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Dipolar Bose-Einstein Condensate Dynamics in A Chaotic Potential
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Recent theoretical work has shown that short-range contact and long-range dipolar interactions
of a Bose-Einstein condensate provide the stability needed for the formation of a two-dimensional
soliton in a chaotic optical-dipole potential. However, inclusion of the dipole-dipole interaction
causes the BEC soliton to deviate from the classical trajectories of the trapping potential and to
instead follow trajectories given by an effective potential that is equal to the convolution of the
external trapping potential and density profile of the BEC in the xy plane.
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1.1 Introduction

Experimentally, the creation of solitary waves in AMO physics has been an area of interest,
but the stability of such objects has made them a challenge to create in the laboratory [1]. Solitary
waves are of optical interest because they may serve as an object that allows for experimental control
[2]. It has been shown that dipolar Bose-Einstein Condensates (BECs) may provide the stability
needed to form such solitary wave because they have atomic dipole-dipole interactions that act at
long distances throughout the gas that are said to be nonlocal and nonlinear in behavior [2] [3]. It
has been theorized that this anisotropy of the dipolar interactions and their ability to be “tuned”
experimentally by using rotating magnetic fields is what provides the stability needed in a dipolar
BEC for the formation of a solitary wave [1] [2].

In this thesis, we expand on the idea in Ref.[4] and use a “pancake shaped” dipolar BEC
to create a 2D solitary wave in a chaotic potential, assuming confinement of the dipoles in the z-
direction. As suggested by Ref. [1], we assume the tight confinement in the z-direction is due to
an externally applied magnetic field. This tight confinement is necessary to prevent the attraction
of the dipolar interactions’ spins from causing the dipolar BEC to physically collapse in on itself.
We also include repulsive s-wave scattering contact interactions in our model, which can be tuned
experimentally by using Feshbach resonances [5].

The chaotic escape dynamics of a BEC in a chaotic potential was previously studied using
the Gross-Pitaevskii model but not accounting for dipolar interactions [6] and is the motivation
behind the study in this thesis. In the study done by Ref.[6], the BEC was found to follow the same
trajectory as that of an ensemble of classical trajectories but with quantum interference fringes
superimposed on the BEC [6].

Including attractive dipolar interactions in our study provided the stability that was needed
to form a 2-dimensional solitary BEC structure. The dipolar interactions were able to counteract
the repulsive s-wave scattering interactions and the inherent tendency of the dipolar BEC wave to
disperse. These long-range dipolar interactions also dramatically enhanced the fractal structure in
the dipolar BEC’s escape-time dynamics and eliminated the interference fringes that were seen in
the study done by Ref. [6].

1.2 Overview

1.2.1 General Concept Behind the Numerical Simulations

To model our dipolar BEC, we followed the approach used in Ref. [4] which was to start
with the 3-dimensional Gross-Pitaevskii equation, reduce it to 2-dimensions and then use a Gaussian
ansatz to numerically simulate the dipolar BEC’s dynamics in the double-Gaussian potential. From
there, we solve for the energy of the dipolar BEC a function of its widths in the xy plane, denoted
by ρ and z-direction and then minimize the energy of the system. Our system having an energy
minimum is what allows the BEC to form a 2D solitary structure in our chaotic potential. From the
minimized energy equation, we can solve for equations that determine the strength that the contact
and dipolar interactions need to have in order for the BEC to have the stability needed to form a 2D
solitary wave. Once we have this relation, we can numerically simulate the dynamics of the dipolar
BEC in the double-Gaussian potential and record its evolution and escape flux as functions of time.

1
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1.2.2 Potential Energy Well

We start our simulations by placing the dipolar BEC in a double Gaussian potential well
that has the following form:

Vext = V (x, y) = V1e
( x2

2σ21x
− y2

2σ21y
)
− V2e

( x−x
2

2σ22x
− y2

2σ22y
)

(1.1)

where x and y refer to positions in the well and σ1x, σ2x and σ1y, σ2y represent the widths of the
Gaussians in the x and y directions, respectively. The motivation behind using a chaotic potential
comes from a preceding study done by Ref. [7], where the interest was to use cold atoms to create
a chaotic system that would produce behavior similar to the chaotic ionization of a hydrogen atom
when placed in parallel electric and magnetic fields and be able to image this self-similar behavior.
Ref. [7] stated that these classical ionizing trajectories would show fractal self-similarity. Ref. [6]
expanded on Ref.[7]’s study by using Schrödinger and Gross-Pitaevskii models to study these self-
similar structures in a non-dipolar BEC. This thesis is an extension of the work done by Ref.[7] and
Ref.[6] where we are looking for an enhancement of the self-similar structure seen in the escape-time
dynamics of a dipolar BEC and observing how the dipolar BEC evolves in the chaotic potential as
a function of time.

