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Symposium

Cognitive-Affective Functions of the Cerebellum

Stephanie Rudolph,1 Aleksandra Badura,2 Stefano Lutzu,1 Salil Saurav Pathak,3 Andreas Thieme,4

Jessica L. Verpeut,5 Mark J. Wagner,6 Yi-Mei Yang,3,7 and Diasynou Fioravante8,9
1Department of Neuroscience, Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, New York 10461,
2Department of Neuroscience, Erasmus MC Rotterdam, Rotterdam, 3015 GD, The Netherlands, 3Department of Biomedical Sciences, University of
Minnesota Medical School, Duluth, Minnesota 55812, 4Department of Neurology and Center for Translational Neuro- and Behavioral Sciences,
University Hospital Essen, Essen, D-45147, Germany, 5Department of Psychology, Arizona State University, Tempe, Arizona 85287, 6National
Institute of Neurological Disorders & Stroke, National Institutes of Health, Bethesda, Maryland 20814, 7Department of Neuroscience, University of
Minnesota, Minneapolis, Minnesota 55455, 8Center for Neuroscience, University of California–Davis, Davis, California 95618, and 9Department of
Neurobiology, Physiology and Behavior, University of California–Davis, Davis, California 95618

The cerebellum, traditionally associated with motor coordination and balance, also plays a crucial role in various aspects of
higher-order function and dysfunction. Emerging research has shed light on the cerebellum’s broader contributions to cogni-
tive, emotional, and reward processes. The cerebellum’s influence on autonomic function further highlights its significance in
regulating motivational and emotional states. Perturbations in cerebellar development and function have been implicated in
various neurodevelopmental disorders, including autism spectrum disorder and attention deficit hyperactivity disorder. An
increasing appreciation for neuropsychiatric symptoms that arise from cerebellar dysfunction underscores the importance of
elucidating the circuit mechanisms that underlie complex interactions between the cerebellum and other brain regions for a
comprehensive understanding of complex behavior. By briefly discussing new advances in mapping cerebellar function in
affective, cognitive, autonomic, and social processing and reviewing the role of the cerebellum in neuropathology beyond the
motor domain, this Mini-Symposium review aims to provide a broad perspective of cerebellar intersections with the limbic
brain in health and disease.

Introduction
Jean Marie Pierre Flourens’ pioneering work in pigeons dem-
onstrated that cerebellar damage impaired flight and led to the
loss of coordination in voluntary wing movements (Flourens,
1842). This early observation, along with multiple subsequent
experimental findings, prompted physiologists like Sherrington
and many others to conclude that the function of the cerebel-
lum is the control of voluntary movement, gait, balance, and
motor coordination (Flint, 1875; Luciani 1891; Brown, 1892;
Ferrier and Turner, 1894; Russell, 1894; Sherrington, 1906;
Holmes, 1908). This historical perspective overlooked earlier
work that, decades before Flourens’ experiments, began explor-
ing the structures of the cerebellum, including the vermis, tonsil,
nodulus, and lingula, and correlating them with intellectual fac-
ulties (Malacarne, 1776). Malacarne’s interest was driven by a

desire to understand the relationship between cerebellar size
and intellectual capacity (Zanatta et al., 2018). Combettes
(1831) reported cases of intellectual and emotional disability in
patients with cerebellar agenesis. Despite occasional case
reports over the next century, the connection between the cer-
ebellum and intellectual and emotional processing remained
obscure, often based on associations rather than experimental
evidence. Additionally, Franz Joseph Gall’s curious ideas
about the cerebellum’s involvement in sexual aptitude unin-
tendedly led to the rejection of the view that the cerebellum
had functions beyond motor coordination (Gall et al., 1838).

The emerging influence of cognitive neuroscience, clinical
neuropsychology, and psychiatry in the mid-20th century led to
a more comprehensive understanding of cerebellar function.
Electrophysiological studies revealed nonuniformities of cerebellar
somatotopy in the cerebellar vermis and posterior lobes, suggest-
ing nonuniformity of function (Snider and Stowell, 1944; Snider
and Eldred, 1948). Moreover, functional interactions were
observed between cerebellar hemispheres and high-order associ-
ation areas (Allen and Tsukahara, 1974), as well as between the
cerebellar vermis and limbic structures (MacLean, 1949; Snider
and Maiti, 1976), suggesting broader connections to both neurol-
ogy and psychiatry. In the 1960s and 1970s, animal studies
involving fastigial nucleus stimulation and ablation yielded valua-
ble insights into the cerebellum’s role in nonmotor control.
Electrical stimulation of the cerebellum was found to produce
distinct behavioral responses, including feeding, attack and
grooming, hypertension, and increases in heart rate (Zanchetti
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and Zoccolini, 1953; Reis et al., 1973), whereas cerebellar abla-
tions induced docile behavior or persistent pleasure reactions,
suggesting possible affective and autonomic roles (Moruzzi,
1947; Berman et al., 1974). Stimulation of posterior cerebellar
structures elicited electrical potentials in limbic regions, whereas
stimulation of anterior cerebellum predominantly activated
orbital cortex, hippocampus, and posterior hypothalamus
(Martner, 1975). Patient studies provided further clinical correla-
tions, with cerebellar vermis stimulation impacting emotion and
social interaction (Cooper et al., 1974; Heath, 1977). Despite
these findings, the model of nonmotor cerebellum was met with
resistance from prominent influential scientists, who favored the
idea of the cerebellum as a purely motor control center (Marr,
1969; Albus, 1971; Ito, 1982). The multisynaptic nature of con-
nections between the cerebellum and many limbic areas (Kang et
al., 2021; Novello et al., 2022) (Fig. 1) also hindered investigation
of cerebello-limbic interactions until recently.

