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ABSTRACT 

Design tools share and exchange various types of information pertaining to the 
design. The identification of a uniform design representation to capture this infor­
mation is essential for the development of a successful design environment. We have 
done an extensive study on the representation needs of existing database tools in the 
UCI CADLAB; examples of which are graph compilers for high-level hardware spec­
ifications, state schedulers, hardware allocators, and micro-architecture optimizers. 
The result of this study is the development of a design representation model that 
will serve as a common internal representation (DDM) for all system and behavioral 
synthesis tools. DDM thus builds the foundation for a CAD Framework in which de­
sign tools can communicate via operating on this common representation. The design 
information is composed of three separate graph models: the conceptual model, the 
behavioral model and the structural model. The conceptual model (represented by 
a Design Entity Graph) captures the overall organization of the design information, 
such as, versions and configurations. The behavioral model (represented by an Aug­
mented Control/Data Flow Graph) describes the design behavior. The structural 
model (represented by an Annotated Component Graph) captures the hierarchical 
data path structure and its geometric information. In this paper, we define the last 
two graph models. They both capture the actual design data of the application do­
main. Since VHDL has gained increasing popularity as hardware description language 
for synthesis, we give numerous examples throughout this report that show how the 
proposed design representation model can be used to represent VHDL specifications. 

Key Words: Design Data Model, Design Representation for Computer-Aided De­
sign, Hierarchical Control/Data Flow Graph, State Transition Graph, Annotated 
Component Graph. 
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1 INTRODUCTION 1 

1 INTRODUCTION 

Design tools, such as system and behavioral synthesis tools, have to share and ex­
change diverse types of information during the course of the design exploration pro­
cess. For the integration of this variety of design information into one unified repre­
sentation we define the design data model (DDM). The identification and definition 
of such a uniform design representation is essential as the synthesis tools interact via 
operating on this common representation. This design representation is to be main­
tained by a design database. In this report, we describe the design model, while a 
description of the design data base architecture and its functionality will be given in 
a later report. 

High-level synthesis is concerned with the mapping of a behavioral specification 
written in a hardware description language to a structural description representing 
a set of interconnected generic components (i.e., a netlist). A description language 
is generally not amendable for direct translation into hardware. Hence, the behav­
ioral description gets compiled into an internal representation that contains data fl.ow 
and control fl.ow information as implied by the specification. A well-defined design 
representation serves as a 'canonical' form into which different input formats can be 
mapped. For instance, different description languages, such as Ada or VHDL, can 
be mapped to the same internal representation. This makes design tools language­

independent from characteristics of particular description languages. Furthermore, 
an internal fl.ow graph representation allows for compiler-optimizations that would be 
hard to perform on a textual representation. Also, it is a flexible representation that 
can gradually be updated during synthesis. 

The design model is composed of three separate graphs: the conceptual graph 

model, the behavioral graph model and the structural graph model. The first model, 
sometimes also called the meta-data model, describes the conceptual data schema 
that is used to organize the design data. It covers concepts, such as, design entities, 
versions, and configurations. This conceptual model serves as foundation for most 
database support functions, for example, version management, transaction processing, 
and schema browser. The other two models are information models which capture 
the actual design data of the application domain. They describe the design at a 
level at which the design tools are ultimately interested working on. We distinguish 
between the two domain types, the behavioral domain and the structural domain. 
The behavioral graph model describes the behavioral specification of the design. It 
corresponds to a hierarchical Control/Data Flow Graph (CDFG) representation that 
is augmented with timing constraints and state information. The structural graph 
model is a hierarchical graph structure of interconnected components augmented by 

j i 

1 I i j i: 
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1 INTRODUCTION 2 

timing constraints (called Annotated Component Graph). It captures the data path 
structure and its geometric implementation, called the floorplan. In this paper, we 
present the extended Control/Data Flow Graph (CDFG) model and the Annotated 
Component Graph model, while the conceptual data model will be discussed in a 
later report. 

The document is structured as follows. In Section 2, we present the foundation 
of our work. In particular, we discuss system and behavioral synthesis applications 
requirements for a. design representation. The behavioral domain representation, the 
augmented CDFG, is described in Sections 3 to 5. Section 3 presents the data flow 
graph model, Section 4 defines the control flow graph model, and Section 5 describes 
how the state information is integrated into the CDFG model via the state transition 
graph model. The structural information domain, represented by the Annotated 
Component Graph, is defined in Section 6. Sections 3 through 6 contain examples 
that describe how the the design representation is used to model designs described 
by VHDL specifications. Section 7 summarizes our approach towards linking the 
behavioral and the structural information domain. Finally, in Section 8 we give 
conclusions. 

I I : ., ; j' 'i 1' J' 
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2 THE DESIGN DATA MODEL: BASIC CONCEPTS 3 

2 THE DESIGN DATA MODEL: BASIC CON­
CEPTS 

The success of a design data base for a particular application domain is to a large 
degree based on the quality of the underlying design representation, the design data 
model. This paper describes such a design data model, DDM, that is targeted to­
wards supporting CAD applications. This model is intended to serve as an internal 
representation schema for a collection of behavioral synthesis and verification tools. 

2.1 General Goals 

The design representation we propose in this document has been designed with the 
following goals in mind: 

1. The design representation must be general, i.e., language-independent, such that 
descriptions written in other specification languages can also be translated into 
the internal representation. This assumes that a suitable compiler is developed 
for each new language which compiles a description in this language into the 
internal representation. 

2. Each design tool or group of related design tools generally keeps its own internal 
data model, i.e., its own format and data structures. One goal of this research is 
to achieve a consensus between these different internal data models by proposing 
a general design representation. This model needs to integrate design data as 
generated or required by all of the design tools. Therefore, it should be flexible 
enough to encompass the needs of all existing and possibly future design tools. 
In other words, we propose to establish a design representation standard. 

3. The completeness of the representation is a necessary but not a sufficient char­
acteristic for a successful data model. The initial textual specification itself is 
complete but nevertheless not useful for direct synthesis. This suggests the ad­
ditional requirement that the design representation has to support the synthesis 
process. A measure of suitability for high-level synthesis is, for instance, the 
ease with which relevant information can be extracted from it. 

4. We target the design data model towards the needs of design tools. Conse­
quently, human readability of the representation is of secondary importance. 
The design data base will however provide design views which provide formats 

: .;, 

more suitable to the human designer, su~~ j ~i I [ 
1
textual staie transition table. 
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2 THE D~SIGN DATA MODEL: BASIC CONCEPTS 4 

5. VHDL [28) is a hardware description language which recently has become the 
IEEE standard. Because of its increasing popularity, synthesis tools are being 
developed that synthesize from VHDL descriptions. Therefore, the proposed 
design representation should be powerful enough to represent all VHDL con­
structs that are useful for synthesis. We have studied VHDL in depth, and 
throughout this document we explain how the proposed data model can be 
used to represent VHDL specifications. 

2.2 Multiple Domains 

The design data model, DDM, has to integrate different information types into one 
unified representation. A design entity is originally just specified by a VHDL textual 
specification which then gradually gets transformed from a flow-graph representation 
over a structural description down to layout. Generally, synthesis systems distinguish 
between four domains, which are textual, behavioral, structural and layout (Figure 
1). We simplify the diversity of domains by classifying them into two groups, the 
behavioral and the structural one. The first corresponds to the behavioral description 
over time and the second to the description of the structure that implements that 
behavior. The behavioral information domain comprises: 

• the textual VHDL input specification that describes the function of the design, 

• the flow-graph representation which captures the behavior over time but per­
tains no information about its implementation, and 

• the state sequencing that shows the slicing of the behavior into states. 

We represent this behavioral domain by an extended Control/Data Flow Graph 
model as discussed in the next section. 

The structural information domain consists of: 

• the data path structure that shows the decomposition of the design entity in 
terms o.f components and their interconnections, and 

• the geometric information that describes the circuit's geometric layout but by 
itself conveys no information about its functionality. 

I : 

,• 
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The structural representations in the literature generally take the form of some 
annotated net list. Our structural representation, called the Annotated Component 
Graph (ACG), is similar. It is extended, however, to handle structural hierarchy. 
Furthermore, advanced attributes of the structural elements, such as, different delays 
for different inputs of unit, are supported. In addition, we directly associate geo­
metric information with the ACG graph rather than creating a separate geometry 
representation graph [13]. 

2.3 The CDFG Model 

There is no agreement on design representations of behavioral information for synthe­
sis in the literature. Some of the commonly used approaches for design representations 
at the behavioral level are fl.ow graphs, event graphs, and Petri nets. The represen­
tation presented in this report is based on the first approach. However, it includes 
essential elements from all three approaches into one unifying model. 

Flow graphs are a common intermediate design representation for synthesis tools. 
They generally are based on a synchronous model and thus do not allow the repre­
sentation of asynchronous events. In addition, most of these models do not address 
issues, such as, modeling of timing constraints, hierarchy, and concurrency. The data 
flow graph structure, such as, DSL by Camposano et al [6, 4], the data fl.ow graph 
model used by Temme [27] are representative for the more popular approaches to­
wards flow graph representations for synthesis. The DSL representation consists of a 
flat data flow graph augmented with control fl.ow arcs to handle control constructs like 
branching and loops. Control fl.ow has only been introduced as an afterthought as it is 
not a first class citizen of the specification. The control/data flow graph (CDFG) [20] 
represents a hybrid representation. Rather than modeling control fl.ow by augment­
ing an existing data fl.ow graph with sequence arcs, the CDFG model distinguishes 
between the control and the data fl.ow portions of a description. The control flow 
graph of CDFG explicitly model the control constructs found in the original design 
specification rather than embedding them within the data fl.ow graph. 

In [26], the relative strengths and weaknesses of these two major approaches to­
wards flow graph representations for synthesis are compared. It was found that a 
hybrid control flow/ data flow representation bears numerous advantages over a flat 
data flow graph model. It models the behavioral specification in a more direct man­
ner by' retaining the original structure of the input specification, since control flow 
nodes ,"call" data flow graphs. Thus, there is a one-to-one correspondence between 
the control flow graph and the structure of the design specification. This helps the 
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designer to visualize the fl.ow of control, and thus provides a natural means of design 
entry, much like flow-charting. 

The control :flow graphs show necessary sequencing that is to be guaranteed by the 
control unit, whereas da.ta. fl.ow graphs a.re designed to expose maximum parallelism 
in the input description. The exposition of maximal parallelism in a. da.ta. :flow graph 
helps to utilize the data pa.th to its fullest capacity. Transformations can be designed 
to, for instance, map a conditional statement from control fl.ow to da.ta flow, or vice 
versa. If a. statement is implemented in control flow then that the branching is 
executed by the control unit. If it is described in data flow then the condition is 
directly expressed in terms of da.ta. pa.th units. This way the potential concurrency 
between the conditional and other data. manipulation operations is revealed. This 
hybrid representation clearly allows for a. da.ta.-fiow /control-flow trade-off; it is thus 
suitable for synthesis. The data. fl.ow portions of the CDFG graph can be refined and 
finally mapped to circuits of components, while the control fl.ow portions a.re reduced 
and finally transformed into the state table. 

For these reasons, DDM has chosen a Control/Data Flow Graph (CDFG) model 
for the representation of the behavioral domain. In [16] and [26], it is shown how 
some of t4e VHDL constructs can be represented by the CDFG representation. In 
this document, we go beyond this work by augmenting the CDFG representation 
to also handle advanced concepts, such as, hierarchy, concurrency, events, timing 
constraints, and memories. 

2.4 The Design Representation Continuum Problem 

The initial input to the synthesis system is a pure behavioral description of the design, 
while the final output of the system is an optimized floorplan. There clearly is a design 
representation continuum ranging from a pure behavioral representation over many 
intermediate organizations to a geometric implementation. Ideally, we would like to 
directly model this continuum such that any intermediate state of the design can be 
retrieved. In practical terms this means that the design data model either 

1. keeps many different snapshots of the design representation as it is gradually 
modifiec,i.as well as links between objects of adjacent snapshots, or 

2. the initial behavioral representation is gradually transformed into a structural 
one. 
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The second approach is likely to hide information because some transformations 
are not reversible. Hence, it will not a.How us to go back to previous stages of the 
design evolution. Consequently, pure behavioral views may no longer be extractable 
from this modified representation. Also, relationships between behavior and structure 
that are needed for redesign may not be known. 

The former approach does not face these problems. In addition, it suggests an 
increased ease of use since the related objects can be retrieved directly by linkage 
traversal. It is expensive in space and maintenance costs, however, as multiple distinct 
versions of the design with a complex network of linkage would result. The ADAM 
design environment at USC, for instance, maintains detailed linking relationships as 
described in numerous papers [3, 13]. The required maintenance was found to be 
substantial, and to our knowledge made the creation of a workable data.base system 
extremely difficult [15]. 

Clearly, a solution lies in between these two extremes. We adopt the following 
approach. We keep two domain graphs rather than four as done by most other syn­
thesis systems. Secondly, the behavioral domain graph is augmented with structural 
correspondence without modifying the original shape of the :flow graph. Whenever 
this is not possible, i.e., behavioral modifications are required to reflect the structure, 
then a new version of the behavioral graph is created. 

An important goal of our research is to reduce the complex behavior-to-structure 
links from the abstract behavior down to the final structure (Figure 1). We explicitly 
represent links in the design model only when necessary. The types of semantic 
relationships that can be identified between the objects of the different domains are 
listed below. 

• Connections from the textual description to the :flow graph representation; 

• Connections from control :flow to data :flow constructs; 

• Connections from each state to the data :flow constructs it contains; 

• Connections from each state to the control flow constructs it corresponds to; 

• Connections from a behavioral operator in the data flow graph to a functional 
unit in ~he data path; 

• Connections from each state to the data path units that are performing opera­
tions in the state; 

• Connections from the structural domain (data pa.th units or control unit) to the 
geometric domain. 
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DOMAIN 

BEHAVIORAL 
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STRUCTURAL 
DOMAIN 

GEOMETRIC 
DOMAIN 

CONTROL DATA 

CONTROL FLOW 
GRAPH 

STATE 
AUTOMATA 

FLOORPLAN OF 

CONTROL UNIT 

TEXTUAL 
SPECIFICATION 

DATA FLOW 
GRAPH 

DATA PATH 

STRUCTURE 

FLOORPLAN OF 

DATA PATH 

Figure 1: Possible Relationships Between Domains 
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The different representations must be linked together to keep track of the many­
to-many relationships between the original design specification and the ultimately 
synthesized structure. Design linking between the control and the data parts is of 
importance for applications, such as, synthesis, debugging, verification and iterative 
design [4]. For instance, the control synthesis compiler needs to know which func­
tionality of a unit is used in a given state. The problem of which relationships to 
represent has been studied in the literature. It is, however, still an open research 
question. Our approach towards this problem consists of combining the textual and 
the behavioral domain into one representation, and the structural and geometric into 
another one. Linkage across these two domain graphs is done by keeping structural 
information associated with the behavioral representation in the form of annotations. 
Motivation and explanations of our approach are given throughout the paper, and 
Figure 61 in Section 7 then summarizes our solution. 

2.5 Foundation of DDM 

We use a simple data modeling methodology to define DDM. The basic components 
of this me~~od are given below. These terms will be used throughout the rest of the 
specification. 

Object types are abstract type definitions that are defined by DDM. Objects are 
distinguishable entities of these object types. The actual design data then corresponds 
to a collection of such related objects. We distinguish between different groups of 
object types; those that form the CDFG graph and those that form the ACG 
graph. 

Objects have an object identifier and a state. The object identifier is an iden­
tifier that can be used to uniquely refer to the object. The state consists of a collec­
tion of state variables, which can be either attributes or relationships. All state 
variables are named. The type of data referred to by the state variable is called 
the domain. Attributes describe characteristics of the object. The domains of 
attributes corresponds to primitive data types, such as, integer, string, as well as 
predefined enumeration types. An attribute value can be a single data value, a set 
of values, or an ordered list of values. Relationships between different objects are 
represented by references in the respective objects. Therefore, references are directed. 
There will generally be a "back reference" in the referenced object; which is used to 
make references symmetric. References themselves cannot carry any attributes. If we 
want to model an abstract relationship between two or more objects that further has 
to be described by additional attributes, then this relationship is represented by an 
explicit object definition. This object definition the~ not only holds the attributes of 
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the abstract relationship but also contains references to all objects that are related 
by this relationship type. In the following sections, we describe the different object 
types supported by DDM. 

' 

I I 

I I 
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3 THE DATA FLOW GRAPH 

DDM uses a.n augmented Control/Data Flow Graph (CDFG) model to represent the 
behavioral domain. The CDFG model distinguishes between the control and the 
data flow portions of a description. The data flow graph of the proposed CDFG 
model is discussed in this section, while the control flow graph is presented in the 
next section. A data flow graph is created for data manipulation operations, i.e., for 
assignment statements. Conditional statements can be represented both by data flow 
graph constructs or by control flow graph constructs. In the sequel, we first define 
the data flow graph and then we discuss its constructs in more detail. Thereafter, we 
also give numerous examples of how the data flow object types can be used to model 
different VHDL specifications. 

3.1 The Data Flow Graph Definition 

A data flow graph is defined as described below. 

Definition 1 A data flow graph is a directed {not necessarily acyclic) graph1 DFG 
= (DNiDV,DE,DP,DF) with DN and DV the set of vertices, DE the set of edges, DP 
the set of ports, and DF the set of data flow marking functions. The elements of 
DN and DV are uniquely identified by the function vertex-num: { DN U DV} ~ 
INTEGER. 

