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Abstract

Past clinical trials of putative neuroprotective therapies have targeted Parkinson disease (PD) as a 

single pathogenic disease entity. From an Oslerian clinico-pathologic perspective, the wide 

complexity of PD converges into Lewy bodies and justifies a reductionist approach to PD: a 

single-mechanism therapy can affect most of those sharing the classic pathologic hallmark. From a 

systems-biology perspective, PD is a group of disorders that, while related by sharing the feature 

of nigral dopamine-neuron degeneration, exhibit unique genetic, biological and molecular 

abnormalities, which probably respond differentially to a given therapeutic approach, particularly 

for strategies aimed at neuroprotection. Under this model, only biomarker-defined, homogenous 

subtypes of PD are likely to respond optimally to therapies proven to affect the biological 

processes within each subtype. Therefore, we suggest that precision medicine applied to PD 

requires a reevaluation of the biomarker-discovery effort. This effort is currently centered on 

correlating biological measures to clinical features of PD and on identifying factors that predict 

whether various prodromal states will convert into the classical movement disorder. We suggest, 

instead, that subtyping of PD requires the reverse view, where abnormal biological signals (i.e., 

biomarkers) rather than clinical definitions are used to define disease phenotypes. Successful 

development of disease-modifying strategies will depend on how relevant the specific biological 

processes addressed by an intervention are to the pathogenetic mechanisms in the subgroup of 
targeted patients. This precision-medicine approach will likely yield smaller but well-defined 

subsets of PD amenable to successful neuroprotection.

Keywords

Parkinson disease; biomarkers; neuroprotection; systems biology

Introduction

The elusive and highest priority therapeutic frontier in Parkinson disease (PD) remains the 

development of disease-modifying or neuroprotective interventions. Neuroprotection using a 

precision medicine paradigm would ideally occur (1) prior to or at the earliest stages of a 

diagnosable form of the disease, (2) with interventions targeting specific biological 

processes associated with disease progression, and (3) in a PD subgroup where such key 

abnormal processes have been confirmed through validated biomarkers. A perfect set of 
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biomarkers would not only serve to select appropriate patients for a specific disease-

modifying intervention, but also reflect disease progression and response to therapy. 

Therapeutic progress for disease modification would be accelerated by focusing on disease 

subgroups sharing similar abnormal molecular and biological characteristics.1

Biomarker-validated populations have remained a missing link in the translational efforts of 

putative disease-modifying therapies over the past two decades. Ongoing biomarker-

discovery efforts have been designed based on consensus clinical criteria for PD and its 

subtypes (e.g., tremor-dominant PD). We will here briefly review the pitfalls associated with 

anchoring the development of biomarkers on clinical criteria and suggest that devoting the 

next decade to the generation of unbiased biomarker-driven subtyping (rather than clinical 

phenotype-driven biomarker validation) will help identify possibly smaller, and biologically 

more homogenous, subsets of PD patients that are more likely to be amenable to specific 

molecular targeting.

The short history of failures in neuroprotective efforts

Treating PD as a single disease has greatly served the development of symptomatic therapies 

based on dopaminergic enhancement, given the common denominator of all its variants: 

dopamine deficiency. This model, however, has consistently failed when testing potential 

disease-modifying interventions.2 Indeed, drugs that have effectively targeted putative 

pathogenetic mechanisms in animal models of PD have consistently failed to accomplish 

disease modification in PD patients. The range of arguments justifying the translational 

failures range from inappropriate clinical trial designs, insufficiently sensitive endpoints, 

inadequate target engagement of putative neuroprotective interventions, patients recruited at 

an advanced disease stage, and, animal models (on which these interventions were 

developed) that do not “recapitulate the complexity of the human disease.”3 But a critical 

step in the translational efforts deserves greater recognition: the same biological mechanisms 

identified as critical for the drugs shown to be neuroprotective in animal models must be 

criticial in the group of PD patients targeted by the clinical trials of those drugs.

