
UC Davis
UC Davis Previously Published Works

Title
An efficient risk adjustment model to predict inpatient adverse events after surgery.

Permalink
https://escholarship.org/uc/item/96d7h2kz

Journal
World Journal of Surgery, 38(8)

Authors
Anderson, Jamie
Rose, John
Noorbakhsh, Abraham
et al.

Publication Date
2014-08-01

DOI
10.1007/s00268-014-2490-6
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/96d7h2kz
https://escholarship.org/uc/item/96d7h2kz#author
https://escholarship.org
http://www.cdlib.org/


An Efficient Risk Adjustment Model to Predict Inpatient Adverse 
Events after Surgery

Jamie E. Anderson,
Department of Surgery, University of California, San Diego, 200 W. Arbor Drive #8400, San 
Diego, CA 92103, USA

John Rose,
Department of Surgery, University of California, San Diego, 200 W. Arbor Drive #8400, San 
Diego, CA 92103, USA

Abraham Noorbakhsh,
Department of Surgery, University of California, San Diego, 200 W. Arbor Drive #8400, San 
Diego, CA 92103, USA

Mark A. Talamini,
Department of Surgery, State University of New York at Stony Brook, Stony Brook, NY, USA

Samuel R. G. Finlayson,
Department of Surgery, University of Utah, Salt Lake City, UT, USA

Stephen W. Bickler, and
Department of Surgery, University of California, San Diego, 200 W. Arbor Drive #8400, San 
Diego, CA 92103, USA

David C. Chang
Department of Surgery, University of California, San Diego, 200 W. Arbor Drive #8400, San 
Diego, CA 92103, USA

Abstract

Background—Risk adjustment is an important component of surgical outcomes and quality 

analyses. Current models include numerous preoperative variables; however, the relative 

contribution of these variables may be limited. This research seeks to identify a model with the 

fewest number of variables necessary to perform an adequate risk adjustment to predict any 

inpatient adverse event for use in resource-limited settings.

Methods—All patients from the National Surgical Quality Improvement Program (NSQIP) 

database from 2005 to 2010 were included. Outcomes were inpatient mortality or any surgical 

complication captured by NSQIP. Models were built by sequential addition of preoperative risk 

variables selected by their area under the receiver operator characteristic curve (AUC).
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Results—Among 863,349 patients, the single variable with the highest AUC was American 

Society of Anesthesiologists (ASA) classification (AUC = 0.7127). AUC values reached 0.7923 

with five variables (ASA classification, wound classification, functional status prior to surgery, 

albumin, and age) and 0.7945 with six variables. The sixth variable was one of the following: 

alkaline phosphatase, weight loss, principal anesthesia technique, gender, or emergency status. The 

model with the highest discrimination that did not require laboratories included ASA 

classification, functional status prior to surgery, wound classification, and age (AUC = 0.7810). 

Including all 66 preoperative variables produced little additional gain (AUC = 0.8006).

Conclusions—Six variables are sufficient to develop a risk adjustment tool for inpatient surgical 

mortality and morbidity. This research has important implications for the field of surgical 

outcomes research by improving efficiency of data collection. This limited model can aid the 

expansion of risk-adjusted analyses to resource-limited settings worldwide.

Introduction

Currently, the most widely used surgical outcomes database in the USA, the American 

College of Surgeons (ACS) National Surgical Quality Improvement Program (NSQIP), 

collects a total of 135 variables on each patient, including 66 preoperative variables and 21 

postoperative adverse events over a 30-day follow-up period [1]. As the number of peri-

operative variables increases, the burden of data collection on participating hospitals 

becomes commensurately prohibitive in resource-constrained settings. Despite the NSQIP 

Small and Rural program, which provides an avenue for nonurban hospitals to participate if 

they perform fewer than 1,680 ‘NSQIP-eligible’ cases per year, there are many hospitals that 

do not routinely engage in robust quality initiatives [2]. Globally, low- and middle-income 

countries (LMICs) similarly lack infrastructure and resources to participate in risk-adjusted 

outcomes measurement.