This double-Gaussian potential confines the BEC in the xy plane so that it is essentially
2-dimensional and “pancake shaped.” The Gaussians overlap in such a way that a saddle is created
between them, creating “left” and “right” portions of the well. Experimentally, overlapping Gaussians
can be realized as an optical dipole trap and the tight confinement in the z-direction could be
obtained by having a laser sheet intersect the two lasers that produce the overlapping Gaussians. As
previously mentioned, we assume that an externally applied magnetic field in the z-direction aligns
the magnetic dipoles’ spins so that the dipolar BEC does not collapse in on itself.

Figure 1: The dotted white lines outline the shapes of each of the Gaussian wells. One well is
greatly elongated in the horizontal direction compared to the other. The depth of the well extends
into the page. Any part of the BEC that crosses the “detection line” is considered never return
to the potential well. The magenta and green curves represent trajectories that could result from
exposure to this potential trap. Examples of classical trajectories are shown in magenta and green.

Once the dipolar BEC is placed in the center of the overlapping Gaussians and given an
initial momentum in a particular direction, θ, which we call the “launch angle” we observe two
quantities, the evolution of the dipolar BEC and the escape dynamics in the trapping potential,
both as functions of time. We then compared our dipolar results to previous studies where non-
dipolar BECs were simulated using Classical, Linear Schrödinger and Nonlinear Schrödinger models
where the same quantities were observed and then compared to central trajectory data [6] [7].
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1.3 Models

1.3.1 Present Study: Dipolar Model Using the Non-Local Gross-Pitaevskii
Equation

As mentioned earlier in this thesis, we set out to model the dipolar BEC by starting with
the 3-dimensional Gross-Pitaevskii equation:

ih̄
∂

∂t
Ψ(r, t) =

[
− h̄

2

2
∇2 + Vext + g|Ψ(r, t)|2 +

∫
dr′Vd(r− r′)|Ψ(r′, t)|2

]
Ψ(r, t) (1.2)

where the − h̄
2

2 ∇
2 represents the kinetic energy of the system and Vext represents the external

trapping potential due to the double-Gaussian well which is again, given by:

Vext = V (x, y) = V1e
( x2

2σ21x
− y2

2σ21y
)
− V2e

( x−x
2

2σ22x
− y2

2σ22y
)

(1.3)

g|Ψ(r, t)|2 in Eqn. (1.2) represents the contribution of the short range, s-wave scattering interactions,
where the contact interaction strength is given by g = 4πh̄aN

m . N is the number of particles in the
BEC, m represents the mass and a is the s-wave scattering length. In the dipolar model, a > 0,
which corresponds to the fact that the short-range interactions are repulsive. The integral term,∫
dr′Vd(r − r′)|Ψ(r′, t)|2 accounts for the interaction energy due to the dipolar interactions and is

given by:

Vd(r) =
gd(1− 3cos(θ)2)

r3
(1.4)

The distance between the dipoles is represented by r. gd = αNd2

4πε0
is the dipolar interaction strength,

where ε0 is the permittivity in vacuum. It is important to note that the dipolar interactions have
a negative sign which corresponds to them being attractive and counteracting the repulsive contact
interactions and the dispersive nature of the BEC. Experimentally, the sign of the dipolar interactions
can be manipulated by using an externally applied magnetic field as previously mentioned. Also,
note that the density of the dipolar BEC is normalized,

∫
dr|Ψ(r, t)|2 = 1. We then use the a

Gaussian ansatz of the form:

ψ0(r) =
1

π3/4l
3/2
z LρL

1/2
z

exp

(
−x

2 + y2

2l2zL
2
ρ

− z2

2l2zL
2
z

)
(1.5)

to reduce the 3-dimensional Gross-Pitaevskii equation to an essentially 2-dimensional equation:

ih̄
∂

∂t
ψ(ρ, t) =

[
−h̄2

2m
∇2
ρ +

g√
2πlz
|ψ(ρ, t)|2 +

4
√
πgd

3
√

2lz

∫
dkρ

(2π)2
eikρ·ρñ(kρ)h2D

(
kρlz√

2

)]
ψ(ρ, t) (1.6)

In Eqn. (1.5), lz =
√

h̄
mωz

is the “thickness” of the BEC in the z-drection and Lρ and Lz are

dimensionless variational paramaters that correspond to the widths in the ρ plane and z- direction,
respectively.
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Solving for the energy of the BEC as a function of its widths in the ρ plane and z-direction,
we obtain the following energy equation:

2E

h̄ωz
=

1

L2
ρ

+
1

2L2
z

+
L2
z

2
+

1√
2πL2

ρLzh̄ωzl
3
z

[
g

2π
+

2gd
3
f

(
Lρ
Lz

)]
(1.7)

where f(κ) = (κ2 − 1)−1[2κ2 + 1− 3κ2H(κ)] and H(κ) = arctan(
√
κ2−1)√

κ2−1
, κ =

Lρ
Lz

.

Minimizing Eqn. (1.7) gives us the following equations:

1 +
g

(2π)3/2h̄ωzl3z
Lz

[
1− 2π

3
βF

(
Lρz
Lz

)]
= 0 (1.8)

Lz =
1

L3
z

+
g

(2π)3/2L2
ρL

2
zh̄ωzl

3
z

[
1− 4π

3
βG

(
Lρ
Lz

)]
(1.9)

F (κ) = (1− κ2)−2[−2κ4 − 7κ2 + 2 + 9κ4H(κ)] (1.10)

G(κ) = (1− κ2)−2[−2κ4 − 10κ2 + 1− 9κ2H(κ)] (1.11)

β =
gd
g

(1.12)

Eqns. (1.8) and (1.9) allow us to determine the strength that g and gd need to have with respect to
one another to allow for the formation of a stable, 2-dimensional solitary wave. It is important to
reiterate that our system having an energy minimum is what allows for formation of our 2D solitary
wave.

2gd

3
√

2πh̄ωzl3z
< 1 +

g

(2π)3/2h̄ωzl3z
<

−4gd

3
√

2πh̄ωzl3z
(1.13)

Eqn. (1.13) is the relation between g and gd determined by Ref. [4], which suggests β = 0.12.
It is important to note that choosing β = 0.12 did not produce a stable 2D solitary structure in
our simulations. So, we numerically simulated the dipolar BEC in the double-Gaussian potential
until we found a relation between g and gd that produced our 2D solitary wave. Though there
is a difference between our simulations and Pedri and Santos’ study in that we uses an external,
double-Gaussian potential and Ref. [4] instead used a confining potential in the z-direction of the

form U =
mω2

zz
2

2 , we do not fully understand the source of this discrepancy at this time, but plan on
invesitgating it further in future work. From here, we were able to numerically simulate the dipolar
BEC’s evolution and escape-time dynamics in the double-Gaussian potential.
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1.4 Preceding Studies: Concept of Each Model

There are three models from previous studies that we compared the results of our dipolar
simulations to: the Classical [6] [7], Schrödinger [6] and Gross-Pitaevskii for contact interactions [6].
The double-Gaussian potential was used as the external potential in each of these simulations and
each of these simulations’ results were compared to that of the central trajectory. The key difference
between these simulations and the dipolar simulation is that the dipolar simulation used an h̄ value
that was smaller than that which was used in the other simulations. This is an aspect we intend to
address in future work as well.

1.4.1 Classical

The classical simulation involved launching individual particle trajectories at different values
of the launch angle, θ and collectively observing the behavior of these trajectories to model the non-
dipolar BEC [7]. The phase-space probability distribution used in this simulation was given by:

ρ(r,p) = (
1

2πσrσp
)2exp(

−r2

2σ2
r

− |p− pc0|2

2σ2
p

) (1.14)

The position of the particle was represented by r. σr and σp represent the standard deviations in
position and momentum respectfully. |pc0|2 reprsents the central momentum of the packet.

