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Excitation spectra of aromatic molecules within a real-space GW -BSE formalism:
Role of self-consistency and vertex corrections
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We present first-principles calculations on the vertical ionization potentials (IPs), electron affinities (EAs), and
singlet excitation energies on an aromatic-molecule test set (benzene, thiophene, 1,2,5-thiadiazole, naphthalene,
benzothiazole, and tetrathiafulvalene) within the GW and Bethe-Salpeter equation (BSE) formalisms. Our
computational framework, which employs a real-space basis for ground-state and a transition-space basis for
excited-state calculations, is well suited for high-accuracy calculations on molecules, as we show by comparing
against G0W0 calculations within a plane-wave-basis formalism. We then generalize our framework to test
variants of the GW approximation that include a local density approximation (LDA)–derived vertex function
(�LDA) and quasiparticle-self-consistent (QS) iterations. We find that �LDA and quasiparticle self-consistency
shift IPs and EAs by roughly the same magnitude, but with opposite sign for IPs and the same sign for EAs.
G0W0 and QSGW�LDA are more accurate for IPs, while G0W0�LDA and QSGW are best for EAs. For optical
excitations, we find that perturbative GW -BSE underestimates the singlet excitation energy, while self-consistent
GW -BSE results in good agreement with previous best-estimate values for both valence and Rydberg excitations.
Finally, our work suggests that a hybrid approach, in which G0W0 energies are used for occupied orbitals and
G0W0�LDA for unoccupied orbitals, also yields optical excitation energies in good agreement with experiment
but at a smaller computational cost.

DOI: 10.1103/PhysRevB.94.085125

I. INTRODUCTION

Green’s function methods, such as the GW approximation
and the Bethe-Salpeter equation (BSE), are most commonly
used in the calculation of one- and two-particle excitations
in condensed matter, but have been increasingly applied in
the study of molecules. The GW approximation allows one
to solve for the interacting one-particle Green’s function,
whose poles are associated with vertical ionization potentials
(IPs) and electron affinities (EAs). The BSE, on the other
hand, allows one to construct an interacting two-particle
correlation function from previously determined one-particle
Green’s functions; the poles of the two-particle Green’s
function are associated with neutral excited states such as
those observed in optical and electron energy loss experiments.
The computational efficiency of these methods enables the
simulation of excited-state properties in large molecules and
clusters, and the benchmarks across a variety of sp-bonded and
transition-metal oxide molecules are now available [1–24].

In theory, intrinsic IPs and EAs can be determined exactly
from the one-particle Green’s function by fully solving
Hedin’s equations [25]. Similarly, it is possible to obtain
exact neutral excitations by solving the BSE, starting from the
exact one-particle Green’s functions and including the exact

*linda.hung@nist.gov
†ogut@uic.edu

electron-hole interaction kernel. Unfortunately, obtaining the
self-consistent solution to Hedin’s equation is computationally
infeasible. As is discussed in Sec. II A, the GW approximation
is commonly used instead, where the three-point vertex func-
tion � is changed to a computationally tractable Dirac delta
function. A second approximation arises when GW equations
are not solved self-consistently, but are instead computed as a
perturbation to a mean-field solution, e.g., Kohn-Sham density
functional theory (DFT) or Hartree-Fock. As a result, GW and
GW -BSE benchmarks exhibit errors that have been primarily
attributed to some combination of the vertex approximation
and the non-self-consistency of their solutions.

In addition, the accuracy of first-principles results is
affected by the numerical framework of the calculation. For
molecules, this is highlighted by the difficulty in representing
resonant and continuum unoccupied orbitals. Even a small iso-
lated molecule has excitations involving diffuse and unbound
orbitals with large spatial ranges. Therefore, any numerical
approximation associated with the choice of basis set must
be carefully weighed against the overall computational cost,
whether a simulation applies a local atomic orbital basis set,
periodic boundary conditions, or confined boundary conditions
(where the wave function amplitudes are set to zero at and
beyond the boundary).

In this work, we explore the numerical and theoretical con-
tributions to the performance of the GW approximation and
the BSE on an aromatic-molecule test set. The molecules, com-
prising benzene (C6H6), thiophene (C4H4S), 1,2,5-thiadiazole
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(C2H2N2S), naphthalene (C10H8), benzothiazole (C7H5NS),
and tetrathiafulvalene (TTF, C6H4S4), have applications as
building blocks in modern functional materials such as organic
semiconductors and organic frameworks. The test set includes
orbitals with σ , π , lone pair, and continuum character, whose
differing physical characteristics provide a diverse set of
challenges to our first-principles methods. We check the
numerical convergence of occupied and low-lying unoccupied
orbitals by comparing calculations on a real-space grid with
confined boundary conditions, which use a transition-space
basis for excited-state calculations [26,27], to computations on
a plane-wave basis in repeated supercells with periodic bound-
ary conditions [28,29]. We then use the real-space framework
to examine how the vertex function and self-consistency affect
the accuracy of GW predictions, benchmarking GW energies
at four levels of theory: G0W0, G0W0�LDA, QSGW , and
QSGW�LDA. Perturbative “one-shot” calculations are denoted
by G0W0 and G0W0�LDA, and quasiparticle-self-consistent
(QS) [30] GW calculations are denoted by QSGW and
QSGW�LDA; �LDA indicates the inclusion of a local density
approximation (LDA)–derived vertex in the calculation [31].
The energies of singlet (optical) excitations are computed by
solving the BSE based on results from each level of GW

theory. Time-dependent DFT (TDDFT) calculations with the
adiabatic LDA exchange-correlation functional, denoted by
TDLDA, are presented as well. All calculations in this work
start from the same mean-field electronic structure: DFT with
the LDA exchange-correlation functional.

We begin this article with an overview of the GW approxi-
mation of the one-particle Green’s function, and the BSE solu-
tions of the two-particle correlation function. We then describe
the computational setup for our calculations and validate the
numerical accuracy of our combined real- and transition-space
implementation of the GW approximation by comparison
to calculations with a fully plane-wave framework. Finally,
we benchmark the accuracy of one-particle Green’s functions
obtained at various levels of GW theory, as well as the BSE
predictions built upon these Green’s functions, and discuss
the effects of the vertex function and self-consistent GW on
predictions of IPs, EAs, and neutral singlet excitation energies.

