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Abstract Model a network as an edge-weighted graph, where the (unknown)
weight we of edge e indicates the frequency of observed interactions, and over
time t we observe a Poisson(twe) number of interactions across edges e. How
should we estimate some given statistic of the underlying network? This leads
to wide-ranging and challenging problems, on which this article makes only
partial progress.
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1 Introduction

Network science has many aspects: here are two.

Efficient algorithms/computational complexity. Given some mathematically-
defined quantity Γ (G) associated with a network G, find an algorithm which
inputs G and outputs Γ (G). Compare different algorithms via theoretical
bounds or by contests with real-world network data.

Analysis of probability models. Take a probability model for networks and
analyze mathematically some graph-theoretic quantity (degree distribution,
diameter, clustering statistics). Or study some random process (e.g. random
walk or voter model or Prisoners’ Dilemma) over a deterministic network G.
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In the latter context, the expectation of some quantity associated with the
process is a functional Γ (G).

For this article, suppose we are interested in some quantitative question
about a real-world network which we could answer if we knew the network.
That is, there is some unknown Gtrue, some observed Gobs and we want an esti-
mate of Γ (Gtrue) for some given functional Γ , and some indication of how accu-
rate the estimate might be. There are many ways to formalize this imperfectly-
observed networks setting (see section 6.1 for brief comments) motivated by
different real-world instances. This article describes a novel framework within
which some interesting and challenging mathematical questions arise, though
we do not claim any particular real-world relevance. Our framework is rather
intermediate between the two aspects above: Gtrue is arbitrary, but we make
a probability model for how Gobs depends on Gtrue. Also, and important to
keep in mind, our implicit notion of “cost” will be observation time – the cost
of acquiring data – rather than cost of computation, which we ignore. So this
contrasts with a complementary framework called smoothed analysis [9] which
measures cost of computation of a given graph algorithm as the worst case,
over all Gtrue, of the expected number of steps taken by the algorithm applied
to a slightly randomly perturbed (“smoothed”) graph derived from Gtrue.

1.1 The framework

We model a network as an edge-weighted graph G = (V, E ,w). Having in mind
social networks, the edge-weights w = (we : e ∈ E) are regarded as “strength
of association” between the entities modeled as vertices; note this is the oppo-
site convention from regarding weights as “distance” or cost, which is implicit
in concepts such as minimum spanning tree. It is plausible that strongly asso-
ciated edges are easier to observe than weakly associated edges. To model this,
we imagine that what is observable is some kind of pairwise interaction be-
tween entities, and that interactions across edge e occur at times of a Poisson
(rate we) process, independently over different edges. (In other words we iden-
tify “strength of association” as being “frequency of interaction”.) So by time
t we have observed a random number Me(t), with Poisson(wet) distribution,
of interactions across e.

In our framework there is an unknown Gtrue with known vertex-set V but
unknown edge-weights w. Note that we can express our observations in two
equivalent ways, either as the random multigraph M(t) with Me(t) copies of
edge e, or as the random weighted graph Gobs(t) in which edge e has weight
t−1Me(t). Although logically equivalent, we shall see that these two represen-
tations suggest different questions and techniques. We call (M(t), 0 ≤ t <∞)
the observed multigraph process and we call (Gobs(t), 0 ≤ t <∞) the observed
network process.
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Fig. 1 Equivalent representations of the observed process.
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1.2 Estimating functionals

Repeating our initial project description, let us regard the network Gtrue as
unknown, and suppose we are given a functional Γ on the space G of networks
(finite edge-weighted graphs): how do we use the observed process to estimate
Γ (Gtrue)? Of course Ne(t)/t is the natural frequentist estimator of we, and so
Gobs(t) is an estimator of Gtrue, and so we could use Γ (Gobs(t)) as an estimator
for Γ (Gtrue). We call this the “naive frequentist estimator”, using naive as a
reminder that there is no reason to believe it is optimal, and we will see an
example (section 3) where it is clearly not.

Write the total interaction rate of vertex v as

wv =
∑
y

wvy.

In informal discussions of weighted graphs the relevant distinctions are some-
what different from the familiar sparse, dense distinction for unweighted graphs.
Write

w∗ := max
v

wv, w∗ = min
v
wv.

For a sequence of weighted graphs with |V| = n→∞ we envisage that weights
have been scaled to make

w∗ = Θ(1).

Then we can distinguish between

– the diffuse case where limn maxe we = 0
– the local-compact case where limε↓0 lim supn maxv

∑
{wvy : wvy ≤ ε} = 0.

See section 6.2 for some background. We also envisage

w∗ = Ω(1).

It is now conceptually useful to consider three time regimes for the observation
process.
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Short-term: t = o(1). In this regime we see no interactions at a typical vertex.
The only aspects of the unknown G we can estimate relate to “local” statistics,
such as the (edge-weighted analog of – see section 6.3) degree distribution and
densities of triangles or other O(1)-size subgraphs (“motifs” in the applied
literature).

Long term: t = Ω(log n). This is the observation time typically required for
the observed graph to be connected. After this time we will, in the context of
local-compact networks, have good estimates of most edge-weights, and so we
expect that Γ (Gobs(t)) will be a good estimator for Γ (G), for most functionals
Γ .