A shift in perspective began with the rediscovery of primary lit-
erature pointing to potential nonmotor functions for the cerebel-
lum (Schmahmann, 1991) (i.e., functions that cannot be explained
by strictly sensorimotor variables) and the development of novel
tools for investigation of monosynaptic and disynaptic circuits.
Novel theories (Leiner et al., 1986; Schmahmann, 1991) and hy-
pothesis-driven anatomical investigations (Middleton and Strick,
1994; Schmahmann, 2016) further challenged the conventional
view, leading to a reevaluation of cerebellar functions. This grow-
ing body of evidence prompted deeper investigations into the cer-
ebellum’s role in nonmotor functions (Schmahmann, 2010;
Buckner, 2013). The paradigm shift culminated in the recognition
that the cerebellar syndrome, which was traditionally defined as
motor dysfunction (i.e., ataxia), including impaired balance and
gait, incoordination of voluntary movements, and dysarthria,
should be recontextualized as a three-part syndrome: the

cerebellar motor syndrome; the cerebellar vestibular syndrome;
and the cerebellar cognitive affective syndrome. Together, they
form the triad of cerebellar clinical ataxiology (Manto and Mariën,
2015).

In summary, the current historical narrative of the cerebellum
has undergone a substantial shift to include both motor and non-
motor cerebellar functions. Here, we highlight various aspects of
cerebellar nonmotor functions. We focus on the integrated net-
work involving the cerebellum in cognitive, affective, and social
functions, challenging the notion of separate modules for these
processes. We discuss the cerebellum’s role in fear conditioning
and emotional learning through its connections with brain
regions, such as the amygdala and prefrontal cortex (PFC) and dis-
cuss the cerebellum as a key structure for social cognition. We will
also explore novel research on perineuronal nets (PNNs) in the cer-
ebellum, their relationship to critical periods of development, and
the role of the cerebellum in neurodevelopmental disorders such as
autism spectrum disorder (ASD). Last, we touch on clinical strat-
egies for diagnosing Cerebellar Cognitive Affective/Schmahmann
Syndrome (CCAS) associated with cerebellar dysfunction.

Affective and cognitive functions of the cerebellum
Cognition encompasses various mental processes, such as
attention, perception, memory, problem-solving, and deci-
sion-making (Forgas, 2008; Pessoa, 2008; Tyng et al., 2017). In
patients with cerebellar disease, a large number of studies has
shown impairments in various cognitive domains and subdo-
mains, such as verbal fluency, working memory, abstract rea-
soning, visuospatial cognitive processes, social cognition, and
problem-solving (Ahmadian et al., 2019; Argyropoulos et al.,
2020; Van Overwalle et al., 2020; Jacobi et al., 2021). Key brain
regions involved in these functions include the prefrontal and