II. THEORY

A. One-particle Green’s function

The one-electron excitation spectrum, associated with the
removal or addition of an electron to a system, can be obtained
from the one-particle Green’s function G. When the chemical
potential is set at the vacuum level, quasiparticle energies
are given by εi , the positions of the poles of G. IPs are
predicted by −εi for quasiparticles corresponding to the energy
needed to remove electrons (from occupied states), while EAs
are predicted by −εi for quasiparticles corresponding to the
energy gained by the system when adding an electron (to
unoccupied states). Note that we use somewhat unconventional
terminology: IP indicates the binding energy for any electron
in the neutral molecule (not just the most loosely bound
electron), and EA indicates the energy released when adding an
electron to any unoccupied orbital (not just the lowest-lying
unoccupied orbital); i.e., IPs are the excitation energies of
creating quasiholes, and EAs are the excitation energies of
creating quasielectrons.

For spatial coordinates r, r′, r′′ and energy ω, G satisfies
the equation of motion

[ω − H0(r)]G(r,r′,ω) −
∫

d3r′′��(r,r′′,ω)G(r′′,r′,ω)

= δ(r,r′), (1)

where δ is the Dirac delta function and

H0 = − 1
2∇2 + VH (r) + V0(r) (2)

is a mean-field Hamiltonian composed of the kinetic energy
operator, the Hartree (Coulomb) potential VH , and a local
external potential V0. Contributions to the external potential
can include the ionic potential and a mean-field exchange-
correlation potential, and �� is the difference between the
self-energy � and the exchange-correlation contribution from
H0. For the specific case of a DFT-LDA mean-field Hamil-
tonian with corresponding exchange-correlation potential Vxc,

��(r,r′,ω) = �(r,r′,ω) − Vxc(r)δ(r,r′). (3)

The mean-field Green’s function G0 that corresponds to
the solution of Eq. (1) when �� = 0 is used in the Dyson
equation for G,

G(12) = G0(12) +
∫

d(34)G0(13)��(34)G(42), (4)

in which space-time variables are expressed in many-body
notation: 1 ≡ (r1,t1). To obtain the interacting one-electron
Green’s function, the Dyson equation above can be solved
self-consistently with the following equations:

χ (12) = −i

∫
d(34)G(13)�(34,2)G(41+), (5)

W (12) = VH (12) +
∫

d(34)VH (13)χ (34)W (42), (6)

�(12) = i

∫
d(34)G(13)W (41+)�(32,4), (7)

and

�(12,3) = δ(12)δ(13) +
∫

d(4567)
δ�(12)

δG(45)

×G(46)G(75)�(67,3), (8)

where χ is the polarizability, W is the screened Coulomb
interaction, � is the vertex function, and 1+ denotes that t →
t + δ for some positive infinitesimal δ.

In the GW approximation [25], the one-particle Green’s
function is still solved via Eqs. (4)–(7), but the vertex function
is approximated as

�(12,3) = δ(12)δ(13). (9)

This approximation removes the need to evaluate a four-point
integral and is equivalent to expanding the Green’s function to
the first order in terms of the screened Coulomb interaction.

Apart from this conventional GW approximation, other
approximate vertex functions have been derived to include
certain higher-order terms [32–40] or to reflect the response
of density functionals [31,41–47]. In the density functional
approach, the polarizability [Eq. (5)] is expressed within
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TDDFT. A consistent level of approximation is maintained
by replacing Eq. (8) with

�(12,3) = δ(12)δ(13) − iδ(12)fxc(1)

×
∫

d(45)G(14)G(51+)�(45,3), (10)

where the expression above assumes that the exchange-
correlation kernel fxc = δVxc

δρ
is local. This is the form of the

LDA-derived vertex (�LDA) used in this work. While past
results indicate that �LDA is still a rough approximation for
the true vertex, and the relative energy level spacings are
unchanged by �LDA [31,48], here we apply �LDA to benchmark
the absolute accuracy for quasiparticle energies.

In addition to the vertex approximation in GW , a second
approximation is often applied by computing a perturbative
result (G0W0) instead of a self-consistent one; only one
cycle through the equations above is added onto the initial
mean-field approximation. The choice of the starting mean-
field picture therefore impacts the accuracy of the G0W0

prediction, as reflected in several benchmarks of molecular
systems [8,11,21]. Compared to G0W0, self-consistent GW

solutions have certain advantages, including starting-point
independence, fulfillment of energy and momentum con-
servation laws, and consistent values for observables when
using different partitioning functions [49]. Self-consistent GW

therefore produces good results when studying ground-state
properties [50–53]. The spectral properties of extended sys-
tems, however, appear to be poorly described by self-consistent
GW , with band energies worse than perturbative calculations
and valence bandwidth too large [50,53,54]. These self-
consistent results demonstrate the full impact of approximating
the vertex function in extended systems; perturbative GW

results for spectral properties apparently benefit from some
counteracting effects between the vertex function and self-
consistency [35,36]. On the other hand, self-consistent GW

appears to be better suited to describing spectral properties
for finite systems such as atoms and molecules. In several
examples with atom-centered basis sets, the accuracy of self-
consistent GW is competitive with G0W0 predictions using
Hartree-Fock and hybrid functional mean-field starting points
[2–5,10,13,15,17,22,24,52,55]. However, recent results for
fully self-consistent GW on a plane-wave basis set report
slightly larger errors [19]. Overall, self-consistent GW pushes
the IPs upward compared to G0W0 with a DFT starting point,
and it shifts IPs slightly downward when using a Hartree-Fock
starting point.

Interpreting these varying benchmarks for self-consistent
GW is complicated due to additional approximations in the
implementation of self-consistency. Many calculations use
eigenvalue self-consistency or the “diagonal approximation,”
where quasiparticle wave functions remain fixed as the mean-
field wave functions. For fully self-consistent and QSGW ,
however, the wave functions are optimized as well. In QSGW

[30], the GW self-energy is used to construct a better
approximation for the mean-field effective potential Vxc(r,r′)
[generalizing Eqs. (2) and (3)], which is in turn used to
build a new set of mean-field Green’s functions. Using the
new Green’s functions, the cycle (including updates to W ) is
repeated until self-consistency is reached between the mean-

field and the new G0W0 Green’s functions. The accuracy of
QSGW and fully self-consistent GW appear to be comparable
for molecules [15], and in this work, we study self-consistency
in the form of QSGW .

B. Two-particle correlation function

The two-particle correlation function L associated with the
interacting two-particle Green’s function is the solution to
the BSE, and can be used to understand response functions
associated with neutral excitations. In its spectral form, L is
written in terms of normalized eigenvectors Al and poles at
energy �l , which can be associated with optical excitation
energies. As a result, the absorption cross section σ (E) is
expressed in terms of these quantities by summing over the
eigenvectors index l and Cartesian directions β = {x,y,z}:

σ (E) = 8π2e2

3c

∑
l β

[
�l

(∫
drρl(r)β

)2

δ(E − �l)

]
, (11)

with

ρl(r) =
∑
vc

ϕc(r)ϕv(r)Al
vc, (12)

where ϕc and ϕv are the wave functions associated with the
quasiparticles that make up the exciton.

