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Application of the Macroscopic and Microscopic Impedance Models to the 

Analysis of the Total Electrochemical Impedance of Copper Dissolution 

Alan K. Hauser and John Newman 

Department of Chemical Engineering, University of California, and 
Materials and Chemical Sciences Division, Lawrence Berkeley Laboratory, 

One Cyclotron Road, Berkeley, CA 94720 

Abstract 

Results of two mathematical models are presented that calculate the frequency 

response of a copper rotating disk in chloride solutions. Both the macroscopic and 

microscopic impedance models predict the experimentally observed high-frequency slope 

that is greater than the 45 0 convective-diffusion (Warburg) impedance line. The 

macroscopic im pedance model uses concen trated-solu tion theory, incorporating the 

Stefan-Maxwell transport equations, to account for multicomponent diffusion, 

migration, and convection. This model, based on a single overall charge-transfer 

reaction, predicts impedance curves for the largely mass-transfer controlled anodic 

dissolution process by using a constant double-layer capacity. Additionally, the 

electrochemical impedance is analyzed by examining each contribution of the total cell 

potential and total current giving rise to impedance terms typically neglected in other 

ac-impedance treatments. The frequency dispersion of the double-layer capacity is 

accounted for by using the microscopic model of the electrode-electrolyte interface. This 

lumped-parameter model accounts for (cavity) potential and concentration-dependent 

charge-transfer reactions, as well as the diffuse and diffusion layers. A three-step 

(adsorption! electron-transfer! desorption) reaction mechanism is proposed, and the 

simulated impedance results yield a detailed and quantitative understanding of double-

layer adsorption effects. Specifically, insight is gained abou t the im portance and 
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influence of the many parameters that are used in the microscopic model to characterize 

the interface but cannot, in general, be independently measured. Thus, an iterative 

procedure for selecting equilibrium constants and kinetic rate constants is discussed. 

Additionally, a description of the equilibrated interface is given, including surface­

coverage and potential-distribution maps as a function of the supporting electrolyte 

concentration. Finally, the set of interfacial equilibrium parameters used in the 

microscopic model IS based on a total surface coverage of 0.2%, and the kinetic 

parameters were selected such that the simulated results agree with the experimental 

steady-state and impedance data. 

1. Introduction 

The general Stefan-Maxwell program!l! accounting for multicomponent diffusion, 

migration, and convection, in addition to any number of homogeneous and 

heterogeneous reactions, is a powerful algorithm for studying the frequency response of 

the rotating disk. The model is capable of predicting the total electrochemical 

impedance based on a constant double-layer capacity, although it is well known!2! that 

the capacitance of the electrode-electrolyte interface depends on the charge in the 

compact and diffuse layers. Treatment of the interfacial-reaction processes is necessary 

to account properly for the accumulation of charge in the electric double layer, and 

therefore the microscopic model!3! is used to elucidate quantitatively details of this 

phenomenon. The latter mathematical model accounts for potential and concentration­

dependent electron-transfer and desorption/adsorption reactions that occur within the 

compact region of the double layer. Even though the emphasis of the microscopic model 

'o( 
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is on the interfacial reactions, the model also accounts for the diffuse and diffusion layers 

and ohmic potential losses. 

The purpose of this paper is to use the two developed algorithms to describe the 

current response of a rotating disk to small oscillations around a steady-state potential 

and to calculate the frequency dependence of the total electrochemical impedance. The 

simulated results presented here have relevance in the quantitative interpretation of 

frequency-domain spectroscopic impedance measurements of the dissolution of a copper 

electrode in 0.1 M HCl.[4! The experimental impedance results are illustrated in figure 1 

as function of rotation rate. The microscopic model is used to yield mechanistic 

information about the reaction processes that were treated simply as a boundary 

condition in the macroscopic model. Let us next discuss the postulated reaction 

mechanisms used in the two mathematical models. 

The following one-step reaction t represents the overall anodic copper dissolution 

process and is denoted mechanism I: 

(1) 

The modified Butler-Volmer kinetic expression (given in general terms in reference [1]) 

may be written for reaction 1 as follows: 

• - I 2 ((1 - (3)F J I ( Jif... J If-FkacCl-.Oexp RT V -FkccCuCI2.0exp - RT V , (2) 

t Treatment of this reaction as an EC mechanism has been presented elsewhere,[51 
where a chemical (C) reaction follows an electrochemical (E) reaction. Therefore, finite 
rates of the homogeneous reaction are not considered in this paper. 

··'l 
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provided that the reaction order is proportional to the reaction stoichiometry. 

v = <P m - <Po is the kinetic potential driving force defined as the potential of the metal 

electrode relative to a hypothetical reference electrode of a given kind placed just 

outside the diffuse layer. At equilibrium, the net current density is zero so that equation 

2 yields the open-circuit cell potential 

Voc = RJ In [ k~ 1 + RJ In [ CC~CI2'0 1 ' 
ka cCl-.O 

(3) 

where K~I) = k: / k~ is the equilibrium constant. 

A second mechanism for the same anodic copper-dissolution process is possible, 

where the simple reaction 1 may be written in terms of adsorbed intermediates. 

Proposed mechanism II is given by the following three reactions: 

CuCI2(IHP) ~ CuCI2(oHP) . 

(4) 

(5) 

(6) 

Chloride ions from solution are first specifically adsorbed at the inner Helmholtz plane, 

where CI- can then react electrochemically at the copper electrode. The second step in 

this mechanism is the one electron-transfer anodic dissolution reaction, where the 

reactant and the product species remain adsorbed at the surface. The last step of the 

process is the desorption of the copper chloride complexed species to the outer 

Helmholtz plane. 