Previous research has demonstrated that a limited model based on a few preoperative risk 

variables may be sufficient to perform an adequate risk-adjusted analysis for five general 

surgery procedures, including colectomy, ventral hernia repair, bariatric surgery, 

cholecystectomy, and pancreatectomy [3]. Our own previous research expanded on this idea 

to develop a broad risk-adjustment tool for use in resource-limited settings that included all 

patients, regardless of procedure, and restricted the analysis to inpatient outcomes in order to 

further reduce the cost of 30-day postoperative data collection. We found that fewer than 

four preoperative risk variables were sufficient to perform an adequate risk-adjusted analysis 

for inpatient mortality [4]. However, while mortality is obviously an important surgical 

outcome, mortality alone is not sufficient as a quality indicator because of low overall 

surgical mortality rates and low volumes of procedures in which mortality is an appropriate 

quality indicator [5]. Nonfatal complications also carry significant human and financial costs 

and should not be disregarded.

This study thus seeks to identify a model with the fewest number of variables necessary to 

perform an adequate risk adjustment for any inpatient adverse event, including postoperative 

complications or death. Our objective is to develop an efficient, cost-effective model that 

may be tested for use in resource-limited settings.
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Materials and methods

We utilized all available NSQIP data from 2005 to 2010. This nationally validated program 

measures over 135 variables on each patient, including 30-day postoperative outcomes. The 

2005–2006 database included information from 121 hospitals, while data from 2010 

included information from 237 hospitals [1]. This dataset was chosen for its breadth of 

preoperative and postoperative variables collected for each patient.

Patients were determined to have an adverse event after surgery if they experienced death or 

at least one of the following complications as captured by NSQIP before discharge: 

superficial surgical site infection (SSI); deep incisional SSI; organ space SSI; wound 

disruption; pneumonia; unplanned intubation; pulmonary embolism; ventilator >48 h; 

progressive renal insufficiency; acute renal failure; urinary tract infection; stroke/

cerebrovascular accident with neurological deficit; coma >24 h; peripheral nerve injury; 

cardiac arrest requiring cardiopulmonary resuscitation; myocardial infarction; bleeding 

requiring transfusions; graft, prosthesis, or flap failure; deep vein thrombosis or 

thrombophlebitis; sepsis; or septic shock.

Six-variable models were built using a list of all pre-operative variables included in the 

NSQIP database, a total of 66 variables, to predict any inpatient adverse event, including any 

complication or death (Table 1). All continuous variables were kept as such, except for age, 

which was grouped into 10-year categories.

We performed two separate analyses to determine both discriminatory values of each 

preoperative variable as well as their contribution to the model’s goodness of fit (GOF).

For the discrimination analysis, we performed a six-step process to add each additional 

variable sequentially. For each step, a logistic regression was performed to predict any 

adverse event (complication or death). After each regression, the area under the receiver-

operator characteristic curve (AUC) for each model was calculated. The AUC is a 

discriminative measure to identify how well a model separates two groups (i.e. patients with 

vs. without adverse events). An AUC value of 0.5 indicates that the model separates the two 

groups no better than chance, whereas an AUC value of 1.0 indicates that the model 

completely separates the two groups. The AUC statistic is actually the percentage of 

randomly selected pairs that are correctly predicted by the model. Thus, the AUC allows us 

to determine which model can more accurately discriminate between the two groups of 

interest [6–9].

In step 1, a simple logistic regression was performed with each variable to predict in-hospital 

adverse events. The variable with the highest AUC was chosen and used as the basis for step 

2. In step 2, all other variables were added to the top variable chosen from step 1. 

Multivariate logistic regression with inpatient adverse event as the outcome was performed 

again for each variation of this two-variable model, and AUC values were found. The 

models with the top five AUC values were chosen and used as the basis for step 3. The 

method for steps 3–6 was the same as in step 2: each additional variable was added to the 

five models chosen from the previous step, multivariate logistic regression was performed, 

and the AUC value was found. The five models with the highest AUC value became the 
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basis for the next step. This process was repeated until we created models with six variables 

each (Fig. 1).

This analysis was repeated for each outcome individually to ensure that the same risk factors 

would predict specific outcomes in addition to our aggregate measure of any adverse event.

