
UC Irvine
ICS Technical Reports

Title
A design representation model for high-level synthesis

Permalink
https://escholarship.org/uc/item/96500274

Authors
Rundensteiner, Elke A.
Gajski, Daniel D.

Publication Date
1990

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/96500274
https://escholarship.org
http://www.cdlib.org/

A Design Representation Model For
- High-Level Synthesis

Elke A. Rundensteiner and Daniel D. Gajski

Department of Information and Computer Science
University of California, Irvine

September, 1990

Technical Report 90-27

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

A DESIGN REPRESENTATION MODEL FOR HIGH-LEVEL
SYNTHESIS

Elke A. Rundensteiner and Daniel D. Gajski
Department of Information and Computer Science

University of California, Irvine
Irvine, CA 9271 7

September, 1990

ABSTRACT

Design tools share and exchange various types of information pertaining to the
design. The identification of a uniform design representation to capture this infor­
mation is essential for the development of a successful design environment. We have
done an extensive study on the representation needs of existing database tools in the
UCI CADLAB; examples of which are graph compilers for high-level hardware spec­
ifications, state schedulers, hardware allocators, and micro-architecture optimizers.
The result of this study is the development of a design representation model that
will serve as a common internal representation (DDM) for all system and behavioral
synthesis tools. DDM thus builds the foundation for a CAD Framework in which de­
sign tools can communicate via operating on this common representation. The design
information is composed of three separate graph models: the conceptual model, the
behavioral model and the structural model. The conceptual model (represented by
a Design Entity Graph) captures the overall organization of the design information,
such as, versions and configurations. The behavioral model (represented by an Aug­
mented Control/Data Flow Graph) describes the design behavior. The structural
model (represented by an Annotated Component Graph) captures the hierarchical
data path structure and its geometric information. In this paper, we define the last
two graph models. They both capture the actual design data of the application do­
main. Since VHDL has gained increasing popularity as hardware description language
for synthesis, we give numerous examples throughout this report that show how the
proposed design representation model can be used to represent VHDL specifications.

Key Words: Design Data Model, Design Representation for Computer-Aided De­
sign, Hierarchical Control/Data Flow Graph, State Transition Graph, Annotated
Component Graph.

CONTENTS

Contents

1 INTRODUCTION

2 THE DESIGN DATA MODEL: BASIC CONCEPTS

2.1 General Goals . . .

2.2 Multiple Domains .

2.3 The CDFG Model .

2.4 The Design Representation Continuum Problem

2.5 Foundation of DDM

3 THE DATA FLOW GRAPH

3.1 The Data Flow Graph Definition

1

3

3

4

5

6

9

11

11

3.2 Representation of the Data Flow Vertices . 12

3.3 Representation of the Data Flow Arcs. 18

3.4 Modeling with Data Flow Constructs . 20

3.4.1 Separate Data Flow Nodes for Accesses to the Same Variable. 20

3.4.2 Data Types 20

3.4.3 Operator Nodes Revisited 20

3.4.4 Access to Registers

3.4.5 Access to Memory

3.4.6 Variable References and Dependencies

3.4. 7 Array References and Dependencies . .

3.4.8 Formal Procedure Parameters and Dependencies.

3.4.9 Design Entity Ports and Dependencies

3.4.10 Modeling a Condition in the Data Flow Graph .

3.4.11 Selected Signal Assigment Statements ...

3.4.12 Conditional Signal Assigment Statements .

3.4.13 Loops in the Data Flow Graph . .

3.4.14 -Events in the Data Flow Graph

3.4.15 Path-Related Timing Constraints .1

22

22

25

26

26

29

30

31

33

34

35

38

CONTENTS

3.4.16 Event-Related Timing Constraints

4 THE CONTROL FLOW GRAPH

4.1 The Control Flow Graph Definition

4.2 Representation of the Control Flow Vertices

4.3 Representation of the Control Flow Arcs

4.4 Modeling with Control Flow Constructs

4.4.1 Process Statement

4.4.2 Subprogram Specification

4.4.3 Concurrent Block Statement .

4.4.4 Concurrency versus Parallelism

4.4.5 Procedure Call

4.4.6 The If-Statement

4.4.7 The Case Statement

4.4.8 The For Loop ..
4.4.9 The While Loop .

4.4.10 The Infinite Loop

4.4.11 The Generalized Condition Node

4.4.12 Timing Constraints ..

4.4.13 Asynchronous Events .

4.4.14 Process Sensitivity List .

5 THE STATE TRANSITION GRAPH

0 o o o O O O O O e I I I O o

5.1 Integrating State Information into the CDFG Model.

5.2 State Transition Graph Definition

5.3 Representation of the State Transition Graph Nodes .

5.4 Repre$entation of the State Transition Graph Arcs

5.5 Discussion

5.6 State Information Extension to the CDFG

i

l! , i I)

11

46

52

52

53

59

60

60

61

63

65

65

67

70

70

73

73

75

79

82

85

86

86

88

89

91

92

92

CONTENTS

6 The ANNOTATED COMPONENT GRAPH

6.1 Definition of the Annotated Component Graph

lll

95

95

6.2 Representation of the Nodes in the Annotated Component Graph 95

6.3 Representation of the Arcs in the Annotated Component Graph . 98

6.4 A More Detailed Description of the Annotated Component Graph 99

6.4.1 Timing Constraints . 99

6.4.2 Structural Attributes of Component and Interconnection Nodes 101

6.4.3 Geometric Attributes of Component and Interconnection Nodes 102

6.4.4 Timing Attributes of the Component and Interconnection Nodes103

6.5 An Example of an Annotated Component Graph 104

7 OUR APPROACH TOWARDS THE LINKAGE PROBLEM 108

7.1 Linkage between the Behavioral and the Structural Domain. 108

7.2 A Complete Example: The Programmable Counter 109

7.3 Summary of our Linkage Approach 113

8 CONCLUSION 116

8 BIBLIOGRAPHY 117

LIST OF FIGURES

List of Figures

1 Possible Relationships Between Domains

2 Grapical Representation of Nodes in the Data Flow Graph

3 Grapical Representation of Arcs in the Data Flow Graph

4 The TRUTH-TABLE Node Type

5 Variable Access Representation .

6 Subscript Access Representation .

7 Formal Procedure Parameters and Dependencies .

8 The Choose Value Node Type ...

9 VHDL Selected Signal Assignment

10 CDFG Choose-Value Node

11 VHDL Selected Signal Assignment with Guard.

12 CDFG Choose-Value Node with Guard

13 VHDL Conditional Signal Assignment with Guard .

14 CDFG Representation for a Conditional Signal Assignment .

lV

8

13

14

21

23

24

28

30

31

32

33

34

35

36

15 Signal-Related Attributes in a Conditional-Signal Assignment Statement 37

16 Events in the Data .Flow Graph ·. 37

17 A Simple Path Delay. 40

18 VHDL Specification of a Path-Delay. 41

19 VHDL Specification of Path Delays. (Selected Signal Assignment with
After-Clauses.) . 42

20 Modeling the Delay of a Register. 45

21 The Representation of Event-related Timing Constraints. 4 7

22 Timing Diagram for Set-up, Hold and Register Delays. 49

23 CDFG Representation of Set-up and Hold Times. . . . 49

24 Graphical Representation of Nodes in the Control Flow Graph 54

25

26

27

GraphkWf Representation of Arcs in the Control Flow Graph .

A VHDil~:: rocess Specification . .

l A Vll~~ulroredure Specification [j

rrrr~;'..":: :· 1,
.. i~'f,_.·.~;

55

60

61

LIST OF FIGURES v

28 CDFG Representation of the Procedure Specification Statement 62

29 A VHDL Block Specification . 63

30 A VHDL Block Specification . 64

31 CDFG Representation of the Procedure Call Statement 66

32 VHDL If-Assignment 68

33 CDFG Representation of the If-Statement 68

34 VHD L Case Assignment 71

35 CDFG Representation of the Case Statement. 71

36 VHDL For-Loop 72

37 CDFG Representation of the For-Loop 72

38 VHDL While Loop 7 4

39 CDFG Representation of the While-Loop . 74

40 CDFG Representation of the Infinite Loop 76

41 VHDL Specification of Nested Conditions . 77

42 CDFG Representation of the Extended Condition Node . 78

43 VHDL Wait Statement 79

44 CDFG Representation of the Wait-For Construct 80

45 CDFG Representation of the Wait-On-For Construct 81

46 CDFG Representation of the Wait-Until Construct . 83

47 CDFG Representation of the Wait-On-Until Construct 84

48 Graphical Representation of Nodes in the State Transition Graph 89

49 Graphical Representation of Arcs in the State Transition Graph 90

50 CDFG of Counter Example with State Assignments 93

51 Graphical .Representation of Nodes in the Annotated Component Graph 96

52 Graphical Representation of Arcs in the Annotated Component Graph 96

53

54

55

56

Timi.ng Constraints in the Annotated Component Graph .

Entity Declaration and Architecture Body of a Full-Adder

Block Diagram of the Full-Adder Example

Annotated Component Graph for the Full-Adder Example

100

LIST OF FIGURES VI

57 VHDL Specification of a 4 bit programmable up and down counter 109

58 The State Table . 110

59 Complete Flow Graph Representation of the Counter 111

60 Data Path of the Counter Example 112

61 DDM's Approach towards the Linkage Problem 114

. I

i [

1 INTRODUCTION 1

1 INTRODUCTION

Design tools, such as system and behavioral synthesis tools, have to share and ex­
change diverse types of information during the course of the design exploration pro­
cess. For the integration of this variety of design information into one unified repre­
sentation we define the design data model (DDM). The identification and definition
of such a uniform design representation is essential as the synthesis tools interact via
operating on this common representation. This design representation is to be main­
tained by a design database. In this report, we describe the design model, while a
description of the design data base architecture and its functionality will be given in
a later report.

High-level synthesis is concerned with the mapping of a behavioral specification
written in a hardware description language to a structural description representing
a set of interconnected generic components (i.e., a netlist). A description language
is generally not amendable for direct translation into hardware. Hence, the behav­
ioral description gets compiled into an internal representation that contains data fl.ow
and control fl.ow information as implied by the specification. A well-defined design
representation serves as a 'canonical' form into which different input formats can be
mapped. For instance, different description languages, such as Ada or VHDL, can
be mapped to the same internal representation. This makes design tools language­

independent from characteristics of particular description languages. Furthermore,
an internal fl.ow graph representation allows for compiler-optimizations that would be
hard to perform on a textual representation. Also, it is a flexible representation that
can gradually be updated during synthesis.

The design model is composed of three separate graphs: the conceptual graph

model, the behavioral graph model and the structural graph model. The first model,
sometimes also called the meta-data model, describes the conceptual data schema
that is used to organize the design data. It covers concepts, such as, design entities,
versions, and configurations. This conceptual model serves as foundation for most
database support functions, for example, version management, transaction processing,
and schema browser. The other two models are information models which capture
the actual design data of the application domain. They describe the design at a
level at which the design tools are ultimately interested working on. We distinguish
between the two domain types, the behavioral domain and the structural domain.
The behavioral graph model describes the behavioral specification of the design. It
corresponds to a hierarchical Control/Data Flow Graph (CDFG) representation that
is augmented with timing constraints and state information. The structural graph
model is a hierarchical graph structure of interconnected components augmented by

j i

1 I i j i:

! Ii/' :j
I : j ~

! , ,·t i
I' I

1 INTRODUCTION 2

timing constraints (called Annotated Component Graph). It captures the data path
structure and its geometric implementation, called the floorplan. In this paper, we
present the extended Control/Data Flow Graph (CDFG) model and the Annotated
Component Graph model, while the conceptual data model will be discussed in a
later report.

The document is structured as follows. In Section 2, we present the foundation
of our work. In particular, we discuss system and behavioral synthesis applications
requirements for a. design representation. The behavioral domain representation, the
augmented CDFG, is described in Sections 3 to 5. Section 3 presents the data flow
graph model, Section 4 defines the control flow graph model, and Section 5 describes
how the state information is integrated into the CDFG model via the state transition
graph model. The structural information domain, represented by the Annotated
Component Graph, is defined in Section 6. Sections 3 through 6 contain examples
that describe how the the design representation is used to model designs described
by VHDL specifications. Section 7 summarizes our approach towards linking the
behavioral and the structural information domain. Finally, in Section 8 we give
conclusions.

I I : ., ; j' 'i 1' J'
: I J) 't

. !

[I

... ... :
<· •

- (·.

l I

ti

11: [/!

2 THE DESIGN DATA MODEL: BASIC CONCEPTS 3

2 THE DESIGN DATA MODEL: BASIC CON­
CEPTS

The success of a design data base for a particular application domain is to a large
degree based on the quality of the underlying design representation, the design data
model. This paper describes such a design data model, DDM, that is targeted to­
wards supporting CAD applications. This model is intended to serve as an internal
representation schema for a collection of behavioral synthesis and verification tools.

2.1 General Goals

The design representation we propose in this document has been designed with the
following goals in mind:

1. The design representation must be general, i.e., language-independent, such that
descriptions written in other specification languages can also be translated into
the internal representation. This assumes that a suitable compiler is developed
for each new language which compiles a description in this language into the
internal representation.

2. Each design tool or group of related design tools generally keeps its own internal
data model, i.e., its own format and data structures. One goal of this research is
to achieve a consensus between these different internal data models by proposing
a general design representation. This model needs to integrate design data as
generated or required by all of the design tools. Therefore, it should be flexible
enough to encompass the needs of all existing and possibly future design tools.
In other words, we propose to establish a design representation standard.

3. The completeness of the representation is a necessary but not a sufficient char­
acteristic for a successful data model. The initial textual specification itself is
complete but nevertheless not useful for direct synthesis. This suggests the ad­
ditional requirement that the design representation has to support the synthesis
process. A measure of suitability for high-level synthesis is, for instance, the
ease with which relevant information can be extracted from it.

4. We target the design data model towards the needs of design tools. Conse­
quently, human readability of the representation is of secondary importance.
The design data base will however provide design views which provide formats

: .;,

more suitable to the human designer, su~~ j ~i I [
1
textual staie transition table.

Ir rrttrr,
. ,. , :: "~'. : .

... ,. ,

r rr fit ..
. } ?"'J' .

t
i

lij1L '·' '.?.~.·~ ~; . . ': JI: f1 .'. '
I [11 ' I ' . . . ' . .

2 THE D~SIGN DATA MODEL: BASIC CONCEPTS 4

5. VHDL [28) is a hardware description language which recently has become the
IEEE standard. Because of its increasing popularity, synthesis tools are being
developed that synthesize from VHDL descriptions. Therefore, the proposed
design representation should be powerful enough to represent all VHDL con­
structs that are useful for synthesis. We have studied VHDL in depth, and
throughout this document we explain how the proposed data model can be
used to represent VHDL specifications.

2.2 Multiple Domains

The design data model, DDM, has to integrate different information types into one
unified representation. A design entity is originally just specified by a VHDL textual
specification which then gradually gets transformed from a flow-graph representation
over a structural description down to layout. Generally, synthesis systems distinguish
between four domains, which are textual, behavioral, structural and layout (Figure
1). We simplify the diversity of domains by classifying them into two groups, the
behavioral and the structural one. The first corresponds to the behavioral description
over time and the second to the description of the structure that implements that
behavior. The behavioral information domain comprises:

• the textual VHDL input specification that describes the function of the design,

• the flow-graph representation which captures the behavior over time but per­
tains no information about its implementation, and

• the state sequencing that shows the slicing of the behavior into states.

We represent this behavioral domain by an extended Control/Data Flow Graph
model as discussed in the next section.

The structural information domain consists of:

• the data path structure that shows the decomposition of the design entity in
terms o.f components and their interconnections, and

• the geometric information that describes the circuit's geometric layout but by
itself conveys no information about its functionality.

I :

,•
I .1·

i J 1 Jf ll

•
2 THE DESIGN DATA MODEL: BASIC CONCEPTS 5

The structural representations in the literature generally take the form of some
annotated net list. Our structural representation, called the Annotated Component
Graph (ACG), is similar. It is extended, however, to handle structural hierarchy.
Furthermore, advanced attributes of the structural elements, such as, different delays
for different inputs of unit, are supported. In addition, we directly associate geo­
metric information with the ACG graph rather than creating a separate geometry
representation graph [13].

2.3 The CDFG Model

There is no agreement on design representations of behavioral information for synthe­
sis in the literature. Some of the commonly used approaches for design representations
at the behavioral level are fl.ow graphs, event graphs, and Petri nets. The represen­
tation presented in this report is based on the first approach. However, it includes
essential elements from all three approaches into one unifying model.

Flow graphs are a common intermediate design representation for synthesis tools.
They generally are based on a synchronous model and thus do not allow the repre­
sentation of asynchronous events. In addition, most of these models do not address
issues, such as, modeling of timing constraints, hierarchy, and concurrency. The data
flow graph structure, such as, DSL by Camposano et al [6, 4], the data fl.ow graph
model used by Temme [27] are representative for the more popular approaches to­
wards flow graph representations for synthesis. The DSL representation consists of a
flat data flow graph augmented with control fl.ow arcs to handle control constructs like
branching and loops. Control fl.ow has only been introduced as an afterthought as it is
not a first class citizen of the specification. The control/data flow graph (CDFG) [20]
represents a hybrid representation. Rather than modeling control fl.ow by augment­
ing an existing data fl.ow graph with sequence arcs, the CDFG model distinguishes
between the control and the data fl.ow portions of a description. The control flow
graph of CDFG explicitly model the control constructs found in the original design
specification rather than embedding them within the data fl.ow graph.

In [26], the relative strengths and weaknesses of these two major approaches to­
wards flow graph representations for synthesis are compared. It was found that a
hybrid control flow/ data flow representation bears numerous advantages over a flat
data flow graph model. It models the behavioral specification in a more direct man­
ner by' retaining the original structure of the input specification, since control flow
nodes ,"call" data flow graphs. Thus, there is a one-to-one correspondence between
the control flow graph and the structure of the design specification. This helps the

2 THE DESIGN DATA MODEL: BASIC CONCEPTS 6

designer to visualize the fl.ow of control, and thus provides a natural means of design
entry, much like flow-charting.

The control :flow graphs show necessary sequencing that is to be guaranteed by the
control unit, whereas da.ta. fl.ow graphs a.re designed to expose maximum parallelism
in the input description. The exposition of maximal parallelism in a. da.ta. :flow graph
helps to utilize the data pa.th to its fullest capacity. Transformations can be designed
to, for instance, map a conditional statement from control fl.ow to da.ta flow, or vice
versa. If a. statement is implemented in control flow then that the branching is
executed by the control unit. If it is described in data flow then the condition is
directly expressed in terms of da.ta. pa.th units. This way the potential concurrency
between the conditional and other data. manipulation operations is revealed. This
hybrid representation clearly allows for a. da.ta.-fiow /control-flow trade-off; it is thus
suitable for synthesis. The data. fl.ow portions of the CDFG graph can be refined and
finally mapped to circuits of components, while the control fl.ow portions a.re reduced
and finally transformed into the state table.

For these reasons, DDM has chosen a Control/Data Flow Graph (CDFG) model
for the representation of the behavioral domain. In [16] and [26], it is shown how
some of t4e VHDL constructs can be represented by the CDFG representation. In
this document, we go beyond this work by augmenting the CDFG representation
to also handle advanced concepts, such as, hierarchy, concurrency, events, timing
constraints, and memories.

2.4 The Design Representation Continuum Problem

The initial input to the synthesis system is a pure behavioral description of the design,
while the final output of the system is an optimized floorplan. There clearly is a design
representation continuum ranging from a pure behavioral representation over many
intermediate organizations to a geometric implementation. Ideally, we would like to
directly model this continuum such that any intermediate state of the design can be
retrieved. In practical terms this means that the design data model either

1. keeps many different snapshots of the design representation as it is gradually
modifiec,i.as well as links between objects of adjacent snapshots, or

2. the initial behavioral representation is gradually transformed into a structural
one.