A modified form l31 of the Butler-Volmer equation is used to describe the potential 

and 'concentration dependence of the electron-transfer reaction (equation 5) 
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where .6. r = r max - r Cl-,l - r CuCl;,l and .6. tPM-l is the cavity potential difference 

between the metal and the inner Helmholtz plane. Additionally, the kinetic expressions 

for the potential-dependent desorption/adsorption reactions are given by 

i,,1 ~ F k 1,lr j,1 exp [-(l-illl :T Ll1/l1-2]-F k.,1 Ll r C j,2 exp [ill :T Ll 1/11-2]' (8) 

where j represents either CI- or CuCI; and .6. tPl-2 is the potential difference between 

the inner and outer Helmholtz planes. At equilibrium, the rate of each reaction is zero, 

so that after eliminating the surface concentrations rj from the three equations, the 

following equilibrium relationship results 

RT [ Kr] RT [CCUCI;,O 1 
Voc =.6. tPrel + Fin K K + FIn 2 

2 3 cCI-,O 
(9) 

A Boltzmann distribution has been used to describe the potential dependence of the 

ionic concentrations in the diffuse layer, and the interfacial potential difference V is 

related to the cavity potentials by V=.6.tPM_l +.6.tPl-2 +.6.tP2-0 +.6.tPre/' .6.tPrel is a 

cavity potential difference located at the inner limit of the diffusion layer and will be 

discussed later. 

A one-dimensional model of the electrode-electrolyte interface is shown in figure 2 

representing the metal electrode, the compact and diffuse regions of the double layer, 

and the diffusion layer. The figure illustrates the dependent variables in the microscopic 

model specifically for reaction mechanism II, where the concentration and potential 

variables are represented by hexagons. There are three species in the solution (m = 3), 

and one less species is found at the inner Helmholtz plane (n = 2). This yields 
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n + 3m + 5, or 16, unknowns and equations in the microscopic model. Again, it should 

be noted that the potential and concentrations are not solved for as continuous 

functions, as in the macroscopic model, but instead are determined only at the 

interfacial planes, making the microscopic algorithm a lumped-parameter model. Let us 

next compare the impedances as calculated by the macroscopic and microscopic models 

before discussing the system input parameters. 

2. Impedances 

The impedance of an electrochemical system is defined as ratio of the total 

alternating potential to the total alternating current, Zlol = V10t! i. In this section, the 

electrochemical impedance is analyzed by examining each contribution to the cell 

potential and current. Two approaches for characterizing the total impedance are taken 

based upon the expressions given earlier for the current densities. Although the starting 

point of each is different, both utilize a linear-response analysis. 

2.1. Macroscopic Model 

The impedance of the copper dissolution process as calculated by the macroscopic 

model is based on the kinetic expression· given by equation 2. Thus, the total cell 

potential must be expressed in terms of the theoretical kinetic potential difference V. 

The following expression for the total im pedance l1J therefore is used 

v + (4)0 - ;Po) 
Zlol = ><J - +Ro . 

i J + jwq 
(10) 

A schematic of the breakdown of the total impedance used III the Stefan-Maxwell 

macroscopic model is given in figure 3. Let us next discuss the potentials and currents 
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Figure 3. Schematic of the macroscopic model's breakdown of the' e'it"Ctrochemical 
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illustrated in the figure that contribute to Ztol' 

The potential V'o, of the metal electrode relative to a reference electrode placed in 

the bulk consists of three components: V = ~m - ~o is the kinetic driving force across 

the interface, ~o - 4>0 is the potential difference across the diffusion layer (and includes 

the diffusion potential and the ohmic drop due to variations in the conductivity), and 

the last term in the equation 10, the primary solution resistance Ro, gives rise to the 

ohmic potential drop. It should be noted that <1>0 is the potential just outside the diffuse 

" part of the dou ble layer, and <1>0 is the poten tial of the solution adj acen t to the working 

electrode which would be determined by a reference electrode of a given kind if there 

were no concentration gradients across the boundary layer but the same current 

distribution prevailed. 

The alternating current can pass from the electrode to the solution either by 

means of faradaic-electrode reactions or by charging the double-layer capacity as 

illustrated (conceptually) in the figure. This is analogous to the current in a parallel RC 

circuit, where the capacitor Cdl represents the charging of the double layer and the 

resistor R, represents the resistance due to the electrochemical reactions. Because the 

electrode reactions also depend on the concentration of species at the inner limit of the 

diffusion layer, the resulting mass-transfer component, Zo, of the faradaic impedance is 

denoted in the figure with a commonly-used "frequency-dependent" circuit element 

Woo Thus, the total electronic-conducting current density T is given by the sum of the 

alternating faradaic current density, T I = E T 1.1' and the double-layer charging 
I 

'"':'" .-current density, J c = )wq. This model uses an idealized VIew of the electrode-

.. 
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electrolyte interface, where the charge in the double layer is related to the potential 

difference across the interface by q = Cdt V. The double-layer capacity is taken to be a 

constant, independent of both concentration and potential, such that one might imagine 

that double-layer charging is due principally to the nonreacting ions of the supporting 

electrolyte. 

Let us now turn our attention to analyzing the components of the total impedance 

III an attempt to understand better the electrochemical system being studied. This 

discussion is most useful for clarifying the assumptions that are frequently made in 

attempts to obtain the faradaic impedance from experimental impedance data. The 

determination of kinetic parameters and transport properties, e.g. the diffusivity, from 

the faradaic impedance has been disussed previously.151.161 

The historically important faradaic impedance is defined by Z / = V / T /' where 

one loosely can say that Z! is obtained from the measured impedance by correcting for 

the diffusion potential, the ohmic potential drop, and the double-layer capacity. The 

first two corrections occur in the numerator of equation 10 by using V. This means 

that the diffusion potential, a mass-transfer effect across the boundary layer, is 

subtracted as well as the ohmic drop; this distinction is seldom (or never) mentioned in 

the literature. The second correction, for the double-layer capacity, manifests itself in 

the use of the faradaic current i /' rather than the total current i, in the denominator 

of equation 10. This correction may not be so simple in principle or practice because it 

presumes that one can distinguish between faradaic current and capacitive current. 

Frequently the capacitive effect does not overlap the frequency domain of mass-transfer 

effects, but it must, in general, be expected to overlap the frequency domain of faradaic 

~~ .. 

\ 

\ 
\ 



12 

effects. 

Linearization of the current-density expression (equation 2) and the definition of 

the faradaic impedance enable the following generalized expression for Z I to be 

written llJ 

(11) 

where the so called charge-transfer resistance R, is related to the individual charge-

transfer resistances by 

1 1 
-=~-
R, I R, I ' , 

and R- l = [ai l .l ] 
1,1 av' (12) 

Numerical solution of the multicomponent transport equations yields the concentration 

and the potential profiles adjacent to the rotating disk. From the surface 

concentrations and the kinetic potential difference, the current and therefore the 

faradaic impedance can be calculated. 

