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Abstract

Sayers and Kachanov (1991) defined crack-influence parameters that are shown to be

directly related to Thomsen (1986) weak-anisotropy seismic parameters for fractured reser-

voirs when the crack/fracture density is small enough. These results are then applied

to the problem of seismic wave propagation in polar (i.e., non-isotropic) reservoirs hav-

ing HTI seismic wave symmetry due to the presence of aligned vertical fractures and re-

sulting in azimuthal seismic wave symmetry at the earth’s surface. The approach pre-

sented suggests one method of inverting for fracture density from wave-speed data. It is

also observed that the angular location θex of the extreme value (peak or trough) of the

quasi-SV-wave speed for VTI occurs at an angle determined approximately by the formula

tan2 θex ' tan θm = [(c33 − c44)/(c11 − c44)]
1/2, where θm is an angle determined directly (as

shown) from the cij elastic stiffnesses, whenever these are known from either quasi-static

or seismic wave measurements. Alternatively, θex is given in terms of the Thomsen seis-

mic anisotropy parameters by tan θex '
(

[v2
p(0) − v2

s(0)]/[(1 + 2ε)v2
p(0) − v2

s(0)]
)1/4

, where

ε = (c11 − c33)/2c33, v2
p(0) = c33/ρ, and v2

s(0) = c44/ρ, with ρ being the background inertial

mass density. The axis of symmetry is always treated here as the x3-axis for either VTI sym-

metry (due, for example, to horizontal cracks), or HTI symmetry (due to aligned vertical

cracks). Then the meaning of the stiffnesses is derived from the fracture analysis in the same

way for VTI and HTI media, but for HTI the wave speeds relative to the earth’s surface

are shifted by 90o in the plane perpendicular to the aligned vertical fractures. Skempton’s

(1954) coefficient is used as a general means of quantifying the effects of fluids inside the

fractures. Explicit formulas for Thomsen’s parameters are also obtained for either drained

or undrained fractures resulting in either VTI or HTI symmetry of the reservoir.

∗JGBerryman@LBL.GOV
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INTRODUCTION

Aligned vertical fractures provide one commonly recognized source of azimuthal (surface

angle dependent) seismic anisotropy in oil and gas reservoirs (Lynn et al., 1995). While lay-

ering in the earth also results in seismic anisotropy (Postma, 1955; Backus, 1962), horizontal

layering of isotropic rock produces vertical transversely isotropic (VTI) media, and could

not produce horizontal transversely isotropic (HTI) symmetry without some very significant

uplift phenomena being present simultaneously. Of course, anisotropic layers such as shale

beds (Hornby, 1994) bring seismic anisotropy with them too, but this anisotropy will more

typically be VTI, rather than HTI.

While VTI earth media seem much easier to understand and analyze than HTI media, it is

nevertheless true that techniques needed for analyzing HTI and VTI media are very similar.

When the source of the anisotropy is aligned vertical fractures, we can make very good use

of the simpler case of horizontal fracture analysis by introducing a rather minor change of

our point of view that easily gives all the needed results. In particular, the use of Euler

angle analysis (Goldstein, 1950) coupled with seismic wave reciprocity (Ben-Menahem and

Singh, 1981) provides us with enough physical tools to avoid needing to do the mathematical

rotations in our elastic equations.

Together with the simplifications already noted, we can understand very directly the

sources of the anisotropy due to fractures by considering a method of analysis introduced by

Sayers and Kachanov (1991), based on earlier work of Kachanov (1980). We find that elastic

constants — and, therefore, the Thomsen (1986) anisotropy parameters — can be expressed

very conveniently in terms of the Sayers and Kachanov (1991) formalism. Furthermore, in

the very low crack density limit [which is also conceptually in line with the weak anisotropy

approach of Thomsen (1986)], we can obtain direct links between the Thomsen parameters

and the fracture properties. These links suggest a method of inverting for fracture density

from seismic wave speed data. This approach is also known to be closely related to the

formulation of the linear slip model of Schoenberg (1980), which has often been used in

analyses of seismic waves in such fractured reservoirs (Hsu and Schoenberg, 1993; Bakulin

et al., 2000).

The next section reviews Thomsen’s weak anisotropy formulation (Thomsen, 1986). The

third section introduces the crack-influence parameters (Sayers and Kachanov, 1991). The
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fourth and fifth sections discuss VTI and HTI symmetry — especially in the context of

aligned horizontal and aligned vertical cracks — respectively. The sixth section shows one

method of extending Thomsen’s weak anisotropy formulation to larger angles, and, there-

fore, farther offsets. The seventh section discusses some details of the extreme values of the

phase speed for quasi-SV-waves, and related issues for the quasi-P-waves. The final section

discusses the results and summarizes our conclusions. Appendix A shows how to compute a

certain angle θm directly from the Thomsen weak anisotropy parameters. Then, Appendix

B summarizes some additional work on determining the value of θex, which is the angu-

lar location of the extreme point of the quasi-SV-wave speed in a VTI medium, based on

the same information used in Appendix A. Finally, Appendix C makes use of Skempton’s

(1954) coefficient as a general means to quantify the effects of fluids inside the fractures. Ex-

plicit formulas for Thomsen’s parameters are also obtained for either drained or undrained

fractures resulting in either VTI or HTI symmetry of the reservoir.

THOMSEN’S SEISMIC WEAK ANISOTROPY FORMULATION

Thomsen’s weak anisotropy formulation (Thomsen, 1986), having been designed specif-

ically for use in short-offset velocity analysis in exploration geophysics, should be used

only with great care for longer offsets. Approximations incorporated into the Thomsen for-

mulas become most apparent for greater angles θ from the vertical, especially for quasi-

compressional and vertically polarized quasi-shear velocities vp(θ) and vsv(θ), respectively.

The angle θ used as argument of these phase velocities is typically the one measured from

the ẑ-vector pointing directly into the earth. For better results at larger offsets, one approach

is to make use of the exact wave speeds, so we will need to discuss these well-known results

as well.

For reference purposes, we include here the exact velocity formulas for quasi-P, quasi-SV,

and SH seismic waves at all angles in a VTI elastic medium. These results are available

in many places (Rüger, 2002; Musgrave, 2003), but were taken specifically from Berryman

(1979) with some minor changes of notation (i.e., a, b, c, f, l, m → c11, c12, c33, c13, c44, c66).

The results for VTI media are well-known to be:

v2
p(θ) =

1

2ρ

{

c44 +
[

c11 sin2 θ + c33 cos2 θ
]

+ R(θ)
}

(1)
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and

v2
sv(θ) =

1

2ρ

{

c44 +
[

c11 sin2 θ + c33 cos2 θ
]

− R(θ)
}

, (2)

where

R(θ) =

√

[

(c11 − c44) sin2 θ − (c33 − c44) cos2 θ
]2

+ 4 (c13 + c44)
2 sin2 θ cos2 θ (3)

and, finally,

v2
sh(θ) =

1

ρ

[

c44 + (c66 − c44) sin2 θ
]

. (4)

While the SH-wave is polarized as a true shear wave at all angles θ, the quasi-P and quasi-SV

waves both have mixed character at most angles. However, they do simplify to true P- and

SV-waves at the θ’s for both the vertical and horizontal propagation directions.

