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Does the Effect of Pollution on Infant Mortality
Differ Between Developing and Developed Countries?
Evidence from Mexico City

Eva Arceo, CIDE
Rema Hanna, Harvard, NBER and BREAD
Paulina Oliva, UCSB, NBER

First Draft: June 2012
PRELIMINARY AND INCOMPLETE

Abstract

Much of what we know about the marginal effect of pollution on infant mortality is derived from
developed country data. However, given the lower levels of air pollution in developed countries,
these estimates may not be externally valid to the developing country context if there is a non-
linear dose relationship between pollution and mortality or if the costs of avoidance behavior
differs considerably between the two contexts. In this paper, we estimate the relationship
between pollution and infant mortality using data from Mexico. We find that an increase of 1
parts per billion in carbon monoxide (CO) over the last week results in 0.0032 deaths per
100,000 births, while a 1 pg/m’ increase in particulate matter (PM o) results in 0.24 infant deaths
per 100,000 births. Our estimates for PM,, tend to be similar (or even smaller) than the U.S.
estimates, while our findings on CO tend to be larger than those derived from the U.S. context.
We provide suggestive evidence that a non-linearity in the relationship between CO and health
explains this difference.

We thank Jon Hill and Katherine Kimble for excellent research assistance. We are grateful to David Card, Olivier
Deschenes, Heather Royer, Catherine Wolfram and Lucas Davis for helpful comments, as well as seminar
participants at CEPR Development Meetings Pre-Conference, the ARE Berkeley Seminar, the Environment and
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I. INTRODUCTION
Pollution is a grave concern in much of the developing world, with levels that are often orders of
magnitude higher than in developed countries. For example, using comparable data, Greenstone
and Hanna (2011) document air pollution levels that are five to seven times higher in India and
China than in the United States. This may translate into many lost lives: The OECD estimates
that almost 1.5 million individuals die from exposure to particulates each year, many more than
who die from malaria or unclean water. With pollution levels predicted to rise, the OECD claims
that this figure may exceed 3.5 million people per year by 2050, with most of these deaths
occurring in rapidly industrializing countries, such as India and China (OECD Outlook, 2011).
Much of what we know about the causal relationship between pollution and infant health
comes from developed country settings (for example, see Greenstone and Chay, 2003; Currie
and Neidell, 2005)." However, there are two important reasons why these estimates may have
limited external validity to the developing country context. First, they may be limited if there is
a non-linear dose-response relationship between pollution and infant mortality. If we expect, for
example, that marginal changes in pollution are more damaging at higher levels of air pollution,
using developed country estimates would cause us to grossly underestimate the effect in many
developing countries. However, if there is an inflection point through which pollution needs to
fall beneath before health gains can be realized, using developed country estimates could
alternatively lead us to overestimate the effect. Similarly, due to a host of factors (i.e. disease
environments, access to health care), infant mortality rates are significantly higher in many
developing countries. As such, it is possible that pollution may exert a larger effect on infants if
they are already weakened by these other factors, or alternatively, it is possible that a marginal
increase in pollution may be negligible if these other factors supersede the pollution effect.
Second, the effect of pollution on health may be highly dependent on behavior (for
example, see Neidell and Moretti, 2011; Graff Zivin and Neidell, 2009; Deschenes, Greenstone
and Shapiro, 2012). Avoidance behavior may be costlier in the developing world, given less
access to health care and lower quality housing stock, which would imply that a marginal

decrease in pollution may have a larger overall health impact in the developing world. However,

' Exceptions include Jayachandran (2006), who explores the impact of smoke from forest fires in Indonesia on
infant health; Greenstone and Hanna (2011) who estimate the effect of mandated catalytic converters on infant
mortality rates in India, but have a noisy estimate of the policy impact due to limited data; and Tanaka (2012), who
measures the effect of more stringent environmental regulation in China.



the effect could also be smaller if, for example, individuals have permanently adapted to bad
pollution by keeping young babies indoors or wearing breathing masks regularly.> Given these
two potential factors, applying estimates of the marginal effect of pollution that are derived from
the United States to developing countries may be highly misleading for policy. Furthermore,
given the theoretical ambiguity regarding the bias that these estimates would produce, it is
difficult to assess the direction in which we would be wrong.

The shortage of this type of analysis for developing countries stems from two main
challenges. First, data constraints tend to be more severe in developing countries. Quite
frequently, disaggregated data on infant births and deaths are not accurately recorded or
computerized. Even when the data are available, the validity of the data may be questionable as
there is substantial selection as to which births and deaths are registered. Moreover, there are
fewer stations systematically measuring pollution levels in developing countries, and so there is
potentially less variation in pollution to exploit.

Second, there is a simultaneity problem in estimating the relationship between pollution
and health. This problem is typically addressed by one of two methods. First, one can use a
policy instrument to tease out exogenous variation in pollution. However, despite the fact that
environmental regulations in developing countries often look similar to those in the United
States, they are often riddled with implementation and enforcement problems that result in more
limited impacts, resulting in a weak first stage. For example, Greenstone and Hanna (2011)
experience this problem when using environmental regulations in India as an instrument for
pollution.” The second methodology typically used is a fixed effects model that controls for
time-invariant differences across locations and overall trends (see, for example, Currie and
Neidell, 2005). This type of empirical model can be challenging when using data from the
developing world, as the measurement error that may arise from using sparser pollution data than
in the United States may be exacerbated by the inclusion of fixed effects.”

In this study, we aim to address these problems and estimate the impact of pollution on

infant mortality in a developing country context. To do so, we construct weekly, municipality-

* As higher pollution is more visible, avoidance behaviors may be more likely since the costs of learning about
pollution levels may be lower.

> One exception is Tanaka (2012), which studies the effect of more stringent regulation in China on infant mortality.
* As Currie and Neidell (2005) discuss, measurement error has also been noted in the United States context as well.
Schlenker and Reed (2011) and Knittel, Miller, and Sanders (2011) find larger impacts of pollution on health when
using an instrumental variables strategy as compared to fixed effects methods using United States data, which both
claim is consistent with classical measurement error being exacerbated with the fixed effects methodology.



level measures of pollution and mortality for 48 municipalities across Mexico City between the
years 1997 to 2006. Mexico City is a highly relevant context in which to study this relationship.
On average, it experiences both the high levels of pollution and mortality that are common in
many developing countries. However, given the high variance in pollution levels, the range of
pollution also encompasses a range similar to that observed in the United States. These two facts
will allow us to estimate the marginal effect of pollution at a range that is typical for developing
countries, and then to compare this estimate to the marginal effect at the ranges used in the
previous estimates for the United States.

To address the simultaneity problem, we first employ a fixed effects technique,
controlling for time-invariant characteristics of municipalities, week fixed effects, and
municipality-specific year trends. Using this method, we find no impact of pollution on
mortality. However, despite access to very high quality pollution measures, station coverage is
sparse: depending on the pollutant and year, our pollution measures are derived from between
10 to 26 stations. Given that fixed effects models are particularly sensitive to classical
measurement error, our estimates may be severely biased downward.

Instead, we exploit a meteorological phenomenon: the existence of thermal inversions.
A thermal inversion occurs when a mass of hot air gets caught above a mass of cold air, trapping
pollutants. Conditional on temperature, inversions themselves do not represent a health risk per
se other than the accumulation of pollutants. As such, we can use the number of inversions over
the last week to instrument for pollution levels. We find that each additional inversion over the
last week leads to a 3.5 percent increase in particulate matter measuring 10um or less (PM)
levels and a 5.4 percent increase in carbon monoxide (CO) levels, conditional on municipality
fixed effects, municipality-specific time trends, polynomials in temperature and weather
controls.

