Lawrence Berkeley National Laboratory
Recent Work

Title
SEMICLASSICAL ANALYSIS OF WEAKLY INELASTIC MOLECULAE COLLISIONS

Permalink
https://escholarship.org/uc/item/96d552fd

Author
Child, M.

Publication Date
1963-11-01

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/96d552fc
https://escholarship.org
http://www.cdlib.org/

i
R
. Y n T S ki e T i

. UCRL-11135

“University of California

Ernest O. Lawrence
Radiation' Laboratory

o SEMICLASSICAL ANALYSIS OF WEAKLY INELASTIC |

MOLECULAR COLLISIONS

TWO-WEEK LOAN COPY

This is a Library Circulating Copy
which may be borrowed for two weeks.
For a personal retention copy, call
Tech. Info. Division, Ext. 5545

'Befr.k.'eley,', Call.ifo-mia; o



DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.



Submitted to Journal of | . 7 | - UCRL-]_]_]_SS .
Chemical Physics & , ' '
[

UNIVERSITY OF CALIFORNIA

" - Lawrence Radlation Laboratory .
Berkeley, California

- Contract No. W-T7405-eng-48

SEMICLASSICAL ANALYSIS OF WEAKLY INELASTIC-.__
'~ MOLECULAR COLLISIONS

M. Child
Nowember, 1963




¥
%, .

| Semiclassioal Analysia of Weakly Inelastic Mblecular 6011131053’

. ! 5 J
P : ! s
s : g

by M. S. chila’
Lawrenoe Radiation Laboratory, Berkaley 4, california

Abatract

Thia paper applies semiclassical analysis to vibrationally
and rotationally inelastic molecular collisions. The
deflection angles for weak transitions are shown to be simply
related to the classical def;ectionvahgles for elastic -
‘ ‘scattering conditions, The bosition of the ecrossing-point,
at which the values of the initial and final ILagrangian are
C equal plays an important role in the discussion, and expressions
‘are.de:ived for these points for different types of transition.
Allowance is made for the fact that the effective translational
. potential energy may depend'oﬁ the vibrational_atates of the ’

| - members of fhe hyﬁtamw”_

?Present address: Department 6fvchemistry,'qlaégow University,
‘Scotland. '




Introduction A
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| This paper attempts to provide gome phyaicgl insight

into the mechanism which gives rise to inelastic behavior

"durihg an intermolecular collision. We restriot attention
0 collisions between an atom A and a dlatomic molecule BC;
they will be termed inelastic if BC changes its rotational or
vibrational state. ‘Furthermore we shall suppose the oollisions
so weaklj inelastic that perturbation theory is applicable.
w1th_thi§ restrictiong.any treatment of the problem is complli-
cat;d by two factors. First, all translational waves are
represented by infinite sums of partial waves and secondly

one must be able to calculate radial integrals involving con-

: tinuum wave functions. Both these difficulties can, of course,
‘be surmounted with the help of high-speed computers, but in
this paper they are tackled by analytical methods.

Following the established correspondence between the
clagsical and quantum—mechanical theories of elastic scattering,
we recognize that each partial wave in the infinite sum loosely‘
‘represents the behavior of a partiolé with a certain impact
parameter. Very few partial waves therefore actually contribute
to the scattering amplitude at any given angle. We use semi-~
classical arguments-tévapproximate the rgdial integrals
responsible for coupling the inoident "initial™ partial waves
‘to different finalt whvean The most important integrals are
 those for which, at some classically accessible point R, the
value of the'Lagranéian (kinetia energy minug-potential energy)

’




of the initial wave 1s equal to that of the final wave., In
 these cages the Landau-Zener formula can be applied. It turég
out that the deflection angle for an inelastic collision may ;

be found by following the classioal'trajeotory for elastic ;
 écattaring under the 1nit1#1 condition as fhr as the croasiné

- point and then changing to the classical path approbriate to .