Medium term: t = Θ(1). This is what we regard as the “interesting case” –
informally,

What can we infer about the unknown network when we have observed
an average of (say) 24 interactions per vertex?

This article is intended as first steps of analysis in this framework, by indicat-
ing what can be done using two different techniques. The most straightforward
technique involves using the estimator Γ (Gobs(t)) or variants, and relies on
large deviation bounds for Poisson distributions. We give results for a “com-
munity size” functional in section 2.1 and for maximum-weight matching in
section 3. These require mild assumptions on the interaction rates wv of Gtrue.
A second technique exploits a certain monotonicity property of the observed
multigraph process, that for certain stopping times T one can show that the
variability s.d.(T )/ET is bounded uniformly over all networks. The implies
that ET is a functional of the network that can be estimated by T . This is
a kind of “backwards” technique, in that such functionals may not be very
natural in themselves, but one can then seek to relate them to more natural
ones. This second technique and some simple examples (involving times to
observe triangles or spanning trees) were introduced in [3] and are reviewed in
section 4. Such results suggest a more detailed formulation of our estimation
program, as follows.

Given a statistic Γ , define a (“universal”) stopping rule T and an esti-

mator Γ̂ (Gobs(T )) such that the relative error of the estimator, that is

Γ̂ (Gobs(T ))/Γ (Gtrue)− 1, is small uniformly over all networks Gtrue.

Subject to this requirement we want T to be small, but inevitably the size of
T will depend on Gtrue.

The requirement that estimates be uniformly good over all finite networks
of all sizes makes this a very challenging program. This article presents only
rather limited results, and is intended to suggest possible further research.

A key open problem in this formulation involves connectivity in the medium
term regime. We expect that at (large) times t = O(1), the observed Gobs(t)
will have a (large) giant component, of some size (1 − δ)n. We seek a result
which says that, if we observe some quantitative “well-connected” property
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within the giant component of Gobs(t), then we can infer that G has some
similar connectivity property within some large subset of vertices. This seems
intuitively very plausible, but also seems difficult to formalize. We give a weak
indirect version, involving multicommodity flow, in section 4.1, but we expect
there are more natural versions. The logic of such arguments is rather counter-
intuitive, as indicated in section 4.2.

In section 5 we discuss first-passage percolation, as a basic model for spread
of information on networks, in our framework. Further general discussion is
postponed to section 6.

2 Estimators guaranteed by large deviation bounds

Consider a functional of the form

Γ (G) = max
A∈A

∑
e∈A

we

where A is a collection of edge-sets A. For such functionals it does seem rea-
sonable to use Γ (Gobs(t)) as an estimator of Γ (Gtrue), because the individual
sums

∑
e∈AMe(t) have Poisson(t

∑
e∈A we) distribution which is concentrated

around its mean. We study two examples of such functionals, in sections 2.1
and 3.

First we record the elementary large deviation bounds for a Poisson(λ) r.v.
Poi(λ). Define

−φ(a) = a− 1− a log a, 0 < a <∞

so that φ(a) > 0 for a 6= 1. Then

λ−1 logP(Poi(λ) ≤ aλ) ≤ −φ(a), 0 < a < 1 (1)

λ−1 logP(Poi(λ) ≥ aλ) ≤ −φ(a), 1 < a <∞. (2)

2.1 Weights of communities

A community in a network is, conceptually, a subset of vertices which is better
connected than a typical subset of the same size. Algorithms for “community
detection” have been a major field of study [6,7] but we consider only maximal
sizes of communities and disregard computational complexity issues.

For a subset A∗ of vertices write A for the set of edges with both end-
vertices in A∗. Write

wm = max

{∑
e∈A

we : |A∗| = m

}
.
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How can we estimate this in our framework, where w = (we, e ∈ E) is un-
known? Ignoring computational complexity, suppose we can compute the anal-
ogous observable quantity

Wm(t) = max

{∑
e∈A

Ne(t)/t : |A∗| = m

}
.

Typically Wm(t) will be larger than wm, and for fixed m will typically grow
to ∞ as n → ∞ (here we envisage the case where all vertices v have interac-
tion rate wv of order 1). We interpret “community” as a subset A∗ of some
size m = m(n) for which m−2

∑
e∈A we (the average interaction rate between

community members) is not o(1). In other words, saying that communities of
size m exist is saying that m−2wm is not o(1).

Consider the case where the size m is order log n. In this range, the straight-
forward “first moment” calculation below shows that as t grows the estimation
error (when usingWm(t)/m2 to estimate wm/m

2) decreases as t−1/2 uniformly
over n and weighted graphs.

The calculation. Because there are
(
n
m

)
subsets of size m,

P(Wm(t) ≥ βm2) ≤
(
n

m

)
P(Poi(wmt) ≥ βm2t).

So provided wm < βm2 we can use the large deviation upper bound (2) to
write

logP(Wn(t) ≥ βm2) ≤ log

(
n

m

)
−wmtφ(βm2/wm)

≤ m log n−wmtφ(βm2/wm)− logm!

Now set m = γ log n and wm = αm2 for α < β, and then

logP(Wn(t) ≥ βm2) ≤ (γ − γ2αtφ(β/α)) log2 n− logm!