Two approaches to PD offer radically different outlooks for neuroprotection. On the one 

hand, the model of PD as a complex, heterogeneous disease assumes that all the clinical, 

genetic, and molecular variability can be traced to a unifying pathological core, namely 

aggregated α-synuclein found in Lewy bodies and neurites. On the other hand, the very 

complexity of PD, which has led to the notion that there exist different Parkinson diseases4 

which represent unique pathophysiologic entities, even if Lewy bodies are a common 

pathologic end-product and there are sufficient clinical elements to group them under the 

same diagnostic umbrella. The former model assumes that a drug may act on most patients 

with PD if the mechanism of action is sufficiently common or dominant across all clinical 

subtypes. Dopamine replacement strategies have been well served by this model because 

dopamine deficiency, predominantly from nigrostriatal neurodegeneration, is a dominant 

feature in all subtypes of PD. However, alterations in basic underlying biological processes 

such as mitochondrial, proteostatic, lysosomal, and inflammatory mechanisms may differ 

substantially among PD subtypes. Under the PD-as-several-diseases model, selected 

mitochondrial enhancement strategies (e.g., to enhance mitophagy or restore electron 
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transport chain activity) would be expected to succeed only in the subgroup of PD patients 

where mitochondrial dysfunction is an upstream event rather than a downstream byproduct 

of other molecular abnormalities. Clinical trials of drugs enhancing mitochondrial function 

will continue to fail if they include a substantial number of patients for whom mitochondrial 

dysfunction is not central.

In conclusion, the prevailing one-disease approach to PD has unsuccessfully predicted that 

clinical trials targeting a single pathogenic mechanism will mitigate disease progression in 

patients who share a clinical diagnosis but are heterogeneous regarding underlying 

molecular pathogenesis. Conversely, in the emerging precision-medicine model of 

neuroprotection, therapies can best succeed in the select subgroup of patients that share the 

biological aberrations such therapies were demonstrated to mechanistically alter.

The lessons from oncology

In the mirror-image field of oncology, where cells abnormally proliferate rather than 

degenerate, cancer was long viewed as a single, if heterogeneous disease. Breast cancer, for 

instance, was to be approached in a similarly aggressive fashion, with radical mastectomy, 

because it was equally malignant regardless of age or any other clinical variables.5 In the 

1950s and 1960s the application of breast-conserving surgery (“quadrantectomy” or 

“lumpectomy”) was widely believed as inappropriate compared to radical surgery. Only 

toward the late 1970s and early 1980s, after the first randomized clinical trial comparing 

these procedures demonstrated no difference in survival,6, 7 breast cancer began to be 

reconsidered as a cluster of several diseases and a search for its biological subtypes was 

initiated.

The last three decades of cancer research redefined cancer entirely, using a systems-biology 

approach to guide its nosology and disease-modifying treatment. Under this paradigm in 

breast cancer, a combination of nine histological types (e.g., tubular, ductal, mucinous, etc. 

for invasive and in-situ carcinomas) with any combination of validated molecular markers 

(mainly, estrogen receptor [ER], progesterone receptor [PR], human epidermal growth factor 

receptor 2 (HER2), and others [e.g., ErbB2, p53, Ki67]) yields nearly 20 breast cancer 

subtypes, each with a distinct survival curve and response to therapy.8 For example, the drug 

cocktail that is most effective for patients with HER2-positive breast cancer may be 

ineffective or harmful for patients with HER2-negative cancer.9 Within this sophisticated 

layering of nosological data created to guide therapy, there still are subtypes of breast cancer 

that remain biologically difficult to characterize (e.g., the malignant “triple negative” [ER-

negative, PR-negative, and HER2-negative] basal-like subtype).10

Unlike oncology, the field of neurodegenerative diseases does not have ready access to 

affected tissue for histopathology and this has contributed to the long dominance of clinical 