The solution impedance, Z,oln = (4)0 - ~o)/ '{ + R a, as it will be called, consists of 

two terms. The first, although typically neglected, results from the establishment of a 

diffusion potential and ohmic drop (accounting for the variable conductivity) due to 

concentration variations across the diffusion layer. This effect should be expected to be 

most significant in concentrated solutions. The second contribution to Zsoln is the ohmic 

resistance out to a reference electrode in the bulk, where conductivity variations are 

negligible. Assuming a primary current distribution J7J to the rotating disk yields 
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2.2. Microscopic Model 

The objective of the microscopic model is to account for the frequency dispersion 

of the double-layer capacity by providing a detailed description of the interfacial-

reaction processes. The interfacial kinetic expressions 7 and 8 are written in terms of 

cavity potential differences within the double layer, and therefore, a different breakdown 

of the total cell potential is required. The resulting total impedance[3] is given as follows 

Z - ~~ M-I + ~~1-2 + ~~2-O + ~~ diff R 
101 - '? - + n , 

I e- + Jwq 

and a schematic illustrating the various terms of Z'o' is given in figure 4. 

(13) 

The total alternating current density is seen in the figure to be the sum of the 

electron-transfer current density, T _ = E T _I' and the double-layer charging current, 
e 1 e. 

"":'" .-
, c = J wq. The charge can be determined from the following form of Gauss's law 

(14) 

where ~ ~ M-I IS the potential difference between the metal electrode and the mner 

Helmholtz plane. The effective capacitance, eM-I' is determined by the permittivity 

EM- 1 and the inner-layer thickness dM- I . The electron-transfer reactions are potential 

and concentration dependent such that the electron-transfer impedance, defined by 

Ze- = ~ ~ M-l / Te- , consists of two components: the electron-transfer resistance, R e-, 

and the impedance due to the concentration-dependent reactions, denoted by We- in 

the equivalent circuit. R _ is the high-frequency limit of Z _ and is defined by 
e e 
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The double-layer capacity is not taken to be a constant, as was done in the 

macroscopic model, but instead depends on the charge in the compact (ql = F1: ZJ\l) 
i 

and diffuse (q2 = F1: Z)\d) layers. A charge balance on the inner Helmholtz plane 
i 

yields 

(15) 

where T a is the alternating current density due to the desorption/adsorption reactions 

that occur between the IHP and the OHP. These potential and concentration-dependent 

reactions give rise to the desorption/adsorption impedance, Za = 1l¢1-2 / To, and is 

the sum of the the kinetic resistance, R;;l = 8ia /81l1/J1_2, and the frequency-

dependent circuit element, W 0' The charge q1 can be related to CM - 1 and C1- 2 by 

Gauss's law. 

A charge balance on the diffuse layer gives 

(16) 

-where , IS the alternating ionic-conducting current density passed through the 

electrolyte. The charge q2 is related to components of the double-Iyer capacity by 

Gauss's law, q2 = -C1- 21llfl - 2, and by the definition of the differential diffuse-layer 

capacity Cd = -( 8 q2/ 8 1l1/J2-(J)' The charge balance on the diffuse layer is similar to 

the material balance 

(17) 

where this conservation equation for each species can be multiplied by F Zj and summed 

over all species yielding the current density relationship (equation 16), since 

To = F E Zj N~1-2). Equation 17 is most useful because one can see that the flux of a 
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minor species at the inner limit of the diffusion layer[31 

(18) 

gives rise to an impedance denoted in the figure by W d, where -1/0'(0) = - Ci,O!'C;,o is 

the convective-Warburg impedance function for a rotating disk,lsl valid for dilute 

solutions and no migration. The prime denotes differentiation with respect to e = z /Oi' 

The final potential difference in equation 11, and illustrated in the figure 4, is the 

diffusion potential ~ 1iJ dill' Although this potential is typically small for dilute solutions, 

it is included for completeness. The ohmic potential difference, ~ 1iJ ohm = T R o, is 

calculated using the bulk solution conductivity KOQ' The ohmic drop that arises from a 

variable conductivity due to concentration variations across the diffusion layer is not 

accounted for, as was done in the macroscopic impedance model. The importance of 

this omission will be discussed in the results section. 

Finally, it is hoped that the discussion here makes it clear that the variation of the 

impedance with frequency of an electrochemical system cannot adequately be accounted 

for by a finite combination of "true" resistors and capacitors, although it has been 

customary to do so. The equivalent circuit is included simply to illustrate system 

behavior qualitatively. It is the interfacial reactions that determine the charge 

distribution within the double layer, and the charge, -q = ql + q'!" is a function of the 

surface concentrations of all species within the double layer as well as the potential. 

Therefore, to determine the frequency dependence of the electrochemical impedance, it 

is necessary to solve the lumped-parameter microscopic model numerically for the 

potentials across the interfacial planes and the surface excesses of all electroactive 
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specles. The current can then be determined from equations 7 and 8, and consequently 

the total impedance can be calculated using equation 13. 

3. Model Parameters 

Two mathematical models for the frequency response of a rotating disk electrode 

have been reviewed. The parameters used in the models to characterize a particular 

electrochemical system have well-defined physical meaning, but some interfacial 

parameters are not directly measurable. Let us next present the parameters necessary 

for the model calculations, including a discussion of the selected values. Bulk transport 

properties are obtained from the literature; physically-justified values are assumed (and 

are not adjusted) for the Gauss's law parameters used to describe the charge at the 

interface; and thermodynamic and kinetic arguments are used to determine the 

(adjustable) equilibrium and rate constants, respectively. 

3.1. Transport Properties 

The properties of interest III the electrolytic solution are the bulk-solution ionic 

concentrations, diffusion coefficients, the electrical conductivity, and the viscosity. 

Table 1 gives the values of the physical property data corresponding to the copper­

dissolution process in 0.1 M Hel at 298.15 K. These parameters are independent of the 

specific reaction mechanism used in the model and are assumed to be constant. 

The bulk conductivity of the electrolytic solution is related to the specified bulk 

concentrations and mobilities of the charge carrying species by 
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Table 1. Values of the physical property data for the electrolyte. 