With the instrumental variables strategy, we find robust evidence of pollution on infant
mortality. Our estimates imply that 1 pg/m’ increase in 24-hour PM,, over the last week results
in 0.24 infant deaths per 100,000 births. Similarly, 1 ppb increase in the 8-hour maximum for
CO results in 0.0032 per 100,000 births in a given week.” We find no significant effect on

neonatal deaths (children 28 days and younger). As a test of the causal pathway, we then

> As we illustrate below, these results are robust to different definitions of mortality, different controls for
seasonality, the inclusion of outliers and different weather and temperature controls.



separate deaths into those that are likely to be pollution related (i.e. respiratory and
cardiovascular disease) versus those that are less likely to be pollution related (i.e. digestive,
congenital, accidents, homicides, etc.). We find statistically and policy significant effects of
pollution on both neonatal and infant deaths from respiratory and cardiovascular disease. As we
would expect if we had indeed isolated the effect of pollution from other factors (i.e. income,
health preferences), we find no effect of pollution on deaths from other causes.

Finally, we compare our estimates to those derived in the United States setting.
Specifically, we compare our estimates to Currie and Neidell (2005), Knittel, Miller, and Sanders
(2011), and Chay and Greenstone (2003). We find larger marginal effects of CO on infant
mortality than CN; we also find larger point estimates that KMS, but they do not observe a
significant effect of CO on infant mortality. We provide suggestive evidence that this is driven
by non-linearities in the effect of CO: constraining the Mexico City pollution data to be within
the range of CO values observed in the United States results in estimates that are roughly the
same magnitude as CN. For PM, our results are near identical to CG’s results, despite the fact
that the mean level of pollution in their setting is roughly half of that in Mexico City. This is
consistent with the fact that we do not observe a non-linear effect for PM,, within our sample.’

The paper proceeds as follows. In Section II, we describe our empirical methods and
data, while we provide our findings in Section III. Section IV provides a discussion of our

estimates with those from the United States context. Section V concludes.

II. EMPIRICAL METHOD, DATA, AND SUMMARY STATISTICS

1I.A. Empirical Methods
Our objective is to estimate the relationship between pollution (B, ) in a municipality (m) over
the last week (w) and mortality per 100,000 live births (Y;;,,,), or the parameter S, :
Equation 1: Y,,,, = Bo + B1Pnw + Emw
where &,,,,, captures all unobserved determinants of mortality. There are many reasons to believe

the identification assumption does not hold in this case. For example, areas with low levels of

% Although as we discuss more in depth below, we are highly cautious about this result because we have problems of
power in our first stage for PM;o. Thus, we only take this evidence as very suggestive.



pollution may be richer, and thus have lower levels of mortality regardless of pollution. One
method to solve the endogeneity problem would be to estimate a fixed effects model:
Equation 2: Y,,,, = Bo + L1Paw + @m + Sy +Emw

where a,, is a set of municipality fixed effects that control for permanent differences across
municipalities, such as time-invariant socioeconomic characteristics. Similarly, §,, is a set of
week fixed effects, which controls for common factors (e.g. city-wide economic shocks) in a
given week that could affect both pollution levels and infant mortality. The fixed effects model
represents a substantial improvement over the standard cross-sectional regression. However, two
concerns remain. First, f; may still be subject to bias if there are unobservable, time-varying
differences across municipalities. One way to account for this is to include municipality-
specific, linear time trends. However, this may not capture sharp or non-monotonic changes in
omitted pollution and infant mortality determinants, such as road projects that could result in
fewer traffic jams and faster access for emergency vehicles. Second, classical measurement
error in the pollution variable will bias B; downwards. Fixed effects estimators exacerbate
measurement error, biasing B, further towards zero. As compared to developed country settings,
this may be particularly problematic in developing countries, where pollution-monitoring
stations are sparse: for example, as we discuss below, we exploit data from 10 to 26 stations.

Instead, we consider an instrumental variables strategy, which will reduce bias from both
endogeneity and classical measurement error. We exploit a meteorological phenomenon: the
existence of thermal inversions.” Air temperature in the troposphere usually falls with altitude at
about 6.5 degrees Celsius per 1,000 meters. However, sometimes there is a mass of hot air on
top of a mass of cold air; this is called a thermal inversion.® This does not represent a health risk

in itself, but when it occurs in conjunction with high levels of vehicle and industrial emissions, it

7 Inversions occur in many cities, ranging from Mumbai, Los Angeles, San Paulo, Salt Lake City, Santiago,
Vancouver, Prague, etc. The great smog of 1952 in the UK was caused by an inversion episode and was blamed for
upwards of 11,000 to 12,000 deaths. This incident sparked greater interest in environmental regulation in the UK.
*There are three sources of inversions. First, irradiative inversions are generated in clear nights when the ground
and the air in touch with the ground are cooled faster than higher air layers. The conditions for irradiative inversions
are more frequent in the winter: under clear conditions, the earth's infrared emissions warm the higher layers of air.
The cold ground temperatures cool causing the air that is close to the ground to remain at a lower temperature than
the air above. Second, advective inversions are produced when layers of air at different temperatures move
horizontally and a layer of cold air develops below a layer of hot air. Third, inversions by subsidence occur from
vertical air movements when a layer of cold air descends between a layer of hot air.



may result in the temporary accumulation of pollutants.” When emissions are released in the
atmosphere, they rise and can get trapped in the inversion. As the sun energy equates the
temperatures of the cold and hot air masses (the thermal inversion breaks), the "lid" effect
disappears and the pollutants can rise again.

We can, therefore, use the number of thermal inversions over the week (T1,) to
instrument for pollution. Specifically, we estimate the following using two stage least squares:

Equation 3: Py, = m + m; T, + X W + A(Winy) + @ + 0y + lmy
Equation 4: Y,,,,, = Bo + B1Puw + 2 BomW + Z(Wp,) + iy + 0y +Emy

Note that T1,, varies at the week level, and therefore, week fixed effects are no longer identified
and errors may also be correlated within weeks.'® We therefore control for municipality-specific
week trends (w) and allow for errors to be clustered at the week level. We also include for
municipality fixed effects (a,,) to control for time-invariant characteristics across municipalities,
and year fixed effects (g,) to account for city-wide year trends, such as recessions. "’

Importantly, we include a flexible set of controls for temperature and weather conditions
(/2(Wpwy)) that includes a fourth polynomial in mean temperature, a third degree polynomial in
minimum and maximum temperatures during the week, a second degree polynomial in
precipitation, cloud cover and humidity measures. Controlling for temperature is important for
the exclusion restriction to hold, since inversions have a clear seasonal pattern and temperature
may independently affect infant mortality (Deschenes and Greenstone, 2011)."*> Figure 1, Panel
A shows the average number of thermal inversions per week for each month of the year (bars), as
well as the average temperatures for each month of the year (spikes) measured by the right axis.
As expected, given the conditions necessary for an irradiative inversion, a large share of the

inversions occurs in the winter (November-March). However, inversions also occur in months

? For a description, see for example, Secretaria del Medio Ambiente del Distrito Federal, "Informe Climatologico
Ambiental del Valle de México", 2005.

' Note that as we exploit week-to-week variation within municipalities in this setting, sorting across different
municipalities due to differential pollution should not be a large concern. Moreover, Hanna and Oliva (2011) show
that sorting is nonetheless not a large concern within Mexico City as very few households move across census
blocks, which are an even smaller geographic unit than municipalities.

' As we illustrate below, our results are robust to different configurations of the control variables, such as omitting
controls for minimum and maximum temperatures during the week, omitting municipality-specific time trends and
including seasonal effects.

"2 In addition, including precipitation, cloud cover and humidity is also essential as it is possible that an inversion
can lead to a thunderstorm if moisture is trapped in the inversion.



with relatively high temperatures (April, May and October), which will allows us to disentangle
the effects of temperature on infant mortality from that of air pollution.

Note two additional specification details. First, all regressions are clustered at the week
level, which is the level of variation of our instrument. However, our estimates are robust to
alternative modeling assumptions for the error term; for example, our reduced form results
remain unchanged if we employ Conley standard errors to adjust for geospatial correlations (see
Appendix Table 1).  Second, all regressions are weighed by the number of births in the
respective cohort (Appendix 1 also shows that the results are not sensitive to the weights).

