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We consider a dynamic social network model in which agents play
repeated games in pairings determined by a stochastically evolv-
ing social network. Individual agents begin to interact at random,
with the interactions modeled as games. The game payoffs deter-
mine which interactions are reinforced, and the network structure
emerges as a consequence of the dynamics of the agents’ learning
behavior. We study this in a variety of game-theoretic conditions
and show that the behavior is complex and sometimes dissimilar
to behavior in the absence of structural dynamics. We argue that
modeling network structure as dynamic increases realism without
rendering the problem of analysis intractable.

P airs from among a population of 10 individuals interact re-
peatedly. Perhaps they are cooperating to hunt stags and
rabbits, or coordinating on which concert to attend together;
perhaps they are involved in the somewhat more antagonistic
situation of bargaining to split a fixed payoff, or attempting to
escape the undesirable but compelling equilibrium of a Pris-
oner’s Dilemma. As time progresses, the players adapt their
strategies, perhaps incorporating randomness in their decision
rules, to suit their environment. But they may also exert con-
trol over their environment. The players may have choice over
the pairings but not perfect information about the other play-
ers. They may improve their lot in two different ways. A child
who is being bullied learns either to fight better or to run away.
Similarly, a player who obtains unsatisfactory results may choose
either to change strategies or to change associates. Regardless
of whether the interactions are mostly cooperative or mostly an-
tagonistic, it is natural and desirable to allow evolution of the
social network (the propensity for each pair to interact) as well
as the individuals’ strategies.
We build a model that incorporates both of these modes of

evolution. The idea is simple.

*)

Individual agents begin to interact at random. The in-

teractions are modeled as games. The game payoffs

determine which interactions are reinforced, and the

social network structure emerges as a consequence of

the dynamics of the agents’ learning behavior.

As the details of the specific game and the reinforcement dy-
namics vary, we then obtain a class of models. In this paper, we
treat some simple reinforcement dynamics, which may serve as
a base for future investigation.

The idea of simultaneous evolution of strategy and social net-
work appears to be almost completely unexplored. Indeed, the
most thoroughly studied models of evolutionary game theory
assume mean-field interactions, where each individual is always
equally likely to interact with each other. Standard treatments
of evolutionary game dynamics (1,2) operate entirely in this
paradigm. This is due, to a large extent, to considerations of
theoretical tractability of the model. Models have been intro-
duced that allow the agents some control over their choice of
partner (3), but the control is still exerted in a mean-field set-
ting: one chooses between the present partner and a new pick
at random from the whole population.

Evolutionary biologists know that evolutionary dynamics can
be affected by nonrandom encounters or population structure,
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as in Sewall Wright’s models of assortative mating (4). Wright
(5) already realized that positive correlation of encounters could
provide an account of evolution of altruism. Thus, the need for
social network models has been long recognized.

When the social network is modeled, it is almost always
static.’ Interactions, for example, may be posited to occur only
between players whose locations are close, according to some
given spatial data. Biological models in which encounters are
governed by spatial structure have become increasingly frequent
in the 1990s; see, for example, the work of Durrett, Levin, and
Neuhauser (7-9). A similar hypothesis of spatial structure, in a
game theory context, arises in ref. 10. Here, technology from
statistical mechanics is adapted to the analysis of games whose
interactions take place between neighbors in a grid.

A number of recent investigations by game theorists, some
directly inspired by biological models, have shown that the dy-
namics of strategic interaction can be strikingly different if inter-
action is governed by some spatial structure, or more generally,
some graph structure (11-13). For instance, one-shot Prisoner’s
Dilemma games played with neighbors on a circle or torus al-
lows cooperation to evolve in a way that the random encounter
model does not. The spatial or graph structure can be important
to determine which equilibria are possible, whether repeated in-
teractions can be expected to converge to equilibrium, and, if so,
how quickly convergence takes place (14).

Because the outcome of a repeated game may vary with the
choice of network model, it is important to get the network
model right. Further progress in the theory of games and adap-
tive strategies would be greatly enhanced by a theory of net-
works of social interaction. In particular, it would be desirable
to have a framework within which models may be developed
that are both tractable and plausible as a mechanism governing
interactions among a population of agents seeking to improve
their lot.

When the network changes much more slowly than do the
strategies of individuals, it is reasonable to model the social net-
work by a structure that is fixed, though possibly random. The
question of realistically modeling the randomness in such a case
is taken up in a number of papers, of which a recent and well
known example is the “small world” model (15). In the other ex-
treme (16-18), evolution of social structure is modeled by agents
moving on a fixed graph in the absence of strategy dynamics.

In the general case, however, interaction structures are fluid
and evolve in tandem with strategy. What is required here is a
dynamics of interaction structure to model how social networks
are formed and modified. We distinguish this structure dynamics
from the strategic dynamics by which individuals change their
individual behaviors or strategies.

In this paper, we introduce a simple, additive model for struc-
ture dynamics, and we explore the resulting system under sev-
eral conditions: with or without discounting of the past, with or
without added noise, and in the presence or absence of strategic
dynamics. Common to all our models is a stochastic evolution
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from a (usually symmetric) initial state. Individuals in a popu-
lation start out choosing whom to interact with at random and
then modify their choices according to how their choice is re-
inforced, and then the process is repeated. An infinite variety
of such models is possible. We will consider only a few basic
models, meant to illustrate that rigorous results on structure dy-
namics are not out of reach, and that further inquiry will be
profitable.