~ the final conditions. |

The general théory is developed in sectlon 2 and section

' 3 18 devoted to calemlabing the crossing points for different
types of inelastic collision. In calculating the crossing
points for vibrationally inelastic collisions we recognize that, .
at least for ﬁotentially'reactive systems, the effective trans-
lational potential energy may depend on the vibrational state
of BC and we show how this may be allowed for on the basis of
‘& simple model. Finally we note that when applied to the results
" of a recent molecular beam experiment on the systém K +_HBP13£¢
.w;th some reservations this theory supports a remark made by
‘V;the authors to the effect that the apparently markedly inelastic:
~ behavior. at high scattering anglea is unlikely to be due to

" rotational inelasticity.

’2‘ General Theory

The Hamiltonlan for the system illustrated in Fig. 1 takes

~ the form 2 _
He - §-' V2 %ﬁ' V2 + V(Papa){)s‘ | u (l)

- and the potential energy V(r,p,x) can be conveniently expanded
in Legendre polynumials




Ve, pox) @ Volrop) + Vyleap)pyfoos x) + ¢0s  o(2)

e
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‘In this formulation the averall motion of the centre of mass
_ has been neglected, The reduced masses m and W are defined
by the expressdons o - |

m e “- .
myHghg “‘B"‘“‘c

S

_ Following a procedure adobted by Bates and others” in discussing

- electronic transitions, at given r we first find internal
(vibrational-rotational ) states 31} which satisfy

2 S : _—. “‘
_:' and then take the total wave function in the form \
Yex vi(r)h,) 4 o - (s)

“‘,wi(g).therefOre represents the relative motion of A and @

‘ ,'when.BC'is in the 1nterna; state ]&}. The SOthdinger qugtion

(g-EX-= 0 - (s)
’ then leads to the following set of aoupled equationa for the

Wi(r)‘ : L L . :

; . g e | o )

[Vr +k§ - Ui(r)}'#i(f) = fxu(g)h(g): ' o (7)

" where . 4 | , |
= By ()], Ty ) = Bl )y )],

-,

and . A ., . L "-, < .»  ‘ ) .-4‘, . . ‘b : n .

mA(mBmC) ",. mBmC ;l '. | - (5)




~~ functions uz (r) satiefy

'xij(z) = <1| 2 zm[V(P:P!X)“Vo(P:P)]lJ>

'+-<1l:vrl.1>‘v;,, e .' | -(8)‘;.

from the variation with r, of the internal energy of BC. This
variation may well be oonsiderablé in potentially reactive
systems. o o

In this work 1t is assumed that the coupling terms xj_‘1

are so small that solutions to equation (7) can be found by

| theidistorﬁed wave perturbaﬁion me od.l"(one should realize

that this condition'does not automatically follow from the

 experimental observation that the 1nelastic scattering cross-

'section for a given .8yastem is smalli Each partial*wave must

be considered separately and this cross-section would be
small if a very few initial‘partial'wayes were strongly coupled

to some final.ones. The strongly coupled waves could not then

_ be treated by perturbation théory.) It ig supposed that the
gystem can be represented almost entirely by an elastically

’f.{;scattered wave,4 with unit incidént intensity

: 3' iﬂg ug (r)
Vo,(?.‘)," zz (2304-1)1 % 020

0 (a0s68)s  (9)
0 .

together with an appropriate initial Lnternal state |o>. The

[9—,2- + kg = Uplr) = 4, -—r-a—-»] (r) =0, (10)




-5‘

5

' Ug (r)_~ sin(k°r~£w/2+ng )3

UO (r) clearly contains both 1noom1ng and outgoing waves. The
0 4 o
remaining wi(r) are chosen to satisfy

92 40 - w )yl = X leole) . ()

| ? o ik, :
with boundary condition ﬁi(g) ~a ¥, wWriting

) L/ -
| w Vg i8)
‘ Wi(r) = I ﬁ; “?? (cos&)eimQ‘ (12)
LT .8150._;' ST

”and'following the standard prooedurel leads to

| s .
' 5‘) 133;- Jg (éz 1)130‘3 (n,d*n, )1 (203 £,m)
V ) Famaadil L e } ] m

h .Eaﬁi‘ 2g=0 AR < A (;3)

where
To,(£032m) = J ugo(r)gga(qose)xoi(r)uii(r)Pﬂi(cose)eimo 5%

(14)
and uz (r) and nﬁ are defined by an equation like (10). In
evaluating the radial parts of the 1ntegrala IOI(zoo,zim), we |

follow & semiclaésical'argument given by Landau®

and note that
the rapid fluctuations in uz {r) and uz (r) lead to almost -
Tcomplete canoellation unless at some point R
£, {2, 4+1) Sl atl)
2 S i | 2 0V"0
ki - Ui(R) - ""';'2""‘"" = kg Q(R) - “—""2"‘"""‘ H (15)