Expressions for phase velocities in Thomsen’s weak anisotropy limit can also be found

many places, including Thomsen (1986, 2002), Rüger (2002), and Tsvankin (2005). The

pertinent expressions for phase velocities in VTI media as a function of angle θ, measured

(as before) from the vertical direction, are

vp(θ) ' vp(0)

(

1 + ε sin2 θ − ε − δ

4
sin2 2θ

)

, (5)

vsv(θ) ' vs(0)

(

1 + [v2
p(0)/v2

s(0)]
ε − δ

4
sin2 2θ

)

, (6)

and

vsh(θ) ' vs(0)
(

1 + γ sin2 θ
)

. (7)

In our present context (i.e., for cracked/fractured reservoirs), the vertical phase velocities

satisfy vs(0) =
√

c44/ρ0, and vp(0) =
√

c33/ρ0, where c33, c44, and ρ0 are two stiffnesses

of the cracked medium and the mass density of the isotropic host elastic medium. We

explicitly assume that the cracks have insufficient volume to affect the mass density ρ0 in a

significant way. The three seismic parameters resulting from Thomsen’s (1986) analysis for

weak anisotropy with VTI symmetry are γ = (c66 − c44)/2c44, ε = (c11 − c33)/2c33, and

δ =
(c13 + c44)

2 − (c33 − c44)
2

2c33(c33 − c44)
=

(

c13 + c33

2c33

) (

c13 + 2c44 − c33

c33 − c44

)

. (8)

All three of these parameters can play important roles in the phase velocities given by (5)-(7)

when the crack densities are high enough. If there are no other sources of anisotropy, and if

crack densities are very low, then the quasi-SV shear wave will actually have no dependence
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on angle of wave propagation. This result follows from the fact that the so-called anellipticity

parameter A = ε − δ, vanishes when ε ≡ δ, which we will soon see does happen in general

at lower crack densities.

For each approximate phase speed, Thomsen’s approximation has included a step that

removes the square on the left-hand side of equations (1), (2), and (4) and expands a square

root of the right hand side. This Taylor series expansion introduces a factor of 1
2

multiplying

the sin2 θ terms on the right hand side, and — for example — immediately explains how

equation (7) is obtained from (4). The other two equations for vp(θ) and vsv(θ), i.e., (5) &

(6), involve additional approximations as well and we will explain these in more detail as we

progress through the analysis.

Figure 1 compares results obtained from the exact formulas (1)–(4), when applied to the

case of aligned vertical fractures and HTI (horizontal transverse isotropy) symmetry. One

pertinent observation arises for the vsv wave speeds in which the Figures 1(c) and 1(f) show

very clearly that the peak (or in some other situations it might be a trough) for the exact

model is usually not at θex = 45o, whereas Thomsen’s approximation always places the peak

or trough exactly at 45o. Understanding and resolving this discrepancy is one of the main

purposes of the present paper. We develop a more flexible approximation that follows the

correct behavior more closely.

FRACTURED RESERVOIRS AND CRACK-INFLUENCE PARAMETERS

To illustrate the Sayers and Kachanov (1991) crack-influence parameter method, consider

the situation in which all the cracks in the system have the same vertical (or z-)axis of

symmetry. (We use x1,x2,x3 and x,y,z notation interchangeably for the axes.) We assume

the uncracked system is isotropic and, therefore, has the compliance matrix

S
(0)
ij =



























1/E0 −ν0/E0 −ν0/E0

−ν0/E0 1/E0 −ν0/E0

−ν0/E0 −ν0/E0 1/E0

1/G0

1/G0

1/G0



























, (9)
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where i, j = 1, 2, 3. In Eq. (9), E0 is the background (assumed) isotropic Young’s modulus,

G0 is the isotropic shear modulus, and ν0 is Poisson’s ratio. Then, since the cracked/fractured

system is not isotropic, we also have the first-order (meaning there is only one power of crack

density ρc present in our analysis) compliance correction matrix for horizontal fractures,

which is:

∆S
(1)
ij = ρc



























0 0 η1

0 0 η1

η1 η1 2(η1 + η2)

2η2

2η2

0



























. (10)

The common factor ρc in (10) is a scalar measure of the crack/fracture density. If the cracks

are all penny-shaped having penny-radius a, and (presumed small) aspect ratio α = b/a,

then the volume of each penny crack is vc = 4πa2b/3 = 4παa3/3. The total crack density

scalar is then often defined (Bristow, 1961) in these terms as ρc = a3Nc, where Nc is total

number of such cracks in a unit volume of the reservoir material. If the cracks are all penny-

shaped but perhaps have different crack radii ai, then ρc =
∑

i=1,N a3
i /V ≡ Nc 〈a3〉, where

V is the total volume containing these Nc cracks. For other crack shapes, the concept of ρc

has also been generalized (Budiansky and O’Connell, 1976).

Now it is not difficult to see that, if the cracks were oriented instead so that all their

normals were pointed horizontally along the x-axis, then we would have one permutation of

the matrix ∆S
(1)
ij and, if instead they were all pointed horizontally along the y-axis, then

we would have another permutation of the matrix. If we wanted to obtain an isotropic com-

pliance correction matrix, we could simply average these three permutations, i.e., just add

these three ∆S’s together and then divide by three. [Note that this method of averaging,

although correct for contributions linear in ρc, does not necessarily work for higher order

corrections (Berryman, 2007).] This construction shows in part both the power and the sim-

plicity of the Kachanov (1980) and Sayers and Kachanov (1991) approach — at least for

these lower crack densities that now under consideration. The connection to the isotropic

problem just noted is of great practical value, because it permits us to estimate the param-

eters η1 and η2 by studying isotropic cracked/fractured systems, and therefore permitting

the use of well-understood effective medium theories, including the noninteraction (NI) ap-
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proximation (Zimmerman, 1991; Bažant and Planas, 1998; Berryman and Grechka, 2006).

Formulas for η1 and η2 in the NI approximation are given in Table 1, together with examples

of the values of η1, . . . , η5 [from Berryman and Grechka (2006)] used later in our numerical

studies. Parameters η3, η4, and η5, are higher order (i.e., for higher powers of ρc than linear)

corrections that will be included in the computations, but not discussed in any detail in the

present paper. For details, see Berryman and Grechka (2006) and Berryman (2007).

ALIGNED HORIZONTAL FRACTURES AND VTI SYMMETRY

Considering for now the simplest case of aligned horizontal fractures, as illustrated by

the correction matrix (10), the axis of fracture symmetry is uniformly vertical, and so such

a reservoir would exhibit VTI symmetry (assuming the background medium is isotropic).