We first consider a baseline case of uniform reinforcement.
Here, any choice of partner is reinforced as strongly as any al-
ternative choice would have been. In other words, the interac-
tion game between any pair of players always produces a con-
stant reward or punishment. One might expect that such cases
would not lead to interesting dynamics, but that is far from the
truth. We show both by computer simulation and analytically
how structure emerges spontaneously even in these cases. Be-
cause the strategic dynamics here are trivial, the baseline case
is intended mostly as a building block on which more inter-
esting strategic dynamics are to be grafted. We note, however,
that the constant reward game is not completely unreasonable.
Studies have shown that in the absence of other environmen-
tal attributes, sheer familiarity brings about positive attitudinal
change (19). In fact, an abstract model of network evolution
under uniform positive reweighting has appeared before under
the name of “Reinforced Random Walk” (D. Coppersmith and
P. Diaconis, unpublished work).

Next, we move to the case where players of different types
play a nontrivial game and are reinforced by the payoffs of
the game. Here, we examine the coevolution of behavior and
structure when the structural dynamics and strategic dynamics
are both operative. The relative speeds of structural dynamics
and strategic dynamics affect which equilibrium is selected in
the game. In particular, this can determine whether the risk-
dominant or payoff-dominant equilibrium is selected.

Making Friends: A Baseline Model of Uniform Reinforcement

Friends I: Asymmetric Weights. Each morning, each agent goes out
to visit some other agent. The choice of whom to visit is made
by chance, with the chances being determined by the relative
weights each agent has assigned to the others. For this purpose,
agent number i has a vector of weights (w;;, ..., w,;,) that she
assigns to other players (assume w; = 0). Then she visits agent
j with probability

i (1]
Dk Wi
Here we are interested in a symmetric baseline model, so we
will assume that all initial weights are 1. Initially, for all agents,
all possible visits are equiprobable.

Every agent is treated nicely on her visit and all are treated
equally nicely. They each get a reinforcement of 1. Each agent
then updates her weight vector by adding 1 to the weight as-
sociated with the agent that she visited. Her probabilities for
the next round of visits are modified accordingly. At each stage,
we have a matrix p; of probabilities for i to visit j. Do these
probabilities converge, and if so to what?

Given all the symmetry built into the starting point and the
reinforcement, it is perhaps surprising that all sorts of struc-
tures emerge. Here is a description of a simulated sample run
of length 1,000. The probabilities, to two decimal places, seem
to converge after a few hundred rounds of visits, to a matrix that
is anything but uniform (and to a different matrix each time the
process is run from the initial, symmetric weights). There is one
agent, A, who visits another agent, B, more than half the time.
There is no reciprocation, so this has no bearing on how often
B visits A, and in fact most agents will not visit any one agent
more than a third of the time.

In the analysis section, we show that this outcome is typical.

Prob(agent i visits j) =

Skyrms and Pemantle

THEOREM 1. The probability matrix for Friends I with n play-
ers will converge to a random limit p as time goes to infinity. The
distribution of the limit is that the rows of p are independent, each
having Dirichlet distribution (ignoring the zero entry on the diago-
nal) whose parameters are n — 1 ones.

Thus we see spontaneous emergence of structure. This type of
simple model has been used before in the economics literature
to explain the stabilization of market shares at seemingly ran-
dom equilibria, due to random reinforcement in the early phases
of growth of an industry (20). We remark that the choices made
by each agent are independent of the choices made by each
other agent, so the social aspect of the model is somewhat de-
generate and the model may be viewed as a model of individ-
ual choice. Nevertheless, it fits our definition of social network
model in that it gives a probabilistic structure to interactions;
one may then extend the model so the interactions are nontriv-
ial games.

Friends II: Symmetrized Reinforcement. Suppose now that the inter-
action is as pleasant to the host as the visitor. Thus when agent
i visits agent j, we add 1 to both w; and wj;. A typical outcome
for 10 agents after 1,000 rounds of visits looks similar to the
table for Friends I, except that the entries are nearly symmet-
ric. There are, however, subtle differences that may cause the
two models to act very differently when strategic dynamics are
introduced. To see these differences, we describe what is typi-
cally observed after 10 runs of a simulation of Friends II to time
1,000 for a set of three agents, this being the minimum popu-
lation size for which structural dynamics are interesting. What
we see typically is one or two runs in which each players vis-
its are split evenly (to two decimal places) between the others.
We see another several runs that are close to this. We see one
run or so in which two agents nearly always visit the third agent,
which splits its time among the other two. The remaining runs
give something between these extreme outcomes.

What may not be apparent from such data is that the limiting
weights for Friends II are always 1/2. Only a small fraction of
sample outcomes decisively exhibit the proven limiting behavior.
The data, in other words, show that after 1,000 iterations, the
weights may still be far from their limiting values; when this is
the case, one of the three agents is largely ignored by the other
two and visits each of the other two herself equally often. Be-
cause the lifetime of many adaptive games is 1,000 rounds or
fewer, we see that limiting behavior may not be a good guide to
behavior of the system on time scales we are interested in. The
analysis section discusses both limiting results for this model and
finite time behavior. When the population size is more than 3,
the weights will always converge, but the limit is random and
restricted to the subspace of symmetric matrices. Again, conver-
gence of the weights to their limiting values is slower than in
the nonreciprocal game of Friends I.

