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Abstract
Despite continual progress in the cataloging of vertebrate regulatory elements, little is known
about their organization and regulatory architecture. Here we describe a massively parallel
experiment to systematically test the impact of copy number, spacing, combination and order of
transcription factor binding sites on gene expression. A complex library of ~5,000 synthetic
regulatory elements containing patterns from 1 2 liver-specific transcription factor binding sites
was assayed in mice and in HepG2 cells. We find that certain transcription factors act as direct
drivers of gene expression in homotypic clusters of binding sites, independent of spacing between
sites, whereas others function only synergistically. Heterotypic enhancers are stronger than their
homotypic analogs and favor specific transcription factor binding site combinations, mimicking
putative native enhancers. Exhaustive testing of binding site permutations suggests that there is
flexibility in binding site order. Our findings provide quantitative support for a flexible model of
regulatory element activity and suggest a framework for the design of synthetic tissue-specific
enhancers.
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Transcription factors regulate diverse patterns of gene expression by binding cooperatively
in clusters at gene promoters, enhancers and other cis-regulatory modules1–3. Genetic
variations at transcription factor binding sites have been associated with a wide range of
human phenotypes4–7. The genome-wide occupancy patterns of transcription factors are
readily measured by methods such as chromatin immuno-precipitation followed by
sequencing (ChIP-seq)8 that identify regions of open chromatin and transcription factor
binding9–12. However, these techniques are limited by the quality of antibodies and,
moreover, tend to have poor resolution, preventing a detailed analysis of binding site
occupancy, particularly when the binding sites for multiple transcription factors are present
in the same cis-regulatory module. As a result, very little is known about how the binding of
multiple transcription factors in proximity influences the activity of a cis-regulatory module
on gene expression. For example, a fundamental question concerning gene regulation is
whether heterotypic transcription factor binding site clusters constitute a flexible mechanism
for fine-tuning robust gene expression, which has been referred to as a `billboard model'
(refs. 13–15), or specific patterns of spacing, combination and order are necessary for
enhancer function16,17.

The clustering of degenerate transcription factor binding motifs is readily observable in the
primary sequence of genomic DNA, a fact that has been exploited to predict distal gene
enhancers using probabilistic18 and machine learning19,20 approaches. Although such
methods solve the problem of low resolution, they cannot distinguish between functional
and neutral sites or assess the combinatorial rules of cis-regulatory modules. Nevertheless, a
common pattern observed in these clusters is the homotypic grouping of multiple copies of
the same motif21, suggesting that multiple copies of the same signal can serve to fine-tune
gene expression. Consistent with this hypothesis, several studies found that the synthetic
concatenation of key regulatory signals amplified gene expression in reporter assays17,22–24.
Such studies demonstrate the value of synthetic approaches in identifying the basic rules
underlying regulatory module organization. However, the high cost and low-throughput
nature of promoter and enhancer assays have thus far prevented any systematic dissection of
mammalian regulatory element architecture in vivo.

We report here the findings of a massively parallel reporter assay in which the functional
activity of 4,970 synthetic regulatory element sequences (SRESs), each 168 bp in length,
was tested simultaneously in mice and in human hepatocellular carcinoma HepG2 cells.
Methodologically, our approach builds on recent experiments that exhaustively tested the
effects of mutating every possible base in five mammalian enhancers25,26. Our goal here
was to systematically test the rules of regulatory element organization using synthetic
elements. We designed a diverse library of SRESs consisting of transcription factor binding
sites from 12 known liver-specific transcription factors patterned onto 2 neutral templates.
The design comprises three classes of elements that test distinct hypotheses regarding the
nature of homotypic clustering, synergy between transcription factors in heterotypic
enhancers and the impact of binding site spacing and order on expression (Fig. 1a).
Programmable microarrays were used to synthesize the pool of SRESs, which were cloned
en masse into a tagged reporter vector library and assayed in vivo using the mouse
hydrodynamic tail vein assay27,28 and in vitro by transfection into HepG2 cells. Transcribed
tags were identified in liver mRNA or HepG2 cells 24 h after injection or transfection,
respectively, by RNA sequencing (RNA-seq) (Fig. 1b). The relative abundance of each of
the SRESs was determined via a new analysis pipeline that achieves very high correlation
between biological replicates (Online Methods).
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RESULTS
Three classes of synthetic regulatory elements

To maximize our ability to make rigorous conclusions about enhancer organization, we
designed three increasingly complex classes of SRESs. Class I SRESs (n = 533) were
homotypic, containing 1, 2, 4 or 8 copies of the same transcription factor binding site with
different spacing. Class II SRESs (n = 1,797) were heterotypic but still relatively simple,
with 2 different types of transcription factor binding sites arranged as 2, 4 or 8 sites that
were separated uniformly. Class III SRESs (n = 2,636) were completely heterotypic, with 3–
8 types of transcription factor binding sites separated by a fixed distance with only 1 site per
transcription factor (Fig. 1a). For all classes, we used consensus binding sequences for 12
transcription factors (AHR/ARNT, CEBPA, FOXA1, GATA4, HNF1A, HNF4A, NR2F2,
ONECUT1, PPARA, RXRA, TFAP2C and XBP1) important for liver development and
function (Supplementary Table 1). All of these sequences are enriched in putative liver-
specific enhancers9, and 10 of 12 matched those used in other transcription factor binding
site data sets (Supplementary Table 2). The 12 binding sites were patterned onto 2 different
inactive 168-bp genomic DNA templates (template 1: hg19 chr. 9: 83,712,599–83,712,766;
template 2: hg19 chr. 2: 211,153,238–211,153,405) (Supplementary Fig. 1a). Template 1
constitutes a portion of a randomly selected element from the VISTA enhancer browser29

with no enhancer activity, and template 2 constitutes a portion of a known muscle enhancer
that is not active in liver cells30.