1. DN corresponds to the set of data flow nodes. It is composed of several disjoint 

sets, DN = OPERATIONU FUNCTIONU STORAGEU MARKER U TIME. 

• OPERATION is the set of all computation and selection operators. 

• FUNCTION corresponds to the set of function call nodes. 

• STORAGE corresponds to the set of variable accesses, array accesses and 
constants, 

• MARKER corresponds to the set of demarcation nodes. 

• TIME corresponds to the set of timing constraints (delays) in the data flow 

grdph. 

1The data flow graph follows the single-assignment model, and therefore it will initially after 
graph compilation be an acyclic graph. However, cycles may be created after graph optimization. 
For instance, the .read and the write nodes of a signal may get merged into one data flow vertex 
labeled by the read/write operator in order to simplify the mapping of this node to one register. 

I . 
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2. DV corresponds to the set of data values produced or consumed by elements of 
DN. 

3. DP is the set of data flow ports. They correspond to the connection points 
of vertices with the arcs of the graph. The function port-class: P -+ {input­
port, output-port} specifies whether a port is an input or an output port. A vertex 

v E DVU DN can have an ordered (possibly empty) list of input and output ports 
p E DP, respectively. The function input: DN U DV x INTEGER-+ DP U 

0 is an assignment of input ports to vertices. The function output: DN U DV 
x INTEGER -+ DP U 0 is an assignment of output ports to vertices. 

4. DE represents the set of directed edges between the (ports of the) vertices of 
the data flow graph. The edges correspond to pairs (p1,p2) E DP x DP with 

the direction of the edge from pl to p2. We distinguish between five types of 
edges, which _are data flow arcs, sequencing arcs, hierarchy arcs, timing arcs 

and demarcation arcs. 

5. DF is a set of data flow marking functions DFi: DN U DV-+ DM with DM 
the set of possible marks. These functions associate attribute values with the 
vertices of a data flow graph. Examples of such attribute functions are access­

type, array-dimension, bit-width, just to name a few. 

The set of data flow nodes corresponds both to active elements of the design speci­
fication, that perform the data manipulations, and to passive elements, that represent 
storage elements, whose content is used and modified by the former. Examples of ac­
tive elements are the arithmetic, logic and bit extraction data operations, the function 
calls, and the data selection operations. Examples of passive elements are variable 
references, array accesses, constants, and parameters of functions. 

We treat data values as a separate conceptual entities that can have their own 
attributes and thus represent them by vertices (the set DV) rather than by edges. 
This decision simplifies the mapping between behavioral and structural information 
as will be discussed in a later section. 

3.2 Representation of the Data Flow Vertices 

The graphical depictions of the data flow graph vertices and edges are shown in Figure 
2 and 3, respectively. The meaning of each vertex type is explained next. We also 
list some of their attributes. 

Type: Operator node 
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models arbitrary user-defined operations, while the operator node corresponds to a 
predefined operation. Each function call refers to a particular function specification 
which is an encapsulated description of the function behavior. Thus each function 
node is connected via a demarcation arc to its respective function description. 

The representation of parameter passing is resolved as follows. A function call 
node has zero or more data inputs that correspond to the actual parameters that 
are passed to the function as arguments. This is done in the order of occurrence, 
i.e., the data value connected to the first input port is passed to the first formal 
parameter, the data value connected to the second input port is passed to the second 
formal parameter, etc. The data output port of the function node corresponds to the 
return value of the function. Note that a function node creates hierarchy in the data 
flow graph as it encapsulates any arbitrary user-defined behavior by one function call 
node. 

Type: Choose-value node 

Graphic: Triangle with a choose value for each data input port 

Description: A choose value models a conditional selection of one data value from 
a collection of two or more values. A choose value is used to model the conditional 
update of a variable, i.e., a choose value is created for each variable that is updated 
within a conditional statement. 

A choose-value node has two or more data input ports and one or more control 
input ports. The nodes connected with the control input ports are called the condi­
tion variables. One choose value, also called condition guard, is associated with each 
data input port. These choose values are mutually exclusive constant values. They 
correspond to a sum of products of terms, where the number of terms in a product 
corresponds to the number of control input ports. Each term evaluates to a boolean 
constant for a binary branching decision point (such as, an if-statement) and a con­
stant or a range of constants of an integer, boolean, or an enumeration data type or 
a special don't care or else symbol for a multi-branch decision point (for example, 
a case statement). ~he choose values are compared against the condition variables. 
ff a choose value matches the values of the condition variables, then the data value 
that is connected to the respective data input port is propagated through the choose 
value node . .A:-. choose-value node has a single data output port, that corresponds to 
the data value that is passed through choose value node. 

Type: Read node 

Graphic: Rectangle with a triangle taken out of left hand side and labeled by the 
variable name 

I 1d,J1 
[-.. 

. ~ 
. . c' j 
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Description: A read node is created for each read access, i.e., for each variable access 
on the right-hand side of an assignment statement or in a conditional expression. A 
read access can be to a. variable, a signal, or an external port. A read node have one 
control input port and two output ports. A demarcation arc from the demarcation 
node for the beginning of the data flow graph points to its input port. The data. 
output port is connected to a. node that represents the data value read. The control 
output port is connected via. a sequencing arc to a write access node of the same 
variable, if there is any. 

Type: Write node 

Graphic: Rectangle with a. triangle added onto the left hand side and labeled by the 
variable name. 

Description: The write node is created for each write access, i.e., for each variable 
access on the left-hand side of an assignment statement. A write access can be to 
a variable, a signal, or an external port. A write node has two input ports and 
one output port. The data. input port is connected to a vertex that represents the 
data value that is written. The second input port of type control is connected to a 
sequencing arc from a read node of the same variable. The control output port is 
connected via a demarcation arc to the demarcation node that marks the end of the 
graph. If the variable is of type register, then the write node may have additional 
input port.s of type control. They represent control lines, like for instance, reset and 
enable lines. For variables that are of type register, read and write nodes can be 
combined into one node during an optimization phase. Such a read/write node is 
graphically represented by a rectangle with a triangle both added and deleted from 
the left hand side2• 

Type: Constant node 

Graphic: Rectangle with constant value 

Description: A constant node models constant values. A constant node has one 
control input port that is connected via a demarcation arc to the demarcation node 
that marks the beginning of the graph. A constant node ha.s one data output port 
that represents the constant value read. 

Type: Read-array node 

Graphic: Rectangle with a triangle removed from the right hand side and labeled 
by the array name. 

2This symbol corresponds to an overlay of the graphical symbols for a read and a write node. 

I: 
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Description: A read reference to an array is represented by a read-array node. A 
read-array node takes two types of inputs. The first a.re sequencing a.res from other 
subscript nodes and the second the array address. For each dimension of the array, 
there is a data flow edge from the root of the expression that calculates the index 
value to the subscript node. A read-array node takes two types of output a.res. They 
represent the value read from memory and the outgoing sequencing a.res. Sequencing 
arcs are used to connect together successive references to the same array to preserve 
partial execution order of memory references. 

Type: Write-array node 

Graphic: Rectangle with a triangle added onto the right hand side and labeled by 
the array name. 

Description: A write reference to an array is represented by a write-array node. A 
subscript write-array node has three different types of inputs: sequencing a.res from 
other subscript nodes, data a.res that represent index values, and one data value that 
corresponds to the value that is to be stored. Its only output port is connected to a 
sequencing arc. A write-array node is generated for every variable-index write array 
operation and for the latest value of an array element prior to the next variable-index 
read array operation. 

Type: Data value 

Graphic: Small circle 

Description: Data value vertices correspond to the data values that are either gener­
ated or consumed by other data flow nodes. They model data dependencies between 
other data flow nodes. Such a data value node is sometimes as called a net. A data 
value node has attributes, such as, bit width, and data representation. 

Type: Event node 

Graphic: Diamond 

Description: An event node in the data flow graph tests for an event on a signal. 
For example, an event node may test whether a signal is rising, falling, or stable. An 
event node has one input and one output data port. Input to the event node is a 
data value nqde (that represents a signal) and output is a boolean data value node 
(that represents the result of this event test). 

Type: Timing node 

Graphic: Stop sign symbol 

l. I 
.; f 
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Description: A timing node models a timing constraint on portions of the data. flow _ 
graph. A timing node has one or more incoming timing arcs and one outgoing timing 
arc. The incoming timing arcs connect the delay node with the sources of the delay 
while the outgoing timing arc points to the destination data value node. The timing 
no<;l.e specifies a delay for the execution of all nodes in the data flow graph between 
the source nodes and the sink node of the delay. Optionally, the timing node may 
associate an attribute called event-type (which takes the values RISING, FALLING, 
and CHANGING) with its source and its sink nodes. In addition, it may give a delay 
value for the a minimal, nominal and maximal delay constraint, respectively. 

A timing node models two types of timing constraints, which are path delays 
and event-related delays. A path-delay timing node models the time taken for 
the effect of a signal to propagate through a set of hardware units from one point of 
the hardware to another. A path-delay timing node is given the label path-delay, 
or short, delay. By default, the path delay node constitutes a timing constraint for 
all data flow nodes on the paths starting from the source nodes of the delay node 
and ending with the destination node. A delay node may have an optional attribute, 
called path expression, which describes selected portions of the data flow graph. If 
a path expression is given, then the path delay only refers to the subset of data 
flow graph described by the expression. 

An event-related delay node captures timing relationships between the oc­
currences of possibly independent events. Examples of such event relationships are 
set-up and hold times. An event-related delay node is given the label event-delay, 
or short, event. Such an event-related delay node can also be used to model duration 
timing constraints. 

Type: Data flow graph demarcation nodes 

Graphic: Half-circles 

Description: The demarcation node pair begin-dfg and end-dfg mark off the 
beginning and the end of a data flow graph. The read and write nodes of a data flow 
graph are attached by demarcation arcs to the begin-dfg and the end-dfg nodes, 
respectively. 

3.3 Representation of the Data Flow Arcs 

The graphical depictions of the data flow graph edges are shown in Figure 3. Each 
edge type is further explained next. 

Type: Data flow arc 
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Graphic: Arrow 

Description: A data flow arc connects two data flow vertices by associating an 
output port of the former with an input port of the later. Data flow arcs show the 
flow of data values through the graph. Thus, one of the two vertices will be of type 
node (from the set DN) while the other will be of type value (from the set DV). This 
construct has been introduced due to the fact that we model data values as nodes 
rather than as arcs. 

Type: Sequencing arc 

Graphic: Bold arrow 

Description: Sequencing arcs are used for enforcing sequencing among variable or 
memory access, whenever pure data dependencies are not adequate in representing 
correct program semantics. These arcs preserve an execution order that is implied by 
the semantics of the behavioral description but not captured by data dependencies. 

Type: Hierarchy arc 

Graphic: Bold dashed arrow 

Description: A hierarchy arc connects two levels of a hierarchy. In particular, it 
connects a function call node with the specification of the function that is being called. 
The later is a control flow node that is to be discussed in a later section. 

Type: Demarcation arcs 

Graphic: Dotted arrow 

Description: Demarcation arcs are used to associate all read nodes and all write 
nodes for variables and arrays with the begin-dfg and end-dfg demarcation nodes, 
respectively. We also use these sequencing arcs to point from a function call node to 
the body of the function or procedure that is to be executed before execution of the 
current graph continues. 

Type: Timing arc 

Graphic: Dashed arrow 

Description:·· A timing arc connects a timing constraint node with a data value 
vertex. The set of timing arcs associated with a timing constraint node thus marks 
the group of data flow nodes that are constrained by. the timing constraint node. 
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3.4 Modeling with Data Flow Constructs 

In this section, we show how the just presented constructs can be used to represent 
a design at the behavioral level. In particular, we will use specifications written in 
VHDL for demonstration purposes. 

3.4.l Separate Data Flow Nodes for Accesses to the Same Variable 

The proposed DFG representation maintains separate nodes for the different uses of a 
variable. That is, data values are not assumed to reside in one fixed location as done 
in [4]. Instead relevant values are passed from one data flow block to another. This 
parallels the fact that different values are bound to a variable over time. In other 
words, the results of two read-references to the same variable are a function of time. 
The CDFG representation models this directly by providing separate STORAGE 
nodes for these different accesses. 

During one state a signal may potentially be captured by a register whereas during 
another state its value may be mapped to a wire. Keeping different conceptual nodes 
for different usages of a variable simplifies the maintenance of this linkage information 
between the data flow graph and the data path on a state by state basis. 

3.4.2 Data Types 

Access to variables are typically mapped onto either registers or memories. Therefore, 
the CDFG model directly supports data values that can be mapped to single bits, bit 
vectors, or arrays of bit vectors. All other_ data types will have to be mapped to such 
structures during flow graph optimizations. Integer and scalar values are represented 
as a bit vector. Arrays are represented by arrays of bit strings. 

3.4.3 Operator Nodes Revisited 

Operators are classified as arithmetic, comparison, shift/rotate, logical, bit manip­
ulation, and special-purpose. The standard set of arithmetic operators, which are 
ADDITION, SUBTRACTION, MULTIPLICATION, DIVISON, INCREMENT and 
DECREMENT are assumed. The inputs have to be of the same data type. They 
produce outputs of the same type as the inputs. Shift operators are SHR, SHL, SHRO, 
SHRl, SHLO, .and SHLl. Examples of comparison operators are EQ, NEQ, LE, LT, 
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GE, GT a.nd examples of logic operators are AND, OR, NOT, NAND, NOR, XOR. 
They work on a. bit-by-bit fashion on the operands. 

The bit ma.nipulation operators are CONCAT and EXTRACT. The CONCAT 
operator node accepts two or more binary data inputs. It concatenates them into 
a bit string in the order of the input ports. The EXTRACT operator node accepts 
one (binary) data input and extracts a specified range of bits. The EXTRACT and 
CONCAT nodes are further discussed in Sections 3.4.4 and 3.4.5, where we discuss 
the representation of access to registers and memories. 

TRUTH-TABLE Node 

CONDITIONS FUNCTIONS 

NAME Cl C2 

TYPE INTEGER BINARY 

ENTRIES: 23 11 ADD 

9 10 

5 1 

5 11 

Figure 4: The TRUTH-TABLE-Node Type 

The special operator type is called TRUTH-TABLE node. Its behavior is de­
scribed by a truth table rather than having predefined semantics. A TRUTH-TABLE 
operator node accepts one or more data inputs and produces one or more data out­
puts. It contains a truth table that translates the inputs to the outputs. The TRUTH­
TABLE node· type is not a direct translation of a behavioral description but it can 
for instance be used to capture the results of architectural optimizations on the rep­
resentation [24, 25]. Figure 4 shows an example of a TRUTH-TABLE node. In this 
example, the node is used to encode the conditions for the function selection of a 
multi-functional operator node. The multi-functional operator node shown on the 

i 
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right-hand side of the figure has two functions, ADD and SUBTRACT. Based on 
the values of Cl and C2, one of these two functions ADD and SUBTRACT will 
be selected. The function ADD is selected if ((C1=23 and C2=11) or (C1=9 and 
C2=10)), and the function SUBTRACT is selected if ((C1=5 and C2=1) or (C1=5 
and C2=11)). 

3.4.4 Access to Registers 

A register is modeled by a variable with an array of bits data type. For every bit-slice 
access to such a variable, the slice is constructed by concatenation and/ or extraction 
operator nodes. A read access to a bit-slice of a variable is represented by an ex­
traction node as is shown in Figure 5.a. A write access to a bit-slice of a variable is 
represented by one or more extraction nodes and a concatenation node. The latter 
constructs the new value of the variable. 

For instance, the assignment VAR(6 downto 3) = "00" is translated into the 
statement VAR = VAR(8 downto 7) & "010" & VAR(3 downto 0) assuming that 
VAR is a bit-string with a range from 8 downto 0. In other words, a write access to 
a variable is modeled by reads to all portions of variable that are not to be modified 
by that write access. An example of this is shown in Figure 5.b. 

3.4.5 Access to Memory 

A memory unit is usually modeled by an array data structure where each element 
is of type bit vector. The CDFG model represents each textual reference to such 
an array by a subscript node. We assume that a memory unit can only be accessed 
sequentially, i.e., the only operations allowed on it are to read or to write one memory 
word. Consequently, only one index, which corresponds to the first dimension of the 
array, can be associated with each subscript node. Manipulations of the second 
dimension correspond to bit-slice operations on a single memory word. They are 
thus modeled by separate bit manipulation operator nodes independently from the 
array access, i.e., they are applied after the memory word has been extracted. This 
corresponds closely to reality: a memory access always reads or writes a complete 
word, and bit-slice operations are not performed within the memory but as separate 
operations. · 

For example, an array access that utilizes a bit-slice selection like the assignment 
X = MEM(PC,6 downto 3) is modeled in two phases. First it is represented by a data 
access of the array using the index for the first dimension, Y=MEM(PC), and then 
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VAR 

VAR 

x 

VAR 

a.) X = VAR(6 downto 3); b.) VAR(6 downto 3) = "010"; 

Figure 5: Variable Access Representation 
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PC 

Phase 1 
PC 

hase 2 

x 

MEM J Phase 3 

a.) X=MEM(PC,6 downto 3); b.) MEM(PC,6 down.to 3) = "010"; 

Figure 6: Subscript Access Representation 
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by a bit-slice selection operation on a single element of that array, X= Y(6 downto 3). 
The representation of this example is shown in Figure 6.a. 