- we shall therefore ‘concentrate on those cases for which such a
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erossing point exista. It is convenient to distinguish betﬁééh”

the ocases 1n which the crossing point is and 18 not olassically

acoeaaible. In both cases the important range of 1ntegration _

'*”liea immediately around the crossing point (see for 1nstance

$51 of Landau and 14£8h1t25). ’

| In the first case, using the semiclassical expressions |

Lok 2 g 2aly +1) W
uzi(r) - RN rh coa{fﬁi[#i-vi(r) ~——§--f] ;,

[ ky~Uy {r)- -~—§——~ (26)

"~ for p » 8y and following Landat directly we f£ind that

101(£033‘m ) - J Bos z (R) ooa(ﬁz *ﬁi + I) | - (17)
where,.if.‘
, £.(2L 4+1) 2, (L, 41
. (r) = kg-Uo(R)-—q%%:l J 1( )...L(...%."L_)_.
and o SR
> £, (8,41 ’
o & o)+ 252
Jigii(n? = ﬁT;;T%E%FZT'I dof dcose Pl (coae)x°1(r)Pm (cose)eimq
g, - S [ Gouyte)- f-!-‘-f#-’-]"/ 2 e
i -.r “ .

- In general, the case when R oocufs in the classically inaccess-
ible region is rather less easy to deal with. but Landau and
Lifshitz show that in this case




. ’7- L -

Ioi(zoo:zim)c¥exp -,[8 Ui{r)+£55£%:il kg édr‘.
) . a 1

r

fzo[Uo(r,)+-£-9-(—£-g£‘-)-~'kg]édr,”.: (18)

implying 'thgt the integral will be smaller the further R lies
inside the classically inaccessible region. Equations (17) and
(18) are oerived on the assumption that the crossing point lies
' suff1c1ent1y far from the classical turning points that the
motion is semiclassical in its neighborhood. | |
| We now return to Eqs. {12) and (13). First we recognize
- that a given final partial wave will generally be made up of .
.-eontributions from a rather amall number of 1n1tial partial
. waves} in other words, for given f,, the actual sum in (13) will
. pe qoité short. In order to oaloulate its 1ength one would‘b

| expand x01(r) in the form

X°1(r)=£ P xBe)(cos0)e™, (29)

b=1 me-f

”'f'where_L is the last term for which xg?(r) is oppreoiablé. The
- sum in (13) would then have 2I+l terms. We therefore write

1(k1r-0m0) L |
‘!"1(1') " - T " Bﬂf-'l} 353(9) (20)

and evaluate the sums
' 5} 1(n d*n ) ; /
853 = 3:;.0 E*k—-‘z.e '4'1)1 : Im(‘ooitzimi)l’m (0089)

; | (21)




'_ by the atationary phase approximation}
| lzi(n-e)l >»> 0 and 31 »> m, (m cannot exceed L)7

For lzial >> 0,

7, (aoaa) \/Ui 1';‘m - (2,43) m;[um)aﬂ.m,‘r 7. f'az;

Hence, for theé case wvhen R is classlcally édcesaible

| [ e,
861(9’ " f “o" / Ing 1””1"‘23 1*23?4”” (R)i[-e ‘* +

:t.e'dz '
-

16 ,u

+ -+

e + e + e

_ . (23)

where

o = 0+ % (0 6h Dx[(ey ) g -], | (24)

B At:given 6 we now look for those’values of li for which
-(aoit/azi = ¢0), since at all other values the rapid fluctu-.
ations in ¢ *¥ will cause almost complete cancellation. For.
an attﬁactive potgntial only ¢*+ and,¢~+.have such turning .
points, £, and 3_ say, -at which . S -

-.a[o“o . (od 1]
e n, ~€ = 8
EY (gg*esy) ( 5%, b=, *

1
| 5 [1.0 240 1 - omy
39-(n9 -2 ) + (o} ﬁ E}\\k s 0_ . - (25)
51;[ o 2 _*u ,1 VR