We took several steps to ensure the confidence of our expression measures (Fig. 1c). First,
we included in the library two 168-bp negative controls (hg19 chr. 3: 197,439,137–
197,439,304 and hg19 chr. 5: 172,177,154–172,177,321) independently validated as such by
the tail vein assay (Supplementary Fig. 1a). Two validated 168-bp positive controls were
also included in the library: a core region of the Ltv1 enhancer26 (mm9 chr. 7: 29,161,577–
29,161,744), as well as a strong liver-specific enhancer (hg19 chr. 19: 35,531,985–
35,532,152) in the first intron of HPN (encoding hepsin; Supplementary Fig. 1a). Second,
each SRES was paired with an average of 90 tags (median of 67 tags), each 20 bp in length,
to facilitate accurate quantification and to minimize tag sequence–specific biases. Finally,
we injected the SRES library into three mice to assess reproducibility and verified for each
SRES that the aggregate luciferase activity for the library was much stronger than for empty
vector control (Supplementary Fig. 1b). Our original design included 5,838 sequences
arranged across the 2 templates, and nearly all of these were represented by at least 1 tag in
each replicate liver sample. Using a stringent informatics pipeline (Online Methods), we
obtained high-quality expression data for 4,966 SRES, as well as for the 4 controls,
corresponding to an average of 103,835 individual tags recovered per replicate
(Supplementary Table 3). Our final expression measure for each SRES, which varied
between 0 and 1, reflects the ratio between the number of transcribed tags and the total
number of tags for that SRES in the library. A complete listing of SRESs along with their
composition and expression data is provided in Supplementary Table 4.

The four control sequences in the SRES library exhibited the same expression trends as
observed in tail vein assays performed with individual plasmids (Supplementary Fig. 1c).
We observed high correlation between expression measures from the two templates used for
patterning (Spearman's ρ = 0.75, P = 0; Fig. 1d). We identified 123 transcription factor
binding site patterns (6%) that resulted in discordant expression in the 2 templates
(Supplementary Fig. 2a,b). Discordant patterns had more binding sites (an average of 6.3
binding sites/pattern versus 5.5 binding sites/pattern for concordant patterns), were
predominantly class III sites (75% versus 50% for concordant patterns) and were enriched
for HNF1A (false discovery rate (FDR)-adjusted P = 1 × 10−6, Fisher's exact test) and
NR2F2 (P = 0.002) binding sites (Supplementary Fig. 2c), which were both strong
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determinants of expression. Together, these data are consistent with the idea that the
discordance we observed is predominantly due to noise at higher expression levels, rather
than to some intrinsic difference between the templates. As a result, we considered data
from both templates for all further analyses.

We also observed strong correlation between the expression measures from the three mouse
samples used in the assay (Spearman's ρ = 0.88–0.89, P = 0; Fig. 1e), demonstrating the
reproducibility of our results. To ascertain the robustness of SRES architecture in different
liver cell types, we also transfected the library into HepG2 cells (a human hepatocellular
carcinoma line) and processed tag sequencing data using the same pipeline. As with mouse
liver, we observed strong correlation between replicates (Spearman's ρ = 0.79–0.84), good
template correlation (Spearman's ρ = 0.69) and trends in the complexity of transcription
factor binding sites (Supplementary Fig. 3a–c). Moreover, we observed strong agreement
between SRES-driven expression in the mouse liver and HepG2 cells (Spearman's ρ = 0.81)
across the entire data set (Supplementary Fig. 3d).

Homotypic amplification is compatible with a subset of sites
Several studies have reported that the concatenation of functional sequences containing
transcription factor binding sites can lead to stronger expression of a reporter gene17,22,23.
Using class I SRESs, we addressed the universality of this principle for each of the 12
transcription factor binding sites. For five binding sites (CEBPA, FOXA1, HNF1A,
ONECUT1 and XBP1 transcription factors), we observed a significant correlation
(Spearman's ρ = 0.32, P = 1 × 10−18) between expression and binding site copy number (Fig.
2a). Of these binding sites, the one for HNF1A produced the strongest effect on expression
(Spearman's ρ = 0.68), which seemed to be saturated beyond four copies of the binding site.
For example, clusters of 4 HNF1A binding sites resulted on average in 1.9-fold higher
expression than clusters with 2 binding sites, whereas SRESs containing 8 binding sites
resulted in only a 1.2-fold increase in expression relative to SRESs containing 4 binding
sites. This finding suggests that some sites were rendered non-functional by crowding or that
a biochemical saturation mechanism might exist. For the remaining seven transcription
factors, no homotypic clustering effects were observed. Several of these transcription factors
(for example, PPARA, RXRA and TFAP2C) are known to function in heterodimeric
complexes31,32 and probably require additional cofactors or sequences to drive expression,
as we later observed for heterotypic SRESs.

In addition to systematically testing the role of transcription factor binding site copy
number, class I SRESs have a wide range of spacing between binding sites. To determine
whether the expression driven by homotypic clusters was dependent on the spacing of
transcription factor binding sites, we examined class I SRESs containing 2 or 4 copies of
each of the 12 liver-specific binding sites. For 11 of 12 binding sites, we observed no
significant correlation between binding site spacing and expression (Spearman's correlation
P > 0.05) (Fig. 2b and Supplementary Figs. 4 and 5). The binding site for NR2F2 was the
only exception, showing slightly stronger expression with increasing distance between
copies of the binding site in two- and four-site SRESs.

Enhancer predictions defined by low-resolution methods such as ChIP-seq tend to be quite
long (often >1 kb). However, many enhancers have shorter, core elements26 (as short as 44
bp33) that are sufficient to drive tissue-specific expression in vivo. We decided to investigate
how many copies of each transcription factor binding site were required to yield
reproducible expression. Because each of the SRESs was cloned upstream of a 31-bp
minimal promoter element containing a TATA box that could recruit transcriptional
complexes, it is conceivable that the impact of a single transcription factor binding site could
be detected. SRESs with the same number and type of binding sites were grouped for this
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comparison to reduce the impact of potential novel motifs created by the positioning of
sequences on the templates. We compared the expression driven by all 48 groups of
homotypic SRESs (12 transcription factor binding sites with 1, 2, 4 and 8 sites per SRES)
against a background group of all SRESs with only 1 site. Unexpectedly, we found that a
single copy of the 17-bp HNF1A (FDR-adjusted P = 0.006, Wilcoxon rank-sum test) or
XBP1 (P = 0.002) consensus sequence produced significant levels of expression. In contrast,
two CEBPA sites (P = 1 × 10−5), four FOXA1 sites (P = 0.002) and eight ONECUT1 sites
(P = 0.0002) were necessary to achieve significant levels of expression. Together, these
findings demonstrate that consistent expression can be derived from a small number of
transcription factor binding sites.

Increased binding site complexity leads to stronger expression
Homotypic clusters of transcription factor binding sites are observed throughout vertebrate
genomes21 and are often sufficient to drive robust expression in reporter assays17,22,23. We
were interested in the impact of regulatory element heterogeneity on gene expression. In
general, we observed the strongest expression from completely heterotypic class III SRESs,
lower levels of expression from simple heterotypic class II SRESs (with sites for two
transcription factors) and the lowest expression from homotypic class I SRESs (Fig. 3a),
even when controlling for the number of patterned sites (Fig. 3b). Compared to negative
controls (mean expression = 0.055), 198 (37%) class I SRESs, 1,116 (62%) class II SRESs
and 2,229 (85%) class III SRESs resulted in significantly higher levels of expression (P <
0.05, Wilcoxon rank-sum test). The mean expression of the top 10% of class I SRESs was
0.32, whereas mean expression was 0.50 for class II SRESs and 0.59 for class III SRESs.
Together, these results suggest that synergy in heterotypic clusters has a role in driving
higher levels of expression compared with homotypic clusters. These trends were identical
in HepG2 cells (Supplementary Fig. 3b).