A write access to a memory location that modifies only some bits of the mem­
ory word is represented by a more complex sequence of operations. For instance, 
the assignment MEM(PC,6 downto 3) = "010" is modeled in three phases: first by 
a subscript read access Y =MEM(PC), then by a bit-slice selection and concatena­
tion operation sequence; Y = Y(8 downto 7) & "010" & Y(3 downto 0), and lastly 
by the actual subscript write operation to the memory, MEM(PC)= Y. The design 
representation of this example is given in Figure 6. b. 

3.4.6 Variable References and Dependencies 

The sequential nature of typical hardware description languages imposes three types 
of data dependencies on the variable accesses. They are called flow, anti and output 
dependencies [21]: 

• A flow dependence exists if a "Write S" is followed by a "Read S", 

• an antidependence exists if a "Read S" is followed by a "Write S", and 

• an output dependence exists if a "Write S" is followed by another "Write S". 

In all three cases, inconsistencies will result if the given order of reads and writes is 
not preserved. No dependencies exist between a set of Read nodes if there is no Write 
node among them. These Read nodes referring to the same value of a variable are 
thus merged into one Read node. 

If a flow dependence exists, then a sequencing arc is inserted from the Write 
node to the Read node of the same variable. This enforces that the value of the signal 
is updated before it can be read. Such a pair of consecutive Write and Read nodes 
may later be optimized by a graph critic. If an antidependence exists, i.e., a "Read 
signal" is followed by a "Write signal" node, then a sequencing arc is inserted from 
the Read node to the Write node of the same variable. This enforces that the value 
of the signal is read before it is allowed to be updated. If an output dependence 
exists and there is at least one Read signal statement between these two Writes, 
then no additional arcs are inserted. If there is no read access in between these two 
writes, then a sequencing arc has to be inserted between them to guarantee the correct 
output value for the signal at the end of the data fl.ow block. The first write node 
can generally be eliminated since it is a dead-end operator. Whenever one of these 
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three data. dependencies is already expressed indirectly by data flow edges, they do 
not have to be maintained explicitly. 

3.4. 7 Array References and Dependencies 

The previous discussion about preserving the program semantics becomes even more 
intricate when array references are involved. The reason for this is that at compile 
time it is not always obvious whether the same memory location is accessed or over­
written for array references with variable indices. Hence, sequencing arcs are imposed 
between subscript nodes to the same array. ff two indexes are constant values, then 
it can be determined immediately whether the sequencing arc between them is re­
dundant. If one or both indexes are variables then dependency analysis techniques 
can sometimes be used to determine whether the arc is redundant. Once a sequence 
arc is found to be redundant, a fl.ow graph optimization routine can remove this arc. 

If a memory location is subsequently overwritten, then it may sometimes be possi­
ble to forego the generation of memory references nodes. One can use the data flow arc 
of the latest value of the array element instead of generating a separate access node. 
If a variable-indexed access write array node is encountered, subscript nodes have 
to be created for all prior accesses to that array and sequencing edges connect them 
with the new variable-indexed node. Sequencing arcs are always inserted between 
a variable-indexed write-array node and a subsequent array operation or between a 
write-array and a subsequent variable-indexed array operation of the same array. For 
example, sequencing arcs are inserted for the specifications given below: 

if "A[I]:=X" is followed by "Y:=A[2]", or 

if "A[I]:=X" is followed by "A[2]:=Y"; and, 

if "A[2]:=X" is followed by "Y:=A[I]", or, 

if "A[2]:=X" is followed by "A[I]:= Y". 

3.4.8 Formal Procedure Parameters and Dependencies 

Sequencing arcs are also used to maintain a strict ordering of the accesses to all 
parameters or ports of type out or inout with the same data type. This has to be done 
even if the parameters have different variable names and thus appear to be unrelated. 
The reason for this is the following. Formal parameters may be aliased to the same 
variable by assigning one actual parameter to two distinct formal parameters. Data 
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dependencies, that are not shown via data flow arcs in the representation, may thus 
exist between accesses to formal parameters. 

For a given procedure call, the aliasing can be resolved and sequencing arcs of the 
design representation can be optimized. This implies that a separate copy is made of 
the procedure specification for each given procedure call, which then is synthesized 
to a specialized hardware. Below, we present one example to explain this situation. 

In Figure 7.a, we show the design representation of a procedure specification body 
defined as follows: 

procedure P (X: Type1, Y: Type1) is 
begin 

X = I * 2; 
K = Y + 3; 
Y = X - I; 

end; 

Sequencing arcs are maintained between the two formal parameters X and Y. In 
particular, the read node for parameter Yin the second statement is sequenced with 
the write node for parameter X in the first statement. Similarly, the read node for 
parameter X in the third statement is sequenced with the read node for parameter Y 
in the second statement. 

If the two formal parameters X and Y are aliased to the same actual parameter 
then the flow graph can be optimized as shown in Figure 7.b. This would, for instance, 
happen if the procedure S is called in the following manner: 

call P (VARi,VARi); 

Then, the formal parameters X and Y refer to the same variable VARI. Therefore, 
the sequence arcs preserving ordering between X and Y (Figure 7.a) are transformed 
into data flow arcs. They model actual data dependencies among occurrences of the 
variable VARl. The optimized design representation corresponds to the following 
rewritten specification: 

procedure P (X: Typei, Y: Type1) is 
begin 

K = (I * 2) + 3; 

y = (I * 2) - I· 
' 

end; 
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a) Original subprogram body. 

K y 

b) Optimized Subprogram body 

;uter (X=Y). 

K 

2 
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y 

c) Optimized subprogram body 

after (X~Y). 

Figure 7: Formal Procedure Parameters and Dependencies 
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On the other hand, the formal parameters X and Y can be bound to distinct 
actual parameters by a procedure call described below, assuming that the variable 
VARI is distinct from variable VAR2. 

call P (VAR1,VAR2); 

Note that once it has been determined that X and Y are distinct, the specification 
could be rewritten as follows: 

procedure P (X: Type1, Y: Type1) is 
begin} 

K = Y + 3; 
Y = (I * 2) - I; 

end; 

Then the flow graph can be optimized as shown in Figure 7.c. In this case, the 
sequence arcs between X and Y can be removed, since X and Y are independent. 
This allows· statement 2 to be executed independently and thus concurrently with 
statement 1 and statement 3. 

3.4. 9 Design Entity Ports and Dependencies 

A strict order of all operations that deal with input and output ports of the design 
entity has to be maintained. Ports model communication points between different 
processors, i.e., data can be read from or written to these ports from outside the 
design entity. Thus, they may signify some prespecified behavior to the external 
environment, i.e., a fixed communication protocol between the design entity and the 
rest of the environment. Consider, for instance, the following statements: 

localvarl <= Portln; 

localvar2 <= fct ( localvarl ); 

PortOut <:= High; 

with Portln and PortOut input and output ports, respectively. Here, the last 
statement is not related by data dependencies with the other two. Consequently, it 
might be executed concurrently with the others. However, setting PortOut to High 
may be a sign for the environment that the value of Portln has been read and thus 
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is free to be modified by other processes. This example shows the need for either a 
conservative approach towards exploiting parallelism from the computations of one 
processor, when fixed protocols for communication between design entities are not 
known, or for explicitly specifying these protocols. 

We prefer the second approach. We assume that the designer explicitly specifies 
such protocols, ifs/he wants to ensure a desired ordering of events. In Section 3.4.16, 
we introduce a mechanism to specify as well as represent event relationships, called 
the event-related timing constraint. An event-related constraint could for instance 
be inserted between the events of reading from Portln and of writing to PortOut. 
This event-related constraint determines not only the ordering of events but also 
constraints on the duration of the time interval between the occurrence of two events. 
For a more detailed discussion of this construct see Section 3.4.16. 

3.4.10 Modeling a Condition in the Data Flow Graph 

Below, we discuss the construct used to model conditions at the data flow graph level, 
namely, the choose value node. In Sections ?? and ?? , we then describe how this 
construct is used to represent different conditional statements. 

Figure 8: The Choose Value Node Type 
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The DDM model provides a generalized choose value node type in order to 
support design optimizations on the design representation. A choose value node 
models a conditional selection of one data value from a collection of two or more 
values. The mutually exclusive choose values associated with the data input ports of 
a choose value node have the following characteristics: 

• they are composed of one or more products (or-ed), 

• each product corresponds to a list of constant terms ( and-ed); one for each 
condition variable attached to the control input ports of the choose value node, 

• each constant term is either a constant value from a discrete domain corre­
sponding to the data type specified for the condition variable, a don't care 
symbol or an others symbol. 

This is best explained with an example. In the example in Figure 8, the choose 
value node selects among three different input data values, A, B, and C, which are 
connected to its three data input ports. Mutually exclusive choose values are associ­
ated with these input ports. The choose value for instance associated with the first 
data input port is "(23,11) + (9,10)". This choose value is a sum of two products, 
namely, (23,11) and (9,10). The number of terms in each product corresponds to the 
number of control input ports, in this case, it is two. The choose values are compared 
against the condition variables Cl and C2. The condition associated with the first 
data input port thus is evaluated as follows: ((C1=23 and C2=11) or (C1=9 and 
C2=10)). If this condition evaluates to true then the value of node A would be 
passed through the choose value node to node D. The choose value for the third data 
input port is "(2,X)". This interpreted to mean (C1=2 and C2=don't care). 

3.4.11 Selected Signal Assignment Statements 

with <expr> select 
. . 

signal <= 
<waveform!> when vl, 
<waveform2> when v2, 

<waveformn> when vn; 

Figure 9: VHDL Selected Signal Assignment 
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In VHDL data.fl.ow style, a case statement is expressed by a selected signal assignment 
statement. An example of such a statement is given in Figure 9. The different values 
vl to vn are mutually exclusive. If a value vi matches the select expression <expr>, 
then its corresponding waveform <waveformi> is evaluated and assigned to the signal. 

Figure 10: CDFG Choose-Value Node 

The select expression <expr> can be a complex expression. Its only restriction is 
that it results in a discrete value. In Figure 10 we show how this statement would be 
represented in the data flow graph. The select expression <expr> is represented by 
a possibly complex data flow graph within which each access of a variable or array 
is represented by a read or a read-array node. The same is true for the waveforms 
<waveforml> to <waveformn>, i.e, each has a data flow graph generated for its 
expression value. One of them is selected to be assigned to the signal if its associated 
condition value Vi matches the value of the select expression. The signal on the 
left-hand side of the assignment is represented by a write or a write-array node. 

In VHDL, a selected signal assignment statement can also be guarded. This 
means that the conditional signal assignment is based on the evaluation of the guard 
expression. The guard expression appears at the beginning of the enclosing VHDL 
block. It can be associated with any statement within that block. When the guard 
expression evaluates to true, then all signal assignments with a guarded qualifier 
appearing in this block will be evaluated. 
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block ( < guard expression > ) 
begin 
with <expr> select 
signal <=guarded 

<waveforml> when vl, 
<waveform2> when v2, 

<waveformn> when vn; 
end block; 

Figure 11: VHDL Selected Signal Assignment with Guard 
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In Figure 12 we show how the guarded select signal assignment shown in Figure 11 
is represented in the CDFG model. A data fl.ow graph (with read nodes) is generated 
for the guard expression of the block. A second choose-value node is added guarded 
by this expression graph. Its true input is connected to the result of the selected 
signal assignment (which can be directly duplicated from Figure 10), and its false 
input is connected with a read node of the signal. 

Note that the guard expression is associated with the entire VHDL block, and 
thus other signal assignment statements within this block may also use it. This 
guard expression is thus represented once in data flow format and then it is directly 
linked to all choose-value nodes that guard a signal assignment within that block. 

3.4.12 Conditional Signal Assignment Statements 

An if-statement is represented in VHDL datafl.ow style by the conditional signal as­
signment statement. The syntax of this statement is shown in Figure 13. This assign­
ment corresponds to a possibly nested if-then-else statement where all assignments 
are made to the same signal based on different boolean conditions. 

Like conventional programming languages, the conditions <cond,> are evaluated 
in the order in which they appear in the code. The first condition that evaluates to 
true is the only one to be executed. For instance, if the condition <cond;> evaluates 
to true then its associated waveform value <waveform; > is assigned to the signal. 
If the statement is guarded then the additional condition that the guard evaluates to 
true has to hold. 

This neste<i if-construct is represented by a chain of choose-value nodes as shown 
in Figure 14 (16]. For each if-statement a choose-value node is created guarded by . 
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Figure 12: CDFG Choose-Value Node with Guard 
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the data flow graph of the corresponding condition <cond1>. The true input of that 
choose-value node is connected to the data flow graph of the associated waveform 
<waveform, >. Its false input is connected to the output of the next condition 
<cond1+1 > which is to be evaluated in the case that cond, is false. If the conditional 
signal assignment is guarded then an additional choose-value is inserted at the bottom 
of this chain. This assures that the assigned value can only pass if the guard is true. 
The output of the bottom most choose-value node is connected to the write node of 
the signal. 

3.4.13 Loops in the Data Flow Graph 

We assume a single-assignment data flow graph. Therefore, the graph does not sup­
port constructs ·for the representation of loops. Loops are, however, supported within 

the control flow graph. 1 ' 
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signal < = [ guarded ] 
<waveforml> when <condl> else 
<waveform2> when <cond2> else 

<waveforrnn> when <cond11 > else 
<waveformn+1 >; 

Figure 13: VHDL Conditional Signal Assignment with Guard 

3.4.14 Events in the Data Flow Graph 
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Events at the data flow graph level generally refer to either events on the clock 
signal or to the specification of asynchronous behavior of components, such as the 
asynchronous load of a register. Events are represented by explicit event nodes in 
the data flow graph. An event node is a diamond-shaped node labeled by the type 
of event (Figure 2). An event node can be considered as a special operator node; 
namely, a predicate that tests for the presence of an event on a signal. It takes a 
signal as input and produces a boolean value as result. 

In VHDL, such events are introduced by signal-related attributes. The following 
four signal-related attributes are of interest for synthesis and are thus supported 
by our model: SIGNAL'EVENT, SIGNAL'STABLE(delay), SIGNAL'RISING and 
SIGNAL'FALLING . The first two are predefined by VHDL. The last two may be 
defined as follows: 

SIGNAL'RISING =nEF SIGNAL'EVENT and (SIGNAL='!') 

SIGNAL'FALLING =nEF SIGNAL'EVENT and (SIGNAL='O') 

All four attributes accept a signal as argument and return a boolean value as result. 
The STABLE attribute optionally takes a time expression as second argument. The 
attribute SIGNAL'STABLE( < time - expression >) returns the value true when 
an event has not occurred on the signal SIGNAL for <time- expression >units of 
time. Otherwise, it returns the value false. The attribute SIGNAL'EVENT returns 
the value true when an event has just occurred on the signal SIGNAL; otherwise, it 
returns the value false. These signal-related attributes may appear anywhere in a 
VHDL specification where a condition is being specified. In other words, they may 
be used in the condition field of a conditional statement, in the guard of a block 
statement, and in a loop test. 

An example of how these signal-related attributes may be used in a conditional 
signal assignment statement is shown in Figure 15. The CDFG representation of this 
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Figur~ i4: CDFG Representation for a Conditional Signal Assignment 
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OUT<= 

INl and IN2 when (INl'RISING and IN2='1') else 
INl and IN2 when (INl'FALLING and IN2='0') else 
INl and IN2 when (IN2'RISING and INl='l') else 
INl and IN2 when (IN2'FALLING and INl='O'); 
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Figure 15: Signal-Related Attributes in a Conditional-Signal Assignment Statement 

INl 0001 IN2 OUT 

OUT 

Figure 16: Events in the Data Flow Graph 

fi 
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VHDL specification (Figure 16) depicts the first assignment of the conditional signal 
assignment statement. The other three assignments can be represented by a similar 
graph. 

3.4.15 Path-Related Timing Constraints 

We classify all timing specifications into two groups, namely, the path-related and 
the event-related timing constraints. Path-related timing constraints are discussed 
in this section, while event-related timing constraints are presented in the next section. 

A path-related timing constraint models the time taken for the effect of a signal 
to propagate through a set of hardware units. In other words, it indicates a delay for 
the transfer of data from one point of the hardware to another. A path delay node, 
or short delay node, can be used to model the delay of an individual operator node 
as well as the delay of a group of operator nodes. It can also capture point-to-point 
delays from one particular input of an operator to the output. 

In the design representation, we represent such a path delay by the a path delay 
node and a set of associated timing arcs. A delay node has one or more input timing 
arcs (that identify the source nodes) and one output timing arc (which identifies one 
destination node). The path delay then represents a constraint on the execution of 
nodes that lie on directed data flow paths between the source nodes and the destina­
tion node. The delay node has attributes of two different information types. The first 
is an ordered list of event specifications and the second is a list of associated timing 
specifications. 

• event specification: 

- sources: one or more incoming timing arcs from source signals; 

- destination: one outgoing timing arc to the destination signal; 

- event-type: we distinguish between the three event types RISING, FALLING, 
and CHANGING; one of these event types is associated with each of the 
source signals and the destination signal. 

• timing. ~pecification: 

- delay duration: minimal, nominal and maximal delay values for the 
timing constraint value; 

- delay value: integer number to indicate the delay in nano seconds. 

Ii 

ri 
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An event specification associates an event-type with each timing input arc (source 
signals) and with the timing output arc (destination signal). The timing arcs identify 
a subgraph of the flow graph, to which the delay node is referring to, by pointing to 
sources signals and to the sink signal. The delay described in the path delay node' 
constrains the data flow nodes on the paths from the source nodes to the destination 
node. 