THEOREM 2. The probability matrix p;; for Friends I with n
players converges to random limit p as time goes to infinity. If
n = 3, the limit is the matrix all of whose off-diagonal entries are
1/2. In general, the limit may be any symmetric matrix whose rows
sum to 1; that is, the closed support of the random limit is the
entire subspace of symmetric stochastic matrices.

Analysis of Friends | and II. To fit this in the framework of (x), con-
struct the following degenerate games. Each of the two players
has only one strategy, and the payoff matrix is as follows.

Friends I

Visitor

Friends II
Visitor

Host Host
(1,0) (1,1)

The weights w;; are initialized to 1 for i # j, and are then
updated according to

w1+ 1) = w;(1) + u(i, j; 1), [2]
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where w;;(#) is the weight agent i gives to agent j at time ¢
and u(i, j;t) is the payoff of the game played at time ¢ between
visitor i and host j (and zero if this visit did not occur at time ).
This, together with specification of the visitation probabilities in
Eq. 1, defines the model. Changing the initial weights does not
affect the qualitative behavior of any model, so there is no need
to vary the initialization.

For Friends I, the updating of the weights for any one agent
is the same as a POlya urn process (21). Each agent can be
thought of as having an urn with balls of n — 1 colors, one color
representing each other agent. Initially there is one ball of each
color in the urn. The agent picks a ball at random, indicating
whom she should visit, then returns it to the urn along with an
extra ball of the same color. The urns belonging to different
agents are statistically independent.

The analysis of this process is well known (ref. 22, chapter 4).
It is easy to show that the sequence of draws for each agent is
exchangeable, that is, permuting a sequence does not change its
probability. Hence by the de Finetti representation theorem, the
random sequence of draws from an urn is equivalent to a mix-
ture of multinomial processes, that is, of sequences of indepen-
dent draws. The mixing measure is easily seen to be Dirichlet.
Consequently, the visiting probabilities converge with probabil-
ity one, but they can converge to anything. That they converge
to the uniform vector, where each agent has equal probability
to visit each other, has prior probability zero.

Furthermore, convergence to the limiting probability matrix
is quite rapid. Let p(¢) denote the matrix whose (i, j)-entry
is p;;(t). Then exchangeability implies that, conditional on the
limit matrix p = lim,_,., p(¢), the sequence of visits is a sequence
of independent, identically distributed draws from the limit dis-
tribution. Thus at time ¢, the central limit theorem implies that
p(t) — pis t7/2 times a multivariate normal.

For Friends II, exchangeability fails. This is not surprising,
because the property of exchangeability is not very robust. More
surprising, however, is that the sequence of probability matrices
p(t) does not form a martingale. To explain this terminology, let
E, denote the expectation conditioned on the values at time ¢. A
simple computation shows that for Friends I, the expected value
of p;(t+ 1) conditioned on the time ¢ value is equal to p;(¢):
because w;; increases only when i visits j, we have

wy; + O
L4370 wy(1)
_ wy (1) + py (1)
L 370 wa(1)
= pij(t )-
Even without exchangeability, the martingale convergence the-
orem (ref. 23, section 4.2) implies convergence of the quantities
D> though it says very little about the limit.
For Friends II, a complete analysis may be obtained (R.P. and

B.S., unpublished work). Here is an outline of what is found
there. A computation similar to the one for Friends I shows that

E p;(t+1)=E, Z Pi(1)
k=1

Ep(t+1) = p(1) + TF(p(1),

where F is a certain function on symmetric n by n matrices.
In other words, the random sequence of matrices {p(?) : t =
1,2, ...} is a stochastic approximation in the sense of Robbins
and Monro (24), driven by the vector field F. General results
of refs. 25 and 26 now imply that p(¢) converges to the set
where F vanishes. To show that p(t) always converges to a single
point, Pemantle and Skyrms (unpublished work) compute a Lya-
punov function for F, that is, a function V' for which VI’'- F <0
with equality only when F = (. This, together with an efficiency
inequality (bounding the angle between f and VI away from

9342 | www.pnas.org

ninety degrees), establish convergence of p. The remainder of
Theorem 2 is then established by showing the only stable ze-
ros of the vector field F are the symmetric matrices with row
sums all equal to 1, and that the possible limit points of p(t)
are exactly the stable equilibria of the flow determined by F.

Determination of the rate of convergence of p(t) to its limit
is somewhat different in this case. Because of the presence of
unstable equilibria from the flow determined by F, there is a
possibility of being stuck near one of these equilibria for a long
time before eventually following the flow to one of the stable
equilibria. For the three player game, the unstable equilibria
are the following three matrices:

041 00 1 010
00 1 1o ! 100
010 100 11

These correspond to cases where one of the three agents is en-
tirely ignored and splits her visits equally between the other two.
The probability that p(¢) is within € of one of these traps is
roughly 3e~'/, so with ¢ = 1,000, we find a reasonably high
probability that p(1,000) is not near the uniform probability
matrix but is instead still near one of the unstable equilibria.
This persists with reasonable probability well beyond ¢ = 10°.
For greater population sizes, similar phenomena apply. Conver-
gence to the invariant set is relatively slow. However, for large
populations, say 20 or more, another phenomenon takes place.
The portion of the space of possible p matrices that are within
€ of the possible limits goes to 1; this is known as the con-
centration of measure phenomenon (27). Thus it becomes very
unlikely to get stuck initially far away from the limit, simply be-
cause the initial randomness will very likely lead to a point very
near a possible limit. Thus for large populations, the dynamics
appear very similar to the dynamics for Friends I.