For the GOF analysis, we assessed the unique and relative contributions of each variable to 

the total GOF of our final six-variable model. McFadden’s Pseudo R2 values, based on 

likelihood statistics, were used to assess GOF in the following calculations. A Pseudo R2 

value ranges from 0 to 1, with a value of 1 indicating that the model fits the data perfectly or 

explains all the variance. To estimate the unique contribution of a variable to the GOF of the 

model, we calculated the difference between the Pseudo R2 of the final six-variable model 

and a nested five-variable model with the variable of interest removed. The difference 

between the models represents the unique contribution of the variable removed. Model 

redundancy is an estimate of the GOF explained by more than one variable (i.e. shared 

variance) and was calculated as the difference between the Pseudo R2 of the final six-

variable model and the sum of the unique contribution values. Relative contribution for each 

variable was then calculated as the unique contribution divided by the Pseudo R2 of the six-

variable model. In other words, the relative contribution is the fraction of the final model’s 

Pseudo R2 explained by the variable removed. p values for the GOF analysis were calculated 

using the likelihood ratio test for nested models.

Statistical analysis was performed using STATA 64-bit special edition, version 11.2 (Stata 

Corp, College Station, TX, USA).

Results

Data from a total of 863,349 patients from 2005 to 2010 from the NSQIP database were 

included (Table 2). Over9.9 % of patients had at least one complication, and the mortality 

rate was 1.8 %. Mean age was higher among those with complications (63.4 years) and 

highest among those who died (70.8 years). Less than half of those who died or had 

complications were women (47.7 and 49.6 %, respectively), while women made up more 

than half of those without complications (57.4 %).

Discrimination analysis found that the single-variable model with the highest AUC value 

was the ASA physical status classification (AUC = 0.7127; Table 3). The six-variable model 

achieved an AUC of 0.7949. ASA classification, wound classification, functional status prior 

to surgery, albumin, and age emerged as the top five variables. Other variables within the 

six-variable models included alkaline phosphatase, weight loss, principal anesthesia 

technique, sex, and emergency status. Including all 66 preoperative variables resulted in an 

AUC value of0.8006 (Pseudo R2 = 0.2116), only a fraction higher than the value achieved 

with only six variables (Fig. 2).

When the analysis was performed for each specific outcome separately (a total of 21 adverse 

events), ASA class, albumin, and international normalized ratio (INR) were among the top 

five models for 21, 18, and 11 outcomes, respectively (Table 4). The average AUC among 

these models was highest among ASA classification (AUC = 0.7041).
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In examining the relative contribution of the variables to the GOF of our top six-variable 

models, ASA class was the largest contributor to the explanatory power (16.69 %), with 

functional status prior to surgery and wound classification the next highest contributors (8.12 

and 7.20 %, respectively; Table 5). However, there is also a large amount of shared variance 

in the model (60.41 %).

Discussion

This research demonstrates that it is possible to develop a risk-adjustment tool based on a 

few variables to predict inpatient adverse events, including complications or death. This 

study adds to the literature in several ways. First, by including all patients, irrespective of 

type of procedure, and restricting the analysis to inpatient outcomes, these models are ideal 

for use in resource-limited settings in which the number of procedures performed may be 

few and collecting 30-day outcomes is unrealistic. Second, this model considers both 

mortality and morbidity, as any robust tool to evaluate quality requires inclusion of nonfatal 

adverse events. The potential implications for quality improvement programs in LMICs are 

vast when we consider that rates of morbidity and mortality are up to tenfold higher in 

LMICs than in high-income countries [10].

Third, in contrast to previous research, this study also offers several different models with 

comparable discriminatory ability, allowing choice as to which variables to include based on 

information availability and ease of data collection (Table 3). Different settings may find that 

one model is more useful and appropriate than another. For example, rural US hospitals may 

not regularly collect alkaline phosphatase or albumin on all surgical patients, but they may 

routinely collect other laboratory variables included in these models. Alternatively, in 

LMICs, where laboratory data may be unavailable or prohibitively expensive, the following 

four variables – ASA classification, wound classification, functional status prior to surgery, 

and age – may be more appropriate, as they provide the highest discrimination without 

requiring laboratory testing. Importantly, these data offer several choices of risk-adjustment 

models that provide comparable discrimination.

