is moving with velocity V' = 1[mm.s!] in the Z direction
(see FIG. 5.3). The fluid is initially at rest thus u> = (0,0,0) anywhere before the
movement of the rod is initiated. As a result, we determine the total hydrodynamic
drag force on filaments with slenderness ratios of n = 20, 30,40,50, and 75 using
W-SBT, CFD, and W-RFT and demonstrate them on FIG. 5.8.
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Figure 5.7: W-SBT for a slender filament moving near a rigid plane wall (Z=0) at
low Reynolds’ number: The velocity field around a slender rod of n = 50 using W-
SBT is demonstrated. Here, a straight slender filament with velocity V' = 1[mm.s™!]
which is immersed in a fluid with g = 1073[pa.s|, is moving away from the plane wall.
The simulations are in 3D but here we have only illustrated the solutions on a 2D
XZ-plane that cuts across the symmetry axis of the Cylinder.

Similar to the unbounded filament scenario, a logarithmic reduction in the differ-
ence percentage is expected from our current case in which the filament is moving
near a wall. This logarithmic behaviour can also be verified by looking at the W-RFT
formulations provided by [12]:

AT

W e — Lo =——1 _ if h<L 5.2
52 51 hl (%) gy 111 (%_1) 1 ( )
v Ay v 2mp
° In(n) +0.193 -3 > In(n) —0.807 — 2L (53)
A :
£Y = i it h>1L

Y In(n) +0.193 — 2L’

In this case ', §’, and & are the drag coefficients along the X,Y, and Z direc-
tions, respectively (see FIG. 5.1). As the equation (5.2) suggests, in the limiting case
of h/L < 1 the drag force becomes proportional to 1/in(2h/a). It would indeed be
true that in (5.2) the h/a determines the value of the drag coefficient but it is also
worth mentioning again that in our simulations L and h are kept constant so that any
change in the radius of the filament affects both the slenderness n = L/a as well as
the h/a ratio. Therefore at a constant h/L ratio, a decrease in the slenderness ratio

would result in a logarithmic decrease in the drag force. However, we would expect
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that the W-RFT hydrodynamic drag coefficients converge to those predicted by RFT
as the body is relatively far away from the wall. We can readily verify this statement
by considering the equation (5.3), since the L/h ratio vanishes when the filament is
relatively far from the wall.

An important result that can be interpreted from the FIG. 5.3 is that in the near-
wall swimming scenario, the total hydrodynamic drag force exerted on each filament
is about two to three times higher than the drag force on the same filaments but in
the unbounded domain. Therefore, the closer a filament or micro-swimmer to a wall
is, the harder the motion will be and the higher energy is required to overcome the
hydrodynamic viscous forces. The drag however logarithmically decreases as either
the distance between the filament and the wall is reduced or the slenderness ratio is
increased.

--@- CFD

-e-\W-SBT & CFD
-4W-SBT & W-RFT

10 |

Difference Percentage %

|
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. . . . . .
10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80

(a) Total Drag Force (b) Difference Between Methods

Figure 5.8: (Left)The total non-dimensionalized hydrodynamic drag force on slender
filaments of different slenderness ratios 1 moving close to a rigid wall are computed
using W-SBT, CFD, and W-RFT. (Right) The difference percentage associated with
the W-SBT compared to W-RFT and CFD are shown in this graph