So if we take β = β(α, γ, t) as the solution of

γαtφ(β/α) = 1 (3)

then
P(Wm(t) ≥ βm2) ≤ 1/m!

This tells us that (for m = γ log n and outside an event of probability → 0
as n → ∞) the estimation error m−2(Wm(t) − wm) is at most β − α, for
α = wm/m

2 and β defined by (3).
The conceptual point is that the bounds above are uniform over all net-

works. To express in more informal but more readily interpretable terms, note
φ(a) ∼ (a− 1)2/2 as a ↓ 1, which implies that

β − α ∼
√

2α
γt as t→∞.
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So the conclusion is that, upon observing the value of m−2Wm(t), we can be
confident that m−2wm is in a certain interval which is approximately[

m−2Wm(t)−
√

2m−2Wm(t)
γt ,m−2Wm(t)

]
where γ = m/ log n.

3 Maximum matchings

Take n even and work with the complete graph by assigning weight zero to
edges e outside E . A matching is a set π of n/2 edges such that each vertex is
in exactly one edge. The weight of the matching is weight(π,w) :=

∑
e∈π we.

The maximum-weight is Γ1(w) := maxπ weight(π,w). Readers familiar with
the notion of minimal matchings should recall that in our setting, large edge-
weights indicate closeness, not distance.

In our framework the weights w are unknown. Can we estimate Γ1(w)
from the observed Gobs(t) at (large) times t = O(1)? The “natural” estima-
tor Γ1(Gobs(t)) is unsatisfactory for the following reason. As usual, for in-
formal discussion we imagine graphs Gtrue with wv of order 1. For a local-
compact such graph, Γ1(w) will be order Θ(n). Suppose instead Gtrue is
the complete graph with we = 1/n ∀e (a prototypical diffuse graph), for
which Γ1(w) = 1/2. Here Gobs(t) is essentially the Erdős-Rényi random graph
G(n, t/n) with edge-weights 1/t, and by considering matchings on that graph
we have Γ1(Gobs(t)) ∼ c(t)n for a certain function c(t) [8]. So, even though
Γ1(Gobs(t)) might be a good estimator of Γ1(w) for a local-compact graph,
if we superimpose a local-compact and a diffuse graph then we see that
Γ1(Gobs(t)) contains a spurious contribution of order n from the diffuse part.

We will circumvent this issue as follows. First, we say that our goal is to
estimate n−1Γ1(w), the weight-per-vertex of the maximum-weight matching,
up to small additive error; this effectively means we will be able to ignore
edges of weight o(1). We then avoid the difficulty above by only using edges
for which we have observed at least two “interactions”. That is, we define

weight2(π,Gobs(t)) := t−1
∑
e∈π

Me(t)1{Me(t)≥2}

Γ2(Gobs(t)) := max
π

weight2(π,Gobs(t))

and our goal is to show

n−1
∣∣Γ2(Gobs(t))− Γ1(w)

∣∣ is small for large t, uniformly over w.

The best we can hope for is an O(t−1/2) bound: consider the graph with only
one edge.

We will give one result under the assumption that Gtrue satisfies

we ≤ 1 ∀e ∈ E (4)
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which implies Γ1(w) ≤ n/2, and another result under the stronger assumption

wv ≤ 1 ∀v ∈ V. (5)

Proposition 1 Under assumption (4) we have a lower bound

E
[
n−1(Γ2(Gobs(t))− Γ1(w))

]− ≤ t−1/2 + 1
2t (1 + log t) ∀w ∀t ≥ 1. (6)

Under assumption (5) we have an upper bound

E
[
n−1(Γ2(Gobs(t))− Γ1(w))

]+ ≤ Ψ(t) ∀w (7)

where Ψ(t) = O(t−1/2 log t) as t→∞.

A complicated explicit expression for Ψ(t) could be extracted from the proof.
In seeking our goal, the main issue is to upper bound Γ2(Gobs(t)). In doing

this the contribution from o(1)-weight edges will be bounded using technical
Lemma 1, and because there are only exponentially many matchings using
Θ(1)-weight edges, we can apply standard large deviation bounds to bound
the contribution from Θ(1)-weight edges.

3.1 The lower bound

For any fixed matching π, the sum
∑
e∈πMe(t) has Poisson(t · weight(π,w))

distribution. Choose and fix some π attaining the maximum in the definition
Γ1(w) := maxπ weight(π,w). So

Γ2(Gobs(t)) ≥ weight2(π,Gobs(t))

and it suffices to lower bound the right side. Now
∑
e∈πMe(t) has Poisson(t ·

weight(π,w) = t · Γ1(w)) distribution, which we will be able to lower bound
later by (1). First let us consider the difference∑

e∈π
Me(t)− t · weight2(π,Gobs(t)) =

∑
e∈π

Me(t)1{Me(t)=1}

for which

E

(
t−1

∑
e∈π

Me(t)− weight2(π,Gobs(t))

)
=
∑
e∈π

we exp(−twe).

We want to upper bound the right side, based on the facts that 0 ≤ we ≤ 1
and

∑
e∈π we = Γ1(w) ≤ n/2. By considering separately the edges e with

we ≤ b and the edges with we > b we see∑
e∈π

we exp(−twe) ≤ n
2 b+ Γ1(w) exp(−tb).
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Minimizing the right side over b ≥ 0 leads to

n−1
∑
e∈π

we exp(−twe) ≤ 1
2t ψ( 2tΓ1(w)

n )

where

ψ(x) = 1 + log x, x ≥ 1

= x, 0 < x ≤ 1.