Strong reporter expression favors specific motif combinations
Although heterotypic SRESs on average resulted in stronger expression than homotypic
ones, there was still considerable variability in expression driven by heterotypic SRESs.
This variability suggests that specific configurations of the same transcription factor binding
sites that lead to stronger or weaker expression could exist. To identify factors resulting in
favorable and unfavorable configurations for expression, we modeled the expression of class
I and II SRESs as a function of the number and type of transcription factor binding sites,
including a synergy term for all pairs of transcription factors in the sequence (Online
Methods), with the model independent of the positioning of binding sites. The model was
trained using class I and II data, and terms were exhaustively removed to minimize the
Akaike information criterion34 (AIC) and to avoid overfitting. To further address the
possibility of overfitting, we evaluated the model using 10-fold cross-validation on the entire
set of 2,330 class I and II SRESs (Supplementary Fig. 6a) as well as on a non-redundant set
of 234 unique transcription factor binding site combinations. In both cases, the estimate of
the standard error of the model on the test data was negligible. In the same setting, we
examined the ability of the model to distinguish between active and inactive SRESs (Online
Methods) by computing the area under the receiver operating characteristic (ROC) curve
(AUC), obtaining values of 0.78 and 0.84, respectively (Supplementary Fig. 6b,c). These
values indicate that the model can accurately describe the activity of the SRESs using
information on the composition of transcription factor binding sites.

Transcription factor binding sites that drove strong expression in class I SRESs were also
significant contributors in our combinatorial model (Supplementary Fig. 7). We also
observed a significant role for the RXRA binding site (P = 0.03, Wald χ2 test) and found that
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increasing copy number of the AHR/ARNT binding site negatively affected expression (P =
0.006).

By examining cooperative terms in the model that made significant contributions to
expression, we identified four transcription factor binding site interactions (FOXA1-NR2F2,
NR2F2-ONECUT1, NR2F2-XBP1 and RXRA-XBP1) (Fig. 4a). Particularly notable in this
set was the binding site for NR2F2 (also known as COUP-TFII), which did not affect
expression when additional copies were present (P = 0.64, Wald χ2 test) but cooperated with
the FOXA1 (P = 0.006), ONECUT1 (P = 0.02) and XBP1 (P = 0.04) binding sites. We also
observed highly significant interference between the HNF1A and XBP1 binding sites (P =
0.0002, Wald χ2 test), suggesting that the transcription factors that recognize these sites may
compete for cofactors to drive different modes of transcription.

Finally, we speculated that synergy and interference between factors could manifest as
sequences with specific densities of transcription factor binding sites but not appear as
overall trends. Therefore, we also looked at these interactions using direct comparisons
between binding site pairs for different densities of binding sites (2, 4 or 8 sites per SRES).
We employed a stringent test for synergy that compares the expression driven by a
heterotypic combination of two transcription factor binding sites to that resulting from
equally sized homotypic clusters of both binding sites. By comparing data from homotypic
and heterotypic SRESs from class I and II in such a manner (independent of binding site
spacing and order), we identified three additional cooperative interactions of binding sites
(FOXA1-PPARA, FOXA1-RXRA and RXRA-TFAP2C; P < 0.05, Wilcoxon rank-sum test)
(Fig. 4b). Together with the interactions predicted by the model itself, these two methods
provide a map of eight combinatorial interactions (Fig. 4a).

Synthetic elements mimic putative liver enhancers
Because our library design was completely synthetic, we wanted to see whether the
regulatory architecture we inferred from it is relevant to native genomic regulatory elements.
We examined a collection of 51,850 putative mouse liver enhancers identified by ChIP-seq
experiments9 and employed the same 12 position weight matrixes (PWMs) used to derive
consensus binding sequences in our SRES library to map potential transcription factor
binding sites in them. In general, these PWMs were enriched within a ~600-bp window
centered on the peak position of putative liver enhancers but not in cerebellar enhancers9,
which served as a control (Supplementary Fig. 8). We categorized 40,617 (78%) of these
putative enhancers into 1 of the 3 classes of SRESs on the basis of transcription factor
binding site heterogeneity (Fig. 5a), demonstrating that our library segments exhibited
similarity to native configurations of binding sites.

To determine whether the combinatorial interactions that we identified in the SRES library
(Fig. 4a) were also found and enriched in the mouse genome, we analyzed occurrences of
each of the eight interaction pairs in putative liver enhancers. All seven cooperative
interactions that we identified were significantly enriched in these regions compared to GC-
and length-matched random genomic controls (FDR-adjusted P < 1 × 10−17, Fisher's exact
test) (Fig. 5b and Supplementary Fig. 9). We also identified a statistically significant
enrichment of pairs of binding sites for HNF1A and XBP1 (P = 2 × 10−28), contrary to our
expectations based on the model. However, these pairings were extremely rare, occurring in
only 205 (0.4%) of putative liver enhancers.

Reporter expression is influenced by binding site order
Class III SRESs had only one copy of each transcription factor binding site separated by a
fixed 3-bp spacer. These sequences thus represent the ideal data set to determine whether the
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order of these binding sites affects the strength of expression. Owing to limitations on
library complexity, we restricted the number of transcription factor binding sites to 9
(eliminating those for CEBPA, GATA4 and TFAP2C) and sampled 2,636 of 623,448
possible permutations of 3–8 binding sites. We identified 211 sets of class III SRESs
containing at least 2 permutations of exactly the same binding sites in different orders
(Supplementary Table 5). Of these, 87 (41%) had a favorable permutation that resulted in a
significantly stronger increase in expression than an unfavorable permutation (FDR < 0.05,
Wilcoxon signed-rank test). Favorable permutations produced, on average, 2.8-fold higher
expression than unfavorable ones, with some pairs varying by as much as 6.8-fold. These
results imply that the relative position of a transcription factor binding site in a cluster can
frequently influence expression, perhaps by changing DNA secondary structure and/or
altering the affinity of binding sites for cofactors. The binding site most sensitive to changes
in position was that for NR2F2, appearing in most sets with a favorable configuration
(64/87, 74%), despite being the sixth (out of 9) most prevalent binding site in the 211 class
III sets overall (Supplementary Fig. 10). For example, we observed that, in SRESs with 3
transcription factor binding sites, permutations with an NR2F2 site in the center position
yielded 2.2-fold higher expression than permutations with a promoter-proximal NR2F2 site
(Fig. 6a).