Finally, in addition to estimating the marginal effect of a change in average pollution, we
explore whether there is a non-linear dose-response relationship between pollution and infant
mortality. We estimate our IV model using a linear spline in pollution with a single node that
roughly corresponds to the range in each pollutant in Currie and Neidell (2005). In particular,
we use a cutoff of one standard deviation above the mean pollutant value in Currie and Neidell
(2005) to generate the splines.”” This allows us to assess whether our results differ from

previous studies in the United States due to non-linearities in the health-mortality relationship.

II.B. Data
We compiled a comprehensive dataset on pollution measures, weather conditions, and mortality

for Mexico City for the years 1997-2006. Each data source is described in detail below.

Neonatal and Infant Mortality
We constructed the mortality measures from data that we obtained for the Mexico City
Metropolitan Area (MCMA) from the Ministry of Health (Secretaria de Salud Publica). We
utilize two sources. First, we compiled data from death certificates, including information on
day of death, gender of the child, municipality of residence, age of the child at death, and cause
of death. Second, to compute mortality rates, we additionally gained access to the birth
certificate registry, which contains information on date of birth and municipality of residence.
We then computed weekly, municipality-level neonatal mortality rates (those that are 28
days of age and younger) and infant mortality rates (those that are one year old and younger).

To do so, for each week-municipality observation, we calculate the number of births in the last

"> We additionally test the robustness of the results to different definitions of the splines.



28 days and in the last year.'"* Mortality rates are then calculated by dividing the total number of
deaths in each week-municipality by the total number of live births in the corresponding age
group and then multiplying by 100,000. Thus, our coefficients can be interpreted as the number

of deaths in a week per 100,000 children born alive in the respective age cohort.

Pollution

Pollution data are notoriously absent in many developing countries. When available, they are
often only cross-sectional, or of mixed quality. In this paper, we are able to take advantage of a
relatively rich, panel dataset that is available for Mexico City, namely the Automatic Network of
Atmospheric Monitoring (RAMA). Measures are available for particulate matter under 10
micrometers (PM)y), sulfur dioxide (SO,), carbon monoxide (CO) and ozone (O3). These data
are considered to be of high quality, and, as Davis (2008) points out, “[t]hese measures are

b

widely used in scientific publications...” However, it is important to note that they are drawn
from relatively few stations: PM¢ is available for 10 stations from 1997 to 1999, and from 16
stations starting in 2000, SO, is drawn from 26 stations, CO is drawn from 24 stations and O; is
drawn from 21 stations.

From these data, we construct weekly measures of pollution for each of the 56
municipalities in Mexico City using the inverse of the distance to nearby stations as weights (see
Currie and Neidell (2005) for description of the methodology). Out of the 56 municipalities in
Mexico City for which we have infant mortality data, we include the 48 that are within 15
kilometers of a station. There is a tradeoff between constraining the sample to municipalities
that are even closer to at least one station for greater precision of the pollution measure and
increasing the distance cutoff to include more municipalities. As shown in Appendix Table 2,
our results are robust to different definitions of this cutoff.

We use the hourly measures of pollution to calculate the maximum daily 8-hour average
for CO and average this over the week, the maximum daily 24-hour average for PM;, and

average this over the week, and then weekly averages for SO, and for 0s."> Al of these daily

measures are then averaged over the week.

' Since 0.03 percent of the births certificates have missing month and day of birth, we adjust weekly estimates of
births by dividing un-dated births equally among all weeks of the year.

!> We use these measures for ease of comparison with Currie and Neidell (2005) and Knittel et al. (2011). However,
our results are robust to alternative measures of pollution, such as weekly averages.



Thermal Inversions

Thermal inversions are recorded by the Meteorological Unit of the local Ministry of
Environment. They conduct screenings almost every day, which consist of measuring hourly
temperatures at different altitudes using an aerostatic balloon.'® The existence of an inversion is
determined upon finding non-monotonic temperature gradients. Records are kept on the time
and temperature of the inversion rupture, so that one can also compute the number of hours an
inversion lasted, as well as the thickness of its layer. We aggregate the data to the weekly level
by computing the number of thermal inversions in a given week. To test non-linear effects of
pollution on infant mortality, we can also create indicator variables for 1, 2-3 and 4-7 thermal
inversions per week.

Inversions may have differing effects on different pollutants. We expect that the
inversions should have substantial effects on CO and PM,, levels.!” However, the effect on
other pollutants, particularly O3 and SO,, may be more ambiguous. Specifically, given that the
chemical reactions that result in O3 require warmth and sunlight, the thick layers of pollution
associated with thermal inversions may interfere with O3 formation.'® Similarly, while SO, may
get trapped by inversions, the peak times in which it is dispersed into the atmosphere (such as
heavy traffic periods) may not correspond to the hours when inversions are mostly likely to
occur, and so it is possible that the effect of inversions on SO, may be muted. The chemical
instability of SO, also makes the presence of this gas less predictable in relation to thermal

inversions."’

Temperature and Weather
We obtained temperature and weather variables as additional controls in our specification.
Hourly temperature measures are available from 24 stations in the RAMA network, and daily

level measures of humidity, precipitation and cloud measures are available daily from 219 local

1 Of the 3,652 days within our sample period, we have data on whether an inversion occurred for 95 percent of
these days. We drop the weeks in which we are missing inversion data.

'7 Conversations with meteorologist Maria de Fatima Andrade confirmed that NOx, a large precursor of PM10, and
CO are the compounds that are more likely associated to meteorological conditions such as the thermal inversions.

'® Ozone Formation, EPA, http://www.epa.gov/oar/oaqps/gooduphigh/bad.htmlI#6

' According to conversations with meteorologist Maria de Fatima Andrade, the largest concentrations of SO, are
expected at times of the day with high emissions (the peaks of heavy traffic) and by midday the concentration tends
to go down due to photochemical processes in reactions that end in sulfate oxide.



weather stations. Using the same methodology to compute weekly, municipality-level measures

of pollution, we use this information to compute the temperature and weather controls.

11.C. Data Description

We describe the data in Table 1. In Panel A and B, we provide information on neonatal
mortality rates (for children that are 28 days and younger) and infant mortality rates (those that
are one year and younger) respectively. In addition to the means for the weekly measures used
in the regression analysis (Column (1)), we additionally include the mean across municipalities
in a given year per 100,000 births for ease of comparison with the U.S. figures (Column (4)).*
Over the period of study, yearly mortality rates are more than double in Mexico City than in the
United States: The neonatal mortality rate is 1183, while the U.S. rate is 460. Similarly, the
infant mortality rate in Mexico City was 1986, while the comparable US figures was 698.

Note that, we also provide mortality estimates, by cause of death. We can test whether
the effect of pollution on mortality is driven by deaths that we expect to be related to pollution.
We define this comparison in two ways. First, we can compare all internal deaths with all
external deaths (i.e., accident, homicides). This is a very strict definition, in that it assumes that
pollution affects all internal deaths, including for example those from digestive diseases, which
may or may not be affected by pollution. Moreover, there are relatively fewer deaths from
external sources (61.37 per 100,000), with relatively less variation, and so we may not capture an
effect with the same sample size due to power concerns. Therefore, we also compare diseases
that are more likely to be directly attributed to pollution (i.e., respiratory and cardiovascular
disease) versus those that are less likely to be directly attributed to pollution (digestive,
congenital, accidents, homicides, etc.).

In Panel C, we provide means for particulate matter of 10um or less (PM;), carbon

monoxide (CO), ozone (Os), and sulfur dioxide (SO,), as well as summary information on

%% Note that the weekly measure for infant deaths in Column 1 appears smaller than that of neonatal mortality,
despite the fact that the later also includes neonatal deaths. The difference in magnitudes is mainly due to scaling:
neonatal mortality rates are computed by dividing the number of deaths occurred in a single week within the 28 day
cohort by the number of live births corresponding to that cohort. Hence, the denominator for the neonatal mortality
figure is necessarily smaller than the denominator for the infant mortality figure. Column 4 shows mortality rates on
a yearly basis. This column is computed by multiplying Column 1 by 4 (or 52/13) in the case of neonatal mortality
and by 12 in the case of infant mortality.