Figure 1. Efferent and afferent cerebellar pathways implicated in cognition and emotion. A, Sagittal sections of mouse brain (left, mid-sagittal, ML: 0 mm; right, parasagittal, ML: 1.6 mm),
indicating anatomic location of color-matched brain areas in the connectivity maps in B, C. B, C, Efferent (B) and afferent (C) pathways for cerebello-limbic function. Solid lines indicate direct
connections. Dotted lines indicate indirect or not yet fully established connections. ML: mediolateral.
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parietal cortices. On the other hand, affect refers to the intricate
interplay of psychological and physiological states triggered by
internal or external stimuli, ranging from intense and transient
emotions to subtle and enduring moods (Forgas, 2008; Pessoa,
2008; Tyng et al., 2017). Although these states exhibit variability,
the terms “affect,” “emotion,” and “moods” are often used inter-
changeably for simplicity. The limbic system, which encompasses
subcortical structures (e.g., the hypothalamus, amygdala, and ba-
sal ganglia) and cortical regions [e.g., the medial prefrontal cor-
tex (mPFC), anterior cingulate cortex (ACC), and orbitofrontal
cortex], plays a central role in affective regulation. In the past,
cognitive and affective brain regions were perceived as separate
modules. However, a modern perspective recognizes that cogni-
tion and affect are mediated by an integrated brain network that
facilitates their dynamic interactions (Pessoa, 2008; Tyng et al.,
2017). The cerebellum, traditionally associated with motor coor-
dination, is now recognized as a hub in this integrated network
that links diverse sensory, motor, cognitive, affective, and social
functions (Cacciola et al., 2017; Bostan and Strick, 2018; Stoodley
and Tsai, 2021). Patients with cerebellar disease exhibit flattening
or blunting of affect, irritability, agitation, and emotional lability
(Schmahmann, 2004). Both human and animal studies have
demonstrated the cerebellum’s involvement in modulating emo-
tional signals and behavior through extensive cerebello-cortical
and -subcortical circuits (Stoodley and Schmahmann, 2009; Strick
et al., 2009; Buckner et al., 2011; Adamaszek et al., 2017; Ciapponi
et al., 2023) (Fig. 1). For example, the cerebellum has been impli-
cated in what is perhaps the best studied type of emotional learn-
ing, fear conditioning. The cerebellar vermis and cerebellar nuclei
(CN) contribute to the formation, consolidation, and extinction of
fear memories, likely by conveying prediction and/or prediction
error signals through connections with cortical and subcortical
structures, including the mPFC, amygdala, parabrachial nucleus,
and periaquedactal gray (PAG) (Snider and Maiti, 1976; Sacchetti
et al., 2002; Bostan et al., 2013; Strata, 2015; Utz et al., 2015;
Otsuka et al., 2016; Ernst et al., 2019; Frontera et al., 2020; Jung et
al., 2022; Doubliez et al., 2023; Frontera et al., 2023; Hwang et al.,
2023; Urrutia Desmaison et al., 2023). Although the cerebellar
projections to the amygdala may be indirect (Fujita et al., 2020;
Jung et al., 2022), bidirectional functional interactions between
these regions have been observed. For instance, stimulating the
vermis elicits responses in the basolateral amygdala (BLA),
whereas inhibiting the BLA prevents learning-induced plasticity in
the vermis (Snider and Maiti, 1976; Zhu et al., 2011). Similarly,
stimulating the CN modulates activity in central amygdala (Magal
and Mintz, 2014), whereas inhibiting central amygdala impairs ac-
quisition and retention of cerebellar learning (Farley et al., 2018).
The cerebellum has also been implicated in the regulation of
innate fear via connections to the PAG (Supple et al., 1987;
Koutsikou et al., 2014; Vaaga et al., 2020; Lorivel et al., 2021).
Unsurprisingly then, the cerebellum is now considered a part of
the limbic system, involved in processing primitive emotions and
nondeclarative memory (Apps and Strata, 2015; Schmahmann et
al., 2022). Ongoing research aims to elucidate the activation dy-
namics, cell type properties, and computations through which spe-
cific long-range cerebellar circuits convey fear- and safety-relevant
information to the limbic system and modulate affective behavior.

An important unanswered question in the field of cerebellar
nonmotor function is whether and how the cerebellum participates
in emotion-based declarative memory, such as social recognition
memory (SRM), which involves distinguishing familiar from novel
individuals based on previous encounters. Unlike object recognition
memory, SRM relies on processes that detect, store, and respond

to emotionally arousing sensory information, necessitating intact
functioning of the mPFC, ACC, nucleus accumbens, hippocampus,
and amygdala within the limbic system (Hitti and Siegelbaum,
2014; Garrido Zinn et al., 2016; Tanimizu et al., 2017; Okuyama,
2018; Phillips et al., 2019; Park et al., 2021). SRM is a crucial deter-
minant of social behavior, in which the cerebellum plays an im-
portant role (Stoodley and Tsai, 2021). In addition to SRM,
the cerebellum also influences social cognition, which encom-
passes the ability to imitate others’ actions (mirroring) and
understand the mental states of oneself and others (mentaliz-
ing) (Adolphs, 2001; Insel and Fernald, 2004; Frith and Frith,
2012). Neuroimaging studies in humans have demonstrated that
the cerebellum is a key component of the brain network involved
in social cognition (Van Overwalle et al., 2020). While there is lim-
ited clinical investigation into cerebellar involvement in SRM, a
recent study suggests that the cerebellar vermis is activated along
with other brain regions during emotion-enhanced episodic mem-
ory (Fastenrath et al., 2022).