Although these findings must be validated in a variety of settings, this research allows for 

comparison of risk-adjusted surgical outcomes over time within a single hospital or between 

hospitals, and can serve as the backbone for developing a common risk-adjustment tool to 

expand surgical outcomes research globally. Valid risk adjustment is critical to performance 

comparisons across hospitals, and prevents hospitals that accept the sickest patients from 

being improperly identified as low performing. This model also enables more robust 

evaluation of various interventions in their ability to impact surgical outcomes. For example, 

comparing risk-adjusted outcomes before and after the implementation of an intervention at 

a particular hospital, such as the use of mosquito nets for hernia repairs or a pulse oximeter, 

can more accurately evaluate effectiveness at achieving desired outcomes. This has 

particular significance in LMICs, in which there is a dearth of prospective clinical trials, 

particularly in the field of surgery.

Interestingly, the results of this risk-adjustment tool in predicting inpatient adverse events 

are similar to those in our previous model predicting inpatient mortality [4]. While the AUC 
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values are slightly lower in the adverse events model, most variables are the same. The 

differences are that the model predicting any adverse event includes alkaline phosphatase, 

body mass index (BMI), and sex, but does not include disseminated cancer status. These 

results are also similar to findings by Dimick et al [3]. When examining models that 

predicted 30-day outcomes for five procedures separately (cholecystectomy, ventral hernia 

repair, gastric bypass, pancreatectomy, and colectomy), the most important variables in 

predicting both mortality and morbidity included functional status, ASA class, congestive 

heart failure, wound class, emergent surgery, dyspnea, ascites, and albumin [3]. Dialysis, 

gender, hypertension, and weight loss were also important in predicting mortality, whereas 

bleeding disorders, BMI, and diabetes were important in predicting morbidity [3].

Other studies support the concept that a few variables may be sufficient for adequate risk 

adjustment. Rubinfeld et al. [11] found that the AUC decreased from 0.767 using all 

variables to 0.750 using only five variables, a statistically insignificant change, when 

predicting morbidity using the ACS-NSQIP from 2005 to 2008. Similarly, Birkmeyer et al. 

[12] found a high correlation between a 5-variable and a 20-variable model. They 

recommend that new versions of the NSQIP have ten or fewer ‘core’ variables, selected 

according to their contribution to discrimination (AUC) and the extent to which they explain 

morbidity or mortality. However, none of these models were explored for the explicit 

purpose of applying risk-adjustment methodologies to LMICs.

This research has several strengths. By utilizing the NSQIP database, we were able to obtain 

a very large sample size. The NSQIP database also includes a variety of complications that 

are collected prospectively with reliable accuracy. An additional strength was including the 

novel method of assessing relative contribution, which further quantifies the risk factors 

most likely to influence outcomes. The results of the relative contributions correlate with our 

findings insofar as ASA classification, functional status, and wound classification were 

found to be the three largest contributors to both the discrimination (AUC) and the GOF of 

the model.

This study is not without limitations. By including every complication as an adverse event 

without differentiating between more or less serious complications, and also by including all 

patients regardless of type of operation, this model may not be helpful if one were only 

interested in examining nuanced outcomes from a certain field of surgery or a certain 

operation. In addition, this model only considers certain adverse events without 

characterizing the severity of these events, such as with the Clavien–Dindo classification of 

complications, since this is not available in NSQIP [13]. It is quite possible that more severe 

outcomes would have different risk profiles. However, our results do provide a model that 

can be used to analyze outcomes across a breadth of surgical procedures considering a range 

of adverse events. In fact, the risk variables that are important in predicting adverse events 

for all procedures combined are the same as those for subspecialty surgeries reported by 

Dimick et al. [3], described above. This may actually increase the usefulness of our model in 

resource-limited settings, where surgeons often perform a broad range of procedures and no 

one procedure has a large enough sample size to provide enough power for analysis. Thus, a 

broad approach to understanding general trends and outcomes may be a more achievable 

starting point until resources allow for more nuanced outcomes research.
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Some may question the validity and reliability of the subjective variables ASA class and 

functional status prior to surgery. However, evidence suggests that ASA class and functional 

status can be consistently classified and that inter-rater reliability has improved since the 

implementation of NSQIP, likely due to data collection training and ongoing support [14, 

15]. Other research argues that ASA class and functional status are the most important 

variables in many risk-adjustment models for a variety of outcomes and procedures [3, 16–

18].