10



inversions.”’ Despite falling pollution levels in Mexico City, the average is still quite high. For
example, the mean level of PM) is about 67um as compared to 39.45um observed in California,
as documented by Currie and Neidell (2005). Inversions are fairly frequent: on average, there
are 1.7 inversions in a municipality-week. Conditional on an inversion occurring that week,

there is an average of 2.77 inversions in a municipality-week.

II1. RESULTS

IIL.A. Correlations in Pollution and Health

Before we turn to the quasi-experimental approaches, we first describe the evolution of pollution
and infant mortality over time. In Figure 2, we graph average weekly neonatal (Panel A) and
infant mortality rates (Panel B) against each of the four air pollutants over time. Mexico City has
been successful in reducing pollution city-wide over the 1997 to 2006 time period, with all four
air pollutants falling sharply over this period (Molina & Molina, 2002). As the figures illustrate,
mortality rates are also falling and, in some cases, the rates closely track pollution changes.

Table 2 quantifies these patterns. Specifically, we estimate Equation 1 for neonatal
mortality (Column (1)) and infant mortality (Column (2)). As the figure illustrates, we find a
large, significant, positive correlation, which is robust to the inclusion of flexible controls for
temperature and weather variables (Columns (3) and (4)). The magnitudes are fairly large: for
example, as shown in Column 4, a one pg/m’ increase in PMjo (1.5 percent increase) is
associated with 0.131 more infant deaths per 100,000 births per week, a one ppb (about 0.037
percent increase) in CO is linked to 0.003 more deaths, and a one ppb increase in O3 (a 3 percent

increase) is associated with 0.171 more deaths.

1I1.B. First Stage Estimates

We begin by examining the relationship between the occurrence of an inversion and each of the
four pollutants (PM;y, CO, O;, and SO;), which comprises the first stage of our instrumental
variables strategy. In Figure 3, we graph the average pollutant level by number of inversions.

As the figure illustrates, we observe a strong, and fairly linear, relationship between the number

*! Given the presence of outliers in the data, we trim the top and bottom 1 percent of values. The primary results
remain largely unchanged if we do not trim the outliers as shown in Columns 5 and 6 of Appendix Table 4.

11



of inversions the last week and PM;y and CO levels. In contrast, there does not appear to be an
obvious relationship between the number of inversions and either Oz or SO,.

We provide the corresponding regression analysis in Table 3. Specifically, we present
coefficient estimates from Equation 3. As suggested by the figure, inversions have a large and
significant effect on PM;y and CO. One additional inversion in the last week results in a 2
pg/m’, or 3.4 percent, increase in PMjo (Column 1). Similarly, one additional inversion results
in a 153 ppb, or 5.6 percent, increase in CO (Column 2). The effects on PM;y and CO are both
significant at the 1 percent level. There are no significant effects of thermal inversions on SO,
and O; (Columns 3 and 4). The lack of a first stage for SO, and O is consistent with afternoon
rather than morning SO, emissions and with lack of sunlight for O3 formation (see Section II for

a further discussion).

II1.C. Causal Estimates of Pollution on Infant Mortality and Health

In Columns (1) and (2) of Table 4, we provide the coefficient estimates of the effect of each
pollutant on neonatal and infant mortality, respectively, from estimating Equation 2 (the fixed
effects model). Note that we additionally include municipality-specific week trends in this

model.*

In Columns (3) and (4), we provide our IV estimates for the individual effects of PM;,
and CO on mortality; here, we report the coefficient estimates from Equation 4> As there is no
first stage result for SO, or O3, we do not estimate an IV estimate for these pollutants.

Using a fixed effects strategy, we find no observable effects of pollution on mortality
(Columns (1) and (2)). As compared to the cross-sectional analysis with controls that is shown
in Columns (3) and (4) in Table 2, the fixed effects estimates, for the most part, tend to be small

in magnitude and much less precisely estimated. This is consistent with classical measurement

€Iror.

> As Appendix Table 3A shows, the results do not qualitatively change if we drop the municipality week trends
(Columns (1) and (2)), include fewer temperature controls (Columns (3) and (4)), or drop the week fixed effects so
that the estimate is more comparable to Currie and Neidell (2005) (Columns (5) and (6)).

» Appendix Table 3B explores the robustness of the IV estimates to different control variables. As shown in
Columns (1) and (2), the effects on neonatal and infant mortality are qualitatively similarly if we do not include the
municipality-week trends, which suggest the inversions are for the most part uncorrelated with the trends in
mortality that are unrelated to pollution. Relaxing the temperature controls (Columns (3) and (4)) leads to larger
estimates for infant mortality, but the effects are still not significant for neonatal mortality. Including a more
flexible time trend (Columns (5) and (6)) also results in qualitatively similar results.

12



Instead, we turn to our instrumental variables strategy. Here, we find large effects of
pollution on infant mortality, but smaller and non-significant effects on neonatal mortality. In
the case of infant mortality, a one pg/m’ increase in PM,, over the week leads to 0.23 deaths per
100,000 births, while a one ppb increase in CO leads to 0.032 deaths.”* This implies that a 1
percent increase in PMo over a year leads to a 0.42 percent increase in infant mortality, while a 1
percent increase in CO results in a 0.23 percent increase.

We do not find evidence of harvesting. We can see this in two ways. First, the effect on
neonatal deaths is much smaller in magnitude than infant deaths. Due to the scaling, we need to
multiply the infant mortality estimates to compare the neonatal and infant mortality estimates.
When doing this, it becomes apparent that the effects on neonatal mortality are not only
insignificant, but also 50 percent smaller in magnitude. The fact that we find smaller effects of
air pollution on children below the age of 28 days suggests that air pollution is not accelerating
death of already vulnerable children, but is causing death of children with otherwise long life
expectancies. Second, in Appendix Table 4A and 4B, we present the results of our analysis
when we aggregate the data to the month level rather than at the week level. If harvesting is an
issue of concern with our estimates, we would expect smaller effects when using data aggregated
at the month level. However, this is not the case.”

It is important to note that our IV results are very robust to changes in the model
specification, providing a high level of confidence in this strategy. In Appendix Table 5, we first
test whether our results are driven by changes in the denominator of the left hand side variable,
i.e., the number of births. This would be the case if pollution shocks have an impact in the
number of live births in the current week, which are included in the denominator. We perform
this check by estimating our IV model with the log of deaths as a dependent variable and the log
of births as an additional control variable. The results of this specification, reported in Columns
(1) and (2), can be compared with our main results divided by the average mortality rate. We

find that the results of the log specification for infant mortality are slightly smaller, but not

** Note that Table 4 reports effects of CO in terms of neonatal/infant deaths associated with one part per billion,
which corresponds to an increase in CO concentration of 0.037 percent.