To summarize, set

D2 := n−1

(
t−1

∑
e∈π

Me(t)− weight2(π,Gobs(t))

)
≥ 0

and we have shown
ED2 ≤ 1

2t ψ( 2tΓ1(w)
n ). (8)

As noted above,
∑
e∈πMe(t) has Poisson(t · Γ1(w)) distribution, and we are

interested in showing the difference from expectation

D1 := n−1

(
t−1

∑
e∈π

Me(t)− Γ1(w)

)

(in the negative direction) must be small. So fix δ > 0 and calculate

P(D1 < −δ) = P

(∑
e∈π

Me(t) < tΓ1(w)− ntδ

)
.

Applying (1) with λ = tΓ1(w) and a = 1− nδ/Γ1(w) gives

P(D1 < −δ) ≤ exp (−tΓ1(w)φ(1− nδ/Γ1(w))) .

Because −φ(1− η) ≤ −η2/2 we find

P(D1 < −δ) ≤ exp
(
− tn2δ2

2Γ1(w)

)
.

Because n−1Γ1(w) ≤ 1/2 and n ≥ 2 we get

P(D1 < −δ) ≤ exp(−2tδ2).

Note that if δ is such that a < 0 then the probability is zero, so the bound
remains valid. Integrating over δ gives

Emax(0,−D1) ≤ 2−3/2π1/2t−1/2. (9)

To put this all together,

D := n−1
(
Γ2(Gobs(t))− Γ1(w)

)
≥ n−1

(
weight2(π,Gobs(t))− Γ1(w)

)
= D1 −D2
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and so

Emax(0,−D) ≤ Emax(0, D2 −D1)

≤ ED2 + Emax(0,−D1)

≤ 2−3/2π1/2t−1/2 + 1
2t ψ(t) (10)

using (8,9) and using again the inequality Γ1(w) ≤ n/2. This implies the
weaker lower bound stated at (6).

3.2 The upper bound

For any fixed matching π, the sum
∑
e∈πMe(t) has Poisson(t · weight(π,w))

distribution, and weight(π,w) ≤ Γ1(w), so by the large deviation upper bound
(2) with λ = tΓ1(w) we have

1

tΓ1(w)
logP

(∑
e∈π

Me(t) ≥ nt(Γ1(w)
n + a)

)
≤ −φ

(
1 + an

Γ1(w)

)
, a > 0.

We can rewrite this inequality as

n−1 logP

(
n−1

∑
e∈π

Me(t)/t ≥ Γ1(w)
n + a

)
≤ −tn−1Γ1(w)φ

(
1 + an

Γ1(w)

)
, a > 0.

(11)
For integer k ≥ 2 write Πk for the set of partial matchings π that use only
edges e with we > 1/k and are maximal subject to that constraint. We can
bound the cardinality of that set crudely as |Πk| ≤ kn. For any matching π,
the subset of edges with we > 1/k form part of a partial matching in Πk, and
it follows from (11) and the bound |Πk| ≤ kn that

n−1 logP

∃π ∈ Πk : n−1
∑

e∈π,we>1/k

Me(t)/t ≥ Γ1(w)
n + a

 (12)

≤ −tn−1Γ1(w)φ(1 + an
Γ1(w) ) + log k.

To study the contribution from low-weight edges, write

∆k(π) :=
∑

e∈π,we≤1/k

Me(t)1{Me(t)≥2}.

Because a matching uses only one edge at a vertex, we can bound this in the
form

max
π

∆k(π) ≤ 1
2

∑
v

M∗v 1{M∗
v≥2}; M∗v = max{Mvy(t) : wvy ≤ 1/k}. (13)

We will use the following lemma.
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Lemma 1 Let (Ni, i ≥ 1) be independent Poisson(λi), and write N∗ = maxiNi.
Suppose s :=

∑
i λi ≥ 1 and choose λ∗ ≥ 1 such that maxi λi ≤ λ∗ ≤ s. Then

EN∗1{N∗≥2} ≤ Cλ∗ (1 + log(s/λ∗)) (14)

for some numerical constant C.

We outline a proof below using standard methods; the extensive classical the-
ory of extremes [10] focuses on asymptotics in the i.i.d. setting, but it is hard
to locate results like Lemma 1.

Because Mvy(t) has Poisson(twvy) distribution, and
∑
y:wvy≤1/k wvy ≤ 1

by assumption (5), we can apply Lemma 1 with s = t and λ∗ = t/k, and (14)
shows

EM∗v 1{M∗
v≥2} ≤ Ctk

−1(1 + log k), k ≤ t.

Applying (13) gives

1
nE[max

π
∆k(π)] ≤ 1

2Ctk
−1(1 + log k), k ≤ t. (15)

Recall that our goal is to get an upper bound on

D := n−1
(
Γ2(Gobs(t))− Γ1(w)

)
.

Write B for the event in (12). On the complement Bc we have

n−1Γ2(Gobs(t)) ≤ n−1Γ1(w) + a+ n−1t−1 max
π

∆k(π).