The BSE can be cast into a Dyson equation for L as

L(12,34) = L0(12,34) +
∫

d(5678)L0(12,56)

×K(56,78)L(78,34), (13)

where

L0(12,34) = G(13)G(24), (14)

with G being the one-particle Green’s function. The electron-
hole interaction kernel can be expressed as

K(56,78) = VH (57)δ(56)δ(78)+
δ�(56)

δG(78)
. (15)

For computational efficiency, the energy dependence of K

is typically left out of standard GW -BSE calculations, and we
do the same in this work. Physically, the screening should be
evaluated at the frequency corresponding to that of the exciton
binding energy, which is in general a small fraction of the
excitation energy of the molecule. Therefore, the use of static
screening is a good approximation. Dynamical effects also
appear to be canceled by high-order vertex corrections left out
of standard GW [56,57].

Finally, from the equations above, we see that the quality
of the two-particle correlation function obtained from the BSE
is completely dependent on the quality of G as well as the
approximations to the kernel. In the GW -BSE formalism
[41,58], G is determined via the GW approximation. We
also note that TDDFT calculations can be viewed in a BSE
framework. In Casida’s equations for linear-response TDDFT
[59], G is constructed from Kohn-Sham DFT wave functions
and energies (instead of GW quasiparticle wave functions
and energies), and δ�(56)

δG(78) ≡ fxc. Further similarities between
GW -BSE and TDDFT have been discussed in Ref. [60].
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III. COMPUTATION

A. Real-space vs plane-wave implementations

The first-principles results presented in this work are
computed using a real-space discrete grid and transition-space
formalism for ground-state and excited-state calculations,
respectively, and are validated by comparison to G0W0 calcu-
lations using a plane-wave basis set formalism. For all calcula-
tions, Kohn-Sham DFT-LDA is the mean-field starting point,
and molecular geometries are optimized in PARSEC [26].
In addition, all calculations use the same Trouiller-Martins
norm-conserving pseudopotentials generated within APE [61].
Although the pseudopotential approximation neglects core
polarization effects and core-valence interactions, we expect
the associated errors to be small on our particular test set
(<100 meV error), since core electrons are tightly bound [62].
Additional information about pseudopotential and molecular
geometries are available in our Supplemental Material [89].

Since real-space and plane-wave calculations are performed
at the same level of theory, the comparison of their G0W0

energies allows us to quantify the error associated with any
remaining differences in their numerical implementations. As
is explained in this section (and summarized in Table I), this
includes not only choice of basis, but also the expressions for
integrating the GW self-energy, techniques for accelerating
the sum-over-states convergence, and methods to solve for
the quasiparticle energy. We would like to emphasize that the
algorithms employed in conjunction with the real-space and
plane-wave implementations are not necessarily imposed by
the given basis set; some are chosen because they are the best
available option in each software package.

For our combined real-space, transition-space studies, we
perform Kohn-Sham DFT calculations with PARSEC [26] and

excited-state calculations with RGWBS [27]. Wave functions
are defined on a uniform grid within a sphere, and the
converged grid spacing is 0.3 bohrs. Due to the confined
boundary conditions, simulation cells must be sufficiently
large to avoid spurious interactions with the boundary walls.
We find that the wave functions of the lowest unoccupied
molecular orbitals (LUMOs) and all occupied orbitals are
converged within 10 meV for simulation cells that have
radii of 12 bohrs for single-ring molecules, or 14 bohrs for
double-ringed molecules.

For calculations in the plane-wave basis, we perform
ground-state Kohn-Sham DFT calculations using Quantum
ESPRESSO [28] and excited-state calculations with Berke-
leyGW [29]. Due to the periodic nature of plane-wave basis
sets, we need to carefully consider the spurious interactions
between repeated supercells. Interactions arising at the GW

level are removed by numerically truncating the Coulomb
potential [29]. For this truncation scheme to be accurate, our
simulation cell must be at least twice as big in each Cartesian
direction as the region which contains the molecule. We first
perform our ground-state DFT calculation on a large unit
cell to find the rectangular cuboid which contains a large
fraction (99%) of the ground-state charge density. We then
double this cuboid in each direction and use it as our unit
cell. For such unit cells, however, we also need to account
for the almost-rigid shift in the Kohn-Sham eigenvalues due
to the spurious interactions between repeated supercells. To
accurately determine the energies with respect to the vacuum
level, we subtract the electrostatic potential averaged at the
surface of the supercell from the mean-field eigenvalues, which
leads to a rigid shift of the quasiparticle energies by about
500 meV. We then repeat this procedure on unit cells that

TABLE I. Comparison of real-space (second column) and plane-wave (third column) frameworks for the GW calculations performed in
this work. Wave functions in the real-space basis are represented on a sphere of radius R with grid spacing hgrid, while wave functions in the
plane-wave basis are described in cuboid boxes of sizes Li and with plane-wave cutoff energy E

ψ
cut. We denote by N the overall system size, by

Ntot the index of the highest-energy Kohn-Sham state included in GW summations, by Nfreq and E
χ
cut the number of frequencies and the cutoff

for plane-wave coefficients that represent the dielectric matrix, respectively, and by �E the energy spacing between two evaluations of �(E).

Mean-field calculation: EDFT, ψDFT

Software PARSEC Quantum ESPRESSO
Boundary conditions Confined:ψ(rb) = 0 Periodic: in phase (k = 0)
Wave-function basis Real-space grid Plane waves

GW calculation: �, G, W

Software RGWBS BerkeleyGW
Spatial basis for χ Orbitals Plane waves
Dynamical description of χ Lehmann/spectral representation Explicit calculation at various frequencies
� integration Sum over all poles Contour deformation formalism
Quasiparticle energy solver Cubic spline interpolation (�E = 1 eV) Linear spline interpolation (�E = 0.2 eV)
Computational scaling O(N6) O(N4)
Memory scaling O(N4) O(N4)

Parameters

Size of simulation region R = 12–20 bohrs L = 15–35 bohrs
Wave-function convergence hgrid = 0.30 bohrs E

ψ
cut = 800–1 000 eV

Max. number of states incl. (Ntot) Ntot � 3166 Ntot � 160 000
Energy of last state incl. (Elast

DFT) Elast
DFT ≈ 90 eV Elast

DFT = E
ψ
cut

Polarizability basis Transitions among all states � Ntot E
χ
cut = 200–350 eV, Nfreq = 25–100
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are twice and three times as large, with the largest supercells
correcting the quasiparticle energies by an amount that ranges
from 0 up to 70 meV, depending on the molecule. We obtain
final Kohn-Sham eigenvalues via extrapolation and estimate
that the corrected eigenvalues for occupied states are accurate
to within 10 meV.