To examine the causal contribution of cerebellar activity to emo-
tion-based declarative memory, researchers selectively increased the
excitability of molecular layer interneurons (MLIs) using chemo-
genetic and optogenetic approaches to suppress Purkinje cell firing
in the mouse cerebellar vermis (Chao et al., 2023). This manipula-
tion was motivated by the dysregulated MLI inhibition on
Purkinje cells, a shared phenotype observed in both ASD patients
and mouse models exhibiting deficits in social behavior (Cupolillo
et al., 2016; Chao et al., 2020; Yang et al., 2020). The study found
that chemogenetic perturbation of MLIs impaired SRM without
affecting sociability, anxiety levels, motor coordination, or object
recognition memory. Optogenetic interference with MLIs at dif-
ferent phases of the social recognition test indicated that the cere-
bellum’s engagement was primarily in the retrieval, rather than
encoding, of social information. Mapping c-Fos expression after
the social recognition task revealed that cerebellar manipulation
decreased interregional correlations across the brain and altered
the network structure from mPFC and hippocampus-centered
modules to amygdala-centered modules. Anatomical tracing fur-
ther revealed axonal projections from the vermis to the social
brain network, including connections with the amygdala, provid-
ing a structural basis for integrating sensory and emotional infor-
mation into mnemonic processes. In summary, these results
suggest a specific role of the cerebellum in organizing the neural
matrix necessary for SRM, offering potential insights for develop-
ing novel therapeutics targeting neuropsychiatric disorders associ-
ated with social impairments (Pelphrey et al., 2004; Couture et al.,
2006; Elamin et al., 2012).

Cerebellar contributions to reward-driven learning
Growing evidence implicates the cerebellum in processing reward
expectation signals. Cerebellar granule cells exhibit activity that
predicts upcoming reward (Wagner et al., 2017), and climbing
fibers can activate both in response to reward (Heffley et al., 2018;
Heffley and Hull, 2019; Kostadinov et al., 2019) and reward-pre-
dicting stimuli (Larry et al., 2019). This highlights a potential route
for cerebellar contributions to cognitive behaviors. In a variety of
motor and associative learning contexts, the cerebellum seems to
generate predictions of the future values or trajectories of sensori-
motor variables (Ivry and Keele, 1989; Doya, 2000; Sokolov et al.,
2017; Raymond and Medina, 2018; Hull, 2020), and it is widely
believed that similar predictive computations might extrapolate
to cognitive variables as well. Timing estimation appears to be
an especially important class of prediction in the cerebellum.
However, in classical motor adaptation behaviors, cerebellar
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time estimation was thought to be restricted to relatively brief
intervals between events and the outcomes that they predict,
for example, several hundred milliseconds (Medina and Mauk,
2000). By contrast, during volitional reward-driven behaviors,
key cerebellar cell types, including granule cells, Purkinje cells,
and CN output neurons, exhibit ramping spike rates over delays
of multiple seconds that are poorly explained by body move-
ments (Gao et al., 2018; Chabrol et al., 2019; Wagner et al., 2019;
Lin et al., 2020), the function of which therefore remains unclear.

The cerebellum’s reputation in short-interval sensorimotor tim-
ing stems in part from basic properties of a primary form of cere-
bellar plasticity: climbing fiber-dependent long-term depression
(LTD) at synapses from cerebellar granule cells onto Purkinje cells.
When a Purkinje cell receives a climbing fiber spike burst, any
granule cell inputs onto the Purkinje cell that were active just prior
(within ;150ms) to the climbing fiber can be weakened via LTD
(Marr, 1969; Albus, 1971; Ito et al., 1982; Jörntell and Ekerot, 2002;
Coesmans et al., 2004; Medina and Lisberger, 2008; Suvrathan et
al., 2016; Rowan et al., 2018). This brief interval for climbing
fiber-driven LTD to “sense” previously active granule cells has
been thought to play a defining role in the timescale of cerebel-
lar learning and computation (Lisberger, 1998; Koekkoek et al.,
2003; Yamazaki and Tanaka, 2009). Relatedly, it was postulated
that the brief interval for LTD would be well served by sparse
and brief granule cell signaling profiles (Medina and Mauk,
2000), which would allow learning to modify the synaptic
strength of small and specific sets of neurons. Furthermore, by
stipulating that climbing fibers signaled “errors,” such granule
cell synaptic modifications would be transient and targeted
only until correction and elimination of the causative error was
achieved (Sejnowski, 1977).

In light of these basic properties of the cerebellar circuit and its
principal plasticity mechanisms, recent granule cell and climbing
fiber findings pose several mysteries. Empirical observation of the
activation of many granule cells at once (Giovannucci et al., 2017;
Knogler et al., 2017; Wagner et al., 2017) is at least superficially in-
compatible with using spike coincidence-based synaptic modifica-
tion via climbing fiber-directed LTD as a means to modify small
and specific sets of granule cell synapses. Similarly, granule cell
signals that are sustained for extended periods (Wagner et al.,
2019; Lin et al., 2020) appear to challenge the temporal specificity
of climbing fiber-directed LTD based on spiking coincidences.
Finally, climbing fiber signals that fail to decay with learning
(Heffley and Hull, 2019; Wagner et al., 2021) appear incompatible
with a framework in which they transiently modify relevant syn-
apses to correct an error. Together, it remains unclear how non-
canonical granule cell and climbing fiber signals observed during
volitional and especially reward-driven behaviors jointly contrib-
ute to a meaningful learning computation.