1.4.2 Schrödinger

The Schrödinger simulation is a linear, quantum mechanical model that treats the non-
dipolar BEC as a wave, but does not account for the atomic interactions that occur within the
BEC.

ih̄
∂

∂t
Ψ(r, t) =

[
− h̄

2

2
∇2 + Vext

]
Ψ(r, t) (1.15)

Ψ(r, t) represents the state of the BEC, − h̄
2

2 ∇
2 represents the kinetic energy of the system and

Vexternal represents the external potential due to the double-Gaussian potential.

1.4.3 Gross-Pitaevskii : Contact Interactions

The Gross-Pitaevskii model is the nonlinear version of the Schrödinger equation that allows
us to account for the nonlinearity due to the contact interactions in our BEC. These local, s-wave
scattering interactions are represented by the g|Ψ(r, t)|2 term in the following equation:

ih̄
∂

∂t
Ψ(r, t) =

[
− h̄

2

2
∇2 + Vext + g|Ψ(r, t)|2

]
Ψ(r, t) (1.16)

As in the dipolar case, the strength of the contact interactions is represented by g = 4πh̄aN
m

where a is the s-wave scattering length. It is important to note that a < 0 in the Gross-Pitaevskii
contact interaction simulation, which corresponds to the short-range interactions being attractive
to counteract the natural tendency of the BEC to disperse. This differs from the sign that the
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contact interactions have in our Gross-Pitaevskii dipolar simulation, where a > 0 and the contact
interactions are repulsive, but the dipolar interactions are attractive. N is the number of particles
in the BEC and m represents the mass.

1.5 Results

1.5.1 BEC Evolution in the Potential Energy Well

One of the results that we looked at was the behavior of the BEC in response to the
double-Gaussian potential as a function of time. We observed whether the BEC lost its shape
by either collapsing in on itself or expanding to the point of exploding or kept its shape, thereby
remaining intact and forming a 2-dimensional solitary structure. We then compared the trajectory
that the dipolar BEC followed to the path that the central trajectory followed in the double-Gaussian
potential and this is what is denoted by the white curve in Fig.2.

We then contrasted the dipolar comparison to the central trajectory data with the non-
dipolar BECs’ comparisons to the central trajectory data and that is what is shown in Fig.2. Escape-
rate versus time plots are at the end of each simulation’s sequence in Fig.2. The peaks in these
escape-rate plots correspond to the time at which most of the BEC escapes the potential well,
whereas the black vertical bar in each plot corresponds to the time that it takes for the central
trajectory to leave the well.

Figure 2: BEC evolution as a function of time for each of the four models: Classical, Schrödinger,
Gross-Pitaevskii with only contact interactions, labeled as “Local GPE,” and Gross-Pitaevskii with
contact and dipolar interactions, labeled as “Dipolar GPE.” The white curve in each of the frames
represents the central trajectory’s evolution. The black and white images at the end of each
simulation’s sequence is a plot of BEC flux as a function of time. In each simulation, the largest
peak represent when most of the BEC has escaped the trap. The solid black vertical bar represents
the time at which the central trajectory escapes the potential well.

1.5.2 Dipolar

The dipolar BEC, depicted in the fourth row of Fig.2, started out as a 2D solitary wave
and retained its shape throughout the entire simulation. However, the dipolar BEC’s trajectory
differed from that of the central trajectory, which is seen by the dipolar BEC’s white curve differing
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from the white curve that is seen in the first three rows of Fig.2. The dipolar BEC packet is also
noticeably smaller than the BECs in the other simulations that are shown in Fig.2. This is a result
of the smaller h̄ value that was used for the dipolar BEC that was mentioned previously. The
dipolar escape flux plot does not have any peaks denoting when the dipolar BEC leaves the well
or a vertical bar corresponding to the central trajectory. This is because for the particular angle
for which the BEC evolution is depicted in Fig.2, θ = 2.04, the dipolar BEC does not escape the
trapping potential. This corresponds to being at the inside edge of an icicle on the escape-time plot,
which will be elaborated on in the ”Escape-time Dynamics” section of this thesis.