Making Enemies

Let us change the “Making Friends” model in just one way.
Instead of being rewarded, agents are punished; instead of uni-
formly positive interactions, we have uniformly negative ones:

Host Enemies 11 Host

(-1,0) (-1,-1)

Instead of interactions being reinforcing, we take them as in-
hibiting. The dynamics of inhibition might be modeled in a num-
ber of ways. Continuing to use the update Eq. 2 will not work
because the weights will end up becoming negative and the visi-
tation probabilities in Eq. 1 will be meaningless. In this section,
we explore two other possible rules for updating the weights so
as to inhibit past behavior. With negative reinforcement, it is
easy to predict what will happen: the social network always be-
comes uniform, and the dynamics are not sensitive to the partic-
ular updating mechanism. Indeed, this is what happens. Because
there are no surprises, and because this model is just a building
block for a model with both structural and strategic dynamics,
we keep the discussion brief.

Enemies I

Visitor Visitor

The Transfer Model. Consider a three-player model with the fol-
lowing update rule on the weights. Initial weights are all positive
integers. When i visits j, the weight w;; is diminished by 1 and
the weight wy, k # i, j, is increased by 1. This is equivalent to
the Ehrenfest model of heat exchange between two bodies (28).
In the original Ehrenfest model, there are two urns. A ball is
drawn at random from among all balls in both urns and trans-
ferred to the other urn. The distribution of balls tends to the
binomial distribution, where each ball is independently equally
likely to be in either urn. In Making Enemies, with transfer
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dynamics and three players, each player may be thought of as
having such a pair of urns. The urns are independent.

Because the number of balls is fixed, an Ehrenfest urn is a
Markov chain with a finite number of states, where the states
consist of distributions over the two urns. For example, if there
are only two balls, then there are three states, S1, S2 and S3,
corresponding to urn cardinalities of (2, 0), (1, 1), and (0, 2).
The transition matrix for this Markov chain is

010
30 5,
010

and the unique stationary vector is (1/4,1/2, 1/4). In contrast
to the Polya urn, we do not have convergence of the conditional
probabilities of visits at each stage given the present: at any
time, given the present composition, the probability of a given
visit may be 0, 1/2, or 1, depending on the composition of
the urns belonging to the visitor. However, if the number of
balls, N is large, approximately equal visiting probabilities are
very likely in the following sense. The invariant distribution is
binomial, which is concentrated around nearly even distributions
when the number of balls is large. Thus, with high probability,
no matter what the initial state, after roughly N log N/2 steps
(29), the composition of an urn with N balls will be close to a
draw from a binomial distribution. The conditional probability
of either of the two possible visits will therefore be close to
1/2 and will tend to remain there with high probability. Kac
(30) uses these properties to resolve the apparent paradoxes
that beset Bolzmann’s discussion of irreversibility in statistical
mechanics.

The Resistance Model. The transfer model allows for a finite cu-
mulative amount of negative reinforcement, and indeed yields
a finite Markov chain. Let us explore a rather different model,
termed the resistance model, in which negative payoffs generate
resistance. Initially every choice has resistance 1. The magnitude
of a negative payoff is added to its associated resistance, so the
Eq. 2 becomes

wy (¢ +1) = wy(0) + [ui, j; 1)].

In the case at hand, when all payoffs are negative, the probability
of i visiting j is proportional to the reciprocal of the resistance:
1/ W
Dket L/wi
with 1/w;; = 0 by convention. The dynamics of Enemies I and
Enemies II under resistance dynamics are easy to describe.
THEOREM 3. For Enemies I or Enemies II, from any initial
conditions, the probability matrix p(t) converges to the uniform
probability matrix p where p,; = 1/(n — 1) for any i # j. The
of convergence is rapid: of order N log N if the initial resistances
are of order N. The deviations from uniform obey a central limit
theorem:

p;; = Prob(agent i visits j) =

"(p-pP)—> X

where X is a multivariate normal with covariance matrix of rank
n(n — 1) in Enemies I and n(n — 1)/2 in Enemies II. In other
words, deviations from uniformity are independent normals, subject
to the constraints of adding up to zero for each individual and, in
the case of Enemies II, the constraints of symmetry.

The central limit theorem may be derived from a stronger,
functional central limit theorem, linearizing the system near the
uniform probability to see that the paths

t > N72(p(Nt) — p)

converge in distribution as N — « to a multivariate Ornstein—
Uhlenbeck process. The rate of convergence follows from stan-
dard coupling arguments.

Skyrms and Pemantle

While uniform positive reinforcement breeds structure from
unstructured initial conditions, uniform negative reinforcement
evidently breeds uniformity even from structured initial condi-
tions. It would appear, therefore, that the customary random
encounter (mean-field) model is more suitable for Making En-
emies than Making Friends.

A Better Model? We would like a model that allows for both pos-
itive and negative reinforcement. A natural choice is to let w;
keep track of the log-likelihood for i to visit j, so that probability
of i visiting j is given by
p;; = Prob(agent i visits j)
eXp(wij)
= n . [3]
k=1 EXp(Wy)
In the next section, we will see a property this rule has in com-
mon with rules that discount the past, namely that it leads to
being trapped in a deterministic state where i always visits the
same j.
QUESTION 1. Is there a model incorporating both positive and
negative reinforcement, that is realistic, tractable, and nontrapping?