The resulting expressions for the Thomsen parameters in terms of the Sayers and Kachanov

(1991) parameters η1 and η2 are found from a straightforward calculation to be

γh =
c66 − c44

2c44
= ρcη2G0, (11)

and

εh =
c11 − c33

2c33

= ρc[(1 + ν0)η1 + η2]
E0

(1 − ν2
0)

' 2ρcη2G0

1 − ν0

. (12)

The background shear modulus is G0, and the corresponding Poisson ratio is ν0. Young’s

modulus is related to these two by E0 = 2(1 + ν0)G0. We also find the important result

that, for dry or drained cracks, δh = εh to the lowest order in the crack density parameter.

We have chosen to neglect the term in η1 in the final expression of (12), as this is always

less than 5% of the magnitude of η2 and more typically on the order of a 1% correction to

the term retained. (See Table 1.) Values of η1 and η2 can be determined from simulations

and/or effective medium theories (Eshelby, 1957; Hill, 1963; Zimmerman, 1991; Berryman,

1995; Berryman and Grechka, 2006; Berryman, 2007). They depend on the elastic constants

of the background medium, and on the shape of the cracks (assumed to be approximately

penny-shaped in the present examples). Berryman (2007) also shows how to include higher

order contributions in crack density to γh, εh, and δh, but we will not repeat these details

here.
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HTI RESERVOIR SYMMETRY, ALIGNED VERTICAL FRACTURES, AND

WAVE SPEEDS IN THOMSEN’S APPROXIMATION

One trick to carry our analytical results from the aligned horizontal fractures and VTI

symmetry over to the aligned vertical fractures and HTI symmetry is this: First, we avoid

making the effort to relabel the indices of the cij ’s. Instead we just change the meaning of

the indices. [This amounts to using knowledge of Euler angles (Goldstein, 1950), and seismic

wave reciprocity (Ben-Menahem and Singh, 1981) for these problems.] As long as we stay

mentally oriented in the reference frame of the fractures themselves, we can continue to

view the x3-direction as the symmetry axis and the x1x2-plane as the plane of the fractures.

The only change we need to make arises from the fact that the surface, where we shoot

our seismic survey, is now at 90o from the fracture plane, whereas for horizontal fractures

the surface was parallel to and, therefore, at 0o from the fracture plane. This observation

implies that, wherever the angle θ (measured in radians) appeared in our previous formulas,

now we must replace it by π
2
− θ radians. So, sin2 θ → cos2 θ and vice versa in the various

formulas. This algorithm is exactly right only for those planes that are both vertical and

also perpendicular to the fracture plane, i.e., at azimuthal angles φ = ±π
2

measured from

the fracture plane. Thus, to be correct for all angles, we actually need to replace sin2 θ by

cos2 θ sin2 φ. And then, whenever φ = 0 or π, there is no angular dependence at all since this

corresponds to the plane of the fracture — which is also the plane of isotropy.

For the remainder of this discussion, we limit ourselves to analysis of the behavior in the

planes perpendicular to the vertical fractures, i.e, to the azimuthal angles φ = ±π
2
. So it

must be remembered that the following formulas apply only in these planes perpendicular

to the plane of the aligned fractures/cracks. For other angles of propagation, we must also

account for the azimuthal dependence on angle φ 6= ±π
2
, but this is relatively easy to do.

For the θ dependence itself, taking sin2 θ → 1−sin2 θ, is actually a handier way to proceed

[see Rüger (2002) for an alternative approach], because we can then reduce all the formulas

to a form equivalent to the one Thomsen originally used. It is also helpful to backup one step

in Thomsen’s derivation and restore squares, thereby unexpanding the square root. Certain

approximations are then undone, and the final formulas we obtain will be more accurate.

If ε, δ, and γ are the standard Thomsen parameters for the VTI symmetry (horizontal

fracture), then the HTI results (v̄ is the HTI result for the speed with θH measured from
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the normal to the fracture plane) for SH waves corresponding to vertical fractures are:

v̄2
sh (θH) = v2

s(0)
[

1 + 2γ cos2 θH

]

= v2
s(0)(1 + 2γ)

[

1 − 2γ

1 + 2γ
sin2 θH

]

, (13)

where θH = π
2
− θV and θV = θ is the angle measured from the normal to the fracture plane.

From this result, we deduce that γ → γH = −γ/(1+2γ), and v2
s(0) → v2

s(0)(1+2γ) = v2
sh(

π
2
),

as might be expected. This is a rigorous statement for the form of the equation considered.

Then, for weak anisotropy, the limit will be γ → −γ; but this final approximation is neither

necessary nor recommended for some of the higher crack densities considered here.

Calculations for v2
sv give the following HTI results:

v̄2
sv (θH) = v2

s (0)

[

1 + 2[v2
p(0)(1 + 2ε)/v2

s(0)]
ε − δ

1 + 2ε
sin2 θH cos2 θH

]

. (14)

The calculation for v̄2
p(θH) is the most difficult one, so we will show some of the steps

here. Starting with v2
p(θ) = v2

p(0)[1 + 2δ sin2 θ cos2 θ + 2ε sin4 θ], we make the substitution:

θ = π
2
− θH . Then,

v̄2
p (θH) = v2

p(0)
[

1 + 2δ sin2 θH cos2 θH + 2ε cos4 θH

]

= v2
p(0)

[

1 + 2ε + 2[(δ − 2ε) + ε] sin2 θH cos2 θH − 2ε sin2 θH

]

= v2
p(0) (1 + 2ε)

[

1 + 2(δ−2ε)
1+2ε

sin2 θH cos2 θH − 2ε
1+2ε

sin4 θH

]

,

(15)

which lead [when comparing to (5) and (6)] to the results ε → εH = −ε
1+2ε

' −ε, and

δ → δH ≡ δ−2ε
1+2ε

' δ − 2ε. As a consistency check, taking the difference of the results just

quoted for εH and δH shows that εH − δH = (ε − δ)/(1 + 2ε) holds for both (15) and (14),

and in addition shows that εH − δH ' (ε − δ) for weak anisotropy.

Similarly, the pertinent wave speeds are: vp(0) → v̄p(0) = vp(0)
√

1 + 2ε =
√

c33(1 + 2ε)/ρ =
√

c11/ρ, while vsh(0) → v̄sh(0) = vs(0)
√

1 + 2γ =
√

c44(1 + 2γ)/ρ =
√

c66/ρ in (13)–(15). But the remaining velocity v̄sv(0) does not change since vsv(θ) is com-

pletely symmetric in θ for Thomsen’s approximation, and therefore has to remain so (also

having the same end points) after the switch from θ to π
2
− θ. Of course, vsv(0) = vsv(

π
2
)

as well, so v̄sv(0) = vsv(0) is also rigorously true. These results were (almost) all known

previously and can also be found in Rüger (2002), p. 75, but the present derivation may

seem more intuitive (i.e., a little less technical) for some readers. Note, however, that the

present defintion of δH ≡ δ−2ε
1+2ε

differs from a related (but not conceptually identical) choice

of definition made by Rüger (2002).
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The final results for HTI symmetry in Thomsen’s approximation are now easily obtained

from the preceding results:

v̄sh (θH) ' vs(0)
√

1 + 2γ

[

1 − γ

1 + 2γ
sin2 θH

]

, (16)

v̄sv (θH) ' vs(0)

[

1 + [v2
p(0)(1 + 2ε)/v2

s(0)]
ε − δ

1 + 2ε
sin2 θH cos2 θH

]

, (17)

and

v̄p (θH) ' vp(0)
√

1 + 2ε

[

1 − ε

1 + 2ε
sin2 θH +

δ − ε

1 + 2ε
sin2 θH cos2 θH

]

, (18)

where (18) follows directly from the second expression in (15) [which was purposely left in

a nonreduced state to make this transition easier]. To be completely internally consistent

with the approximate formulas, the 2ε and 2γ contributions to the denominators should be

removed, but this step should make little difference in practice.