Our class III design also contained 441 SRESs with 8 transcription factor binding sites
arranged in different orders, with all other variables kept constant. The 441 SRESs were
divided into 9 sets on the basis of the 8 binding sites they contained, and, on average, they
contained 49 distinct permutations. For each of these sets, the strongest permutation resulted
in significantly higher expression than the weakest permutation (P = 0.002–0.01, Wilcoxon
rank-sum test), with an average of 5.3-fold difference in expression. Although the best
permutations ranked among some of the strongest sequences in the entire library (average
expression = 0.58), the weakest configurations (average expression = 0.11) were on par with
SRESs with one transcription factor binding site (average expression = 0.08). These results
clearly indicate that the correct ordering of binding sites is important for proper expression.
However, a rank-value plot of the entire set of configurations suggests that this relationship
is more nuanced (Fig. 6b), consistent with a previous analysis of native transcription factor
binding35. In each of the nine cases, there was a gradual response to changes in order: for
example, the tenth best permutation was, on average, 78% as robust in driving expression as
the strongest one. These trends were also consistent in HepG2 cells, further demonstrating
that successful configurations can be detected by conserved transcriptional complexes (Fig.
6c). We interpret this observation to suggest that order is important but still highly
accommodating of different permutations, largely consistent with the billboard model of
regulatory element organization13,14, and is permissive of evolutionary reshuffling of
transcription factor binding sites.

DISCUSSION
Using a collection of 4,970 tagged reporters patterned with different transcription factor
binding site arrangements for 12 liver-specific transcription factors, we demonstrate several
principles describing the activity of higher vertebrate regulatory elements. First, we show
that homotypic clustering of some binding sites (CEBPA, FOXA1, HNF1A, ONECUT1 and
XBP1) can be used to amplify enhancer strength. However, this principle is not universal, as
homotypic clustering of several binding sites (AHR/ARNT, GATA4, HNF4A, NR2F2,
PPARA, RXRA and TFAP2C) did not amplify expression. Not unexpectedly, several of the
factors that did not drive expression in homotypic clusters are known to function in
heterodimeric complexes31,32. We further show that two different 17-bp consensus binding
motifs are sufficient to drive consistent expression in adult liver when paired with a minimal
promoter. To our knowledge, these constitute the shortest functional elements characterized
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in vivo. We also observed that the homotypic amplification effect is prone to saturation (for
example, with HNF1A binding sites) and, for almost all of the elements tested here, does not
seem to be dependent on the spacing of binding sites. We additionally show that heterotypic
elements are in general stronger than homotypic ones, probably owing to the presence of
specific combinations and orders of binding sites that are important determinants of robust
transcription. This finding was particularly evident for NR2F2 and FOXA1 binding sites,
both of which interact with multiple other transcription factor binding sites. This observation
is consistent with the reported role for FOXA1 as a pioneer transcription factor, recruiting
other factors instead of driving transcription by itself36. Finally, we demonstrate that the
synergistic and interfering interactions we identified are, respectively, enriched and depleted
from putative mouse liver enhancers.

We were not able to exhaustively test transcription factor binding site permutations on the
scale seen for native regulatory elements owing to limitations in library complexity,
motivating our selection of a single consensus binding sequence per transcription factor.
This approach proved problematic for HNF4A, a known master regulator of liver-specific
gene expression37. The consensus sequence selected for this transcription factor did not
drive transcription in homotypic elements and did not contribute to our model of heterotypic
expression, suggesting that a different representative motif might have had stronger activity
in adult mouse liver. Indeed, in vitro binding data suggest that HNF4A binding specificity
segregates into two distinct groups of sequences38; however, the biological consequence of
this observation is unknown. Future massively parallel reporter assay studies with increased
binding site complexity will allow the systematic testing of binding site degeneracy. We also
observed negligible activity from the consensus binding site used for GATA4, although this
weak activity is likely due to a more developmental role for this factor. GATA4 is essential
for the early development of the liver from the ventral foregut endoderm39 but is expressed
at low levels in the adult liver and is limited to epithelial cells around the biliary ducts40.
Another caveat of our approach is that our SRESs were only 168 bp in length, which is on
the scale of a core promoter element or p300 ChIP-seq peak but much shorter than most
functionally validated elements (which are 1.5–2 kb in length29). As a result, our analysis is
unable to assay regulatory structures that might be present on a sparser scale.
Methodological improvements such as long-module synthesis on DNA microarrays,
polymerase cycling assembly (PCA)26,41 or in vitro recombination41,42 could be used to test
larger elements. A final limitation is that the plasmids containing SRESs do not integrate
into the host genome and are not chromatinized. These results should therefore be
interpreted in the context of other plasmid-based reporter assays. The development of viral,
transposon or recombination-based massively parallel reporter assay methods that permit
reporter integration will no doubt help tease apart additional features of regulatory
organization.

A large subset of the SRES library is devoted to determining the impact of transcription
factor binding site order on expression by heterotypic elements. Of these sets, 41% had a
favorable permutation that resulted in a significantly stronger increase in expression than a
secondary unfavorable permutation, suggesting a key role for binding site order in driving
optimal transcription. This percentage is particularly notable considering that the median
number of permutations tested was only two, suggesting that, in many cases, we simply did
not test a strong permutation. To look at the impact of binding site order more
systematically, we examined the expression patterns of 441 SRESs with 8 transcription
factor binding sites arranged in different permutations. These patterns conclusively show
that there are multiple arrangements that drive strong expression but several weak ones as
well. These data are consistent with the notion that there may be no generalized motif-
positioning model3,15. Instead, the data support a flexible regulatory architecture for the
organization of cis-regulatory modules—a loosely organized billboard13,14. An important
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caveat to this interpretation is that, by analyzing the role of our SRES library in adult liver
cells, we may have missed developmental and/or environment-sensitive aspects of the
regulatory architecture of transcription factor binding sites. Future studies using massively
parallel reporter assay libraries at different time points and under different conditions might
be able to address this question more fully.

URL
All analyses were performed using the R statistical software package, http://www.r-
project.org/.