For both the real-space and plane-wave frameworks, Eq. (1)
is represented in terms of quasiparticle quantities:[− 1

2∇2 + VH (r) + V0(r) + ��
(
E

QP
j

)]
ψ

QP
j = E

QP
j ψ

QP
j , (16)

where E
QP
j is the energy and ψ

QP
j is the wave function

of a quasiparticle in state j . The solution to the above
equation requires the evaluation of the GW self-energy at
E

QP
j , which appears on both sides of the above equation but

is not known a priori. In RGWBS, we explicitly compute
�(E) in an energy range from 10 eV below to 10 eV above
each Kohn-Sham eigenvalue (21 points total per eigenvalue,
with an energy spacing �E = 1 eV), and use a cubic spline
interpolation of �(E) to solve for E

QP
j [27]. In BerkeleyGW,

we first obtain an approximation E
QP-HL
j to the quasiparticle

energy using the Hybertsen-Louie generalized plasmon-pole
model [41]. We then evaluate �(E) on 9 distinct points
per eigenvalue in an energy range from 0.8 eV below and
above E

QP-HL
j , where successive evaluations are separated

by an energy of �E = 0.2 eV. The quasiparticle energy
E

QP
j is found by performing a piecewise linear interpolation

of �(ω). The numerical difference between the RGWBS
and BerkeleyGW quasiparticle energy solvers due to these
differences is expected to be minimal, since the self-energy
has a nearly linear slope near the quasiparticle energy.

The expression for the GW self-energy � at a fixed energy
is given by Eq. (7). While the numerical representation of
W varies depending on the choice of integration technique
(described below), the Green’s function in the integrand is
expressed as

G(r,r′; E) =
∑

n

ϕn(r)ϕn(r′)
E − εn + i0+sgn(εn − εF )

, (17)

where ϕn are wave functions, εn are energies of the quasipar-
ticle states used to construct G, and εF is the Fermi energy.
The sum over n converges very slowly with respect to the total
number of states, and is one of the primary bottlenecks for
GW computations.

In the GW calculations performed with the RGWBS code,
the integral for � is split into a bare (Fock) exchange term and
a correlation term. The computation of these terms requires
a summation over the poles of G (sum over states) as well
as the poles of the polarizability [27]. In BerkeleyGW, while
calculations still involve a sum over states, the polarizability
is stored in the form of dielectric matrix εGG′ , and its full
dynamical effects are computed via the contour deformation
technique [63,64]. By eliminating the explicit summation of
poles in the polarizability, the formal computational scaling
is reduced from O(N6) to O(N4). Nevertheless, we observe
that RGWBS is faster than BerkeleyGW for the molecules in
our test set. This is due to a smaller computational prefactor,
most likely arising from the efficient spectral representation of
the polarizability matrices for small molecules, but becomes

prohibitively expensive for extended systems with a continuum
of transitions.

Also, in the calculations performed with BerkeleyGW, we
find that some quasiparticle solutions lie very close to poles of
the self-energy and are thus sensitive to the convergence of the
dielectric matrix. These states also tend to move away from
these poles during self-consistent GW calculations or when
starting the G0W0 calculations from a different mean-field
theory [65]. Therefore, we have not reported the plane-wave
G0W0 energies of these states. However, these numerical insta-
bilities are not observed in RGWBS calculations, either due to
the different frequency representation of the polarizability ma-
trix, or due to differences in the resonant and continuum states,
which affect the higher-energy part of the polarizability matrix.

Both RGWBS and BerkeleyGW exploit techniques that
improve convergence and reduce the total number of states
needed in their sums over states. In RGWBS, we add a correc-
tion based on half the static Coulomb-hole screened exchange
(COHSEX) to approximate the remainder of a truncated sum
over quasiparticle states [66–68]. To accelerate convergence
of the sum-over-transitions (poles of the polarizability),
we compute the self-energy at various levels of convergence
[Nstates satisfying EDFT(Nstates) = {20,30, . . . ,90} eV where
EDFT(Nstates) is the Kohn-Sham DFT eigenvalue of the highest-
energy state included in the G and polarizability summations],
and obtain a weighted 1/Nstates extrapolation for a best estimate
of numerically converged GW self-energies [68–70]. The
extrapolation produces IPs 50–100 meV larger than the most
converged calculation. Note that while we choose the same
cutoff of Nstates for both the calculation of the polarizability
and the sum over states, different cutoffs can be applied to
these separate summations.

While performing excited-state calculations with Berke-
leyGW, we noticed that it is possible to combine several
high-energy orbitals having energies about 2% apart from
each other into single, unnormalized states for the summation
over states. This introduces an error of at most 15 meV, while
dramatically speeding up the GW calculations. We note that a
similar scheme was also recently proposed by Gao et al. [71].
Since we include the full Hilbert space in the sum over states,
for both the calculation of the self-energy and the dielectric
matrix, the main convergence parameter for our plane-wave
GW calculations is the energy cutoff |G|2 of εGG′ . We estimate
that the quasiparticle energies calculated using a cutoff of
20 Ry for the dielectric matrix are converged to within 90 meV.
We also perform GW calculations at smaller cutoffs of 15 and
17 Ry and extrapolate the quasiparticle energies as a function
of the energy cutoff, which gives accurate extrapolated
energies to within approximately 10 meV. For the contour
deformation sampling of the polarizability, we find that 15
imaginary frequencies, as well as a set of real frequencies
spaced by 250 meV, are sufficient to sample the dielectric
matrix and converge most GW quasiparticle energies to within
15 meV. For the reported quasiparticle states, we estimate their
absolute energies are converged to within 50 meV.

B. DFT and G0W0 comparison

For the real-space and plane-wave basis sets, we match
orbitals according to their wave function symmetry and find
that the mean-field DFT-LDA energies are in good agreement
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TABLE II. Comparison of EAs in eV, as predicted by real-
space DFT (PARSEC) and transition-space G0W0 (RGWBS), and
plane-wave DFT (Quantum ESPRESSO, denoted by QE) and G0W0

(BerkeleyGW). The symmetry of each unoccupied orbital is indicated
by σ ∗, π∗, or Rydberg 3s. TTF is in “boat” form, deviating slightly
from the planar geometry such that orbitals are not purely σ or π .