Cerebellar control of arousal and autonomic function
In the previous sections, we have highlighted the diverse roles
the cerebellum can assume in regulating cognitive-affective and
social behaviors. It is important to note that emotional experien-
ces, thoughts, and the generation of internal models not only
engage the cerebellum but undoubtedly influence autonomic
responses and arousal; and vice versa, autonomic changes and
arousal state can impact cognitive processes and emotional expe-
riences (Packard and Goodman, 2012; Calderon et al., 2016).
This reciprocal regulation extends to the initiation, maintenance,
and refinement of motor programs as well. The coordination of
complex behaviors therefore requires activation of many parallel
neural circuits in a context-dependent manner. Dysregulation of

autonomic functions co-occurs with motor and cognitive-affec-
tive symptoms and has been linked to many disorders, including
depression (Olbrich et al., 2016; Schmidt et al., 2017), attention
deficit hyperactivity disorder (Strauß et al., 2018), ASD (Bast et
al., 2018; Zhao et al., 2022), and sleep disorders, all conditions
that emerge with cerebellar dysfunction (Becker and Stoodley,
2013; Canto et al., 2017; Bruchhage et al., 2018; Depping et al.,
2018). But does the cerebellum simultaneously intersect with
motor, cognitive-affective, and autonomic circuits? Although
there is intriguing evidence for this hypothesis, the precise mech-
anisms that underlie cerebellar control of autonomic function
and its role in behavior remain enigmatic.

A series of classic studies provide compelling evidence for
a cerebellar involvement in arousal and autonomic function
(Watson, 1978; Haines et al., 1984). Early experiments performed
in decerebrate cats demonstrated that stimulation of the fastigial
CN resulted in sham rage behavior and dramatic increases in ar-
terial blood pressure, hyperpnea, and mydriasis (Zanchetti and
Zoccolini, 1953). These results were reproduced in intact cats
that displayed behavioral escalation from grooming to feeding
and attack that correlated with increasing heart rate and blood
pressure on fastigial nucleus stimulation (Reis et al., 1973) and a
drop in blood pressure and heart rate after fastigial inactivation
(Chen et al., 1994). Others found that fastigial lesioning led to a
drowsy state in cats (Giannazzo et al., 1969). Similarly, vermal
lesions in monkeys caused changes in aggressive behavior
(Berman et al., 1974). Later studies implemented a more selec-
tive optogenetic manipulation of Purkinje cells and recapitu-
lated the effects of cerebellar stimulation on aggression in mice
(Jackman et al., 2020). Likewise, diminishing tonic GABA sig-
naling and producing hyperexcitability of the granule cell layer
in mice caused a hyperarousal phenotype characterized by
hyperlocomotion, decreased exploratory behavior, and dimin-
ished social interest (Rudolph et al., 2020) in mice. These obser-
vations are consistent with a longstanding theory that the
cerebellum fine-tunes cortical arousal by acting on a distributed
network of forebrain regions (Dow et al., 1962; Fadiga et al.,
1968). Several cerebellar output regions could contribute to au-
tonomic control, including the PAG, the hypothalamus, and
other brainstem regions with known projections to the hippocam-
pus, cerebral cortex, and septum (Dietrichs, 1984; Rutherford,
1995; Fujita et al., 2020; Rudolph et al., 2020; Vaaga et al., 2020;
Chen et al., 2021; Novello et al., 2022; Hwang et al., 2023). Some
of these areas have been directly implicated in wakefulness and
increased locomotion (Pedersen et al., 2017; Lu et al., 2020; Farrell
et al., 2021). However, the precise link between arousal, autonomic
regulation, cerebellar activation, and its role in cognitive-affective
behaviors remains poorly understood. Future fundamental and
clinical studies will aim to elucidate this long known but often
neglected aspect of cerebellar function and integrate it into
our existing mechanistic frameworks. Ultimately, understand-
ing the interplay between cognitive-affective states, autonomic
responses, and their regulation by the cerebellum will provide
a better grasp of complex human behavior and shed light on
how disruption of these processes might contribute to neuro-
developmental and psychiatric disorders.

Sensitive periods in cerebellar development
Critical periods (which we will refer to as “sensitive periods” in
the cerebellum) are an early stage in life when the brain is
uniquely plastic to intrinsic and extrinsic stimuli and has the
ability to create new connections (Hubel and Wiesel, 1970;
Balmer et al., 2009). One factor modulating critical periods are
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PNNs, which emerge around neurons at the closure of critical
periods in late postnatal development. PNNs are defined as lat-
tice-like structures that physically surround specific neurons in
the brain, restricting the production of new synapses and the
pruning of old synapses, which regulates neuronal plasticity
(Celio et al., 1998; Pizzorusso et al., 2002; Deepa et al., 2006;
Gogolla et al., 2009). The intensity of PNNs, as the brain reaches
maturity, correlates with development of inhibitory interneuron
circuitry (Bannon et al., 2020). PNNs are involved in various
brain functions, such as learning and memory, but their role in
cerebellar circuits is less clear (Shen, 2018).