Examples of these results for small (ρc = 0.05) and higher (ρc = 0.1, 0.2) crack densities

are presented in Figure 1. See Berryman and Grechka (2006) for details of the methods used

to obtain all the Sayers and Kachanov crack-influence parameters from computer simulation

results and Berryman (2007) for a full discussion of the reservoir application.

Some features of the individual figures in Figure 1 are worthy of further discussion. In

particular, it is very interesting to see that for the HTI system all of the SH curves in Fig.

1(b) start at the same value for θH = 0, and similarly for Fig. 1(e). The analytical reason for

this behavior follows easily from equations (9) and (10). Since there is no correction to S66

from (10), and furthermore, no coupling to any of the other coefficients, we have immediately

that c66 = 1/S66 = G0. So this result is universal for systems of aligned vertical cracks, and

is therefore both expected and observed in the two SH-wave figures.

Although something similar seems to be happening for the P-wave speeds in Fig. 1(a), the

same is not true for Fig. 1(d). The reason that Fig. 1(d) does not follow this pattern is seen

from equations (9) and (10) again. Whereas the shear modes in the lower right corner of the

matrix in Eq. (9) are completely uncoupled from the rest of the matrix, and the same is true

of corrections in Eq. (10), this is not true for the 3×3 submatrices in the upper left corners.

In general, these terms are coupled (and especially so for the cij ’s, since these coefficients

are found by inversion of the matrices S + ∆S shown — so an inverse of the pertinent 3× 3

determinant contains all these coupling terms). There is, however, one (and only one) case

where this situation simplifies, and that is when Poisson’s ratio of the host medium ν0 = 0.0.
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Then, the upper left 3×3 of Eq. (9) is diagonal. Furthermore, since |η1| << η2, the upper left

3× 3 of Eq. (10) is very nearly diagonal as well. Thus, it is expected that c11 is constant (or

nearly so) for all values of ρc, and therefore all the vp curves converge at θH = 0 in this case

— as is observed here in Fig. 1(a). However, this does not happen, and should not happen,

for Fig. 1(d) since ν0 6= 0.0 in this example, and so the cross-coupling becomes significant.

An alternative physical argument (thanks to S. Nakagawa, private communication) for

the effects observed in (a), (b), and (e) comes from the fact that velocities do not change

because wave particle motion does not alter the crack shape (i.e., no stress is applied to the

crack). The difference between (a) and (d) comes because non-zero Poisson’s ratios result

in an opening/closing motion of the cracks (while, for ν0 = 0, cracks never change shape).

However, for the cases (c) and (f), results always depend on crack density because shear

stress is always present on the cracks.

EXTENDING THOMSEN’S FORMULATION TO LARGER OFFSETS FOR VTI

AND HTI SYMMETRY

The most obvious problem with Thomsen’s approximations to the wave speeds generally

occurs in vsv(θ). As noted previously, the key issue here is that Thomsen’s approximation

for vsv(θ) is completely symmetric around θ = π/4 = 45o, while — unfortunately — this is

usually not true of the actual wave speeds vsv(θ). This inherent error may seem innocuous

in itself since it is not immediately clear whether it affects the results for small angles of

incidence (< 15o) or not, but this inaccuracy clearly does lead to large over- or under-

estimates of wave speeds in the neighborhood of both the extreme value (i.e., a peak or

a trough) located at θ = θex and also in the neighborhood of θ = 45o 6= θex. So these

discrepancies can certainly become issues at offsets larger than the original design criterion

of 15o.

To improve this situation while still making use of a simple and practical approximation

to the phase speed, we reconsider an approach originally proposed in Berryman (1979).

In particular, notice that the square root formula for R(θ) in Eq. (3) can be exactly and

conveniently rewritten as:

R(θ) = [c11 sin2 θ + c33 cos2 θ − c44]
√

1 − ζ(θ), (19)

12



where

ζ(θ) ≡ [(c11 − c44)(c33 − c44) − (c13 + c44)
2] sin2 2θ

[c11 sin2 θ + c33 cos2 θ − c44]2
. (20)

To simplify this expression, first notice that ζ(θ) has an absolute maximum (or minimum)

value, which occurs when θ takes the value θm determined by

tan2 θm =
c33 − c44

c11 − c44
≡ 1 − xm, (21)

where

xm =
c11 − c33

c11 − c44

> 0. (22)

The inequality in (22) is true for VTI media having horizontal fractures, since for this case

the stiffness difference c11 − c33 has already been shown in (12) to be positive (as it is also

known that ρc, η2, and G0 are all positive, and Poisson’s ratio satisfies ν0 ≤ 1
2
).

Then, the extreme value ζm ≡ ζ(θm) is given by

ζm = 1 − (c13 + c44)
2

(c11 − c44)(c33 − c44)
=

2(ε − δ)c33

c11 − c44
=

2(ε − δ)v2
p(0)

v2
p(0)(1 + 2ε) − v2

s(0)
, (23)

where the second and third expressions relate ζm to the difference between the Thomsen

parameters ε and δ, and also to vp(0) and vs(0). In general, (ε − δ) — and therefore ζm —

take values positive, negative, or zero. Furthermore, ζ(θ) can be rewritten as

ζ(θ) =
2ζm

1 + χ(θ)
, (24)

where

χ(θ) =
1

2

[

tan2 θ

tan2 θm
+

tan2 θm

tan2 θ

]

. (25)

It is always true that ζ(θ) ≤ 1. [Note that ζm ≥ 0 for all layered media since ε − δ ≥ 0

for layered elastic media (Postma, 1955; Backus, 1962; Berryman, 1979). However, such a

simple constraint is not known for other types of anisotropic systems.] The square root in

equation (19), can be expanded to first order as

√

1 − ζ(θ) ' 1 − ζ(θ)

2
= 1 − ζm

1 + χ(θ)
. (26)

Approximate results for vp(θ) and vsv(θ) are therefore:

v2
p(θ) '

1

ρ

{

[

c11 sin2 θ + c33 cos2 θ
]

− ζm[(c11 − c44) sin2 θ + (c33 − c44) cos2 θ]

2[1 + χ(θ)]

}

(27)
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and

v2
sv(θ) '

1

ρ

{

c44 +
ζm[(c11 − c44) sin2 θ + (c33 − c44) cos2 θ]

2[1 + χ(θ)]

}

. (28)

The only approximation made in arriving at equations (27) and (28) was the approximation

of the square root shown in (26).