DFT-LDA G0W0@LDA

Orbital PARSEC QE RGWBS BerkeleyGW

Benzene
1e2u (π∗) 1.35 1.36 −0.84 −0.86
4a1g (3s) 0.20 0.76 −1.37 −0.25

Naphthalene
2b1g (π∗) 2.26 2.26 0.38 0.37
2b2g (π∗) 1.51 1.51 −0.31 −0.33
3b3u (π∗) 0.76 0.74 −1.11 −1.11
10ag (3s) 0.29 0.77 −1.05 −0.17

Thiophene
4b1 (π∗) 1.50 1.51 −0.69 −0.69
8b2 (σ ∗) 0.14 0.31 −1.93 −1.33
2a2 (π∗) −0.19 −0.18 −2.38 −2.34
12a1 (3s) 0.11 0.65 −1.34 −0.25

Thiadiazole
4b1 (π∗) 2.86 2.87 0.62 0.54
8b2 (σ ∗) 0.96 0.98 −1.40 −1.34
2a2 (π∗) 0.66 0.67 −1.67 −1.66
12a1 (3s) 0.19 0.71 −1.23 −0.23

Benzothiazole
7a′′ (π∗) 2.26 2.27 0.34 0.32
8a′′ (π∗) 1.58 1.59 −0.33 −0.34
30a′ (σ ∗) 0.91 0.98 −0.99
9a′′ (π∗) 0.71 −1.20
31a′ (3s) 0.22 −1.06

TTF
17a1 1.79 1.80 −0.15 −0.09
12b2 1.60 1.60 −0.32 −0.29
12a2 1.22 1.22 −0.67 −0.59
15b1 0.98 0.99 −0.62 −0.56
13b2 0.69 0.73 −1.23
16b1 0.46 0.62 −1.26
18a1 (3s) 0.37 0.79 −0.95 −0.17

with each other. The two frameworks predict eigenvalues that
deviate no more than 12 meV for our benchmark test set,
which includes the LUMOs (which are bound by DFT-LDA)
and occupied orbitals with experimental IPs that are less
than 15 eV. We also assess additional low-lying unoccupied
orbitals that DFT-LDA predicts to be bound (Table II). For the
localized unoccupied orbitals (σ ∗ and π∗), energy differences
are typically less than 20 meV; however, diffuse orbitals with
Rydberg (3s) character have eigenvalues that may differ by
more than 500 meV between the two frameworks. We also
observe that certain unbound orbitals, such as the 2a2 orbital
of thiophene, are also highly localized.

At the G0W0 level of theory, differences between energies
remain minimal: frontier (highest occupied and lowest unoc-
cupied) orbitals differ by no more than 80 meV, and IPs are in
good agreement (Fig. 1), with only five IPs differing by more
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FIG. 1. Error of the IPs of all molecules predicted via G0W0,
relative to experiment [72–77]. Black circles are computed using
RGWBS (real-space framework) and orange squares are computed
using BerkeleyGW (plane-wave framework).

than 100 meV in the entire test set despite the different basis
sets and numerical techniques. For the energies corresponding
to adding an electron to low-lying unoccupied orbitals, those
that are converged with respect to simulation cell size at
the DFT-LDA level also have comparable G0W0 energies
(Table II). However, the energies of those affected by the
boundary conditions diverge even more at the G0W0 level.
At an extreme, G0W0 predictions of some EAs for Rydberg s

orbitals differ by more than 1 eV.
These benchmarks of plane-wave GW calculation im-

plemented in BerkeleyGW, compared to real-space GW

implemented in RGWBS, confirm that numerical errors for
GW predictions are minimal in both frameworks, as long as
the orbitals studied are unaffected by boundary conditions at
the DFT level of theory. With this validation, we expect that
GW energies are numerically converged to within 100 meV for
localized orbitals and proceed with a quantitative assessment
of excitations between such orbitals; we qualitatively study
trends for excited state properties involving continuum or
Rydberg states.
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C. Additional computational details

In the remainder of this work, we examine how the
computed vertical IPs, EAs, and singlet excitation energies are
affected by self-consistency and the choice of vertex function
in GW using the RGWBS code. While we focus on trends for
the predicted accuracy of each method, tables containing com-
puted energies and symmetries of quasiparticles and singlet
excitations are available in our Supplemental Material [89].

For any calculation including �LDA, we maintain a con-
sistent level of approximation. Specifically, LDA exchange-
correlation contributes to both the screened Coulomb inter-
action and the self-energy for G0W0�LDA and QSGW�LDA

calculations, and the BSE kernel associated with one-particle
Green’s functions that use �LDA also has a LDA-derived
term [27].

QSGW and QSGW�LDA calculations include a basis of
quasiparticles up to DFT energies of at least 10 eV (∼ 90 states
for the molecules considered). Calculations are performed
summing over states up to DFT energies of 40 eV, and the
difference in energy compared to the perturbative calculation
(G0W0 or G0W0�LDA at the 40 eV sum-over-states cutoff)
is added to the best-estimate perturbative extrapolation to
produce best-estimate QS quasiparticle energies. QS quasipar-
ticles of most molecules are optimized until energy differences
are less than 10 meV, except for benzothiazole and TTF, which
are only optimized to 80 and 50 meV, respectively.

The TDLDA and BSE calculations are converged within
100 meV when summing over all orbitals up to Kohn-
Sham DFT energies of 20 eV. For both TDLDA and BSE
calculations, we do not use the Tamm-Dancoff approximation.

IV. GW AND BSE BENCHMARKS

A. Vertical IPs and EAs

The G0W0 IPs shown earlier in Fig. 1 indicate good
agreement with experimental measurements. We now examine
whether GW calculations are affected by the physical charac-
ter of the orbitals. In our aromatic molecule test set, benzene,
naphthalene, thiophene, 1,2,5-thiadiazole, and benzothiazole
all have orbitals with purely σ or π character. However, for
TTF, we study the “boat” form, whose small deformation
from the aromatic planar geometry prevents the existence of
delocalized π orbitals.

On this test set, we see no correlation between the errors of
G0W0-predicted IPs and the type of the orbitals. In contrast,
we do observe differences in the magnitude of the GW

correction, as has also been noted in some previous studies
of molecules [6,10]. (Similar observations of orbital character
dependence of the self-energy corrections were also found in
condensed matter systems [41].) The self-energy corrections
obtained from G0W0 and starting from DFT-LDA are shown
in Fig. 2. For aromatic molecules, corrections for σ (including
lone-pair) orbitals are all larger than corrections for π orbitals,
while TTF does not exhibit any partitioning. The difference
between GW corrections for occupied π and σ orbitals persists
across the variants of GW in our study, although we note
that similar trends do not apply to unoccupied σ ∗ and π∗
orbitals. This reflects a systematic error of the DFT-LDA
mean-field starting point: while DFT-LDA underbinds all