Throughout the brain, PNNs preferentially surround parvalbu-
min-expressing interneurons (Porter et al., 2001). Parvalbumin
interneurons provide inhibitory control of local excitatory circuits
and sensory deprivation decreases synaptic transmission within
layers of the neocortex (Lo et al., 2017). This circuit controls the
excitatory/inhibitory balance and pruning of dendritic spines, im-
portant for refining neural connections (Mataga et al., 2004;
Ferguson and Gao, 2018). In the cerebellar cortex, PNNs surround
large excitatory Golgi neurons and Purkinje cells (Mabuchi et
al., 2001; Carulli et al., 2006; Giamanco et al., 2010). Reducing
Purkinje cell PNNs by chondroitinase ABC (chABC), an
enzyme that degrades chondroitin sulfate glycosaminogly-
can, has been found to increase GABA release, enhance syn-
aptic plasticity, and improve conditioned response rate in
eyeblink conditioning (Hirono et al., 2018).

In the CN, the main excitatory output of the cerebellum,
PNNs surround large glutamatergic neurons and modulate their
firing (Mabuchi et al., 2001; Carulli et al., 2006; Giamanco et al.,
2010; Hirono et al., 2018). The CN has distal connections to
brainstem, thalamus, and the ventral tegmental area (VTA)
(Dietrichs, 1984; Rutherford, 1995; Fujita et al., 2020; Chen et al.,
2021; Kang et al., 2021; Jung et al., 2022; Novello et al., 2022;
Hwang et al., 2023) (Fig. 1), which suggests that PNNs in the CN
could guide development and maturation of distal brain regions.
While it is known how PNNs form in early-life, questions remain
regarding how PNNs are maintained and if they degrade to allow
for another period of plasticity. PNNs can be degraded chemi-
cally (chABC), but may also reduce during periods of learn-
ing (Hirono et al., 2018) or as a result of environmental
enrichment (Foscarin et al., 2011; Stamenkovic et al., 2017).
PNN intensity in the CN during eyeblink conditioning is
reduced with environmental stimuli and returns to pretrain-
ing levels after memories are fully acquired. This effect is not
found by chemically degrading PNNs using chABC, as while
learning improves, memory cannot be retained (Carulli et
al., 2020). It is thought that reducing PNNs may enhance
learning, facilitate recovery from disease, and curtail cogni-
tive decline in aging (Pang and Hannan, 2013; Hirase and
Shinohara, 2014).

Moreover, PNNs have been found to be associated with criti-
cal periods in neurodegenerative and neuropsychiatric disorders
(Bitanihirwe and Woo, 2014; Wen et al., 2018; Scarlett et al.,
2022). In neurodevelopment, a number of PNN molecules,
including Reelin, semaphorins 3A and 4D, the hyaluronan sur-
face receptor CD44, and Otx-2 (Weiss et al., 2009; Hussman et
al., 2011), have been inversely correlated with ASD symptoms.
This is striking as atypical cerebellar development is highly corre-
lated with an ASD diagnosis (Wang et al., 2014; Sydnor and
Aldinger, 2022). This suggests that there is a connection between
PNNs and typical neurodevelopment of the cerebellum, but the
purpose of PNNs both in early-life and across the lifespan still
requires more investigation. Furthermore, sexually dimorphic

expression of PNNs in the cerebellum has not been strongly
studied, although PNN sex differences have been found in vari-
ous other brain regions, including the hippocampus and hypo-
thalamus (Griffiths et al., 2019; Zhang et al., 2021).

Cerebellar function in autism: what can we learn from ASD
mouse models?
ASD is a highly heterogeneous neurodevelopmental disorder,
which is characterized by deficits in social interaction and repeti-
tive behaviors (American Psychiatric Association, 1980). It also
often results in difficulties in flexible adaptation to changes
in the environment (Cheng et al., 2021) and sensorimotor
deficits (Hannant et al., 2016; Coll et al., 2020). Indeed, sen-
sory and motor dysfunctions are often regarded as one of the
core ASD symptoms (Mosconi and Sweeney, 2015; Khoury et
al., 2020). Although a common neural correlate underlying
ASD traits has not been established, cerebellar structural
abnormalities and changes in the cerebello-cortical connec-
tivity have been seen in many clinical studies (D’Mello et al.,
2016; Stoodley et al., 2017; Sathyanesan et al., 2019), and
could potentially contribute to the high rate of sensorimotor
deficits observed in people with ASD. The perinatal period
seems to be a particular window of vulnerability for the cere-
bellar damage, which significantly increases the risk of ASD
(Wang et al., 2014; van der Heijden et al., 2021). This can be
explained by the sensitive periods of cerebellar development
described above.