* To make the magnitudes of infant mortality coefficients comparable across Appendix Table 4B and our main
results (Table 4), it is useful to compute the yearly mortality effects associated with both (i.e., multiplying
coefficients in Table 4 (Column 2) by 52 and the coefficients in Appendix Table 4B (Column 2) by 12). The
coefficients from monthly aggregated data appear about three times as large as the coefficients from weekly
aggregated data. Note, however, that only the coefficients from the CO IV regression are reliable since the first
stage for PM is lost when aggregating data at such a coarse level (See Appendix Table 4A).
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significantly different than our main estimates, and they are still significant at the 10 percent
level (the effects on neonatal remains insignificant across both models). Thus, it is unlikely that
the results are driven by changes in births.*

Second, we explore whether the seasonality in thermal inversions is driving our results.
This could be the case if our temperature and weather variables are not fully controlling for
climatic differences across seasons, or if the flu or other epidemics have similar timing with
thermal inversions, but are not fully controlled for by our temperature and weather variables.
We do this in several ways. First, we can control for mortality in the second largest city of
Mexico, Guadalajara, which shares similar weather patterns as Mexico City, but does not
experience inversions. As Appendix Figure 1 illustrates, Guadalajara also experience seasonal
patterns in mortality, albeit not as pronounced as in Mexico City. Including the mortality rate in
Guadalajara as a control (Columns (1) and (2) of Appendix Table 6A) does not qualitatively
affect the results; the effect of CO, if anything, actually increases when we control for the
mortality rate in Guadalajara. Second, we can directly include season fixed effects (Columns (3)
and (4) of Appendix Table 6A). The magnitude of the results remains qualitatively unchanged.
However, note that if we include both season and year fixed effects, the standard errors increase
substantially even though the magnitude of the estimates remains unchanged (Columns (4) and
(5)). Third, we can confirm whether the effect of pollution is similar across seasons, particularly
whether it differs across the winter and summer months. Appendix Table 6B shows these
results.”” Note that we observe a significant first stage for both the summer and winter months.*®
On net, the effects on pollution do not appear to be significantly different between the winter and
summer months.

Next, in Table 5, we replicate the IV analysis for mortality that results from different
causes. This can be viewed as a placebo test: If we find that our pollution measure is resulting
in deaths that are unlikely to be related to pollution, we would conclude that our instrument
might be directly linked to unobserved socio-demographic determinants of mortality. We can

define pollutant-related deaths in two ways. First, we compare deaths from all types of internal

*® Note that in Columns (3) and (4) of Appendix Table 5, we also show the estimates had we not dropped the top and
bottom 1 percent of values in pollution and show that the results are not sensitive to their inclusion.

%7 For completeness, we show two possible definitions of seasons. Specifically, we can define summer from week
13 to week 42 (Columns 1 and 2) or from week 14 to 43 (Columns 3 and 4). The results are qualitatively similar
across the two definitions.

*¥ The Angrist-Pischke F-statistics are above the Stock-Yogo 10 percent threshold for weak instruments.
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sources and those from purely external sources. We find no observable effect on either internal
or external effects for neonatal (Columns 1 and 2). The effect of pollution on infant mortality
appears to be driven by internal deaths (Column 6); there is no observable effect on external
deaths for infants. However, mortality from external sources is rare compared to that from
internal sources, meaning it would be more difficult to detect an effect on external deaths if there
indeed is one. Moreover, it is possible that external deaths are simply accidental and/or
immediate, and thus are altogether uncorrelated with income or health care quality.

Therefore, we can also classify deaths by those that are more likely to be attributed to
pollution (i.e., respiratory and cardiovascular disease) versus those from sources that are less
likely (digestive, congenital, accidents, homicides, etc.). This is not a perfect separation, as
children who are weakened by high pollution may be more likely to pass away from other
sources (such as digestive disorders) and causes of death may be imperfectly diagnosed.
However, we should still expect the effect on respiratory diseases to be relatively large if
pollution is driving much of the effect, and not other socio-demographic characteristics. Indeed,
our results suggest that most of the deaths related to pollution are linked to respiratory and
cardiovascular causes: We find no effect on non-respiratory deaths for either neonatal (Column
3) or infant (Column 7) deaths. Importantly, if we focus on deaths from respiratory and
cardiovascular disease, we find large effects of pollution on both infant (Column 8) and neonatal
(Column 4) deaths. The fact that we find that the effect of pollution on mortality is driven
mainly by respiratory causes implies that our instrument is capturing exogenous variation in
pollution, and not just trends in socioeconomic characteristics.

Finally, in all the regressions above, the effect for any individual pollutant may be
capturing its own effect, as well as the effect of other pollutants. This is particularly problematic
given that we have used one main instrument to identify the effect of each pollutant.
Alternatively, we can include all pollutants in the same specification, so that the estimated effect
of each pollutant is purged of potential bias from the others. This results in multiple endogenous
variables, and therefore, we need to identify multiple instruments for our IV model. We exploit
the fact that the effects of inversions on pollution may differ based on altitude of the municipality
and the thickness of the inversion, and create three instruments: the number of inversions, the
number of inversions interacted with altitude, and the thickness of inversion interacted with

altitude. As Appendix Table 7 illustrates, PM,, concentrations are lower at higher altitudes,
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presumably because higher areas are likely to be above the thermal inversion layer. However,
altitude does not seem to matter as much for CO concentrations, unless the thermal inversion
layer is thick. Thickness of the thermal inversion induces higher concentrations of CO at higher
altitudes. The Angrist-Pischke F-statistic for both estimated equations is above the Stock-Yogo
10 percent critical value for single endogenous regressors, which suggests that our instrument
combination induces at least some independent variation in both pollutants.

The IV estimates are presented in Table 6. We do not observe a significant effect of
either pollutant on neonatal mortality, and the two pollutant variables are jointly insignificant
Column (1)).  While each pollutant is not an individually significant predictor for infant
mortality, the two pollutants are jointly significant in predicting infant mortality at the 10 percent
level (Column (2)).* In terms of magnitude, we find that given the decline in pollution in
Mexico City from 1997 to 2006, our estimates would predict that 779 infants were saved
(Columns (3) and (4)).

II1.D. Non-linearity in Pollution

One of the key ways in which the relationship between pollution on mortality may differ when
estimated in data from developed and developing countries is that the relationship may be non-
linear and the range of observed values may not be the same in the two settings.”® We thus test
for this. Using information on the mean and variance from Currie and Neidell (2005), we define

a spline at one standard deviation above their mean (39.45 pg/m’ for PM,o, and 1998 ppb for

** The fact that each individual coefficient is not individually significant is not surprising; pollutants tend to be
highly correlated and thus in this case, this method would yield very imprecise estimates of each individual
pollutant. We conducted an alternative method of testing for the joint effect of both pollutants. This method
chooses the linear combination of the two pollutants that maximizes their joint variance, and, therefore, yields a
single variable that captures the maximum amount of information from the two pollutants. We then use thermal
inversion as an instrument for the pollution index. This method has a large benefit in that it utilizes more
information from the data, but the drawback is that the index assumes a very specific functional form for the
relationship between the pollution variables. Using this method, we find that a one standard deviation of the
pollutant index leads to a 7.3 percent increase in the infant mortality rate. Given that pollution, measured by our
index, fell by roughly two standard deviations during the period of analysis in Mexico City, we calculate that 731.5
infant lives per year were saved by the regulatory efforts responsible for PM;, and CO reductions. Importantly,
while each coefficient is not individually significant, the total deaths predicted by the estimates from the multivariate
model is approximately the same (-198.5 — 532.9= -731.4) as the value predicted from the index despite the fact that
both models exploit different variation in pollution.

%% For example, Kurt et al. (1979) finds that crossing the 5,000 ppb threshold in 24-hr CO results in a sharp increase
of cardiorespiratory complaints.
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C0).”' Therefore, we are separately estimating the effect of pollution within and above the
approximate range of values that they observe within their data.

Creating the splines results in two endogenous variables per regression. Therefore, we
use indicator variables denoting 1, 2-3, and 4-7 thermal inversions per week as our instrument
set. Results of these estimations are presented in Table 7.

We are unable to identify non-linearities in PM,( (Panel A). However, this should be
viewed with caution: the Angrist-Pischke F-statistics of the first stages for each of the two PM;
spline variables fall below the Stock-Yogo critical value for a single endogenous regressor. With
that caveat in mind, our results suggest little difference in the marginal effect of PM,, above and
below the 54.20 pg/m’ threshold on infant mortality (Column 2).%?

We find suggestive evidence of non-linearities in the CO effect (Table 7, Panel B).
Importantly, the Angrist-Pischke F-statistics suggest we can separately identify variation in CO
above and beyond the 3167 ppb threshold by breaking thermal inversions into indicator variables
denoting 1, 2-3 and 4-7 inversions per week. We then find that the marginal effect of CO is
close to zero (lower than 0.0001) when CO concentrations are below 3,167 ppb, and 0.0082
when concentrations are above this threshold. However, we cannot reject that the coefficients are

the same at conventional levels (the p-value for the test of equality of the slopes is 0.263).