2 THE DESIGN DATA MODEL: BASIC CONCEPTS 7

The second approach is likely to hide information because some transformations
are not reversible. Hence, it will not a.How us to go back to previous stages of the
design evolution. Consequently, pure behavioral views may no longer be extractable
from this modified representation. Also, relationships between behavior and structure
that are needed for redesign may not be known.

The former approach does not face these problems. In addition, it suggests an
increased ease of use since the related objects can be retrieved directly by linkage
traversal. It is expensive in space and maintenance costs, however, as multiple distinct
versions of the design with a complex network of linkage would result. The ADAM
design environment at USC, for instance, maintains detailed linking relationships as
described in numerous papers [3, 13]. The required maintenance was found to be
substantial, and to our knowledge made the creation of a workable data.base system
extremely difficult [15].

Clearly, a solution lies in between these two extremes. We adopt the following
approach. We keep two domain graphs rather than four as done by most other syn­
thesis systems. Secondly, the behavioral domain graph is augmented with structural
correspondence without modifying the original shape of the :flow graph. Whenever
this is not possible, i.e., behavioral modifications are required to reflect the structure,
then a new version of the behavioral graph is created.

An important goal of our research is to reduce the complex behavior-to-structure
links from the abstract behavior down to the final structure (Figure 1). We explicitly
represent links in the design model only when necessary. The types of semantic
relationships that can be identified between the objects of the different domains are
listed below.

• Connections from the textual description to the :flow graph representation;

• Connections from control :flow to data :flow constructs;

• Connections from each state to the data :flow constructs it contains;

• Connections from each state to the control flow constructs it corresponds to;

• Connections from a behavioral operator in the data flow graph to a functional
unit in ~he data path;

• Connections from each state to the data path units that are performing opera­
tions in the state;

• Connections from the structural domain (data pa.th units or control unit) to the
geometric domain.

' 2 THE DESIGN DATA MODEL: BASIC CONCEPTS 8

TEXTUAL
DOMAIN

BEHAVIORAL
DOMAIN

STRUCTURAL
DOMAIN

GEOMETRIC
DOMAIN

CONTROL DATA

CONTROL FLOW
GRAPH

STATE
AUTOMATA

FLOORPLAN OF

CONTROL UNIT

TEXTUAL
SPECIFICATION

DATA FLOW
GRAPH

DATA PATH

STRUCTURE

FLOORPLAN OF

DATA PATH

Figure 1: Possible Relationships Between Domains

i;

2 THE DESIGN DATA MODEL: BASIC CONCEPTS 9

The different representations must be linked together to keep track of the many­
to-many relationships between the original design specification and the ultimately
synthesized structure. Design linking between the control and the data parts is of
importance for applications, such as, synthesis, debugging, verification and iterative
design [4]. For instance, the control synthesis compiler needs to know which func­
tionality of a unit is used in a given state. The problem of which relationships to
represent has been studied in the literature. It is, however, still an open research
question. Our approach towards this problem consists of combining the textual and
the behavioral domain into one representation, and the structural and geometric into
another one. Linkage across these two domain graphs is done by keeping structural
information associated with the behavioral representation in the form of annotations.
Motivation and explanations of our approach are given throughout the paper, and
Figure 61 in Section 7 then summarizes our solution.

2.5 Foundation of DDM

We use a simple data modeling methodology to define DDM. The basic components
of this me~~od are given below. These terms will be used throughout the rest of the
specification.

Object types are abstract type definitions that are defined by DDM. Objects are
distinguishable entities of these object types. The actual design data then corresponds
to a collection of such related objects. We distinguish between different groups of
object types; those that form the CDFG graph and those that form the ACG
graph.

Objects have an object identifier and a state. The object identifier is an iden­
tifier that can be used to uniquely refer to the object. The state consists of a collec­
tion of state variables, which can be either attributes or relationships. All state
variables are named. The type of data referred to by the state variable is called
the domain. Attributes describe characteristics of the object. The domains of
attributes corresponds to primitive data types, such as, integer, string, as well as
predefined enumeration types. An attribute value can be a single data value, a set
of values, or an ordered list of values. Relationships between different objects are
represented by references in the respective objects. Therefore, references are directed.
There will generally be a "back reference" in the referenced object; which is used to
make references symmetric. References themselves cannot carry any attributes. If we
want to model an abstract relationship between two or more objects that further has
to be described by additional attributes, then this relationship is represented by an
explicit object definition. This object definition the~ not only holds the attributes of

2 THE DESIGN DATA MODEL: BASIC CONCEPTS 10

the abstract relationship but also contains references to all objects that are related
by this relationship type. In the following sections, we describe the different object
types supported by DDM.

'

I I

I I

3 THE DATA FLOW GRAPH 11

3 THE DATA FLOW GRAPH

DDM uses a.n augmented Control/Data Flow Graph (CDFG) model to represent the
behavioral domain. The CDFG model distinguishes between the control and the
data flow portions of a description. The data flow graph of the proposed CDFG
model is discussed in this section, while the control flow graph is presented in the
next section. A data flow graph is created for data manipulation operations, i.e., for
assignment statements. Conditional statements can be represented both by data flow
graph constructs or by control flow graph constructs. In the sequel, we first define
the data flow graph and then we discuss its constructs in more detail. Thereafter, we
also give numerous examples of how the data flow object types can be used to model
different VHDL specifications.

3.1 The Data Flow Graph Definition

A data flow graph is defined as described below.

Definition 1 A data flow graph is a directed {not necessarily acyclic) graph1 DFG
= (DNiDV,DE,DP,DF) with DN and DV the set of vertices, DE the set of edges, DP
the set of ports, and DF the set of data flow marking functions. The elements of
DN and DV are uniquely identified by the function vertex-num: { DN U DV} ~
INTEGER.

1. DN corresponds to the set of data flow nodes. It is composed of several disjoint

sets, DN = OPERATIONU FUNCTIONU STORAGEU MARKER U TIME.

• OPERATION is the set of all computation and selection operators.

• FUNCTION corresponds to the set of function call nodes.

• STORAGE corresponds to the set of variable accesses, array accesses and
constants,

• MARKER corresponds to the set of demarcation nodes.

• TIME corresponds to the set of timing constraints (delays) in the data flow

grdph.

1The data flow graph follows the single-assignment model, and therefore it will initially after
graph compilation be an acyclic graph. However, cycles may be created after graph optimization.
For instance, the .read and the write nodes of a signal may get merged into one data flow vertex
labeled by the read/write operator in order to simplify the mapping of this node to one register.

I .

3 THE DATA FLOW GRAPH 12

2. DV corresponds to the set of data values produced or consumed by elements of
DN.

3. DP is the set of data flow ports. They correspond to the connection points
of vertices with the arcs of the graph. The function port-class: P -+ {input­
port, output-port} specifies whether a port is an input or an output port. A vertex

v E DVU DN can have an ordered (possibly empty) list of input and output ports
p E DP, respectively. The function input: DN U DV x INTEGER-+ DP U

0 is an assignment of input ports to vertices. The function output: DN U DV
x INTEGER -+ DP U 0 is an assignment of output ports to vertices.

4. DE represents the set of directed edges between the (ports of the) vertices of
the data flow graph. The edges correspond to pairs (p1,p2) E DP x DP with

the direction of the edge from pl to p2. We distinguish between five types of
edges, which _are data flow arcs, sequencing arcs, hierarchy arcs, timing arcs

and demarcation arcs.

5. DF is a set of data flow marking functions DFi: DN U DV-+ DM with DM
the set of possible marks. These functions associate attribute values with the
vertices of a data flow graph. Examples of such attribute functions are access­

type, array-dimension, bit-width, just to name a few.

The set of data flow nodes corresponds both to active elements of the design speci­
fication, that perform the data manipulations, and to passive elements, that represent
storage elements, whose content is used and modified by the former. Examples of ac­
tive elements are the arithmetic, logic and bit extraction data operations, the function
calls, and the data selection operations. Examples of passive elements are variable
references, array accesses, constants, and parameters of functions.

We treat data values as a separate conceptual entities that can have their own
attributes and thus represent them by vertices (the set DV) rather than by edges.
This decision simplifies the mapping between behavioral and structural information
as will be discussed in a later section.

3.2 Representation of the Data Flow Vertices

The graphical depictions of the data flow graph vertices and edges are shown in Figure
2 and 3, respectively. The meaning of each vertex type is explained next. We also
list some of their attributes.

Type: Operator node

I

3 THE DATA FLOW GRAPH 15

models arbitrary user-defined operations, while the operator node corresponds to a
predefined operation. Each function call refers to a particular function specification
which is an encapsulated description of the function behavior. Thus each function
node is connected via a demarcation arc to its respective function description.

The representation of parameter passing is resolved as follows. A function call
node has zero or more data inputs that correspond to the actual parameters that
are passed to the function as arguments. This is done in the order of occurrence,
i.e., the data value connected to the first input port is passed to the first formal
parameter, the data value connected to the second input port is passed to the second
formal parameter, etc. The data output port of the function node corresponds to the
return value of the function. Note that a function node creates hierarchy in the data
flow graph as it encapsulates any arbitrary user-defined behavior by one function call
node.

Type: Choose-value node

Graphic: Triangle with a choose value for each data input port

Description: A choose value models a conditional selection of one data value from
a collection of two or more values. A choose value is used to model the conditional
update of a variable, i.e., a choose value is created for each variable that is updated
within a conditional statement.

A choose-value node has two or more data input ports and one or more control
input ports. The nodes connected with the control input ports are called the condi­
tion variables. One choose value, also called condition guard, is associated with each
data input port. These choose values are mutually exclusive constant values. They
correspond to a sum of products of terms, where the number of terms in a product
corresponds to the number of control input ports. Each term evaluates to a boolean
constant for a binary branching decision point (such as, an if-statement) and a con­
stant or a range of constants of an integer, boolean, or an enumeration data type or
a special don't care or else symbol for a multi-branch decision point (for example,
a case statement). ~he choose values are compared against the condition variables.
ff a choose value matches the values of the condition variables, then the data value
that is connected to the respective data input port is propagated through the choose
value node . .A:-. choose-value node has a single data output port, that corresponds to
the data value that is passed through choose value node.

Type: Read node

Graphic: Rectangle with a triangle taken out of left hand side and labeled by the
variable name

I 1d,J1
[-..

. ~
. . c' j

I 111·:r

3 THE DATA FLOW GRAPH 16

Description: A read node is created for each read access, i.e., for each variable access
on the right-hand side of an assignment statement or in a conditional expression. A
read access can be to a. variable, a signal, or an external port. A read node have one
control input port and two output ports. A demarcation arc from the demarcation
node for the beginning of the data flow graph points to its input port. The data.
output port is connected to a. node that represents the data value read. The control
output port is connected via. a sequencing arc to a write access node of the same
variable, if there is any.

Type: Write node

Graphic: Rectangle with a. triangle added onto the left hand side and labeled by the
variable name.

Description: The write node is created for each write access, i.e., for each variable
access on the left-hand side of an assignment statement. A write access can be to
a variable, a signal, or an external port. A write node has two input ports and
one output port. The data. input port is connected to a vertex that represents the
data value that is written. The second input port of type control is connected to a
sequencing arc from a read node of the same variable. The control output port is
connected via a demarcation arc to the demarcation node that marks the end of the
graph. If the variable is of type register, then the write node may have additional
input port.s of type control. They represent control lines, like for instance, reset and
enable lines. For variables that are of type register, read and write nodes can be
combined into one node during an optimization phase. Such a read/write node is
graphically represented by a rectangle with a triangle both added and deleted from
the left hand side2•

Type: Constant node

Graphic: Rectangle with constant value

Description: A constant node models constant values. A constant node has one
control input port that is connected via a demarcation arc to the demarcation node
that marks the beginning of the graph. A constant node ha.s one data output port
that represents the constant value read.

Type: Read-array node

Graphic: Rectangle with a triangle removed from the right hand side and labeled
by the array name.

2This symbol corresponds to an overlay of the graphical symbols for a read and a write node.

I:

3 THE DATA FLOW GRAPH 17

Description: A read reference to an array is represented by a read-array node. A
read-array node takes two types of inputs. The first a.re sequencing a.res from other
subscript nodes and the second the array address. For each dimension of the array,
there is a data flow edge from the root of the expression that calculates the index
value to the subscript node. A read-array node takes two types of output a.res. They
represent the value read from memory and the outgoing sequencing a.res. Sequencing
arcs are used to connect together successive references to the same array to preserve
partial execution order of memory references.

Type: Write-array node

Graphic: Rectangle with a triangle added onto the right hand side and labeled by
the array name.

Description: A write reference to an array is represented by a write-array node. A
subscript write-array node has three different types of inputs: sequencing a.res from
other subscript nodes, data a.res that represent index values, and one data value that
corresponds to the value that is to be stored. Its only output port is connected to a
sequencing arc. A write-array node is generated for every variable-index write array
operation and for the latest value of an array element prior to the next variable-index
read array operation.

Type: Data value

Graphic: Small circle

Description: Data value vertices correspond to the data values that are either gener­
ated or consumed by other data flow nodes. They model data dependencies between
other data flow nodes. Such a data value node is sometimes as called a net. A data
value node has attributes, such as, bit width, and data representation.

Type: Event node

Graphic: Diamond

Description: An event node in the data flow graph tests for an event on a signal.
For example, an event node may test whether a signal is rising, falling, or stable. An
event node has one input and one output data port. Input to the event node is a
data value nqde (that represents a signal) and output is a boolean data value node
(that represents the result of this event test).

Type: Timing node

Graphic: Stop sign symbol

l. I
.; f

r r

3 THE DATA FLOW GRAPH ' ' 18

Description: A timing node models a timing constraint on portions of the data. flow _
graph. A timing node has one or more incoming timing arcs and one outgoing timing
arc. The incoming timing arcs connect the delay node with the sources of the delay
while the outgoing timing arc points to the destination data value node. The timing
no<;l.e specifies a delay for the execution of all nodes in the data flow graph between
the source nodes and the sink node of the delay. Optionally, the timing node may
associate an attribute called event-type (which takes the values RISING, FALLING,
and CHANGING) with its source and its sink nodes. In addition, it may give a delay
value for the a minimal, nominal and maximal delay constraint, respectively.

A timing node models two types of timing constraints, which are path delays
and event-related delays. A path-delay timing node models the time taken for
the effect of a signal to propagate through a set of hardware units from one point of
the hardware to another. A path-delay timing node is given the label path-delay,
or short, delay. By default, the path delay node constitutes a timing constraint for
all data flow nodes on the paths starting from the source nodes of the delay node
and ending with the destination node. A delay node may have an optional attribute,
called path expression, which describes selected portions of the data flow graph. If
a path expression is given, then the path delay only refers to the subset of data
flow graph described by the expression.

An event-related delay node captures timing relationships between the oc­
currences of possibly independent events. Examples of such event relationships are
set-up and hold times. An event-related delay node is given the label event-delay,
or short, event. Such an event-related delay node can also be used to model duration
timing constraints.

Type: Data flow graph demarcation nodes

Graphic: Half-circles

Description: The demarcation node pair begin-dfg and end-dfg mark off the
beginning and the end of a data flow graph. The read and write nodes of a data flow
graph are attached by demarcation arcs to the begin-dfg and the end-dfg nodes,
respectively.

3.3 Representation of the Data Flow Arcs

The graphical depictions of the data flow graph edges are shown in Figure 3. Each
edge type is further explained next.

Type: Data flow arc

3 THE DATA FLOW GRAPH 19

Graphic: Arrow

Description: A data flow arc connects two data flow vertices by associating an
output port of the former with an input port of the later. Data flow arcs show the
flow of data values through the graph. Thus, one of the two vertices will be of type
node (from the set DN) while the other will be of type value (from the set DV). This
construct has been introduced due to the fact that we model data values as nodes
rather than as arcs.

Type: Sequencing arc

Graphic: Bold arrow

Description: Sequencing arcs are used for enforcing sequencing among variable or
memory access, whenever pure data dependencies are not adequate in representing
correct program semantics. These arcs preserve an execution order that is implied by
the semantics of the behavioral description but not captured by data dependencies.

Type: Hierarchy arc

Graphic: Bold dashed arrow

Description: A hierarchy arc connects two levels of a hierarchy. In particular, it
connects a function call node with the specification of the function that is being called.
The later is a control flow node that is to be discussed in a later section.

Type: Demarcation arcs

Graphic: Dotted arrow

Description: Demarcation arcs are used to associate all read nodes and all write
nodes for variables and arrays with the begin-dfg and end-dfg demarcation nodes,
respectively. We also use these sequencing arcs to point from a function call node to
the body of the function or procedure that is to be executed before execution of the
current graph continues.

Type: Timing arc

Graphic: Dashed arrow

Description:·· A timing arc connects a timing constraint node with a data value
vertex. The set of timing arcs associated with a timing constraint node thus marks
the group of data flow nodes that are constrained by. the timing constraint node.

3 THE DATA FLOW GRAPH 20

3.4 Modeling with Data Flow Constructs

In this section, we show how the just presented constructs can be used to represent
a design at the behavioral level. In particular, we will use specifications written in
VHDL for demonstration purposes.

3.4.l Separate Data Flow Nodes for Accesses to the Same Variable

The proposed DFG representation maintains separate nodes for the different uses of a
variable. That is, data values are not assumed to reside in one fixed location as done
in [4]. Instead relevant values are passed from one data flow block to another. This
parallels the fact that different values are bound to a variable over time. In other
words, the results of two read-references to the same variable are a function of time.
The CDFG representation models this directly by providing separate STORAGE
nodes for these different accesses.

During one state a signal may potentially be captured by a register whereas during
another state its value may be mapped to a wire. Keeping different conceptual nodes
for different usages of a variable simplifies the maintenance of this linkage information
between the data flow graph and the data path on a state by state basis.

3.4.2 Data Types

Access to variables are typically mapped onto either registers or memories. Therefore,
the CDFG model directly supports data values that can be mapped to single bits, bit
vectors, or arrays of bit vectors. All other_ data types will have to be mapped to such
structures during flow graph optimizations. Integer and scalar values are represented
as a bit vector. Arrays are represented by arrays of bit strings.

3.4.3 Operator Nodes Revisited

Operators are classified as arithmetic, comparison, shift/rotate, logical, bit manip­
ulation, and special-purpose. The standard set of arithmetic operators, which are
ADDITION, SUBTRACTION, MULTIPLICATION, DIVISON, INCREMENT and
DECREMENT are assumed. The inputs have to be of the same data type. They
produce outputs of the same type as the inputs. Shift operators are SHR, SHL, SHRO,
SHRl, SHLO, .and SHLl. Examples of comparison operators are EQ, NEQ, LE, LT,

3 THE DATA FLOW GRAPH 21

GE, GT a.nd examples of logic operators are AND, OR, NOT, NAND, NOR, XOR.
They work on a. bit-by-bit fashion on the operands.

The bit ma.nipulation operators are CONCAT and EXTRACT. The CONCAT
operator node accepts two or more binary data inputs. It concatenates them into
a bit string in the order of the input ports. The EXTRACT operator node accepts
one (binary) data input and extracts a specified range of bits. The EXTRACT and
CONCAT nodes are further discussed in Sections 3.4.4 and 3.4.5, where we discuss
the representation of access to registers and memories.

TRUTH-TABLE Node

CONDITIONS FUNCTIONS

NAME Cl C2

TYPE INTEGER BINARY

ENTRIES: 23 11 ADD

9 10

5 1

5 11

Figure 4: The TRUTH-TABLE-Node Type

The special operator type is called TRUTH-TABLE node. Its behavior is de­
scribed by a truth table rather than having predefined semantics. A TRUTH-TABLE
operator node accepts one or more data inputs and produces one or more data out­
puts. It contains a truth table that translates the inputs to the outputs. The TRUTH­
TABLE node· type is not a direct translation of a behavioral description but it can
for instance be used to capture the results of architectural optimizations on the rep­
resentation [24, 25]. Figure 4 shows an example of a TRUTH-TABLE node. In this
example, the node is used to encode the conditions for the function selection of a
multi-functional operator node. The multi-functional operator node shown on the

i

3 THE DATA FLOW GRAPH 22

right-hand side of the figure has two functions, ADD and SUBTRACT. Based on
the values of Cl and C2, one of these two functions ADD and SUBTRACT will
be selected. The function ADD is selected if ((C1=23 and C2=11) or (C1=9 and
C2=10)), and the function SUBTRACT is selected if ((C1=5 and C2=1) or (C1=5
and C2=11)).