ONLINE METHODS
Consensus sequences

In cases where the motif databases contained multiple PWMs representing the binding site
of a single transcription factor, we first determined the number of hits for each PWM on a
random 10-Mb human sequence and then selected the PWM resulting in the median number
of hits. Hits were determined by running the tool tfSearch43 with default parameters. For
each PWM, we calculated the consensus sequence on the basis of the log-odds matrix. Such
a log-odds matrix was generated by calculating log2 (pi/fi) at each position of the matrix,
where pi is the probability of a particular nucleotide i at that position in the matrix and fi is
the average frequency of that nucleotide in the genome. Average frequencies were
calculated on a random 10-Mb human sequence. In the event of a tie between two bases, we
chose one at random. All of our selected sequences were also tested for enrichment in
putative mouse liver enhancers9 and matches in other transcription factor binding data sets
(Supplementary Table 2).

Library synthesis and cloning
Two neutral 168-bp DNA templates were selected on the basis of a low score in a liver
classification model (data not shown) and were validated using the tail vein injection assay
(Supplementary Fig. 1). SRESs were ordered as 200-nt oligonucleotides (Custom Array),
including a 168-nt variable sequence flanked on either side by 16 nt of constant sequence to
enable amplification of the oligonucleotide library by PCR. Sequences were prescreened for
XbaI or HindIII restriction enzyme sites. The oligonucleotide library was amplified using
primers (OLIGO_AMP_F and OLIGO_AMP_R) that targeted the constant flanking
sequences and also introduced 15 bp of sequence homology with the vector to make the
amplified product competent for downstream cloning. The amplified library was run on a
PAGE gel, and the 240-bp band was excised and transferred to a siliconized 0.5-ml
microcentrifuge tube (Ambion) with a hole in the bottom introduced through puncture by a
20-gauge needle. This tube was placed in a 1.5-ml siliconized microcentrifuge tube
(Ambion) and centrifuged in a tabletop microcentrifuge at 16,110g for 5 min to create a gel
slurry that was then resuspended in 200 μl of 1× Tris-EDTA and incubated at 65 °C for 2 h
with periodic vortexing. The aqueous phase was separated from gel fragments by
centrifugation through 0.2-μm NanoSep columns (Pall Life Sciences). DNA was recovered
by standard QIAquick column purification and was subjected to an additional round of
amplification using short outer primers (SS_F and SS_R). The SRES library was cloned into
the EcoRV site of a tagged pGL4.23 library described previously26, using the standard
InFusion (Clontech) protocol and Stellar competent cells (Clontech). Seven transformations
were performed, and bacteria were grown overnight in two 50-ml liquid cultures (3.5
transformations per culture) at 37 °C in a shaking incubator. DNA was extracted using the
Invitrogen ChargeSwitch Midi Prep kit. A complete listing of all primer sequences used is
provided in Supplementary Table 6.
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Tail vein injections
Templates and control sequences were validated individually using previously described
methods27. The SRES library was injected using essentially the same methods, with the
exception that RNA was collected from dissected livers. Briefly, 10 μg of plasmid or SRES
library diluted in TransIT EE Hydrodynamic Gene Delivery System (Mirus Bio) was
injected into three male CD1 mice weighing between 20 and 24 g and 13–18 weeks of age
(Charles River) following the manufacturer's protocol. To measure the aggregate injection
efficiency of the SRES library, an additional three mice were injected with the library along
with 2 μg of pGL4.74 (hRluc/TK) (Promega) to correct for differences in injection
efficiency. After 24 h, mice were sacrificed, and livers were dissected. Total RNA was
purified using the RNeasy Maxi kit (Qiagen) with on-column DNase digestion, and 500 μg
was used as input for the Oligotex mRNA Midi kit (Qiagen), yielding ~3% mRNA. For the
mice injected with the library and pGL4.74, firefly luciferase and Renilla luciferase
activities in the supernatant (diluted 1:20) were measured on a Synergy 2 microplate reader
(BioTek) in technical replicates of four using the Dual-Luciferase Reporter Assay System
(Promega). All animal work was approved by the UCSF Institutional Animal Care and Use
Committee. No statistical method was used to predetermine sample size.

Cell culture
HepG2 cells (ATCC) were maintained in DMEM supplemented with 10% FCS, glutamine
(2 mM), penicillin (100 U/ml) and streptomycin (50 μg/ml). HepG2 cells (5 × 106) were
plated in 15-cm plates and incubated for 24 h. Cells were transfected with 15 μg of DNA
using X-tremeGENE HP (Roche) according to the manufacturer's protocol. The X-
tremeGENE:DNA ratio was 2:1. Three independent replicate cultures were transfected with
the SRES library and sequenced.

Sequencing of RNA-derived tags
We identified 20-bp tags in liver and HepG2 cell mRNA using previously described
methods26. For livers, four RT-PCR runs were performed for each of the three biological
replicates and were then multiplexed and sequenced together on a single lane of an Illumina
Genome Analyzer IIx using a custom sequencing primer (TAG_SEQ_F). For HepG2 cells,
two RT-PCR runs were performed for each replicate and sequenced. Each run was 36
cycles, with an additional 6 cycles to read the indexing tag using the index sequencing
primer (TAG_SEQ_INDEX). For each aliquot, reads were filtered on the basis of the quality
scores for the first 20 bases, which correspond to the degenerate tag. The number of
occurrences of each tag were counted, and tags whose occurrence was supported by at least
two reads were classified as being present in that aliquot.

Associating SRESs with tags
SRESs were associated with tags ostensibly as previously described26. Briefly, ~1,000-bp
segments separating SRESs and tags on the pGL4.23 plasmid were excised by digesting
with HindIII, which digests both 3′ of the SRES and 5′ of the tag. The digested plasmid was
purified and recircularized using intramolecular ligation, resulting in the tag being adjacent
to the 3′ end of the SRES. The region spanning the SRES and tag was amplified from
recircularized plasmids by PCR with the forward primer targeting the region immediately 5′
of the SRES (SRES_PE_F) and the reverse primer targeting the region immediately 3′ of the
tag (TAG_PE_R). PCR products were purified using QIAquick columns and sequenced on a
HiSeq 2000 (Illumina). Forward and reverse reads (sequenced using custom sequencing
primers SRES_SEQ_F and SRES_SEQ_R, respectively) covered 101 bp of each side of the
SRES, and the index read covered the 20-bp tag sequence (index read sequencing primer
TAG_SEQ_F). Read pairs where all bases had a Phred score of >25 were aligned to the
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SRES library with Burrows-Wheeler Aligner (BWA)44 (version 0.6.2; using default
options). Each sequence in the SRES library was aligned with an average of 2,213 reads.
Each tag was associated with an average of nine reads. We uniquely mapped each tag to the
sequence aligned with the highest number of reads associated with that tag. We discarded
the tag in the event of a tie or if it was mapped to a sequence aligned with less than two
reads. Finally, we discarded sequences associated with fewer than ten tags. Further detail is
provided in the Supplementary Note.

