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Abstract

Tools from molecular biology, in combination with in vivo optical imaging techniques, provide 

new mechanisms to noninvasively observe brain processing. Current approaches primarily probe 

cell-based variables, such as cytosolic calcium or membrane potential, but not cell-to-cell 

signaling. Here we introduce CNiFERs, cell-based neurotransmitter fluorescent engineered 

reporters, to address this challenge and monitor in situ neurotransmitter receptor activation. 

CNiFERs are cultured cells that are engineered to express a chosen metabotropic receptor, make 

use of the Gq protein-coupled receptor cascade to transform receptor activity into a rise in 

cytosolic [Ca2+], and report [Ca2+] with a genetically encoded fluorescent Ca2+ sensor. The initial 

realization of CNiFERs detects acetylcholine release via activation of M1 muscarinic receptors. 

Chronic implantation of M1-CNiFERs in frontal cortex of the adult rat is used to elucidate the 

muscarinic action of the atypical neuroleptics clozapine and olanzapine. We show that these drugs 

potently inhibit in situ muscarinic receptor activity.

A central tenet of neuronal processing is that unidirectional cell-to-cell communication is 

based on the release and subsequent binding of cell signaling molecules. Signaling can be 

localized to a pair of cells, as occurs with transmission across a synaptic cleft. Signaling can 

also occur within a volume of tissue through the diffusion of molecules away from the 
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cleft1, 2. The spillover of glutamate, the excitatory transmitter among central synapses, leads 

to glutamatergic activation of extrasynaptic metabotropic receptors on nearby neurons and 

glia. Central modulators, including acetylcholine, serotonin, norepinephrine, and numerous 

neuropeptides, are commonly released directly into the extracellular space and have long-

lasting and long-range effects on central processing. The dual nature of signaling, synaptic 

versus volume, suggests the possibility of different design strategies for functional probes of 

these two forms of communications.

The molecular detection of neuronal signaling molecules has achieved success for the case 

of glutamate through the fusion of pairs of fluorescent proteins with bacterial periplasmic 

proteins that bind small molecules3-5. Binding of glutamate leads to a structural change in 

the protein and a subsequent change in fluorescence resonance energy transfer (FRET) 

between the fluorescent proteins. Conceptually similar work involved the fusion of specific 

G-protein receptors with pairs of fluorescent proteins6. Such functionalized proteins are 

suitable for the detection of both synaptic and volume transmission. However, each 

molecular detector must be engineered de novo and used in combination with a suitable 

expression vector. We sought an alternate, modular approach for the detection of neuronal 

signaling molecules, with a focus on volume signaling.

Results

Our design exploits the modularity of G-protein receptors and their downstream pathways to 

expand on concepts from three past technological developments. First, cultured Xenopus 

myocytes that expressed nicotinic acetylcholine receptors have been used as in vitro 

electrophysiological reporters of pulsatile acetylcholine (Ach) release7. This work inspired 

the development of a cancerous cell line that expressed purinergic receptors for use as a 

detector of adenosine triphosphate release8. Second, high-throughput drug screening 

technologies can image receptor-transfected cells which are loaded with functional 

fluorescent dyes9. Third, implanted cultured cells filled with organic calcium indicators have 

been used as a test bed for fiber-optic imaging in rat cortex10. We express G-protein coupled 

receptors, whose inventory includes affinity for virtually every known signaling molecule, 

together with genetically expressible indicators of second messengers to create implantable 

cellular sensors of receptor activity.

This first realization of CNiFERs addresses the detection of acetylcholine (Ach) released 

into the extracellular space11. This central modulator plays a prominent role in attention, 

learning and cortical plasticity12 and is thought to influence the etiology of schizophrenia13. 

M1-CNiFERs are engineered from HEK293 cells that stably express the M1 receptor, a 

major muscarinic receptor in neocortex14, and the fusion-protein and calcium indicator TN-

XXL15 (Fig. 1a). Activation of the M1 receptor increases cytosolic calcium in M1-CNiFERs 

via the Gq/IP3 second messenger pathway. The subsequent binding of Ca2+ to TN-XXL 

induces a conformational change that enhances FRET between its cyan and yellow 

fluorescent protein domains15. Thus M1-CNiFERs report M1 receptor activity by a 

concurrent decrease in cyan and increase in yellow fluorescence. Lastly, control-CNiFERs 

express TN-XXL but not the M1 receptor; they are distinguished by expression of mCherry 

fluorescent protein (Fig. 1a).
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The FRET response of M1-CNiFERs is studied under two-photon laser scanning 

microscopy16 (TPLSM); we report the change in FRET as

where background values are subtracted from the individual fluorescent channels and the 

prestimulus period is typically 10 s. Bath application of an 500 s bolus of acetylcholine (1 to 

1000 nM) reveals two time-scales of the M1-CNiFER response. An initial phasic response, 

with an EC10 of 3 nM and an EC50 of 11 nM, is followed by a plateau response with an 

EC10 of 5 nM and an EC50 of 9 nM (Fig. 1b,c). These values compare well with the 1 to 100 

nM acetylcholine levels measured in rat brain with microdialysis17, 18. Lastly, the phasic 

response is independent of external calcium concentration while the tonic response is 

abolished in calcium-free media (Sup. Fig. 1).