The event-type corresponds to one of the following three values: RISING, FALLING, 
or CHANGING. These three event types are represented by the symbols T, l, and j l, 
respectively. If no event-type is given for a signal, then the event-type CHANGING 
is assumed as default. Note that path delay constraints most often refer to delays of 
data values with n-ary bit-width (n > 1) rather than single-bit control signals, and 
in this case the event-type CHANGING is the only applicable event specification. 
We introduce this event specification in order to indicate for what event type the 
timing specification is given. This is needed since different delays may for instance 
be specified for when an input signal is rising than for when it is falling. 

The timing specification portion of a delay node specifies minimal, nominal, or 
maximal timing constraint values. A timing specification consists of a timing oper­
ator and delay value pair; If no timing duration is given, then the default duration 
"nominal" is assumed. The timing operator takes the form<,=, and>, which means 
"at least" (or minimal), "approximately equal" (nominal), and "at most" (maximal). 
The delay value gives the corresponding time delay in form of a constant value -
possibly in multiples of the predefined CYCLE constant. 

In VHDL, a path-related timing constraint can be specified by the after-clause 
construct. This construct has the form "after <time-expression>". It may be ap­
pended to signal assignment statements but not to variable assignment statements. 
Thus, delays are specified in VHDL relative to the reading or writing of signals. An 
example of a simple path delay is given in Figure 17. We can make the following 
observations concerning the delay node attributes previously discussed: 

• event specifications: 

- (source Sl, event-type change) 

- ( s~urce node4, event-type change) 

- (destination 82, event-type change) 

• timing specification: 

(delay duration nominal, delay value lOns) 
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VHDL description: 82 <= Sl + 4 after lOns; 

Figure 17: A Simple Path Delay. 
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In VHDL, such timing constraints may also be specified in a conditional or a. se­
lected signal assignment statement. Each assignment within these statements can be 
extended by an after-clause (Figure 18). In this context, the specified path delays are 
event- or condition-dependent. In. other words, the delay is relative to the occurrence 
of some event or some condition. For this, the delay node has an additional input 
port connected to the cause of the delay. 

In Figure 18, we present a VHDL description of conditional path delays. Both 
assignments within the selected signal assignment statement have an associated after­
clause. The corresponding CDFG representation is given in Figure 19. Since the 
delays depend on the evaluation of the COND expression, both delay nodes have the 
node "COND" as one of their input timing arcs. 

with COND select 

S <=A+ B after dl when Cl, 

A - B after d2 when C2; 

Figure 18: VHDL Specification of a Path-Delay. 

There are two timing delay nodes. The attributes of the first delay node are: 

• event specifications: 

(source COND, event-type change) 

(source A, event-type change) 

(source B, event-type change) 

(destination S2, event-type change) 

• timing specification: 

- (delay duration nominal, delay value dl) 

The attributes of the second delay node on the right-hand side of Figure 19 are: 

• event specifications: 

- (source COND, event-type change) 
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Figure 19: VHDL Specification of Path Delays. (Selected Signal Assignment with 
After-Clauses.) · 
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- (source A, event-type change) 

- (source B, event-type change) 

- (destination 82, event-type change) 

• timing specification: 

- (delay duration nominal, delay value d2) 

The textual example specification (Figure 18) clearly indicates the assignment 
statement to which each delay refers. For instance, delay dl refers to the expression 
containing the Addition opera.tor and delay d2 to the expression with the Subtraction 
operator. In graph-theoretic terminology, the delays dl and d2 describe delays of two 
different paths. However, the design representation depicted in Figure 19 (even in 
combination with the detailed timing specifications listed in the previous paragraph) 
is ambiguous. That is, it is not clear which path has a. delay of dl and which has a 
delay of d2. Reasons for this are that the VHDL expression is compiled into one single 
data. flow graph; and the two paths representing the two expressions are intertwined 
within this graph. In addition, both timing constraints ha.ve the same source and 
destination nodes. 

We can thus conclude that path delays cannot be represented by simple point to 
point delay arcs as generally suggested in the literature [5]. There may be several 
directed paths of da.ta fl.ow arcs from the source nodes of a. delay node to its destination 
node. However, a path delay does not always specify a constraint for all paths between 
the sources and the sink. Instead, the constraint could be restricted to a subset of 
these paths. We thus need a mechanism to describe the paths of the data fl.ow graph 
that a delay specification is referring to. We solve this problem by extending the 
delay node by the concept of a path expression. A path expression specifies 
a list of one or more paths in the data fl.ow graph. Each path is represented as an 
ordered list of data fl.ow node identifiers starting with one of the input source nodes 
and ending with the destination node. A path expression is defined more precisely 
below. 

Definition 2 Let D be a path delay specification in the data flow graph DFG. A path 
expression P corresponds to a list of paths, P = {Pi,p2, .... ,pn}· Each path p in P .. 
is of the form p = (n1n2 .... nm}, where 

• n 1 is one of the source nodes of the delay D, and 

• nm is the destination node of the delay D, an~. 
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• for all n;, n;+l in p, there is a directed data flow arc in the flow graph G from 

ni to n;+l· 

For all source nodes mi of the delay D, there is at least one path p in P with mi in p. 

The design representation for the example VHDL description given in Figure 18 
is updated accordingly. In other words, each delay node in Figure 19 is annotated 
with a path expression. For the delay node on the left-hand side of Figure 19 the 
expression is: 

• path expression: 

- { (COND CH S), 

- (A+ CHS), 

- (B +CHS)} 

The path expression for the delay node on the right-hand side of Figure 18 is: 

• path expression: 

- { (COND CH S), 

- (A - CHS), 

- (B - CHS) } 

Due to the introduction of the path expressions, the design representation is no 
longer ambiguous. It is for instance clear now that delay dl refers to the Addition 
and delay d2 to the Subtraction operator. 

In the VHDL timing specifications we have discussed so far assignment statements 
are made to signals. Signal assignment statements can however also be used to model 
sequential circuits, like for instance a register. An example of such a guarded signal 
assignment statement is given next: 

signal REG: INTEGER range 0 to 4095 register; 

REG <= guarded VAR after lOns; 

In this case, "the specified delay of lOns is relative to the guard, i.e., the clock, 
rather than being a delay from the inputs of the register to the output. Thus, the 
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VHDL description: REG <= guarded VAR after lOns; 

Figure 20: Modeling the Delay of a Register. 
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source of the register delay is the CLK and the sink is the value written to the register. 
Since a sequential circuit is a clocked device, the representation of the delay (Figure 
20) is different than the path delay shown in Figure 1 7. 

The presented timing constructs for modeling path delays in the CDFG graph are 
more powerful than the semantics of the VHDL after-clause. The after-clause gen­
erally refers to a whole group of operations, that is, an expression. It always specifies 
delays from all inputs of the expression to the output. Point-to-point delays from one 
single input to one output can on the other hand not easily be specified. Further­
more, a VHDL after-clause always specifies a nominal delay (used by the simulator 
to schedule updates in the future); it supports no mechanism to give maximal or 
minimal timing constraints. In the following section we will discuss how VHDL can 
be extended to handle the specification of these more fine-grained timing constraints. 

3.4.16 Event-Related Timing Constraints 

Timing constraints that specify delays between the occurrences of events are called 
event-related timing constraints. For example, two signals may be required to 
have valiq values during the same time interval, or a particular data signal needs 
to be available for reading a certain time interval after the address line signal has 
gone high. These relationships of events are often expressed by designers via timing 
diagrams (like the one shown in Figure 21). The event-related timing constraints are 
thus particularly useful for specifying handshakes and other interface protocols. 

For the representation of the event-related constraint type in the data fl.ow graph 
we use a timing constraint node with the label event-delay, or short event. The 
event-related timing constraint node is identical in format to the path delay constraint 
node. The only exception is the fact that path expressions are not associated with 
the former construct. Events constrained by an event-related timing constraint need 
not necessarily be related by data fl.ow arcs, and therefore a path between them may 
not exist. 

To explain the format of the event-related timing constraint, we give an example 
specification: 

DATAl j, DATA2i, DATA3jl: > lOns, = 20ns, < 30ns. 

This specifies the following timing constraint between the events on the values 
of DATA!, DATA2, and DATA3: From the time that DATA! is rising and DATA2 
is falling, there will be at least 10 ns, in average 20ns, and at most 30 ns before 
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SIG2: 

SIGl: 

a. timing diagram. 

SIGl SIG2 

b. design representation 

Figure 21: The Representation of Event-related Timing Constraints. 
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an event occurs on DATA3. The event delay node that captures this example delay , 
specification can thus be described by the following timing attributes: 

• event specifications: 

- (source DATA!, event-type rising (i)) 

- (source DATA2, event-type falling (1)) 

- (destination DATA3, event-type change (il)) 

• timing specifications: 

- (delay duration minimal, delay value lOns) 

- (delay duration nominal, delay value 20ns) 

- (delay duration maximal, delay value 30ns) 

The proposed timing modeling constructs are powerful and allow the user to create 
arbitrarily complex signal timing schemes. We can for instance model duration 
timing constraints associated with sequential circuits, such as, setup and hold 
times. Duration timing constraints refer to the duration during which a signal has to 
be stable rather than to a delay needed to traverse a path in the underlying structure. 
The event-related delay constraint can also specify the characteristics of a clock signal 
by denoting the delay from the rising edge to the falling edge of the clock, or vice 
versa, and the delay from the falling to the rising edge. 

Figure 22 gives a timing diagram for set-up times, hold times, and delay times 
for a register. Figure 23 then shows how these different timing constraints would 
be represented in the CDFG graph. Setup and hold times are event-related timing 
constraints and thus are represented by event-delay timing nodes. The propaga­
tion delay of the register, however, is a path-related timing constraint and is thus 
represented by a path-delay node. 

Setup time is defi?-ed as the minimum time that the input should continue to 
be stable before the clock becomes active. It can thus be modeled by the following 
event-related timing constraint between the input to the register and the clock: 

DATA j l,· CLKj: > lOns. 

This states that at least lOns have to pass without any change on the DATA 
signal before the CLK signal can be rising. This can be interpreted to mean that the 
DATA signal has to be held stable for at least lOns before the value can be written 
into a register. This example demonstrates that tHe duration timing constraint can 
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Figure 22: Timing Diagram for Set-up, Hold and Register Delays. 
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be modeled by the event-related timing constraint on the two events of initiating the 
WRITE operation and on the actual value written. The timing attributes for the 
setup event delay node can be summarized as follows: 

• event specification: 

- (source DATA, event-type change (j l)) 

- (destination CLK, event-type rising (j)) 

• timing specification: 

- (delay duration minimal, delay value lOns) 

Hold time refers to the minimum time that the input should continue to be stable 
after the clock has become active. Hold time can thus be specified by the following: 

CLKj, DATA j l: > 30ns. 

It states that from the time the signal CLK is rising there will be at least 30ns 
before the DATA value signal may be changed. In other words, the value DATA has 
to be held stable for at least the hold interval (at least 30ns) after the write operation 
has been initiated. The timing attributes for the event delay node that models the 
hold time can be summarized as follows: 

• event specification: 

- (source CLK, event-type rising (j)) 

- (destination DATA, event-type change (il)) 

• timing specification: 

- (delay duration minimal, delay value 30ns) 

Event-related timing relationships cannot easily be specified by VHDL descrip­
tions. The only timing construct of VHDL, the after-clause, has to be appended 
to signal assignment statements. Thus, an after-clause is associated with the active 
modification ~f signal values which is not appropriate for modeling most event-related 
delays. Therefore, we need another mechanism for specifying event-related timing 
constraints in a VHDL textual description. There are three alternatives we have con­
sidered, which are to define timing constraints via assertion statements, via special 
comments, and via a pseudo procedure call. 
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The expression of assertion statements to represent these timing constraints would · 
get quite clumsy. For instance, the timing specification of 

DATA j !, CLKj: > lOns. 

would be expressed by the following assertion statement: 

assert ((not CLK'stable(Ons) and CLK='l') 
and (DATA'last..active > lOns)) 
or (CLK='O') or (CLK'stable(Ons)) 

report "setup time violation" 
severity "warning"; 

An assertion statement is a sequential VHDL statement. It can therefore only be 
used within a sequential VHDL description, such as, a process or a subprogram, but 
not within a concurrent block. Therefore, assertion statements are not a satisfactory 
means for specifying timing constraints for synthesis. 

Instead, we suggest that timing relationships of signals are expressed via a com­
ment statement in a VHDL specification. The syntax of the comment statement for 
specifying event-related timing constraints is as follows: 

- - TIMING: < timing specification > 

where the term <timing specification> is an expression of the format described 
earlier. 

It is equally possible to develop a VHDL procedure for specifying the timing 
constraints. Below, we give an example of such a special-purpose procedure: 

procedure TIMING-CONSTRAINT (<timing specification>) is 
begin 
# empty body here 
end TIMING-CONSTRAINT; 

All information specified in the previously discussed timing specification is entered 
into this procedure- in the form of parameters. The body of this pseudo procedure 
is empty, and thus the simulation of the VHDL specification would not be_ affected 
by a call to this procedure. The compiler however would interpret a ca.II to this 
pseudo-procedure as a hint (a comment) to insert timing constraints into the design 
representation for synthesis. A procedure specification for simple one-source to one­
sink delays is introduced in [22]. 

; ; 
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4 THE CONTROL FLOW GRAPH 

In this section, we discussed the control flow graph object types of the augmented 
CDFG model. A control flow graph is created for loops, conditional statements, and 
other control constructs of the specification, such a.'! a procedure, a subprogram or a 
process. 

4.1 The Control Flow Graph Definition 

Below, we first define the graph and then discuss its object types in more detail. 

Definition 3 A control flow graph is a directed (not necessarily acyclic) graph 

CFG = (CN, CE, GP, CF) with CN the set of vertices, CE the set of edges, GP the set 
of ports, and CF the set of control flow marking functions. The elements of CN are 
uniquely identified by the function vertex-num: CN--+ INTEGER. 

1. CN corresponds to the set of control flow nodes. It is composed of several dis­

joint sets, DN =PROCESS u CALL U CONDITION U STMT-BLOCK u 
MARKER U TIME. 

• PROCESS is the set of process nodes. 

• CALL corresponds to the set of procedure call nodes. 

• STMT-BLOCK corresponds to the set of statement blocks. 

• CONDITION is the set of condition and event nodes. 

• MARKER corresponds to the set of demarcation nodes. 

• TIME corresponds to the set of timing constraints. 

2. GP is the set of ports-; They corresponds to the connection points of vertices with 

the arcs of the graph. The function port-class: P--+ {input-port, output-port} 
specifies whether a port is an input or an output port. A vertex v E CN can have 

an ordered (possibly empty) list of input and output ports p E GP, respectively. 
The function input: CN x INTEGER--+ GPU 0 is an assignment of input 

ports to ·vertices. The function output: CN x INTEGER--+ GPU 0 is an 

assignment of output ports to vertices. 
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3. CE represents the set of directed edges between the (ports of the) vertices of the 

graph. The edges correspond to pairs (pl,p2) E GP x GP with the direction of 

the edge from pl to p2. We distinguish between five types of edges, which are 

control flow arcs, concurrent arcs, hierarchy arcs, timing arcs, and demarcation 

arcs. 

4. CF is a set of control flow marking functions CF;,: CN -+ CM with CM the set 
of possible attribute domains. 

4.2 Representation of the Control Flow Vertices 

The graphical depictions shown in Figures 24 and 25 are used to represent the con­
structs of a control flow graph. The meaning and attributes of each vertex type is 
explained below. 

Type: Concurrent nodes 

Graphic: Parallelogram with the labels called co-begin and co-end 

Description: A co-begin/co-end node pair marks a concurrent piece of code (in 
this report we referred to as a block). All control nodes attached to the co-begin node 
by outgoing edges execute simultaneously (in different parts of the same data path 
or even in different processors). Thus, a co-begin node forks possibly independent 
processes. A co-end node simply collects these concurrent processes into one location. 

A co-begin node has one input and numerous output edges (of the concurrent 
edge type). A co-end node has one output and numerous input edges (of the con­
current edge type). The outgoing arcs of a co-begin node and the incoming arcs 
to a co-end node demark the concurrent pieces of code that are contained within 
the concurrent specification modeled by the co-begin/co-end node pair. A co­
begin/ co-end node pair can model hierarchically nested concurrent blocks, since 
the concurrent block modeled by a co-begin/co-end node pair could contain other 
concurrent blocks. The incoming arc of a co-begin node originates at a control flow 
node representing the block in which the concurrent piece is contained. Similarly, the 
outgoing arc of a co-end node points back to the control flow node that represents 
the end of a block in which the concurrent piece is contained. 

A co-begin node has one or more outgoing edges to control flow nodes out of 
which the concurrent block is composed of. They point to processes, blocks and 
concurrent procedure calls. One of these outgoing arcs may point to a statement­
block node. The data flow graph associated with the latter contains all concurrent 
signal assignments specified in the block description. A concurrent block can also 
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Figure 25: Graphical Representation of Arcs in the Control Flow Graph 

have a guard, i.e., a condition which determines under which event the block is to 
be executed. In this case, a data fl.ow expression graph that represents this guard 
is included in the data fl.ow graph associated with the statement-block node of the 
concurrent block. 

Type: Process node 

Graphic: Double circle with process name 

Description: A process node represents a process specification. A process node 
has one concurrent input arc and one concurrent output arc to the predecessor and 
successor nodes in the control fl.ow graph, respectively. It also has one incoming 
and outgoing hierarchy arc to its process specification, i.e., to a process-begin and 
process-end node pair. A process node has an (optional) sensitivity list associated 
with it. 