3.4.4 Access to Registers

A register is modeled by a variable with an array of bits data type. For every bit-slice
access to such a variable, the slice is constructed by concatenation and/ or extraction
operator nodes. A read access to a bit-slice of a variable is represented by an ex­
traction node as is shown in Figure 5.a. A write access to a bit-slice of a variable is
represented by one or more extraction nodes and a concatenation node. The latter
constructs the new value of the variable.

For instance, the assignment VAR(6 downto 3) = "00" is translated into the
statement VAR = VAR(8 downto 7) & "010" & VAR(3 downto 0) assuming that
VAR is a bit-string with a range from 8 downto 0. In other words, a write access to
a variable is modeled by reads to all portions of variable that are not to be modified
by that write access. An example of this is shown in Figure 5.b.

3.4.5 Access to Memory

A memory unit is usually modeled by an array data structure where each element
is of type bit vector. The CDFG model represents each textual reference to such
an array by a subscript node. We assume that a memory unit can only be accessed
sequentially, i.e., the only operations allowed on it are to read or to write one memory
word. Consequently, only one index, which corresponds to the first dimension of the
array, can be associated with each subscript node. Manipulations of the second
dimension correspond to bit-slice operations on a single memory word. They are
thus modeled by separate bit manipulation operator nodes independently from the
array access, i.e., they are applied after the memory word has been extracted. This
corresponds closely to reality: a memory access always reads or writes a complete
word, and bit-slice operations are not performed within the memory but as separate
operations. ·

For example, an array access that utilizes a bit-slice selection like the assignment
X = MEM(PC,6 downto 3) is modeled in two phases. First it is represented by a data
access of the array using the index for the first dimension, Y=MEM(PC), and then

3 THE DATA FLOW GRAPH 23

VAR

VAR

x

VAR

a.) X = VAR(6 downto 3); b.) VAR(6 downto 3) = "010";

Figure 5: Variable Access Representation

3 THE DATA FLOW GRAPH 24

PC

Phase 1
PC

hase 2

x

MEM J Phase 3

a.) X=MEM(PC,6 downto 3); b.) MEM(PC,6 down.to 3) = "010";

Figure 6: Subscript Access Representation

3 THE DATA FLOW GRAPH 25

by a bit-slice selection operation on a single element of that array, X= Y(6 downto 3).
The representation of this example is shown in Figure 6.a.

A write access to a memory location that modifies only some bits of the mem­
ory word is represented by a more complex sequence of operations. For instance,
the assignment MEM(PC,6 downto 3) = "010" is modeled in three phases: first by
a subscript read access Y =MEM(PC), then by a bit-slice selection and concatena­
tion operation sequence; Y = Y(8 downto 7) & "010" & Y(3 downto 0), and lastly
by the actual subscript write operation to the memory, MEM(PC)= Y. The design
representation of this example is given in Figure 6. b.

3.4.6 Variable References and Dependencies

The sequential nature of typical hardware description languages imposes three types
of data dependencies on the variable accesses. They are called flow, anti and output
dependencies [21]:

• A flow dependence exists if a "Write S" is followed by a "Read S",

• an antidependence exists if a "Read S" is followed by a "Write S", and

• an output dependence exists if a "Write S" is followed by another "Write S".

In all three cases, inconsistencies will result if the given order of reads and writes is
not preserved. No dependencies exist between a set of Read nodes if there is no Write
node among them. These Read nodes referring to the same value of a variable are
thus merged into one Read node.

If a flow dependence exists, then a sequencing arc is inserted from the Write
node to the Read node of the same variable. This enforces that the value of the signal
is updated before it can be read. Such a pair of consecutive Write and Read nodes
may later be optimized by a graph critic. If an antidependence exists, i.e., a "Read
signal" is followed by a "Write signal" node, then a sequencing arc is inserted from
the Read node to the Write node of the same variable. This enforces that the value
of the signal is read before it is allowed to be updated. If an output dependence
exists and there is at least one Read signal statement between these two Writes,
then no additional arcs are inserted. If there is no read access in between these two
writes, then a sequencing arc has to be inserted between them to guarantee the correct
output value for the signal at the end of the data fl.ow block. The first write node
can generally be eliminated since it is a dead-end operator. Whenever one of these

3 THE DATA FLOW GRAPH 26

three data. dependencies is already expressed indirectly by data flow edges, they do
not have to be maintained explicitly.

3.4. 7 Array References and Dependencies

The previous discussion about preserving the program semantics becomes even more
intricate when array references are involved. The reason for this is that at compile
time it is not always obvious whether the same memory location is accessed or over­
written for array references with variable indices. Hence, sequencing arcs are imposed
between subscript nodes to the same array. ff two indexes are constant values, then
it can be determined immediately whether the sequencing arc between them is re­
dundant. If one or both indexes are variables then dependency analysis techniques
can sometimes be used to determine whether the arc is redundant. Once a sequence
arc is found to be redundant, a fl.ow graph optimization routine can remove this arc.

If a memory location is subsequently overwritten, then it may sometimes be possi­
ble to forego the generation of memory references nodes. One can use the data flow arc
of the latest value of the array element instead of generating a separate access node.
If a variable-indexed access write array node is encountered, subscript nodes have
to be created for all prior accesses to that array and sequencing edges connect them
with the new variable-indexed node. Sequencing arcs are always inserted between
a variable-indexed write-array node and a subsequent array operation or between a
write-array and a subsequent variable-indexed array operation of the same array. For
example, sequencing arcs are inserted for the specifications given below:

if "A[I]:=X" is followed by "Y:=A[2]", or

if "A[I]:=X" is followed by "A[2]:=Y"; and,

if "A[2]:=X" is followed by "Y:=A[I]", or,

if "A[2]:=X" is followed by "A[I]:= Y".

3.4.8 Formal Procedure Parameters and Dependencies

Sequencing arcs are also used to maintain a strict ordering of the accesses to all
parameters or ports of type out or inout with the same data type. This has to be done
even if the parameters have different variable names and thus appear to be unrelated.
The reason for this is the following. Formal parameters may be aliased to the same
variable by assigning one actual parameter to two distinct formal parameters. Data

3 THE DATA FLOW GRAPH 27

dependencies, that are not shown via data flow arcs in the representation, may thus
exist between accesses to formal parameters.

For a given procedure call, the aliasing can be resolved and sequencing arcs of the
design representation can be optimized. This implies that a separate copy is made of
the procedure specification for each given procedure call, which then is synthesized
to a specialized hardware. Below, we present one example to explain this situation.

In Figure 7.a, we show the design representation of a procedure specification body
defined as follows:

procedure P (X: Type1, Y: Type1) is
begin

X = I * 2;
K = Y + 3;
Y = X - I;

end;

Sequencing arcs are maintained between the two formal parameters X and Y. In
particular, the read node for parameter Yin the second statement is sequenced with
the write node for parameter X in the first statement. Similarly, the read node for
parameter X in the third statement is sequenced with the read node for parameter Y
in the second statement.

If the two formal parameters X and Y are aliased to the same actual parameter
then the flow graph can be optimized as shown in Figure 7.b. This would, for instance,
happen if the procedure S is called in the following manner:

call P (VARi,VARi);

Then, the formal parameters X and Y refer to the same variable VARI. Therefore,
the sequence arcs preserving ordering between X and Y (Figure 7.a) are transformed
into data flow arcs. They model actual data dependencies among occurrences of the
variable VARl. The optimized design representation corresponds to the following
rewritten specification:

procedure P (X: Typei, Y: Type1) is
begin

K = (I * 2) + 3;

y = (I * 2) - I·
'

end;

I I

3 THE DATA FLOW GRAPH

2
3

x K y

a) Original subprogram body.

K y

b) Optimized Subprogram body

;uter (X=Y).

K

2

3

y

c) Optimized subprogram body

after (X~Y).

Figure 7: Formal Procedure Parameters and Dependencies

28

3 THE DATA FLOW GRAPH 29

On the other hand, the formal parameters X and Y can be bound to distinct
actual parameters by a procedure call described below, assuming that the variable
VARI is distinct from variable VAR2.

call P (VAR1,VAR2);

Note that once it has been determined that X and Y are distinct, the specification
could be rewritten as follows:

procedure P (X: Type1, Y: Type1) is
begin}

K = Y + 3;
Y = (I * 2) - I;

end;

Then the flow graph can be optimized as shown in Figure 7.c. In this case, the
sequence arcs between X and Y can be removed, since X and Y are independent.
This allows· statement 2 to be executed independently and thus concurrently with
statement 1 and statement 3.

3.4. 9 Design Entity Ports and Dependencies

A strict order of all operations that deal with input and output ports of the design
entity has to be maintained. Ports model communication points between different
processors, i.e., data can be read from or written to these ports from outside the
design entity. Thus, they may signify some prespecified behavior to the external
environment, i.e., a fixed communication protocol between the design entity and the
rest of the environment. Consider, for instance, the following statements:

localvarl <= Portln;

localvar2 <= fct (localvarl);

PortOut <:= High;

with Portln and PortOut input and output ports, respectively. Here, the last
statement is not related by data dependencies with the other two. Consequently, it
might be executed concurrently with the others. However, setting PortOut to High
may be a sign for the environment that the value of Portln has been read and thus

3 THE DATA FLOW GRAPH 30

is free to be modified by other processes. This example shows the need for either a
conservative approach towards exploiting parallelism from the computations of one
processor, when fixed protocols for communication between design entities are not
known, or for explicitly specifying these protocols.

We prefer the second approach. We assume that the designer explicitly specifies
such protocols, ifs/he wants to ensure a desired ordering of events. In Section 3.4.16,
we introduce a mechanism to specify as well as represent event relationships, called
the event-related timing constraint. An event-related constraint could for instance
be inserted between the events of reading from Portln and of writing to PortOut.
This event-related constraint determines not only the ordering of events but also
constraints on the duration of the time interval between the occurrence of two events.
For a more detailed discussion of this construct see Section 3.4.16.

3.4.10 Modeling a Condition in the Data Flow Graph

Below, we discuss the construct used to model conditions at the data flow graph level,
namely, the choose value node. In Sections ?? and ?? , we then describe how this
construct is used to represent different conditional statements.

Figure 8: The Choose Value Node Type

3 THE DATA FLOW GRAPH 31

The DDM model provides a generalized choose value node type in order to
support design optimizations on the design representation. A choose value node
models a conditional selection of one data value from a collection of two or more
values. The mutually exclusive choose values associated with the data input ports of
a choose value node have the following characteristics:

• they are composed of one or more products (or-ed),

• each product corresponds to a list of constant terms (and-ed); one for each
condition variable attached to the control input ports of the choose value node,

• each constant term is either a constant value from a discrete domain corre­
sponding to the data type specified for the condition variable, a don't care
symbol or an others symbol.

This is best explained with an example. In the example in Figure 8, the choose
value node selects among three different input data values, A, B, and C, which are
connected to its three data input ports. Mutually exclusive choose values are associ­
ated with these input ports. The choose value for instance associated with the first
data input port is "(23,11) + (9,10)". This choose value is a sum of two products,
namely, (23,11) and (9,10). The number of terms in each product corresponds to the
number of control input ports, in this case, it is two. The choose values are compared
against the condition variables Cl and C2. The condition associated with the first
data input port thus is evaluated as follows: ((C1=23 and C2=11) or (C1=9 and
C2=10)). If this condition evaluates to true then the value of node A would be
passed through the choose value node to node D. The choose value for the third data
input port is "(2,X)". This interpreted to mean (C1=2 and C2=don't care).

3.4.11 Selected Signal Assignment Statements

with <expr> select
. .

signal <=
<waveform!> when vl,
<waveform2> when v2,

<waveformn> when vn;

Figure 9: VHDL Selected Signal Assignment

3 THE DATA FLOW GRAPH 32

In VHDL data.fl.ow style, a case statement is expressed by a selected signal assignment
statement. An example of such a statement is given in Figure 9. The different values
vl to vn are mutually exclusive. If a value vi matches the select expression <expr>,
then its corresponding waveform <waveformi> is evaluated and assigned to the signal.

Figure 10: CDFG Choose-Value Node

The select expression <expr> can be a complex expression. Its only restriction is
that it results in a discrete value. In Figure 10 we show how this statement would be
represented in the data flow graph. The select expression <expr> is represented by
a possibly complex data flow graph within which each access of a variable or array
is represented by a read or a read-array node. The same is true for the waveforms
<waveforml> to <waveformn>, i.e, each has a data flow graph generated for its
expression value. One of them is selected to be assigned to the signal if its associated
condition value Vi matches the value of the select expression. The signal on the
left-hand side of the assignment is represented by a write or a write-array node.

In VHDL, a selected signal assignment statement can also be guarded. This
means that the conditional signal assignment is based on the evaluation of the guard
expression. The guard expression appears at the beginning of the enclosing VHDL
block. It can be associated with any statement within that block. When the guard
expression evaluates to true, then all signal assignments with a guarded qualifier
appearing in this block will be evaluated.

3 THE DATA FLOW GRAPH

block (< guard expression >)
begin
with <expr> select
signal <=guarded

<waveforml> when vl,
<waveform2> when v2,

<waveformn> when vn;
end block;

Figure 11: VHDL Selected Signal Assignment with Guard

33

In Figure 12 we show how the guarded select signal assignment shown in Figure 11
is represented in the CDFG model. A data fl.ow graph (with read nodes) is generated
for the guard expression of the block. A second choose-value node is added guarded
by this expression graph. Its true input is connected to the result of the selected
signal assignment (which can be directly duplicated from Figure 10), and its false
input is connected with a read node of the signal.

Note that the guard expression is associated with the entire VHDL block, and
thus other signal assignment statements within this block may also use it. This
guard expression is thus represented once in data flow format and then it is directly
linked to all choose-value nodes that guard a signal assignment within that block.

3.4.12 Conditional Signal Assignment Statements

An if-statement is represented in VHDL datafl.ow style by the conditional signal as­
signment statement. The syntax of this statement is shown in Figure 13. This assign­
ment corresponds to a possibly nested if-then-else statement where all assignments
are made to the same signal based on different boolean conditions.

Like conventional programming languages, the conditions <cond,> are evaluated
in the order in which they appear in the code. The first condition that evaluates to
true is the only one to be executed. For instance, if the condition <cond;> evaluates
to true then its associated waveform value <waveform; > is assigned to the signal.
If the statement is guarded then the additional condition that the guard evaluates to
true has to hold.

This neste<i if-construct is represented by a chain of choose-value nodes as shown
in Figure 14 (16]. For each if-statement a choose-value node is created guarded by .

3 THE DATA FLOW GRAPH

,..,-,,\
.C.guard::;i-

\1_,/ -

signal

signal

Figure 12: CDFG Choose-Value Node with Guard

34

the data flow graph of the corresponding condition <cond1>. The true input of that
choose-value node is connected to the data flow graph of the associated waveform
<waveform, >. Its false input is connected to the output of the next condition
<cond1+1 > which is to be evaluated in the case that cond, is false. If the conditional
signal assignment is guarded then an additional choose-value is inserted at the bottom
of this chain. This assures that the assigned value can only pass if the guard is true.
The output of the bottom most choose-value node is connected to the write node of
the signal.

3.4.13 Loops in the Data Flow Graph

We assume a single-assignment data flow graph. Therefore, the graph does not sup­
port constructs ·for the representation of loops. Loops are, however, supported within

the control flow graph. 1 '

3 THE DATA FLOW GRAPH

signal < = [guarded]
<waveforml> when <condl> else
<waveform2> when <cond2> else

<waveforrnn> when <cond11 > else
<waveformn+1 >;

Figure 13: VHDL Conditional Signal Assignment with Guard

3.4.14 Events in the Data Flow Graph

35

Events at the data flow graph level generally refer to either events on the clock
signal or to the specification of asynchronous behavior of components, such as the
asynchronous load of a register. Events are represented by explicit event nodes in
the data flow graph. An event node is a diamond-shaped node labeled by the type
of event (Figure 2). An event node can be considered as a special operator node;
namely, a predicate that tests for the presence of an event on a signal. It takes a
signal as input and produces a boolean value as result.

In VHDL, such events are introduced by signal-related attributes. The following
four signal-related attributes are of interest for synthesis and are thus supported
by our model: SIGNAL'EVENT, SIGNAL'STABLE(delay), SIGNAL'RISING and
SIGNAL'FALLING . The first two are predefined by VHDL. The last two may be
defined as follows:

SIGNAL'RISING =nEF SIGNAL'EVENT and (SIGNAL='!')

SIGNAL'FALLING =nEF SIGNAL'EVENT and (SIGNAL='O')

All four attributes accept a signal as argument and return a boolean value as result.
The STABLE attribute optionally takes a time expression as second argument. The
attribute SIGNAL'STABLE(< time - expression >) returns the value true when
an event has not occurred on the signal SIGNAL for <time- expression >units of
time. Otherwise, it returns the value false. The attribute SIGNAL'EVENT returns
the value true when an event has just occurred on the signal SIGNAL; otherwise, it
returns the value false. These signal-related attributes may appear anywhere in a
VHDL specification where a condition is being specified. In other words, they may
be used in the condition field of a conditional statement, in the guard of a block
statement, and in a loop test.

An example of how these signal-related attributes may be used in a conditional
signal assignment statement is shown in Figure 15. The CDFG representation of this

3 THE DATA FLOW GRAPH 36

signal

,,,.- ... \
1cond1,~----.

\ /

signal

Figur~ i4: CDFG Representation for a Conditional Signal Assignment

; !

3 THE DATA FLOW GRAPH

OUT<=

INl and IN2 when (INl'RISING and IN2='1') else
INl and IN2 when (INl'FALLING and IN2='0') else
INl and IN2 when (IN2'RISING and INl='l') else
INl and IN2 when (IN2'FALLING and INl='O');

37

Figure 15: Signal-Related Attributes in a Conditional-Signal Assignment Statement

INl 0001 IN2 OUT

OUT

Figure 16: Events in the Data Flow Graph

fi

3 THE DATA FLOW GRAPH 38

VHDL specification (Figure 16) depicts the first assignment of the conditional signal
assignment statement. The other three assignments can be represented by a similar
graph.

3.4.15 Path-Related Timing Constraints

We classify all timing specifications into two groups, namely, the path-related and
the event-related timing constraints. Path-related timing constraints are discussed
in this section, while event-related timing constraints are presented in the next section.

A path-related timing constraint models the time taken for the effect of a signal
to propagate through a set of hardware units. In other words, it indicates a delay for
the transfer of data from one point of the hardware to another. A path delay node,
or short delay node, can be used to model the delay of an individual operator node
as well as the delay of a group of operator nodes. It can also capture point-to-point
delays from one particular input of an operator to the output.

In the design representation, we represent such a path delay by the a path delay
node and a set of associated timing arcs. A delay node has one or more input timing
arcs (that identify the source nodes) and one output timing arc (which identifies one
destination node). The path delay then represents a constraint on the execution of
nodes that lie on directed data flow paths between the source nodes and the destina­
tion node. The delay node has attributes of two different information types. The first
is an ordered list of event specifications and the second is a list of associated timing
specifications.

• event specification:

- sources: one or more incoming timing arcs from source signals;

- destination: one outgoing timing arc to the destination signal;

- event-type: we distinguish between the three event types RISING, FALLING,
and CHANGING; one of these event types is associated with each of the
source signals and the destination signal.