(and more recently, imaging) criteria for biomarker development. An oncologist examines 

several biomarkers in order to individualize a rational disease-modifying anti-cancer 

treatment: the specific histologic type, the plausible genetic mutations, the presence of 

ER/PR/HER2 receptors, and the anatomical spread. Only then is a rational therapeutic 

cocktail administered, addressing known mechanisms and preempting plausible alternative 
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mechanisms of cancer development for that specific patient. Neurologists involved in 

research of neurodegenerative diseases have remained committed to the reductionist model 

of PD (and, for that matter, Alzheimer disease (AD) and other disorders) as a single “but 

complex” disease, in the same manner as oncologists viewed cancer until the late 1970s.

Clinical phenotype to biomarkers: Pitfalls in the current model

The success of future neuroprotective therapies in PD and other neurodegenerative disorders 

will depend on the extent to which biomarkers of disease subtypes and subtype-specific 

progression will help identify suitable populations for promising molecular interventions. 

The current model for biomarker development is anchored on a traditional definition of PD, 

as recently refined by the International Parkinson and Movement Disorders Society.11 This 

phenotype-driven biomarker development program is based on the assumed existence of 

biological/molecular underpinnings for each diagnostic entity, as well as the corresponding 

prodromal state. The most important effort based on this premise is the Parkinson’s 

Progression Markers Initiative (PPMI), launched in 2011 by the Michael J. Fox Foundation 

for Parkinson’s Research.12

After a clinical diagnosis is made, the current approach to biomarker research (Figure 1A) 

evaluates how biological markers correlate with the clinical diagnosis (“state biomarkers”) 

or evolution (“rate biomarkers”). The most recent analysis of the PPMI CSF data found that 

PD subjects (n = 412) have lower alpha-synuclein (α-syn), total tau (t-tau), and 

phosphorylated tau (p-tau), but not lower amyloid-β1–42 (Aβ1–42) compared to healthy 

controls (n = 189).13 As such, α-syn, t-tau, and p-tau could be considered biomarkers of 

disease, even if their individual diagnostic value for PD diagnosis is limited due to the large 

overlap with healthy controls. Nevertheless, these may be considered for use at a population 

level if confirmed in other cohorts. However, in the De Novo Parkinson or DeNoPa cohort (n 

= 123 PD; 106 age-matched healthy controls) neither t-tau nor p-tau in CSF segregated PD 

from controls.14 Only α-syn was lower at baseline but it did not change over a 2-year period, 

suggesting it is not useful for monitoring disease progression.14 Thus, CSF biomarkers from 

clinically defined phenotypes exhibit substantial signal overlap and the outcomes may vary 

between cohorts. Furthermore, this model has left unanswered the question of which 

biomarkers might help assist in individualizing molecular therapy in a precision-medicine 

future.

Extensively used clinical phenotypes include tremor-dominant (TD), postural instability-gait 

disorder (PIGD), non-motor mild cognitive impairment (PD-MCI), and dementia (PDD) 

subtypes.15 In clinical epidemiologic studies, the motor PIGD phenotype is associated with 

greater likelihood of evolving into the PD-MCI and PDD phenotypes.16 Segregating these 

clinical phenotypes based on Unified Parkinson Disease Rating Scale (UPDRS)17 data 

collected in the PPMI, only low α-syn, but not changes in this or other biomarkers, was 

associated with the PIGD phenotype and also with worse cognitive performance (e.g, PD-

MCI/PDD).13 In another PPMI analysis, however, the 2-year conversion to PD-MCI (n= 286 

participants without MCI at baseline) was associated with lower mean baseline CSF β-

amyloid 1–42 (343.8 vs. 380.4 pg/mL, p < 0.01) but not α-syn.18 These conflicting data 

have been suggested to reflect “disease heterogeneity”, but have not yet forced a 
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reconsideration of the clinical phenotype → biomarker model for validating both the disease 

subtypes and the corresponding presumed biomarkers.