Di X 105 
Ci 00 X 104 

, 
specIes (cm 2js) (moljcm3) 

CI- 2.032 1.0 

CuCI; 0.568[4j 0.0 

H+ 9.312 1.0 

Koo = 0.046 (O'cm)-l II = 8.9 X 10-3 cm2js 

(19) 

where the ionic mobilities have been related to the diffusion coefficients by the Nernst-

Einstein relationship Di = RTui' The ionic diffusion coefficients at infinite dilution are 

reported in table 1 as given in reference [9], unless specified otherwise. The viscosity of 

the infinitely dilute solution at 25 0 C is given by Robinson and Stokes.[lOj Additionally, 

the dielectric permittivity Esoln is a property of the electrolytic solution and is given in 

table 2. 

3.2. Gauss's Law Parameters 

Table 2 summarizes the physical parameters that are used in Gauss's law to 

characterize the charge ID the double layer. Values are selected for these parameters 

and are not adjusted. 

First, the distances between the interfacial planes are specified, SIDce linear 

potential profiles are assumed for the lumped-parameter microscopic model. Molecular 
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Table 2. Physical parameters characteristic of the interfacial double layer. 

(M-1) (1-2) (2) (soln) 
M-.IHP IHP-.OHP OHP-.O 0-.00 

. 
A = 10-1 cm "8 = 1.3XlO-3 cm d j (A) 1 2 

E j X 1012 (F /cm) 0.1 0.2 7.0 7.0 

C j (JlF /cm2
) 10 10 72 

Cdl - 5, 10, 30 JlF / cm 2 

dimensions of dehydrated and hydrated ions yield values for dM - 1 and dl - 2, 

respectively. The Debye length A characterizes the thickness of the diffuse layer and 

depends on the ionic strength of the solution (0.1 N for the value reported in table 2). 

The Levich equation gives the Nernst-diffusion-Iayer thickness "8 for a rotation speed of 

2000 rpm. 

The dielectric permittivity of an infinitely dilute electrolytic solution (and diffuse 

layer), is obtained by using the relative dielectric constant for water. Within the 

compact part of the double layer, the electric field is greater than in the solution, and 

the permittivity is smaller due to dielectric saturation. 191 Close to the surface, oriented 

water molecules are most aligned yielding the smallest permittivity. 

The microscopic integral capacitance, C j = E j/d j (where j refers to a regIOn 

within the interface), is calculated using the values of the permittivities and thicknesses 

given in table 2. Values of the double-layer capacity used in the macroscopic model also 

are gIven 1D the table. The overall differential capacity IS defined by 

Cdl = 8 q / 8( ¢M - ¢o) and can be related to the interfacial capacities by 
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1 --= (20) 

where 

(21) 

An effective capacity for no specific adsorption IS gIven by 

Finally, the available number of sites on the metal surface for reaction is given by 

r max = 10-9 moljcm 2. This maximum surface concentration of adsorbed species 

depends on the sizes and packing relationship of the surface and adsorbate molecules. 

The value chosen corresponds to 16.6 A2jmolecule. 

3.3. Equilibrium Parameters 

The electrode-electrolyte interface is characterized under equilibrium conditions by 

the "macroscopic" and "microscopic" equilibrium constants, and knowledge of the 

surface coverage (or adsorption energy of individual ions) would enable the equilibrium 

constants to be determined. However, thermodynamic data are not available for the 

adsorbed intermediates in the proposed reaction mechanism II, and the microscopic 

equilibrium constants must be chosen on some other basis. Additionally, values of the 

interfacial equilibrium constants cannot be selected independently and are subject to 

thermodynamic constraints. For example, the open-circuit cell potential, as determined 

by the microscopic model (equation 9), must be equivalent to the open-circuit potential 
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gIven by the macrOSCOpIC Nernst equation 3. Thus, depending on the fractional 

occupation, 8 j,1 = rj,dr max' of the adsorbed ions at the inner Helmholtz plane, the set 

of microscopic equilibrium constants can change, but must remain thermodynamically 

consistent with the macroscopic equilibrium constant K c,/' In this section, a 

thermodynamic basis for determining the equilibrium constants is described. In the 

next section, details of the iterative procedure for selecting the specific values for all 

thermodynamic and kinetic parameters will be discussed. 

First, in order to demonstrate the applicability of our stoichiometry accounting 

method discussed in the preVIOUS paper,13j the stoichiometric coefficients of all the 

species In mechanism II are given in table 3. Species that appear on the left side of 

reactions 4, 5, and 6 (when written as an anodic or desorption reaction) have positive 

stoichiometric coefficients; all products have negative stoichiometric coefficients. 

At equilibrium, and in the absence of corrosion, the interfacial reactions have a 

zero net rate. The charge-transfer equilibrium constants can be determined 

subsequently as functions of the equilibrium interfacial concentrations and potentials. 

The equilibrium constant of the electron-transfer reaction 5 is determined from equation 

Table 3. Stoichiometric coefficients for species i in reaction I for mechanism II. 

rxn metal inner Helmholtz plane outer Helmholtz plane 

e - Cu CI- CuCI; CI- H+ CuCI; 

1 1 -1 

2 -1 1 2 -1 

3 1 -1 
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7 by setting ie- = 0, and solving for K2 yielding 

(22) 

Again, assuming fast rates of reaction and a Boltzmann distribution, equation 8 yields 

the equilibrium constant of the desorption/adsorption reactions as follows: 

(23) 

A wealth of information concernmg the interfacial properties is incorporated 

within the three microscopic equilibrium constants. For example, the equations given 

above for the equilibrated interface can be solved systematically (see figure 5), along 

with Gauss's law l31 for the IHP and the diffuse layer, to obtain the interfacial potential 

differences and the surface concentrations of the adsorbed ions in terms of the 

electrolyte concentration CHCI and the concentration of the minor species cCuCI2".O' A 

schematic summarizing this equilibrium-calculational procedure is given in figure 5. 

The additional input parameter shown in the figure is the cavity potential difference, 

~ t/Jrel = t/Jo - <1>0' that relates the quasi-electric potential 191 <I> used in the macroscopic 

model to the outer or cavity potential t/J used in Gauss's law in the microscopic model. 

Equating the open-circuit potential equations 3 and 9 yields the constant 

.1. - - RT I [K(I) Kr 1 ~ 'Prel - F n c K2 K 3 
(24) 

in terms of the macroscopic and microscopic equilibrium constants. 