• timing. ~pecification:

- delay duration: minimal, nominal and maximal delay values for the
timing constraint value;

- delay value: integer number to indicate the delay in nano seconds.

Ii

ri

3 THE DATA FLOW GRAPH 39

An event specification associates an event-type with each timing input arc (source
signals) and with the timing output arc (destination signal). The timing arcs identify
a subgraph of the flow graph, to which the delay node is referring to, by pointing to
sources signals and to the sink signal. The delay described in the path delay node'
constrains the data flow nodes on the paths from the source nodes to the destination
node.

The event-type corresponds to one of the following three values: RISING, FALLING,
or CHANGING. These three event types are represented by the symbols T, l, and j l,
respectively. If no event-type is given for a signal, then the event-type CHANGING
is assumed as default. Note that path delay constraints most often refer to delays of
data values with n-ary bit-width (n > 1) rather than single-bit control signals, and
in this case the event-type CHANGING is the only applicable event specification.
We introduce this event specification in order to indicate for what event type the
timing specification is given. This is needed since different delays may for instance
be specified for when an input signal is rising than for when it is falling.

The timing specification portion of a delay node specifies minimal, nominal, or
maximal timing constraint values. A timing specification consists of a timing oper­
ator and delay value pair; If no timing duration is given, then the default duration
"nominal" is assumed. The timing operator takes the form<,=, and>, which means
"at least" (or minimal), "approximately equal" (nominal), and "at most" (maximal).
The delay value gives the corresponding time delay in form of a constant value -
possibly in multiples of the predefined CYCLE constant.

In VHDL, a path-related timing constraint can be specified by the after-clause
construct. This construct has the form "after <time-expression>". It may be ap­
pended to signal assignment statements but not to variable assignment statements.
Thus, delays are specified in VHDL relative to the reading or writing of signals. An
example of a simple path delay is given in Figure 17. We can make the following
observations concerning the delay node attributes previously discussed:

• event specifications:

- (source Sl, event-type change)

- (s~urce node4, event-type change)

- (destination 82, event-type change)

• timing specification:

(delay duration nominal, delay value lOns)

3 THE DATA FLOW GRAPH

r-------­
r - -1- - - - - - - -

~
~

I
I
I
I
I

S2

I .

L----------------->

~

4

VHDL description: 82 <= Sl + 4 after lOns;

Figure 17: A Simple Path Delay.

i '

40

3 THE DATA FLOW GRAPH 41

In VHDL, such timing constraints may also be specified in a conditional or a. se­
lected signal assignment statement. Each assignment within these statements can be
extended by an after-clause (Figure 18). In this context, the specified path delays are
event- or condition-dependent. In. other words, the delay is relative to the occurrence
of some event or some condition. For this, the delay node has an additional input
port connected to the cause of the delay.

In Figure 18, we present a VHDL description of conditional path delays. Both
assignments within the selected signal assignment statement have an associated after­
clause. The corresponding CDFG representation is given in Figure 19. Since the
delays depend on the evaluation of the COND expression, both delay nodes have the
node "COND" as one of their input timing arcs.

with COND select

S <=A+ B after dl when Cl,

A - B after d2 when C2;

Figure 18: VHDL Specification of a Path-Delay.

There are two timing delay nodes. The attributes of the first delay node are:

• event specifications:

(source COND, event-type change)

(source A, event-type change)

(source B, event-type change)

(destination S2, event-type change)

• timing specification:

- (delay duration nominal, delay value dl)

The attributes of the second delay node on the right-hand side of Figure 19 are:

• event specifications:

- (source COND, event-type change)

3 THE DATA FLOW GRAPH

I
I
I
I
I
I
I
I
I

A

r-----------------------
1

I r-------- -----------
1
I
I
I
I
I
I

r:----- ------

path expression:
{ (COND CHS)

(A+ CHS)

B

---- ---- --,

-- --- -- .,

--------- I - I I
I I
I I
J I
I I
I I
I I
I I

I
I
I

path expression:@' 1

{ (COND CHS) o,ath
(A - CH S) delay d2

(B- CHS)} 1 ® (B +CHS)}.
,.--------~ I

I
I
I
I
I
I
I

L-------------------------

I
I

S I
I
I
I
I
I

------------------~

42

Figure 19: VHDL Specification of Path Delays. (Selected Signal Assignment with
After-Clauses.) ·

3 THE DATA FLOW GRAPH 43

- (source A, event-type change)

- (source B, event-type change)

- (destination 82, event-type change)

• timing specification:

- (delay duration nominal, delay value d2)

The textual example specification (Figure 18) clearly indicates the assignment
statement to which each delay refers. For instance, delay dl refers to the expression
containing the Addition opera.tor and delay d2 to the expression with the Subtraction
operator. In graph-theoretic terminology, the delays dl and d2 describe delays of two
different paths. However, the design representation depicted in Figure 19 (even in
combination with the detailed timing specifications listed in the previous paragraph)
is ambiguous. That is, it is not clear which path has a. delay of dl and which has a
delay of d2. Reasons for this are that the VHDL expression is compiled into one single
data. flow graph; and the two paths representing the two expressions are intertwined
within this graph. In addition, both timing constraints ha.ve the same source and
destination nodes.

We can thus conclude that path delays cannot be represented by simple point to
point delay arcs as generally suggested in the literature [5]. There may be several
directed paths of da.ta fl.ow arcs from the source nodes of a. delay node to its destination
node. However, a path delay does not always specify a constraint for all paths between
the sources and the sink. Instead, the constraint could be restricted to a subset of
these paths. We thus need a mechanism to describe the paths of the data fl.ow graph
that a delay specification is referring to. We solve this problem by extending the
delay node by the concept of a path expression. A path expression specifies
a list of one or more paths in the data fl.ow graph. Each path is represented as an
ordered list of data fl.ow node identifiers starting with one of the input source nodes
and ending with the destination node. A path expression is defined more precisely
below.

Definition 2 Let D be a path delay specification in the data flow graph DFG. A path
expression P corresponds to a list of paths, P = {Pi,p2, ,pn}· Each path p in P ..
is of the form p = (n1n2 nm}, where

• n 1 is one of the source nodes of the delay D, and

• nm is the destination node of the delay D, an~.

3 THE DATA FLOW GRAPH 44

• for all n;, n;+l in p, there is a directed data flow arc in the flow graph G from

ni to n;+l·

For all source nodes mi of the delay D, there is at least one path p in P with mi in p.

The design representation for the example VHDL description given in Figure 18
is updated accordingly. In other words, each delay node in Figure 19 is annotated
with a path expression. For the delay node on the left-hand side of Figure 19 the
expression is:

• path expression:

- { (COND CH S),

- (A+ CHS),

- (B +CHS)}

The path expression for the delay node on the right-hand side of Figure 18 is:

• path expression:

- { (COND CH S),

- (A - CHS),

- (B - CHS) }

Due to the introduction of the path expressions, the design representation is no
longer ambiguous. It is for instance clear now that delay dl refers to the Addition
and delay d2 to the Subtraction operator.

In the VHDL timing specifications we have discussed so far assignment statements
are made to signals. Signal assignment statements can however also be used to model
sequential circuits, like for instance a register. An example of such a guarded signal
assignment statement is given next:

signal REG: INTEGER range 0 to 4095 register;

REG <= guarded VAR after lOns;

In this case, "the specified delay of lOns is relative to the guard, i.e., the clock,
rather than being a delay from the inputs of the register to the output. Thus, the

3 THE DATA FLOW GRAPH

GUARD

' ' ' "

VAR

REG

--- ---

VHDL description: REG <= guarded VAR after lOns;

Figure 20: Modeling the Delay of a Register.

45

3 THE DATA FLOW GRAPH 46

source of the register delay is the CLK and the sink is the value written to the register.
Since a sequential circuit is a clocked device, the representation of the delay (Figure
20) is different than the path delay shown in Figure 1 7.

The presented timing constructs for modeling path delays in the CDFG graph are
more powerful than the semantics of the VHDL after-clause. The after-clause gen­
erally refers to a whole group of operations, that is, an expression. It always specifies
delays from all inputs of the expression to the output. Point-to-point delays from one
single input to one output can on the other hand not easily be specified. Further­
more, a VHDL after-clause always specifies a nominal delay (used by the simulator
to schedule updates in the future); it supports no mechanism to give maximal or
minimal timing constraints. In the following section we will discuss how VHDL can
be extended to handle the specification of these more fine-grained timing constraints.

3.4.16 Event-Related Timing Constraints

Timing constraints that specify delays between the occurrences of events are called
event-related timing constraints. For example, two signals may be required to
have valiq values during the same time interval, or a particular data signal needs
to be available for reading a certain time interval after the address line signal has
gone high. These relationships of events are often expressed by designers via timing
diagrams (like the one shown in Figure 21). The event-related timing constraints are
thus particularly useful for specifying handshakes and other interface protocols.

For the representation of the event-related constraint type in the data fl.ow graph
we use a timing constraint node with the label event-delay, or short event. The
event-related timing constraint node is identical in format to the path delay constraint
node. The only exception is the fact that path expressions are not associated with
the former construct. Events constrained by an event-related timing constraint need
not necessarily be related by data fl.ow arcs, and therefore a path between them may
not exist.

To explain the format of the event-related timing constraint, we give an example
specification:

DATAl j, DATA2i, DATA3jl: > lOns, = 20ns, < 30ns.

This specifies the following timing constraint between the events on the values
of DATA!, DATA2, and DATA3: From the time that DATA! is rising and DATA2
is falling, there will be at least 10 ns, in average 20ns, and at most 30 ns before

3 THE DATA FLOW GRAPH 47

SIG2:

SIGl:

a. timing diagram.

SIGl SIG2

b. design representation

Figure 21: The Representation of Event-related Timing Constraints.

•
3 THE DATA FLOW GRAPH 48

an event occurs on DATA3. The event delay node that captures this example delay ,
specification can thus be described by the following timing attributes:

• event specifications:

- (source DATA!, event-type rising (i))

- (source DATA2, event-type falling (1))

- (destination DATA3, event-type change (il))

• timing specifications:

- (delay duration minimal, delay value lOns)

- (delay duration nominal, delay value 20ns)

- (delay duration maximal, delay value 30ns)

The proposed timing modeling constructs are powerful and allow the user to create
arbitrarily complex signal timing schemes. We can for instance model duration
timing constraints associated with sequential circuits, such as, setup and hold
times. Duration timing constraints refer to the duration during which a signal has to
be stable rather than to a delay needed to traverse a path in the underlying structure.
The event-related delay constraint can also specify the characteristics of a clock signal
by denoting the delay from the rising edge to the falling edge of the clock, or vice
versa, and the delay from the falling to the rising edge.

Figure 22 gives a timing diagram for set-up times, hold times, and delay times
for a register. Figure 23 then shows how these different timing constraints would
be represented in the CDFG graph. Setup and hold times are event-related timing
constraints and thus are represented by event-delay timing nodes. The propaga­
tion delay of the register, however, is a path-related timing constraint and is thus
represented by a path-delay node.

Setup time is defi?-ed as the minimum time that the input should continue to
be stable before the clock becomes active. It can thus be modeled by the following
event-related timing constraint between the input to the register and the clock:

DATA j l,· CLKj: > lOns.

This states that at least lOns have to pass without any change on the DATA
signal before the CLK signal can be rising. This can be interpreted to mean that the
DATA signal has to be held stable for at least lOns before the value can be written
into a register. This example demonstrates that tHe duration timing constraint can

3 THE DATA FLOW GRAPH

CLOCK:

DATA-IN: ----, setup>D1 1----- hold> 02 r - - - - - - - - - - - - -____ ...,.,
DATA-OUT: _____________ ~ ___ ~~~~':=~~ _____ -~

Figure 22: Timing Diagram for Set-up, Hold and Register Delays.

CLOCK

I
I

I

I

I
I

I

I

" I "
I ""
"

I
I

I

" " "

... ...

DATA

... ...

REGISTER

Figure 23: CDFG Representation of Set-up and Hold Times.

/:

49

3 THE DATA FLOW GRAPH 50

be modeled by the event-related timing constraint on the two events of initiating the
WRITE operation and on the actual value written. The timing attributes for the
setup event delay node can be summarized as follows:

• event specification:

- (source DATA, event-type change (j l))

- (destination CLK, event-type rising (j))

• timing specification:

- (delay duration minimal, delay value lOns)

Hold time refers to the minimum time that the input should continue to be stable
after the clock has become active. Hold time can thus be specified by the following:

CLKj, DATA j l: > 30ns.

It states that from the time the signal CLK is rising there will be at least 30ns
before the DATA value signal may be changed. In other words, the value DATA has
to be held stable for at least the hold interval (at least 30ns) after the write operation
has been initiated. The timing attributes for the event delay node that models the
hold time can be summarized as follows:

• event specification:

- (source CLK, event-type rising (j))

- (destination DATA, event-type change (il))

• timing specification:

- (delay duration minimal, delay value 30ns)

Event-related timing relationships cannot easily be specified by VHDL descrip­
tions. The only timing construct of VHDL, the after-clause, has to be appended
to signal assignment statements. Thus, an after-clause is associated with the active
modification ~f signal values which is not appropriate for modeling most event-related
delays. Therefore, we need another mechanism for specifying event-related timing
constraints in a VHDL textual description. There are three alternatives we have con­
sidered, which are to define timing constraints via assertion statements, via special
comments, and via a pseudo procedure call.

•
3 THE DATA FLOW GRAPH 51

The expression of assertion statements to represent these timing constraints would ·
get quite clumsy. For instance, the timing specification of

DATA j !, CLKj: > lOns.

would be expressed by the following assertion statement:

assert ((not CLK'stable(Ons) and CLK='l')
and (DATA'last..active > lOns))
or (CLK='O') or (CLK'stable(Ons))

report "setup time violation"
severity "warning";

An assertion statement is a sequential VHDL statement. It can therefore only be
used within a sequential VHDL description, such as, a process or a subprogram, but
not within a concurrent block. Therefore, assertion statements are not a satisfactory
means for specifying timing constraints for synthesis.

Instead, we suggest that timing relationships of signals are expressed via a com­
ment statement in a VHDL specification. The syntax of the comment statement for
specifying event-related timing constraints is as follows:

- - TIMING: < timing specification >

where the term <timing specification> is an expression of the format described
earlier.

It is equally possible to develop a VHDL procedure for specifying the timing
constraints. Below, we give an example of such a special-purpose procedure:

procedure TIMING-CONSTRAINT (<timing specification>) is
begin
empty body here
end TIMING-CONSTRAINT;

All information specified in the previously discussed timing specification is entered
into this procedure- in the form of parameters. The body of this pseudo procedure
is empty, and thus the simulation of the VHDL specification would not be_ affected
by a call to this procedure. The compiler however would interpret a ca.II to this
pseudo-procedure as a hint (a comment) to insert timing constraints into the design
representation for synthesis. A procedure specification for simple one-source to one­
sink delays is introduced in [22].

; ;

4 THE CONTROL FLOW GRAPH 52

4 THE CONTROL FLOW GRAPH

In this section, we discussed the control flow graph object types of the augmented
CDFG model. A control flow graph is created for loops, conditional statements, and
other control constructs of the specification, such a.'! a procedure, a subprogram or a
process.

4.1 The Control Flow Graph Definition

Below, we first define the graph and then discuss its object types in more detail.

Definition 3 A control flow graph is a directed (not necessarily acyclic) graph

CFG = (CN, CE, GP, CF) with CN the set of vertices, CE the set of edges, GP the set
of ports, and CF the set of control flow marking functions. The elements of CN are
uniquely identified by the function vertex-num: CN--+ INTEGER.

1. CN corresponds to the set of control flow nodes. It is composed of several dis­

joint sets, DN =PROCESS u CALL U CONDITION U STMT-BLOCK u
MARKER U TIME.

• PROCESS is the set of process nodes.

• CALL corresponds to the set of procedure call nodes.

• STMT-BLOCK corresponds to the set of statement blocks.

• CONDITION is the set of condition and event nodes.

• MARKER corresponds to the set of demarcation nodes.

• TIME corresponds to the set of timing constraints.

2. GP is the set of ports-; They corresponds to the connection points of vertices with

the arcs of the graph. The function port-class: P--+ {input-port, output-port}
specifies whether a port is an input or an output port. A vertex v E CN can have

an ordered (possibly empty) list of input and output ports p E GP, respectively.
The function input: CN x INTEGER--+ GPU 0 is an assignment of input

ports to ·vertices. The function output: CN x INTEGER--+ GPU 0 is an

assignment of output ports to vertices.

4 THE CONTROL FLOW GRAPH 53

3. CE represents the set of directed edges between the (ports of the) vertices of the

graph. The edges correspond to pairs (pl,p2) E GP x GP with the direction of

the edge from pl to p2. We distinguish between five types of edges, which are

control flow arcs, concurrent arcs, hierarchy arcs, timing arcs, and demarcation

arcs.

4. CF is a set of control flow marking functions CF;,: CN -+ CM with CM the set
of possible attribute domains.

4.2 Representation of the Control Flow Vertices

The graphical depictions shown in Figures 24 and 25 are used to represent the con­
structs of a control flow graph. The meaning and attributes of each vertex type is
explained below.

Type: Concurrent nodes

Graphic: Parallelogram with the labels called co-begin and co-end

Description: A co-begin/co-end node pair marks a concurrent piece of code (in
this report we referred to as a block). All control nodes attached to the co-begin node
by outgoing edges execute simultaneously (in different parts of the same data path
or even in different processors). Thus, a co-begin node forks possibly independent
processes. A co-end node simply collects these concurrent processes into one location.

A co-begin node has one input and numerous output edges (of the concurrent
edge type). A co-end node has one output and numerous input edges (of the con­
current edge type). The outgoing arcs of a co-begin node and the incoming arcs
to a co-end node demark the concurrent pieces of code that are contained within
the concurrent specification modeled by the co-begin/co-end node pair. A co­
begin/ co-end node pair can model hierarchically nested concurrent blocks, since
the concurrent block modeled by a co-begin/co-end node pair could contain other
concurrent blocks. The incoming arc of a co-begin node originates at a control flow
node representing the block in which the concurrent piece is contained. Similarly, the
outgoing arc of a co-end node points back to the control flow node that represents
the end of a block in which the concurrent piece is contained.

A co-begin node has one or more outgoing edges to control flow nodes out of
which the concurrent block is composed of. They point to processes, blocks and
concurrent procedure calls. One of these outgoing arcs may point to a statement­
block node. The data flow graph associated with the latter contains all concurrent
signal assignments specified in the block description. A concurrent block can also

4 THE CONTROL FLOW GRAPH

Process node Call Node:

Stmt-block node Event node:

Demarcation Nodes:

Process-begin Process-end

I

v

e " . . :::i..

v ·:::...

Demarcation Nodes:
Co-begin Co-end

' co-begin
co-name

t

54

Condition Node End-Condition Node

chl ch2 ch3

Timing Constaint Nodes:
Delay Node Timeout Node

I
I

e
y

Subprogram-begin

I

• v

~ . " ;:,.

":::...

Par-begin

par-begin
par-name

~

Subprogram-end

Jbjj;
I

~

Par-end

par-name

~

Figure 24: Graphical Representation of Nodes in the Control Flow Graph

4 THE CONTROL FLOW GRAPH 55

sequence arc

concurrent arc

hierarchy arc

timing arc - - - - - - - - - - - - ->

de01arcation arc ,,,,,,,,,,,,,,, >

Figure 25: Graphical Representation of Arcs in the Control Flow Graph

have a guard, i.e., a condition which determines under which event the block is to
be executed. In this case, a data fl.ow expression graph that represents this guard
is included in the data fl.ow graph associated with the statement-block node of the
concurrent block.

Type: Process node

Graphic: Double circle with process name

Description: A process node represents a process specification. A process node
has one concurrent input arc and one concurrent output arc to the predecessor and
successor nodes in the control fl.ow graph, respectively. It also has one incoming
and outgoing hierarchy arc to its process specification, i.e., to a process-begin and
process-end node pair. A process node has an (optional) sensitivity list associated
with it.