The phasic response was further probed with a fast perfusion system using 2.5 s applications 

of 60 or 100 nM acetylcholine, for which the peak responses are ΔF/F = 0.3 and 0.9, 

respectively (Fig. 1d). M1-CNiFERs respond within 2 s with a half-maximal rise-time of ~ 2 

s, a full width at half maximal amplitude of ~ 7 s and can resolve pulses of 100 nM 

acetycholine with an interstimulus interval as short as 6 s (Fig. 1e). Adaptation of the second 

response can be seen for the interstimulus interval of 21 s (Fig. 1e); further investigation 

reveals that the peak M1-CNiFER FRET response to pulses of acetylcholine adapts with a 

time constant of roughly 102 s towards an asymptotic value (Sup. Fig. 2). Lastly, we tested 

if M1-CNiFERs respond to a slowly increasing ramp in [ACh] that, in principle, could be 

undetected if adaptation is strong. For a concentration close to EC50 reached over 103 s, 

sensitivity was maintained (Sup. Fig. 3).

The specificity of M1-CNiFERs was a concern since HEK293 cells can express endogenous 

surface receptors. We thus screened for potentially confounding receptor activation on a 

high-throughput fluorometric plate reader; the atropine sensitive response of M1-CNIFERs 

to a saturating level of acetylcholine ([ACh] = 100 nM) served as a reference (Sup. Fig. 4) 

and we report  and 

. First, the activation of control-CNiFERs by 

acetylcholine is negligile, i.e.,  (Fig. 1f,g). Potentially confounding 

neurotransmitters typically have EC50 > 1–10 μM and  (Fig. 1g). 

Notable exceptions include norepinephrine , adenosine 

, and vasoactive intestinal peptide  (Fig. 1f,g).

M1- and control-CNiFERs are implanted in discrete sites in frontal cortex of rat and imaged 

by TPLSM down to 300 μm below the cortical surface (Fig. 2). The typical imaging plane 

contains contributions from 10 to 30 CNiFERs per site. We test if implanted M1-CNiFERs 

are still functional by puffing acetylcholine from a pipette inserted near the implantation 

site. Volume injection of 5 to 50 nl of 1 mM acetylcholine, but not vehicle, elicit large 
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FRET responses in M1-CNiFERs (Sup. Fig. 5). To test that short, physiologically relevant 

bursts of endogenous acetylcholine will diffuse into the CNiFER sites at detectable 

concentrations, we electrically stimulate nucleus basalis magnocellularis (NBM), a basal 

forebrain structure that projects cholinergic fibers into neocortex. Single-train excitation of 

NBM induces a transient shift in the spectral content of the electrocorticogram that lowers 

the amplitude of the 1 to 6 Hz δ-band rhythms for several seconds (Fig. 2b); this pattern is a 

hallmark of NBM stimulation19, 20. Concomitantly, M1-CNiFERs respond with a single 

peak initiated within 2 s, a half-maximal rise time of ~ 1 s and a width of less than 10 s; 

simultaneously imaged control-CNiFERS do not respond (Fig. 2b). This temporal resolution 

is comparable to that of electrochemistry and ~ 100 times faster than microdialysis. Lastly, 

we observe a strong correlation between electrocorticogram activation, measured as the Z-

score of minus the logarithm of the power in the δ-band of the ECoG for a given animal, and 

response amplitude in M1, but not control, CNiFERs (n = 4 animals, 55 trials) (Fig. 2c), ang 

anticipated result19.

The cholinergic nature of the in vivo M1-CNiFER response is verified by subcutaneous 

injection of physostigmine, an acetylcholinesterase inhibitor, that enhances the amplitude 

and duration of the NBM-evoked M1-CNiFER response for ~ 5000 s after injection (n = 3) 

(Fig. 2d). The ability of M1-CNiFERs to detect slow fluctuations in endogenous 

acetylcholine in the absence of NBM stimulation was tested by administering a relatively 

high dose of physostigmine to enhance the basal concentration of acetylcholine. We observe 

a concomitant enhancement in the M1- but not control-CNiFER FRET (n = 3) (Fig. 2e) that 

is accompanied by a reduction of power in the δ-band of the ECoG. Collectively, these acute 

experiments (Fig. 2) support the use of CNiFERs to detect small changes in the 

physiological release of acetylcholine.