Type: Statement-block node 

Graphic: Rectangle 

Description: A statement-block node represents a number of assignment and data 
selection statements that are represented by a data flow graph. It has one input 
and one output control fl.ow arc to its predecessor and its successor in the control 
flow graph, respectively. It also has one outgoing hierarchy arc that points to the 
representation of the associated data flow graph. 
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Type: Call node 

Graphic: Circle with the procedure name 

Description: A procedure call is represented by a call node in the control flow graph. 
A call node has one input control flow arc from its control flow predecessor. It has 
one output control fl.ow arc to indicate where to continue in the control fl.ow sequence 
once the associated procedure has been executed. There is one additional outgoing 
arc of type hierarchy to the corresponding procedure specification. 

The representation of parameter passing is handled as follows. If a parameter of 
mode in corresponds to an expression rather than a variable name, then a data fl.ow 
graph that represents this expression and assigns the result to a temporary variable 
is generated. This data flow graph is placed into the control flow node prior to the 
procedure call. A possibly empty list of read/write and constant nodes corresponding 
to the actual parameters (or the temporary variables that hold the value of the actual 
parameters) is associated with the call node. This list is ordered by position, i.e., the 
first actual parameter is passed to the first formal parameter, and so on. 

Type: Condition node 

Graphic: Triangle with a condition label 

Description: A condition node distributes control among a number of control 
flow sequences. This node type is used to model loop statements and conditional 
statements. The attribute function condition-type: CN -+ { IF, CASE, FOR, 
WHILE, REPEAT } assigns a condition label to a condition node. A condition 
node has one input control flow arc from the predecessor in the control fl.ow graph, 
and two or more output control flow arcs to mutual exclusive successors in the graph. 

If the represented condition corresponds to a simple boolean or integer variable, 
then the condition node is annotated by the name of that variable. If the condition 
corresponds to an expression, then a data flow graph that represents this expression 
and assigns the result to a temporary variable, called the conditional variable, is gen­
erated. It is attached to the condition node. Each output port of the condition node 
has a constant guard against which the conditional variable is compared. The output 
branch associated with a guard will be executed when the value of the conditional 
variable equals the value of that guard. 

Type: End-condition node 

Graphic: Reversed triangle with a condition label 

; ; 
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Description: An end-condition node is used to mark the end of a. conditional state­
ment. It collects all threads of computation that arise from the corresponding con­
dition node. Thus, an end-condition node has one input port for each output port 
of the matching condition node. The ·attribute function condition-type: CN -+ { 

END-IF, END-CASE} assigns a. label to an end-condition node. 

Type: Parallel nodes 

Graphic: Parallelogram with the labels par-begin and par-end 

Description: There are two nodes to demark para.Ile! threads of control, called par­
begin and par-end. A par-begin node has one input and two or more output 
control fl.ow edges. A par-end node has one output and two or more input control 
fl.ow edges. At a par-begin node, several independent threads are spawned off at the 
same time. All threads of control execute simultaneous. Control does not proceed past 
the corresponding par-end node, until a.11 threads of controls ha.ve finished execution. 

Type: Delay node 

Graphic: Stop sign symbol with label delay 

Description: A delay node is used to model a delay timing constraint at the control 
fl.ow graph level. A delay constraint node specifies a delay for a set of computations. 
The respective set of computations is marked of by timing arcs associated with this 
timing node. The attributes minimal, maximal and nominal specify the minimal, 
maximal and nominal time or cycle delay, respectively. 

Type: Timeout node 

Graphic: Stop sign symbol with label timeout 

Description: A timeout constraint node is used to model a timeout· for a set of 
computations at the control fl.ow graph level. The respective set of computations is 
marked of by timing arcs associated with the timeout node. There is an incoming 
timing arc from the source of the constraint and an outgoing timing arc to the sink of 
the constraint. In addition, a timeout node has an outgoing sequence arc that points 
to some other node in the control fl.ow graph. A timeout node also has one integer 
time value attribute, called timeout value. When the set of computations associated 
with the timeout node is entered, then a timer is started up with the timeout value. 
If the constrained set of computations is executed in a time less than or equal to this 
timeout value (i.e., before the timer runs out), then the timeout constraint is met. 
Then the execution simply continues with the next control fl.ow node in the graph. If 
the execution of the constrained computations is not completed after the timer has 
counted up to the timeout value, then the computations are interrupted. Execution 
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then continues with the control flow graph portion that the sequence arc attached to · 
the timeout node is pointing to. 

Type: Event node 

Graphic: Diamond 

Description: An event node in the control flow graph describes an asynchronous 
event. An event node waits for a particular event or data condition, such as, whether 
a signal is rising, falling, stable, or whether any event occurred on a signal, before the 
control execution continues. Input to the event node is a control fl.ow arc from the 
previous control flow node and output is a control fl.ow arc to the next control flow 
node that is to be executed after the event has become true. An event node has a 
hierarchy arc to an associated data fl.ow graph that describes the event that is to be 
tested for. 

Type: Process demarcation nodes 

Graphic: Half-circles with double horizontal lines 

Description: The demarcation node pair process-begin and process-end mark 
off the beginning and the end of a process specification. The process-begin nodes 
have one input hierarchy arc from the corresponding process node that is being rep­
resented. The process-end nodes have one output hierarchy arc that points to the 
corresponding process node. A process-begin node has zero or more output demar­
cation arcs that point to subprogram-begin nodes of subprograms that are defined 
or used within that process. It also has a control fl.ow arc to the first control flow 
node within its process body. 

Type: Subprogram demarcation nodes 

Graphic: Half-sixatons 

Description: The demarcation node pair subprogram-begin and subprogram­
end mark off the beginning and the end of a subprogram representation, respectively. 
The subprogram-begin demarcation node has zero or more arcs that point to other 
subprogram-begin nodes that are defined or used within that subprogram. It also 
has one output control fl.ow arc to the first control flow node in the control fl.ow graph 
that represents the behavior of the subprogram. The subprogram-end node collects 
all control fl.ow arcs that exit the subprogram. The node pair is connected to its call 
nodes by hierarchy arcs. 

A list of formal parameters and their mode is attached to the subprogram­
begin node. If the subprogram is a function, the:n a write node to a temporary 
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variable named "return-<function-name>" representing the return value is attached 
to the subprogram-begin node as well. 

4.3 Representation of the Control Flow Arcs 

The graphical depictions of the arc types supported by the control fl.ow graph model 
are shown in Figure 25. The meaning and attributes of each arc type is explained 
below. 

Type: Control flow arc 

Graphic: Arrow 

Description: Control flow arcs connect pairs of control flow nodes to show their 
sequencing. They thus preserve the ordering within the control fl.ow graph. 

Type: Hierarchy arc 

Graphic: Bold dashed arrow 

Description: Hierarchy arcs are used to demark levels of hierarchy within the control 
flow graph. They connect a control flow node with another control flow graph that 
describes the behavior encapsulated by the former. For instance, they are used to. 
point from a procedure call node to the body of the procedure. They also point from 
a stmt-block node to the associated data flow graph. In addition, they connect a 
process node to its process-begin and process-end node pair. 

Type: Concurrency arc 

Graphic: Bold arrow 

Description: A concurrency arc connects a control flow node to a set of other 
control flow nodes that are to be concurrently executed with respect to each other. 
The control flow node at the source of the arc corresponds to a co-begin node. 
Conversely, concurrency arcs are used to connect concurrent control flow nodes to a 
co-end node to mark the end of the concurrent section. 

Type: Timing arc 

Graphic: Dashed arrow 

Description: Timing arcs connect a timing constraint node with other control flow 
nodes. they denote the portion of the control flow graph that is being constrained by 
the associated timing node. 
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Type: Demarcation a.re 

Graphic: Dashed arrow 

Description: Demarcation arcs are used to point from or to demarcation nodes. For 
instance, demarcation arcs point from a process-begin node to all the subprograms 
specified within the process. 

4.4 Modeling with Control Flow Constructs 

Below, we show how the just presented control flow model can be used to represent 
typical specifications written in VHDL. 

4.4.1 Process Statement 

[process-name:] process [( <sensitivity list> )] 

declarative part; 

begin 
sequential-statement-part; 

end [process-name]; 

Figure 26: A VHDL Process Specification 

A VHD L process statement defines an independent sequential piece of code that 
represents the behavior of some portion of a design. The syntax for a VHDL process 
statement is given in Figure 26. 

In the CDFG model, a process is encapsulated by a process-begin and process­
end node pair. A sensitivity list corresponds to an implicit wait statement; the 
representation of this is discussed in Section 4.4.14. A process body is composed of a 
collection of sequential statements. The representation of the process body will thus 
be discussed in the following sections, since we will show how each of the sequential 
VHDL constructs is represented. 
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4.4.2 Subprogram Specification 

There are two types of subprograms, namely, procedures and functions. A subprogram 
specification encapsulates some sequential piece of code into a separate module that 
can be reused multiple times. The syntax for a VHDL procedure declaration, which 
only defines the interface of the procedure but not its body is: 

procedure <procedure - name> ( <formal para.meter list>); 

This corresponds to a forward declaration commonly found in conventional pro­
gramming languages. The syntax for a complete VHDL procedure specification is 
given in Figure 27. 

procedure < procedure - name > ( <formal parameter list>) IS 

declarative part; 
begin 

sequential-statement-part; 
end[< procedure - name>]; 

Figure 27: A VHDL Procedure Specification 

A procedure is represented by a CDFG graph that is encapsulated by a subprogram­
begin and subprogram-end node pair. Figure 28 gives an example of a VHDL 
procedure specification and its associated CDFG graph. 

In Figure 28, a list of read, write and constant nodes is associated with the 
subprogram-begin node. They correspond to the formal parameters of the pro­
cedure. This is equivalent to a symbol table for keeping track of the para.meters and 
their modes in the :How graph. 

A function spec:i:fication also encapsulates some sequential piece of code into a 
separate module. It has no side effects, and returns one value as its result. The 
syntax for a VHDL function specification is: 

function <function-name> ( <parameter list>) return <type-mark>; 

The type-mark corresponds to the subtype of the returned value. Therefore, the 
list of formal parameters (Figure 28) is extended by one more parameter. This is a 
temporary variable that holds the return value of the function. 
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end square; 
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4.4.3 Concurrent Block Statement 

A VHDL block statement is the primary construct used to represent concurrent de­
scriptions. A block statement groups together a set of concurrent statements that 
relate to the same portion of the design. The syntax for a block statement is given 
in Figure 29. 

[< block - name >:] block [( <guard-expression> )] 

declarative part; 

begin 
concurrent-statement-part; 

end block[< block - name>]; 

Figure 29: A VHDL Block Specification 

A block statement is represented by a co-begin and co-end node pair. All 
control flow nodes in between a co-begin and co-end node pair are assumed to be 
concurrent. 

The block body consists of one or more concurrent statements. There is one 
statement-block node within each co-begin and co-end node pair that represents 
the block body. A data flow graph that represents the concurrent signal assignments 
statements of a block is associated with the statement-block node. A VHDL block 
can optionally have a guard, which is a condition which determines under which 
event the block is to be executed. This optional guard expression defines an implicit 
signal GUARD. If the optional guard expression evaluates to true, all guarded signal 
assignment statements will be executed, otherwise they are not executed. A data flow 
graph that represents this guard is included in the statement-block node. 

VHDL blocks may be hierarchically nested to support design decomposition. This 
hierarchical nesting of blocks is shown by the co-begin and co-end node pairs. There 
are zero or more outgoing edges from the co-begin node to other control flow nodes 
out of which the block is composed of. Some point to the processes included in the 
block (process nodes), some point to nested blocks (co-begin nodes), and others 
point to concurrent procedure calls (call nodes). 

An example of a block hierarchy is shown in Figure 30. In Figure 30, the co­
begin node of block A points to a statement-block node that represents the data-flow 
graph of all its statements ( <staternentsl >). The co-begin node- of block B points 

i 11 l l 

! ! I I I 



4 THE CONTROL FLOW GRAPH 

stmtsl 

VHDL description: 

A: block 
begin 

statements!; 

B: block 
begin 
statements2; 

end block B; 

C: process 
begin 
statements3; 

end C; 
end block A; 

co- egm 
A 

co-begin 
B 

stmts2 

co-end 
B 

co-end 
A 

, , , 
, 

,. •••• "II , , , , , 

Figure 30: A VHDL Block Specification 

64 



4 THE CONTROL FLOW GRAPH 65 

to its statement-block node ( <statements2> ). Furthermore, a block may contain 
concurrent procedure calls and process statements. For instance, the outermost block 
A contains the block statement B and the process C. Therefore, the co-begin node 
of block A points both to the co-begin node for block B and a process node for 
process C. 

4.4.4 Concurrency versus Parallelism 

The co-begin and co-end node pair is used to model decomposition into concurrent 
processes, whereas the par-begin and par-end node pair models parallel threads of 
execution within a sequentially executing process. The latter concept is commonly 
expressed by conventional programming languages, such as ADA. There is no explicit 
construct in VHDL of this kind. VHDL concentrates on the concurrency concept. 
Concurrency corresponds more closely to the model of hardware units. 

4.4.5 Procedure Call 

A procedure call statement is used to invoke a procedure body consisting of sequential 
statements. A procedure call statement has the following syntax in VHDL: 

<procedure - name> (<parameter - list>); 

As shown in Figure 31, this statement is represented by a procedure call node in 
the control fl.ow graph. Its outgoing hierarchy arc points to the procedure specification 
of the called procedure. 

The design representation of the procedure parameters is explained by an example. 
In Figure 31, the procedure call node points via a hierarchy arc to the procedure body 
that is depicted in Figure 28. A list of actual parameters is associated with the call 
node. This list contains actual parameter references and temporary variables that 
hold the value of the actual parameter. The first actual parameter Pl corresponds 
to the formal parame~er PARAL The second actual parameter corresponds to the 
second formal parameter PARA2. It is an expression, DATA-IN + 4, rather than 
a variable name. A data fl.ow graph that represents this expression and assigns the 
result to a t~mporary variable, called P2, is generated. This data :flow graph is 
placed into the control flow node prior to the procedure call (Figure 31). The actual 
second parameter listed in the call node is the temporary variable P2 rather than the 
complete expression "DATA-IN+ 4". 
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A procedure call statement may be processed by a synthesis system in the following 
two ways: 

1. In-line expansion of a procedure call can be performed. A copy of the CDFG 
that represents the procedure body is substituted into the current CDFG in 
place of the procedure call node. In the CDFG copy of the procedure body 
all occurrences of the formal parameters are replaced by the actual parameters 
specified in the call node. When this description is synthesized, the hardware 
that implements the overall CDFG is also used for this section of the CDFG 
that represents the procedure body. 

2. The procedure body can be kept as separate independent entity rather than 
being in-line expanded. Then, separate hardware is synthesized for the proce­
dure body. Each procedure call provides the values of the actual parameters as 
inputs to and accepts the values of the modified actual parameters as outputs 
from the hardware that represents the procedure. This may be done through 
shared memory or some other means of synchronization (e.g., a stack). 

Procedure call nodes encapsulate some arbitrary user-defined behavior by one 
vertex and thus create hierarchy in a control flow graph. 

4.4.6 The H-Statement 

The VHDL behavioral style has two conditional control constructs, which are the 
if-statement and the case-statement. In the CDFG model, control flow nodes are 
created for each of the behavioral control constructs using pairs of the condition 
and end-condition node types (Figure 24). These nodes may be nested and inter­
connected to directly model the flow of control of the description. In this section, we 
describe the design representation for the if-statement, while the case-statement is 
described in the next section. 

The syntax for a VHDL if-statement is shown in Figure 32. An if-statement 
selects for execution one or none of the enclosed sequences of statements depending 
on the value of the corresponding conditions. The condition specified in the if and 
elsif clauses are evaluated in succession until one evaluates to true or all yield false. 
If one condition evaluates to true or the else clause is found then the sequence of 
statements associated with this condition is executed. 

In the CDFG model, the if-statement is mapped into one or more pairs of condi­
tion and end-condition nodes by the following sc~eme: 
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if condition! then 
sequence-of-statements! 

elsif condition2 then 
sequence-of-statements2 

else 
sequence-of-statementsN +1 

end if; 

• I 

Figure 32: VHDL If-Assignment 
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1. A condition node is created for each condition following the if or the elsif 
clause. With this condition node, we associate the label if as well as the name 
of the temporary variable that holds the result of the conditional expression. 
The data :flow graph associated with the condition node evaluates the condi­
tional expression and assigns the result to a temporary variable. A condition 
node created for an if-statement has always two outgoing branches, one with 
the condition value true and the second with the condition value false. The 
condition node selects the control branch to follow based on the result of the 
conditional expression. 

2. For the true branch of each condition node, a statement-block node that 
represents the sequence of statements to be performed in that branch is created3 . 

3. The false branch of each condition node is connected to the condition node 
of the next condition. 

4. If there is an else clause then the false branch of the last condition node is con­
nected to its sequence of statements <sequence-of-statementsN+i>· Otherwise, 
it is directly connected to the corresponding end-condition node. 

5. A end-condition node is created for each condition node. This end-condition 
node collects the corresponding conditional branches. 

For an if-statement without the explicit else part, the false branch of the last 
condition node is directly connected to the corresponding end-condition node. 