IV. DISCUSSION

One of the main goals of this paper is to better understand whether pollution estimates derived
from the United States context are externally valid; especially when applied to the developing
world. If we believe that there is a non-linearity in the relationship between pollution and infant
mortality, or that the costs of avoidance behaviors differs between the two settings then estimates
derived from U.S. settings may not be valid in conducting cost-benefit analysis of environmental

regulations in the developing world. As we discussed earlier, the direction of the bias may be

31 For PM,q, 35 percent of the observations fall below this threshold. For CO, 73 percent do so.

> We also tried instrumenting the pollution spline with a broader set of instruments that included the interactions
between the indicator variables and thermal inversion intensifiers such as altitude and thickness. Results were
comparable, and Angrist-Pischke F-Statistics for the first stage equations were comparable. In addition, we explored
modeling non-linearities with a quadratic function. This functional form assumption resulted in small and non-
significant coefficients.

3 Our results are robust to different definitions of the spline. For example, the marginal effect of CO above 1.5
standard deviations from the Currie and Neidell (2005) mean is 0.0105 and significant at the 10 percent level. The
marginal effect below this threshold is 0.0008 and non-significant. PM;, results using the 1.5 standard deviation
threshold are very similar in magnitude and significance to results using the 1 standard deviation threshold.
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ambiguous, and therefore, it is hard to benchmark whether we would be over or underestimating
the benefits.

Thus, we compare our estimates to those from Currie and Neidell (2005) (CN), Chay and
Greenstone (2003) (CG), and Knittel, Miller and Sanders (2011) (KMS) in Table 8. Panel A
reports our estimates, while Panel B provides the comparable results for the papers in the United
States setting. For ease of interpretation, we provide the mean level of infant mortality (Column
(1)), the mean value of each pollutant (Columns (2) and (5)), the point estimates (Columns (3)
and (6)), and the elasticity (Columns (4) and (7)). Note several features regarding the table.
First, we use the estimates from the single pollutant models because we study fewer pollutants
than CN and KMS, and more pollutants than CG. Even though the models are not fully
comparable, we replicate this table using the multiple pollutant models in Appendix Table 8 for
completeness. Second, note that CG study total suspended particulates (TSP) and not PMy. For
comparability to our estimates, we follow KMS and convert the TSP estimates using the
following formula: PM;o= 0.55 TSP. Third, CG and KMS study internal deaths rather than all
deaths, so we additionally report the estimates for internal deaths for our sample. Finally, we put
all estimates at the year level for ease of comparison.

We find that a 1 ppm increase of CO over a year leads to 166.4 infant deaths per 100,000
births (Panel A). This implies that a 1 percent increase in CO over the year leads to a 0.23
percent increase in the infant mortality rate. We find a much larger effect on the infant mortality
rate than either CN or KMS (Column 3). The estimated elasticity using the Mexico City data is
larger than CN, who find an elasticity of 0.084. Our estimates are larger, but not qualitatively
different than KMS (0.146); however, it is important to note that the KMS cannot statistically
distinguish their estimate from zero. Overall, while we are cautious about our non-linear
estimates, they do suggest that the difference in our estimates with CN may be driven by non-
linearities in CO. For values of pollution within the range of CN, we find point estimates that are
closer to their overall estimates; specifically, we find that a 1 ppm increase in CO per year leads
to 5.2 deaths per 100,000 births.

While we again point out that we are cautious about our non-linear estimation, they
suggest that the effect of particulates is linear. Thus, we expect that our estimates for PMj,
should be similar to those from the United States. Despite the fact that the overall level of
particulates is roughly half (66.94 in Mexico City versus 35.33 in the United States), both our
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point estimates for internal deaths and elasticity for PM, are fairly similar to CG (Columns (6)
and (7)). However, our estimates are much smaller than KMS, who find that a one unit increase
in PMy in the year leads to 17.68 deaths per 100,000 births, or that a 1 percent increase in PMjg

results in a 1.82 percent increase in the infant mortality rate.

V. CONCLUSION

There is a growing concern about the effects of pollution on health in the developing world.
Urban areas in many developing countries are becoming places where high population densities
and low quality health services meet increasing trends in harmful pollutant concentrations. This
paper sheds light on the importance of air quality improvements in the effort to curtail mortality
rates.

Using an instrumental variables strategy, we find statistically significant effects of
pollution on infant mortality in Mexico City. Our estimates imply that a 1 ppb increase in CO
over a week leads to a 0.0032 per 100,000 births increase in the infant mortality rate, while a 1
pg/m’ increase in PMo leads to a 0.24 per 100,000 births increase in their mortality rate. This
implies that a 1 percent increase in PM;y over a year leads to a 0.42 percent increase in infant
mortality, while a 1 percent increase in CO results in a 0.23 percent increase. Our results on
CO are generally larger than those estimated with data from the United States, while we find
comparable results for PM, despite the fact that pollution levels are more than double in Mexico
City. This is consistent with our suggestive evidence of a non-linear relationship between CO
and infant mortality, and a linear relationship between PM,( and mortality.

Our findings suggest that the external validity of the relationship between pollution and
mortality from United States data differs depending on the underlying features of the pollutants.
While we find suggestive evidence that the external validity from U.S. estimates differs across
PM;o and CO, many questions still remain. Future research should address impacts across other
pollutants, and provide greater insight as to whether differences in avoidance cost drives

differences in the mortality impact of pollution across the developed and developing contexts.
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Figure 1: Thermal Inversions, Temperatures and Infant Mortality, by Month of the Year
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Notes: Panel A of this figure compares the average number of inversions per week (bars) with the monthly average temperature in
Celsius (spikes) for each month of the year. Panel B compares the average number of inversions per week (bars) against the infant
mortality rate in Mexico City (line) for each month of the year.



Figure 2: Mortality and Pollution Trends in MCMA
Panel A: Pollution and Neonatal Mortality
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Notes: This figure plots the average annual pollution concentrations over time for the maximum daily 24-hour average of
PM,,, the maximum daily 8-hour average of CO, the average concentration of SO, and the average concentration of O;
(solid lines) . It also plots average weekly neonatal (Panel A) and infant mortality rates (Panel B) for Mexico City (dashed
lines).



Figure 3: The Relationship Between the Number of Thermal Inversion Per Week and Pollution
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average concentration of SO, and the average concentration of O;) by the number of thermal inversions per week (thick bars) and frequency of thermal
inversions per week (thin bars). The horizontal line corresponds to the average concentration of the corresponding pollutant in the period of study.



Table 1: Sample Statistics

Mean of deaths in a Mean of deaths in a
week/municipality per year/municipality per
100,000 births Standard Deviation Observations 100,000 births
€)) @) 3) )
Panel A: Neonatal Mortality Rates (28 Days and Younger)
All Causes 295.83 520.49 24691 1183.34
Non-external Causes 287.73 513.74 24691 1150.93
External Causes 3.27 49.09 24691 13.07
Respiratory Causes 7.85 96.17 24691 31.39
Non-Respiratory Causes 283.15 507.73 24691 1132.61

Panel B: Infant Mortality Rates (One Year and Younger)

All Causes 38.21 56.93 24691 1986.82
Non-external Causes 36.52 55.14 24691 1898.85
External Causes 1.18 9.61 24691 61.37

Respiratory Causes 6.91 29.35 24691 359.14
Non-Respiratory Causes 30.79 46.65 24691 1601.08

Panel C:  Pollution and Thermal Inversions

Particulate Matter 24hour PM,, 66.94 23.85 18017
Carbon Monoxide 8hour avg (CO) 2707.56 797.70 18167
Sulfur Dioxide avg (SO,) 13.30 5.21 18173
Ozone avg (O;) 32.33 7.47 18167
Number of Inversions in a week 1.68 1.88 18538
Number of Inversions in a week,

conditional on an inversion 2.77 1.68 11257

Notes: This table provides descriptive statistics for the key variables in the regression analysis. Panel A provides information on neonatal mortality, while Panel
B provides information on infant mortality. Panel C reports information on each pollutant and the thermal inversions. External cause is defined as deaths
from accidents and homicides; internal cause encompases all causes not including accidents or homicides. Respiratory Causes (RC) includes respiratory and
cardiovascular disease, while non-respiratory includes digestive, congenital, accidents, homicides, etc. Mortality data comes from death certificates and was
provided by Secretaria de Salud Publica. Pollution data comes from the Sistema de Monitoreo Atmosferico de la Ciudad de Mexico (www.sma.df.gob.mx).
Inversion data was provided by the Meteorological Unit at the Secretaria de Medio Ambiente.