Although this simple approach is the one most commonly used, the analysis is not really

limited to using only the first order Taylor approximation in (26). Other researchers (Fowler,

2003; Pederson et al., 2007) have explored rational approximations to such square roots, but

we choose to take a rather different approach.

Progress is made by noting that the quantity 1
2
[1 + χ(θ)] may be rewritten as:

1

2
[1 + χ(θ)] =

1

4

(

tan θ

tan θm
+

tan θm

tan θ

)2

=
(tan2 θ + tan2 θm)2

4 tan2 θ tan2 θm
. (29)

To simplify this expression, first multiply numerator and denominator of (29) by

cos4 θ cos4 θm. The denominator of the result is then proportional to sin2 2θ sin2 2θm, while

the numerator is now proportional to the square of the quantity

cos2 θ cos2 θm(tan2 θ + tan2 θm) = sin2 θ cos2 θm + sin2 θm cos2 θ =
1

2
(1 − cos 2θ cos 2θm) .

(30)

Combining equations (29) and (30) gives

ζ(θ) =
ζm sin2 2θm sin2 2θ

[1 − cos 2θm cos 2θ]2
, (31)

which (although this may not be immediately obvious) is just a more compact version of

(20). Equation (31) is exact; no approximations were made in the transition from (20) to

(31).

Note, from (30), we also have (by dividing through by 2 cos2 θm) that

sin2 θ + tan2 θm cos2 θ =
[1 − cos 2θm cos 2θ]

2 cos2 θm
. (32)

The exact expression (2) for quasi-SV-wave speed can now be rewritten as

2ρv2
sv = 2c44 + (c11 − c44)

(

sin2 θ + tan2 θm cos2 θ
)

[1 −
√

1 − ζ(θ)]. (33)

Similarly, the exact equation for quasi-P-wave speed becomes

2ρv2
p = 2c44 + (c11 − c44)

(

sin2 θ + tan2 θm cos2 θ
)

[1 +
√

1 − ζ(θ)]. (34)
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Both of these expressions are exact rearrangements of the original equations.

These results can be consolidated further by using either the identities sin2 θ1 cos2 θ2 +

sin2 θ2 cos2 θ1 = sin2(θ1 + θ2) + sin2(θ2 − θ1), or the result (32), together with the definition

c11 + c33 − 2c44 =
c11 − c44

cos2 θm
≡ 2∆c. (35)

So finally, we have two compact results for the exact wave speeds:

ρv2
sv = c44 +

∆c

2
[1 − cos 2θm cos 2θ]

[

1 −
√

1 − ζ(θ)
]

(36)

for the quasi-SV-wave speed, and also the corresponding equation which is

ρv2
p = c44 +

∆c

2
[1 − cos 2θm cos 2θ]

[

1 +
√

1 − ζ(θ)
]

(37)

for the exact quasi-P-wave speed.

Quasi-SV-wave extreme point θex

One test of the usefulness of these equations is to check how close the value θm is to

the value of the angle θex at which the extreme value (either peak or trough) of the quasi-

SV wave speed occurs. We will present two distinct calculations of this extreme point: one

follows immediately, while another more technical method is summarized in Appendix B.

Start from (36), and take the first term in the Taylor series expansion of
√

1 − ζ(θ).

Then, the quantity that needs to be maximized or minimized is proportional to:

g(θ) =
sin2 2θ

1 − cos 2θm cos 2θ
. (38)

The extremum occurs (by definition) at θ = θex when the first derivative vanishes, so this

implies

dg(θ)

dθ
=

2 sin 2θ

[1 − cos 2θm cos 2θ]2
{

2(cos 2θ − cos 2θm) + sin2 2θ cos 2θm

}

= 0. (39)

The solutions of (39) for sin 2θ = 0 are the ones pertinent for the end points, not for the

extreme point in the middle range of θ that we are after. Note also that θex = 45o is not a

solution of the equation, not even when θm = 45o. The curly bracketed expression gives a

quadratic formula for cos 2θ, and the physical solution of this formula (an unphysical second

“solution” implies a cosine value greater than unity) is

cos 2θ =
1 − sin 2θm

cos 2θm
. (40)
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Using well-known trigonometric identities, this formula can be transformed into

1 − 2 sin2 θ =
1 − 2 sin θm cos θm

1 − 2 sin2 θm

. (41)

This intermediate result can then be shown to be equivalent to both

sin2 θex =
tan θm

1 + tan θm
and cos2 θex =

1

1 + tan θm
. (42)

Taking the ratio of these two forms gives the useful final (though approximate) result:

tan2 θex = tan θm. (43)

This formula is not exact because we made use of approximation (26) to simplify the equa-

tions. (Both a precise definition and more precise formula for θex are presented in Appendix

B.)

We can better understand the meaning of (43) in the following way: It is important to

know whether the (true) peak of the quasi-SV-wave is actually at θ = 45o, or θ = θm, or

somewhere else. Since tan 45o = 1, and tan 0o = 0, we see that 0 < tan θm < 1 for VTI

anisotropic media. Furthermore, from (21) we have tan θm ≡ (tan 45o − xm)1/2 ' 1 − xm

2
,

where xm was defined in (22) and may legitimately be assumed to be a relatively small

quantity in the present context. Then,

tan θex = (1 − xm)1/4 ' 1 − xm

4
= 1 − c11 − c33

4(c11 − c44)
. (44)

From this point of view, we see that the extreme point location θex is intermediate between

θm and 45o. In terms of this tangent measure of the angle θex at the extreme point, it is

exactly the geometric mean of the two quantities: tan 45o = 1 and tan θm ' 1 − xm/2.

The estimate of θex determined by (43) is called θ
(1)
ex in the examples of Table 1. A

second, and somewhat more accurate, estimate of θ
(2)
ex is obtained in Appendix B, and also

illustrated in Table 1. Examples of the results for θm, θ
(1)
ex , and θ

(2)
ex , based on the same

fracture models discussed previously, are displayed and compared to the actual (both exact

and approximate) vsv curves in Figure 2. Further discussion will be delayed until the end of

this section, so we can present and then discuss some further developments.

Extended Thomsen formulas for VTI symmetry

A direct comparison with Thomsen’s approximations uses equations (36) and (37) to

arrive at approximate formulas for vsv(θ) and vp(θ) analogous to Thomsen’s. The resulting
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expressions are

v2
p(θ)/v

2
p(0) ' 1 + 2ε sin2 θ − ε − δ

2

2 sin2 θm sin2 2θ

[1 − cos 2θm cos 2θ]
, (45)

from which we find:

vp(θ)/vp(0) ≈ 1 + ε sin2 θ − ε − δ

4

2 sin2 θm sin2 2θ

[1 − cos 2θm cos 2θ]
. (46)

Similarly,

v2
sv(θ)/v

2
s(0) ' 1 +

[

v2
p(0)/v2

s(0)
] ε − δ

2

2 sin2 θm sin2 2θ

[1 − cos 2θm cos 2θ]
, (47)

from which follows:

vsv(θ)/vs(0) ≈ 1 +
[

v2
p(0)/v2

s(0)
] ε − δ

4

2 sin2 θm sin2 2θ

[1 − cos 2θm cos 2θ]
. (48)

Equations (45) and (47) are approximate results obtained by expanding one square root in a

Taylor series, while (46) and (48) are further approximations obtained by expanding another

square root in a Taylor series. Note that these expressions reduce precisely to (5)–(7) if

θm ≡ 45o.