1.5.3 Classical

In the classical simulation, shown in the first row in Fig.2 the non-dipolar BEC started to
disperse in the second frame from the left and did not recover, but its trajectory did coincid with
the central trajectory’s. However, most of the classical BEC escaped the well at a different time
from the central trajectory. This can be seen by the large peak being at t = 2.9, not coinciding with
the black vertical bar in the escape-rate versus time plot at t = 6 at the end of the first row in Fig. 2.

1.5.4 Schrödinger

In the Schrödinger simulation in the second row of Fig.2, we see that the BEC starts to
disperse by the second frame also does not recover from this dispersion. Inteference fringes are seen
in the Schrödinger simulation which is a result of the fact that the Schrödinger equation models the
BEC as a wave. The interference fringes correspond to the wave intefering with itself. Most of the
Schrödinger BEC escapes at t = 3 in the escape flux plot, still differing from the central trajectory’s
time of escape at t = 6.

1.5.5 Gross-Pitaevskii: Local

In these BEC simulations, h̄, corresponds to the width of the BEC. Though, the Classical,
Schrödinger and Gross-Pitaevskii Contact Interaction models all use the same value of h̄, the contact
interactions in the Gross-Pitaevskii Contact Interaction model hold the packet together, which is
why it looks smaller than the Classical and Schrödinger BECs in Fig.2. Interference fringes are also
seen in this model because the BEC is still being treated as a wave and can still interfere with itself.
In the escape rate plot, most of the BEC escapes at time t = 7 which is closest to the time that the
central trajectory escapes at t = 6.

1.6 Escape-Time Dynamics of the BEC

The other result that we looked at was the escape-time dynamics, which involved plotting
the amount of BEC that escaped the potential well, which we called ”flux,” as a function of time for
different launch angles from θ = 0 to θ = π. The dipolar BEC’s escape-time data was then compared
to central trajectory’s escape-time data for a non-dipolar BEC, modeled using just the central
trajectory, which can be seen in Fig.3, as the yellow icicles. This comparison was then contrasted
with the Classical, Schrödinger and Gross-Pitaevskii Contact Interactions’ models’ comparisons to
the central trajectory data.
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Figure 3: Escape-time plots for the Classical, Schrödinger, Gross-Pitaevskii Contact Interaction and
Gross-Pitaevskii Dipolar Interaction models. The range of θ values from 0 to π, that the BEC was
launched at is along the horizontal axis and the amount of time that it took for the BEC to escape
the potential is on the vertical axis. The intensity of the coloration that varies from bright white to
red to black in the graphs, reflects the amount of flux that escapes the trapping potential. Bright
coloration represents a large amount of flux whereas the dark coloration indicates a smaller amount
of flux. Plotted in yellow is the escape-flux as a function of time for the central trajectory. This
graph should be read vertically. For example, let us look at the Classical Escape-Time Plot. Choose
one value of θ along the horizontal axis, let’s say θ = 1 and follow the time-scale on the vertical
axis from t = 0 to t = 12. At t = 0 for θ = 1, we see black coloration in the figure. This means
that none of the BEC has escaped the well yet. But, if we look at t = 1 for θ = 1, we see bright
coloration, which corresponds to a high intensity and therefore, large amount of BEC flux that has
left the potential well at t = 1. If we look at t = 2.2, we see a darker, red coloration which indicates
that not as much BEC flux has left the potential compared to t = 1 for example.

1.6.1 Dipolar

The Dipolar Gross-Pitaevskii escape-time plot has the sharpest fiery icicles because it is able
to remain a wave packet and form a 2D solitary structure. However, the locations of the dipolar
icicles are “shifted” and do not coincide with the bottoms of the yellow icicles, which correspond
to the escape flux of the central trajectory. The region inside a fiery icicle corresponds to the BEC
being inside the chaotic potential. Black regions on the escape-time plot mean that no BEC flux
has left the trapping potential, so those areas correspond to times when the BEC is still “rattling
around” in the potential well.

1.6.2 Classical

In the classical case, the fiery regions are blurred but the locations of the brightly shaded
regions correspond to the bottoms of the central trajectory’s icicles. The blurring is due to the fact
that individual particle traejctories were used in the Classical simulation.