The equilibrium constants Kl and K3 for the ion-adsorption reactions 4 and 6 

provide a measure of the adsorption energy of an ionic species and, therefore, generally 
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determine the level of coverage of the inner Helmholtz plane. One can see this by 

setting the A 1//S equal to zero in equations 22 and 23 (as a first approximation by 

ignoring Gauss's law) and selecting reasonable values for the concentrations cCl-.O and 

ccuCI2.O' (Results of the steady-state macroscopic model indicate the order of 

magnitude of the product concentration adjacent to the electrode with consideration of 

the mass-transfer limitations and the observed current densities.) This calculational 

procedure is used to determine the following values for the equilibrium constants: 

Kl = 9.98 X 10-2 moljcm3
, K2 = 998, and K3 = 3.39 X 10-5 mol/cm3

. 

Results based on the given set of equilibrium parameters are given in figures 6 and 

7. The concentration-distribution map (figure 6) illustrates the thermodynamic 

relationship between surface coverages and bulk ionic concentrations. Also shown on 

figure 6 is the result (8 j = 10-3 indicated by an open circle) as calculated by the 

adjustable (within thermodynamic constraints) microscopic equilibrium constants to be 

used later in the paper. For this case, all charge is assumed to be specifically adsorbed 

(q2 = 0), and the potential difference, AtPM-l' is related to the charge (q = -ql) 

adsorbed at the inner Helmholtz plane by Gauss's law (equation 14). A small surface 

coverage is the basis for this set of adsorption constants because the electrode surface is 

taken to be sparsely covered. 

3.4. Kinetic Parameters 

Thermodynamic equilibrium considerations alone cannot be used to determine the 

distribution of charge within the double layer unless all the interfacial reactions are 

infinitely fast. When finite rates of the charge-transfer reactions need to be accounted 
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for, the concentration and potential dependent kinetic expressions given earlier should 

be utilized in conjunction with Gauss's law and the transport equations. The details of 

characterizing these interactions quantitatively were described in reference [3]. 

The only parameters in the microscopic model remaining to be discussed are the 

electron-transfer and desorption/adsorption reaction kinetic constants. Selection of the 

backward rate constant kb I for each charge-transfer reaction I is made using an iterative . 
procedure, where the experimental impedance datal41 is used as a guide. Let us next 

discuss further the measured impedance results for the copper chloride system. 

It is well known lIlI that the copper dissolution process is predominately mass-

transfer controlled, but a contribution, possibly due to adsorption kinetics, can be 

identified by the frequency dependence of the measured complex impedance. In the 

high-frequency limit of figure 1, the slope is greater than a convective-diffusion 45· 

(Warburg) line. Thus, the adjustable rate constants are selected to account for the fast, 

but finite, rates of reaction. 

A trial and error procedure is used to select a set of three equilibrium constants 

and three backward rate constants that when used in the microscopic impedance model 

yield simulated results that match the experimental data. The method is based on 

guessing a value for the surface coverage of adsorbed ions at the IHP, which enables the 
\ 

interfacial equilibrium constants to be determined analytically from simplified forms of 

the general equations described in the previous section. Moderately small coverages are 

selected so that the number of available sites on the surface do not limit the reactions. 

Relatively large values for the backward rate constants are then chosen, but must be 

iterated upon until numerical results give the desired steady-state current density and 
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im pedance curves. 

The set of equilibrium constants and kinetic parameters (backward rate constants 

and symmetry factors) used in the microscopic model are summarized in table 4. The 

forward rate constants k /,1 also are given for completeness, but they are not 

independent adjustable parameters. The microscopic-model parameters are based on a 

surface coverage of 9 j = 10-3 , but it should be pointed out that the impedance 

simulations are sensitive to this parameter (values of 10-1 and 10-2 were tried before 

getting the desired results). This coverage, when used in equation 20, yields a value for 

the macroscopic double-layer capacity of Cdl = 6 f.lF /cm2. 

Also given in table 4 are the equilibrium constant Kc and backward rate constant 

k~ used in mechanism I. These parameters were reported elsewhere l5J ,16J to describe the 

copper dissolution process in 0.1 N HCI and have not been adjusted. The symmetry 

factors fi, are not varied in either mechanism. 

Table 4. Kinetic parameters for the charge-transfer reactions in mechanisms I and II. 

Equilibrium Rate Constants Symmetry 
reaction Constant Forward Back Factor 

K, kf.l kb,1 fi, 

I. 1 104 cm3 /mol 103 cm 4 /mol·s 10-1 cm/s Y2 

II. 1 9.98X10-2 mol/cm3 9.98X107 l/s 109 cm3 /mol's Y2 

II. 2 4.71X102 1.41X106 cm4 /moI2·s 3X103 cm4 /moI2·s Y2 

II. 3 3.39XlO-5 mol/cm3 3.39X104 l/s 109 cm 3 /mol·s Y2 
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4. Results 

Results of the macroscopic and microscopic impedance models are to be presented 

for the largely mass-transfer controlled anodic dissolution of copper in 0.1 M HCI.[4! 

This system is a good test case for the purpose of exploring and providing an 

understanding of the nature of the interface, since slow reaction kinetics do not dictate 

or complicate the impedance response. Macroscopic impedance results are given first 

followed by the microscopic model results. 

The electrochemical impedance for a copper disk rotating at 2000 rpm in 0.1 N 

hydrochloric acid is calculated by the macroscopic model based on the overall 

dissolu tion reaction (equation 1). The resulting electrode frequency response (at 

V = -0.205 V) is plotted in the complex plane in figure 8 based on a constant double 

layer capacity. Total impedance results for three different values of Cdt (5, 10, and 

30 JlF fcm 2) are illustrated on this Nyquist plot showing the negative of the imaginary 

part of the impedance versus the real part of Z with the frequency as a parameter. In 

addition to the total impedance, the faradaic and solution impedances are shown lD 

figure 8, denoted by dashed and dotted lines, respectively. Let us now discuss further 

the components of Z/o/. 