Perturbations of the Models

In this section, we add two features, noise and discounting, com-
monly used to create more realistic models. We examine the
effects on social structure. In particular, these lead to varying
degrees of subgroup formation.

Discounting the Past. In the foregoing models, a positive (or nega-
tive) payoff in the distant past contributes equally to the weight
(or resistance) assigned to an edge as does a like payoff in the
immediate past. This is implausible, both psychologically and
methodologically. As a matter of psychology, memories fade.
From the standpoint of inductive logic, it is not at all certain
that the learner is dealing with stationary probabilities—indeed,
in cases of prime interest, she is not. For this reason, recent ex-
perience may have a better chance of being a relevant guide to
future action than the remote past.

A simple and standard way to modify the models to reflect
this concern is to introduce discounting of the past. We will
concentrate here on the models of Making Friends. After each
interaction, we will now multiply the weights of the previous
stage by a discount factor, d, between 0 and 1. The we add the
undiscounted payoffs from the present interaction to get new
weights. The modification of the dynamics has a dramatic effect
on the Making Friends models.

For Friends I, it is immediately evident from simulations with
d = 0.9, say, and 10 players, that the probabilities p;; converge
to 0 or 1. In other words, each individual ends up always visiting
the same other individual.

In Friends II, simulations show the group breaking into pairs,
with each member of a pair always visiting his or her “part-
ner.” Which pairs form depends on the randomness in the early
rounds of visits, but pairs always form. In fact, there are other
possible limit states, but their frequency is low except at more
extreme discount rates. The set of possible limit states may be
described as follows. Some agents are grouped in pairs, each
member of a pair always visiting the other. Other agents are
grouped in stars. These are clusters of size at least three, in
which one agent, called the center, visits each of the others with
positive frequency, while the others always visit the center.

Analysis of Discounting the Past. It is worth giving a rigorous deriva-
tion of the above behavior, because it will shed some light on a
defect in the most obvious log-likelihood model to incorporate
positive and negative reinforcement. Our derivation highlights
this, although the results for discounted Friends I may also be
derived from a theorem of H. Rubin (see ref. 31, page 227).
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THEOREM 4. In Friends II with discount rate d < 1, there is
always a partition into pairs and stars and a random time after
which each member of a pair visits only the other member of the
pair and each noncentral member of a star visits only the center. In
Friends I, there is a random function f and a random time after
which each player i always visits f(i).

Sketch of Proof: The analysis for Friends I is similar but eas-
ier, so we prove the statement only for Friends II. With each
probability matrix p we associate a graph G(p) as follows. The
edge (i, j) is in the graph G if the probability p; > €, where
€ < 1/(2n) is some fixed positive number. Among those graphs
having at least one edge incident to each vertex, let S denote
the minimal such graphs, that is, ones for which deleting any
edge results in an isolated vertex. It is easy to see that S is the
set G(p) for all p satistying the conclusion of the theorem.

The principle behind the analysis of discounted Friends is that
the future behavior of p is largely determined by the present
G(p). In particular, we find a 6 > 0 such that from any state
p, for each subgraph H of G(p) such that H € S, there is a
probability at least 6 that for all sufficiently large ¢, G(p(t)) =
H. We show this in two steps: (step i) with probability at least
8, there is some ¢ for which G(p(t)) = H; (step ii) from any
state p such that G(p) = H, there is probability at least & that
G(p(t)) is equal to H for all later times, ¢.

To see why step i is true, for H € S, let fy be any function
on vertices of H for which each value f(i) is a neighbor of i.
Observe that there is a number k such that from any state p
with H C G(p), if each vertex i visits f(i) for the next k£ rounds,
then G(p(k)) = H. For each round of visits, this probability is
at least €, where 7 is the number of vertices, so taking § < e*”
establishes (step i). For (step ii), it suffices to show that with
probability & each agent visits a neighbor in H at all later times.
For each agent i, the sum over j not neighboring i in H of p;; is
at most ne < 1/2 by the definition of G(p) = H. After k rounds
of visits where agents only visit their neighbors in H, this must
decrease to at most (1/2)d*. Thus the probability of N rounds
of visits only to neighbors in H is at least

N-1 n

Lok
[1 (1 —5d ) .
k=0
Sending N to infinity yields a convergent infinite product, since
(1/2)d* is summable. Taking & to be less than the infinite prod-
uct proves (step ii).

With steps i and ii, the rest is a standard tail argument. The
constraints on evolution are such that G(p(¢)) always contains
at least one graph in S. As long as it contains more than one
graph in S, there is always a probability of at least 6 of perma-
nently settling into each one. Thus, with probability 1, eventu-
ally G(p(t)) is equal to some H € S for all future times. This
is equivalent to the conclusion of the theorem. QED

Remark: 1t is actually shown that in (step ii), if we choose €
sufficiently small, we can choose & arbitrarily close to 1.

We now also see why the log-likelihood rule (3) leads to
fixation of a degenerate structure. Under these dynamics, an
equivalent phenomenon occurs to step i in the proof of Theo-
rem 4. For a pair (i, j) whose interaction has a positive mean,
if the pair plays repeatedly, we will see w;;(t)/t — p > 0. The
probability the i will ever switch partners, once having tried j a
few times is at most on the order of Y ;_, Bexp(—kpu), where
B = exp(}_.; w;). From here it is easy to construct an argu-
ment parallel to the proof of Theorem 4, to show that in pres-
ence of a game with positive mean payoff, discounted structural
dynamics lead with probability 1 to fixation at a pairing.