 2.0

 2.5

 3.0

 3.5

 4.0

BNZ NPH THP THD BZT TTF

ε D
FT

 - 
ε G

0W
0 

(e
V

) σ
π

FIG. 2. GW self-energy corrections to Kohn-Sham DFT eigen-
values for benzene (BNZ), naphthalene (NPH), thiophene (THP),
1,2,5-thiadiazole (THD), benzothiazole (BZT), and TTF. The shifts
for orbitals with π character are in black, and shifts for all other
orbitals (σ or lone pair character) are shown in cyan. The “boat” form
of TTF is not aromatic and its self-energy corrections (dark blue)
cannot be partitioned into two groups as in the other molecules.

occupied orbitals, it is more accurate when modeling the
delocalized π orbitals compared to the localized σ orbitals
in aromatic molecules. In addition, the relatively large range
of GW self-energy corrections results in rearrangements of
the orbital energy orderings when going from DFT-LDA to
GW . The resulting orderings are consistent with the literature.
Perturbative GW does improperly predict that the 3e2u orbital
in benzene is more bound than the 1a2u orbital, but this is
corrected upon application of self-consistency. Apart from this
example and some near-degenerate IPs, there are no changes in
GW -predicted energy orderings due to �LDA and quasiparticle
self-consistency.

The overall effects of �LDA and quasiparticle self-
consistency, in relation to conventional G0W0, are shown in
Fig. 3. Compared to G0W0 IPs, G0W0�LDA predictions are
consistently shifted downward by 0.69 eV (standard deviation
0.05 eV). The IPs predicted by QSGW�LDA also remain
nearly a constant shift below those predicted by standard
QSGW , with a nominal increase of the energy difference to
0.79 eV (standard deviation 0.04 eV). However, quasiparticle
self-consistency, both with and without �LDA, makes the
occupied orbitals more bound compared to the perturbative
calculations. While the first IP is only slightly shifted upward,
deeper orbitals exhibit a greater shift. The separate effects of
the nearly constant shift of eigenvalues after applying �LDA

and the opening of the GW gap upon self-consistency agree
with previous benchmarks mentioned in Sec. II A. Our results
also demonstrate that �LDA and self-consistency still behave
with the same trends when combined in QSGW�LDA as they
do separately.

For the EAs, analogous trends exist for the shifts from
G0W0 with �LDA and self-consistency. G0W0�LDA calcu-
lations give EAs lower than G0W0 by 0.68 eV (standard
deviation 0.04 eV). Because these shifts are nearly identical to
those of the IPs, the fundamental gap is practically unchanged
going from G0W0 to G0W0�LDA. The LUMOs computed
via QSGW�LDA are on average 0.77 eV lower than QSGW

(standard deviation 0.07 eV), again a comparable shift to
the occupied states that results in an essentially unchanged
fundamental gap whether or not the vertex correction is
applied at the self-consistent level. In contrast, quasiparticle
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FIG. 3. Shift of quasiparticle energies from predictions at G0W0,
for GW variants including self-consistency and vertex corrections.

self-consistency increases the fundamental gap by 0.8–0.9 eV,
since in both QSGW and QSGW�LDA, the EAs move in the
opposite direction from IPs and become more negative (less
bound) compared to perturbative results.

Experimental measurements exist for IPs up to 15 eV
in most of the molecules, and we find that of the various
types of GW benchmarked here, G0W0 predictions of IPs
(corresponding to hole-creation quasiparticle energies) still
give the best agreement with experimental measurements,
all lying within 0.6 eV of measured values with a mean
absolute error less than 0.3 eV (Fig. 1 and Fig. 4). Predictions
from G0W0�LDA are too low, consistent with a benchmark
of single atoms [48]. However, upon applying quasiparticle
self-consistency, the increased binding of the quasiparticle
energies results in a switching of the trends: while the QSGW

IPs’ increase from perturbative values results in a decrease in
accuracy, the increase in QSGW�LDA IPs improves agreement
with experiment. Our results concerning self-consistency stand
in contrast to past calculations using atom-centered basis
sets, which suggest that eigenvalue, QS, and fully self-
consistent GW can improve spectral properties for molecules
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FIG. 4. Error for the first IP (top) and the mean absolute error of
orbitals with IPs up to 15 eV (bottom), relative to experiment for each
molecule [72–77].

[2–5,10,13,15,17,22,24,52,55]. At the same time, the system-
atic deterioration in accuracy in our QSGW also differs from
a plane-wave implementation of self-consistent GW , which
does not show a clear trend for increasing or decreasing
accuracy with the same DFT-LDA starting point [19]. We
observe that for self-consistent GW , numerical considerations
such as the choice of a quasiparticle basis for self-consistency,
as well as the basis set chosen to represent wave functions, must
be better understood before a consensus can be reached on the
theoretical accuracy of self-consistent GW for molecules.

There are few measurements available for EAs; those for
benzene and naphthalene are reported in Table III together with
our GW predictions. For these EAs, G0W0�LDA and QSGW

are closest in value. EAs from G0W0�LDA are in particularly
good agreement with CCSD(T), but both are too negative
relative to experiment. It is unclear whether these differences
are due to the difficulties in experimental measurement, or
an inaccurate representation of the unoccupied orbitals in
the calculations. In particular, the CCSD(T) performs the
higher-order corrections on a limited basis set, which may
numerically bind the wave functions, and similarly, our per-
turbative calculations use a DFT-LDA electronic structure, a
theory which overbinds the unoccupied orbitals. Nevertheless,
comparison of G0W0�LDA and QSGW allows us to predict
that the first EA for nearly all the aromatic molecules in
our test set are negative; only 1,2,5-thiadiazole might have a
positive EA.

Altogether, we see that no single variant of GW studied
here is most accurate for both IPs and EAs. For perturbative
calculations, G0W0 is more accurate for IPs, and G0W0�LDA

is more accurate for EAs, while among self-consistent calcu-
lations (which reduce or eliminate starting point dependence),
QSGW�LDA is more accurate for IPs, and QSGW is more
accurate for EAs. This illustrates, with real molecules, an ear-
lier prediction derived from model systems: while a two-point
DFT-derived vertex can alleviate self-screening errors felt by
occupied orbitals, only a three-point vertex can be expected
to treat both occupied and unoccupied orbitals accurately
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TABLE III. First EA in eV with comparison to electron transmission spectroscopy (ETS) measurements [78] and CCSD(T) calculations
[79] when available.