Type: Statement-block node

Graphic: Rectangle

Description: A statement-block node represents a number of assignment and data
selection statements that are represented by a data flow graph. It has one input
and one output control fl.ow arc to its predecessor and its successor in the control
flow graph, respectively. It also has one outgoing hierarchy arc that points to the
representation of the associated data flow graph.

4 THE CONTROL FLOW GRAPH 56

Type: Call node

Graphic: Circle with the procedure name

Description: A procedure call is represented by a call node in the control flow graph.
A call node has one input control flow arc from its control flow predecessor. It has
one output control fl.ow arc to indicate where to continue in the control fl.ow sequence
once the associated procedure has been executed. There is one additional outgoing
arc of type hierarchy to the corresponding procedure specification.

The representation of parameter passing is handled as follows. If a parameter of
mode in corresponds to an expression rather than a variable name, then a data fl.ow
graph that represents this expression and assigns the result to a temporary variable
is generated. This data flow graph is placed into the control flow node prior to the
procedure call. A possibly empty list of read/write and constant nodes corresponding
to the actual parameters (or the temporary variables that hold the value of the actual
parameters) is associated with the call node. This list is ordered by position, i.e., the
first actual parameter is passed to the first formal parameter, and so on.

Type: Condition node

Graphic: Triangle with a condition label

Description: A condition node distributes control among a number of control
flow sequences. This node type is used to model loop statements and conditional
statements. The attribute function condition-type: CN -+ { IF, CASE, FOR,
WHILE, REPEAT } assigns a condition label to a condition node. A condition
node has one input control flow arc from the predecessor in the control fl.ow graph,
and two or more output control flow arcs to mutual exclusive successors in the graph.

If the represented condition corresponds to a simple boolean or integer variable,
then the condition node is annotated by the name of that variable. If the condition
corresponds to an expression, then a data flow graph that represents this expression
and assigns the result to a temporary variable, called the conditional variable, is gen­
erated. It is attached to the condition node. Each output port of the condition node
has a constant guard against which the conditional variable is compared. The output
branch associated with a guard will be executed when the value of the conditional
variable equals the value of that guard.

Type: End-condition node

Graphic: Reversed triangle with a condition label

; ;

4 THE CONTROL FLOW GRAPH 57

Description: An end-condition node is used to mark the end of a. conditional state­
ment. It collects all threads of computation that arise from the corresponding con­
dition node. Thus, an end-condition node has one input port for each output port
of the matching condition node. The ·attribute function condition-type: CN -+ {

END-IF, END-CASE} assigns a. label to an end-condition node.

Type: Parallel nodes

Graphic: Parallelogram with the labels par-begin and par-end

Description: There are two nodes to demark para.Ile! threads of control, called par­
begin and par-end. A par-begin node has one input and two or more output
control fl.ow edges. A par-end node has one output and two or more input control
fl.ow edges. At a par-begin node, several independent threads are spawned off at the
same time. All threads of control execute simultaneous. Control does not proceed past
the corresponding par-end node, until a.11 threads of controls ha.ve finished execution.

Type: Delay node

Graphic: Stop sign symbol with label delay

Description: A delay node is used to model a delay timing constraint at the control
fl.ow graph level. A delay constraint node specifies a delay for a set of computations.
The respective set of computations is marked of by timing arcs associated with this
timing node. The attributes minimal, maximal and nominal specify the minimal,
maximal and nominal time or cycle delay, respectively.

Type: Timeout node

Graphic: Stop sign symbol with label timeout

Description: A timeout constraint node is used to model a timeout· for a set of
computations at the control fl.ow graph level. The respective set of computations is
marked of by timing arcs associated with the timeout node. There is an incoming
timing arc from the source of the constraint and an outgoing timing arc to the sink of
the constraint. In addition, a timeout node has an outgoing sequence arc that points
to some other node in the control fl.ow graph. A timeout node also has one integer
time value attribute, called timeout value. When the set of computations associated
with the timeout node is entered, then a timer is started up with the timeout value.
If the constrained set of computations is executed in a time less than or equal to this
timeout value (i.e., before the timer runs out), then the timeout constraint is met.
Then the execution simply continues with the next control fl.ow node in the graph. If
the execution of the constrained computations is not completed after the timer has
counted up to the timeout value, then the computations are interrupted. Execution

4 THE CONTROL FLOW GRAPH 58

then continues with the control flow graph portion that the sequence arc attached to ·
the timeout node is pointing to.

Type: Event node

Graphic: Diamond

Description: An event node in the control flow graph describes an asynchronous
event. An event node waits for a particular event or data condition, such as, whether
a signal is rising, falling, stable, or whether any event occurred on a signal, before the
control execution continues. Input to the event node is a control fl.ow arc from the
previous control flow node and output is a control fl.ow arc to the next control flow
node that is to be executed after the event has become true. An event node has a
hierarchy arc to an associated data fl.ow graph that describes the event that is to be
tested for.

Type: Process demarcation nodes

Graphic: Half-circles with double horizontal lines

Description: The demarcation node pair process-begin and process-end mark
off the beginning and the end of a process specification. The process-begin nodes
have one input hierarchy arc from the corresponding process node that is being rep­
resented. The process-end nodes have one output hierarchy arc that points to the
corresponding process node. A process-begin node has zero or more output demar­
cation arcs that point to subprogram-begin nodes of subprograms that are defined
or used within that process. It also has a control fl.ow arc to the first control flow
node within its process body.

Type: Subprogram demarcation nodes

Graphic: Half-sixatons

Description: The demarcation node pair subprogram-begin and subprogram­
end mark off the beginning and the end of a subprogram representation, respectively.
The subprogram-begin demarcation node has zero or more arcs that point to other
subprogram-begin nodes that are defined or used within that subprogram. It also
has one output control fl.ow arc to the first control flow node in the control fl.ow graph
that represents the behavior of the subprogram. The subprogram-end node collects
all control fl.ow arcs that exit the subprogram. The node pair is connected to its call
nodes by hierarchy arcs.

A list of formal parameters and their mode is attached to the subprogram­
begin node. If the subprogram is a function, the:n a write node to a temporary

4 THE CONTROL FLOW GRAPH 59

variable named "return-<function-name>" representing the return value is attached
to the subprogram-begin node as well.

4.3 Representation of the Control Flow Arcs

The graphical depictions of the arc types supported by the control fl.ow graph model
are shown in Figure 25. The meaning and attributes of each arc type is explained
below.

Type: Control flow arc

Graphic: Arrow

Description: Control flow arcs connect pairs of control flow nodes to show their
sequencing. They thus preserve the ordering within the control fl.ow graph.

Type: Hierarchy arc

Graphic: Bold dashed arrow

Description: Hierarchy arcs are used to demark levels of hierarchy within the control
flow graph. They connect a control flow node with another control flow graph that
describes the behavior encapsulated by the former. For instance, they are used to.
point from a procedure call node to the body of the procedure. They also point from
a stmt-block node to the associated data flow graph. In addition, they connect a
process node to its process-begin and process-end node pair.

Type: Concurrency arc

Graphic: Bold arrow

Description: A concurrency arc connects a control flow node to a set of other
control flow nodes that are to be concurrently executed with respect to each other.
The control flow node at the source of the arc corresponds to a co-begin node.
Conversely, concurrency arcs are used to connect concurrent control flow nodes to a
co-end node to mark the end of the concurrent section.

Type: Timing arc

Graphic: Dashed arrow

Description: Timing arcs connect a timing constraint node with other control flow
nodes. they denote the portion of the control flow graph that is being constrained by
the associated timing node.

4 THE CONTROL FLOW GRAPH 60

Type: Demarcation a.re

Graphic: Dashed arrow

Description: Demarcation arcs are used to point from or to demarcation nodes. For
instance, demarcation arcs point from a process-begin node to all the subprograms
specified within the process.

4.4 Modeling with Control Flow Constructs

Below, we show how the just presented control flow model can be used to represent
typical specifications written in VHDL.

4.4.1 Process Statement

[process-name:] process [(<sensitivity list>)]

declarative part;

begin
sequential-statement-part;

end [process-name];

Figure 26: A VHDL Process Specification

A VHD L process statement defines an independent sequential piece of code that
represents the behavior of some portion of a design. The syntax for a VHDL process
statement is given in Figure 26.

In the CDFG model, a process is encapsulated by a process-begin and process­
end node pair. A sensitivity list corresponds to an implicit wait statement; the
representation of this is discussed in Section 4.4.14. A process body is composed of a
collection of sequential statements. The representation of the process body will thus
be discussed in the following sections, since we will show how each of the sequential
VHDL constructs is represented.

4 THE CONTROL FLOW GRAPH 61

4.4.2 Subprogram Specification

There are two types of subprograms, namely, procedures and functions. A subprogram
specification encapsulates some sequential piece of code into a separate module that
can be reused multiple times. The syntax for a VHDL procedure declaration, which
only defines the interface of the procedure but not its body is:

procedure <procedure - name> (<formal para.meter list>);

This corresponds to a forward declaration commonly found in conventional pro­
gramming languages. The syntax for a complete VHDL procedure specification is
given in Figure 27.

procedure < procedure - name > (<formal parameter list>) IS

declarative part;
begin

sequential-statement-part;
end[< procedure - name>];

Figure 27: A VHDL Procedure Specification

A procedure is represented by a CDFG graph that is encapsulated by a subprogram­
begin and subprogram-end node pair. Figure 28 gives an example of a VHDL
procedure specification and its associated CDFG graph.

In Figure 28, a list of read, write and constant nodes is associated with the
subprogram-begin node. They correspond to the formal parameters of the pro­
cedure. This is equivalent to a symbol table for keeping track of the para.meters and
their modes in the :How graph.

A function spec:i:fication also encapsulates some sequential piece of code into a
separate module. It has no side effects, and returns one value as its result. The
syntax for a VHDL function specification is:

function <function-name> (<parameter list>) return <type-mark>;

The type-mark corresponds to the subtype of the returned value. Therefore, the
list of formal parameters (Figure 28) is extended by one more parameter. This is a
temporary variable that holds the return value of the function.

4 THE CONTROL FLOW GRAPH

..........

r••••••••••., / c----;;;~----:
I dfg-begin I

I I
I . I . : . :

• • • • • • • • • • • • • •

stmt-block

\ PARAl

~
~ :

\ "'27
\ L---------l---------~

"------------

VHDL description:
procedure square (PARAl: out Integer, PARA2: in Integer) is
begin

PARAl = PARA2 x PARA2;
end square;

Figure 28: CDFG Representation of the Procedttre Specification Statement

I I

62

4 THE CONTROL FLOW GRAPH 63

4.4.3 Concurrent Block Statement

A VHDL block statement is the primary construct used to represent concurrent de­
scriptions. A block statement groups together a set of concurrent statements that
relate to the same portion of the design. The syntax for a block statement is given
in Figure 29.

[< block - name >:] block [(<guard-expression>)]

declarative part;

begin
concurrent-statement-part;

end block[< block - name>];

Figure 29: A VHDL Block Specification

A block statement is represented by a co-begin and co-end node pair. All
control flow nodes in between a co-begin and co-end node pair are assumed to be
concurrent.

The block body consists of one or more concurrent statements. There is one
statement-block node within each co-begin and co-end node pair that represents
the block body. A data flow graph that represents the concurrent signal assignments
statements of a block is associated with the statement-block node. A VHDL block
can optionally have a guard, which is a condition which determines under which
event the block is to be executed. This optional guard expression defines an implicit
signal GUARD. If the optional guard expression evaluates to true, all guarded signal
assignment statements will be executed, otherwise they are not executed. A data flow
graph that represents this guard is included in the statement-block node.

VHDL blocks may be hierarchically nested to support design decomposition. This
hierarchical nesting of blocks is shown by the co-begin and co-end node pairs. There
are zero or more outgoing edges from the co-begin node to other control flow nodes
out of which the block is composed of. Some point to the processes included in the
block (process nodes), some point to nested blocks (co-begin nodes), and others
point to concurrent procedure calls (call nodes).

An example of a block hierarchy is shown in Figure 30. In Figure 30, the co­
begin node of block A points to a statement-block node that represents the data-flow
graph of all its statements (<staternentsl >). The co-begin node- of block B points

i 11 l l

! ! I I I

4 THE CONTROL FLOW GRAPH

stmtsl

VHDL description:

A: block
begin

statements!;

B: block
begin
statements2;

end block B;

C: process
begin
statements3;

end C;
end block A;

co- egm
A

co-begin
B

stmts2

co-end
B

co-end
A

, , ,
,

,. •••• "II , , , , ,

Figure 30: A VHDL Block Specification

64

4 THE CONTROL FLOW GRAPH 65

to its statement-block node (<statements2>). Furthermore, a block may contain
concurrent procedure calls and process statements. For instance, the outermost block
A contains the block statement B and the process C. Therefore, the co-begin node
of block A points both to the co-begin node for block B and a process node for
process C.

4.4.4 Concurrency versus Parallelism

The co-begin and co-end node pair is used to model decomposition into concurrent
processes, whereas the par-begin and par-end node pair models parallel threads of
execution within a sequentially executing process. The latter concept is commonly
expressed by conventional programming languages, such as ADA. There is no explicit
construct in VHDL of this kind. VHDL concentrates on the concurrency concept.
Concurrency corresponds more closely to the model of hardware units.

4.4.5 Procedure Call

A procedure call statement is used to invoke a procedure body consisting of sequential
statements. A procedure call statement has the following syntax in VHDL:

<procedure - name> (<parameter - list>);

As shown in Figure 31, this statement is represented by a procedure call node in
the control fl.ow graph. Its outgoing hierarchy arc points to the procedure specification
of the called procedure.

The design representation of the procedure parameters is explained by an example.
In Figure 31, the procedure call node points via a hierarchy arc to the procedure body
that is depicted in Figure 28. A list of actual parameters is associated with the call
node. This list contains actual parameter references and temporary variables that
hold the value of the actual parameter. The first actual parameter Pl corresponds
to the formal parame~er PARAL The second actual parameter corresponds to the
second formal parameter PARA2. It is an expression, DATA-IN + 4, rather than
a variable name. A data fl.ow graph that represents this expression and assigns the
result to a t~mporary variable, called P2, is generated. This data :flow graph is
placed into the control flow node prior to the procedure call (Figure 31). The actual
second parameter listed in the call node is the temporary variable P2 rather than the
complete expression "DATA-IN+ 4".

4 THE CONTROL FLOW GRAPH

,. / :----~:~-----,
,
' , • • • , 4 ,

II

' , , ,
'

stmt-block

81

\ P2

I\

' "' \ ~
\ L----------1---------~

'-·-·---------
r-------,
I I
1 CDFG for 1

••«CCCl;:I~, I
1 procedure 1

: specification :

L-------~

VHDL description: square(Pl, (DATA-IN+ 4));

Figure 31: CDFG Representation of the Procedure Call Statement

66

4 THE CONTROL FLOW GRAPH 67

A procedure call statement may be processed by a synthesis system in the following
two ways:

1. In-line expansion of a procedure call can be performed. A copy of the CDFG
that represents the procedure body is substituted into the current CDFG in
place of the procedure call node. In the CDFG copy of the procedure body
all occurrences of the formal parameters are replaced by the actual parameters
specified in the call node. When this description is synthesized, the hardware
that implements the overall CDFG is also used for this section of the CDFG
that represents the procedure body.

2. The procedure body can be kept as separate independent entity rather than
being in-line expanded. Then, separate hardware is synthesized for the proce­
dure body. Each procedure call provides the values of the actual parameters as
inputs to and accepts the values of the modified actual parameters as outputs
from the hardware that represents the procedure. This may be done through
shared memory or some other means of synchronization (e.g., a stack).

Procedure call nodes encapsulate some arbitrary user-defined behavior by one
vertex and thus create hierarchy in a control flow graph.

4.4.6 The H-Statement

The VHDL behavioral style has two conditional control constructs, which are the
if-statement and the case-statement. In the CDFG model, control flow nodes are
created for each of the behavioral control constructs using pairs of the condition
and end-condition node types (Figure 24). These nodes may be nested and inter­
connected to directly model the flow of control of the description. In this section, we
describe the design representation for the if-statement, while the case-statement is
described in the next section.

The syntax for a VHDL if-statement is shown in Figure 32. An if-statement
selects for execution one or none of the enclosed sequences of statements depending
on the value of the corresponding conditions. The condition specified in the if and
elsif clauses are evaluated in succession until one evaluates to true or all yield false.
If one condition evaluates to true or the else clause is found then the sequence of
statements associated with this condition is executed.

In the CDFG model, the if-statement is mapped into one or more pairs of condi­
tion and end-condition nodes by the following sc~eme:

4 THE CONTROL FLOW GRAPH

if condition! then
sequence-of-statements!

elsif condition2 then
sequence-of-statements2

else
sequence-of-statementsN +1

end if;

• I

Figure 32: VHDL If-Assignment

r-------1
I I

• • • •••••-=--=--=--=----=>:.! Tl=condl I
...._.,--,._.... I I

L _______ .J

r-------1
I I

• • • • •-=--=---=--=----:.! T2=cond2 I

0

0
00

0
0

i;

I I L _______ .J

r-------1
I I

TN=condN I
I I L _______ .J

68

4 THE CONTROL FLOW GRAPH 69

1. A condition node is created for each condition following the if or the elsif
clause. With this condition node, we associate the label if as well as the name
of the temporary variable that holds the result of the conditional expression.
The data :flow graph associated with the condition node evaluates the condi­
tional expression and assigns the result to a temporary variable. A condition
node created for an if-statement has always two outgoing branches, one with
the condition value true and the second with the condition value false. The
condition node selects the control branch to follow based on the result of the
conditional expression.

2. For the true branch of each condition node, a statement-block node that
represents the sequence of statements to be performed in that branch is created3 .

3. The false branch of each condition node is connected to the condition node
of the next condition.

4. If there is an else clause then the false branch of the last condition node is con­
nected to its sequence of statements <sequence-of-statementsN+i>· Otherwise,
it is directly connected to the corresponding end-condition node.

5. A end-condition node is created for each condition node. This end-condition
node collects the corresponding conditional branches.

For an if-statement without the explicit else part, the false branch of the last
condition node is directly connected to the corresponding end-condition node.

The design representation shown in Figure 33 assumes that the control unit evalu­
ates the condition and then initiates the conditional branching within the same state.
Optimizations according to different design styles are possible. First, each test con­
dition could be evaluated in a statement block prior to the corresponding condition
node. This implies that the condition is evaluated in the state prior to the conditional
branching and the result is then stored in a flip-flop (often called a status register).
Secondly, it is possible to evaluate all test conditions of a conditional statement prior
to execution of the statement4• This is so because the result of these different con­
ditional evaluations will not be modified by a partial execution of the statement. In
Figure 33, this optimizer would collect all conditions of the form "Ti := cond/' into

3If the sequence of statements in the true branch contains other control constructs besides
assignment statements, then a control flow subgraph that represents these control constructs replaces
the statement-block node.

4This prior evaluation of all test conditions applies to a single conditional statement only. If there
is another conditional statement nested within the first, then the test conditions of the later cannot
necessarily be evaluated before the complete nested statement. The reason is that nested conditions
may involve values computed somewhere in the computations; prior to the branching.

4 THE CONTROL FLOW GRAPH 70

one data flow graph. This data flow graph is then associated with the statement block
before the first condition node. The advantage of this scheme is that all conditional
expressions could be evaluated in parallel. It may result in unnecessary evaluations
in the case that one of the early conditions in the if-statement evaluates to true.

4.4. 7 The Case Statement

The syntax for a VHDL case statement is shown in Figure 34. A case statement
selects for execution one of a number of alternative sequences of statements. The
choice values <choicei > and the expression <expr> must be of the same discrete
type. Each possible choice value must appear exactly within the case statement. A
choice value can be a constant value or a discrete range. The choice value others is
allowed for the last alternative. It stands for all values not given in the choices of the
previous alternatives.