Introduction of Noise. A common feature in models of adaptation

is the introduction of noise: a small chance of a behavior other
than the one chosen by the dynamical equation for the model.
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This may stem from an agent’s uncertainty, from agent error,
or from circumstances beyond an agent’s control. Alternatively,
an agent may purposefully add noise to her strategy in order to
avoid becoming wedded to a less than optimally efficient strategy
or structure.

From a methodological point of view, noise that does not go
to zero with time transforms the model into an ergodic Markov
chain. No state is then trapping. To the extent that the trap-
ping states produced by discounting or linear log-likelihood are
unrealistic, we may hope to mitigate the problem by adding a
noise component. Because dynamics with a noise term do not
lead to a single state, the outcome is usually phrased in terms of
stochastically stable states (32). A state is termed stochastically
stable if the chance of finding the system near that state does
not go to zero as the magnitude of the noise term goes to zero.

Neither discounting nor noise will affect the limiting behav-
ior of Making Enemies. For Making Friends, let us modify the
probability rule (1) so that in the n-player game, the probability
of i visiting j is now some fixed positive number €/(n — 1), plus
(1 — €) times what it was before:

€ W;;
Pi= td E)kaik-

The effect of this is to push the system by e toward the uniform
point p. Neither Friends I nor Friends II is now a martingale,
and the stable set of each is reduced to the single point p. Be-
cause this is true at any noise level € > 0, we see that there
is only one asymptotically stable point. Because the qualitative
outcome is sensitive to the existence of a noise term, it is in-
cumbent to ask with regard to specific models whether a noise
term is natural and realistic.

Noise and Discounting. In the presence of a discount d < 1 and a
noise term € > 0, if 1 — d is much smaller than e, then the dis-
count is so low that the noise term wipes out any effect the dis-
counting might have had. In the other case, where d is held fixed
and € tends to zero, we may ask about the asymptotically stable
states of system with past discounting dynamics. For Friends I,
nothing much interesting happens: discounting causes the lim-
iting state to be degenerate; with noise, the system may jump
from one such state to the other, which does not change which
states are stochastically stable.

For Friends II, as long as the number of players » is at least
4, the introduction of noise does indeed change the set of
stochastically stable states: it gets rid of stars. Simulations show
that pairings are by far the most prevalent states in discounted
Friends II, with a star of size 3 forming when necessitated
by an odd number of players. We now show that states with
more than one star, or a star of size greater than 3, are not
stochastically stable.

THEOREM 5. In Friends II, with discounting, with n players,
and with noise tending to zero, the stochastically stable states are
those that are either unions of pairs (if n is even) or pairs plus a
single star of size 3 (if n is odd).

Sketch of Proof: Let S denote the graphs corresponding to
possible limit states as in the proof of Theorem 4, and let S, C S
denote those graphs with no stars (perfect pairings) or with
a single star of size 3. The important properties of the rela-
tion of § to S, are as follows. (Property i) If G is the result
of adding a single edge to a graph in S§,, then G contains no
graph in S\ S,. (Property ii) For any G € S there is a chain

=Gy, Gy, ..., Gy leading to S, where each G;,; may be ob-
tained from G; be adding an edge and then deleting two edges.
Property i is apparent. To verify property ii, note that if H € S
and i and j are noncentral vertices in stars of H, and they are
not both in the same star of size 3, then adding the edge be-
tween i and j and removing the two edges previously incident
to i and j produces a new graph in S. Iterating this procedure
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starting from H = G, leads in finite time (because the number
of edges decreases each time) to an element of .

We now follow the usual method for determining stochastic
stability (33). Let the probability p of disobeying the structural
dynamics Eq. 1 be very small. If € (in the definition of S) is very
small, then a state p with G(p) = G € S will have G(p(t)) =G
for all later times with high probability, until there is a disobey-
ing move. After a single disobedience, the graph G(p) will be
the union of G with one extra edge. By the remark after the
proof of Theorem 4, we see that after a disobedience, the graph
will then relax to some subgraph in S. By property i, if G € S,
then this subgraph is again in S,. Thus, a single disobedience
followed by relaxation back to S will never escape S,. Hence,
the probability of jumping to S\ S, is of order p?, which implies
that states in S, stay in S, for time at least p~2. On the other
hand, by property ii, from any state in S\ S, there is a chain of
single disobediences, such that allowing the system to relax after
each may with positive probability land you back in §,. Thus, the
expected time spent in S \ S, before returning to S, is at most
of order p. Thus, the process spends (1 — p) portion of the time
in §,, and sending p to zero, we see that only states in S, are
stochastically stable. It is easy to see that all of these are indeed
stochastically stable. QED

Reinforcement by Games of Nontrivial Strategy

So far we have only considered a baseline model of uniform
reinforcement, which turned out still to have nontrivial struc-
tural behavior. Now we examine a reinforcement scheme re-
sulting from the payoff of a nontrivial game. We will consider
the case where evolution of strategy is slower than evolution
of structure. Thus, we will consider the agents as divided into
types, each type always playing a fixed strategy, and see what
sort of interaction structure emerges. We then extend this by al-
lowing strategic switching of types. We find that coordination of
strategy occurs, though whether players coordinate on the risk-
dominant or payoff-dominant strategy depends on parameters
of the model such as the rate of strategic evolution. Depending
on conditions of the model, the social network may or may not
split up into pairs.