Molecule Orbital ETS CCSD(T) G0W0 G0W0�LDA QSGW QSGW�LDA

Benzene 1e2u (π∗) −1.12 −1.526 −0.84 −1.55 −1.33 −2.12
Naphthalene 2b1g (π∗) −0.19 −0.477 0.38 −0.30 −0.15 −0.93
Thiophene 4b1 (π∗) −0.69 −1.38 −1.17 −1.94
1,2,5-Thiadiazole 4b1 (π∗) 0.62 −0.10 0.07 −0.76
Benzothiazole 7a′′ (π∗) 0.34 −0.35 −0.24 −1.04
TTF 17a1 −0.15 −0.76 −0.74 −1.36

[46]. Nevertheless, we also note that the fundamental gaps of
benzene and naphthalene computed using QSGW (11.01 and
8.61 eV, respectively) and QSGW�LDA (10.98 and 8.57 eV)
are nearly identical to fundamental gaps determined from
experimental IPs and CCSD(T) EAs (10.98 and 8.62 eV).

Our benchmarks show a cancellation between the effects
of vertex corrections and GW self-consistency as reported
in earlier work [35,36,38], except here the cancellation only
exists for the IPs. For EAs, on the other hand, we see that
the vertex and self-consistency effects are still roughly the
same magnitude, but they shift in the same direction from
G0W0 predictions, such that QSGW�LDA compounds their
effects instead of canceling them out. Benchmarks on larger
and more diverse test sets may be able to assess whether
the comparable magnitudes of self-consistency and vertex
corrections are coincidental, or whether they can be attributed
to physical properties of aromatic or sp-bonded molecules.
For now, we simply observe that for the molecules studied,
G0W0 gives IPs closest to experiment, and G0W0�LDA gives
EAs closest to best available theoretical values at a relatively
cheap computational cost.

B. Vertical singlet excitation energies

Singlet excitation energies may be obtained either by
TDLDA or by applying the BSE to GW electronic structures
described in the previous section. In addition to applying
the BSE to perturbative GW and self-consistent GW , with
and without �LDA, we also apply the BSE to a mixed set
of GW quasiparticles, where occupied orbitals are associated
with G0W0 quasiparticle energies, unoccupied orbitals have
G0W0�LDA quasiparticle energies, and the screened interaction
is computed using LDA quantities without vertex contribu-
tions. The quasiparticle wave functions in this case are given
by the DFT wave functions. This calculation, which we denote
as mixed GW -BSE, is motivated by the observation in the
previous section that G0W0 energies have the best agreement
with experimental values for IPs, while G0W0�LDA energies
are better for EAs.

In Fig. 5, we show the first-principles absorption spectra up
to excitations of 8 eV for each of the molecules in our test set.
The TDLDA spectra in the top row are computed using two
simulation cell sizes to illustrate the convergence of the spectra
with the spatial range of the cell. While the lowest-energy
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FIG. 5. The absorption cross section for each of the molecules convoluted with a Gaussian broadening of 0.1 eV, as predicted by various
levels of theory. The TDLDAbig calculations are performed in simulation cells with radii of 20 bohrs, while TDLDAsmall simulation cells have
radii that are either 12 bohrs (for benzene, thiophene, and 1,2,5-thiadiazole) or 14 bohrs (for naphthalene, benzothiazole, and TTF). GW -BSE
calculations are performed in the smaller simulation cells.
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FIG. 6. The top panel compares GW -BSE calculations for va-
lence (localized) excitations, taking the mixed GW -BSE predictions
as reference. The bottom panel again uses the mixed GW -BSE results
as reference and illustrates the deviations from the best available
theoretical values in the literature [80–83].

excitations are in agreement, deviations are observed as excita-
tion energy increases. The remaining rows illustrate the spectra
for each variant of GW -BSE. Overall, the peaks of TDLDA,
self-consistent GW -BSE, and mixed GW -BSE are mostly
aligned, while results from solving the BSE using quasiparticle
quantities from perturbative G0W0 and G0W0�LDA exhibit a
redshift of all peaks compared to the other spectra.

The singlet excitations obtained in GW -BSE and TDLDA
calculations involve excitations to two types of unoccupied
orbitals: unoccupied valence orbitals (molecular orbitals con-
structed from atomic orbitals with the same principal quantum
number as the atoms’ valence orbitals) and Rydberg orbitals
(molecular orbitals which have contributions from atomic
orbitals with principal quantum number higher than the
atoms’ valence orbitals). Singlet excitations with transitions
primarily into the localized valence orbitals are termed valence
excitations, and those with transitions primarily into the diffuse
Rydberg orbitals are termed Rydberg excitations. We discuss
the accuracy of GW -BSE and TDLDA calculations for each
type of excitation separately.

Our detailed comparison of GW -BSE predictions of va-
lence excitations, including singlet states that are symmetry-
forbidden in linear optical processes, is shown in the top panel
of Fig. 6. All calculations are presented as the difference
from mixed GW -BSE predictions. The choice of vertex is
found to barely change excitation energies, with the inclusion
of �LDA increasing energies by an average of 0.09 eV
for perturbative GW -BSE, and by an even smaller average
increase of 0.02 eV for QSGW -BSE. As mentioned in the
previous section, the energy differences between quasiparticles
(both holes and quasielectrons) from G0W0 and G0W0�LDA

essentially amount to a rigid shift, and the energy differences
between quasiparticle levels remain unchanged. These small
differences in transition energies instead mostly arise from the
inclusion of �LDA in the BSE equation itself.

On the other hand, self-consistency in GW widens both the
fundamental and optical gap to significantly increase excitation
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FIG. 7. The deviation of various first-principles methods relative
to previous best available theoretical values (labeled as reference)
for the vertical valence (left) and Rydberg (right) excitation energies
[80–83].

energies from the perturbative GW -BSE results. QSGW -BSE
has an average 0.91 eV increase of singlet excitation energies
over G0W0-BSE, and QSGW�LDA-BSE has an average
0.84 eV increase compared to G0W0�LDA-BSE. Mixed GW -
BSE also has an optical gap larger than perturbative GW -BSE
calculations by ∼ 0.6–0.7 eV, since by associating G0W0 ener-
gies with occupied orbitals and G0W0�LDA energies with unoc-
cupied orbitals, the fundamental gap is increased by ∼ 0.7 eV.

Comparison of our results for valence singlet excitation
energies to the best previous theoretical results for benzene,
naphthalene, thiophene, and 1,2,5-thiadiazole is shown in
the bottom panel of Fig. 6 and in the left panel of Fig. 7.
For benzene, naphthalene, and thiophene, our self-consistent
and mixed GW -BSE calculations have fairly good agreement
with the best previous theoretical values, which are computed
including contributions from singles, doubles, and triples
excitations [80–82]. The mean absolute difference across
these three molecules is 0.78 eV for G0W0-BSE, 0.68 eV
for G0W0�LDA, 0.14 for mixed GW -BSE, 0.25 for QSGW -
BSE, 0.24 for QSGW�LDA-BSE, and 0.25 for TDLDA. For
1,2,5-thiadiazole, the cited calculation only include singles and
doubles excitations [83], and the mean absolute difference is
1.26 eV for G0W0-BSE, 1.14 eV for G0W0�LDA, 0.58 eV
for mixed GW -BSE, 0.33 eV for QSGW -BSE, 0.29 for
GW�LDA-BSE, and 0.61 for TDLDA. BSE calculations that
follow perturbative GW calculations are all smaller than
the excitation energies from the best previous theoretical
calculations. For benzene, naphthalene, and thiophene, the
mean signed difference is −0.7 to −0.8 eV for G0W0-BSE
and G0W0�LDA-BSE. This is reduced to a mean signed
difference of approximately −0.1 eV for mixed GW -BSE.
For QSGW -BSE and QSGW�LDA-BSE, the mean signed
difference is negative for benzene, but positive for naphthalene
and thiophene.