Chronically implanted M1-CNiFERs can be imaged for at least six days (Fig. 3a). Imaging 

in the X-Z plane shows that the M1-CNiFER response to NBM stimulation extends 

throughout the depth of the implantation (Fig. 3a). The time dependence of the response is 

very similar to that found with acutely implanted M1-CNiFERs and, further, control-

CNiFERs remain non-responsive (11 of 12 rats) (Fig. 3b). Images of intravenous fluorescein 

reveal patent vasculature around the implantations (Sup. Fig. 6) and immunohistochemistry 

demonstrates minimal tissue damage, negligible presence of reactive astrocytes, and no 

evidence for intracortical cell proliferation (Sup. Fig. 7). As confirmation that M1-CNiFERs 

respond to muscarinic activation, we observe that reverse dialysis of 1 to 5 μM atropine near 

the site of implantation acts to reduce the NBM-evoked M1-CNiFER response in a 

reversible manner (n = 3) (Fig. 3c); a dose of 100 μM atropine essentially abolishes the 

response (n = 3) (Fig. 3c). Pairs of NBM stimuli are resolvable by M1-CNiFERs with an 

interstimulus interval greater than 5 s (Fig. 3d), consistent with in vitro experiments (Fig. 
1e). Finally, the response from chronically recorded M1-CNiFERs is monotonic with 

increasing stimulation intensity and duration (Fig. 3e,f), consistent with increased NBM 

recruitment and augmentation of acetylcholine release within cortex.

As a test bed for M1-CNiFERs, we address the action of a class of antipsychotic drugs, 

called atypical neuroleptics21, on cholinergic transmission. Atypical neuroleptics, the 

overwhelming preference for managing schizophrenia22, are primarily anti-dopaminergic 
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compounds with a broad spectrum of activity at other receptors. Many atypicals have 

marked cholinergic effects that are believed to contribute to their improved therapeutic 

properties23. The atypicals olanzapine and clozapine elicit substantial acetylcholine release 

peripherally24 and centrally25, 26, though they are also muscarinic (Sup. Fig. 4)27, 28 and 

nicotinic antagonists24. Furthermore, a bioactive metabolite of clozapine, n-

desmethylclozapine, acts as a muscarinic receptor agonist29. The net effect of atypicals on 

muscarinic transmission is debated30. On the one hand, enhanced cholinergic release might 

explain the effectiveness of atypicals in improving cognition in schizophrenics29, 31. On the 

other hand, antagonism of the muscarinic receptor can account for their favorable profile of 

extrapyramidal side effects23. We use M1-CNiFERs to resolve these mutually exclusive 

alternatives.

We find that the atypical neuroleptic olanzapine profoundly depresses the M1-CNiFER 

FRET response to periodic stimulation of NBM. In contrast, essentially no change in the 

FRET response is seen after the injection of vehicle (Fig. 4a). The M1-CNiFER response in 

the presence of olanzapine is partially recovered by an increase in the amplitude of the NBM 

stimulation (Fig. 4a, red lines), suggestive of competitive inhibition. The suppressive effects 

of olanzapine on M1 receptor activation, as well as that of a second atypical neuroleptic, 

clozapine, is seen across a cohort of animals (n = 4 each) (Fig. 4b,c). Clozapine also 

suppresses NBM-evoked electrocorticogram activation, consistent with a blocking effect on 

endogenous M1 receptors in vivo (Sup. Fig. 8, olanzapine not tested). Further, suppression 

of M1-CNiFER activation by olanzapine is not dependent on repetitive stimulation, as 

olanzapine depresses the NBM-evoked response when NBM is first stimulated 1000 s after 

the injection of olanzapine (Sup. Fig. 9). As a final control, we find that the conventional 

antipsychoticsy chlorpromazine and haloperidol have no observable effect on the NBM-

evoked M1-CNiFER response (n = 3 - 4 each) (Fig. 4d,e).

To test for olanzapine's net effect on extrasynaptic muscarinic transmission, as modeled by 

the response of chronically implanted M1-CNiFERs, we injected olanzapine at a dose 

known to increase cortical acetylcholine levels 6-fold26. We find a negligible and 

statistically insignificant M1- as well as control-CNiFER FRET response (Fig. 4f,g). In 

contrast, nicotine ditartrate, which raises cortical acetylcholine levels 3-fold32, leads to a 

significant increase in the response of M1- but not control-CNiFERs (Fig. 4f,g). 