Now the factor sin2 2θ/[1 − cos 2θm cos 2θ] contains the terms sin2 2θ = 4 sin2 θ cos2 θ —

obviously completely symmetric under the interchange of sin2 θ and cos2 θ — and this is

important for translation to the HTI case where θH = π
2
− θ. So this term simply does not

change in the VTI to HTI transition. Then note that the factor cos 2θ = cos2 θ − sin2 θ

is antisymmetric under the interchange of sin2 θ and cos2 θ, so cos 2θ → − cos 2θH when

switching from the VTI to the HTI points of view.

Next, comparing pairs of equations (46) and (48) to (5) and (6), the differences are found

to lie in a factor of the form:

2 sin2 θm

[1 − cos 2θm cos 2θ]
→ 1

2 cos2 θm

as θ → θm, (49)

which depends explicitly on the angle θm determined by tan2 θm = (c33−c44)/(c11−c44), and

— for θ 6= θm — also on θ itself. As indicated, the expression goes to 1/2 cos2 θm in the limit of

θ → θm. But, since sin2 θm = tan2 θm/(1+tan2 θm) and cos 2θm = (1−tan2 θm)/(1+tan2 θm),

other useful identities are

sin2 θm =
c33 − c44

c11 + c33 − 2c44

= 1 − cos2 θm (50)
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and

cos 2θm =
c11 − c33

c11 + c33 − 2c44

= 1 − 2 sin2 θm. (51)

Then, to make the formulas (46) and (48) look as much as possible like Thomsen’s formulas

— and thereby arrive at a somewhat different understanding of the equations (5) and (6)

for “weak anisotropy,” first eliminate θm by arbitrarily setting it equal to θm = 45o, in

which case sin2 θm = 1
2

and cos 2θm = 0. We see that Thomsen’s formulas (5) and (6) are

recovered exactly. So we conclude that Thomsen’s formulas are based not only on an explicit

assumption of weak anisotropy, but also on an implicit assumption that θm is so close to 45o

that these differences may be safely negelected. The examples already presented in Figure 1

show that this implicit assumption is valid for low crack densities below 0.05, but not valid

for higher crack densities such as 0.1 and above.

Extended Thomsen formulas for HTI symmetry

To complete this analysis, we show now the results for HTI symmetry that arise when

the fractures/cracks are aligned and vertical. These results follow easily from the discussion

immediately following equations (45)–(48):

v̄2
p(θH)/v2

p(0)(1 + 2ε) ' 1 − 2ε

1 + 2ε
sin2 θH − ε − δ

2(1 + 2ε)

2 sin2 θm sin2 2θH

[1 + cos 2θm cos 2θH ]
, (52)

from which we find:

v̄p(θH)/vp(0)
√

1 + 2ε ≈ 1 − ε

1 + 2ε
sin2 θH − ε − δ

4(1 + 2ε)

2 sin2 θm sin2 2θH

[1 + cos 2θm cos 2θH ]
. (53)

Similarly,

v̄2
sv(θH)/v2

s(0) ' 1 +
[

v2
p(0)/v2

s(0)
] ε − δ

2

2 sin2 θm sin2 2θH

[1 + cos 2θm cos 2θH ]
, (54)

from which follows:

v̄sv(θH)/vs(0) ≈ 1 +
[

v2
p(0)/v2

s(0)
] ε − δ

4

2 sin2 θm sin2 2θH

[1 + cos 2θm cos 2θH ]
. (55)

Again, these formulas reduce exactly to the equivalent Thomsen formulas for HTI symme-

try given previously in (16)–(18) if θm → 45o. These results also have exactly the same

significance as those for VTI symmetry in (45)–(48); however, it should always be remem-

bered that these formulas apply only in planes perpendicular to the plane of the aligned

fractures/cracks. For other angles of propagation, we must also account for the azimuthal

dependence on angle φ.
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The two critical angles

For both the VTI and HTI cases there are two critical angles, θm [extreme point of ζ(θ)]

and θex [extreme point of the quasi-SV-wave speed]. Technical Appendices A and B develop

methods of estimating these two critical angles for the VTI symmetry from Thomsen’s

parameters and, therefore, from seismic data. Table 1 shows the types of results expected

for a range of real anisotropic materials and earth media (note that presence or absence of

cracks was not considered during the selection of these examples). Results show how θm and

θex differ from each other, and how successful the methods developed in the Appendix B are

for the computation of θex.

DISCUSSION AND CONCLUSIONS

The analysis presented here of the phase velocity equations does not depend on the source

of the anisotropy, and therefore can be applied to layered media, etc., as well as to fractured

media as we have done here.

The Kachanov (1980) and Sayers and Kachanov (1991) crack-influence parameters are

ideally suited to analyzing the role of fracture mechanics in producing anisotropic elastic

constants for aligned fractures in a reservoir exhibiting VTI or HTI symmetry. When this

approach is combined with poroelastic analysis through the use of Skempton’s (1954) co-

efficient (as was done here in Appendix C), it becomes very easy to analyze a wide range

of complicated situations that may raise in reservoir analysis, such as trying to deduce

whether the fractures are dry/drained, or fluid-saturated/undrained. Skempton’s coefficient

B introduces a single parameter that varies from 0 to 1 as fluid properties change from being

negligible to being very strong influences on the fracture compliance – and therefore on the

Thomsen seismic parameters..

Another important observation from the modeling presented is that the Thomsen weak

anisotropy formulation is valid for crack densities up to about ρc ' 0.05, but should be re-

placed by more accurate approximations, or (better yet) exact calculations whenever possible

when the crack density is much above 0.05. If the crack density is ρc ' 0.1, or higher, then

higher accuracy approximations are essential. Conversely, if the crack density ρc estimated

from seismic data using the weak anisotropy formulation is in fact larger than ρc ' 0.05,
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one conclusion we might reach is that a more accurate method is required both to verify

and properly quantify the result.
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APPENDIX A: COMPUTING θm FROM SEISMIC DATA

The angle θm at ζ(θ) takes it maximum value is easily found using [see (21)]

tan2 θm =
c33 − c44

c11 − c44

=
v2

p(0) − v2
s(0)

(c11/ρ) − v2
s(0)

(56)

and

ε =
c11 − c33

2c33
=

c11/ρ − v2
p(0)

2v2
p(0)

, (57)

showing that

tan2 θm = 1 − xm =
v2

p(0) − v2
s(0)

(1 + 2ε)v2
p(0) − v2

s(0)
. (58)

So we also have

xm =
2εv2

p(0)

(1 + 2ε)v2
p(0) − v2

s(0)
. (59)

Thus, θm is determined using the same data as in the standard analysis of seismic reflection

data, which also determines the various small angle wave speeds and the three main Thomsen

parameters.