Table 2: Correlation Between Pollution and Mortality Variables

Bivariate Regressions Weather Controls
Neonatal Infant Neonatal Infant
@) 2 3 4
Particulate Matter avg (PM,) 0.637%** 0.136%** 0.9071*** 0.131%**
(0.130) (0.019) (0.167) (0.020)
Carbon Monoxide 8hr avg. (CO) 0.022%** 0.005%** 0.023%** 0.003%**
(0.003) (0.000) (0.004) (0.000)
Sulfur Dioxide avg (SO,) 0.823 0.454%** 1.141%* 0.064
(0.553) (0.072) (0.558) (0.069)
Ozone avg (O;) 1.540%** -0.085* 1.651%** 0.171%*%*
(0.350) (0.051) (0.408) (0.053)

Notes: Each cell in this table provides estimates from a separate linear regression of each pollutant on the mortality outcome listed
in the column. All regressions are estimated using OLS, with standard errors clustered at the week level. The weather controls that
are included in the specifications in Columns (3) and (4) are a fourth degree polynomial in average temperature during the week, a
third degree polynomial in maximum and minimum temperatures during the week, a second degree polynomial in precipitation,
cloud and humidity measures. The observations for each pollutant are as follows: PM,,: 18,040; SO,: 18,173; CO: 18,167; Os:
18,167. Statistical significance is denoted by: *** p<0.01, ** p<0.05, * p<0.10.



Table 3: The Effect of Thermal Inversions on Pollution (First Stage)

PM]O CO 8hr SOZ 03
@ 2 3 “
Inversions 2.007%** 153.053*** -0.210 0.181
(0.383) (14.186) (0.127) (0.155)
Mean of Outcome Variable 57.67 2707.56 13.30 32.33
Year Fixed Effects X X X X
Municipality Fixed Effects X X X X
Weather Controls X X X X
Municipality-Week Trends X X X X
N 18,040 18,167 18,173 18,167

Notes: This table provides the coefficient estimates of the effect of thermal inversions on pollution concentrations, controlling
for municipality fixed effects, year fixed effects, municipality specific week trends, a fourth degree polynomial in average
temperature during the week, a third degree polynomial in maximum and minimum temperatures during the week, a second
degree polynomial in precipitation, and cloud and humidity measures. Standard errors (listed below each estimate in
parenthesis) are clustered at the week level. Statistical significance is denoted by: *** p<0.01, ** p<0.05, * p<0.10.



Table 4: The Effect of Pollution on Infant Mortality

Fixed Effects Instrumental Variables
Neonatal Infant Neonatal Infant
€] 2) A3) “4)
Particulate Matter 24hr avg (PM,) 0.1670 0.0237 0.4486 0.2369%*
in pg/m’ (0.2706) (0.0272) (0.9607) (0.1216)
Carbon Monoxide 8hr avg. (CO) 0.0085 -0.0006 0.0068 0.0032%*
in parts per billion (ppb) (0.0097) (0.0011) (0.0133) (0.0014)
Sulfur Dioxide avg (SO,) 1.4325 0.1034
in parts per billion (ppb) (1.2619) (0.1273)
Ozone avg (O5) 1.0400 0.1379
in parts per billion (ppb) (1.1511) (0.1147)
Mean of Outcome Variables 295.83 38.21 295.83 38.21
Instrument: Inversions X X
Week Fixed Effects X X
Year Fixed Effects X X
Municipality Fixed Effects X X X X
Weather Controls X X X X
Municipality-Week Trends X X X X

Notes: This table presents Fixed Effects and Instrumental Variable estimates of the effect of pollution on infant mortality. Each
coefficient corresponds to a separate regression. The fixed effects estimation, reported in Columns (1) and (2), includes week fixed
effects, municipality fixed effects, municipality-specific week trends and weather controls. In the Instrumental Variables estimation,
presented in Columns (3) and (4), the number of thermal inversions per week is the excluded instrument; this model includes year
fixed effects, municipality fixed effects, municipality-specific week trends and weather controls. Weather controls are a fourth
degree polynomial in average temperature during the week, a third degree polynomial in maximum and minimum temperatures
during the week, a second degree polynomial in precipitation, and cloud and humidity measures. Standard errors (listed below each
estimate in parenthesis) are clustered at the week level. Statistical significance is denoted by: *** p<0.01, ** p<0.05, * p<0.10.
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Table 7: Non-Linearities

Neonatal Infant
@) 2
Panel A: Linear Spline in PM,
PM,, max 24hr between 0 and 54.203 and ug/m’ -0.2047 0.2171
(2.7675) (0.3297)
PM,, max 24hr between 54.203 and 300 ug/m’ 1.5173 0.3219**
(1.1804) (0.1449)
Angrist-Pischke F-statistic, First Stage 1 7.247 7.346
Angrist-Pischke F-statistic, First Stage 2 9.906 0.001
Stock-Yogo weak ID critical value for single endogenous regressor 8.68 8.68
Equal Slopes F (Chi-squared) Statistic 0.365 0.0883
p-value 0.546 0.766
Panel B: Linear Spline in CO
CO 8hr avg. between 0 and 3167 ppb -0.0159 0.0001
(0.0305) (0.0032)
CO 8hr avg. higher than 3167 ppb 0.0558 0.0082*
(0.0422) (0.0047)
Angrist-Pischke F-statistic, First Stage 1 12.17 14.34
Angrist-Pischke F-statistic, First Stage 2 14.09 11.58
Stock-Yogo weak ID critical value for single endogenous regressor 8.68 8.68
Equal Slopes F (Chi-squared) Statistic 1.152 1.255
p-value 0.283 0.263

Notes: In this table, we explore whether there is a non-linearity in the dose-response relationship between pollution and mortality.
Each column within each panel corresponds to a separate regression. We include a linear spline in both pollutants to capture the
effect of pollution at levels within the range of California's pollution levels in the period used for Currie and Neidell's (2005) study
and the effect at the higher pollution levels observed in many developing countries. Regressions are using 2SLS and include all
controls as listed in Table 4. The instrument set consists of three indicator variables denoting one thermal inversion, two to three
thermal inversions and four to seven thermal inversions during the week. For ease of interpretation, we include a test for equal
slopes to test whether the effect of pollution on mortality differs at low versus high levels. We also report the Angrist-Piscke F-
statistic to assess the strength of each of the two first stage equations in the model. To rule out more than 10% bias due to weak
instrumets, these statistics should be above the Stock-Yogo critical value for a single endogenous regressor reported below them.
Standard errors (listed below each estimate in parenthesis) are clustered at the week level. Statistical significance is denoted by:

w85 n<().01, ** p<0.05, * p<0.10.
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Appendix Figure 1: Comparing Mexico City and Guadalajara

T
50

Number of Inversions
2
1

Weekly Infant Mortaltiy

T T T T T T T T T T T T
Jan Feb Mar Apr May Jun Jul Aug Sep Oct  Nov  Dec
Month of the Year