Collectively, the results with M1-CNiFERs indicate the atypical neuroleptics clozapine and 

olanzapine, unlike conventional antipsychotics, are potent in vivo inhibitors of extrasynaptic 

M1 muscarinic receptors as expressed in M1-CNiFERS implanted in frontal cortex. This 

occurs in spite of their marked ability to stimulate central acetylcholine release25, 26. Our 

findings account for the reduced extrapyramidal side effects associated with atypical 

antipsychotic drugs, as these side effects and antimuscarinic activity are inversely related33. 

They do not support the contention that clozapine and olanzapine activate extrasynaptic 

cortical M1 receptors indirectly via acetylcholine release.

Discussion

The response of CNiFERs will adapt upon exposure to a constant concentration of agonist. 

This appears as a phasic response that decays to a persistent, tonic level over ~ 102 s (Figs. 
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1b,c, and 4a). The phasic component does not depend on the external [Ca2+] (Sup. Fig. 1) 

and is consistent with a Ca2+ flux that derives from the endoplasmic reticulum as part of 

inositol triphosphate (IP3) receptor-activation in the Gq-protein cascade34. The transition 

from the larger amplitude of the phasic response to the smaller tonic response can result 

from a decrement in signaling molecule binding at any point in the muscarinic Gq-protein 

cascade. Past work implies that there is little desensitization or internalization of the M1 

receptor35. In contrast, [Ca2+] mirrors [IP3] and IP3 exhibits both phasic and tonic 

components36, similar to the components seen with CNiFERs (Fig. 1b). Thus a rate-limiting 

step in the generation of IP3, such as the availability of the intermediate phosphatidylinositol 

4,5-bisphosphate37, may explain the adaptation of the CNiFERs. A complementary 

explanation for the adaptation is that the tonic response is maintained via calcium flux 

through the cytoplasmic membrane rather than internal calcium stores, as evidenced by the 

abolishment of the tonic signal in calcium free media (Sup. Fig. 1).

CNiFERs indirectly report neurotransmitter release but directly report receptor sub-type 

activity, a measurement not possible using microdialysis, electrochemistry, or radioisotope 

tracers. They provide a general approach to observe the activation of G protein-coupled 

receptors by small molecules and peptides within living animals. CNiFERS for Gq protein-

coupled receptors, such as those for the molecular transmitters serotonin and prostaglandins, 

can be engineered as an immediate extension of the M1-CNiFERs and their Ca2+-based 

response. In contrast, CNiFERS for Gs and Gi/o protein-coupled receptors, such as those for 

the peptide transmitters vasoactive intestinal peptide and somatostatin, respectively, can be 

based on changes in the concentration of cAMP detected via a genetically encoded indicator 

for the activation of protein kinase A38. Alternatively, an endogenous indicator for Ca2+ can 

be used if co-expressed with the promiscuous Gα16
39 or Gα chimeras40; these G proteins 

allow receptors not normally linked with the Gq pathway to elicit cytosolic Ca2+. Thus 

future CNiFERs may be realized to detect any signaling molecule, of which 

neurotransmitters are a broad and important class, that activates a G protein-coupled 

receptor.

Methods

Stably expressing cell lines

CNiFERs were created through replication deficient lentiviral transduction of HEK293 cells 

with cDNAs of the TN-XXL calcium indicator15, human M1 muscarinic receptor (gift from 

Paul Slesinger, Salk Institute), and mCherry fluorescent protein41 (gift from Roger Y. Tsien, 

UCSD). M1- and control-CNiFERs both express TN-XXL but are differentiated by either 

M1 receptor or mCherry expression, respectively. cDNAs were subcloned into HIV-based 

backbone cloning plasmids (System Biosciences, Mountain View, CA). Lentiviral particles 

were produced by the UCSD Vector Development Laboratory. Serial dilution clonal 

selection was assisted by puromycin (M1) and fluorescence (TN-XXL and mCherry). 

CNiFER clones were selected based on response to acetylcholine and fluorescence 

intensities. Clones were divided into aliquots and frozen with 10 % dimethyl sulfoxide at T 

= − 80°C. CNiFERs were maintained at 37°C and 10 % CO2 using Fisher Scientific 10 and 

Forma Scientific 3546 incubators (Thermo Scientific, MA). Upon confluence 
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(approximately twice weekly), cells were trypsinized, triturated, and seeded into new, 500 

ml flasks with 0.2 μm filtered caps, using Dulbecco's Modification of Eagle's Medium 

(Cellgro®; Mediatech, Inc, VA) with addition of Glutamax™-1 (Invitrogen, CA) and 10 % 

(v/v) of Fetalplex™ serum (Gemini Bio-Products, CA). New aliquots of CNiFERs were 

thawed every 30 to 50 passages.