A case statement is represented by a single condition node in the CDFG model
as shown in Figure 35. The condition node has an associated data flow graph that
represents the conditional expression <expr>. For each choice value of the condition
node there is a branch leading to a statement-block node that represents the sequence
of statements to be performed in that branch. The condition node selects the control
branch to follow based on the result of the comparison of the choice values with the
conditional expression. An false branch of the condition node is connected to the
statement-block of the others branch if it exists. An end-condition node collects
all branches from the condition node.

4.4.8 The For Loop

There are three loop constructs in the behavioral VHDL style: the for loop, the while
loop, and the infinite loop. In the CDFG model, loops are generally represented in
control flow rather than data flow. They can only be represented in data flow when
they are completely unrolled. Each loop construct is modeled by a condition node
with a condition label that describes the particular condition type. Below, we describe
the design representation for the for-loop. The while loop and the infinite loop are
discussed in a later section.

The VHDL for-loop statement has a loop body that is to be executed repeatedly,
zero or more times (see Figure 36). It is controlled by an index variable and a range.
The discrete range is first evaluated. H is a null range, then the execution of the loop
is complete; otherwise, the index variable's ;value steps through the specified range

l i li : : .
l V?'

; '~;; ._(_

[f[((
-- _______ fl' - ---·----- ---------

4 THE CONTROL FLOW GRAPH

case <expr> is
when <choice> 1 =>
sequence-of-statements- I

when <choiceN > =>
sequence-of-statements-N

.when others =>
sequence-of-statements-N + 1

end case;

•

Figure 34: VHDL Case Assignment

r-----------,
1 DFG for :
1 TMP=expr; :

L------------1

next statement

Figure 35: CDFG Representation of the Case Statement

71

4 THE CONTROL FLOW GRAPH

for identifier in low to high loop
sequence-of-statements

end loop;

Figure 36: VHDL For-Loop

index=low;

r-----------,
• --~ DFG for :

: TMP=(index~high); :

L-----------.J

..-;~
INC(index) i

next-stmt

Figure 37: CDFG Representation of the For-Loop

72

4 THE CONTROL FLOW GRAPH 73

for ea.ch iteration of the loop. Prior to each iteration, the current value of the discrete
range is assigned to the index variable.

As shown in Figure 37, the for-loop is represented by one condition node in the
CDFG model. The condition node determines whether the loop is to be executed one
more time by taking the true branch or whether its execution is complete. The false
branch of the condition node is connected to the control flow node that represents
the next statement after the loop. At the end of the statement-block node that
represents the loop body, the index variable is incremented. Before entering the next
iteration, it is tested whether the index variable has reached the upper bound of the
range by setting the test bit X := (index :::; high).

4.4.9 The While Loop

The VHDL while-loop construct is shown in Figure 38. The condition of a while­
loop is evaluated before each execution of the sequence of statements. If the value
of the condition is true then the statements are executed. If it is false then the loop
is complete.

The while loop is represented by one condition node. An example of a while loop
is depicted in Figure 39. The condition node holds a data flow graph that describes
the loop expression. The two outgoing branches are marked with the labels true
and false. The condition node determines whether the loop is to be executed by
comparing the value of the conditional expression against the two constant values. If
the loop is to be executed again, i.e., the conditional expression evaluates to true,
then the true branch is taken. If it evaluates to false, then the loop execution is
completed and the false branch to the statement-block of the next statement is taken.

4.4.10 The Infinite Loop

The third type of loop supported by VHDL is the simple loop, also called the infinite
loop. It specifies a repeated execution of a sequence of statements. The syntax of an
infinite loop is as follows:

loop

sequence-of-statements;

end loop;

4 THE CONTROL FLOW GRAPH

while

end loop;

condition loop
sequence-of-statements

Figure 38: VHDL While Loop

r--------.,
I DFG I

1 for 1
I I

• -----.1 condition 1 L--------.J

stmts

next-stmt

Figure 39: CDFG Representation of the While-Loop

I .

74

4 THE CONTROL FLOW GRAPH 75

The loop construct causes an infinite loop, unless used in conjunction with an
exit statement. The next or exit statements are two statements that can appear in
any of the three types of loops. They have the following syntax:

next [loop-label] [when condition];

exit [loop-label] [when condition];

A next statement completes one iteration of the enclosing loop by advancing
control to the next iteration. The exit statement completes the execution of the
whole enclosing loop.

If the optional "when condition" clause is not present, then both constructs are
modeled by control flow arcs. The next statement corresponds to a control flow arc
that points to the end of the loop body. The exit statement is represented by a
control flow arc that leads out of the loop to the false branch of the loop condition.
If a "when condition" clause is specified, then both constructs are represented by a
condition node.

Figure 40 depicts the design representation of an infinite loop with a next state­
ment and an exit statement. Both statements have a "when condition" clause. The
next statement is represented by a condition and an end-condition node pair.
The condition node is labeled with the term next. The true branch of the condition
is connected to the last statement of the loop body whereas the false branch is con­
nected directly to the next statement in the loop body. The exit statement exists
the loop indicated by the loop-label. It is represented by a condition node labeled
with the term exit. Its true branch is connected to the first statement after the loop.
The false branch of the exit statement is connected to the next statement in the loop
body.

4.4.11 The Generalized Condition Node

During the previous sections, we have assumed that the condition node used to
model a conditional or a loop statement is based on a single temporary condition
variable. The CDFG model provides a more generalized condition node type in
order to support design optimizations on the design representation. The condition
listed in the condition node can be of a more general format:

• a list of one or more condition variables (and associated data types), and

• each condition variable that represents a complex conditional expression is re­
placed by a temporary conditional variable.

4 THE CONTROL FLOW GRAPH

r---------,
I DFG I

: for ~-- stmisl
' stmtsl ' L--------.J

r---------,
I DFG I
I ./! I
1 J.Or 1<-c:-c:-c:

I CONDl I
L--------.J
r---------,
I DFG I

for '-<--- stmts2 I

1 stmts2 ' L--------.J

r---------,
I DFG I

: for ~---
' COND2 I L--------.J

r---------,
I DFG I

for :~-- - stmts3

1 stmts3 1
L--------.J

VHDL description:
loop

{ stmtsl; .}
next when CONDI;
{ stmts2; }
exit when COND2;
{ stmts3; }

end loop;

fiow node

Figure 40: CDFG Representation of the Infinite Loop

76

4 THE CONTROL FLOW GRAPH

if (INl=O or IN2~100)

{A;}
else

case I:
10: { B; }
20: { C; }
others: { D; }

end case;

end if;

Figure 41: VHDL Specification of Nested Conditions

77

The latter is accounted for in our model by associating a data fl.ow graph with each
condition node. The conditional expression that evaluates to a condition variable is
represented in that graph. The result of the conditional expression is assigned to the
temporary conditional variable listed in the condition node.

The condition values associated with the outgoing branches of the condition node
have the following characteristics:

• they are composed of one or more condition values (or-ed),

• each condition value is a list of constant values (and-ed); one for each condition
variable attached to the condition node,

• each constant is either a value from a discrete domain corresponding to the
data type specified for the condition variable, a special don't care or others
symbol.

To demonstrate the usefulness of an extended condition node concept, we show
one design transformation in Figure 42. This design transformation can be used to
optimize the design representation. In this example, a nested condition of depth two
is combined i;nto one complex condition. In the CDFG model, this is represented by
an extended condition node. The condition values of this node are composed of two
constant values each; one for the first and one for the second condition. The first
condition value consists of one product composed of two terms, the constants T and
X. This corresponds to the condition (CONDl=T and COND2=don't care).

• •
4 THE CONTROL FLOW G~APH 78

, ,
, , , ,

, , ,

~ 49._.__

l

c

,-------------------,' r--------------- ----------------,
,' , I

I
I
I
I

...----"-----.----~'

-~-.,
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1 CONDI 1

... _ ,
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~ : coRtWfoN1 l
\ L-----------~-----------j
~-----------------

I
I
I
I
I
I
I
I
I

I CONDI I

: : omJWfONl l
i L-----------~------------J L-••••••••••••••••

Figure 42: CDFG Representation of the Extended Condition Node

4 THE CONTROL FLOW GRAPH 79

4.4.12 Timing Constraints

We support two types of timing constraints at the control fl.ow graph level, namely,
delay constraints and timeout constraints. A delay constraint enforces that the ex­
ecution of a set of computations is done within a given time constraint in order to
guarantee the correctness of the design. The delay constraint is used in particular by
scheduling tools, which determine in which order the operations are executed and also
which operations to group together into one state. A timeout constraint, on the other
hand, states that the execution of the computation will resume at a different location
in the control fl.ow graph if the required timeout constraint is not met. Thus, the
later does not enforce that the constrained set of computations actually completely
executes within the given timing constraint.

In VHDL, a wait statement can be used to express a timing constraint within
a sequential program, such as, a process or a subprogram statement. The general
syntax of a VHDL wait statement is shown in Figure 43.

wai~
[on.< sensitivity - list >]
[until < boolean - expression >]
[for< time - expression>];

Figure 43: VHDL Wait Statement

A wait statement causes the suspension of the process or the procedure state­
ment in which it resides. The process is resumed when an event on one of the
signals in the sensitivity-list occurs and the specified condition is true. The "for
< time- expression>" clause specifies the maximal amount of time the process will
be suspended. This is also referred to as the maximal timeout interval. The process
will resume execution at the latest after the timeout interval expires, even if the other
two constraints are not met.

If a wait s~atement is specified with a for-clause only then we interpret this state­
ment to be a delay from the previous wait statement (anchor point) to the current
control fl.ow node. Figure 44 represents the design representation of such a wait state­
ment in the CDFG model. A timing constraint node with the label delay is inserted
in the control fl.ow graph to represent the statement. The timing arc that points to
the delay node has its source in the control fl.ow sequence arc following the previous

... ,. 1,
•I,

I 'I ! '

4 THE CONTROL FLOW GRAPH

VHDL description:
wait;
stmtl;
wait for 50ns;
stmt2;
wait for lOOns;

----~

stmtl;

I

_______ .!

------ ---- ---.,

stmt2; @
___________ .!

Figure 44: CDFG Representation of the Wei.it-For Construct

80

wait statement. The timing arc originating from the delay node has its sink in the
control flow sequence arc that represents the location of the wait statement.

If a wait statement combines both timing and event testing, then we interpret the
timeout clause to represent an actual timeout. That is, execution continues after the
specified timeout interval expires even if the event associated with the wait statement
has not been fulfilled. In this case, the timing constraint node used to represent
the timing constraint in the control flow graph is labeled with the label timeout.
The timing arcs embrace the event node that represents the current wait statement.
Figure 45 represents the design representation for this wait statement type.

If there is a single wait statement in the graph, then we require the wait statement
to be the last ·statement of the process. In this case, the timing arcs will start from
the first node and end with the last node of the con,trol flow graph.

!

4 THE CONTROL FLOW GRAPH

----- ----r------.,
I I

: DFG :
I for ~- -
I I
1 stmts 1
I I L ______ ...J

r------.,
I I
1 DFG for 1
I I
1 sensitivity 1<-
1 I
I list I
I I L ______ ...J

VHDL description:
wait;
stmts;

stmt-block

wait on < sensitivity - list > for lOOns;

- - -- --,
I
I
I
I
I
I

IMEOU
lOOns

I
I
I
I

- - - - - - - - -- ...J

Figure 45: CDFG Representation of the Wait-On-For Construct

81

Note that we support timing constraints at both the control fl.ow and the data
fl.ow graph level. The timing constraints at the data fl.ow graph level are generally of
a finer granularity, i.e., they restrict the execution time of one or several operation
nodes. Whereas the timing constraints at the control fl.ow graph level are of a coarser
granularity, i.e., they refer to a complete data flow graph at a time. Thus, the
timing constraints ~t the control fl.ow graph level are mostly used by the scheduler
to determine the ordering of states, while the timing constraints at the data fl.ow
graph level are used by hardware allocators to determine which unit to assign to a
fl.ow graph node. We make the assumption that the timing constraints specified at
the data fl.ow graph level are consistent with those at the control fl.ow graph level.
For example, if an operation node within a data fl.ow graph has a minimal delay of
20ns, then the complete data fl.ow graph cannot have a maximal delay of only lOns.
Such an inconsistent specification would simply be rejected by the design tools as an
incorrect design specification.

l l l

4 THE CONTROL FLOW GRAPH 82

4.4.13 Asynchronous Events

An event node is used to model asynchronous events at the control :flow graph level.
In an asynchronous design, the execution steps are initiated based on the occurrence
of particular events rather than based on the regular clock pulse. An event node has
an associated data flow graph that describes the event condition. When the event
specified by an event node occurs, then execution continues with the control :flow
node after the event node.

Asynchronous events can be expressed in VHDL by a wait statement that contains
an event-clause, a condition-clause or both. The syntax of these statements is:

wait on <sensitivity - list>;

wait until <boolean - expression>;

wait on < sensitivity - list > until < boolean - expression >;

The on-clause specifies a list of signals to which the process is sensitive. The until­
clause specifies a condition that must be true before the process can be resumed. We
model both. cases by an event node in the control :flow graph. The event node has an
associated data flow graph that describes the event.

Figure 46 depicts the design representation for a wait statement with an until­
clause. Since the wait statement does not contain an explicit sensitivity list, all signals
used in the until-clause are inserted into an implicit sensitivity list. In Figure 46 this
is represented by inserting an event node in the data. :flow graph that tests whether
an event has occurred on the signal DATA.

Figure 4 7 depicts the design representation for a wait statement that contains both
an on-clause and an until-clause. In this case, the wait statement has an explicit
sensitivity list; therefore, the signals mentioned in the until-clause are not added to
the sensitivity list. The data :flow graph that describes the event does hence not test
whether an event has occurred on the signal DATA.

For an example of the representation of a wait statement that contains an on­
clause but not an until-clause see the left hand side of Figure 47. It corresponds to the
representation of the VHDL wait statement "wait on Sl, S2;". In general, the CDFG
representation of this wait statement contains an event node in the data :flow graph
for all signals in the on-clause. The outputs of these event tests are anded together.
The result of this test is stored in a temporary variable, called TMP-EVENT.

4 THE CONTROL FLOW GRAPH

r·····-···--- .. ,'/ r-----Q----------,
, , , ,

* DATA 0001 , , , , , , , , , , , ,
I

I ,

\
' ' ' ' ' ' ' ' '

I
I
I TMP-EVENT
I
I
I

DFG for
UNTIL clause

I~ : ~
I I

L-----------T---------------~

'------------·"'

VHDL description: wait until (DATA="OOOl");

Figure 46: CDFG Representation of the Wait-Until Construct

83

4 THE CONTROL FLOW GRAPH 84

r·----------------,
I

I
I

I
I

I

r------------~-----------------,

.
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

TMP-EVENT t
I

DFG for :
~ EVENT '
~ 1

-------------------L-------------------~
I

~---------------------~

VHDL description: wait on Sl, 82 until (DATA="OOOl");

Figure 47: CDFG Representation of the Wait-On-Until Construct

4 THE CONTROL FLOW GRAPH 85

4.4.14 Process Sensitivity List

An alternative 'method for describing an event in VHDL is a process sensitivity list.
This is a list of one or more signals of the enclosing environment of a process that is
inserted into the header statement of a VHDL process. Semantically a process with
such a list contains an implicit wait statement as the last of its statements. The
execution of the process will be suspended when the end of its sequence of statements
is reached. The process is resumed when an event occurs that changes one of the
signals in the sensitivity list.

We model this by inserting an event node at the end of the control fl.ow graph that
represents the process. The event node has an associated data fl.ow graph that tests
for a change on the signals listed in the sensitivity list. This event node is similar to
the one shown in Figure 47. Note that a process with a sensitivity list cannot have
any explicit wait statments within its body. Therefore, there will be only one event
node in the corresponding control flow graph representation of such a process.

5 THE STATE TRANSITION GRAPH 86

5 THE STATE TRANSITION GRAPH

5.1 Integrating State Information into the CDFG Model

High-level synthesis tools, in particular, state schedulers, slice the control/data :Bow
graph into states. This state information leads to the generation of a state table that
represents the sequencing of the design over time. This state table is then compiled
by a control compiler into control logic. State scheduling information will be captured
in DDM in two ways. First, the slicing of the behavioral description into states is
represented by annotations to the CDFG graph. Secondly, the encoding of the state
table into control logic results in the creation of a component, called the control unit.
This unit is inserted into the register-transfer level component graph. In this section,
we are concerned with the former, the state information at the control/data :Bow
graph level.

There are several routes for the representation of the state information in the
CDFG. We first present possible alternatives and then discuss their pros and cons.
This constitutes a motivation for the approach we have decided to take.

Possible Approaches:

1. Associate state information with each data :Bow node.

2. Associate state information with each control flow node.

3. Associate state information with each control flow node and with each data :Bow
node.

4. Create a separate list of state nodes and state sequencing arcs (a state transition
graph) and associate control flow nodes with these state nodes.

5. Create a separate list of state nodes and state sequencing arcs. Associate control
flow nodes with their corresponding state node and also annotate data flow
nodes by state information.

Approach One. Solution one is what comes to mind first, since scheduling
is concerned with assigning data flow operations to particular states. There are
however several problems with this solution. First, a data :Bow graph imposes only
a partial order on its nodes. Therefore, it will not necessarily be obvious in which
order the states are to be executed. In addition, the overall structure of the state
sequencing is less apparent. Information pertaining to a statE!, such as the state

5 THE STATE TRANSITION GRAPH 87

transition conditions or the representation of events that trigger the transition into
the next state is not easily incorporated into this scheme.

Approach Two. The next logical solution is to associate the state information
with the control flow rather than with the data :flow nodes. The control flow graph ·
represents the sequencing of the behavior over time in the form of a partial order.
State assignments further refine this partial order to a complete order with the ad­
ditional restriction of fixed time intervals. Some control flow nodes, in particular,
statement-block nodes, which capture potentially big chunks of sequential code may
be mapped into several states. Therefore, a control flow node would have to be anno­
tated by more than one state identifier. Thus, the scheme of simple control flow node
annotations would not be fine-grained enough to establish a total order. Another
disadvantage of this approach is that information pertaining to an individual state is
again spread over several control :flow nodes.

To remedy the ambiguity problem, a statement-block node and its associated
data :flow graph could be broken into a sequence of statement-block nodes. Then

, each portion of the data :flow graph assigned to one state would be grouped in a
separated data flow graph. This guarantees that all data flow information associated
with a statement block node is assigned to the same state. One problem that arises
from this separation of a data flow graph into multiple small data flow graphs is the
representation of multi-cycle operation nodes. A multi-cycle operation node is active
over several cycles (states). It reads in the same values in all states and writes out
results only in the last state. It is awkward to represent this situation if the activation
duration of an operation node is broken into several data flow graphs. One would
need to distinguish between an operation node that is being executed several times
within consecutive states and a multi-cycle node that is been executed once but that
is active over several ones. In addition, loss of information may have occurred during
the control flow graph reorganization. For instance, since data flow arcs do not cross
data flow graph boundaries, control dependency arcs as well as timing arcs at the data
flow graph level could have been removed. This would make changes in the schedule,
such as, increasing the clock cycle time by a few nano seconds, difficult, since they
may require the regrouping of data flow nodes among the different statement-block
nodes.

Approach Three. The third solution solves the problem of the second approach
in as much as· ·a data flow graph does not have to be divided into multiple data flow
graphs to reflect the state structure. The representation of multi-cycle operation
nodes could be addressed by assigning a sequence of state identifiers rather than a
single state identifier to such a node. The last disadvantage of solution two is, on the

'<
'

5 THE STATE TRANSITION GRAPH 88

other hand, not addressed by this approach. Information about one state is spread
over several control flow nodes.

Approach Four. The fourth approach addresses the critique of spreading infor­
mation specific to a state over several places, and possibly redundantly duplicating
it. This solution stores all information specific to a state into the corresponding state
node. This solution still suffers from the problems of the second approach: One con­
trol flow node may be assigned to more than one state. Therefore, a control flow
node would have to be split into several control flow nodes to maintain which data
flow information belongs to which state.