Expression measure
Read counts associated with each tag and sequence in the SRES library were quantile
normalized across the 12 RT-PCR pools (all 3 mouse replicates) and then normalized again
within each replicate. For HepG2 cells, read counts were quantile normalized between the
two RT-PCR pools for a single replicate. A tag was considered expressed if it was
represented by at least two (normalized) reads in a single pool. For each sequence in the
SRES library, the expression value was given by the fraction of the tags in the library that
were expressed in that sample. P values from Spearman's correlations and Wilcoxon rank-
sum tests were corrected using the Benjamini-Hochberg FDR method45 in cases where there
were multiple comparisons.

Template correlation
Discordance between expression data for templates was measured using Cook's distance
(D)46. This value measures the influence of each SRES pattern in the regression model
describing the relationship between expression on template 1 and expression on template 2.
We considered 123 SRESs to be discordant between the templates because they had

where n is the number of SRES template pairs (2,217) and k is the number of independent
variables (1).

Quantitative SRES expression modeling
We modeled the expression of all class I and II SRESs (in triplicate, constituting 6,990 data
points) as a function of the transcription factor binding site they comprise using generalized
linear models (GLMs). A GLM consists of three components: (i) the random component,
which consists of the response variable Y and its probability distribution; (ii) the systematic
component, which represents the predictor variables in the model X1, X2, …, X12; and (iii)
the link function, which links the expected value of Y and the predictor variables. In our
case, the response variable was the observed expression value of a sequence, and the
predictor variables indicated the number of occurrences in the sequence of each of the 12
transcription factor binding sites considered. Given that the expression values are distributed
between 0 and 1, we used a GLM with binomial family and a logit link

and
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where  is the link function and  are the parameters to be
estimated. This approach is similar to a standard logistic regression18 but differs in that
GLMs can accept observed values of 0% and 100% and take into consideration the sample
size when estimating the coefficients and their errors. In each case, we started from a
complete model with all variables included with linear and quadratic powers, as well as all
possible interactions between linear terms. We then applied a stepwise procedure,
optimizing the models by taking into consideration the AIC. The AIC is based on the
goodness of fit, but it is penalized by the number of estimated parameters. Predictor
variables were successively removed from the starting model according to the deviance
explained by the predictor variable when fitted individually, with the least significant
predictor variable being removed first.

For cross-validation, we averaged the expression data for all class I and II SRESs, resulting
in a total of 2,330 data points. Each of these was designated positive or negative on the basis
of whether it exceeded the threshold equal to the average expression of all one-site SRESs
(this value is higher than that for the negative controls). Because this data set was highly
redundant (the same combination of transcription factor binding sites was present several
times and was associated with different expression values), we performed cross-validation in
two different ways. First, we performed a standard tenfold cross-validation, training the
model on nine-tenths of the data and testing it on the remaining one-tenth. Second, we
reduced the data set to 234 unique combinations of transcription factor binding sites, where
each combination was associated with the average expression value of the corresponding
SRESs. On this data set, we performed a standard tenfold cross-validation, training the
model on nine-tenths of the data and testing it on the remaining one-tenth. To ascertain the
stability of the model, we determined the numerical values of the model coefficients for each
of the cross-validation folds. On the basis of coefficient deviation, we concluded that the
model produced stable coefficients for all transcription factor binding sites. All analyses
were carried out using the R statistical software package (see URL).

Transcription factor binding site analysis
Putative transcription factor binding sites were identified by searching the sequences with
MAST47 for motifs listed in Supplementary Table 1. MAST was run independently on each
individual sequence with default parameters, using either putative liver or cerebellum
enhancers from the same source9. Enrichment in putative liver enhancers was evaluated in
600-bp windows (±300 bp from the peak center) on the basis of the distribution in
Supplementary Figure 9. Enrichment was tested in putative liver enhancers against a
background of 103,700 GC- and length-matched genomic control regions and was evaluated
by Fisher's exact test.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

Acknowledgments
This work was supported by National Human Genome Research Institute (NHGRI) grant 1R01HG006768 (N.A.
and J.S.) and the Pilot/Feasibility grant from the University of California, San Francisco (UCSF) Liver Center (P30
DK026743). N.A. is also supported by National Institute of Child and Human Development grant R01HD059862,
NHGRI grant R01HG005058, National Institute of General Medical Sciences grant GM61390, National Institute of
Neurological Disorders and Stroke grant 1R01NS079231, National Institute of Diabetes and Digestive and Kidney
Diseases grant 1R01DK090382 and the Simons Foundation (SFARI 256769). R.P.S. was supported in part by a
Canadian Institutes of Health Research (CIHR) fellowship in hepatology. M.J.K. was supported in part by US
National Institutes of Health training grant T32 GM007175, the UCSF Quantitative Biosciences Consortium
fellowship for Interdisciplinary Research and the Amgen Research Excellence in Bioengineering and Therapeutic

Smith et al. Page 12

Nat Genet. Author manuscript; available in PMC 2013 September 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Sciences fellowship. This work was funded in part by the Intramural Research Program of the US National
Institutes of Health, National Library of Medicine (I.O.).

References
1. Halfon MS, et al. Ras pathway specificity is determined by the integration of multiple signal-

activated and tissue-restricted transcription factors. Cell. 2000; 103:63–74. [PubMed: 11051548]

2. Lettice LA, et al. Opposing functions of the ETS factor family define Shh spatial expression in limb
buds and underlie polydactyly. Dev. Cell. 2012; 22:459–467. [PubMed: 22340503]

3. Spitz F, Furlong EE. Transcription factors: from enhancer binding to developmental control. Nat.
Rev. Genet. 2012; 13:613–626. [PubMed: 22868264]

4. Jeong Y, et al. Regulation of a remote Shh forebrain enhancer by the Six3 homeoprotein. Nat.
Genet. 2008; 40:1348–1353. [PubMed: 18836447]

5. Benko S, et al. Highly conserved non-coding elements on either side of SOX9 associated with Pierre
Robin sequence. Nat. Genet. 2009; 41:359–364. [PubMed: 19234473]

6. Sturm RA, et al. A single SNP in an evolutionary conserved region within intron 86 of the HERC2
gene determines human blue-brown eye color. Am. J. Hum. Genet. 2008; 82:424–431. [PubMed:
18252222]

7. Harismendy O, et al. 9p21 DNA variants associated with coronary artery disease impair interferon-γ
signalling response. Nature. 2011; 470:264–268. [PubMed: 21307941]