The design representation shown in Figure 33 assumes that the control unit evalu­
ates the condition and then initiates the conditional branching within the same state. 
Optimizations according to different design styles are possible. First, each test con­
dition could be evaluated in a statement block prior to the corresponding condition 
node. This implies that the condition is evaluated in the state prior to the conditional 
branching and the result is then stored in a flip-flop (often called a status register). 
Secondly, it is possible to evaluate all test conditions of a conditional statement prior 
to execution of the statement4• This is so because the result of these different con­
ditional evaluations will not be modified by a partial execution of the statement. In 
Figure 33, this optimizer would collect all conditions of the form "Ti := cond/' into 

3If the sequence of statements in the true branch contains other control constructs besides 
assignment statements, then a control flow subgraph that represents these control constructs replaces 
the statement-block node. 

4This prior evaluation of all test conditions applies to a single conditional statement only. If there 
is another conditional statement nested within the first, then the test conditions of the later cannot 
necessarily be evaluated before the complete nested statement. The reason is that nested conditions 
may involve values computed somewhere in the computations; prior to the branching. 
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one data flow graph. This data flow graph is then associated with the statement block 
before the first condition node. The advantage of this scheme is that all conditional 
expressions could be evaluated in parallel. It may result in unnecessary evaluations 
in the case that one of the early conditions in the if-statement evaluates to true. 

4.4. 7 The Case Statement 

The syntax for a VHDL case statement is shown in Figure 34. A case statement 
selects for execution one of a number of alternative sequences of statements. The 
choice values <choicei > and the expression <expr> must be of the same discrete 
type. Each possible choice value must appear exactly within the case statement. A 
choice value can be a constant value or a discrete range. The choice value others is 
allowed for the last alternative. It stands for all values not given in the choices of the 
previous alternatives. 

A case statement is represented by a single condition node in the CDFG model 
as shown in Figure 35. The condition node has an associated data flow graph that 
represents the conditional expression <expr>. For each choice value of the condition 
node there is a branch leading to a statement-block node that represents the sequence 
of statements to be performed in that branch. The condition node selects the control 
branch to follow based on the result of the comparison of the choice values with the 
conditional expression. An false branch of the condition node is connected to the 
statement-block of the others branch if it exists. An end-condition node collects 
all branches from the condition node. 

4.4.8 The For Loop 

There are three loop constructs in the behavioral VHDL style: the for loop, the while 
loop, and the infinite loop. In the CDFG model, loops are generally represented in 
control flow rather than data flow. They can only be represented in data flow when 
they are completely unrolled. Each loop construct is modeled by a condition node 
with a condition label that describes the particular condition type. Below, we describe 
the design representation for the for-loop. The while loop and the infinite loop are 
discussed in a later section. 

The VHDL for-loop statement has a loop body that is to be executed repeatedly, 
zero or more times (see Figure 36 ). It is controlled by an index variable and a range. 
The discrete range is first evaluated. H is a null range, then the execution of the loop 
is complete; otherwise, the index variable's ;value steps through the specified range 
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case <expr> is 
when <choice> 1 => 
sequence-of-statements- I 

when <choiceN > => 
sequence-of-statements-N 

.when others => 
sequence-of-statements-N + 1 

end case; 

• 

Figure 34: VHDL Case Assignment 
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Figure 35: CDFG Representation of the Case Statement 
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for identifier in low to high loop 
sequence-of-statements 

end loop; 

Figure 36: VHDL For-Loop 

index=low; 
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Figure 37: CDFG Representation of the For-Loop 
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for ea.ch iteration of the loop. Prior to each iteration, the current value of the discrete 
range is assigned to the index variable. 

As shown in Figure 37, the for-loop is represented by one condition node in the 
CDFG model. The condition node determines whether the loop is to be executed one 
more time by taking the true branch or whether its execution is complete. The false 
branch of the condition node is connected to the control flow node that represents 
the next statement after the loop. At the end of the statement-block node that 
represents the loop body, the index variable is incremented. Before entering the next 
iteration, it is tested whether the index variable has reached the upper bound of the 
range by setting the test bit X := (index :::; high). 

4.4.9 The While Loop 

The VHDL while-loop construct is shown in Figure 38. The condition of a while­
loop is evaluated before each execution of the sequence of statements. If the value 
of the condition is true then the statements are executed. If it is false then the loop 
is complete. 

The while loop is represented by one condition node. An example of a while loop 
is depicted in Figure 39. The condition node holds a data flow graph that describes 
the loop expression. The two outgoing branches are marked with the labels true 
and false. The condition node determines whether the loop is to be executed by 
comparing the value of the conditional expression against the two constant values. If 
the loop is to be executed again, i.e., the conditional expression evaluates to true, 
then the true branch is taken. If it evaluates to false, then the loop execution is 
completed and the false branch to the statement-block of the next statement is taken. 

4.4.10 The Infinite Loop 

The third type of loop supported by VHDL is the simple loop, also called the infinite 
loop. It specifies a repeated execution of a sequence of statements. The syntax of an 
infinite loop is as follows: 

loop 

sequence-of-statements; 

end loop; 
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while 

end loop; 

condition loop 
sequence-of-statements 

Figure 38: VHDL While Loop 

r--------., 
I DFG I 

1 for 1 
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stmts 

next-stmt 

Figure 39: CDFG Representation of the While-Loop 
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The loop construct causes an infinite loop, unless used in conjunction with an 
exit statement. The next or exit statements are two statements that can appear in 
any of the three types of loops. They have the following syntax: 

next [loop-label] [when condition]; 

exit [loop-label] [when condition]; 

A next statement completes one iteration of the enclosing loop by advancing 
control to the next iteration. The exit statement completes the execution of the 
whole enclosing loop. 

If the optional "when condition" clause is not present, then both constructs are 
modeled by control flow arcs. The next statement corresponds to a control flow arc 
that points to the end of the loop body. The exit statement is represented by a 
control flow arc that leads out of the loop to the false branch of the loop condition. 
If a "when condition" clause is specified, then both constructs are represented by a 
condition node. 

Figure 40 depicts the design representation of an infinite loop with a next state­
ment and an exit statement. Both statements have a "when condition" clause. The 
next statement is represented by a condition and an end-condition node pair. 
The condition node is labeled with the term next. The true branch of the condition 
is connected to the last statement of the loop body whereas the false branch is con­
nected directly to the next statement in the loop body. The exit statement exists 
the loop indicated by the loop-label. It is represented by a condition node labeled 
with the term exit. Its true branch is connected to the first statement after the loop. 
The false branch of the exit statement is connected to the next statement in the loop 
body. 

4.4.11 The Generalized Condition Node 

During the previous sections, we have assumed that the condition node used to 
model a conditional or a loop statement is based on a single temporary condition 
variable. The CDFG model provides a more generalized condition node type in 
order to support design optimizations on the design representation. The condition 
listed in the condition node can be of a more general format: 

• a list of one or more condition variables (and associated data types), and 

• each condition variable that represents a complex conditional expression is re­
placed by a temporary conditional variable. 
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VHDL description: 
loop 

{ stmtsl; .} 
next when CONDI; 
{ stmts2; } 
exit when COND2; 
{ stmts3; } 

end loop; 

fiow node 

Figure 40: CDFG Representation of the Infinite Loop 
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if (INl=O or IN2~100) 

{A;} 
else 

case I: 
10: { B; } 
20: { C; } 
others: { D; } 

end case; 

end if; 

Figure 41: VHDL Specification of Nested Conditions 
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The latter is accounted for in our model by associating a data fl.ow graph with each 
condition node. The conditional expression that evaluates to a condition variable is 
represented in that graph. The result of the conditional expression is assigned to the 
temporary conditional variable listed in the condition node. 

The condition values associated with the outgoing branches of the condition node 
have the following characteristics: 

• they are composed of one or more condition values (or-ed), 

• each condition value is a list of constant values (and-ed); one for each condition 
variable attached to the condition node, 

• each constant is either a value from a discrete domain corresponding to the 
data type specified for the condition variable, a special don't care or others 
symbol. 

To demonstrate the usefulness of an extended condition node concept, we show 
one design transformation in Figure 42. This design transformation can be used to 
optimize the design representation. In this example, a nested condition of depth two 
is combined i;nto one complex condition. In the CDFG model, this is represented by 
an extended condition node. The condition values of this node are composed of two 
constant values each; one for the first and one for the second condition. The first 
condition value consists of one product composed of two terms, the constants T and 
X. This corresponds to the condition (CONDl=T and COND2=don't care). 
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Figure 42: CDFG Representation of the Extended Condition Node 
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4.4.12 Timing Constraints 

We support two types of timing constraints at the control fl.ow graph level, namely, 
delay constraints and timeout constraints. A delay constraint enforces that the ex­
ecution of a set of computations is done within a given time constraint in order to 
guarantee the correctness of the design. The delay constraint is used in particular by 
scheduling tools, which determine in which order the operations are executed and also 
which operations to group together into one state. A timeout constraint, on the other 
hand, states that the execution of the computation will resume at a different location 
in the control fl.ow graph if the required timeout constraint is not met. Thus, the 
later does not enforce that the constrained set of computations actually completely 
executes within the given timing constraint. 

In VHDL, a wait statement can be used to express a timing constraint within 
a sequential program, such as, a process or a subprogram statement. The general 
syntax of a VHDL wait statement is shown in Figure 43. 

wai~ 
[ on.< sensitivity - list >] 
[ until < boolean - expression >] 
[for< time - expression>]; 

Figure 43: VHDL Wait Statement 

A wait statement causes the suspension of the process or the procedure state­
ment in which it resides. The process is resumed when an event on one of the 
signals in the sensitivity-list occurs and the specified condition is true. The "for 
< time- expression>" clause specifies the maximal amount of time the process will 
be suspended. This is also referred to as the maximal timeout interval. The process 
will resume execution at the latest after the timeout interval expires, even if the other 
two constraints are not met. 

If a wait s~atement is specified with a for-clause only then we interpret this state­
ment to be a delay from the previous wait statement (anchor point) to the current 
control fl.ow node. Figure 44 represents the design representation of such a wait state­
ment in the CDFG model. A timing constraint node with the label delay is inserted 
in the control fl.ow graph to represent the statement. The timing arc that points to 
the delay node has its source in the control fl.ow sequence arc following the previous 

... ,. 1, 
•I, 

I 'I ! ' 
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VHDL description: 
wait; 
stmtl; 
wait for 50ns; 
stmt2; 
wait for lOOns; 

------
----~ 

stmtl; 

I 

------
_______ .! 

------ ---- ---., 

stmt2; @ 
___________ .! 

Figure 44: CDFG Representation of the Wei.it-For Construct 
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wait statement. The timing arc originating from the delay node has its sink in the 
control flow sequence arc that represents the location of the wait statement. 

If a wait statement combines both timing and event testing, then we interpret the 
timeout clause to represent an actual timeout. That is, execution continues after the 
specified timeout interval expires even if the event associated with the wait statement 
has not been fulfilled. In this case, the timing constraint node used to represent 
the timing constraint in the control flow graph is labeled with the label timeout. 
The timing arcs embrace the event node that represents the current wait statement. 
Figure 45 represents the design representation for this wait statement type. 

If there is a single wait statement in the graph, then we require the wait statement 
to be the last ·statement of the process. In this case, the timing arcs will start from 
the first node and end with the last node of the con,trol flow graph. 

! 
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Figure 45: CDFG Representation of the Wait-On-For Construct 
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Note that we support timing constraints at both the control fl.ow and the data 
fl.ow graph level. The timing constraints at the data fl.ow graph level are generally of 
a finer granularity, i.e., they restrict the execution time of one or several operation 
nodes. Whereas the timing constraints at the control fl.ow graph level are of a coarser 
granularity, i.e., they refer to a complete data flow graph at a time. Thus, the 
timing constraints ~t the control fl.ow graph level are mostly used by the scheduler 
to determine the ordering of states, while the timing constraints at the data fl.ow 
graph level are used by hardware allocators to determine which unit to assign to a 
fl.ow graph node. We make the assumption that the timing constraints specified at 
the data fl.ow graph level are consistent with those at the control fl.ow graph level. 
For example, if an operation node within a data fl.ow graph has a minimal delay of 
20ns, then the complete data fl.ow graph cannot have a maximal delay of only lOns. 
Such an inconsistent specification would simply be rejected by the design tools as an 
incorrect design specification. 

l l l 
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4.4.13 Asynchronous Events 

An event node is used to model asynchronous events at the control :flow graph level. 
In an asynchronous design, the execution steps are initiated based on the occurrence 
of particular events rather than based on the regular clock pulse. An event node has 
an associated data flow graph that describes the event condition. When the event 
specified by an event node occurs, then execution continues with the control :flow 
node after the event node. 

Asynchronous events can be expressed in VHDL by a wait statement that contains 
an event-clause, a condition-clause or both. The syntax of these statements is: 

wait on <sensitivity - list>; 

wait until <boolean - expression>; 

wait on < sensitivity - list > until < boolean - expression >; 

The on-clause specifies a list of signals to which the process is sensitive. The until­
clause specifies a condition that must be true before the process can be resumed. We 
model both. cases by an event node in the control :flow graph. The event node has an 
associated data flow graph that describes the event. 

Figure 46 depicts the design representation for a wait statement with an until­
clause. Since the wait statement does not contain an explicit sensitivity list, all signals 
used in the until-clause are inserted into an implicit sensitivity list. In Figure 46 this 
is represented by inserting an event node in the data. :flow graph that tests whether 
an event has occurred on the signal DATA. 

Figure 4 7 depicts the design representation for a wait statement that contains both 
an on-clause and an until-clause. In this case, the wait statement has an explicit 
sensitivity list; therefore, the signals mentioned in the until-clause are not added to 
the sensitivity list. The data :flow graph that describes the event does hence not test 
whether an event has occurred on the signal DATA. 

For an example of the representation of a wait statement that contains an on­
clause but not an until-clause see the left hand side of Figure 47. It corresponds to the 
representation of the VHDL wait statement "wait on Sl, S2;". In general, the CDFG 
representation of this wait statement contains an event node in the data :flow graph 
for all signals in the on-clause. The outputs of these event tests are anded together. 
The result of this test is stored in a temporary variable, called TMP-EVENT. 
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VHDL description: wait until (DATA="OOOl"); 

Figure 46: CDFG Representation of the Wait-Until Construct 
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4.4.14 Process Sensitivity List 

An alternative 'method for describing an event in VHDL is a process sensitivity list. 
This is a list of one or more signals of the enclosing environment of a process that is 
inserted into the header statement of a VHDL process. Semantically a process with 
such a list contains an implicit wait statement as the last of its statements. The 
execution of the process will be suspended when the end of its sequence of statements 
is reached. The process is resumed when an event occurs that changes one of the 
signals in the sensitivity list. 

We model this by inserting an event node at the end of the control fl.ow graph that 
represents the process. The event node has an associated data fl.ow graph that tests 
for a change on the signals listed in the sensitivity list. This event node is similar to 
the one shown in Figure 47. Note that a process with a sensitivity list cannot have 
any explicit wait statments within its body. Therefore, there will be only one event 
node in the corresponding control flow graph representation of such a process. 
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5 THE STATE TRANSITION GRAPH 

5.1 Integrating State Information into the CDFG Model 

High-level synthesis tools, in particular, state schedulers, slice the control/data :Bow 
graph into states. This state information leads to the generation of a state table that 
represents the sequencing of the design over time. This state table is then compiled 
by a control compiler into control logic. State scheduling information will be captured 
in DDM in two ways. First, the slicing of the behavioral description into states is 
represented by annotations to the CDFG graph. Secondly, the encoding of the state 
table into control logic results in the creation of a component, called the control unit. 
This unit is inserted into the register-transfer level component graph. In this section, 
we are concerned with the former, the state information at the control/data :Bow 
graph level. 

There are several routes for the representation of the state information in the 
CDFG. We first present possible alternatives and then discuss their pros and cons. 
This constitutes a motivation for the approach we have decided to take. 

Possible Approaches: 

1. Associate state information with each data :Bow node. 

2. Associate state information with each control flow node. 

3. Associate state information with each control flow node and with each data :Bow 
node. 

4. Create a separate list of state nodes and state sequencing arcs (a state transition 
graph) and associate control flow nodes with these state nodes. 

5. Create a separate list of state nodes and state sequencing arcs. Associate control 
flow nodes with their corresponding state node and also annotate data flow 
nodes by state information. 

Approach One. Solution one is what comes to mind first, since scheduling 
is concerned with assigning data flow operations to particular states. There are 
however several problems with this solution. First, a data :Bow graph imposes only 
a partial order on its nodes. Therefore, it will not necessarily be obvious in which 
order the states are to be executed. In addition, the overall structure of the state 
sequencing is less apparent. Information pertaining to a statE!, such as the state 
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transition conditions or the representation of events that trigger the transition into 
the next state is not easily incorporated into this scheme. 

Approach Two. The next logical solution is to associate the state information 
with the control flow rather than with the data :flow nodes. The control flow graph · 
represents the sequencing of the behavior over time in the form of a partial order. 
State assignments further refine this partial order to a complete order with the ad­
ditional restriction of fixed time intervals. Some control flow nodes, in particular, 
statement-block nodes, which capture potentially big chunks of sequential code may 
be mapped into several states. Therefore, a control flow node would have to be anno­
tated by more than one state identifier. Thus, the scheme of simple control flow node 
annotations would not be fine-grained enough to establish a total order. Another 
disadvantage of this approach is that information pertaining to an individual state is 
again spread over several control :flow nodes. 