Importantly, the separation of PD from other disorders on clinical grounds is challenged by 

the finding that molecular elements traditionally considered a domain of other 

neurodegenerative disorders may “explain some of the variability in PD.” For example, 

amyloid as measured by CSF Aβ1–42 is present in 17% of dopamine transporter scan-

positive PD patients within two years from diagnosis.19 These patients are older, more 

cognitively impaired, and have more cortical atrophy in medial temporal, frontal and 

brainstem structures.19 Thus, this small but significantly different group of patients 

exhibiting a PD-AD hybrid (two diseases or a defined molecular/pathology subtype?) defies 

the “neat” clinical separation between α-syn and amyloid/tau pathologies, or between PD 

and AD clinical phenotypes.

Lastly, a major problem with biomarker discovery using clinical phenotypes as anchors is 

the “instability” of the clinical phenotypes themselves: Within a year of enrollment in the 

PPMI study, the mean values of the two common motor phenotypes, TD and PIGD, defined 

using the scoring of related sub-items from the UPDRS,20 shifted by nearly 40% and 20%, 

respectively, regardless of dopaminergic treatment.21 This cast further doubt on the 

relevance of any molecular/biological derangements presumed to be associated with each of 

these clinical phenotypes.

Biomarkers to clinical phenotype: Ideal model

The desirable approach (Figure 1B), based on a systems-biology model, assumes that PD is 

a point-of-entry diagnosis encompassing patients with several genetic, biological and 

pathophysiologic abnormalities. The ideal biomarker discovery program is based on large, 

aging populations with or without a neurological diagnosis at baseline. Some of these 

individuals will be diagnosed with PD, some with AD, some with other neurodegenerative 

disorders, and some will remain neurologically healthy. The statistical analysis would not be 

dependent on the clinical diagnoses as the independent variable but, rather, on the biological 

and molecular abnormalities. Identification of abnormal biological processes would occur in 

an unbiased manner, detached from any preconceived notion of whether it correlates with a 

clinically defined disease. Abnormally high and low signals would then be used, in isolation 

or in combination, to determine the extent to which they correlate with specific clinical 

features and with the progression of motor or non-motor disability. While some biomarkers 

may correlate with previously defined PD subtypes (e.g., PD-MCI), others will most likely 

segregate with previously unrecognized phenotypes (e.g., prominent postural tremor and a 

non-neurological impairment, such as arthritis), for which we have no current consensus 

clinical criteria. Many will not be associated with a clearcut clinical phenotype. For 

example, biomarker pairs A&B and C&D may be associated with parkinsonism, and A&B 

may include early dementia in 50% and C&D may include early dementia in 30%. Even if 

distinct biomarker patterns were not to lead to distinctive clinical phenotypes (as it may be 

theoretically expected based on current evidence: for instance, patients with GBA mutations 

do indeed have more dementia and these mutations may be associated with the clinical 

picture of dementia with Lewy bodies but many patients behave no differently from those 
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without a clear disturbance of lysosomal function22), the biological homogeneity of these 

PD subtypes would represent suitable targets for the application of “personalized” disease-

modifying therapies. A potentially powerful way to implement this biomarker → clinical 
phenotype model is through an exploratory, unbiased, non-hypothesis-driven approach to 

biomarker development, with a reverse analytic plan to that applied in the PPMI and other 

biomarker validation cohorts. An exponentially larger sample of aging adults than available 

in those cohorts would be required to have adequate power because an unbiased biomarker 

development program would concentrate on recognizing the phenotype of those whose 

biological signals represent unique patterns (rather than simple ‘positive-negative’ 

biomarkers based on a given cutoff of “positivity”) or are outliers in the measurement 

spectrum in order to discriminate subgroups ideal for potentially neuroprotective molecular 

therapies.