_ Thermal Inversions per Week Mortality in Mexico City

— — — — Mortality in Guadalajara

Notes: This figure compares the average number of inversions per week (bars) against the infant mortality rate in
Mexico City (bold line) and the infant mortality rate in Guadalajara (dashed line) for each month of the year.
Guadalajara's infant mortality rate appears to be lower and nearly constant across the different months of the year,
while Mexico's City infant mortality appears to have strong seasonal patterns that coincide with thermal inversion
patterns. Thermal inversions are absent in Guadalajara.
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Appendix Table 4A: First Stage at Month Level
PM,, 24 hr avg CO 8 hr avg

&) 2
Number of Thermal Inversions per Month 0.337 31.905%**
(0.221) -5.665
Kleibergen and Paap rk statistic 2.138 27.19
Stock-Yogo Critical Value 10% maximal IV size 16.38 16.38

Notes: This table presents the estimates of the effect of the number of thermal inversions per month on average
PM,, concentration (Column 1) and CO concentration (Column 2) at the month level. These regressions control
for year fixed effects, municipality fixed effects, municipality level month trends, a fourth degree polynomial in
mean temperature, a third degree polynomial in minimum and maximum temperatures during the month, a second
degree polynomial in precipitation, humidity and cloud cover measures. Standard errors are clustered at the month
level. The bottom two rows provides the Kleibergen-Paap rk statistic for weak instruments and the Stock-Yogo

critical value at the 10% level. The first stage for PM,, does not pass the weak instruments test. However, the
Kleibergen-Paap rk test is above the critical value for the CO specification.

Appendix Table 4B: 1V Estimation at the Month Level

Neonatal Infant
(@) 2)

Particulate Matter 24hr avg (PM,,) 10.7805 2.6912

(8.0766) (1.7277)
Carbon Monoxide 8hr avg (CO) 0.1738* 0.0376%**

(0.0979) (0.01406)
Observations 5634 5634
Mean Mortality Rate 1187.32 164.00
Instrument: Inversions X X
Year FE X X
Municipality FE X X
Weather Controls X X
Municipality Month Trends X X

Notes: In this table, we explore whether there is harvesting by estimating our main results at the month level
instead of at the week level. Each coefficient and corresponding standard error is the result of a separate
regression. Here, the dependent variable is infant morality rates at the month level calculated as the number of
deaths in the month divided by the total number of births in the same month. Controls are the same as in the First
Stage specification and the excluded instrument is number of inversions in the corresponding month. Because we
collapse our data at the month level, the number of observations drops to 5634. We also provide the mean
mortality rate at the month level, which corresponds to the number of deaths in each age category (younger than
28 days or younger than 1 year) divided by the number of births corresponding to that cohort. Standard errors
(listed below each estimate in parenthesis) are clustered at the week level. Statistical significance is denoted by:
*HE p<0.01, ** p<0.05, * p<0.10.



Appendix Table 5: Specification Checks

Logs Not Dropping Outliers
Neonatal Infant Neonatal Infant
€9) 2 3 “
Particulate Matter (PM,,) 0.00026 0.00384* 0.4504 0.2408**
(0.00246) (0.00232) (0.9466) (0.1197)
Carbon Monoxide (CO) 0.00000 0.00005* 0.0060 0.0031**
(0.00003) (0.00003) (0.0121) (0.0013)
Mean of Outcome Variable 0.98 0.73 295.83 38.21
Instrument: Inversions X X X X
Week Fixed Effects
Year Fixed Effects X X X X
Municipality Fixed Effects X X X X
Weather Controls X X X X
Municipality Week Trends X X X X

Notes: In this table, we investigate the robustness of our results to alternative model specifications. We estimate the model in
logs rather than levels, and explore whether the results change if we do not drop outliers. Each coefficient is the result of a
separate regression. Standard errors (listed below each estimate in parenthesis) are clustered at the week level. Statistical
significance is denoted by: *** p<0.01, ** p<0.05, * p<0.10.
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Appendix Table 6B: Effect of Pollution, By Season

Neonatal Infant Neonatal Infant
Q) 2) 3) “
Panel A: Heterogeneity of PM, effect by winter/summer weeks
PM,, 24hr avg 0.5100 0.2667* 0.2272 0.2151*
(1.1621) (0.1473) (1.0657) (0.1293)
Summer Definition 1 * PM,, 0.0556 0.0287
(0.2732) (0.0370)
Summer Definition 2 * PM,, -0.2628 -0.0234
(0.2809) (0.0310)
Angrist-Pischke F-statistic, First Stage 1 13.63 13.1 14.61 14.16
Angrist-Pischke F-statistic, First Stage 2 66.72 65.02 95.7 94.87
Stock-Yogo Critical Values for Single Endog. Regressor 16.38 16.38 16.38 16.38

Panel B: Heterogeneity of CO effect by winter/summer weeks

CO 8hr avg 0.0062 0.0030%** 0.0057 0.0030%*
(0.0130) (0.0014) (0.0132) (0.0014)
Summer Definition 1 * CO -0.0018 -0.0005
(0.0040) (0.0005)
Summer Definition 2 * CO -0.0074 -0.0012**

(0.0049) (0.0005)

Angrist-Pischke F-statistic, First Stage 1 114.9 113.21 123.32 122.04
Angrist-Pischke F-statistic, First Stage 2 208.28 207.6 146.14 148.65
Stock-Yogo Critical Values for Single Endog. Regressor 16.38 16.38 16.38 16.38

Instrument: Inversions, Inversions * Summer Definition 1 X X

Instrument: Inversions, Inversions * Summer Definition 2 X X
Year FE X X X X
Municipality FE X X X X
Weather Controls X X X X
Municipality Specific Week Trends X X X X

Notes: In this table, we investigate whether the estimates differ by seasons. Although most thermal inversions occur in the winter months
scattered thermal inversions the rest of the year allow us to test for whether our results hold outside of the winter season. We define "summer
weeks" in two different ways: from the 14th to the 43rd week of the year (Summer Definition 1) and from the 13th to the 42nd week of the
year (Summer Definition 2). These weeks correspond roughly to the weeks of the year where temperature increases substantially compared to
the winter weeks. To test for whether our results differ between cold and warm months, we include the interaction between pollution with the
summer weeks indicator as a right hand side variable. Our set of instruments consists of the uninteracted number of thermal inversions per
week and the interaction between the summer weeks indicator and the number of thermal inversions. Each column within each panel
corresponds to a separate regression. We report the Angrist-Piscke F-statistic to assess the strength of each of the two first stage equations in
the model. To rule out more than 10% bias due to weak instruments, these statistics should be above the Stock-Yogo critical value for a single
endogenous regressor reported below them. Controls are the same as in Columns (3) and (4) of Table 4. Standard errors (listed below each
estimate in parenthesis) are clustered at the week level. Statistical significance is denoted by: *** p<0.01, ** p<0.05, * p<0.10.



Appendix Table 7: First Stage For Multivariate Model

PM,, 24hr avg CO 8hr avg
A 2)
Inversions 13.7335%** 116.1699***
(1.8382) (39.7789)
Inversions * Altitude -0.0056*** 0.00167
(0.0009) (0.0199)
Thickness * Altitude 0.000013 0.0004*
(0.000008) (0.0002)
Angrist-Pischke F-statistic 24.36 50.24
S.tock Yogo weak ID critical value for 268 268
single endogenous regressor
Cragg-Donald Wald F-statistic 33.15
Stock-Yogo weak ID test for 2
instruments and 2 endogenous 5.44
Iegressors

Notes: This table presents the results of first stage equations for Table 6, Panel A (see notes on Table
6). We report the Angrist-Piscke F-statistic to assess the strength of each of the two first stage
equations in the model. To rule out more than 10% bias due to weak instruments, these statistics
should be above the Stock-Yogo critical value for a single endogenous regressor reported below them.
In addition, we report the Cragg-Donald Wald F-statistic which offers a way to test for weak
instruments in all first stage equations simultaneously when compared to the Stock-Yogo critical value
for 2 endogenous regressors.
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