8. Johnson DS, Mortazavi A, Myers RM, Wold B. Genome-wide mapping of in vivo protein-DNA
interactions. Science. 2007; 316:1497–1502. [PubMed: 17540862]

9. Shen Y, et al. A map of the cis-regulatory sequences in the mouse genome. Nature. 2012; 488:116–
120. [PubMed: 22763441]

10. Visel A, et al. ChIP-seq accurately predicts tissue-specific activity of enhancers. Nature. 2009;
457:854–858. [PubMed: 19212405]

11. Blow MJ, et al. ChIP-Seq identification of weakly conserved heart enhancers. Nat. Genet. 2010;
42:806–810. [PubMed: 20729851]

12. Song L, et al. Open chromatin defined by DNaseI and FAIRE identifies regulatory elements that
shape cell-type identity. Genome Res. 2011; 21:1757–1767. [PubMed: 21750106]

13. Rastegar S, et al. The words of the regulatory code are arranged in a variable manner in highly
conserved enhancers. Dev. Biol. 2008; 318:366–377. [PubMed: 18455719]

14. Kulkarni MM, Arnosti DN. Information display by transcriptional enhancers. Development. 2003;
130:6569–6575. [PubMed: 14660545]

15. Brown CD, Johnson DS, Sidow A. Functional architecture and evolution of transcriptional
elements that drive gene coexpression. Science. 2007; 317:1557–1560. [PubMed: 17872446]

16. Merika M, Thanos D. Enhanceosomes. Curr. Opin. Genet. Dev. 2001; 11:205–208. [PubMed:
11250145]

17. Thanos D, Maniatis T. Virus induction of human IFNb gene expression requires the assembly of an
enhanceosome. Cell. 1995; 83:1091–1100. [PubMed: 8548797]

18. Krivan W, Wasserman WW. A predictive model for regulatory sequences directing liver-specific
transcription. Genome Res. 2001; 11:1559–1566. [PubMed: 11544200]

19. Lee D, Karchin R, Beer MA. Discriminative prediction of mammalian enhancers from DNA
sequence. Genome Res. 2011; 21:2167–2180. [PubMed: 21875935]

20. Narlikar L, et al. Genome-wide discovery of human heart enhancers. Genome Res. 2010; 20:381–
392. [PubMed: 20075146]

21. Gotea V, et al. Homotypic clusters of transcription factor binding sites are a key component of
human promoters and enhancers. Genome Res. 2010; 20:565–577. [PubMed: 20363979]

22. Sharon E, et al. Inferring gene regulatory logic from high-throughput measurements of thousands
of systematically designed promoters. Nat. Biotechnol. 2012; 30:521–530. [PubMed: 22609971]

23. Grskovic M, Chaivorapol C, Gaspar-Maia A, Li H, Ramalho-Santos M. Systematic identification
of cis-regulatory sequences active in mouse and human embryonic stem cells. PLoS Genet. 2007;
3:e145. [PubMed: 17784790]

Smith et al. Page 13

Nat Genet. Author manuscript; available in PMC 2013 September 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



24. Gertz J, Siggia ED, Cohen BA. Analysis of combinatorial cis-regulation in synthetic and genomic
promoters. Nature. 2009; 457:215–218. [PubMed: 19029883]

25. Melnikov A, et al. Systematic dissection and optimization of inducible enhancers in human cells
using a massively parallel reporter assay. Nat. Biotechnol. 2012; 30:271–277. [PubMed:
22371084]

26. Patwardhan RP, et al. Massively parallel functional dissection of mammalian enhancers in vivo.
Nat. Biotechnol. 2012; 30:265–270. [PubMed: 22371081]

27. Kim MJ, et al. Functional characterization of liver enhancers that regulate drug-associated
transporters. Clin. Pharmacol. Ther. 2011; 89:571–578. [PubMed: 21368754]

28. Zhang G, Budker V, Wolff JA. High levels of foreign gene expression in hepatocytes after tail vein
injections of naked plasmid DNA. Hum. Gene Ther. 1999; 10:1735–1737. [PubMed: 10428218]

29. Visel A, Minovitsky S, Dubchak I, Pennacchio LA. VISTA Enhancer Browser—a database of
tissue-specific human enhancers. Nucleic Acids Res. 2007; 35:D88–D92. [PubMed: 17130149]

30. Donoghue M, Ernst H, Wentworth B, Nadal-Ginard B, Rosenthal N. A muscle-specific enhancer is
located at the 3′ end of the myosin light-chain 1/3 gene locus. Genes Dev. 1988; 2:1779–1790.
[PubMed: 3240859]

31. Issemann I, Prince RA, Tugwood JD, Green S. The peroxisome proliferator–activated
receptor:retinoid X receptor heterodimer is activated by fatty acids and fibrate hypolipidaemic
drugs. J. Mol. Endocrinol. 1993; 11:37–47. [PubMed: 8240670]

32. Williams T, Tjian R. Characterization of a dimerization motif in AP-2 and its function in
heterologous DNA-binding proteins. Science. 1991; 251:1067–1071. [PubMed: 1998122]

33. De Val S, et al. Combinatorial regulation of endothelial gene expression by ets and forkhead
transcription factors. Cell. 2008; 135:1053–1064. [PubMed: 19070576]

34. Sakamoto, Y.; Ishiguro, M.; Kitagawa, G. Akaike Information Criterion Statistics. KTK Scientific
Publishers; Tokyo: 1986.

35. Tomovic A, Oakeley EJ. Position dependencies in transcription factor binding sites.
Bioinformatics. 2007; 23:933–941. [PubMed: 17308339]

36. Lupien M, et al. FoxA1 translates epigenetic signatures into enhancer-driven lineage-specific
transcription. Cell. 2008; 132:958–970. [PubMed: 18358809]

37. Sladek FM, Zhong WM, Lai E, Darnell JE Jr. Liver-enriched transcription factor HNF-4 is a novel
member of the steroid hormone receptor superfamily. Genes Dev. 1990; 4:2353–2365. [PubMed:
2279702]

38. Badis G, et al. Diversity and complexity in DNA recognition by transcription factors. Science.
2009; 324:1720–1723. [PubMed: 19443739]

39. Watt AJ, Zhao R, Li J, Duncan SA. Development of the mammalian liver and ventral pancreas is
dependent on GATA4. BMC Dev. Biol. 2007; 7:37. [PubMed: 17451603]

40. Dame C, et al. Hepatic erythropoietin gene regulation by GATA-4. J. Biol. Chem. 2004;
279:2955–2961. [PubMed: 14583613]

41. Schwartz JJ, Lee C, Shendure J. Accurate gene synthesis with tag-directed retrieval of sequence-
verified DNA molecules. Nat. Methods. 2012; 9:913–915. [PubMed: 22886093]

42. Zhang Y, Werling U, Edelmann W. SLiCE: a novel bacterial cell extract–based DNA cloning
method. Nucleic Acids Res. 2012; 40:e55. [PubMed: 22241772]

43. Ovcharenko I, et al. Mulan: multiple-sequence local alignment and visualization for studying
function and evolution. Genome Res. 2005; 15:184–194. [PubMed: 15590941]

44. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform.
Bioinformatics. 2009; 25:1754–1760. [PubMed: 19451168]

45. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach
to multiple testing. J. R. Stat. Soc., B. 1995; 57:289–300.