Finally, we present the comparison between previous
theoretical best estimates and our results for Rydberg
excitations in Fig. 7. However, we caution that simulation
cells used for our GW -BSE calculations confine the diffuse
Rydberg wave functions and we thus only discuss qualitative
trends for these excitations. To account for the presence of
confining walls, we make the assumption that energy increase
due to confinement remains constant across all levels of theory,
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and plot GW -BSE energies from calculations in a small
cell, shifted downward by the difference between TDLDA
calculations using a large simulation cell (radius 20 bohrs)
and TDLDA calculations in a small cell used by GW -BSE.
Our perturbative GW -BSE and TDLDA calculations predict
comparable Rydberg excitation energies (difference of
−0.01 to 0.32 eV), in contrast to the redshift observed for
perturbative GW -BSE predictions of valence excitations.
Both perturbative GW -BSE and TDLDA underestimate the
best previous theoretical values. Application of quasiparticle
self-consistency or the mixed GW -BSE technique increases
excitation energies by approximately 0.4 or 0.6 eV,
respectively, which improves agreement with past results.

Our calculations confirm that TDLDA predictions for
localized valence excitations within sp-bonded molecules
are in good agreement with higher-level quantum chemistry
calculations, but the LDA functional’s incorrect asymptotic
behavior results in a deterioration of its accuracy when
long-range interactions become important, as in Rydberg
excitations [84,85]. Within TDDFT, functionals that better
account for exchange and correlation interactions must be
used to produce good optical spectra for molecules [86–88].
The GW -BSE framework, on the other hand, treats Rydberg
and valence excitations on equal footing. We see that the
relatively inaccurate DFT-LDA mean-field starting point is
already sufficient to initialize (self-consistent or mixed) GW -
BSE calculations that describe neutral excitations in aromatic
molecules with improved accuracy, whether the excitations
have valence or Rydberg character.

V. CONCLUSIONS

In this work, we perform GW computations to investigate
the many-body perturbation-theory predictions of excited-
state properties in aromatic molecules. Our combined real-
space and transition-space implementation is validated by
comparison to computations on a plane-wave basis set, with
all calculations explicitly including the dynamic effects of the
polarizability matrix. Given the myriad differences between
numerical algorithms and convergence techniques, we find
that G0W0 energies obtained from RGWBS (real space
and transition space) and BerkeleyGW (plane wave) are in
remarkable agreement, with nearly all energies agreeing to
within 0.1 eV for occupied and low-lying unoccupied orbitals
(that is, for the single-particle excitation energies).

The uniform grid used in our real-space computations
allows the simulation of orbitals with localized, diffuse, or
even continuum character. We examine the accuracy of the
IPs, EAs, and the GW -BSE excitation energies for valence
singlet excitations, and study the trends of Rydberg excitations
within GW -BSE. Our ability to simulate Rydberg excitations
is limited by the computational cost, but to our knowledge, this
is the first attempt to even qualitatively assess the accuracy of
Rydberg excitation energies within GW -BSE. Our simulations
show that self-consistent GW -BSE predicts larger Rydberg
excitation energies than TDLDA, which results in better
agreement with previous best-estimate values.

The spectral representation of the polarizability in our
transition-space calculations results in an efficient yet accu-
rate calculation of GW self-energies. We therefore use this

framework to analyze the performance of variants of GW , in-
cluding the effects of �LDA and quasiparticle self-consistency,
both alone and combined. We see that alone, �LDA leaves
energy level spacings nearly the same, but that all IPs and
EAs are shifted up by ∼ 0.7 eV to become less bound
for the molecules considered. Quasiparticle self-consistency
applied to conventional GW opens the fundamental gap for all
molecules, increasing both the hole and quasielectron energies
relative to the results of perturbative GW . In the combined
QSGW�LDA, the overall change in self-energies is essentially
the two independent corrections combined; we do not observe
higher-order interactions of quasiparticle self-consistency and
�LDA. Nevertheless, we note that the �LDA corrections and
self-consistency effects are of similar magnitude on our test
set. This results in a cancellation of effects for IPs, and
a compounding of effects for EAs, such that G0W0 and
QSGW�LDA are closer to previous best-estimate values for
occupied orbitals, and G0W0�LDA and QSGW are better for
unoccupied orbitals. Our results show again that a three-point
vertex is needed to improve accuracy beyond conventional
GW for modeling both occupied (electron removal) and
unoccupied (electron injection) states in molecules.

Our results on valence singlet excitations, with and without
�LDA and self-consistency, reflect the influence of the quasi-
particle input on the resulting BSE values. Since �LDA leaves
relative quasiparticle energies differences unchanged, the ad-
dition of this vertex to GW -BSE calculations typically changes
the predicted energies by less than 0.1 eV. The underestimated
fundamental gap in perturbative GW results in underestimated
excitation energies from perturbative GW -BSE, while the
increased fundamental gap of self-consistent GW is reflected
in the corresponding increase in the excitation energies for
self-consistent GW -BSE. For self-consistent GW -BSE, mean
absolute differences from best available previous theoretical
values are no larger than 0.33 eV for all molecules. We also
construct mixed GW quasiparticles whose IPs and EAs are
closest to the best available previous theoretical values, by
using DFT-LDA wave functions, G0W0 energies for occupied
orbitals, and G0W0�LDA energies for unoccupied orbitals; the
singlet excitation energies of mixed GW -BSE are comparable
to those from self-consistent GW -BSE.

By focusing on the simple DFT-LDA starting point, this
work complements other recent publications that seek to
improve agreement between G0W0 calculations and experi-
mental measurements by using alternate mean-field starting
points [8,11,21]. Moving beyond the popular G0W0 method,
we obtain a better theoretical understanding of the strengths
and weaknesses of the perturbative and self-consistent GW

approximations, the vertex function, and the BSE. Our work
demonstrates the capabilities of a combined real-space and
transition-space GW -BSE implementation, as these methods
become ever more relevant in the study of molecules, clusters,
and other finite systems.
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