The pertinent fixed factors for use in the formulas (50) and (51) are given by

sin2 θm =
v2

p(0) − v2
s(0)

2[(1 + ε)v2
p(0) − v2

s(0)]
(60)
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and

cos 2θm =
εv2

p(0)

(1 + ε)v2
p(0) − v2

s(0)
= 1 − 2 sin2 θm. (61)

And, finally, equations (23), (31), and (58) also fix the extreme value of ζm = ζ(θm), as

well as its angular location θm (as already shown), using the same data.

APPENDIX B: EXTREME POINT θex FOR QUASI-SV-WAVE SPEED

The result (43) in the main text was obtained by first making the assumption that ζm —

and therefore the magnitude of ζ(θ) — was so small that it did not significantly influence the

location of the angle θex for the extreme value of the quasi-SV-wave speed. We can improve

on this result, but the analysis is much more involved than what was shown previously.

After some tedious algebra, it can be shown that the exact formula for the extreme point

is given by the formula

cos 2θex = cos 2θm

[

1 − (1 − cos2 θex)F (ζex)
]

, (62)

where

F (ζ) =
1 −

√
1 − ζ

ζ

√

1 − ζ (63)

and with ζ = ζ(θ) as defined previously in (31). Note that the formula (62) reduces correctly

[see equation (39)] to (40) when |ζm| << 1, since F (ζ) → 1
2

in this limit.

Additional tedious algebra and use of some trigonometic identities shows that, if ζm is

small but not negligible, then (43) is replaced by

tan2 θex ' tan θm +
ζm

4 sin θm
(1 − tan θm)2(1 + tan θm). (64)

Equation (64) shows that the sign of ζm matters to some degree, since ζm > 0 will push

the value of θex closer to 45o, while ζm < 0 will push the value closer to θm. The estimate of

θex determined by (64) is labelled θ
(2)
ex in the examples of Table 2.

Of the examples computed for presentation in Table 2, the only material that proved

difficult was zinc. For this one anisotropic material, the estimate (64) proved to be invalid

due to the failure of the assumption that ζm (= 1.957 for zinc) was small compared to unity.

However, it was nevertheless possible to solve (62) directly by iteration, starting with the

value of θm substituted for θex on the right hand side of the equation and then solving for
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θi
ex at each step i on the left. This process converged to five significant figures after ten

iterations. When the same iterative procedure was applied to apatite, the result converged

after only four iterations to 42.05o [differing only slightly from that of the formula (64)].

For Mesaverde sandstone, the iterative procedure converges to 41.72o in two iterations. The

author does not however recommend the use of (43) in this iterative mode as it may give the

user a false sense of exactness of the result, and no analysis has been done yet to determine

whether or not there are potentially multiple solutions (all but one of which must be spurious

if they exist) of the equation. So the iterative procedure should be used (if at all) with some

caution.

Examples of the use of these formulas are also discussed in the main text and illustrated

in Figure 2.

APPENDIX C: FLUID EFFECTS IN ANISOTROPIC FRACTURED MEDIA

Berryman (2007) treats the effects of fluids in anisotropic fractured media, but limited

the discussion to VTI symmetry. In the present work, Eqs. (16)–(18) and also Eqs. (52)–(55)

show the formulas needed to interpret the Thomsen parameters correctly for HTI media.

These two strands of the theory will be combined here to show how fluids in fractures affect

the HTI coefficients.

The pertinent formulas for the VTI case of horizontal fractures are Eqs. (46), (47), and

(68) from Berryman (2007), which are:

γV TI = ρcG0D2, (65)

εV TI =
2ρcG0

1 − ν0
D1, (66)

and

δV TI =
2ρcG0

1 − ν0

[

2(1 − ν0)D1 − (1 − 2ν0)D2

1 + 2(1 − ν0)ρcG0(D2 − D1)

]

, (67)

where

D1 ≡ η2 + ρc(η3 + η5) ' η2 (68)

and

D2 ≡ η2 + ρcη5 ' η2. (69)

Although D1 and D2 appear to be equivalent (or nearly so for the low crack density limit) in

these formulas, their roles in the theory are quite distinct, as D1 contributes to compliances
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involving principal stresses and linear strains, while D2 contributes only to compliances

directly involving shear stresses and strains. This means that the two are affected differently

by the presence of fluid in the fractures. Berryman (2007) shows explicitly that the fracture

compliances involving only shear stresses and strains are not affected by the presence of fluid

in the fractures so D2 → D2, when a fluid is added.

In contrast, the fracture compliances involving the principal stresses and linear strains

must be multiplied by a factor (1−B) in the presence of fluids, where B is Skempton’s (1954)

coefficient. Thus, addition of fluid to the fractures implies D1 → D1(1−B). Normally B itself

is a function of the fluid bulk modulus Kf , the bulk modulus of the surrounding isotropic

medium K0, the porosity φ, the drained bulk modulus of the porous system Kd, and the

Biot-Willis coefficient α = 1 − Kd/K0, according to:

1 − B =
1 − Kf/K0

1 − Kf/K0 + (Kfα/φKd)
. (70)

See Gassmann (1951), Skempton (1954), Biot and Willis (1957), Brown and Korringa (1975),

and Berryman (1999) for background. For present purposes, the main point is that B typi-

cally lies in the range 0 ≤ B ≤ 1, where B = 0 corresponds to fractures containing air but

no liquids, while B = 1 corresponds to a fluid saturant with a very large bulk modulus —

comparable to that of the surrounding matrix material (i.e., Kf ' K0).

Using these results to compute the effective values of the Thomsen parameters for the

VTI case, we have

γV TI ' ρcη2G0, (71)

εV TI '
2ρcη2G0(1 − B)

1 − ν0

, (72)

and

δV TI ' 2ρcη2G0

1 − ν0

[

2(1 − ν0)(1 − B) − (1 − 2ν0)

1 + 2(1 − ν0)ρcη2G0B

]

=
2ρcη2G0

1 − ν0

[

1 − 2(1 − ν0)B

1 + 2(1 − ν0)ρcη2GoB

]

.

(73)

We do not need to consider γ further, since it is independent of fluid properties. Equations

(71)–(73) are general for ellipsoidal cracks, and for Biot-Gassmann consistency (Gassmann,

1950; Biot and Willis, 1957) of the predicted saturating-fluid effects. From general theorems

in the elasticity of heterogeneous media (Hill, 1963), the for of these results also apply — at

least approximately — to any crack-shapes that can be reasonably fitted by some ellipsoidal
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shape; then, the values of the factors η1 and η2 need to be recomputed for the closest fitting

ellipsoid.