TPLSM imaging

CNiFERs were imaged with a custom two-photon laser scanning fluorescence microscope42 

that runs the MPScope software suite43. A femtosecond laser (Verdi oscillator with Mira 

pump laser, Coherent, Mountain View, CA) provided excitation light either at 760 nm to 

visualize mCherry, taking advantage of the anomalous excitation of mCherry at λ < 780 

nm44, or at 800 nm to excite the eCFP portion of TN-XXL while largely avoiding Citrine 

cp174. Fluorescence signals, collected either by 20X or 40X water dipping objectives (UIS2, 

Olympus, Center Valley, PA), were split into three channels: 455 to 495 nm (eCFP), 515 to 

545 nm (eCFP and Citrine) and > 580 nm (mCherry). XY-image sizes were 256 by 256 or 

512 by 512 pixels taken at 2 to 3 frames per second. XZ-imaging was achieved in line scan 

mode by moving the focal plane with a MIPOS 100 piezoelectric z-axis lens positioner 

(Piezosystem Jena, Jena, Germany) synchronized with the line scan. XZ-frames sizes were 

256 by 256 pixels taken at 2 frames per second.

In vitro TPLSM testing

M1- and control-CNiFERs were plated on fibronectin-coatedcoverslips, placed in a cell 

culture chamber (RC26; Warner Instruments, CT) and perfused withartificial cerebral spinal 

fluid (ACSF: 125 mM NaCl, 5 mM KCl, 10 mM D-glucose, 10 mMHEPES, 3.1 mM CaCl2, 

1.3 mM MgCl2, pH 7.4). Chamber fluid temperature was kept at 32°C bya temperature 

controller (TC-324B; Warner Instruments, CT). Rapid acetylcholine presentationwas 

achieved with an actuated perfusion stepper (SF-77B; Warner Instruments, CT). 

Theacetylcholine pipette was occasionally co-loaded with Alexa-594 to determine actual 

perfusiontimes. Bath acetylcholine presentation was delivered via gravity-feed.

In vitro high-throughput testing

FRET responses of M1- and control-CNiFERs to various ligands were measured in vitro 

using a high-throughput fluorometric plate reader (FlexStation® 3, Molecular Devices, 

Sunnyvale, CA). The day before experiments, M1- or control-CNiFERs were seeded in 

poly-D-lysine coated 96-well plates at 0.12×106 cells per well. Media was replaced in each 

well with 100 μl ACSF and plates were loaded into the FlexStation® 3. Experiments were 

conducted at 37°C using 435 nm excitation. Emitted light was collected at 485 nm and 527 

nm every 3.8 s and ligand was delivered in 50 μl boluses without trituration. Background 

signals measured from neighboring wells without cells were subtracted, fluorescence 

intensities were normalized to pre-stimulus baselines, and peak responses selected from the 

ratio of the 527 nm and 485 nm channels. All peaks were then normalized by the M1-

CNiFER response to maximal acetylcholine.
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In vivo surgery and electrode placement

Adult male Sprague-Dawley rats (250-600 gm) were anesthetized with isoflurane according 

to standard protocol45 and implanted with epidural 125 μm Teflon-coated silver-chloride 

wires across the imaging site for differential electrocorticogram (ECoG) recordings (A-M 

Systems Inc., WA). In each nucleus basalis magnocellularis (NBM) stimulation experiment, 

two 0.1 MΩ tungsten stimulating electrodes (Microprobes Inc., MD) spaced ~ 0.5 mm apart 

were implanted at the coordinates (2.1 mm, −1.2 mm, −6.9 mm)20. Electrical stimulation 

consisted of 200 μs current-pulses of 100 to 1000 μA, at 100 Hz, for a duration of 20 to 500 

ms. The depth of implantation and magnitude of current was adjusted to a value that would 

produce cortical activation, as assayed by reductions in cortical large-amplitude electrical 

oscillations46; this value was typically 200 μA.

In vivo implantation

CNiFERs were triturated from culture flasks without trypsin, concentrated, and resuspended 

in ACSF for injection. After a craniotomy over frontal or parietal cortex and dural resection, 

CNiFERs were loaded into a ~ 40 μm inner-diameter glass pipette connected to a syringe 

pump and stereotaxically injected ~ 500 μm from the cortical surface using a syringe pump. 