That is,

D ≤ a+ n−1t−1 max
π

∆k(π).

Writing F for the event {n−1t−1 maxπ∆k(π) > a} we have

D ≤ 2a on Bc ∩ F c

and from Markov’s inequality and (15)

P(F ) ≤ Ck−1(1 + log k)/a, k ≤ t.

Recall (12) gave a bound on P(B). Combining these bounds,

P(D > 2a) ≤ exp
[
n(−tn−1Γ1(w)φ(1 + an

Γ1(w) ) + log k)
]
+Ck−1(1+log k)/a, k ≤ t.

(16)
We want to optimize over choice of k.

So far we have been precise with the bounds, but for ease of exposition let
us continue the calculations considering only the leading terms. In particular,
treat the asymptotic relation φ(1 + δ) ∼ δ2/2 as exact for small δ > 0. This
makes the term

Γ1(w)φ(1 + an
Γ1(w) ) = a2n

2
n

Γ1(w) ≥ a
2n
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because Γ1(w) ≤ 1/2. So

P(D > 2a) ≤ kn exp(−nta2) + Ck−1(1 + log k)/a, k ≤ t. (17)

Note this bound does not depend on w. Integrate over a to get∫ 1

a0

P(D > 2a)da ≤ kn 1
2nta0

exp(−nta20) + Ck−1(1 + log k) log(1/a0), k ≤ t.

(18)
Now set k = t and a0 = t−1/2 log t, for large t. The bound in (18) becomes

exp(−n(log2 t− log t))

2nt1/2 log t
+
C log2 t

t
.

This is bounded, uniformly in n, by a function which is o(t−1/2) as t → ∞.
One can check that this conclusion∫ 1

a0

P(D > 2a)da = o(t−1/2) as t→∞, uniformly in n

remains true under the asymptotics φ(1 + δ) ∼ δ2/2.
Finally, write

ED+ ≤ 2a0 + 2

∫ 1

a0

P(D > 2a)da+

∫ ∞
2

P(D ≥ a)da.

To handle the last term, note D ≤ n−1Γ2(Gobs(t)) and use the crude bound

Γ2(Gobs(t)) ≤ t−1
∑
e

Me(t).

The sum has Poisson(t
∑
e we) distribution, so by (5)

D is stochastically smaller than 1
ntPoi(nt/2)

and the elementary large deviation upper bound (2) for Poisson shows that∫∞
2

P(D ≥ a)da→ 0 exponentially fast in nt. We conclude that ED+ is indeed

O(t−1/2 log t) as t→∞, uniformly in n.
Proof of Lemma 1. Note first that we can represent the Ni as the counts

of a rate-1 Poisson point process on [0, s] in successive intervals of lengths λi.
But consider instead the collection of k = ds/λ∗e successive intervals of length
λ∗. Each interval in the first collection is contained within the union of two
successive intervals of the second collection. So the proof of (14) reduces to
the proof of the following special case: there exists a constant C such that, if
(Ni, 1 ≤ i ≤ k) are i.i.d. Poisson(λ∗) with λ∗ ≥ 1, then

EN∗1{N∗≥2} ≤ Cλ∗ (1 + log(k)).
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But in fact this bound holds for EN∗, as follows. First, it is easy to show there
exists a constant B <∞ such that

P(Poi(λ∗) ≥ i+ 1)

P(Poi(λ∗) ≥ i)
≤ 1

2 , λ∗ ≥ 1, i ≥ Bλ∗. (19)

Now write

EN∗ =
∑
i≥1

P(N∗ ≥ i)

≤
∑
i≥1

min(1, kP(Poi(λ∗) ≥ i))

≤ 1 + max(Bλ∗, min{i : P(Poi(λ∗) ≥ i) ≤ 1/k}) by (19).

Now it is enough to show there exists C∗ <∞ such that

P(Poi(λ∗) ≥ i) ≤ 1/k, λ∗ ≥ 1, i ≥ C∗λ∗ (1 + log(k)

and this follows easily from the large deviation upper bound (2).

4 Concentration inequalities for the observed multigraph process

Write m = (me, e ∈ E) for a multigraph on a given vertex-set V; here me ≥ 0
is the number of copies of each edge e linking vertices of V. The observed
multigraph process (M(t), 0 ≤ t <∞) = (Me(t), e ∈ E , 0 ≤ t <∞) in section
1.1 is a continuous-time Markov chain, whose state space is the set M of all
multigraphs over V, and whose transition rates are

m→m ∪ {e}, rate we

where m∪{e} denotes appending another copy of e to m. As a Markov chain
we can start (M(t) at any state, so let us call the observed process in our
framework, which starts from the empty set ∅, the standard process.

Consider a stopping time of the following form.

T = TA = inf{t : M(t) ∈ A} (20)

where A ⊂M is a set of multigraphs with the “increasing” property

if m ∈ A then m ∪ {e} ∈ A ∀e. (21)

For the chain started at an arbitrary state m, write the expectation as

h(m) := EmTA.

The monotonicity property (21) implies that for any transition m→m ∪ {e}
we have h(m ∪ {e}) ≤ h(m). In this setting it is not difficult to establish the
following simple concentration bound.
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Proposition 2 ([3]) For the standard chain, for a stopping time T of form
(20,21),

var T

ET
≤ max

m,e
{h(m)− h(m ∪ {e}) : we > 0}.