Not only the drag compared to the unbounded motion is increased but also the
difference percentage between the W-SB'T and the CFD is increased. There are a few
reasons for this matter that needs to be discussed. Fundamentally, W-SBT replaces
the center-line of the filament with the appropriate singularity solutions of the Stokes
flow and determines the strength of the potential dipoles (see equation 3.3) with the
zero error at infinite slenderness ratio [63]. Indeed the error increases as the radius
increases but in the near-wall filament scenario with the example of h = 0.2 the radius
can not exceed the gap distance h since it would collide with the wall at a = 0.2.
Here, in the case of n = 20 the radius of the filament is a = 0.05. This means that
the filament has already filled 25% of the gap under the filament, and the fluid can
only flow in the remaining 75% (imagine an XZ plane cutting across the center-line
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of the filament). This fact itself can violate the premise of W-SBT and W-RFT
where the h/L < 1 but a/h ~ O(1). In such cases, the slender-body, as well as
the resistive-force formulations, need to be reformulated considering the a/h ratio
otherwise it would be better to avoid the high a/h values. As a result, we observe
that the difference percentage between W-SBT and CFD is dropped from ~ 22.5%
to ~ 7% for slenderness ratios of n = 20 and n = 75, respectively. The predicted
drag forces associated with the W-SBT and W-RFT results are relatively in good
agreement at slenderness ratios of higher than n = 20 where the difference percentage
is about 2%.

5.4 Hydrodynamic Forces on a Fixed-Free
Filament Attached to a No-slip plane Wall

5.4.1 Hydrodynamic Force per unit arc-length

Using our W-SBT model, we have obtained the distribution of the hydrodynamic
forces along the center-line of a filament attached to a no-slip plane wall, which is
subjected to shear flow at far-field. Then, the results are qualitatively compared with
those obtained by Pozrikidis in [81]. FIG. 5.4.1 suggests that our SBT simulations are
in a good agreement with Pozrikidis[81] where f, (our SBT) or b, (by [81]) represent
the force per unit arc-length of the rod distributed along the vertical axis or the
center-line of the rod. However, our results show that there are some oscillations
near the endpoints of the filament. The endpoint effect was first observed by Cortez
in 2018 [16] and is also well-discussed in [102] section 2.5. In our SBT model, the
endpoint effect typically encompasses the last 3 points near the two tips, such that the
force on the second-last cross-section indicates a non-monotonic behavior. This may
have a trivial effect on the computation of the total drag force on the filament, which
is the main focus of this chapter. It is also worth mentioning that as the slenderness
ratio increases the endpoint effect vanishes and the monotonic response is achievable.
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Figure 5.9: (a) Our SBT simulations (b) Results obtained by Pozrikidis[81] Reused
by permission from Elsevier Ltd. under the license number 4942111488997

5.4.2 Total Hydrodynamic Force on the filament

SBT and W-SBT are not only able to determine the flow around a moving filament
which is immersed in a fluid at rest with u® = (0, 0,0) anywhere but also can capture
the disturbances produced by a slender filament subjected to an incoming flow with
an arbitrary profile of u™(X,Y, Z) at far-field. Thanks to the linearity of the Stokes
equations, a superposition of the aforementioned problems is also feasible. Here in
the FIG. 5.10, a slender filament with n = 50 is attached to a no-slip plane wall and
is subjected to a shear flow (also referred to as the Couette flow) with the profile
u™® = (0,0,AZ)[mm.s7!] at far-field. In the FIG. 5.4.2 the satisfaction of the no-
slip boundary condition on both the surface of the plane wall and the filament is
observable which translates into zero velocity on the boundaries.
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Figure 5.10: W-SBT results for a slender filament attached to a rigid plane wall at
located Z=0: The velocity field around a slender rod of n = 50 using W-SBT is
demonstrated. Here, a straight slender filament is subjected to a shear flow with
u>® = (0,0,AZ)[mm.s7| and viscosity u = 1073[pa.s]. The simulations are in 3D
but here we have only illustrated the solutions on a 2D XZ-plane that cuts across the
symmetry axis of the Cylinder.