Rousseau’s Stag Hunt. Consider a two-player version of Rousseau’s
Stag Hunt (34). The choices are either to hunt stag or to hunt
rabbit (hare, in the original). It takes two persons cooperating
to effectively hunt a stag, while one person acting independently
can hunt a rabbit. Bagging a stag brings a greater payoff.

Hunt Stag | Hunt Rabbit
Hunt Stag (1,1 (0,.75)
Hunt Rabbit (.75,0) (.75,.75)

There are two equilibria in this game: both hunt stag and both
hunt rabbit. The first carries the higher payoff and is said to be
payoff dominant; the second carries the least risk and is said
to be risk dominant (35). In models without structural dynam-
ics, Kandori, Mailath and Rob (36) have shown that only the
risk dominant equilibrium of a two player coordination game is
stochastically stable. In the presence of structural dynamics, we
will describe a more optimistic conclusion.

THEOREM 6. Suppose Stag Hunt is played by 2n players, with
structural dynamics given by Eq. 1 and cumulative weighting dy-
namics (2) with no noise or discounting. Then in the limit, stag
hunters always visit stag hunters and rabbit hunters visit rabbit
hunters.

Sketch of Proof: First note that no visit of a stag hunter to a
rabbit hunter is ever reinforced. Thus, w;(¢) = 1 for all ¢ if i is a
stag hunter and j is a rabbit hunter. Observing that the weights
w;;(¢) go to infinity when i and j are both stag hunters, we see
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that the probability of a stag hunter visiting a rabbit hunter goes
to zero.

Next, consider the subpopulation of rabbit hunters, call it A4.
Fori e A, let
> jga Wij

Z?:l W;;

denote the probability of visiting a given rabbit hunter visiting a
stag hunter on the next turn. The expected value of Z(i, t + 1)
changes according to the formula

E(Z(i,t+ 1)|Z(i, t)) = Z(i, t) + 1Y (i, 1),

where Y (i, t) is the proportion of increase in expected weight
w;; due to j & A:

Z(i,t) =

2iga Pyt Dji
27:1 Pij+ Pji

Ignoring the terms p; in both the numerator and denominator
of the above expression would lead to exactly Z(i, t). The terms
pji for j & A are known to be small, while the total from the
terms p;; for j € A cannot be small. Consequently, Y (i, t) <
(1 —€)Z(i, t) for some € > 0, whence

Y(i,t)=

€Z(i, 1)
—

Because the increments in Z(i, ¢) are bounded by C/t, there are
a A, uw > 0 for which exp(AZ(i, t)+ pnlog ¢) is a supermartingale,
which implies that Z(i, t) converges to zero exponentially fast
in log t. QED

Introduction of a discount rate changes this outcome. Stag
hunters still end up visiting stag hunters, because even dis-
counted reinforcement beats a reinforcement of zero, but now
rabbit hunters will get locked either into pairs and stars as in
Making Friends, or into repeated visits to a single stag hunter.
These limit states are all invariant under introduction of noise.
When a rabbit hunter visits a stag hunter the loss to society is
the 0.75 that another rabbit hunter would have profited from
the visit. The model is evidently weak here, because it allows
only one visit by each agent but any number of visits fo each
agent in a round of visits. That is, a more realistic loss would be
the stag hunter’s wasted time when visited by the rabbit hunter.

It should be noted that, although the stochastically stable
states include those that are not optimally efficient, the op-
timally efficient states (those states where rabbit hunters visit
rabbit hunters) will have an edge. Because of the possibility of
reciprocal reinforcement, it will be easier for a rabbit hunter
to switch from visiting a stag hunter to visiting a rabbit hunter
than vice versa. Second, when the discount rate is near 1, the
model behaves like the undiscounted model for a long enough
time that it is very unlikely for a rabbit hunter to get locked
into visiting a stag hunter in the first place. Simulations of Stag
Hunting with 10 players and d = 0.9, seem to show that rab-
bit hunters “always” visit rabbit hunters. Because of both of the
effects mentioned above, the system is nearly always found in
an optimally efficient state, even though there are stochastically
stable states that are not optimally efficient.

E(ZG,t+1) - Z(i, 1) | Z(i, 1)) <

Coevolution of Structure and Strategy. To the previous model, we
now add the possibility of an agent switching states: a stag
hunter may decide to become a rabbit hunter, or a rabbit
hunter may become bold and hunt stag. When this kind of
strategic evolution is faster than the structural evolution, we
know from studies of random encounter models that the risk
dominant equilibrium of everyone hunting rabbits will be ar-
rived at while the network is still near its initial state of uniform
visitation probabilities.
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Whether strategic dynamics are faster or slower than struc-
tural dynamics depends, of course, on the activity being mod-
eled; sometimes interaction structure is externally imposed,
while sometimes it is more easily modified than strategy or char-
acter. Let us suppose that the investment in re-training as a dif-
ferent kind of hunter is great, so between each round of visits
there is only a small chance that one of the hunters will change
types. Then we have seen that hunters always (with no noise
or discounting) or nearly always (in discounted models) hunt
with others of like type. This eliminates the risk inherent in
random encounters and allows hunters to profit from switching
to stag hunting after an initial period where they find another
stag hunter. Slow strategic adaptation gradually converts rabbit
hunters to stag hunters and the payoff dominant strategy domi-
nates.