Flow was stopped immediately after cells were seen to move down the pipette shaft, and 

pipette removal delayed for 5 min to prevent backflow of cells. In an attempt to avoid 

damage to the parenchyma this is far less than previous injection of transformed fibroblasts 

in ex vivo gene therapy experiments, which approximated 105 cells in 3 μl of media47. After 

implantation in several adjacent sites, usually 4 to 5 sites for M1-CNiFERs and 2 to 3 for 

control-CNiFERs, the craniotomy was filled with 1.5 % agarose in ACSF and sealed with a 

coverslip using dental cement48. Acute and chronic implantations were similar, except that 

in the latter, rats were immune-suppressed by daily cyclosporine injection (Belford 

Laboratories; 20 μl/100 gm, i.p.) starting one day before implantation. For acetylcholine 

puffing experiments an opening into the craniotomy was preserved to allow pipette 

insertion.

In vivo imaging

All in vivo imaging was performed under urethane (1.3-1.5 g/kg i.p.). For acetylcholine 

puffing, capillary pipettes with ~ 25 μm inner diameter were filled with PBS or 1 mM 

acetylcholine chloride in PBS and affixed to an oocyte injector (Nanoject II, Drummond, 

PA). The capillary tip was maneuvered into the window using a micromanipulator (MP-285; 

Sutter, CA) and positioned near the CNiFER implants. Experimental runs consisted of 10 s 

baselines followed by 5 to 50 nl injections. For NBM electrical stimulation experiments, 200 

μs pulses of 100-1000 μA, at 20 Hz or 100 Hz, were delivered for a duration of 5 s or 20 to 

500 ms, respectively. Electrocorticogram signals were amplified with a DAM80 differential 

amplifier (World Precision Instruments, CT), using a bandpass of 0.1 to 100 Hz, and gain of 

1000. Cerebrovasculature was visualized by injecting 500 μl of 5 % (w/v) fluorescein 

dextran (Sigma; I.V.).
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In vivo pharmacology

For acetylcholinesterase inhibition experiments, subcutaneous physostigmine salicylate in 

100 mM phosphate-buffered saline was injected at 200 or 300 μg/kg. Intracerebral atropine 

perfusion was performed by a syringe pump connected to a microdialysis probe (CMA 11; 

CMA, North Chelmsford, MA) implanted 1000 μm into cortex and ~2 mm from CNiFERs. 

Flow rate was set to 2 to 15 μl/min. Neuroleptics were dissolved in vehicle using 1 % (v/v) 

glacial acetic acid in PBS and a total volume of 1 ml/kg was injected intraperitoneally. 

Atypical neuroleptics were used at dosages similar to those in other studies designed to 

match human therapeutic plasma drug levels30, 49. Nicotine ditartrate was used for nicotine 

experiments and delivered in a volume of 1 ml/kg intraperitoneally. Drugs were purchased 

from Sigma or A.G. Scientific.

Data analysis

All TN-XXL fluorescence intensities were background-subtracted and normalized to pre-

stimulus baselines, as noted in the equation in the text, as ΔR/R. In vitro, images were 

averaged to include all cells in the field of view. In vivo, regions of interest were drawn 

around either M1- or control-CNiFER implants generally encompassing 10 to 150 cells.

For ECoG time-series epochs, spectral power densities were estimated using the multi-taper 

algorithm in Chronux Analysis Software for Matlab (http://chronux.org). Post-stimulus 

time-series consisted of a single 5 s epoch beginning 600 ms after NBM stimulus onset. 

Baseline epochs consisted of four, 5 s epochs immediately preceding NBM stimulus onset. 

We chose a time-bandwidth product of 5 for 9 tapers. The measure of δ-band ECoG activity 

was found by: (1) calculating the spectral power of each time series, where the time series 

for the n-th trial is denoted Vn(t) and the corresponding spectral power is denoted ; (2) 

calculating the power in the 1 to 6 Hz δ-band as ; (3) taking the 

logarithm of , which is χ2-distributed, to form the Gaussian distributed variable 

; where the minus sign reflects the decrease in power with increasing 

activation; (4) Z-score equalizing the log-power as 

 to permit comparisons between animals.

Smoothed lines for CNiFER responses made with the Bayesian adaptive regression splines 

nonparametric smoothing algorithm for normally distributed data (Figs. 1b and 2d,e)50 

(http://www.stat.cmu.edu/~jliebner/).

Histological Procedure Adult animals were perfused with phosphate buffered saline (PBS) 

for the generation of fresh tissue. The typical perfusion volumes were 0.5 ml per gram 

animal and flow rates were 20 ml/min. The PBS perfusion was immediately followed by a 

second perfusion with 4 % (w/v) paraformaldehyde (PFA) in PBS. The extracted brain was 

stored in 4 % PFA in PBS for post-fixation. Blocking of the tissue, if necessary, was done 

with a mounted razor blade. α-GFAP rabbit antibodies (Zymed, CA) were used to visualize 

astrocytes. Sections were quenched in 3% hydrogen peroxide for 15 minutes then incubated 

overnight in a 1:200 dilution of primary α-GFAP antibody in the diluent used throughout the 
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histological process: PBS containing 0.25% Triton, 5% goat serum and 0.02% sodium azide. 