The importance of the cerebellum for ASD research is further
supported by the fact that the vast majority of the 232 high-confi-
dence ASD risk genes, defined as “Category 1” by the Simons
Foundation Autism Research Initiative database, show high lev-
els of expression in the cerebellum (Aldinger et al., 2021; Sydnor
and Aldinger, 2022), with some presenting a notable enrichment
in this area (Li et al., 2018). Moreover, patients with mutations in
these genes frequently report sensorimotor performance and
learning deficits (Frazier et al., 2015; Piven et al., 2017; Kosillo
and Bateup, 2021).

Studies using mouse models with global mutations of ASD
high-risk genes invariably show cerebellar morphologic and
physiological abnormalities and altered motor behavior (Kloth et
al., 2015; Peter et al., 2016; Kawamura et al., 2021; Matas et al.,
2021; Kaiser et al., 2022; Liu et al., 2022; Serra et al., 2022).
Intriguingly, cell-specific deletions of the same genes restricted to
the cerebellar Purkinje cells have successfully reproduced many
phenotypes resembling human ASD characteristics, including
motor coordination deficits, affected social interactions, and cog-
nitive impairment (Levin et al., 2006; Tsai et al., 2012; Reith et al.,
2013; Kloth et al., 2015; Cupolillo et al., 2016; Yamashiro et al.,
2020), strengthening the hypothesis that altered cerebellar devel-
opment is one of the key components of ASD (Wang et al., 2014).
These findings are in line with studies that show that region-
specific perturbations that alter (lower or increase) cerebellar
activity during sensitive periods lead to decreased cognitive
flexibility and social dysfunctions (Badura et al., 2018; Gibson
et al., 2022; Verpeut et al., 2023).

However, although targeted deletions and perturbations offer
many valuable insights into cerebellar mechanisms that poten-
tially drive ASD deficits, the global mouse models can better re-
capitulate multisystem symptoms and comorbid conditions that
often accompany ASD diagnosis (Casanova et al., 2020). This is
of particular importance when testing potential behavioral and
pharmacological interventions aimed at ameliorating some of
the deficits.
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Of note, the pervasiveness of cerebellar structural abnormal-
ities in ASD has recently been contested (Laidi et al., 2022).
Although this particular study focused only on cerebellar struc-
tural changes without analyzing cerebello-cortical connectivity, it
is a topic that should be further investigated. We need large, lon-
gitudinal studies, reporting structural and functional data from
the same participants to better estimate cerebellar involvement
in ASD. Similarly, collaborative studies using several ASD mouse
models, investigated throughout the whole developmental trajec-
tory, are essential to understand the role of cerebellum in this
highly heterogeneous condition.

Diagnosing CCAS
In 1998, CCAS was introduced to encompass the nonmotor defi-
cits observed in patients with cerebellar disease. CCAS includes
impairments in executive, language, and visual-spatial functions,
as well as neuropsychiatric abnormalities (Schmahmann and
Sherman, 1998). These deficits are often mild and can be easily
overlooked during routine examinations (Ahmadian et al.,
2019). However, it is important to recognize cognitive and
affective symptoms as they can significantly impact patients’
daily lives (Schmahmann et al., 2021).

Since its initial description, many studies have confirmed the
presence of CCAS in cerebellar patients (Mariën et al., 2014;
Adamaszek et al., 2017; Argyropoulos et al., 2020). MRI studies
have mapped nonmotor functions to specific cerebellar areas.
Three nonmotor representations have been identified in the cor-
tex of the posterolateral cerebellar hemispheres: (1) lobules
VI-Crus I, (2) lobules Crus II-VIIB, and (3) lobules IX-X
(Buckner et al., 2011; Guell et al., 2018; King et al., 2019; Guell
and Schmahmann, 2020). Functional compartmentalization has
also been observed at the level of the CN, with one nonmotor
area in the ventro-caudal parts and one motor area in the rostro-
dorsal parts of the dentate nucleus (Steele et al., 2017; Guell et al.,
2020; Palesi et al., 2021).

Despite the well-established concept of CCAS in cerebellar
disease, a definitive diagnostic standard for detecting CCAS is
still lacking. In the past, most studies have used different and of-
ten extensive cognitive test batteries to assess CCAS. In 2018,
a brief bedside test called the CCAS-Scale was developed in
American English. Subsequently, it has been validated in
adults with various cerebellar disorders. The CCAS-Scale can
be easily administered within 10-15min and is designed to
screen for CCAS (Hoche et al., 2018). Currently, the CCAS-
Scale has been translated into different languages, including
German (Thieme et al., 2020), Spanish (Rodríguez-Labrada
et al., 2022), Portuguese (de Oliveira Scott et al., 2023),
Dutch, and French (Van Overwalle et al., 2019). The scale is
already widely used (Naeije et al., 2020; Stephen et al., 2020;
Benussi et al., 2021; Maas et al., 2021; Abderrakib et al., 2022;
Chirino-Pérez et al., 2022; Thieme et al., 2022), and it is rec-
ommended for upcoming clinical trials (Klockgether et al.,
2023). The CCAS-Scale consists of 10 test components that
can be either passed or failed. According to the authors of
the original CCAS-Scale, the number of failed test items
determines the probability of CCAS: “CCAS possible” if one
item is failed, “CCAS probable” if two items are failed, and
“CCAS definite” if three or more items are failed (Hoche et
al., 2018). However, based on these diagnostic criteria, sev-
eral studies have reported a high number of false-positive
test results in healthy subjects (Chirino-Pérez et al., 2022;
Rodríguez-Labrada et al., 2022; Thieme et al., 2022; de
Oliveira Scott et al., 2023). Age and education effects, which