We describe here the results of simulations of Stag Hunting
for 1,000 time steps, where with some probability g at any given
time, an individual changes type to whichever type was most
successful in the previous round. When g = 0.1, we found that
in 22% of the cases all hunters ended up hunting stag, while
in 78% of the cases, all hunters hunted rabbit. Thus there was
perfect coordination, but usually not to the most efficient equi-
librium. On the other hand, when g = 0.01, the majority (71%)
of the cases ended in the optimal state of all hunting stag, while
29% ended up all hunting rabbit. Increasing the initial edge
weights made it far less likely to reach the stag hunting equi-
librium, since stag hunters took a long time to perfectly align,
and without alignment, the previous round’s best strategy was
almost always rabbit hunting. For instance, if the initial weights
were 1,000 for each visit, under 1% of the cases ended up all
stag hunting, whether g was 0.1 or 0.01.

Once hunters largely cease to visit hunters of opposite type,
the structural evolution within each of the two subpopulations is
a version of Friends II. The resulting social structure will not be
a perfect pairing, but will have each rabbit (stag) hunter visiting
each other rabbit (stag) hunter, but with varying probabilities.

Conclusion

We have taken some basic steps in exploring dynamics of evo-
lution of interaction structures and coevolution of structure and
strategy. The ultimate goals are to create models that are more
true to life, and to find theoretical bases for observed behaviors
of systems, including prediction of selection between multiple
equilibria.

The particular dynamics we use here are only examples, but
it turns out that the simplest of these may deliver interesting

1. Hofbauer, J. & Sigmund, K. (1988) The Theory of Evolution and Dynamical
Systems (Cambridge Univ. Press, Cambridge, U.K.).

2. Weibull, J. (1997) Evolutionary Game Theory (MIT Press, Cambridge, MA).

3. Feldman, M. & Thomas, E. (1987) J. Theor. Biol. 128, 297-315.

4. Wright, S. (1921) Genetics 6, 144-161.

5. Wright, S. (1945) Ecology 26, 415-419.

6. Jackson, M. & Watts, A. (1999) On the Formation of Interaction Networks in
Social Coordination Games, working paper.

7. Durrett, R. & Neuhauser, C. (1997) Ann. Appl. Prob. 7, 10-45.

8. Kang, H.-C., Krone, S. & Neuhauser, C. (1995) Ann. Appl. Prob. 5, 1025-1060.

9. Durrett, R. & Levin, S. (1994) Theor. Pop. Biol. 46, 363-394.

10. Blume, L. (1993) Games Econ. Behav. 5, 387-423.

11. Pollack, G. B. (1989) Social Networks 11, 175-212.

12. Lindgren, K. & Nordahl, M. (1994) Physica D 75, 292-309.

13. Anderlini, L. & Ianni, A. (1997) in The Dynamics of Norms, eds. Bicchieri,
C., Jeffrey, R. & Skyrms, B. (Cambridge Univ. Press, Cambridge, U.K.), pp.
87-107.

14. Ellison, G. (1993) Econometrica 61, 1047-1071.

15. Watts, D. & Strogatz, S. (1998) Nature (London) 393, 440-442.

16. Schelling, T. (1969) Am. Econ. Rev. Papers Proc. 59, 488-493.

17. Schelling, T. (1971) J. Math. Sociol. 1, 143-86.

18. Epstein, J. & Axtell, R. (1996) Growing Artificial Societies (MIT/Brookings,
Cambridge, MA).

9346 | www.pnas.org

and surprising results. Even in baseline models where the game
being played is degenerate, we find spontaneous emergence of
structure from uniformity and spontaneous emergence of uni-
formity from structure. We find processes with extremely long
transient modes, where limiting behavior is not a good guide for
predicting behavior after thousands of trials.

The social interaction structures that emerge tend to separate
the population into small interaction groups within which there
is coordination of strategy. This separation may be complete, as
in discounted Friends II, or may be only a tendency, as in the
nondiscounted versions of Friends and Stag Hunting.

When we combine structure and strategy dynamics for a non-
trivial game, the Stag Hunt, we find that the probable outcomes
depend on the timing. Where structure is frozen in a random
encounter configuration we get the expected risk-dominant equi-
librium outcome. But when structure is fluid relative to strategy,
structural adaptation neutralizes the risk and we get the socially
efficient payoff dominant equilibrium. Varying between these ex-
tremes can give one or the other result with different probabili-
ties, or may leave the group in a state where both strategies are
used. We expect to see structure dynamics making a difference
in other games as well. Indeed, we have some preliminary sim-
ulation evidence showing this to be true for a bargaining game
(“split the dollar”), and for a simple coordination game.

There are many more avenues to pursue. As mentioned in
Making Enemies, it would be desirable to find a model in which
positive and negative reinforcement are present, but trapping
does not occur. We have not modeled any interaction among
three or more players. We also have yet to model any explicit
interaction between strategy and structure: the choice of a part-
ner to play with and a strategy to play against that partner need
not be independent.

One could continue adding complexity so as to allow infor-
mation to affect structural evolution, to include communication
between players, and so forth. Our main point is this. Struc-
tural change is a common feature of the real world. A theory of
strategic interaction must take account of it. There is a mathe-
matically rich theory which develops relevant tools. We believe
that explicit modeling of structural dynamics, and the interac-
tion of structure and strategy, will generate new insights for the
theory of adaptive behavior.
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