To remedy the ambiguity problem, a statement-block node and its associated 
data :flow graph could be broken into a sequence of statement-block nodes. Then 

, each portion of the data :flow graph assigned to one state would be grouped in a 
separated data flow graph. This guarantees that all data flow information associated 
with a statement block node is assigned to the same state. One problem that arises 
from this separation of a data flow graph into multiple small data flow graphs is the 
representation of multi-cycle operation nodes. A multi-cycle operation node is active 
over several cycles (states). It reads in the same values in all states and writes out 
results only in the last state. It is awkward to represent this situation if the activation 
duration of an operation node is broken into several data flow graphs. One would 
need to distinguish between an operation node that is being executed several times 
within consecutive states and a multi-cycle node that is been executed once but that 
is active over several ones. In addition, loss of information may have occurred during 
the control flow graph reorganization. For instance, since data flow arcs do not cross 
data flow graph boundaries, control dependency arcs as well as timing arcs at the data 
flow graph level could have been removed. This would make changes in the schedule, 
such as, increasing the clock cycle time by a few nano seconds, difficult, since they 
may require the regrouping of data flow nodes among the different statement-block 
nodes. 

Approach Three. The third solution solves the problem of the second approach 
in as much as· ·a data flow graph does not have to be divided into multiple data flow 
graphs to reflect the state structure. The representation of multi-cycle operation 
nodes could be addressed by assigning a sequence of state identifiers rather than a 
single state identifier to such a node. The last disadvantage of solution two is, on the 

'< 
' 



5 THE STATE TRANSITION GRAPH 88 

other hand, not addressed by this approach. Information about one state is spread 
over several control flow nodes. 

Approach Four. The fourth approach addresses the critique of spreading infor­
mation specific to a state over several places, and possibly redundantly duplicating 
it. This solution stores all information specific to a state into the corresponding state 
node. This solution still suffers from the problems of the second approach: One con­
trol flow node may be assigned to more than one state. Therefore, a control flow 
node would have to be split into several control flow nodes to maintain which data 
flow information belongs to which state. 

Approach Five. The fifth approach, being a superset of the fourth approach, 
has the same advantages as the fourth approach. That is, it addresses the critique 
of isolating information specific to a state, such as, the state name, the number of 
successor states, and the predecessor states. In addition, statement-block control 
flow nodes do not have to be separated into several control flow nodes. Thus, the 
fifth approach deals successfully with problems of the second solution. Multi-cycle 
operation nodes can conveniently be represented by assigning a sequence of state 
identifiers to them. The fifth approach requires some more storage space; the space 
overhead is in the order of the number of states. 

For the reasons given in this section we opt for the fifth approach. We thus propose 
to extend the CDFG structure by a state transition graph (STG) structure. Such a 
state graph shows the sequencing of the design over time by associating control flow 
nodes with their corresponding state node. In addition, we extend the CDFG model 
by one additional set of attributes, namely, data flow nodes are annotated by a state 
information attribute. More precise definitions of the state transition graph are given 
next. 

5.2 State Transition Graph Definition 

Below, we first define the state transition graph and then discuss its constructs in 
more detail. 

Definition ~ A state transition graph is a directed (possibly cyclic) graph STG = 
(STN,STE,STF) with STN the set of vertices and STE the set of edges. The elements 
of STN are uniquely identified by the function state-name: STN--+ INTEGER. 

1. STN, the set ofstate nodes, is composed of three disjoint sets, STN = state­
nodes U concurrent-state-nodes U hierarchical~state-nodes. 
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• State-nodes represent the states of a state automata. 

• Concurrent state nodes are used to demark concurrent subprocesses. 

• Hierarchical state nodes describe the decomposition of a state into sub­
states. 

2. STE! the set of state edges! is composed of three disjoint sets! STE = state­
transition arcs U state-hierarchy-arcs U state-to-control-flow-arcs. 

• State-transition arcs sequence between two states. 

• State-hierarchy arcs link a state node to the state transition graph it is 
decomposed by. 

• State-to-control-flow arcs link a state transition graph to the corresponding 
control flow graph. 

3. STF is a set of state transition marking functions STFi: STN -t STM with 
STM the set of possible attribute domains. 

5.3 Representation of the State Transition Graph Nodes 

State Node Hierarchical State Node Concurrent State Node 

..... .._ 

I 

• • ¥ __ '!'--, 
, ' ," '\ 

I I 
1 state- 1 
I I 

1 name : 

" I ', ,,~ ... , __ , .... -" 

, " , ~ 

I ~ 

Figure 48: Graphical Representation of Nodes in the State Transition Graph 

The graphical depictions of state transition graph constructs are shown in Figure 48 
and 49. Each state transition graph vertex is explained in more detail below, while 
the state transition graph arcs are described in the next section.· 
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state transition arc 

state-to-control-flow arc 

state hierarchy arc 

Figure 49: Graphical Representation of Arcs in the State Transition Graph 

Type: State node 

Graphic: Circle with state name 

Description: A state node models a state, which could be either a super-state or 
a simple state. A state node has one or more incoming and one or more outgoing 
transition arcs to other state nodes within the state transition graph. The outgoing 
transition arcs are mutual exclusive. At any point of time, exactly one of them will be 
selected based on conditions that are captured in the associated control fl.ow graph. 
A state node has or or more state-to-control-fl.ow arcs which point to the control fl.ow 
nodes that are assigned to the state. A state node may optionally have an incoming 
hierarchical state arc; if it is part of a (sub-) state transition graph that describes a 
higher-level hierarchical or concurrent state. 

Type: Hierarchical state node 

Graphic: Dashed circle with state name 

Description: A hierarchical state node models hierarchy in the state transition 
graph. A hierarchical state node describes how one state is decomposed into a number 
of sub-states. It has exactly one outgoing hierarchy arc that points to the first state 
node in the underlying (sub-) state transition graph. A hierarchical state node has 
one or more incoming and one or more outgoing transition arcs to other state nodes 
in the current .(super-) state transition graph. 

Type: Concurrent state node 

Graphic: Double circle with state name 
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Description: A concurrent state node is a demarcation node for concurrent state 
transition graphs. Therefore, a concurrent state node must have two or more outgoing 
hierarchy arcs to other state transition graphs, i.e., to the first state nodes of con­
current sub-state transition graphs. A concurrent state node has one incoming state 
hierarchy arc from a hierarchical state node in the super-state transition graph. The 
concept of concurrency thus includes the concept of hierarchy at the state transition 
graph level. 

5.4 Representation of the State Transition Graph Arcs 

The graphical symbols of state transition graph arcs are depicted in Figure 49. Each 
arc type is explained in more detail below. 

Type: Transition arc 

Graphic: Arrow 

Description: A state transition arc connects two state nodes within the same state 
transition graph. It thus shows the sequencing of states. 

Type: State-to-control-flow arc 

Graphic: Bold Arrow 

Description: A state-to-control-flow arc connects a state node to control flow nodes. 
It is a demarcation device that lists all control flow nodes that have been assigned 
to the same state. There may be more than one control flow node associated with 
one state. Also, one control flow node may be associated with more than one state. 
Hence, this models an many-to-many relationship. 

Type: State-hierarchy arc 

Graphic: Dashed Arrow 

Description: A state-hierarchy arc connects a hierarchical state node to the state 
transition graph into which it is decomposed. Thus, a state-hierarchy arc points from 
a hierarchical state node either to the first state node of another state transition graph 
or to a concu,r+ent state node. Similarly, a state-hierarchy arc is also used to connect 
a concurrent state node to two or more concurrent sub-state transition graphs. 
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5.5 Discussion 

A state node can model either a simple-state or a super-state. Ha state is of type 
super-state, then the state will be further refined into two or more states before a 
control unit can be created. If it is of type simple-state1 then it denotes a state of the 
current state transition graph that can be executed within the given clock cycle. The 
state will thus not further be decomposed into smaller states. A super-state node 
tends to point to many control fl.ow nodes while a simple state node generally points 
to only one or two nodes. 

If there is more than one state transition leaving a state node, then the state 
transitions are conditional. There are one or more conditions in the control flow 
graph that specify which state transition arc is chosen. These conditions can thus 
be derived from the control flow graph; they are however not explicitly represented 
in the state transition graph. H the design is asynchronous, these transitions may 
depend on an event instead of the clock pulse. Similarly, the events that trigger the 
transition to the next state are captured in the control flow rather than the state 
transition graph. 

Next we present an example of a control/data fl.ow graph with state assignments. 
In Figure 50.a, we show how the state assignments may conceptually be viewed by 
a user of DDM. Figure 50.b, on the other hand, shows how this state information is 
kept within the CDFG model. In this example we see that some states, i.e., state 
Sl and S2, contain more than one control flow node. Also some control :flow nodes 
may not be assigned to any state at all. The latter iS true for control flow nodes 
which don't contain any data :flow information, such as, end-condition nodes or 
demarcation nodes. The end-condition node marks the end of a set of mutual 
exclusive conditional execution paths. It is a collection point for several control flow 
sequence arcs. 

5.6 State Information Extension to the CDFG 

The links from the state transition graph to the control flow graph discussed in the 
previous section are assumed to be bi-directional. Therefore, we extend the control 
flow graph as. presented in Section 4 in the following manner. Each control flow node 
has one additional reference called assigned-state. It represents a reference to all 
states that a control :flow node has been assigned to. In most cases, this will be one 
individual state. For control :flow nodes of type statement-block, however, there may 
be more than one associated state. This is so since a data :flow graph represented by 
one statement-block control :flow node may be slicedinto more than one state. 
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In addition, we extend the underlying data flow graph model presented in Section 
3 in the following manner. Each data flow node has one additional attribute type 
called assigned-state. This attribute denotes the identifier of the state tha~ the data 
flow node has been assigned to. If the data flow node is a multi-cycle operation node 
then this attribute is a list of states identifications rather than a single state. This 
list of states is required to consist of states that are consecutive in the state transition 
graph. 



6 THE ANNOTATED COMPONENT GRAPH 95 

6 The ANNOTATED COMPONENT GRAPH 

A register-transfer level structure is represented by a set of components and their 
connections. This is commonly referred to as a netlist. A formal definition of the 
representation of a such netlist, called the annotated component graph model, 
is given next. More details on the modeling constructs are presented thereafter. 

6.1 Definition of the Annotated Component Graph 

Definition 5 An annotated component graph is a directed graph ACG = 
(CGN, CGE, CGP, CGF): 

1. CGN corresponds to the set of vertices of the annotated component graph. We 
distinguish between component nodes, port nodes, net nodes, and decomposition 

nodes. 

2. CGP, the set of pins, corresponds to the connection points of vertices with the 
arcs·.of the graph. The function pin-class: P-+ {input-pin,output-pin,in-out­
pin} specifies whether a pin is an input pin, an output pin or both. A vertex v E 
CGN can have an ordered possibly empty list of input and output pins, respec­

tively. The function input:. CGN x INTEGER -+ CGP U 0 is an assignment 

of input pins to vertices. The Junction output: CGN x INTEGER -+ CGP U 
0 is an assignment of output pins to vertices. 

3. CGE represents the set of directed edges between the {pins of the) vertices of the 
annotated component graph. The edges correspond to pairs {p1,p2) E CGP x 
CGP with the direction of the edge from pl to p2. We distinguish between three 

types of edges, which are interconnection arcs, hierarchy arcs, and demarcation 

arcs. 

4- CGF is a set of data flow marking Junctions CG Fi: CGN -+ CGM with CGM 
the set of possible attribute domains. 

6.2 Repr.esentation of the Nodes in the Annotated Compo­
nent Graph 

The graphical depictions used to represent the constructs of an annotated component 
graph are shown in Figures 51and52. Similarly as in the CDFG graph, the connection 
points, here called pins, of a vertex with an edge' are not explicitly represented. 
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Component Node Interconnection Node 
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Figure 51: Graphical Representation of Nodes in the Annotated Component Graph 

connection a.re 
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Figure 52: Graphical Representation of Arcs in the Annotated Component Graph 



6 THE ANNOTATED COMPONENT GRAPH 97 

Instead, the connection arcs directly connect two component nodes. The meaning · 
and attributes of each vertex type is explained next. 

Type: Component node 

Graphic: Box with heavy line with the component name 

Description: A component node represents a component. It can for instance be 
a functional unit, a multiplexor, or a bus. It can also be any other non-primitive 
unit that is further decomposed by a hierarchical description. A component node 
conceptually corresponds to a set of pins, which mark its connection points with 
other components. 

Type: Port node 

Graphic: Circle with the port name 

Description: A port node is a special type of component that represents the input 
and output communication points of an annotated component graph with its environ­
ment. If an annotated component graph is encapsulated into one super-component, 
then the port nodes correspond to the pins of the super-component. 

Type: Interconnection node 

Graphic: Small Circle 

Description: An interconnection node is used to model an interconnection net be­
tween two or more components. Each interconnection node has one input pin and one 
or more output pins. These pins are connected to connection arcs. They represent 
the source and the destinations of net. An interconnection node represents the media 
on which a data value travels through the structure, i.e., it corresponds to a wire. 
Consequently, it can only hold one data value at any point in time and therefore has 
only one source. 

Type: Decomposition node 

Graphic: Ellipsis · 

Description: A decomposition node is used to demark an annotated component 
graph that represents the decomposition of one super-component node into a struc­
ture of more primitive components. The pins of the higher-level component are rep­
resented explicitly in the decomposition ACG graph as port nodes. They mark the 
connection points of the higher-level component and the more primitive components 
out of which the former is composed of. There is exactly one port node for each pin 
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of the super-component. These port nodes are attached to the decomposition node 
by demarcation arcs. 

Type: Timing node 

Graphic: Stop sign symbol 

Description: A timing node models a timing constraint. A timing node has one 
or more incoming timing arcs and one outgoing timing arc. The incoming timing 
arcs connect the delay node with the sources of the delay while the outgoing timing 
arc points to the destination data value node. The timing node specifies a delay for 
the execution of all component nodes between the source nodes and the sink node of 
the delay. Optionally, the timing node may associate an attribute called event-type 
(which takes the values RISING, FALLING, and CHANGING) with its source and 
its sink nodes. In addition, it may give a delay value for the a minimal, nominal and 
maximal delay constraint, respectively. 

A timing node models two types of timing constraints, which are path delays 
and event-related delays. A path-delay timing node models the time taken for the 
effect of a signal to propagate through a set of hardware units from one point of the 
hardware to another. A path-delay timing node is given the label path-delay, or 
short, delay. 

By default, the path delay node constitutes a timing constraint for all component 
and interconnection nodes on the paths starting from the source nodes of the delay 
node and ending with the destination node. A delay node has an optional attribute, 
called path expression, which describes some of these paths between the sources 
and sink node. If a path expression is given, then the path delay constrains only 
those component nodes listed in the path expression. 

An event-related delay node captures timing relationships between the occur­
rences of possibly independent events, like, for instances set-up and hold times. An 
event-related delay node is given the label event-delay, or short, event. 

6.3 Representation of the Arcs in the Annotated Compo­
nent Graph 

The graphical depictions for the arcs in the annotated component graph model are 
given in Figure 52. 

Type: Connection arc 
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Graphic: Arrow 

Description: A connection arc corresponds to a wire. It represents an interconnec­
tion between a. component node and a net node by connecting an output pin of a 
component node to an input pin of an interconnection node, or, vice versa. 

Type: Hierarchy arc 

Graphic: Bold Dashed Arrow 

Description: A hierarchy arc associates a non-primitive component node with the 
primitive components out of which it is composed. Thus, it connects the component 
node with its associated decomposition node. 

Type: Demarcation arc 

Graphic: Dotted Arrow 

Description: A demarcation arc connects the ports of a component node to its 
decomposition node. 

Type: Timing arc 

Graphic: Dashed arrow 

Description: A timing arc connects a timing constraint node with an interconnection 
vertex. The set of timing arcs associated with a timing constraint node mark the 
group of component and interconnection nodes that are constrained by the timing 
constraint node. 

6.4 A More Detailed Description of the Annotated Com­
ponent Graph 

The annotated component graph (ACG) describes the structure and geometric lay­
out of a design. Rather than distinguishing between many different structural vertex 
types, we define various attribute domains for them. Below, we discuss these at­
tributes. 

6.4.1 Timing Constraints 

Timing constraints in the annotated component graph are very similar to timing 
constraints in the data fl.ow graph. Therefore, for a detailed giscussion of timing 
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constraint nodes and their attributes the reader is referred to Sections 3.4.15 and 

3.4.16. 

Some of the timing constraints in the data flow graph may be carried over to 
the annotated component graph. For instance, if a setup delay is specified for a 
write-node in the data flow graph, then this setup delay will also be specified for the 
register to which this write node has been mapped to in the annotated component 
graph. Other delays are either completely omitted or they are broken up into several 
smaller delays by the synthesis tools. For instance, if a delay is specified for a set of 
data flow operations that are scheduled into two or more states, then this delay can 
no longer be preserved in the annotated component graph. This delay will, on the 
other hand, be used by the scheduling tool to determine which of the operation nodes 
can be put in the same state. Essentially, the initial delay is compiled into the allowed 
duration of a state (the clock cycle), and thus is no longer needed by synthesis tools 
once scheduling is completed. 

r-----------
1 
I 
I 
I 
I 

6 ~1 dol';=5 

~:lo 
min=4 

------------, 

C2 
delay=2 

I 
I 
I 
I 
I 
I 

Figure 53: Timing Constraints in the Annotated Component Graph 

Each component node also carries timing attributes as discussed in a later section. 
These attributes are not constraints on the component, rather they are characteristics 
of the chosen component. In Figure 53, a timing constraint for the paths through 
Cl and C2 is specified with a minimal delay of 4ns and a maximal delay of lOns. 
The timing attributes associated with the components Cl and C2 correspond to the 
actual delays of the instantiated components. Cl and C2 have a delay of 5ns and 
2ns, respectively. Thus, a path through both will have a delay of approximately 7ns. 
It can be verified that the timing constraint of lOns is met. The maintenance of the 
timing constraint information is particularly useful for optimizations on the structure 
graph. A logic optimization tool can for instance replace one or both of these two 
components by another component type with other timing attributes as long as the 
timing constraint is met. 
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6.4.2 Structural Attributes of Component and Interconnection Nodes 

A structure is represented by a set of components and their connections. The com­
ponent type of a. component can either be complex or primitive. A component 
is called primitive if it is not further decomposed into subcomponents. A primitive 
component is either an instantiation of an instance of a generic component library 
or it corresponds to some actual hardware unit. Each primitive component has a set 
of attributes describing its component type. Example attributes are the component 
class attribute and the function attribute. 