Approach Five. The fifth approach, being a superset of the fourth approach,
has the same advantages as the fourth approach. That is, it addresses the critique
of isolating information specific to a state, such as, the state name, the number of
successor states, and the predecessor states. In addition, statement-block control
flow nodes do not have to be separated into several control flow nodes. Thus, the
fifth approach deals successfully with problems of the second solution. Multi-cycle
operation nodes can conveniently be represented by assigning a sequence of state
identifiers to them. The fifth approach requires some more storage space; the space
overhead is in the order of the number of states.

For the reasons given in this section we opt for the fifth approach. We thus propose
to extend the CDFG structure by a state transition graph (STG) structure. Such a
state graph shows the sequencing of the design over time by associating control flow
nodes with their corresponding state node. In addition, we extend the CDFG model
by one additional set of attributes, namely, data flow nodes are annotated by a state
information attribute. More precise definitions of the state transition graph are given
next.

5.2 State Transition Graph Definition

Below, we first define the state transition graph and then discuss its constructs in
more detail.

Definition ~ A state transition graph is a directed (possibly cyclic) graph STG =
(STN,STE,STF) with STN the set of vertices and STE the set of edges. The elements
of STN are uniquely identified by the function state-name: STN--+ INTEGER.

1. STN, the set ofstate nodes, is composed of three disjoint sets, STN = state­
nodes U concurrent-state-nodes U hierarchical~state-nodes.

5 THE STATE TRANSITION GRAPH 89

• State-nodes represent the states of a state automata.

• Concurrent state nodes are used to demark concurrent subprocesses.

• Hierarchical state nodes describe the decomposition of a state into sub­
states.

2. STE! the set of state edges! is composed of three disjoint sets! STE = state­
transition arcs U state-hierarchy-arcs U state-to-control-flow-arcs.

• State-transition arcs sequence between two states.

• State-hierarchy arcs link a state node to the state transition graph it is
decomposed by.

• State-to-control-flow arcs link a state transition graph to the corresponding
control flow graph.

3. STF is a set of state transition marking functions STFi: STN -t STM with
STM the set of possible attribute domains.

5.3 Representation of the State Transition Graph Nodes

State Node Hierarchical State Node Concurrent State Node

..... .._

I

• • ¥ __ '!'--,
, ' ," '\

I I
1 state- 1
I I

1 name :

" I ', ,,~ ... , __ , -"

, " , ~

I ~

Figure 48: Graphical Representation of Nodes in the State Transition Graph

The graphical depictions of state transition graph constructs are shown in Figure 48
and 49. Each state transition graph vertex is explained in more detail below, while
the state transition graph arcs are described in the next section.·

5 THE STATE TRANSITION GRAPH 90

state transition arc

state-to-control-flow arc

state hierarchy arc

Figure 49: Graphical Representation of Arcs in the State Transition Graph

Type: State node

Graphic: Circle with state name

Description: A state node models a state, which could be either a super-state or
a simple state. A state node has one or more incoming and one or more outgoing
transition arcs to other state nodes within the state transition graph. The outgoing
transition arcs are mutual exclusive. At any point of time, exactly one of them will be
selected based on conditions that are captured in the associated control fl.ow graph.
A state node has or or more state-to-control-fl.ow arcs which point to the control fl.ow
nodes that are assigned to the state. A state node may optionally have an incoming
hierarchical state arc; if it is part of a (sub-) state transition graph that describes a
higher-level hierarchical or concurrent state.

Type: Hierarchical state node

Graphic: Dashed circle with state name

Description: A hierarchical state node models hierarchy in the state transition
graph. A hierarchical state node describes how one state is decomposed into a number
of sub-states. It has exactly one outgoing hierarchy arc that points to the first state
node in the underlying (sub-) state transition graph. A hierarchical state node has
one or more incoming and one or more outgoing transition arcs to other state nodes
in the current .(super-) state transition graph.

Type: Concurrent state node

Graphic: Double circle with state name

5 THE STATE TRANSITION GRAPH 91

Description: A concurrent state node is a demarcation node for concurrent state
transition graphs. Therefore, a concurrent state node must have two or more outgoing
hierarchy arcs to other state transition graphs, i.e., to the first state nodes of con­
current sub-state transition graphs. A concurrent state node has one incoming state
hierarchy arc from a hierarchical state node in the super-state transition graph. The
concept of concurrency thus includes the concept of hierarchy at the state transition
graph level.

5.4 Representation of the State Transition Graph Arcs

The graphical symbols of state transition graph arcs are depicted in Figure 49. Each
arc type is explained in more detail below.

Type: Transition arc

Graphic: Arrow

Description: A state transition arc connects two state nodes within the same state
transition graph. It thus shows the sequencing of states.

Type: State-to-control-flow arc

Graphic: Bold Arrow

Description: A state-to-control-flow arc connects a state node to control flow nodes.
It is a demarcation device that lists all control flow nodes that have been assigned
to the same state. There may be more than one control flow node associated with
one state. Also, one control flow node may be associated with more than one state.
Hence, this models an many-to-many relationship.

Type: State-hierarchy arc

Graphic: Dashed Arrow

Description: A state-hierarchy arc connects a hierarchical state node to the state
transition graph into which it is decomposed. Thus, a state-hierarchy arc points from
a hierarchical state node either to the first state node of another state transition graph
or to a concu,r+ent state node. Similarly, a state-hierarchy arc is also used to connect
a concurrent state node to two or more concurrent sub-state transition graphs.

5 THE STATE TRANSITION GRAPH 92

5.5 Discussion

A state node can model either a simple-state or a super-state. Ha state is of type
super-state, then the state will be further refined into two or more states before a
control unit can be created. If it is of type simple-state1 then it denotes a state of the
current state transition graph that can be executed within the given clock cycle. The
state will thus not further be decomposed into smaller states. A super-state node
tends to point to many control fl.ow nodes while a simple state node generally points
to only one or two nodes.

If there is more than one state transition leaving a state node, then the state
transitions are conditional. There are one or more conditions in the control flow
graph that specify which state transition arc is chosen. These conditions can thus
be derived from the control flow graph; they are however not explicitly represented
in the state transition graph. H the design is asynchronous, these transitions may
depend on an event instead of the clock pulse. Similarly, the events that trigger the
transition to the next state are captured in the control flow rather than the state
transition graph.

Next we present an example of a control/data fl.ow graph with state assignments.
In Figure 50.a, we show how the state assignments may conceptually be viewed by
a user of DDM. Figure 50.b, on the other hand, shows how this state information is
kept within the CDFG model. In this example we see that some states, i.e., state
Sl and S2, contain more than one control flow node. Also some control :flow nodes
may not be assigned to any state at all. The latter iS true for control flow nodes
which don't contain any data :flow information, such as, end-condition nodes or
demarcation nodes. The end-condition node marks the end of a set of mutual
exclusive conditional execution paths. It is a collection point for several control flow
sequence arcs.

5.6 State Information Extension to the CDFG

The links from the state transition graph to the control flow graph discussed in the
previous section are assumed to be bi-directional. Therefore, we extend the control
flow graph as. presented in Section 4 in the following manner. Each control flow node
has one additional reference called assigned-state. It represents a reference to all
states that a control :flow node has been assigned to. In most cases, this will be one
individual state. For control :flow nodes of type statement-block, however, there may
be more than one associated state. This is so since a data :flow graph represented by
one statement-block control :flow node may be slicedinto more than one state.

5 THE STATE TRANSITION GRAPH

so
cout=I

sl
I=cin

(s2,s0)

a. control ftow graph annotated

with state information

(sl ,so)

+
(s2,s0)

b. representatipn of annotated •

control ftow graph

Figure 50: CDFG of Counter Example ~ith State Assignments

93

5 THE STATE TRANSITION GRAPH 94

In addition, we extend the underlying data flow graph model presented in Section
3 in the following manner. Each data flow node has one additional attribute type
called assigned-state. This attribute denotes the identifier of the state tha~ the data
flow node has been assigned to. If the data flow node is a multi-cycle operation node
then this attribute is a list of states identifications rather than a single state. This
list of states is required to consist of states that are consecutive in the state transition
graph.

6 THE ANNOTATED COMPONENT GRAPH 95

6 The ANNOTATED COMPONENT GRAPH

A register-transfer level structure is represented by a set of components and their
connections. This is commonly referred to as a netlist. A formal definition of the
representation of a such netlist, called the annotated component graph model,
is given next. More details on the modeling constructs are presented thereafter.

6.1 Definition of the Annotated Component Graph

Definition 5 An annotated component graph is a directed graph ACG =
(CGN, CGE, CGP, CGF):

1. CGN corresponds to the set of vertices of the annotated component graph. We
distinguish between component nodes, port nodes, net nodes, and decomposition

nodes.

2. CGP, the set of pins, corresponds to the connection points of vertices with the
arcs·.of the graph. The function pin-class: P-+ {input-pin,output-pin,in-out­
pin} specifies whether a pin is an input pin, an output pin or both. A vertex v E
CGN can have an ordered possibly empty list of input and output pins, respec­

tively. The function input:. CGN x INTEGER -+ CGP U 0 is an assignment

of input pins to vertices. The Junction output: CGN x INTEGER -+ CGP U
0 is an assignment of output pins to vertices.

3. CGE represents the set of directed edges between the {pins of the) vertices of the
annotated component graph. The edges correspond to pairs {p1,p2) E CGP x
CGP with the direction of the edge from pl to p2. We distinguish between three

types of edges, which are interconnection arcs, hierarchy arcs, and demarcation

arcs.

4- CGF is a set of data flow marking Junctions CG Fi: CGN -+ CGM with CGM
the set of possible attribute domains.

6.2 Repr.esentation of the Nodes in the Annotated Compo­
nent Graph

The graphical depictions used to represent the constructs of an annotated component
graph are shown in Figures 51and52. Similarly as in the CDFG graph, the connection
points, here called pins, of a vertex with an edge' are not explicitly represented.

6 THE ANNOTATED COMPONENT GRAPH

Component Node Interconnection Node

component
name

Decomposition Node

decomposition

Timing Delay Node

I I

I I

v ~

96

Port Node

Figure 51: Graphical Representation of Nodes in the Annotated Component Graph

connection a.re

hierarchy arc

timing arc - - - - - - - - - - - - ->

demarcation arc >

Figure 52: Graphical Representation of Arcs in the Annotated Component Graph

6 THE ANNOTATED COMPONENT GRAPH 97

Instead, the connection arcs directly connect two component nodes. The meaning ·
and attributes of each vertex type is explained next.

Type: Component node

Graphic: Box with heavy line with the component name

Description: A component node represents a component. It can for instance be
a functional unit, a multiplexor, or a bus. It can also be any other non-primitive
unit that is further decomposed by a hierarchical description. A component node
conceptually corresponds to a set of pins, which mark its connection points with
other components.

Type: Port node

Graphic: Circle with the port name

Description: A port node is a special type of component that represents the input
and output communication points of an annotated component graph with its environ­
ment. If an annotated component graph is encapsulated into one super-component,
then the port nodes correspond to the pins of the super-component.

Type: Interconnection node

Graphic: Small Circle

Description: An interconnection node is used to model an interconnection net be­
tween two or more components. Each interconnection node has one input pin and one
or more output pins. These pins are connected to connection arcs. They represent
the source and the destinations of net. An interconnection node represents the media
on which a data value travels through the structure, i.e., it corresponds to a wire.
Consequently, it can only hold one data value at any point in time and therefore has
only one source.

Type: Decomposition node

Graphic: Ellipsis ·

Description: A decomposition node is used to demark an annotated component
graph that represents the decomposition of one super-component node into a struc­
ture of more primitive components. The pins of the higher-level component are rep­
resented explicitly in the decomposition ACG graph as port nodes. They mark the
connection points of the higher-level component and the more primitive components
out of which the former is composed of. There is exactly one port node for each pin

6 THE ANNOTATED COMPONENT GRAPH 98

of the super-component. These port nodes are attached to the decomposition node
by demarcation arcs.

Type: Timing node

Graphic: Stop sign symbol

Description: A timing node models a timing constraint. A timing node has one
or more incoming timing arcs and one outgoing timing arc. The incoming timing
arcs connect the delay node with the sources of the delay while the outgoing timing
arc points to the destination data value node. The timing node specifies a delay for
the execution of all component nodes between the source nodes and the sink node of
the delay. Optionally, the timing node may associate an attribute called event-type
(which takes the values RISING, FALLING, and CHANGING) with its source and
its sink nodes. In addition, it may give a delay value for the a minimal, nominal and
maximal delay constraint, respectively.

A timing node models two types of timing constraints, which are path delays
and event-related delays. A path-delay timing node models the time taken for the
effect of a signal to propagate through a set of hardware units from one point of the
hardware to another. A path-delay timing node is given the label path-delay, or
short, delay.

By default, the path delay node constitutes a timing constraint for all component
and interconnection nodes on the paths starting from the source nodes of the delay
node and ending with the destination node. A delay node has an optional attribute,
called path expression, which describes some of these paths between the sources
and sink node. If a path expression is given, then the path delay constrains only
those component nodes listed in the path expression.

An event-related delay node captures timing relationships between the occur­
rences of possibly independent events, like, for instances set-up and hold times. An
event-related delay node is given the label event-delay, or short, event.

6.3 Representation of the Arcs in the Annotated Compo­
nent Graph

The graphical depictions for the arcs in the annotated component graph model are
given in Figure 52.

Type: Connection arc

6 THE ANNOTATED COMPONENT GRAPH 99

Graphic: Arrow

Description: A connection arc corresponds to a wire. It represents an interconnec­
tion between a. component node and a net node by connecting an output pin of a
component node to an input pin of an interconnection node, or, vice versa.

Type: Hierarchy arc

Graphic: Bold Dashed Arrow

Description: A hierarchy arc associates a non-primitive component node with the
primitive components out of which it is composed. Thus, it connects the component
node with its associated decomposition node.

Type: Demarcation arc

Graphic: Dotted Arrow

Description: A demarcation arc connects the ports of a component node to its
decomposition node.

Type: Timing arc

Graphic: Dashed arrow

Description: A timing arc connects a timing constraint node with an interconnection
vertex. The set of timing arcs associated with a timing constraint node mark the
group of component and interconnection nodes that are constrained by the timing
constraint node.

6.4 A More Detailed Description of the Annotated Com­
ponent Graph

The annotated component graph (ACG) describes the structure and geometric lay­
out of a design. Rather than distinguishing between many different structural vertex
types, we define various attribute domains for them. Below, we discuss these at­
tributes.

6.4.1 Timing Constraints

Timing constraints in the annotated component graph are very similar to timing
constraints in the data fl.ow graph. Therefore, for a detailed giscussion of timing

6 THE ANNOTATED COMPONENT GRAPH 100

constraint nodes and their attributes the reader is referred to Sections 3.4.15 and

3.4.16.

Some of the timing constraints in the data flow graph may be carried over to
the annotated component graph. For instance, if a setup delay is specified for a
write-node in the data flow graph, then this setup delay will also be specified for the
register to which this write node has been mapped to in the annotated component
graph. Other delays are either completely omitted or they are broken up into several
smaller delays by the synthesis tools. For instance, if a delay is specified for a set of
data flow operations that are scheduled into two or more states, then this delay can
no longer be preserved in the annotated component graph. This delay will, on the
other hand, be used by the scheduling tool to determine which of the operation nodes
can be put in the same state. Essentially, the initial delay is compiled into the allowed
duration of a state (the clock cycle), and thus is no longer needed by synthesis tools
once scheduling is completed.

r-----------
1
I
I
I
I

6 ~1 dol';=5

~:lo
min=4

------------,

C2
delay=2

I
I
I
I
I
I

Figure 53: Timing Constraints in the Annotated Component Graph

Each component node also carries timing attributes as discussed in a later section.
These attributes are not constraints on the component, rather they are characteristics
of the chosen component. In Figure 53, a timing constraint for the paths through
Cl and C2 is specified with a minimal delay of 4ns and a maximal delay of lOns.
The timing attributes associated with the components Cl and C2 correspond to the
actual delays of the instantiated components. Cl and C2 have a delay of 5ns and
2ns, respectively. Thus, a path through both will have a delay of approximately 7ns.
It can be verified that the timing constraint of lOns is met. The maintenance of the
timing constraint information is particularly useful for optimizations on the structure
graph. A logic optimization tool can for instance replace one or both of these two
components by another component type with other timing attributes as long as the
timing constraint is met.

~· i
.·~ t'

r r
p

6 THE ANNOTATED COMPONENT GRAPH 101

6.4.2 Structural Attributes of Component and Interconnection Nodes

A structure is represented by a set of components and their connections. The com­
ponent type of a. component can either be complex or primitive. A component
is called primitive if it is not further decomposed into subcomponents. A primitive
component is either an instantiation of an instance of a generic component library
or it corresponds to some actual hardware unit. Each primitive component has a set
of attributes describing its component type. Example attributes are the component
class attribute and the function attribute.

A component is called complex if it is further decomposed into subcomponents.
Some of the attributes of primitive components, such as, a list of functions they
execute, may be undefined for them. A complex component is further defined by an
annotated component graph. It has an associated decomposition node which lists the
ports of the component node as well as the annotated component graph composed of
the more primitive subcomponents. A decomposition node is a demarcation node that
describes the hierarchical composition of a component into lower-level components.
A decomposition node has therefore no equivalent hardware construct.

A component node has the information associated with it:

• component name,

• component type: primitive, complex,

• number of input pins,

• number of output pins, and

• a list of pin information: (see below).

The interconnection points of a component node, called pins, are*escribed by the
following:

. .
• umque pm name,

• pin class: input, output, and input-output,

• pin type: control, data, clock, set, reset, enable, and select, and

• bit width of the pin.

If a component node is primitive, then it has the following additional attributes:

6 THE ANNOTATED COMPONENT GRAPH 102

• component class: register, memory, functional-unit, bus, multiplexor,

• file name of its IIF description generated by ICDB, and

• functions: such as, add, sub, etc.

The control unit is inserted as component into the annotated component graph.
The control lines that connect the control unit with the data path components are
also inserted as connection nodes into the annotated component graph. The behavior
of the control unit is stored in form of a separate behavioral description since it is
random logic.

In hardware, an interconnection node corresponds to connections between com­
ponents, i.e., a wire. The connection arcs on the other hand are needed to show the
sources and sinks of a particular wire. Structural attributes are associated with an
interconnection node but not with connection arcs:

• unique net name,

• bit width of the net,

• name of the input pin,

• name of all output pins, and

• net type: data, control.

Interconnection of the annotated component graph is represented by connecting
the pins of the component nodes with the pins of the interconnection nodes.

6.4.3 Geometric Attributes of Component and Interconnection Nodes

The geometric dom~n describes the circuit's geometric layout. Generally speaking
a layout consists of a set of cells and their connections. Instead of developing a
separate hierarchy of cells and wires, we associate the geometric information with the
corresponding structural components and nets in form of additional attributes. The
following geometric attributes are associated with the component and port nodes of
the annotated component graph:

• aspect ratio: a width and height pair,

6 THE ANNOTATED COMPONENT GRAPH 103

• position coordinates: a x-coordinate and y-coordinate pair,

• a list of position coordinates for the input and output pins: (pin-name,x­
coordina.te, y-coordinate),

The aspect ratio of a component specifies its width and height. For instance, if a
component has the aspect ratio (4mm,5mm) and position coordinates (lmm,lmm),
then the rectangle fills a space between the four coordinates (lmm,lmm), (lmm,6mm),
(5mm,lmm), and (5mm,6mm). The input and output pins of the component are po­
sitioned at the periphery of the component. Consequently, the position coordinates
given for the pins are relative to the width and height of the component. For instance,
a pin positioned in the middle of the top horizontal edge of the component would be
described by the coordinate (3mm,6mm).