‘Similar formulae hold for a repulaive potentiﬁlpfor which only

¢, and ¢__ have turning points. In both cases 365(0) 18 the




aumfbf'oontributionsufrom two branches. The physical reason »
“for the two branches i8 quite simple. There 1s a well-known g'
conneotion between the WeK.Be Beminlaasioal expression for the

1phase shift. *

i | 1
(2 +1)12 2 4 (2 +1)
b § f' 1 i g Rt

r (28)
" and the classical deflection angle for elastic scattering, namely
Bnii S \a o |

'91('x1’x2) and © (xlgxz) 1h'equatioh (27) are the angles between
~the radii at points r = xl and x2 on the trajectories for
 ‘incomin8 and outgoing motion under £,, ki and U,, reapectively‘
‘ 'This notation waa adopted to make clear the implications of
. the following formulae for 9, and 6_, which are derived. from
'_Eqs. (25) by similar methods,' | o |

6 = 90(~»,ao) + @o(ao:R) + 91(3:“)
6_ = 8o(-=s-R) + 9:.“‘3'5“1) +oam)e o (28)

. _When the crossing point lies in the olassically accessible

‘~?3,f region the particle must pass through 1t twice. The two

".,”branches arise because the particle may make the tranaitloq_

"_from |> to |4 on either occasion. Equation (28) shows that
as far as 1its patﬁ"is concerned, the partiole 8imply follows |

ﬁ the classical trajectory appropriate to the 1nit1a1 state
(kg go.Uo) until it makes the tramaltion, after which it follows
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the appropriate "final" trajectory. The case when R is ,
claasically inaccessible 1s treated in a similar fashion. 81653’
the formula (18) for 101(2 ,01 m) contains no filuctuating |
 factors like the term cms.i(ﬁlZ -&i ") in (17), the aoattered
wave has only one branch. In the notation of Eqa. (27) and

| (za) the deflection anglée 1s given by = - -
0= 90("”;&0) + 91(31!”)

These two possibllities are illustrated in figure 2. 1In
the lower diagram the zig-zag line "MW 1s meant to denote
quantum-mechanical‘funnell1né trom‘ao to R and then back to 8y .
 v_It:1s 1ntefest1ng‘to find‘that the sdattering angles for given 8%
. are independent‘of m. The sfreggth of a given transition how~
. ever is determined by the angular 1ntegrala J‘Q‘ (R) which do

: depend onm., - - :
| For given e, ssz(e) in Eq. (23) may be evaluated by -
_ standard methods. Conaider a + branch for' 1natance.ﬁ Near

.31 = b, ¢, may be expanded.;n the formx‘_,a'

¢;+ = 6(0) +3 1 0(2),(2 ~z4)2 ', . o (29)

_”'” and if the 1ntegra1 over the reat of the. range of 31 18 essen-
'_r-"-f.‘tially gero <. . . oo L | '

et 4 4 — . O+ b — - e
T 8 PR e g T St VA St Ry, 7 TR A o S o s o v T g e o g = e o e
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’ N ' ) : o
LS 4
1 | R
+ z T w7

Jz A (R)e  ++dr

f (£1+§)

1 o A |
R - - (o) N ¢-) TR Y -
"?!“+*%°f*isz 482,18, (R)°1f++ A °2¢ : gf) as

mz  10(0) -
= (z*+%) J}m+§g ‘, (n)aiq**«f‘TﬂIEﬁ;/az)zazjf (30) -

~ Bince acoording to Egs. (24) and (25),

ae o R o
R 0(2)’ (f—5;2>2=3'=<~57)z=54,', : .;=   1‘.;' (31)
i saz(e) may therefore be written in the form | .
. 1 s
o 353(9) = faz (9)6 Tt e faz (9)6 x f”f ,.; , (3?)
 f'i where.the éuantities ";”H:"“'m‘llei

(ep) m} |
(9) kdki [~@E1ne(§e*/azi Thoty ) gy=b, (33);

_ represent the acattering amplitudea 1nto the * branches of the '
. final 54 wave. R » - | | ‘ .
| Finally, 1t is 1mportént to appreciate the approximation‘

' '7--on whioh these formulaevare based. We have assumed.