A component is called complex if it is further decomposed into subcomponents. 
Some of the attributes of primitive components, such as, a list of functions they 
execute, may be undefined for them. A complex component is further defined by an 
annotated component graph. It has an associated decomposition node which lists the 
ports of the component node as well as the annotated component graph composed of 
the more primitive subcomponents. A decomposition node is a demarcation node that 
describes the hierarchical composition of a component into lower-level components. 
A decomposition node has therefore no equivalent hardware construct. 

A component node has the information associated with it: 

• component name, 

• component type: primitive, complex, 

• number of input pins, 

• number of output pins, and 

• a list of pin information: (see below). 

The interconnection points of a component node, called pins, are*escribed by the 
following: 

. . 
• umque pm name, 

• pin class: input, output, and input-output, 

• pin type: control, data, clock, set, reset, enable, and select, and 

• bit width of the pin. 

If a component node is primitive, then it has the following additional attributes: 
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• component class: register, memory, functional-unit, bus, multiplexor, 

• file name of its IIF description generated by ICDB, and 

• functions: such as, add, sub, etc. 

The control unit is inserted as component into the annotated component graph. 
The control lines that connect the control unit with the data path components are 
also inserted as connection nodes into the annotated component graph. The behavior 
of the control unit is stored in form of a separate behavioral description since it is 
random logic. 

In hardware, an interconnection node corresponds to connections between com­
ponents, i.e., a wire. The connection arcs on the other hand are needed to show the 
sources and sinks of a particular wire. Structural attributes are associated with an 
interconnection node but not with connection arcs: 

• unique net name, 

• bit width of the net, 

• name of the input pin, 

• name of all output pins, and 

• net type: data, control. 

Interconnection of the annotated component graph is represented by connecting 
the pins of the component nodes with the pins of the interconnection nodes. 

6.4.3 Geometric Attributes of Component and Interconnection Nodes 

The geometric dom~n describes the circuit's geometric layout. Generally speaking 
a layout consists of a set of cells and their connections. Instead of developing a 
separate hierarchy of cells and wires, we associate the geometric information with the 
corresponding structural components and nets in form of additional attributes. The 
following geometric attributes are associated with the component and port nodes of 
the annotated component graph: 

• aspect ratio: a width and height pair, 
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• position coordinates: a x-coordinate and y-coordinate pair, 

• a list of position coordinates for the input and output pins: (pin-name,x­
coordina.te, y-coordinate), 

The aspect ratio of a component specifies its width and height. For instance, if a 
component has the aspect ratio ( 4mm,5mm) and position coordinates (lmm,lmm), 
then the rectangle fills a space between the four coordinates (lmm,lmm), (lmm,6mm), 
(5mm,lmm), and (5mm,6mm). The input and output pins of the component are po­
sitioned at the periphery of the component. Consequently, the position coordinates 
given for the pins are relative to the width and height of the component. For instance, 
a pin positioned in the middle of the top horizontal edge of the component would be 
described by the coordinate (3mm,6mm). 

A set of structural components may be combined and treated as one component 
for layout purposes. For instance, a partitioning design tool may combine all random 
logic into one module. This requires a regrouping of the structure graph to reflect 
the new decomposition of the structure into components since geometric attributes 
are associated with individual structure nodes only. 

An interconnection node has the following geometric attributes: 

• starting position coordinate, and 

• a sequence of coordinate positions. 

A net may connect one source component to more than one destination compo­
nent. Therefore, the geometric information will be a set of starting position coordi­
nates and their corresponding sequences of coordinate positions. The later describe 
the routing. 

6.4.4 Timing Attributes of the Component and Interconnection Nodes 

Each component node has optional attributes that describe its input to output timing 
behavior. We again distinguish between two types oftirning attributes: (propagation) 
delay and others. Propagation delay corresponds to the path-delay timing constraint. 
Its specification consists of the following parts: 

• source: pin name 

• sink: pin name 
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• function: function name 

• delay duration: minimal, nominal, and maximal delay 

• delay value: actual delay in nano seconds 

Source and sink are references of input and output pins of the component, re­
spectively. The delay specification can specify three different types of delays, which 
are, minimum delay, nominal delay, and maximal delay. They denote the delay for 
a signal to propagate froni the indicated input pin through the component to given 
output pin. A component may be multi-functional, for instance, a functional unit 
may implement the Addition and the Subtraction operation. Therefore, the above 
specified delay can be specified relative to the execution of each function. If a function 
name is not given in a delay specification, then the delay is assumed to hold for all 
functions that the component implements. 

The second type of timing characteristics is presented as a pair. The first item 
of the pair gives the name of the delay and the second corresponds to the associated 
delay value. For instance, for a register one may want to specify the following two 
delays: 

(setup time, lOns) 

(hold time, 8ns) 

6.5 An Example of an Annotated Component Graph 

The following example is given to explain how the annotated component graph repre­
sents a hierarchical netlist structure. A structural VHDL description of a full-adder 
component is given in Figure 54. This example full-adder component is constructed 
out of three subcomponents: two half-adder components and one or-gate. The signals 
declared in the architecture body internally connect the subcomponents to form the 
structure. Thus they correspond to interconnection wires. The connection paths of 
inputs to outputs are specified by three component instantiation statements. Each 
such statement uses a component defined by a local component declaration. It creates 
an instance of such a component by giving an association list ( port map ) that 
associates actuals ( like the signal Temp Sum ) and ports ( like the port Carry In ) 
with locals ( the ports of the local component declaration). 

Figure 55 shows a schematic of the full adder. Such a schematic is commonly used 
to depict a structural decomposition. Figure 56, on the other hand, presents the an­
notated component graph for the full adder design representation ·which demonstrates 
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entity FulLadder is 
port 

(A : in Bit; 

) 

B: in Bit; 
Carryln : in Bit; 
AB: out Bit; 
CarryOut : out Bit; 

end Full....adder; 

architecture Structure..FulLadder of FulL..adder is 
signal TempSum, TempCarryl, TempCarry2: Bit; 

component Half....adder 
port (X: in Bit; Y: in Bit; Sum: out Bit; Carry: out Bit ); 

end component; 

component Or_gate 
port (Inl: in Bit; In2: in Bit; Outl: out Bit); 

end component; 

begin 
IO: Ha.IL.adder 

port map (X=>A, Y=>B, Sum=>TempSum, Carry=>TempCarryl); 
Il: Ha.IL.adder 

105 

port map (X=>TempSum, Y=>Carryln, Sum=>AB, Carry=>TempCarry2); 
12: Or..gate 

port map (Inl=>TempCarryl, In2=>TempCarry2, Outl=>CarryOut); 
end Structure...Full....adder; 

Figure 54: Entity Declaration and Architecture Body of a Full-Adder 

i; 
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Figure 55: Block Diagram of the Full-Adder Example 
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Figure 56: Annotated Component Graph for the Full-Adder Example 

106 



6 THE ANNOTATED COMPONENT GRAPH 107 

how this hierarchical netlist is represented internally. The five pins of the Full-Adder 
component, called Carryln, A, B, CarryOut, and AB, are represented as independent 
port objects in the structure graph 56. 
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7 OUR APPROACH TOWARDS THE LINK­
AGE PROBLEM 

7 .1 Linkage between the Behavioral and the Structural Do-. 
main 

The constructs in a data flow graph are implemented by one or more constructs from 
the structural domain, whereas the control fl.ow constructs have no direct structural 
equivalent. A control fl.ow sequencing arc for instance does not represent a real 
physical connection. Rather, the control flow graph models the sequencing of the 
behavior over time, and thus is synthesized into control logic. 

The correspondence between the data fl.ow graph and the annotated component 
graph is as follows. A behavioral operator or a variable access in the data flow graph 
gets mapped to a functional unit, register, or bus in the data path. Similarly, the data 
flow edges correspond to actual connections in the annotated component graph along 
which the values travel. Thus, data flow edges are mapped to one wire or a sequence 
of wires and components in the data path. This component mapping information is 
maintained in the form of structural annotations to the data flow graph rather than 
behavioral annotations to the annotated component graph. We choose this approach 
since the component mapping is multiplexed in time. The same hardware unit is 
reused multiple times. In fact, a hardware component may be bound to several data 
fl.ow nodes in the same state, when scheduling across conditional branches is per­
formed. Depending on the evaluation of the conditional branch, one of the bindings 
will be selected by the control unit during execution. Furthermore, the relation­
ship between the behavioral domain and the structural domain is a many-to-many 
mapping for the following reason: Sequences of operations may be implementable by 
one functional unit, and vice versa, several units may be needed to implement one 
complex operation. 

The designer may specify a partial design where some of the data flow operations 
are already bound to components. This linkage then corresponds to an externally 
imposed constraint for the design, that the synthesis system should observe. Hence, 
the links between the behavioral and the structural description have an attribute that 
distinguishes 'between a synthesized linkage (which can be modified by design tools 
as desired) and a fixed linkage. 
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7 .2 A Complete Example: The Programmable Counter 

Figure 57 shows a behavioral VHDL description of a 4 bit programmable up and 
down counter. For this example we assume a state assignment as shown in the state 
table in Figure 58. 

entity counter is 
port ( countin: in BIT(3 downto O); 

up: in BIT; - UP==l if count up and UP==O if count down 
count: in BIT; - COUNT==! if count and COUNT==O if program 
countout: out BIT(3 downto 0) 
) 

end counter; 
architecture counterbody of counter is 

signal I: BIT(3 downto O); 
begin 

process begin 
countout <= I; 
if (count = 1) 
then if (up = 1) 

then I <= I + 1; 
else I < = I - 1; 

end if; 
else I <= countin; 
end if; 

wait for 12ns; 
end process; 

end counterbody; 

Figure 57: VHDL Specification of a 4 bit programmable up and down counter 

Then, the behavioral description of that counter is compiled into the CDFG graph 
depicted in Figure 59. In this figure, we draw the data fl.ow graphs associated with 
each statement-block node within the control node rather than associating them by 
hierarchy arcs. For simplicity, all data fl.ow nodes are depicted by circles. 

Figure 60 shows one possible structural implementation of the counter (a data 
path). The chosen counter component has four ports, called up, down, countin, and 
countout. Th~se ports represent the communication between the environment and the 
counter, and therefore they are visible from the outside the counter and from within. 

1 l i I 
" 

~. 
f 
I 
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11 present state I condition I (value) I actions I next state II 

0 - TRUE countout =I 1 

1 count=l TRUE - 2 
FALSE I= countin 0 

2 up=l TRUE I=I+l 0 
FALSE I= I - 1 

Figure 58: The State Table 

Each component is connected to other components via nets that link the output port 
of one component to the input port of another component. A net is represented by a 
set of connection arcs and an interconnection node with the corresponding net name. 
Nets that connect the control unit with the data path components are of type control. 

Next, we discuss the structural information that is attached to the behavioral 
description in the form of annotations (see Figure 59). Note that only the data fl.ow 
constructs have associated structural data. The control flow constructs model the 
sequencing of the behavior over time, and thus have no structural equivalent. 

Each operation and variable node of the behavioral description has associated 
the corresponding structural component that implements it. In Figure 59, these 
component mapping annotations are represented by dashed lines. In particular, a 
data flow node is annotated by the component name, the chosen function, and the 
set of inputs ordered from left to right. For example, the plus operation in state S2 is 
bound to the ALUl component. The selected function is ADD and its inputs from left 
to right are ONE and IREG. The control selection variable is described in terms of a 
tuple that gives the control line name (net of control type) and its associated value. 
For a control selection variable which is not used, a value of zero is assumed. For 
the previous example, the control selection variable is the tuple "CADD=l" where 
CADD corresponds to the control line and "1" is the value that the control unit will 
assign to this control line. 

Similarly, a data fl.ow net is annotated with the structural constructs by which 
it is implemented. This can either be a simple structural interconnection node or 
a sequence of interconnection nodes and component nodes. In the later case, the 
data fl.ow arc also stores the function, inputs, and control selection variable of each 

component in the list. 
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CONTROL 
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Figure 60: Data Path of the Counter Example 
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If a component performs only one function then a control selection is not needed. 
Therefore, in this case control selection information is' not associated with the cor­
responding data flow construct. The fl.ow graph representation given in Figure 59 is 
complete in as much as the structural information can be regenerated from it. 

7.3 Summary of our Linkage Approach 

Our approach towards the design linking problem is summarized below. It is also 
depicted in Figure 61. The symbols used in Figure 61 have the following meaning. A 
bold arrow represents explicitly maintained links. A simple arrow indicates that the 
links are kept implicitly, i.e., in the form of annotations. The objects at the start of 
the simple arrow reference the objects pointed to by the arrow. A dashed box stands 
for constructs that are not being maintained as separate entities in our model. Now 
we summarize our approach by describing how each of the possible links introduced 
in Section 2.4 (in particular, in Figure 1) are handled in our model. 

• Connections from control fl.ow to data flow constructs are an integral part of 
the proposed Control/Data Flow Graph model. A data fl.ow graph is associated 
with most control fl.ow nodes. 

• Connections from each state to its associated control flow constructs is main­
tained as detailed in Section 5. Each state node points to one or more control 
flow nodes. 

• Connections from a state of the control automata to the data flow constructs 
it contains are not maintained explicitly. The data fl.ow constructs are however 
annotated by state information. 

• Connections from behavioral constructs in the data fl.ow graph to structural 
units in the data path graph are maintained by structural annotations to the 
fl.ow graph. This component mapping information is multiplexed in time; there­
fore, each data fl.ow construct is annotated by its corresponding structural unit 
rather than vice versa. 

• Connections from each state to the data path units that are being executed in 
the state. are not stored. They can again easily be derived by following the links 
from a state to its associated data flow nodes which then are annotated by the 
corresponding structural units. For control synthesis, not only the units used in 
each state but also the selected functionality are needed. A static view of these 
links is kept in the data path, since they correspond to the control lines from 
the control unit component to the data path oomponents. ·A dynamic view of 



7 OUR APPROACH TOWARDS THE LINKAGE PROBLEM 

CDFG 
Graph 

Structure 
Graph 

explicit link 

implicit link/ 
annotations 

textual 

domain 

+ 

behavioral 

domain 

structural 
domain 

+ 

geometric · 
domain 

r---------------------------, 
I I 
I I 
I I 

I TEXTUAL I 
I I 
1 SPECIFICATION 1 
I I 
I I 
I I 
L J 

_____________ f _____________ 

annotated 
CONTROL FLOW I-

DATA FLOW 

GRAPH 
GRAPH 

1 
REGISTER-TRANSFER LEVEL STRUCTURE 

(data path and control unit) 

_____________ I _____________ 
r , 
I I 
I I 
I I 

I FLOOR PLAN I 
I I 
1 (geometry of units and nets) I 
I I 
I I 
I I 

L----------------------~----J 

construct maintained 
as separate entity 

construct not maintained 
as separate entity 

D 
r----, 
I I 
I I L ____ J 

Figure 61: DDM's Approach towards the Linkage Problem 

. I 

114 

1 ll.. i . .,_ ,.. 
'" 

I [ l 
~· 



7 OUR APPROACH TOWARDS THE LINKAGE PROBLEM 115 

these links is expressed in the control unit description, since the selection of 
values for control lines per state represents the behavior of the control unit. 

• Connections from the structural to the geometric domain to show the fl.oorplan 
of the structure are expressed by annotating the data path components with 
geometric information. This mapping is not time-varying. 
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8 CONCLUSION 

In this paper, we have presented a a unified design representation model for system 
and behavioral synthesis tools. The design data used by computer-aided design tools 
can be classified into three separate graph models: the conceptual model, the behav­
ioral model and the structural model. The proposed design representation model, 
called DDM, supports all three. We have developed an Augmented Control/Data 
Flow Graph (CDFG) model for the behavioral model and an Annotated Component 
Graph (ACG) for the capture of the data path and the geometric information. The 
Design Entity Graph, which represents the conceptual model, will be described in a 
forthcoming report. Throughout this report, we give numerous examples that show 
how VHDL specifications can be represented by this design representation. 

The proposed design representation model is a powerful vehicle for the develop­
ment of consistency routines. Such routines could check for the completeness and 
the consistency of the design. We can check for the completeness of a design by, for 
instance, checking whether each operator node is bound to some structure, whether 
each structural unit is bound to some physical counterpart, and whether each oper­
ator node ·has been assigned to a state. Consistency checks that could be performed 
are of the following type. We can check whether a given data flow graph is bit-width 
consistent, i.e., if there would be any tangling bits if the graph were mapped into 
hardware. Other potential inconsistency problems are if two values are bound to a 
structural carrier at the same time (in the same state), or if there a connected graph 
for each value from value creation to all its uses does not exist in the component 
graph (ACG). 

, I 
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