Here are two applications where the bound in Proposition 2 can be estimated
nicely. Consider

T tria
k = inf{t : M(t) contains k edge-disjoint triangles}.

T span
k = inf{t : M(t) contains k edge-disjoint spanning trees}.

Proposition 3 ([3])

s.d.(T tria
k )

ET tria
k

≤
(

e

e− 1

)1/2

k−1/6, k ≥ 1.

s.d.(T span
k )

ET span
k

≤ k−1/2, k ≥ 1.

So here the bounds are independent of w, meaning that we can estimate the
statistics ETk without assumptions on w by simply observing Tk itself.

So the “backwards” approach is to seek some T in the observed multigraph
process which is concentrated around its mean, independent of w, which there-
fore provides a “uniform over w” estimator of the functional Γ (w) defined by
the expectation.

The calculations for the bounds in Proposition 3 exploit some special struc-
ture of spanning trees and of triangles (though the latter can extended to
analogs for any finite “motif”). However these are not very natural function-
als. It is an open question whether analogous bounds hold for other “contains k
copies” types of structure. This seems plausible in many cases, but we indicate
one case where it does not seem to work easily in section 5.1.

One can weaken the condition that the maximum maxm,e{h(m)− h(m ∪
{e}) : we > 0} be bounded to a condition that for “most” possible transitions
this is bounded. See applications in [3] to a first-passage percolation question,
and in [1] to the appearance of the incipient giant component in inhomogeneous
bond percolation, though these problems are outside the framework of this
article.

As an alternative to Proposition 2, in the setting of (20,21) we clearly have
the submultiplicative property

P(T > t1 + t2) ≤ P(T > t1) P(T > t2), t1, t2 > 0. (22)

It is well known that (22) implies a right tail bound

sup{P( T
ET > t) : T submultiplicative ) decreases exponentially as t→∞.
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Note also there is a left tail bound. Because P(T > kt1) ≤ (P(T > t1))k we
have ET ≤ t1/P(T ≤ t1), that is P(T ≤ t1) ≤ t1/ET , which can be rewritten
as

P(T ≤ aET ) ≤ a, 0 < a ≤ 1.

In the language of confidence intervals, this says that (given (22)) after ob-
serving the value of T

we can be (1− a)-confident that ET ≤ T/a. (23)

Note this is not the “confidence” version of Markov’s inequality, which is

we can be (1− a)-confident that ET ≥ aT .

4.1 Connectivity via multicommodity flow

As mentioned in the introduction, a key open problem is to prove a result of the
following type. We expect that at (large) times t = O(1), the observed Gobs(t)
will have a (large) giant component, of some size (1−δ)n = (1−δ)|V|, but will
not be completely connected. We seek a result which says that, if we observe
some quantitative “well-connected” property within the giant component of
Gobs(t), we can infer that G has some similar connectivity property within
some large subset of vertices. A common way to quantify connectivity is via
the spectral gap of the graph Laplacian. Proving anything like this involving
the (restricted) spectral gap – in our context of placing minimal assumptions
on w – seems very difficult. But to show this program is not hopeless, let
us give a very weak result in this format, which is easy to prove. Instead of
spectral gap, we measure connectivity in terms of the existence of flows whose
magnitude is bounded relative to edge-weights. Because we are envisaging a
context where Gobs(t) is not connected but has a large component containing
most vertices, we cannot construct flows between all vertex-pairs, but we can
consider flows between most vertex-pairs.

A path from vertex x to vertex y can be regarded as a set of directed edges;
a flow φxy = (φxy(e), e ∈ E) of volume ν is a function that can be represented
as

φxy(e) = ν P(e ∈ γxy)

for some random path γxy from x to y. Write |φxy| for the volume of a flow.
A multicommodity flow Φ is a collection of flows (φx,y, (x, y) ∈ V ×V), maybe
of volume zero. Write

Φ[e] =
∑
(x,y)

φxy(e)

for the total flow across edge e.
Fix a parameter α > 0 and define a functional Γα(w) on networks as

follows. Consider a multicommodity flow Φ constrained by

the volume |φxy| is at most n−2, each (x, y) ∈ V × V (24)

Φ[e] ≤ αwe ∀e. (25)
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Then define Γα(w) as the maximum total flow subject to these constraints:

Γα(w) := max
Φ satisfies (24,25)

∑
(x,y)∈V×V

|φxy|.

Note that Γα(w) ≤ 1. For a connected network, the smallest α for which
Γα(w) = 1 is a parameter that can be used to lower bound the spectral gap:
this is the well-known canonical path or Poincaré method [5].

Let us say a network has the (α, δ)-property if Γα(w) ≥ 1−δ. Knowing this
property holds for small δ is an indirect and somewhat weak quantification of
the notion that the network has a large well-connected component. Decreasing
α or δ makes the property stronger.

In our program, we want to justify an inference of the form: if the observed
network has the (α, δ)-property, then we can be confident that the unknown
true network has the (α∗, δ∗)-property for some specified (α∗, δ∗).