(1) that the coupling terms xij(r) in Eq. (8) are
sufficiently small to act as emall perturbations,
- (11) that R 1ies suffioiently far inaide the classically
'_.acceasible region that the particle behavea semiclassically

;ﬁhere. For some values of 54 of:caurae'thé orossing point may‘



L e .
e .
N s e o o

o small;

2. S

. pe olassically inaccessible, in which case the partiole mus@? e

tunnel past the olassical turning point to reach 1t. The |

:;‘:",9‘ .

correspoﬁding soattering amplitude will therefore be rather:.

(111) thaé Eq. (22) 1s valid for the values of L, 6

and m under consideration. This analysis will therefore

" preakdown for scattering at very small anglea and probably
~ also at very large angles becauee z* are then very small; and

(iv) that (36*/62) in Eq. (30) does not vanish. (i.e.,

o o, 18 not a rainbow angle for the + branch.)

The semiclassical analysis of rainbow angle elastio

'tfs scattering, recently published by Ford and Wheeler8 can however be
, R iapplied to eaoh branch aeparately around the points where'
“aei/az = 0, '

3, Caloulation_of Crossing Points

In view of the importancé of'the'position'of the crossing

'o poinb R, defined by Eq. (15), it 1s 1nterest1ng to 1nvest1gate

its behavior for different types of 1nelastic collision. We

"begin by considering purely rotational exoitations‘

In this case U,(r) = Uo(r) and at the orosaing point .

" zo(zo+1), s »‘1’”1*1.)

B T~ S L
here o,-o ~?; -o,."v'ﬂ,Qﬁ‘;?ifV, o .
2 2mE  m . fsoaay e .
1_’?;;3 i ST | :




SEREE

""upe 18 the effective moment of 1nert1a of Bc 1n the given

v1brationa1 state. ‘Hence

o

132 (l ~£o)(£1+£o+1) upv
(Ji‘JQ)(Ji+JO;IT

R thereforé'exiata only when zi »zo and.Ji-gjo {or vise veréa),

which implies & weak selection rule on the allowed angular
momentwn changes transitions for which / increases and 1 .

decreases (or vice versa):ére.atrongly preferred. The remains

'if the question whether R-is'claséioally accessible or not.

. Consider first the artificial case with Up(r) = Ui(r) = O.

_The olasaical turning point b° is then given by

-z(.e+1) | o
| o'o D S
bo -‘—?—’ o | S (37)
"f,vand according to Eqa. (34) and (37) R »b2 only when
(2.41)K% . g (2 +1)k ‘
—9» 0 . | 0 » o, \ | - (38)

(ko - kz)

'lEquation (38) therefore puts a rough upper limit on the ratio

‘ l,_[31(£1+1)]/@0(4o+1)] for.atrogg”t?anqitionsy namely

. " N
LT #I) © (20 AR

O

| In general, of oourse,‘U(r)'ﬁ 0, and one cannot givé a simple

’ general expression for the’ classical turning point ay. - But ag

n

will still increase roughly quadratically with £, whereas,

- aceording to (36), Rz depends only iinearly on £, (for a given

type of transition f,~f4 is anstant)s There will therefore
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e - -again be an upper 1limit on zo (and hence on the in1tial elassioal
;ﬁv ef f- impact parameter) above which 84 = lo - 21 transitions are B

R "jﬂ, very improbable. The eritical value may even be Lo = 0, 1n f‘
L - which case one would expect very little rotational excitation o

v
¥

(;   [5.- at all, = I | . " :
i | It 15 worthwhile.notieingvthat ascording to Eq. (36) ﬁ-‘
will be large, and therefore mofe'lakely‘to be classioaliy‘“
accessible when ﬁ 13‘;argeedndhmlis“small;”‘In other words |
 collisions between a light atom A and a molecule_ﬁc with high
~ moment of inertia are most iikely‘tq lead to rotational
~ 1ne1aat101ty.‘ | ,' ': |
R In this oontext 1t 1e interesting to examine the results
‘"’1eof a recent molecular beam experiment on the collision between
‘ ”DK and HBr The authora assume an exp-6 form for the apherical :