46. Cook D. Detection of influential observation in linear regression. Technometrics. 1977; 19:15–18.

47. Bailey TL, Gribskov M. Combining evidence using p-values: application to sequence homology
searches. Bioinformatics. 1998; 14:48–54. [PubMed: 9520501]

Smith et al. Page 14

Nat Genet. Author manuscript; available in PMC 2013 September 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
Synthetic enhancer sequence design and controls. (a) SRESs consist of patterns of 12
consensus binding sequences arranged homotypically (class I) or heterotypically (class II
and class III) on 1 of 2 neutral, 168-bp templates. (b) Schematic of massively parallel
reporter assay methodology. SRESs were cloned upstream of a minimal promoter in a
tagged luciferase library and then assayed in vivo using hydrodynamic tail vein injection.
Livers were dissected 24 h after injection, mRNA was generated, and tags were reverse
transcribed and sequenced. (c) Bimodal distribution of expression values for 4,966 SRESs.
Expression values were calculated using the equation shown. (d) Template-template
correlation. Expression values for 2,217 pairs of SRESs (not all SRESs had data for both
templates owing to quality control measures) containing the exact same patterns of
consensus binding sequences on 2 separate templates are plotted. The red line is a linear
regression trace, whereas the dashed line is the diagonal. Template 1, hg19 chr. 9:
83,712,599–83,712,766; template 2, hg19 chr. 2: 211,153,238–211,153,405. (e) Expression
values from the three mice in which the SRES library was tested, exhibiting a very high
level of correlation.
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Figure 2.
Homotypic amplification of expression is compatible with a subset of transcription factor
binding sites, independent of their spacing. (a) We observed significant correlation between
expression and the size of the homotypic cluster for 5 of the 12 transcription factor binding
sites (CEBPA, FOXA1, HNF1A, ONECUT1 and XBP1). The PPARA binding site is
included as an example of a site that could not be homotypically amplified. Included on the
right are box plots for the background expression of all SRESs with a single binding site (B),
as well as for the positive (+) and negative (−) controls. Red boxes denote groups of SRESs
with significantly higher expression compared to background (Wilcoxon rank-sum test P ≤
0.05), which is a slightly more stringent test than comparison against negative controls. P
values refer to Spearman's correlation coefficients (corrected for multiple testing using
FDR). In the box plots, the central rectangle spans the first and third quartiles, the line inside
the rectangle is the median, and the lines beyond the box indicate the locations of the
minimum and maximum values. (b) In the vast majority of cases, the strength of expression
was not dependent on the distance between binding sites, as observed for class I elements.
Shown are examples of SRESs, each with two copies of one of the three strongest
transcription factor binding sites, including sites for CEBPA, HNF1A and XBP1. P values
refer to Spearman's correlation coefficients, and the dashed gray lines are the regression
traces.
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Figure 3.
Heterotypic elements drive stronger expression than homotypic ones. (a) Density of
expression by SRES class. The density of expression is plotted for each class of SRES. Red
dashed lines denote the mean expression value for each class. (b) Box plot of expression by
class and number of sites. Note that there are no class II SRESs with 1 site or class III
SRESs with <3 sites. In the box plots, the central rectangle spans the first and third quartiles,
the line inside the rectangle is the median, and the lines beyond the box indicate the
locations of the minimum and maximum values.
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Figure 4.
Combinatorial effects in heterotypic clusters of two different transcription factor binding
sites. (a) Significant interactions that were identified from a general model of class I and
class II SRES–driven expression using the χ2 goodness-of-fit test or direct comparisons
between class I and class II data sets. Dotted gray lines refer to the 19 combinations (of a
possible 121) that were sampled in class II SRESs. Red lines indicate significant synergy,
and a black line indicates significant interference (P values ≤ 0.05 in all cases). (b) Direct
comparisons between the eight pairs of interacting binding sites and predicted expression
based on class I data alone (black lines). Five interactions (NR2F2-XBP1, NR2F2-
ONECUT1, NR2F2-FOXA1, RXRA-XBP1 and HNF1A-XBP1) were identified by
including combinatorial terms in the model (Wald χ2 test P values shown at top right),
whereas three (FOXA1-RXRA, FOXA1-PPARA and TFAP2C-RXRA) were identified by
directly comparing expression from binding site pairs in combinations with homotypic
sequences containing an equal number of the binding sites in isolation (Wilcoxon rank-sum
test). A single example is shown for each combination, corresponding to a fixed number of
sites (the number of sites in each SRES is given in parentheses, and asterisks to the left of P
values indicate those that are significant). In the box plots, the central rectangle spans the
first and third quartiles, the line inside the rectangle is the median, and the lines beyond the
box indicate the locations of the minimum and maximum values.
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Figure 5.
Synthetic enhancers mimic mouse liver enhancers. (a) Categorization of 51,850 putative
mouse liver enhancers into the 3 SRES classes on the basis of the distribution of the 12
transcription factor binding sites. (b) Frequencies of transcription factor binding site pairs
for each of the 8 interactions identified in Figure 4 in putative mouse liver enhancers versus
103,700 matched random genomic controls.
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Figure 6.
Effects of binding site order in heterotypic enhancers. (a) Depiction of the 10 combinations
(out of 39 total combinations) of 3 transcription factor binding sites with a favorable
permutation resulting in significantly stronger expression (FDR < 0.05, Wilcoxon rank-sum
test). The difference in expression between the best and worst permutation is depicted on the
left. (b) Rank-value plot depicting 9 sets of SRESs containing ~49 permutations, each of the
same 8 transcription factor binding sites. (c) HepG2 and mouse liver SRES expression
strongly agree for the entire set of 441 permutations of 8 transcription factor binding sites.
The red line is the regression trace. A specific example of the best and worst permutation for
one of these sets (shown in purple in the plots in b,c) appears at the bottom.
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