Regarding the observed multigraph process (M(t), 0 ≤ t <∞) as networks
with integer edge-weights, define

T = Tα,δ = inf{t : Γα(M(t)) ≥ 1− δ}.

So for each realization of the observed process, M(T ) permits a flow with total
volume ≥ 1− δ which satisfies (24) and the analog of (25), that is

Φ[e] ≤ αMe(T ) ∀e.

Taking expectation over realizations gives a flow Φ with total volume ≥ 1− δ
which satisfies (24) and

Φ[e] ≤ αEMe(T ) = αweET ∀e

the equality holding by Wald’s identity for the Poisson process. That is,

Gtrue has the (αET, δ) property.

Now ET depends on Gtrue, but we are in the setting of (20,21) and so we can
use the “confidence” statement (23). After observing T ,

we can be (1− a)-confident that Gtrue has the (αT/a, δ)-property. (26)

We conjecture that Proposition 2 or variants can be used to establish a small

bound on s.d.(T )
ET , which would lead to an improvement on (26).
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4.2 On the logic of inference

The logic of (frequentist) statistical inference is often found to be counter-
intuitive, so may be worth spelling out in our context. Suppose P is some
“desirable” property of a network. If we wish to justify an inference procedure
of the format

Inference: if Gobs has property P then we are ≥ 95% confident that
Gtrue has property P ∗

then we need to prove a theorem of the format

Theorem: if Gtrue does not have property P ∗ then with ≥ 95% proba-
bility Gobs does not have property P .

Usually with random graph models we are interested in establishing some “de-
sirable” property; paradoxically in our framework we need to show Gobs has
“less desirable” properties than Gtrue. In particular, in questions about con-
nectivity, the issue is not to show that Gobs has good connectivity properties
(which is typically false).

5 First passage percolation

Many aspects of network science involve some notion of “spread of informa-
tion”, so let us consider a mathematically fundamental model. Consider a
network G = (V, E ,w) with two distinguished vertices v∗, v∗∗. Create inde-
pendent random variables (ξe, e ∈ E) with Exponential(we) distributions, and
view ξe as the “traversal time” of edge e. Let X(G) be the (random) first
passage percolation (FPP) time from v∗ to v∗∗, that is the minimum value of∑
e∈π ξe over all paths π from v∗ to v∗∗. We can study the functional

Γ (G) = EX(G).

How well can we estimate this from the observed process? The following easy
result says that X(Gobs(t)) is stochastically larger than X(Gtrue).

Lemma 2

P(X(Gobs(t)) ≥ x) ≥ P(X(G) ≥ x), 0 < x <∞.

Before giving the proof let us observe that the interpretation of Lemma 2 is
rather subtle for several reasons. First, for any fixed t we have P(X(Gobs(t)) =
∞) > 0 because v∗ and v∗∗ might not be in the same connected component of
Gobs(t). So any plausible estimation procedure would need to continue until
some stopping time at which they are in the same component. Unfortunately
Lemma 2 apparently does not extend in any simple way to stopping times.
Moreover Lemma 2 refers to the unconditional distribution of X(Gobs(t)),
whereas what we can observe at time t is the conditional distribution given
the realization of Gobs(t).
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Proof of Lemma 2. The unconditional distribution of X(Gobs(t)) is the
distribution of the FPP time for which the edge-traversal times ξ∗e (t) are in-
dependent with distributions defined by:

the conditional distribution of ξ∗e (t) given Me(t) is Exponential(Me(t)/t).
So it is enough to show that ξ∗e (t) stochastically dominates the Exponential(we)
distribution of ξe. But

P(ξ∗e (t) ≥ x) = EP(ξ∗e (t) ≥ x|Ne(t))
= E exp(−xNe(t)/t)
≥ exp(−xE(Ne(t)/t)) = exp(−xwe)

using Jensen’s inequality.

5.1 A general conjecture fails

It is clear that we can always use the observation process itself to simulate the
FPP process; that is, there is a stopping time T for the observation process
which has itself the distribution of X(G). On the other hand for special classes
of network we can estimate the mean Γ (G) = EX(G) much more quickly. For
instance in a linear graph G on m edges where we know each edge-weight
is Θ(1) we have Γ (G) = Θ(m) but we can estimate it in time Θ(logm) by
estimating the individual edge-weights. So it is natural to hope that there exist
estimation schemes which

on every network G require at most O(Γ (G)) observation time (27)

but which for some class of “nice” networks require substantially less obser-
vation time. For instance, by analogy with the examples in Proposition 3 one
might hope to require only observation time

Tk = inf{t : M(t) contains k edge-disjoint paths from v∗ to v∗∗} (28)

for fixed large k. But this hope is doomed. The argument below, though not
completely rigorous, convinces us that

(*) for any estimator satisfying (27), the observation time required must
be Θ(Γ (G)) (rather than o(Γ (G))) for every G.

However we conjecture that, under mild assumptions on Gtrue, one can indeed
estimate Γ (Gtrue) after observation time Tk at (28), analogous to Proposition
3.

Argument. Consider the network G
(1)
n as in Figure 2 with n two-edge routes

from v∗ to v∗∗, and with edge weights n−1/2.