Using CFD and W-SBT, we have obtained the total hydrodynamic drag forces
exerted on the filaments with slenderness ratios of n = 20, 30, 40, 50, 75 and 100. As
expected, the hydrodynamic force on the filament logarithmically decreases as the
slenderness ratio increases. In the CFD simulations, with the presence of a no-slip
wall, the velocity profile defined at the inlet will no longer match the velocity profile
obtained in the proximity of the wall. Therefore, we chose the size of the channel to
be much larger than the size of the filament so that the fully developed velocity profile
that reaches the filament is linear. This way a reasonable comparison between the W-
SBT and the CFD simulations can be made. As could be expected, the quantitative
analysis of the results shown by FIG. 5.4.2 suggests that the total force decreases
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with the increase in the slenderness ratio in a logarithmic manner. The difference
percentage range is between ~ 8.1% and ~ 6.9% for the slenderness ratios between
1n = 20 and 100, respectively.

7 % --#-CFD
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n n

(a) Total Drag Force (b) Difference Between Methods

Figure 5.11: W-SBT for a slender filament attached to a rigid plane wall located
at Z=0 : The fluid velocity field around a slender rod of n = 50 using W-SBT is
demonstrated. Here, a straight slender filament is subjected to a shear flow with
u>® = (0,0,AZ)[mm.s7'], A = 2.57 x 10°[s~!]. The simulations are obtained in 3D
but here we have only illustrated the solutions on a 2D XZ-plane that cuts across the
symmetry axis of the Cylinder.
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Chapter 6

Fluid-Structure Interaction
Analysis of Slender Elastic
Biological Filaments

6.1 Summary

Mimicking the beating pattern of elastic biological filaments such as flagella and cilia
in a dissipative viscous liquid at low Reynolds numbers requires a robust computa-
tional model that can both capture the dynamics of a buckled filament as well as
full hydrodynamics between the structure and the fluid. At low Reynolds numbers
or namely, “Stokes Regime” viscous forces are dominant over inertial forces resulting
in a linear relationship between the drag force and velocity. To solve such elastohy-
drodynamic problem, the Computational Rod Model which captures the structural
dynamics of an elastic filament is combined with Slender Body Theory that captures
the hydrodynamic interactions of the filament with fluid to compute the rod deflec-
tions at each time step. Using an iterative procedure with the initial and boundary
conditions appropriate to the problem at hand the hydrodynamic drag forces on a
fixed-free filament attached to a rigid wall is computed and the subsequent shapes
obtained.

6.2 Model and Formulations

Slender Body Theory: The Green’s function for the Stokes equations in the presence
of a singularity, referred to as a “Stokeslet”, is the fundamental solution to the Stokes
equations. Mathematically the singularity or point force in Stokes equations can be
represented by a Delta function. Equation (6.1) represents the Stokes equations where
i is the fluid viscosity, p is the pressure, u is the fluid velocity, r defines the position
of any point in 3-dimensional space and r( defines the position where the Stokeslet is
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located, both taken relative to the inertial reference frame fixed at the origin. Here,
d is the Dirac delta function, and Fd(r — rg) represents a point force with strength F
acting on the fluid at r = ry. Equation (6.2) represents the Green’s function G(r,ry)
for the Stokes flow in an unbounded fluid where I is the 3-by-3 identity matrix. The
solution for the velocity field u that satisfies (6.1) and the boundary conditions is
given by (6.3):

~Vp+puViu=-Fir—r)) , V-u=0

U— Uy, and pP—Ps aS T — 00

Glr,ry) = — < ! +(r_r°)(r_r0)) (6.2)

8 \ |r — 1o lr — ro|?

(6.1)

u(r) = G(r,rg) - F (6.3)

In Slender Body Theory(SBT), the key idea is that the Stokeslets of unknown
force strength can be distributed along the center-line of the filament. To evaluate
the strength and direction of the force at each cross-section, the no-slip boundary
condition which states the velocity of each cross-section should match the summation
of induced fluid velocities by the rest of the Stokeslets at that material point should
be satisfied. Thanks to the linearity of the Stokes equations, the velocity field around
the filament can be directly obtained at an arbitrary point in the fluid as:

a(r) = 1., SW/ G(r,to(s)) - F(s)ds + % Dir,ro(s)) - d(s)ds  (6.4)