In conclusion, six or fewer variables may be sufficient to perform an adequate risk-adjusted 

analysis to predict inpatient adverse events after surgery. While our previous research 

demonstrated that a model with four variables is sufficient to predict inpatient mortality, this 

research expands the concept to include adverse events. Importantly, we find that, although 

the AUC values are slightly lower, the same preoperative variables are important for 

adequate risk-adjusted analyses. This is especially significant for performing surgical 

outcomes research in resource-limited settings, in which extensive data collection is not 

feasible. With minimal training, it is possible that existing hospital personnel at small or 

resource-limited hospitals, both in developed countries and in LMICs, can easily and 

cheaply collect three or four variables to participate in wide-scale surgical outcomes 

research.
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Fig. 1. 
Stepwise methods for creating a 6-variable model based on AUC values
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Fig. 2. 
Diminishing returns of additional variables on AUC value. AUC values for the top five 

ranked models within each step are shown
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Table 1

All pre-operative National Surgical Quality Improvement Program variables considered in the analysis

ASA classification

Preoperative serum albumin

Functional health status prior to surgery

Preoperative INR of PT values

Preoperative BUN

Preoperative systemic sepsis

Age (in 10-year categories)

Preoperative hematocrit

Preoperative serum creatinine

Pregnancy

Preoperative PT

Emergency case

Preoperative WBC

Preoperative SGOT

Preoperative PTT

Preoperative total bilirubin

Ventilator dependent

Wound classification

Preoperative platelet count

Dyspnea

Functional health status prior to current illness

Hypertension requiring medication

Bleeding disorder

BMI

Mallampati scale

Preoperative alkaline phosphatase

Surgical specialty of surgeon performing procedure

Impaired sensorium

History of severe COPD

Prior operation within 30 days

Wound infection

Ascites

Preoperative serum sodium

Currently on dialysis (preoperation)

Congestive heart failure in 30 days prior to surgery

Previous cardiac surgery

Sex

Acute renal failure

Current pneumonia

Diabetes mellitus with oral agents or insulin
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Steroid use for chronic condition

>10 % loss body weight in last 6 months

DNR status

History of revascularization/amputation for peripheral vascular disease

Disseminated cancer

Transfusion >4 units PRBCs in 72 h before surgery

Previous PCI

History of MI 6 months prior to surgery

CVA/stroke with neurological deficit

Rest pain/gangrene

Race (White, Black, Hispanic, Asian or Pacific Islander, American Indian or Alaska Native, other)

CVA/stroke with no neurological deficit

Coma >24 h

History of angina in 1 month before surgery

Chemotherapy for malignancy in <30 days preoperation

History of TIA

Hemiplegia

Principal anesthesia technique

Alcohol >2 drinks/day in 2 weeks before admission

Current smoker within 1 year

Esophageal varices

Paraplegia

Radiotherapy for malignancy in last 90 days

Quadriplegia

Tumor involving CNS

Airway trauma
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Table 4

Individual contributions of risk variables to each complication (a total of 21 complications)

Risk variable Number of times it was included among the top five variables Average AUC

ASA classification 21 0.7041

Albumin 18 0.6941

INR 11 0.6585

Age (categorical) 8 0.6442

Functional status 2 8 0.6596

Wound classification 7 0.6628

Hematocrit 7 0.6394

BUN 6 0.6824

Surgeon specialty 5 0.6851

Creatinine 5 0.7008

Sepsis 4 0.6843
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Table 5

Relative contribution of variables to goodness-of-fit of the full model containing the six variables below 

(Pseudo R2 = 0.1980)

Variable Unique contribution Relative contribution (%) p value

ASA class 0.0331 16.69 <0.001

Functional status prior to surgery 0.0161 8.12 <0.001

Wound classification 0.0143 7.20 <0.001

Albumin 0.0106 5.36 <0.001

Age (category) 0.0037 1.89 <0.001

Alkaline phosphatase 0.0006 0.33 <0.001

Model redundancy 0.1196 60.41
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