A set of structural components may be combined and treated as one component
for layout purposes. For instance, a partitioning design tool may combine all random
logic into one module. This requires a regrouping of the structure graph to reflect
the new decomposition of the structure into components since geometric attributes
are associated with individual structure nodes only.

An interconnection node has the following geometric attributes:

• starting position coordinate, and

• a sequence of coordinate positions.

A net may connect one source component to more than one destination compo­
nent. Therefore, the geometric information will be a set of starting position coordi­
nates and their corresponding sequences of coordinate positions. The later describe
the routing.

6.4.4 Timing Attributes of the Component and Interconnection Nodes

Each component node has optional attributes that describe its input to output timing
behavior. We again distinguish between two types oftirning attributes: (propagation)
delay and others. Propagation delay corresponds to the path-delay timing constraint.
Its specification consists of the following parts:

• source: pin name

• sink: pin name

6 THE ANNOTATED COMPONENT GRAPH 104

• function: function name

• delay duration: minimal, nominal, and maximal delay

• delay value: actual delay in nano seconds

Source and sink are references of input and output pins of the component, re­
spectively. The delay specification can specify three different types of delays, which
are, minimum delay, nominal delay, and maximal delay. They denote the delay for
a signal to propagate froni the indicated input pin through the component to given
output pin. A component may be multi-functional, for instance, a functional unit
may implement the Addition and the Subtraction operation. Therefore, the above
specified delay can be specified relative to the execution of each function. If a function
name is not given in a delay specification, then the delay is assumed to hold for all
functions that the component implements.

The second type of timing characteristics is presented as a pair. The first item
of the pair gives the name of the delay and the second corresponds to the associated
delay value. For instance, for a register one may want to specify the following two
delays:

(setup time, lOns)

(hold time, 8ns)

6.5 An Example of an Annotated Component Graph

The following example is given to explain how the annotated component graph repre­
sents a hierarchical netlist structure. A structural VHDL description of a full-adder
component is given in Figure 54. This example full-adder component is constructed
out of three subcomponents: two half-adder components and one or-gate. The signals
declared in the architecture body internally connect the subcomponents to form the
structure. Thus they correspond to interconnection wires. The connection paths of
inputs to outputs are specified by three component instantiation statements. Each
such statement uses a component defined by a local component declaration. It creates
an instance of such a component by giving an association list (port map) that
associates actuals (like the signal Temp Sum) and ports (like the port Carry In)
with locals (the ports of the local component declaration).

Figure 55 shows a schematic of the full adder. Such a schematic is commonly used
to depict a structural decomposition. Figure 56, on the other hand, presents the an­
notated component graph for the full adder design representation ·which demonstrates

6 THE ANNOTATED COMPONENT GRAPH

entity FulLadder is
port

(A : in Bit;

)

B: in Bit;
Carryln : in Bit;
AB: out Bit;
CarryOut : out Bit;

end Full....adder;

architecture Structure..FulLadder of FulL..adder is
signal TempSum, TempCarryl, TempCarry2: Bit;

component Half....adder
port (X: in Bit; Y: in Bit; Sum: out Bit; Carry: out Bit);

end component;

component Or_gate
port (Inl: in Bit; In2: in Bit; Outl: out Bit);

end component;

begin
IO: Ha.IL.adder

port map (X=>A, Y=>B, Sum=>TempSum, Carry=>TempCarryl);
Il: Ha.IL.adder

105

port map (X=>TempSum, Y=>Carryln, Sum=>AB, Carry=>TempCarry2);
12: Or..gate

port map (Inl=>TempCarryl, In2=>TempCarry2, Outl=>CarryOut);
end Structure...Full....adder;

Figure 54: Entity Declaration and Architecture Body of a Full-Adder

i;

6 THE ANNOTATED COMPONENT GRAPH

Carry In
r-------

Temp Carry

B A

I
I
I
I
I
I
I ______ f _________________ J

CarryOut AB

Figure 55: Block Diagram of the Full-Adder Example

decomposition
full-adder

half-adder
IO

half-adder f---~
I1

or-!2

Figure 56: Annotated Component Graph for the Full-Adder Example

106

6 THE ANNOTATED COMPONENT GRAPH 107

how this hierarchical netlist is represented internally. The five pins of the Full-Adder
component, called Carryln, A, B, CarryOut, and AB, are represented as independent
port objects in the structure graph 56.

7 OUR APPROACH TOWARDS THE LINKAGE PROBLEM 108

7 OUR APPROACH TOWARDS THE LINK­
AGE PROBLEM

7 .1 Linkage between the Behavioral and the Structural Do-.
main

The constructs in a data flow graph are implemented by one or more constructs from
the structural domain, whereas the control fl.ow constructs have no direct structural
equivalent. A control fl.ow sequencing arc for instance does not represent a real
physical connection. Rather, the control flow graph models the sequencing of the
behavior over time, and thus is synthesized into control logic.

The correspondence between the data fl.ow graph and the annotated component
graph is as follows. A behavioral operator or a variable access in the data flow graph
gets mapped to a functional unit, register, or bus in the data path. Similarly, the data
flow edges correspond to actual connections in the annotated component graph along
which the values travel. Thus, data flow edges are mapped to one wire or a sequence
of wires and components in the data path. This component mapping information is
maintained in the form of structural annotations to the data flow graph rather than
behavioral annotations to the annotated component graph. We choose this approach
since the component mapping is multiplexed in time. The same hardware unit is
reused multiple times. In fact, a hardware component may be bound to several data
fl.ow nodes in the same state, when scheduling across conditional branches is per­
formed. Depending on the evaluation of the conditional branch, one of the bindings
will be selected by the control unit during execution. Furthermore, the relation­
ship between the behavioral domain and the structural domain is a many-to-many
mapping for the following reason: Sequences of operations may be implementable by
one functional unit, and vice versa, several units may be needed to implement one
complex operation.

The designer may specify a partial design where some of the data flow operations
are already bound to components. This linkage then corresponds to an externally
imposed constraint for the design, that the synthesis system should observe. Hence,
the links between the behavioral and the structural description have an attribute that
distinguishes 'between a synthesized linkage (which can be modified by design tools
as desired) and a fixed linkage.

7 OUR APPROACH TOWARDS THE LINKAGE PROBLEM 109

7 .2 A Complete Example: The Programmable Counter

Figure 57 shows a behavioral VHDL description of a 4 bit programmable up and
down counter. For this example we assume a state assignment as shown in the state
table in Figure 58.

entity counter is
port (countin: in BIT(3 downto O);

up: in BIT; - UP==l if count up and UP==O if count down
count: in BIT; - COUNT==! if count and COUNT==O if program
countout: out BIT(3 downto 0)
)

end counter;
architecture counterbody of counter is

signal I: BIT(3 downto O);
begin

process begin
countout <= I;
if (count = 1)
then if (up = 1)

then I <= I + 1;
else I < = I - 1;

end if;
else I <= countin;
end if;

wait for 12ns;
end process;

end counterbody;

Figure 57: VHDL Specification of a 4 bit programmable up and down counter

Then, the behavioral description of that counter is compiled into the CDFG graph
depicted in Figure 59. In this figure, we draw the data fl.ow graphs associated with
each statement-block node within the control node rather than associating them by
hierarchy arcs. For simplicity, all data fl.ow nodes are depicted by circles.

Figure 60 shows one possible structural implementation of the counter (a data
path). The chosen counter component has four ports, called up, down, countin, and
countout. Th~se ports represent the communication between the environment and the
counter, and therefore they are visible from the outside the counter and from within.

1 l i I
"

~.
f
I

7 OUR APPROACH TOWARDS THE LINKAGE PROBLEM 110

11 present state I condition I (value) I actions I next state II

0 - TRUE countout =I 1

1 count=l TRUE - 2
FALSE I= countin 0

2 up=l TRUE I=I+l 0
FALSE I= I - 1

Figure 58: The State Table

Each component is connected to other components via nets that link the output port
of one component to the input port of another component. A net is represented by a
set of connection arcs and an interconnection node with the corresponding net name.
Nets that connect the control unit with the data path components are of type control.

Next, we discuss the structural information that is attached to the behavioral
description in the form of annotations (see Figure 59). Note that only the data fl.ow
constructs have associated structural data. The control flow constructs model the
sequencing of the behavior over time, and thus have no structural equivalent.

Each operation and variable node of the behavioral description has associated
the corresponding structural component that implements it. In Figure 59, these
component mapping annotations are represented by dashed lines. In particular, a
data flow node is annotated by the component name, the chosen function, and the
set of inputs ordered from left to right. For example, the plus operation in state S2 is
bound to the ALUl component. The selected function is ADD and its inputs from left
to right are ONE and IREG. The control selection variable is described in terms of a
tuple that gives the control line name (net of control type) and its associated value.
For a control selection variable which is not used, a value of zero is assumed. For
the previous example, the control selection variable is the tuple "CADD=l" where
CADD corresponds to the control line and "1" is the value that the control unit will
assign to this control line.

Similarly, a data fl.ow net is annotated with the structural constructs by which
it is implemented. This can either be a simple structural interconnection node or
a sequence of interconnection nodes and component nodes. In the later case, the
data fl.ow arc also stores the function, inputs, and control selection variable of each

component in the list.

'
7 OUR APPROACH TOWARDS THE LINKAGE PROBLEM

s2

sO

- - -NI

--- N4

.c.DUNTOUT(LOAD,IREG.00)
CLOAD2=1

COUNTOUT(LOAO,IREG.00)
- CLOAD2=1

-"'NOR2(NOR,U)

- -- mEG

- --NI
----- N4

----coUNT

NORI (NOR,COUNT)

-- N6

- - - - .{)QUNTIN
N5

MUXI(ll,COUNTIN)
- - CI1=1

N3

ffiEG(LOAD,COUNTIN)
CLOAD1=1

- ~L~~(A~o.oNE,IREG)
.. CAW=1

~LUI(SUB,ONE,IREG)

MUXl(IO,ALUl.00)
--- CI0=1
jREG(LOAtj~Ul.00)

CLOAD1=1

C~¥B=1
_ .M.UXl(IO,ALUI.00)

CI0=1 sl,sO)

Figure 59: Complete Flow Graph Representation of the Cou!1~~r __

111

(sl,sO)
+

(s2,s0)

I

7 OUR APPROACH TOWARDS THE LINKAGE PROBLEM 112

CONTROL
UNIT

ONE

.----1NS

Figure 60: Data Path of the Counter Example

7 OUR APPROACH TOWARDS THE LINKAGE PROBLEM 113

If a component performs only one function then a control selection is not needed.
Therefore, in this case control selection information is' not associated with the cor­
responding data flow construct. The fl.ow graph representation given in Figure 59 is
complete in as much as the structural information can be regenerated from it.

7.3 Summary of our Linkage Approach

Our approach towards the design linking problem is summarized below. It is also
depicted in Figure 61. The symbols used in Figure 61 have the following meaning. A
bold arrow represents explicitly maintained links. A simple arrow indicates that the
links are kept implicitly, i.e., in the form of annotations. The objects at the start of
the simple arrow reference the objects pointed to by the arrow. A dashed box stands
for constructs that are not being maintained as separate entities in our model. Now
we summarize our approach by describing how each of the possible links introduced
in Section 2.4 (in particular, in Figure 1) are handled in our model.

• Connections from control fl.ow to data flow constructs are an integral part of
the proposed Control/Data Flow Graph model. A data fl.ow graph is associated
with most control fl.ow nodes.

• Connections from each state to its associated control flow constructs is main­
tained as detailed in Section 5. Each state node points to one or more control
flow nodes.

• Connections from a state of the control automata to the data flow constructs
it contains are not maintained explicitly. The data fl.ow constructs are however
annotated by state information.

• Connections from behavioral constructs in the data fl.ow graph to structural
units in the data path graph are maintained by structural annotations to the
fl.ow graph. This component mapping information is multiplexed in time; there­
fore, each data fl.ow construct is annotated by its corresponding structural unit
rather than vice versa.

• Connections from each state to the data path units that are being executed in
the state. are not stored. They can again easily be derived by following the links
from a state to its associated data flow nodes which then are annotated by the
corresponding structural units. For control synthesis, not only the units used in
each state but also the selected functionality are needed. A static view of these
links is kept in the data path, since they correspond to the control lines from
the control unit component to the data path oomponents. ·A dynamic view of

7 OUR APPROACH TOWARDS THE LINKAGE PROBLEM

CDFG
Graph

Structure
Graph

explicit link

implicit link/
annotations

textual

domain

+

behavioral

domain

structural
domain

+

geometric ·
domain

r---------------------------,
I I
I I
I I

I TEXTUAL I
I I
1 SPECIFICATION 1
I I
I I
I I
L J

_____________ f _____________

annotated
CONTROL FLOW I-

DATA FLOW

GRAPH
GRAPH

1
REGISTER-TRANSFER LEVEL STRUCTURE

(data path and control unit)

_____________ I _____________
r ,
I I
I I
I I

I FLOOR PLAN I
I I
1 (geometry of units and nets) I
I I
I I
I I

L----------------------~----J

construct maintained
as separate entity

construct not maintained
as separate entity

D
r----,
I I
I I L ____ J

Figure 61: DDM's Approach towards the Linkage Problem

. I

114

1 ll.. i . .,_ ,..
'"

I [l
~·

7 OUR APPROACH TOWARDS THE LINKAGE PROBLEM 115

these links is expressed in the control unit description, since the selection of
values for control lines per state represents the behavior of the control unit.

• Connections from the structural to the geometric domain to show the fl.oorplan
of the structure are expressed by annotating the data path components with
geometric information. This mapping is not time-varying.

8 CONCLUSION 116

8 CONCLUSION

In this paper, we have presented a a unified design representation model for system
and behavioral synthesis tools. The design data used by computer-aided design tools
can be classified into three separate graph models: the conceptual model, the behav­
ioral model and the structural model. The proposed design representation model,
called DDM, supports all three. We have developed an Augmented Control/Data
Flow Graph (CDFG) model for the behavioral model and an Annotated Component
Graph (ACG) for the capture of the data path and the geometric information. The
Design Entity Graph, which represents the conceptual model, will be described in a
forthcoming report. Throughout this report, we give numerous examples that show
how VHDL specifications can be represented by this design representation.

The proposed design representation model is a powerful vehicle for the develop­
ment of consistency routines. Such routines could check for the completeness and
the consistency of the design. We can check for the completeness of a design by, for
instance, checking whether each operator node is bound to some structure, whether
each structural unit is bound to some physical counterpart, and whether each oper­
ator node ·has been assigned to a state. Consistency checks that could be performed
are of the following type. We can check whether a given data flow graph is bit-width
consistent, i.e., if there would be any tangling bits if the graph were mapped into
hardware. Other potential inconsistency problems are if two values are bound to a
structural carrier at the same time (in the same state), or if there a connected graph
for each value from value creation to all its uses does not exist in the component
graph (ACG).

, I

REFERENCES 117

References

[1] Armstrong, J., Chip Level Modeling with VHDL, Prentice-Hall, 1989.

[2] Batory, D. S., and Kim, W., Modeling Concepts for VLSI CAD Objects, ACM
Tran. on Database Systems, vol. 10, no. 3, Sep. 1985, 322 - 346.

[3] R. L. Blackburn, D. E. Thomas, and P.M. Koenig, CORAL II: linking behavior
and structure in an IC design system. In Proc. of the 25th Design Automation
Con/. 1 IEEE, 1988.

(4] Camposano, R. and R. M. Tabet, Design Representation for the Synthesis of
Behavioral VHDL Models, Research Report, IBM General Technology Division,
Burlington, VT, RC 14282, Dec. 1988.

[5] Camposano, R. and Kunzmann, A., Considering Timing Constraints in Synthesis
from a Behavioral Description, ICCD 1986.

[6] Camposano, R. and Weber, R., Compilation and Internal Representation of Dig­
ital Systems Specification in DSL, Sixth Con/. Latino-Americana in Informatics,
Brazil, ANAIS, Vol. II, July 85.

[7] Chen, D. and Gajski, D., An Intelligent Component Database for Behavioral
Synthesis, Tech. Report 89-39, Nov. 1989.

[8] Dutt, N., A Framework for Behavioral Synthesis from Partial Design Structures,
Ph. D. Dissertation, Uni. of Illinois, Urbana-Champaign, Jan. 1989.

[9] Dutt, N., Hadley, T. and Gajski, D., BIF: a Behavioral Intermediate Format for
High Level Synthesis, Technical Report 89-03, University of California, Irvine.

[10] Gajski, D. D., and Kuhn, R., Guest Editors' Introduction: New VLSI Tools.
IEEE Computer, vol. 16, no. 12, 11-14, Dec. 1983.

[11] Gupta, R., Cheng, W. H., Gupta R., Hardonag, I. and Breuer, M.A .. An Object­
Oriented VLSI CAD Framework, IEEE Computer, vol. 22, no. 5, 28 - 37, May
1989. .

[12] Katz, R. H., Information Management for Engineering Design, Surveys in Com­
puter Science, 1985.

[13] Knapp, D. W., and A. C. Parker, A unified representation for design information,
In Proc. CHDL-85} Elsvier, 1985.

" · . • ii

~, ~;.
' :,:

I I~

REFERENCES 118

(14] Kowalski, T. J., a.nd Thomas, D. E., The VLSI Design Automation Assistant: ·
What's in a Knowledge Base, 2f!'d Design Automation Conference, 252 - 258,
June 1985.

[15] Kurdahi, K. a.nd Park, Y., Personal Communication, 1990.

[16] Lis, J. S., and D. D. Gajski, VHDL Design Representation in the VHDL Synthesis
System (VSS), Tech. Rep. #89-15, Uni. of California, Irvine, 1989.

[17] Lis, J. S., and D. D. Gajski, Synthesis from VHDL, Proc. of ICCD, 1988, Port
Chester, New York, Oct. 88.

[18] Lis, J. S., and N. Dutt, Flow graph data structures, UCI CADLAB Internal
Report, July 1989.

[19] McFarland, M., The Value Trace: A Database for Automated Digital Design,
Tech. Report DRC-01-04-80, Carnegie-Mellon University, Dec. 1978.

[20] Orailoglu, A. and D. D. Gajski, Flow graph representation, Proc. of 23rd Design
Automation Conj., Las Vegas, Jun. 1986, 503 - 509.

(21] Padua, D. A., and Wolfe, M. J., Advanced Compiler Optimizations for Super­
computers, in Comm. of the ACM, Dec. 1986, Vol. 29, No. 12, pg. 1184 - 1201.

[22] Ramachandra.n, L., Modeling a.nd Representing Timing Information for Synthe­
sis, UCI CADLAB Internal report, September 1990.

[23] Rundensteiner, E. A., a.nd Bic, 1., Set Operations in Data Modeling, Inter­
national Conference on Extending Data Base Technology, March 26-30, 1990,
Fondazione Cini, Venice, Italy.

[24] Rundensteiner, E. A., The Component Synthesis Algorithm. User's Manual. UCI
CADLAB Internal report, May 1990.

> • 1'!• .

(25] Rundensteiner, E. A., Gajski, D., and Bic, L., Component Synthesis Algorithm:
Technology Mapping for Register Transfer Descriptions, ICCAD, Nov. 1990.

(26] Rundensteiner, E. A., Flowgraph Representations for Synthesis, June 1989, un­
published.

[27] Temme, K.-H., Chip-Architekturplanung nach dem Resonanzverfahren, Ein
wissensbasierter Ansatz zur Synthese algorithmischer Verfahrensbeschreibun­
gen, (Dissertation), Universitaet Dortmund, Fachbereich Informatik, Forschung­
bericht Nr .. 324, Nov. 1989.

(28] VHDL Language Reference Manual, Addison Wesley, 1988.

REFERENCES 119

[29] Walker, R. A., and Thomas, D. E., A Model of Design Representation and
Synthesis, DAC'85, 1985, 453-459.

- --·--- - - --- - - -- -- - - - -- -- - ---- - - -- - - -- ----- ---

ll .
3 1970 00832 1918 .