The faradaic impedance was defined earlier so that it includes not only the effect of 

the faradaic charge-transfer reactions but also that of any concentration variations at 

the electrode surface that affect the rate of the electrochemical reactions. Because the 

reaction is fast, the 45 0 line, or Warburg diffusion impedance, dominates the faradaic 

impedance since the charge-transfer resistance is small. Thus, these mass-transfer 

effects are characterized by the second term on the right of equation 9, the convective-
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Figure 8. Complex-plane plot of the impedance for the anodic dissolution of copper as 
calculated by the Stefan-Maxwell macroscopic model based on mechanism I. 
Simulations of the total (Cdl = 10 J.lF jcm'2), faradaic, and solution impedances are 
denoted by solid, dashed and dotted lines, respectively. The total impedance based on 
Cdl = 5 and 30 J.lF jcm'2 also are given by chain-dashed and chain-dotted lines, 
respectively. 
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Warburg impedance. The high-frequency limit of Z f is given by Rt = lim {Z f}' but is 
W -+ 00 

negligible on the scale of figure 8, again because reaction 1 is fast. The polarization 

resistance, the low-frequency limit of the faradaic impedance Rp = lim {Z f} = R t + Ro 
w-+o 

= 1272 0·cm 2, reduces to the mass-transfer resistance Ro. The faradaic impedance is 

characterized by Ro and the convective-diffusion time constant TMT. TMT oc Se 1
/
3/O is 

a function of the rotation speed 0 and the Schmidt number Se = v / Di , where Sc is 

based on the kinematic viscosity v and the diffusion coefficient of the minor (CuCI2") 

specIes. 

The solution im pedance arIses from the poten tial difference across the diffusion 

layer. Although ZBoin is negligible for the conditions reported here, the inductive loop 

that appears near the origin is interesting and therefore is illustrated in the expanded 

view in figure 8. This feature in the solution impedance arises from the maximum that 

occurs in the steady-state potential profile,i12i which results from the diffusion potential 

balancing the potential as given by Ohm's law. This behavior, where the electric field in 

the solution is reversed, has been shown iI3J to occur for a number of different 

electrochemical systems. 

The total im pedance calculated usmg the base-case capacitance value of 

10 J.lF / cm 2 (solid curve in figure 8) consists of one loop because the electrochemical 

reaction is fast (the charge-transfer resistance is negligible on the scale of the figure), 

and therefore an additional inner (high frequency) heterogeneous-reaction loop is not 

observed next to the low-frequency convective-Warburg impedance. Instead, the 

impedance resulting from the double-layer capacity simply shifts the frequency 
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dependence of the dominant mass-transfer (War burg) impedance due to the overlapping 

capacitive time constant. The net effect is a high-frequency slope greater than 45 0 

- the 

expected result for a convective-diffusion impedance. The solution resistance Ro is the 

high frequency limit of Ztot because the time scale is so short that other effects cannot 

manifest themselves as factors influencing the current. However, Ro also is negligible 

relative to the polarization resistance. 

The total impedance based on Cdl = 5 and 30 J.lF /cm2 are also given in figure 8 by 

chain-dashed and chain-dotted curves, respectively. As Cdl -+ 0, the total impedance 

reduces to the faradaic impedance, since 

z;" = [ if + j we dI r + R 0 (25) 

Equation 25 is obtained from the more general total impedance equation 8 by assuming 

that the solution potential is negligible and that ic = jwCdl V. 

For larger values of Cdl , the impedance spectra in the complex plane approaches a 

semicircle. The frequency wmax = 2rr f max associated with the maximum in the 

imaginary part of the total impedance can be related to the time constant T = l/wmax. 

Because the solution and charge-transfer resistances are small, the kinetic time constant, 

T = (Ro + R,) Cdl , is not important. Instead, the total impedance is characterized by 

T = (Ro + Rp)Cdl , where the magnitude of the impedance loop is determined by the 

mass-transfer resistance Ro SInce Ro + Rp ~ Ro + Ro. The characteristic 

dimensionless frequency at the impedance maXImum of the total impedance (Cdl = 30 

J.lF /cm2
) loop is Kmax = 1.6, whereas Kmax = 3 for the faradaic-impedance loop with no 

parallel capacitance. 
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Finally, it should be noted that the spacing of the frequencies on the complex-plane 

plot are highly nonuniform and visual interpolation can be difficult. Therefore, the 

same results given by figure 8 are presented next in the form of a Bode plot. 

The total, faradaic, and solution impedances are presented in figure 9, where the 

logarithm of the magnitude of the impedance is plotted vs. the logarithm of the 

dimensionless frequency K. One advantage of the Bode plot is that the high frequency 

limit of the faradaic impedance, denoted by a dashed line, yields the charge-transfer 

resistance, a horizontal line at lim log I Z f I = log I Rt I = 0.158, with a phase angle of 
K_oo 

O· (although not shown); the complex-plane plot (figure 8) failed to provide 

R, = 1.44 n·cm 2 quantitatively. The low-frequency limit of the faradaic impedance 

again yields the polarization resistance Rp = 1212 n·cm 2• In the intermediate high-to-

moderate frequency range, the Warburg impedance is a straight line with a slope of 

-1/2 and a phase angle of -45·. An equivalen t circuit model of the convective 

diffusion process is a transmission line lHI made up of a series of resistors and capacitors. 

Therefore, the corner frequencies of the faradaic impedance are not related to individual 

resistors and a capacitance. 

The magnitude of the solution impedance is given by an almost horizontal line, on 

the scale of the figure, at ,lim log I Z,oln I = log I Rn I = 0.932. An enlargement of 
X-oo 

Zaoln is included. This unexpected behavior on the Bode plot can be explained by the 

same reasoning as given earlier when Zaoln in the complex plane was discussed. 

The total impedance for the base-case capacitance value of 10 J.lF /cm'!. is given by 

the solid line. The high-frequency limit is a horizontal line corresponding to 
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Figure 9. Bode plot of the total (Cdt = 10 J.lF jcm2
), faradaic, and solution 

impedances for copper dissolution. The S-M simulations are based on mechanism I and 
are denoted by solid, dashed and dotted lines, respectively. The total impedance based 
on C

dt 
= 5 and 30 J.lF jcm2 are given by chain-dashed and chain-dotted lines, 

respectively. 
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lim {Ztot} = 8.544 O·cm2
, and the low-frequency limit yields Rp + lim {Zeoln} 

K_oo K-O 

= 1281 O·cm2. The impedance of a "perfect capacitance" is represented as a straight 

line with a slope of -1 and a phase angle of -90 0

• The high-to-moderate frequency 

range of Zlol corresponds to capacitive-like behavior. At lower frequencies, the slope 

shifts toward -1/2. The corner frequencies should be characterized by "J..HF) = Ro Cdl 

and "J..LF) ~ (Ro + Ro) Cdl for the high and low frequency limits, respectively. 