Implications for clinical trials

It is critical for the biological action of therapies with promising neuroprotective potential, 

confirmed to engage relevant molecular targets, to be considered only in patients with the 

appropriate biomarker signatures. Without biomarkers of disease (for patient selection) and 

progression (for response monitoring), the chances for success in neuroprotection trials are 

limited. In the immediate future, clinical trials of drugs with neuroprotective properties may 

succeed, in the absence of biomarkers to assist in the selection of a suitable cohort, only if 

the mechanisms of action of the interventions are of sufficiently broad applicability in Lewy 

body PD. For instance, despite the lack of a biomarker for propagation of α-syn pathology, it 

is conceivable that immunotherapies aimed at disrupting this mechanism of disease 

progression may be applicable to a large proportion of PD patients. Future clinical trials may 

also target selected genetic (e.g., at-risk or manifest LRRK2 mutation carriers for initial 

trials of LRRK2 kinase inhibition,23 and GBA mutation carriers for trials of 

glucosylceramide synthase inhibitor to influence glucocerebrosidase activity24) or 

polysomnography-defined pre-motor REM sleep behavior disorder subtypes.25 An ongoing 

example of the use of a biomarker to define a clinical trial cohort is the SURE-PD3 study, in 

which inosine, a precursor of urate, is only given to patients with low baseline urate, a 

molecular biomarker that predicts the rate of disease progression.26

There are several major challenges in ushering the era of precision medicine for PD through 

biomarker development programs. Besides assay variability, population heterogeneity, 

differing power to detect a range of biological effects, we will need to: (1) differentiate 

between specific and early biomarkers (linked to causative pathological mechanisms and 

therefore targetable for therapy development) vs. non-specific or late biomarkers (reflecting 

reactive plasticity or self-perpetuating neurodegenerative cycles and unwarranted for 

therapeutic targeting) vs. biomarkers reflecting a physiological response to injury; (2) 

understand the extent to which identifiable biomarkers may be “unstable” (transient) or 

constant throughout the course of the disease. This will require a ranking of biomarkers 

related to the phenotypic staging they represent and the early-versus-late relevance in the 

neurodegenerative processes: This may take many years to ascertain, particularly if our 

starting point, due to logistical and power issues, will need to be restricted to large PD 

cohorts (advanced as well as de novo and prodromal, as in PPMI) rather than even larger 
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population-based cohorts. Thus, we need to take a large, unbiased step back to invest the 

next decade laying the groundwork for biomarker-driven clinico-molecular phenotyping in 

PD to inform the development of clinical trials targeting smaller, but better defined, 

biologically homogeneous PD subtypes, one at a time. This will imply reconsidering the 

wisdom of further phenotype-based biomarker development programs and current clinical 

diagnostic criteria to select patients for disease-modifying clinical trials. Such an expensive, 

time consuming but transformational effort will require the engagement of the entire 

research community, with substantial investments from foundations, industry and 

government.
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Figure 1. Biomarker development models
A. Clinical phenotype → Biomarker validation. Under this model, clinical phenotypes 

are established as the “truth” against which biomarkers are validated. After defining the 

clinical constructs (e.g., PD-MCI), statistical analyses determine the strength of correlation 

with a variety of abnormal biological signals. In this example, the “green” signal becomes a 

biomarker of PD-MCI. B. Biological/molecular abnormalities → Biomarker-driven 
phenotypes. Under this model, the “truth” is unknown and the analysis is non-hypothesis 

driven (exploratory). Biological/molecular signals are examined within a large cohort of 

individuals, including criteria-meeting “PD” but also individuals with other PD-like 

diagnoses and those aging without overt disease. The biomarker-driven phenotypes (D1, 

D2…Dn, where D stands for “disease”) share strong biological homogeneity, even if not 

clinically, as they are generated based on abnormal biological signals (exemplified as >2 

standard deviations above the mean for green and red signal; and >2 SD below the mean for 

purple and a theoretical gray “n” signal).
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