1 I (r —ro)(r —rp)
D(r,rg) = yym ( P +3 T —rof ) (6.5)

Here, in (6.4) s is the arc length along the center-line, [ is the length of the fila-
ment, and D is the potential dipole with strength d. The effect of the second integral
in equation (6.4) is negligible [81, 80] due to the fast decay of the dipole with distance
from each evaluation point at ry. Blake [8, 9] used the method of images to satisfy the
no-slip boundary condition on the surface of a rigid wall where the flow is induced by
a Stokeslet placed at a distance h from the wall, and derived the appropriate Green’s
function G*(r, ro(s)) for a point force in the presence of a rigid wall. Neglecting the
effect of dipoles and by replacing G(r,ro(s)) with G¥(r,ro(s)) in equation (6.4) the
fluid velocity field near the filament will be determined.

Computational Rod Model: The continuum rod formulations that we use to track
the elastic deformations of a flexible filament, follows the classical approach of Kirch-
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hoff, which assumes each cross-section of the rod to be rigid. Equations of equilibrium
(6.6) and (6.7), and equations of compatibility (6.8) and (6.9) are given below:

m(g—:erxv)—(%erxf)—fe:O (6.6)
Im%—":+wxImw—(g—2+n;><q)+f><ra—qe:0 (6.7)
%+wxra—(g—’;+nxu):0 (6.8)
((;—’:—(aa—i—l—nxw)zo (6.9)

in which ¢ is time, s is the arc length along the center-line, m is the mass per
unit length of the rod, I,, is the 3 by 3 tensor of moment of inertia per unit length.
The special derivative of vector ry(s,t) with respect to s is denoted by the vector r,,
vectors v(s,t) and w(s,t) capture the linear and angular velocity of cross-sections
respectively, k(s,t) represents the curvature, and the net internal force and internal
moment over each cross-section of the rod are shown by vectors f(s,¢) and q(s,t)
respectively. The constitutive law with an algebraic form of q(s,t) = B(s)k(s,t) is
used where the matrix B encodes the bending and torsional stiffness moduli of the
rod. External forces and moments imposed on cross-sections are captured by vectors
f.(s,t) and q.(s, t) respectively. In our combined model, fluid drag forces computed by
Slender Body Theory and follower forces distributed along the filament, communicate
with Computational Rod Model through the vector f.. Nonlinear Equations (6.6)-
(6.9), are integrated over time and space using the well-known generalized-a method
discussed extensively in [29, 28, 27] and literature cited therein.
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Figure 6.1: [Initially, at time zero the filament is vertically straight. Buckling insta-
bilities begin due to the effect of non-conservative follower forces which are distributed
loads oriented tangentially to the deflection curve of the filament. Here, streamlines
of velocity around a filament with Stokeslets distributed along the center-line, as well
as the shape of the filament for three sequences of time are demonstrated. However,
the bottom parts of the black line in the middle of the figures which demonstrate the
presence of a solid wall, don’t have any physical meaning but mathematically rep-
resent the contribution of image Stokeslets and image doublets to the fundamental
solution of the Stokes flow. In this case, a filament with length of I = 2um, slen-
derness ratio of 40 and elastic modulus £ = 3.06 x 10°Pa, immersed in a fluid of
viscosity p = 0.001Pa.s with Re < 0 and subjected to follower forces of 65 pN/m
is simulated. (Left) filament at time = 0.002s (Middle) filament at time = 0.007s
(Right) filament at time = 0.015s

6.3 Results and Conclusion

Using the formulation presented here, we first derive the frequency-force relationship
of planar oscillations for a slender micro-scale filament animated by a follower force.
Although this problem is already treated comprehensively in the literature, our ap-
proach will be benchmarked with the past results to provide a robust and efficient
solver. We then investigate the elastohydrodynamics of active filaments in scenarios
that coupled mechanics of fluid and structure plays a crucial role, for instance the
collective dynamics of ciliary arrays in a channel.
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Chapter 7