The total impedance based on Cdl = 5 and 30 p,F /cm2 are also given on the Bode 

plot in figure 9 by chain-dashed and chain-dotted lines, respectively. As Cdt increases, 

the high-frequency corner point decreases, and the negative close-to-unity slope is 

maintained over a wider frequency range. Again, at lower frequencies, the slope shifts 

toward -1/2. The low-frequency corner point is less sensitive to the value of the 

capacitance. 

Results from both the macroscopIc and microscopic impedance models are 

illustrated on the complex-plane plot in figure 10. The total impedance as calculated by 

the Stefan-Maxwell model (dotted line) is again based on mechanism I and a constant 

Cdl = 10 p,F /cm2
, whereas the impedance from the microscopic model (solid line) is 

based on mechanism II and a capacitance that depends on the charge in the compact 

and diffuse layers. The latter simulated result is based on a set of parameters obtained 

from using 8 j = 10-3 for Cl- and CuCI;. In other words, an 0.2 % total surface 

coverage is the basis for the numerical calculation and yields impedance results, zl:r) , 

with two distinct regions in the moderate-to-high frequency range. At high frequencies, 

the slope of the Zt(::,M) (solid) curve in figure 10 is greater than one, similar to the 
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Figure 10. Complex-plane plot of the total impedance as calculated by the 
macroscopic and microscopic models based on mechanisms I (dotted line) and II (solid 
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impedance results in figure l.t The effective capacitance of the impedance appears to be 

close to 10 J.LF fcm 2, whereas at lower frequencies, the impedance becomes mass-transfer 

controlled, and the effective capacitance decreases. In all but the high-frequency limit, 

Zl:,M) corresponds to the Stefan-Maxwell faradaic impedance (dashed line). Thus, the 

macroscopic model yields reasonably accurate simulated results, but the microscopic 

model is necessary to yield a detailed and quantitative description of double-layer 

adsorption effects. 

The total and faradaic impedances as calculated by the Stefan-Maxwell model 

using mechanism I are denoted in figure 11 by dotted and dashed lines, respectively. 

These results were presented in Bode form in figure 9 and are included here for 

comparison purposes only. Therefore, they will not be discussed further. The total 

microscopic impedance, based on mechanism II, but for a different set of rate constants, 

is given by a chain-dotted line in the figure. This set of parameters [to be described 

below] is denoted mechanism II (b); whereas, the set described earlier (table 4) [and 

denoted mechanism II (a)] is taken to be the base case and is given by a solid line in the 

figure. Simulations based on a new set of parameters are included to illustrate the 

importance and influence of the kinetic rate constants. 

The microscopic kinetic-rate constants were chosen such that the low-frequency 

limits approximate the macroscopic model results. Values of 1279 and 1286 n·cm2 are 

t An alternative explanation has been_ given for why the experimental high­
frequency data deviate from convective-Warburg behavior (and an expected slope of 
one). In reference [5], reaction 1 is treated as an E C reaction mechanism, and finite 
rates of the following homogeneous complexing reaction give rise to an additional 
impedance loop. For a large value of the chemical reaction rate constant, this can yield 
a high-frequency shoulder in the complex plane with a slope greater than one. 
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obtained for mechanisms II (a) and (b), respectively, which should be compared to the 

Stefan-Maxwell result, Rn + Rp = 1281 n·cm 2. The high-frequency limit yields 

quantitatively the solution resistance, Rn = 8.6652 n·cm2
, differing slightly (1.4%) from 

the Stefan-Maxwell result given earlier because the latter accounts for the diffusion 

potential and variation of conductivity. The intermediate frequency range of the 

microscopic impedance results has two distinguishing regions, as was also seen on the 

previous complex-plane plot. At moderate-to-high frequencies, Zt has a slope close to 

-1 similar to Stefan-Maxwell total impedance and an effective capacitance that 

corresponds to Ce = 5 f.1.F /cm2. At moderate-to-Iow frequencies, the slope shifts to a 

value of -1/2 indicating the importance of mass-transfer effects, and the effective 

capacitance decreases. 

The total impedance curve denoted mechanism II (b) is based on the following set 

of rate constants for reactions 2 to 5: kb = 108 cm3 /mol·s, 5X103 l/s, and 108 

cm3 /mol·s, respectively. On figure 11, the frequency dependence of the transition from 

dominating mass-transfer effects to adsorption-kinetic control shifts due to the change in 

the adsorption reaction resistance. Decreasing the adsorption rate constant (larger Ra), 

as has been done for mechanism II (b), causes the slope to shift from -1/2 at a slightly 

lower frequency. In other words, faster adsorption rates cause the effective capacitance 

to become significant only at a slightly higher frequency. 

Next, we should examine the microscopic impedance results in more detail. The 

total, electron-transfer, and desorption/adsorption· im pedances are shown in figure 12 

for mechanism II (b). Ze- and Za are denoted by dashed and dotted lines, respectively. 

Z[:,M) should be compared to the total impedance in figure 8 obtained for mechanism II. 
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The different combination of parameters yields similar total impedance results, although 

the individual Ze- and Za components are different. However, until more measurements 

are carried out to confirm the existence of two different slopes in the moderate-to-high 

frequency range on the complex impedance plane, we cannot conclude which is the best 

set of parameters. Instead, we have demonstrated how to account for the proper 

concentration and potential dependence of the capacitance and have given results 

illustrating the frequency dispersion effect of the double-layer capacity. 

5. Discussion of Results 

Previously,151 we discussed the use of the ac-impedance method for 

electrochemically measuring the rates of homogeneous reactions taking place in the 

solution. Here, we postulate an extension of that procedure, although results are not 

given. Frequently, homogeneous reactions are fast so that the reaction is taken to be 

equilibrated in the diffusion layer. However, finite rates of the chemical reaction must 

be accounted for in a thin reaction zone adjacent to the electrode surface. The thickness 

of the reaction layer is often comparable to that of the diffuse double layer, and rather 

complicated corrections then have to be c:,trried out to allow for the variation in . 

concentration and for the effect of the double-layer electric field on the transport of ions 

to the electrode. The microscopic model that has been used here is capable of 

investigating these complex interactions where electron-transfer, desorption/adsorption, 

finite rates of the homogeneous reaction, and diffusion and ohmic losses are all coupled. 