For VTI, we have two distinct limiting cases: B = 0 and B = 1 (actual values of B will

normally be intermediate to these two). For the dry/drained case, we have B = 0, so:

εV TI =
2ρcη2G0

1 − ν0
= δV TI > 0. (74)

The result is simply that εV TI = δV TI for an air-filled, horizontal fracture system. In contrast,

when B = 1, we have

εV TI ≡ 0, (75)

and

δV TI ' − 2ρcη2[1 − 2(1 − ν0)]G0

(1 − ν0)[1 + 2(1 − ν0)ρcη2Go]
< 0. (76)

We can make further use of these results for the HTI system, since those results are

expressible in terms of the VTI formulas. (In the following equations, unsubscripted expres-

sions for δ and ε are those for VTI just given above.) As discussed following Eq. (15), the

general results valid for all B are:

δ → δHTI =
δ − 2ε

1 + 2ε
, (77)

and

ε − δ → εHTI − δHTI =
δ − ε

1 + 2ε
. (78)

For the case, B = 0 we then have:

δHTI =
−δ

1 + 2δ
, = εHTI . (79)

For B = 1, we have:

δHTI = δ < 0, (80)

since ε = 0 for VTI and B = 1; and, for B = 1, we have:

εHTI = δHTI +
ε − δ

1 + 2ε
= δHTI − δ = 0. (81)

So for fluid-filled cracks having B = 1, we find that εV TI = εHTI = 0.

All these results are consistent with those of Bakulin et al. (2000) [see their Fig. 6],

although their analysis was based in part on penny-shaped cracks (as we have done here)

and also in part on the linear slip model of fractures (Schoenberg, 1980).
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Table 1. Formulas for the first two (linear) fracture influence-parameters from the

non-interaction (NI) approximation, and values of five fracture-influence parameters for

the two models considered by Berryman and Grechka (2006). Note that, since Poisson’s

ratio ν0 of the background medium is bounded above by ν0 ≤ 1
2
, the first two crack

influence parameters satisfy |η1| ≤ η2/18.

Fracture-influence NI First Model Second Model

Parameters Approx. ν0 = 0.00 ν0 = 0.4375

η1 (GPa−1) − ν0η2

2(5−ν0)
0.0000 -0.0192

η2 (GPa−1) 8(1−ν0)(5−ν0)
15(2−ν0)G0

0.1941 0.3994

η3 (GPa−1) – -0.3666 -1.3750

η4 (GPa−1) – 0.0000 0.0000

η5 (GPa−1) – 0.0917 0.5500
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Table 2. Examples of ζm — i.e., the extreme value ζ(θm) — and its angular location θm

for various rocks and minerals. The angular location of the extreme point of vsv(θ) is also

given approximately by the two estimates θ
(1)
ex and θ

(2)
ex defined in the text. The data for ε,

δ, vp(0), and vs(0) for the first six examples are all taken from Table 1 of Thomsen (1986),

the next five examples are from Table 1 of Lyakhovitsky (1993), and the final five examples

are from Appendix A of Vernik and Liu (1997).

Sample ε δ vp(0) (m/s) vs(0) (m/s) ζm θm θ
(1)
ex θ

(2)
ex

Cotton Valley shale 0.135 0.205 4721. 2890. -0.1564 39.89o 42.43o 42.38o

Mesaverde sandstone 0.081 0.057 3688. 2774. 0.0805 40.48o 42.73o 42.75o

Muscovite crystal 1.12 -0.235 4420. 2091. 0.8985 26.90o 35.46o 39.69o

Pierre shale 0.015 0.060 2202. 969. -0.1076 44.48o 44.74o 44.74o

Taylor sandstone 0.110 -0.035 3368. 1829. 0.3135 41.12o 43.06o 43.12o

Wills Point shale 0.215 0.315 1058. 387. -0.1543 39.27o 42.12o 42.05o

Apatite 0.096 0.586 6.605 4.552 -1.367 40.55o 42.77o 42.43o

BaTiO3 -0.055 -0.046 5.669 3.047 -0.030 47.40o 46.20o 46.20o

Beryl 0.061 -0.168 9.462 4.885 0.535 42.80o 43.90o 43.93o

β-quartz 0.028 -0.048 6.454 3.689 0.208 43.86o 44.43o 44.43o

Zinc 0.780 2.655 2.947 2.365 -1.957 23.32o 33.29o 33.56o

Monterey shale

φ = 0.050 0.11 0.19 4.54 2.77 -0.190 40.67o 42.83o 42.79o

φ = 0.166 0.20 -0.06 3.62 2.27 0.517 37.82o 41.38o 41.72o

φ = 0.296 0.22 0.05 2.68 1.79 0.342 36.74o 40.83o 41.13o

North Sea shale

φ = 0.012 0.24 0.02 3.86 2.22 0.383 37.35o 41.14o 41.43o

φ = 0.029 0.29 0.19 3.20 2.00 0.168 35.59o 40.23o 40.43o
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FIG. 1: For vertical cracks: examples of anisotropic quasi-P compressional wave speed (vp), SH

shear wave speed (vsh), and quasi-SV shear wave speed (vsv) for two values of Poisson’s ratio ν0

of the host medium: (a)–(c) ν0 = 0.00, (d)–(f) ν0 = 0.4375. Velocity curves in black are exact

for the fracture model discussed in the text. The Thomsen weak anisotropy velocity curves for the

same fracture model are then overlain in blue. Significant discrepancies observed between the exact

values and Thomsen’s approximation for vsv in both cases provide a primary motivation for the

present work. 30
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FIG. 2: For aligned vertical cracks having crack density ρc = 0.2 and HTI overall symmetry:

examples of anisotropic quasi-SV shear wave speed (vsv) for two values of Poisson’s ratio ν0 of

the host medium: (a)–(b) ν0 = 0.00, (c)–(d) ν0 = 0.4375. Velocity curves in red are those for the

new approximation presented in the text The exact result for the fracture/crack model discussed

in the text is then overlain in black. Finally, the Thomsen weak anisotropy velocity curves for the

same fracture/crack model are overlain in blue. To show how the approximations for the angular

location θex compare to the actual peaks, vertical lines are plotted to indicate these locations. The

value θex = 45o is always exact for Thomsen’s approximation. The value θm as determined by (21)

is shown in red. The values of θ
(1)
ex from (43) are shown as a black dashed line, while θ

(2)
ex from (62)

are shown as a black solid line. The two estimates θ
(1)
ex and θ

(2)
ex are nearly indistinguishable (at

this level of resolution) for for ν0 = 0.4375, as are the exact and new approximate values of the vsv

wave speeds.
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FIG. 3: For aligned vertical cracks, and HTI symmetry: examples of anisotropic quasi-P compres-

sional wave speed (vp) and quasi-SV shear wave speed (vsv) for two values of Poisson’s ratio ν0 of

the host medium: (a)–(b) ν0 = 0.00, (c)–(d) ν0 = 0.4375. Velocity curves in black are exact for the

fracture/crack model discussed in the text. The new approximation presented in the text is then

overlain in red. Finally, the Thomsen weak anisotropy velocity curves for the same fracture/crack

model are overlain in blue. Plots for vsh(θ) are not affected by the new approximation scheme, and

therefore are not displayed here.
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