Here it is straightforward to see that both “observation time T
(1)
n needed” and

“actual FPP time Γ (G
(1)
n )” are both Θ(1). Now suppose we have an estimator

satisfying (27). The basis for our argument is the fact that the estimation
procedure has to decide whether to stop at time t (and announce an estimate)
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Fig. 2 The network G
(1)
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or to continue; and it seems intuitively clear that this decision, based on M(t),
can in fact use only the subset M∗(t) of edges that are in paths in M(t) from
v∗ to v∗∗. Because the algorithm cannot make assumptions abut unobserved
edges.

So suppose there are networks G̃n for which the estimator needs only ob-
servation time T̃n � Γ (G̃n). We can scale edge-weights so that T̃n is o(1) and

Γ (G̃n) is Ω(1). Now define Gn as the superposition of G
(1)
n and G̃n – that is,

take the union of edges, with the common distinguished vertices (v∗, v∗∗). At

time T̃n the estimator will see (with probability 1− o(1)) the same set M∗(·)
whether the true network is Gn or G̃n. Given it announces a good (that is,

Ω(1)) estimate of Γ (G̃n) it must announce the same estimate for Γ (Gn). But

this is incorrect because the availability of paths in G
(1)
n means that Γ (Gn) is

in fact Θ(1).

6 Final remarks

6.1 Other formulations of imperfectly observed networks

Broad topics around “imperfectly-observed networks” have been studied from
many different viewpoints, mostly in the setting of unweighted graphs, and
an overview can be gleaned from the talks at the workshop [14]. Here we just
mention two such viewpoints. The first is the idea of sampling a few vertices
in a large network and looking at their neighborhood structure, which enables
one to get estimates of statistics for local structure – see [15] for a recent
account. The second is to assume only the possibility of unobserved edges.
This is a field called link prediction; the 2011 survey [13] cites 166 papers and
has been cited 923 times. In this literature, the goal is to define an algorithm
that takes the observed edges as input, and outputs an ordering e1, e2, . . . of all
the other possible edges, intended as decreasing order of assessed “likelihood”
of the edge being present. This is done by defining, for each possible edge
(v1, v2), some statistic based on (typically) the local structure of the observed
graph near v1 and v2, for instance

s(v1, v2) =
|N (v1) ∩N (v2)|
|N (v1)| × |N (v2)|
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where N (v) is the set of neighbors of v. Then list edges in decreasing or-
der of s(v1, v2). However, there is no probability model involved; different
algorithms are compared experimentally by taking a real-world network, ran-
domly deleting a proportion of edges to create a synthetic “observed graph”,
and comparing the algorithms’ effectiveness in predicting the deleted edges.

6.2 Convergence of edge-weighted graphs

Recall from section 1.2 that a sequence G(n) = (V(n), E(n),w(n)) of edge-
weighted graphs such that

max
v∈V (n)

w(n)
v is bounded (29)

can be called

– diffuse if limn maxe w
(n)
e = 0

– local-compact if limε↓0 maxv
∑
{w(n)

vy : w
(n)
vy ≤ ε} = 0.

A simple compactness argument shows that we can decompose w(n) as the
sum of two terms, one corresponding to a diffuse sequence and the other to a
local-compact sequence. So informally these represent the two possible types
of n→∞ structure for bounded total interaction rate networks.

There is an intuitively natural notion of local convergence of finite rooted
graphs to a limit locally finite (but typically infinite) rooted graph. One can
build upon that notion to define local weak convergence of finite unrooted ran-
dom graphs to a limit locally finite rooted random graph: this merely means
taking a uniform random root and applying the previous notion. In the con-
text of unweighted bounded degree graphs this is now known as Benjamini-
Schramm convergence [4,12]. In fact the notion of local weak convergence
extends to edge-weighted graphs under condition (29) rather than bounded-
degree: see [2]. (Because local means “within fixed distance” we need to re-
interpret our edge-weights we as lengths 1/we). Without engaging details, the
condition for compactness in this topology is essentially our local-compact con-
dition above.

6.3 Degree distribution and diffusivity

Our framework is rather different from the “sampling vertices from a graph
which can be explored” literature for unweighted graphs [15]. In that frame-
work one can sample k vertices and see their degrees, thereby getting an esti-
mate of degree distribution which has O(1/

√
k) error independent of the graph

size n. In our framework the only aspect we can estimate from O(1) observed
edges is the total weight w = 1

2

∑
v wv =

∑
e we. In an edge-weighted graph,

one might use the distribution of W = wv for uniform random v ∈ V to play
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the role of degree distribution. Assuming W is Θ(1) as n→∞, how long does
it take to estimate the distribution of W? We can observe

Q(i, t) = number of vertices with i observed edges at time t

and for t = o(1) we have

EQ(i, t) ≈ ntiEW i

i!
.

So in order to estimate EW i we need t = Ω(n−1/i), in other words we need to
see order n1−1/i edges in total. The upshot is that to estimate the distribution
W well we need to see n1−o(1) edges, that is time t = n−o(1).

Somewhat similarly, at a (small) time t = Θ(1), the mean number of ob-
served repeated edges is approximately

∑
e w

2
et

2/2, and so the notion above of
a diffuse network corresponds roughly to this mean number being o(n) rather
than Θ(n).

Acknowledgements A slightly expanded version of this article appears in the Ph.D. thesis
[11] of the second author.
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