Finally, the microscopic model can be used for proposing different complex reaction 

mechanisms and predicting the resulting frequency dependence of the total impedance. 
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6. Conclusions 

Results of two mathematical models have been presented. Both theoretical 

frameworks are used to determine the total impedance resulting from the current 

response (charge transfer and double-layer charging) to potential variations in the 

working electrode relative to a reference electrode placed in the bulk solution. The 

electrochemical impedance has been analyzed by examining each contribution of the 

total cell potential and current, which yielded impedance terms typically neglected in 

other ac-impedance treatments. Although, double-layer and transport phenomena are 

accounted for in both models, the emphasis of each algorithm is quite different; 

interfacial desorption/adsorption reactions coupled with electron-transfer reactions are 

the focus of the microscopic model, whereas transport in the diffusion layer and overall 

faradaic reactions are emphasized in the macroscopic model. Concentrated-solution 

theory, accounting for migration, convection, and multicomponent diffusion, is utilized 

in the Stefan-Maxwell program, whereas a simple dilute-solution Warburg diffusion 

layer is applied in the microscopic model. 

A measure of the validity of the models can be obtained by compaflson to 

experimental data. In this paper, we have used the macroscopic and microscopic models 

to study the largely mass-transfer controlled copper dissolution process in 0.1 M HCl. 

At the higher frequencies, the slope of a convective-diffusion (Warburg) impedance is 

expected to be 45 0

, but the impedance measurements given in figure 1 show a larger 

than 45 0 slope. The macroscopic-impedance model simulations, based on an overall 

dissolution reaction, predict this trend in the experimental data by accounting for a 

constant double-layer capacity, where the overlapping capacitive time constant distorts 
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(by increasing the slope of) the convective-diffusion 45 0 line. A refinement in the 

interpretation of the experimental data is that desorption/adsorption kinetic limitations 

can contribute to the steep high-frequency slope due to frequency dispersion of the 

double-layer capacity. The microscopic double-layer model accounts for a more detailed 

three-step (adsorption/charge-transfer / desorption) reaction mechanism having fast, but 

finite, rates of reaction. The later simulations yield an additional impedance loop in the 

high-frequency range, which (depending on the choice of surface coverage and rate 

constants) appear as a single loop with a larger than 45 0 Warburg slope. 

There are many parameters in the microscopic model that characterize the double 

layer and cannot, in general, be independently measured. Thus, a detailed description 

of the equilibrated interface was given, which included surface-coverage and potential 

distribution maps as a function of supporting electrolyte concentration. Additionally, 

an iterative procedure for selecting equilibrium constants and kinetic rate constants has 

been discussed. The results of these procedures can be used to gain insight into the 

importance and influence of these parameters. Only a small number of carefully 

selected sets of parameters yielded quantitative agreement with the experimental data. 

Future experiments can be designed to further characterize the copper system and to 

verify the applicability of the mathematical models. Finally, the two models together 

provide a powerful arsenal for characterizing the total electrochemical impedance of 

many systems. 

.. ~ . ., 

·1 
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current density of electron-transfer reaction I, A/cm2 
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absolute temperature, K 
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kinetic potential difference (electrode potential relative to 
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total potential (electrode potential relative to gIven 
reference electrode placed in the bulk solution), V 

total alternating potential (electrode potential relative to 
given reference electrode placed in the bulk solution), V 

alternating kinetic potential difference (electrode potential 
relative to given reference electrode placed just outside the 
diffuse layer), V 

charge number of species i 

com plex adsorption im pedance, ohm 'cm 2 

complex electron-transfer impedance, ohm'cm 2 

complex faradaic impedance, ohm'cm2 

complex solution impedance, ohm'cm2 

complex total impedance, ohm'cm2 

equivalen t circuit approximation for the com plex total 
impedance,ohm'cm2 

transfer coefficient of reaction I 

surface concentration of species J' at the IHP, moljcm 2 
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maximum number of active surface sites, moljcm 2 
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scaling factor for the diffusion layer of species i, cm 
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.6.1/J IR 

.6.1/J diff 
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II 

T 

permittivity of region j, F Icm or e/V-cm 

cavity potential difference between electrode and inner 
Helmholtz plane, V 

cavity potential difference between lllner and outer 
Helmholtz planes, V 

cavity potential difference across the diffuse layer, V 

ohmic cavity potential difference, V 

cavity diffusion potential, V 

cavity reference potential difference, V 

dimensionless Warburg impedance function 

surface coverage of species i 

conductivity of the bulk solution, ohm-1-cm-1 

Debye length, cm 

kinematic viscosity, cm 2js 

dimensionless axial distance for rotating-disk convective­
diffusion equation 

3.141592654 

time constant, s 

electric potential of the metal electrode, V 

potential of a real reference electrode placed III the hulk 
solution, V 

potential of a hypothetical reference electrode of a gIven 
kind placed just outside the diffuse layer, V 

potential of a hypothetical reference electrode of a given 
kind placed just outside the diffuse layer as if there were no 
concentration gradients across the boundary layer, V 
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<1>0 

<1>0 

w 

subscripts: 

m 

o 

00 

1 

2 

superscripts: 

(M-I) 

( 1-2) 

(2) 

(IIIP) 

( OIIP) 

alternating potential of a hypothetical reference electrode of 
a given kind placed just outside the diffuse layer, V 

alternating potential of a hypothetical reference electrode of 
a given kind placed just outside the diffuse layer as if there 
were no concentration gradients across the boundary layer, 
V 

perturbation frequency, rad/s 

frequency characteristic of the maximum of an impedance 
loop, rad/s 

angular rotation speed, rad/s 

at the metal electrode surface 

just outside the diffuse part of the double layer 

in the bulk electrolyte, where there are no concentration 
variations 

at the inner Helmholtz plane 

at the outer Helmholtz plane 

between metal and IHP 

between IHP and OHP 

between OHP and outer limit of diffuse layer 

at the inner Helmholtz plane 

at the outer Helmholtz plane 

complex part 
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