After washing for 1 hour, α-GFAP sections were incubated in a 1:500 dilution of 

biotinylated α-rabbit secondary antibody (Vector Laboratories, CA). This was followed by 

the avidin:biotinylated complex method (Vectastain ABC kit, Vector Laboratories, CA) and 

3,3'-diaminobenzidine (DAB) visualization with nickel. Sections were mounted on slides 

and imaged on an upright microscope with brightfield for DAB stains and epifluorescence 

for M1- and control-CNiFERs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

Ach Acetylcholine

CNiFER Cell-based neurotransmitter fluorescent engineered reporter

EC10 Effective concentration for 10 % response level

EC50 Effective concentration for 50 % response level

ECoG Electrocorticogram

FRET Fluorescence resonance energy transfer

IP3 Inositol triphosphate

NBM Nucleus basalis magnocellularis

TPLSM Two-photon laser scanning microscopy
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Figure 1. Design and in vitro characterization of CNiFERs
(a) CNiFERs used in this study are HEK293 cells that stably express the M1 muscarinic 

receptor and the FRET-based calcium indicator TN-XXL (M1-CNiFERs), or TN-XXL and 

mCherry (control-CNiFERs) (Methods in Supplemental Material). In M1-CNiFERs, 

acetylcholine is depicted as activating M1 to induce IP3-mediated Ca2+ cytoplasmic influx 

detected by TN-XXL. Fluorescence from the eCFP (cyan) and Citrine cp174 (yellow) 

fluorescent proteins incorporated into TN-XXL are collected for the FRET-based signal. (b) 
M1-CNiFERs respond to an 500 s bath application of acetylcholine with two time-scales: a 
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phasic response that peaks within ~ 20-40 s and a tonic plateau that stabilizes after ~ 300 s. 

(c) M1-CNiFER phasic response to acetylcholine is monotonic in the range 1 – 100 nM, 

with an EC50 of 11 nM, a Hill coefficient of 1.9, and a maximum of ΔR/R = 1.1. The tonic 

response is monotonic in the range 5-30 nM, with an EC50 of 9 nM, a Hill coefficient of 4.4 

and a maximum of ΔR/R = 0.18. Phasic responses are measured as the maximum value of 

ΔR/R between 0 and 100 s after lowpass filtering of the data at 0.3 Hz, while tonic responses 

are measured as the average value of ΔR/R between 300 and 400 s (n = 3). (d) Acetylcholine 

presentation of ~2.5 s (red trace) to M1-CNiFERs leads to opposing responses in cyan (475 

nm) versus yellow (530 nm) fluorescence. The response initiates within 2 s with a full-width 

half maximal response of ~ 7 s (n = 5). (e) Two M1-CNiFER FRET-based responses to 100 

nM acetylcholine can be discriminated with an interstimulus interval of 6 s or longer (n = 3). 

(f) Dose-response of M1-CNiFERs (cyan) and control-CNiFERs (red) to a subset of 

endogenous neurotransmitters: acetylcholine (ACh), vasoactive intestinal peptide (VIP), 

norepinephrine (NE), and dopamine (DA) (n = 5). (g) Summary of screening data at 

physiologically relevant concentrations reveals that M1-CNiFERs respond with greatest 

amplitude to acetylcholine, while control-CNiFERs are non-responsive to acetylcholine (n = 

3 – 5). All bars are standard errors.
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Figure 2. In vivo characterization of acutely implanted M1-CNiFERs
(a) Stimulating electrodes are implanted in NBM to recruit the cortical afferent cholinergic 

system, and electrocorticogram wires are placed to detect NBM-evoked cortical activation 

(Methods in Supplemental Material). M1-CNiFERs and control-CNiFERs are implanted in 

separate columns in neocortex, where cholinergic terminals are widely distributed, and 

imaged acutely or chronically using two-photon laser scanning microscopy. To the right, a 

two-photon microscopy image of M1-CNiFERs (cyan) and control-CNiFERs (red) 

implanted in rat motor cortex in 25 – 50 μm diameter columns. Data represent a Z-projection 

from 40 – 60 μm below the cortical surface. There are ~ 10 – 20 CNiFER cells per site in 
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this field of view. (b) M1-CNiFER FRET responses (lower) and ECoG activity (upper) 

evoked by increasing levels of NBM electrical stimulation. Cortical activation appears as a 

shift from large to small amplitude waves. Control-CNiFERs are non-responsive. (c) M1-