"vpart‘v(r) of the translational potential B
v(r)“m.{gexp[a('eé)]“ (%)6} : B (¢0)
:w1th the values € = O 55 kcal/moleg = 12, p = 4.5 4 chosen
to fit the low angle scattering. the croseing point for .
l~rotational transitions always lles in the classically inaccess=-
'ibie region. The apparently inelastic behavior reported for |
'-high angle scattering could not therefore be attributed to
- rotational transitiena. .Th;e-copclueion supports the viey of
| :the aﬁthoreee‘It.is»not'elear,.however, that this form for
V(r) 18 the only‘oneiﬁhich<wduld'givé‘riee to the reported low
angle seattering dhd thisupoint eannot,be definitely settled

hndeteennn el v Sl -
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" without more detailed information about the state of the
" ‘system after the collision. '
| We now‘turn to the more'general bossibility that both

N :vibrational and rotational state ‘may ohange during the oollision.f

The main oomplication is that the vibrational energy of BC may
change with rin different waya for different vibrational
states. _ f , j A

For a simple model of the potential Vb(r.p) 1n Eqs. (2). |

i
¢

if-oonaider the form j a |
%“”"””+D“{ M”% n&n*“*Q] (41)

f -__At given r, the vibrational potential vb(r,p)-v(r) then has a
' minimum energy -pz(r)D(r) at o o

pf%+3mﬂﬂ;‘[‘. (42)

If p(») = 1, V(=) - O gnd-b(w) is the.diasociation energy of
BC,Vo(w,p) 18 & Morse function. At every r, the vibrational
_,_veigenfunctions s (r:p) and characteriatio energies A, (r) must
{f“ satisfy '

", ;B(pfph)]

2 2 [ -28(p-
{;'h d yD[e (e em)aZDe

= 3;2 + -xn}vn(p) = 0.

_(43)

y;For brevity we shall femporarily omit the reminders that D) p
; iand kn depend parametrically on r.. The substitutions ";a .

- (ﬂ%:)e““‘”m) and v, (r) -e “/’-’ % a(e) .

where o




w16
: 'Buh
.8 _ n

throw (43) into the form . - .

d2 l4a, |\ dF,; - 1«2 o

.’The bound’ solutions of (44) are conrluent hypergeometrio

| fwnotions . T

i,

ro [ ¢
‘1A'

" P(-n,14asz) = const x e%z~® §;as(e'zz“+n). . (48)

whgre
1+d

st be a’:i'integ.er’.'-t?’.l‘hig Aimplieé ‘that xn 15 restricted to the |

. values | | e e e |

| My ~[p - (m—z)ql 1 ' | t' | o | - (a7)

S Q  Qher§‘d - én/JEEﬁ “Henoe 1n Eq: (4) - |

| | wi(r) =v(r) + 7\1(1-) = V(r) o ip(x-) (1+z)s(r)121>(r)
| ' (48)

© ... I now follows from EQS- (7) and (15)‘ th&t tha orosaing p°1nt
~ for a vibrational«rotational tranaition from |1} to |J> is

given by ' . . PR ' S S ',,v ,v'f Lo

k2 k§ zi.“#;; (3 +1)‘ " ‘1‘-,‘]){Z[p(R)q(R)D(R).p(‘,)q(w)D(“)]‘ |

| -u+4+1)[qz(n)n(m«q?(»)n(wn} B (o)
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- ¥nen more 18 known about the way in which the vibrational |
L potential functions Voles p) = V(r) vary with r for different .
~ actual physioal systems Eq. (49) may be useful in decliding !

" whether vibrational~rotat1¢nai transitions are very likely or .

'1*.;not. e .f_i;j}:x;:jfa__ Lol f
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Figure 2

”5(attached )"

Sketohea to 111uetrate the traJeotory of a particle

i'auffering an 1nelaatic collision when the "orossing-point"
" Ris elaaaioally (a) aooeaaible and (b) 1nacoeasible.‘ The

gig-zag line AAA in (b) denotes quantum machanloal tunnelling

 via R from'ore "elaat:l.c" tra.jeotory to the: other. x 18 the
"f{scattering center._ 13;-_ |
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