Conclusion and Future work

In this thesis:

e We showed how at low Reynolds’ numbers the nonlinear Navier-Stokes differ-
ential equations can be simplified into the linear Stokes equations. We then
derived the Greens’ function of the Stokes equations (also called Stokeslet) in
the presence of a point force, which acts on the fluid at a specific location. In
addition to the Stokeslet, other singularity solutions of the Stokes flow both
for an unbounded flow as well as a flow passing over an infinite plane wall, are
presented. For each case, we illustrate the flow around the singularity solutions
using velocity contours, streamlines, and pressure contours.

e We employed the singularity solutions of the Stokes flow to investigate the hy-
drodynamic interactions between the slender bodies and the surrounding fluid.
The distribution of appropriate singularities with unknown strength along the
center-line of the filament can provide us with a series of linear equations. The
information about the shape and velocity of the filament at each cross-section
contributes to the series of linear equations to determine the unknown strengths
of singularity solutions. As a result, the hydrodynamic forces exerted on each
cross-section of the filament can readily be determined since they are exactly
equal in magnitude but opposite in the direction of the singularities’ strengths.
With the appropriate choice of singular solutions, the motion of a slender fil-
ament in both an unbounded flow and near a rigid no-slip plane wall can be
simulated.

e We presented a continuum rod model to capture the dynamics of the filaments,
in which the hydrodynamic drag forces contribute to the rod equations in the
form of external loads. We discretize the system of partial differential equations
in space and time and solve them using the method of assembled matrices. As a
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result, we present the procedure through which our hydrodynamic model com-
bined with our computational rod equations can be integrated through time
to interactively determine the shape of the filament. The computational rod
model can also capture the buckling instabilities due to the presence of the fol-
lower forces. Therefore, a lot of interesting problems can be answered by the
computational model we presented here.

However, as an additional contribution we investigated the accuracy of the slen-
der body theory in a few different scenarios; the motion of a straight rod in free
stream, the motion of a straight rod near a no-slip wall, and the flow passing
a rod attached to a no-slip wall. For each case, the total hydrodynamic drag
forces exerted on the rod are compared with the CFD results. In all cases, the
results verified that the total force exponentially decreases as the length-over-
radius (slenderness) ratio increases. In the case of swimming in unbounded
flow, we obtained ~ 7% and ~ 2% error for the slenderness ratios of n = 20 and
n = 100, respectively. However, the results of the rod moving near the plane
wall suggest that as the slender object is closer to the wall, higher hydrody-
namic force is exerted on it. More importantly, we found that W-SBT would
fail in providing an accurate solution when the slender object is very close to
the wall. For instance, when 1 = 20 we will have h;“ = (.75 where h is the gap
between the center-line of the filament and the wall, and a is the radius. In this
case, we obtained ~ 22.5% error between the W-SBT and CFD while the error
decreases to ~ 7% for n = 75 where h;“ = 0.935. In the near-wall swimming,
in addition to the choice of n > 1, we should also ensure that % ~ 1 to obtain
a relatively more accurate solution.

Last but not least, it is worth mentioning that we did not investigate the effect of
the curvature of the filament on the accuracy of the slender body theory. The predic-
tion of the hydrodynamic force by SBT can be accompanied by higher error values
when the filament is highly curved. Moreover, in the case of two or more filaments
moving very close to each other, the same problem as we discussed in the previous sec-
tion may happen to jeopardize the accuracy of the slender body formulations. In such
problems, using other hydrodynamic models such as the boundary element method
(BEM) and immersed boundary method (IBM) is recommended. Although they may
provide more accurate solutions but their computational costs compared to the SBT
would not be negligible. A thorough survey of the accuracy of hydrodynamic models
versus their computational cost can be conducted as future work.
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