were not described in the initial validation trial (Hoche et al.,
2018), explain these findings at least in part (Thieme et al., 2021;
Chirino-Pérez et al., 2022; Rodríguez-Labrada et al., 2022; de
Oliveira Scott et al., 2023). Furthermore, the CCAS-Scale may be
more sensitive in degenerative ataxias with known cerebral
involvement (e.g., SCA2 and SCA3) than in those with primarily
“pure cerebellar” involvement (e.g., SCA6) (Maas et al., 2021;
Rodríguez-Labrada et al., 2022; Thieme et al., 2022). In most
studies that have applied the CCAS-Scale to cerebellar patients
and a control group, the word fluency tests of the scale have
shown the best differentiation between patients and healthy
controls (Maas et al., 2021; Chirino-Pérez et al., 2022; Thieme
et al., 2022). This finding is consistent with a meta-analysis
that included 10 studies examining CCAS in a total of 212
patients with isolated cerebellar lesions. The meta-analysis
showed that patients performed significantly worse on word
fluency tests, the Stroop test, the block design test of the re-
vised Wechsler Adult Intelligence Scale, and the visual mem-
ory test of the revised Wechsler Memory Scale. Some tests,
which are also part of the CCAS-Scale (e.g., go/no-go and digit
span backward test), did not reach statistical significance but
showed a trend toward poorer performance in patients. The
digit span forward test, which is also part of the CCAS-Scale,
did not show any difference between patients and controls
(Ahmadian et al., 2019).

Considering these findings, it may be necessary to reevaluate
the weighting, introduce a correction formula, exclude certain
items, or add additional items to improve the diagnostic proper-
ties of the CCAS-Scale. Moreover, language- and culture-specific
adaptations are needed. The Spanish and Portuguese versions
have already adjusted the cutoff values in their respective scale
versions (Rodríguez-Labrada et al., 2022; de Oliveira Scott et al.,
2023).

There is also a growing need to introduce more objective
measures, such as machine learning-based approaches, for
behavioral evaluation in clinical settings related to CCAS.
Currently, clinical assessments heavily rely on subjective
judgments and cognitive test batteries, which may be prone to
biases and variability. By incorporating these approaches, it will
become possible to analyze large datasets across diverse ethnic,
racial, and socioeconomic backgrounds and identify objective
behavioral markers that accurately reflect the cognitive and
affective deficits associated with CCAS. This objective approach
holds the potential to enhance diagnostic accuracy, monitor
disease progression, and evaluate treatment effectiveness in a
more standardized and reliable manner.

In conclusion, here we have discussed recent evidence that
corroborates the role of the cerebellum in cognitive and affective
processing throughout the lifespan. The evidence supports and
extends earlier observations in animal studies, begins to offer
mechanistic explanations to findings from human studies, and
establishes the cerebellum as part of the limbic system. Despite
this progress, several key questions remain unanswered. The na-
ture of the computations used by local and long-range cerebellar
circuits that serve cognition, affect, and reward learning, and the
relationship of these computations to cerebellar motor signals,
remain unclear. In addition, little is known about the neuromo-
dulatory mechanisms that enable the cerebellum to dynamically
adapt its computations to internal state. These are fundamental
questions, the resolution of which would improve our under-
standing of cerebellar function and of how cognition and affect
are implemented in the mammalian brain. The properties of the
cell types that form local and long-range cerebellar circuits for
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nonmotor function need to be elucidated, as do the activation
dynamics that produce and propagate cerebellar computations
to the limbic system. Along the same lines, a deeper understand-
ing of how PNNs and disease-relevant genetic mutations modu-
late cerebellar output is needed to shed light onto cerebellar
sensitive periods of development and how their disruption con-
tributes to neurodevelopmental and neuropsychiatric disorders.
Defining the precise link between arousal, autonomic regula-
tion and cerebellar activation would also contribute toward
this goal. Animal models are crucial for understanding the
underlying mechanisms and exploring potential treatments
for CCAS. Developing reliable behavioral assays in animal
models will provide valuable insights into the disease’s patho-
physiology and may lead to innovative diagnostic and thera-
peutic approaches, ultimately improving patient care.
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