1.6.3 Schrödinger

The bright fiery regions are blurred, but still coincide with the locations of the bottom of
the central trajectory’s icicles. Resolution is improved compared to that which was seen for the
Classical case. Interference fringes appear in the BEC and are result of the BEC being treated as a
wave and interfering with itself.
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1.6.4 Gross-Pitaevskii Contact Interactions

Contact interactions enhance the self-similar structure which is seen by the sharpening of
the fiery regions, compared to the blurring that we saw in the Classical and Schrödinger cases.
Interference fringes in the BEC are still present as a result from treating the BEC as a wave. The
Gross-Pitaevksii Contact Interaction icicles also coincide better with the bottoms of the central
trajectory’s icicles.

1.6.5 Interpetation of BEC Evolution and Escape-Time Results

The comparison of the dipolar simulation to the Classical, Schrödinger and Gross-Pitaevskii
simulations leaves us with the question of why the dipolar BEC’s trajectory and escape-time data
in the double-Gaussian potential differs from the central trajectory’s which was not the case for the
other three simulations. To understand the reason behind this difference in results, let us consider
the following. Two of the simulations, the Classical and Schrödinger models, did not account for
atomic interaction energies and two of them did, the Gross-Pitaevskii Contact Interaction and Gross-
Pitaevskii Dipolar Interaction Models. However, the Gross-Pitaevskii Contact Interaction model still
produced a BEC that followed the central trajectory’s evolution in the double-Gaussian potential
and has fiery icicles in its escape-time plot that more or less coincided with the locations of the
bottom of the central trajectory’s icicles in Fig.2 and Fig.3, respectively. The factor that is present
in each of the simulations that has an effect on both the evolution and escape dynamics as functions
of time of both the dipolar and non-dipolar BECs is the externally applied potential. This leads us to
asking if the external potential that the dipolar BEC experiences is different from that experienced
by the non-dipolar BECs. Referring back to Fig.2, the non-dipolar BECs started at the center of the
potential well and dispersed not too long after being given an initial momentum. The dipolar BEC
remained intact as a 2D solitary structure throughout the entire simulation, thereby experiencing
more than just the value of the external potential near the center of the well. The dipolar BEC
instead experienced an average of the external potential as it moves throughout the well, which we
call an effective potential, Veff .

Veff = Vext ∗ |ψ(x, y)|2 (1.17)

where Vext represents the external potential that our dipolar BEC is exposed to in the
Gross-Pitaevskii Dipolar simulation and ψ(x, y) is the wavefunction of the dipolar BEC in the xy
plane. So the external potential energy that the dipolar BEC is exposed to, is just the convolution
of the externally applied potential and the density profile of the dipolar BEC in the ρ plane.

Fig. 4 is an enhanced view of dipolar simulation’s Escape-Time Plot and the important
feature to note is that the white icicles correspond to a trajectory for the dipolar BEC that was
simulated using the Veff from Eqn. 1.17. Unlike the central trajectory’s icicles, the effective
potential’s icicles ”match up” with fiery icicles of the dipolar BEC’s escape-time data.

1.7 Conclusion

In summary, attractive dipolar interactions were able to counteract the repulsive s-wave
scattering interactions and the natural tendency of a wave to disperse in a chaotic potential, thereby
allowing for the formation of a 2D solitary BEC structure. It was by keeping the dipolar BEC’s shape
intact that the anisotropic dipolar interactions were able to dramatically enhance the resolution of
self-similar fractal structures seen in the escape-time data compared to that which was seen in
previous models. It is because inclusion of the dipolar interactions allowed for an energy minimum
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Figure 4: Zoomed in image of the Escape-Time Plot for the Dipolar BEC Simulation. The white
icicles were determined by numerically simulating the dipolar BEC in the effective potential, Veff .

in our BEC system that the dipolar BEC was able to be stable and form a 2D solitary wave. The
resulting 2-dimensional solitary wave’s trajectory while in the trapping potential was not strictly due
to the external potential of the well, but the convolution of the external potential and the density
profile of the BEC wavepacket in the ρ plane.

Future work will include revisiting β = 0.12 not producing a stable, 2D solitary wave in
our dipolar simulations and running another dipolar BEC simulation with an h̄ value equal to that
which was used in the Classical, Schrödinger and Gross-Pitaevskii non-dipolar simulations.
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