CNiFER response to NBM stimulation is strongly correlated to loss of power in the 

electrocorticogram δ-band, quantified as the Z-score normalized logarithm of the reciprocal 

of the power, -log[power in ECoG δ-band], for each animal (Methods; Supplemental 

Material). CNiFER responses are defined as the area under the curve of ΔR/R for 10 s after 

the stimulus normalized to that of 10 s before the stimulus (n = 55 trials with 4 animals). (d) 
Subcutaneous physostigmine salicylate at 200 μg/kg enhances the amplitude and duration of 

M1-CNiFER response to NBM stimulation. The response disappears by ~ 8000 s. Data in 

bottom trace represent the fractional change of 1/3 the area under the curve of ΔR/R for 30 

seconds after the stimulus as compared to that of 10 s before the stimulus. Top traces are 

examples of raw data used to calculate bottom trace; NBM stimulation occurs every 300 s 

and vehicle in PBS (n = 3). (e) Subcutaneous physostigmine salicylate at 300 μg/kg causes 

an increase in baseline M1-CNiFER FRET fluorescence over ~ 8000 s. This appears to 

result from modulation of background levels of acetylcholine in cortex. M1-CNiFERs 

(cyan) and control-CNiFERs (red) measured as an average over 10 s every 300 s (top). All 

measurements are normalized to first 3 measurements before vehicle injection, and not to 

internal baselines, thus preserving the tonic response. Data from 4 consecutive 300 s epochs 

for each animal (n = 4), and plotted in black at each time point (bottom). All bars are 

standard errors.
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Figure 3. Chronic implantation of CNiFERs
(a) Chronically implanted M1- and control-CNiFER sites are shown on the left, a X-Z time 

series from the M1-CNiFERs in response to a single-train NBM stimulation is shown in the 

center and the average intensity (mean ± standard error; n = 4 animals) of the M1-CNiFER 

response as a function of depth is shown on the right. (b) Electrocorticogram and FRET 

responses in M1- and control-CNiFERs in response to NBM stimulation; 300 ms train of 

300 μA pulses (Methods; Supplemental Material). (c) Atropine antagonism. Left traces: M1-

CNiFER responses to single-train NBM stimulation are inhibited by reverse dialysis of 

intracortical atropine sulfate. Bar graph: average peak inhibition of CNiFER response due to 

Nguyen et al. Page 18

Nat Neurosci. Author manuscript; available in PMC 2014 April 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1 – 5 μM atropine (23 ± 4 %) (n = 4 rats) or 100 μM atropine (87 ± 16 %) (n = 3 rats). (d) 
Temporal resolution of acutely implanted M1-CNiFERs. Top pane: stimulation protocol. 

Traces: Each trace represents the mean response of M1-CNiFERs to two consecutive 

stimulations of NBM (n = 5 for each condition, repeated over 3 animals). (e) Response of 

M1-CNiFERs versus stimulation current. Top pane: stimulation protocol. Graph: average 

M1-CNiFER response normalized to that at 500 μA (n = 6 rats). (f) Response versus 

duration of the stimulation train. Top pane: stimulation protocol. Graph: average M1-

CNiFER response normalized to that at 500 ms (n = 6 rats). The black curves in (e) and (f) 

are visual aids.
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Figure 4. In vivo pharmacology of chronically implanted M1-CNiFERs
(a) Olanzapine intraperitoneal injection at 3 mg/kg suppresses the M1-CNiFER response 

elicited by repetitive NBM stimulation (500 μA; black vertical dashed lines). The M1-

CNiFER response is partially recovered by increasing the amplitude of NBM stimulation (1 

mA; red vertical dashed lines). (b-e) Atypical, but not conventional, antipsychotics suppress 

the M1-CNiFER response elicited by NBM stimulation. Graphs: M1-CNiFER peak response 

normalized to those averaged during vehicle injection; olanzapine at 3-5 mg/kg (n = 4); 

clozapine at 5 mg/kg (n = 4); chlorpromazine at 5 mg/kg (n = 4); and haloperidol at 1 mg/kg 

(n = 3). Grey: vehicle. Black: antipsychotic. (f) Olanzapine, injected i.p. at a dose of 10 

mg/ml, does not elicit a response in M1-CNiFERs while nicotine ditartrate (green), injected 

i.p. at a dose of 1 mg/ml elicits a response. (g) Composite results (n = 4 rats) of the 

maximum response, measured between 120 and 720 s after injection. The response of M1-
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CNiFERs to nicotine is significantly greater than that for controls, while the response of M1-

CNiFERS to olanzapine is at chance. **Significantly different values by t-test (p < 0.05).
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