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Analysis of the Total Electrochemical Impedance of Copper Dissolution

Alan K. Hauser and John Newman

Department of Chemical Engineering, University of California, and ,
Materials and Chemical Sciences Division, Lawrence Berkeley Laboratory,
One Cyclotron Road, Berkeley, CA 94720

Abstract

Results of two mathematical models are presented that calculate the frequency
response of a copper rotating disk in chloride.solutions. Both the macroscopic and
microscopic impedance models predict the experimentally observed high-frequency slope
that is greater than the 45° convgctive-diﬂ‘usion (Warburg) impedance line. The
macroscopic impedance model uses concentrated-solution theory, incorporating the
Stefan-Maxwell transport equations, to account for multicomponent diffusion,
migration, and convection. This model, based on a single overall charge-transfer
reaction, predicts impedance curves for the largely mass-transfer controlled anodic
dissolution process by using a constant double-layer capacity. Additionally, the
electrochemical impedance is analyzed by examining each contribution of the total cell
potential and total current giving rise to impedance terms typically neglected in other
ac-impedance treatments. The frequency dispersion of the double-layer capacity is
accounted for by using the microscopic model of the electrode-electrolyte interface. This
lumped-parameter model accounts for (cavity) potential and concentration-dependent
charge-transfer reactions, as well as the diffuse and diffusion layers. A three-step
(adsorption/electron-transfer/desorption) reaction mechanism is proposed, and the
simulated impedance results yield a detailed and quantitative understanding of double-

layer adsorption effects. Specifically, insight is gained about the importance and



influence of the many parameters that are used in the microscopic model to characterize
the interface but cannot, in general, be independently measured. Thus, an iterative
procedure for selecting equilibrium constants and kinetic rate constants is discussed.
Additionally, a description of the equilibrated interface is given, including surface-
coverage and potential-distribution maps as a function of the supporting electrolyte
concentration. Finally, the set of interfacial equilibrium parameters used in the
microscopic model is based on a total surface coverage of 0.29%, and the kinetic
parameters were selected such that the simulated results agree with the experimental

steady-state and impedance data.

1. Introduction

The general Stefan-Maxwell progra.mm accounting for multicomponent diffusion,
migration, and convection, in addition to any number of homogeneous and
heterogeneous reactions, is a powerful algorithm for studying the frequency response of

the rotating disk. The model is capable of predicting the total electrochemical

impedance based on a constant double-layer capacity, although it is well known!? that
the capacitance of the electrode-electrolyte interface depends on the charge in the
compact and diffuse layers. Treatment of the interfacial-reaction processes is necessary

to account properly for the accumulation of charge in the electric double layer, and

therefore the microscopic modell® is used to elucidate quantitatively details of this
phenomenon. The latter mathematical model accounts for potential and concentration-
dependent electron-transfer and desorption/adsorption reactions that occur within the

compact region of the double layer. Even though the emphasis of the microscopic model



is on the interfacial reactions, the model also accounts for the diffuse and diffusion layers

and ohmic potential losses.

The purpose of this paper is to use the two developed algorithms to describe the
current response of a rotating disk to small oscillations around a steady-state potential
and to calculate the frequency dependence of the total electrochemical impedance. The
simulated results presented here have relevance in the quantitative interpretation of
frequency-domain spectroscopic impedance measurements of the dissolution of a copper
electrode in 0.1 M HCL!4 The experimental impedance results are illustrated in figure 1
as function of rotation rate. The microscopic model is used to yield mechanistic
information about the reaction processes that were treated simply as a boundary
condition in the macroscopic model. Let us next discuss the postulated reaction

mechanisms used in the two mathematical models.

The following one-step reaction' represents the overall anodic copper dissolution

process and is denoted mechanism I:
Cu +2CI7 — CuCly +e~ . (1)

The modified Butler-Volmer kinetic expression (given in general terms in reference [1])

may be written for reaction 1 as follows:

. - 1= A)F : F
i, =Fk, Cor-p €XP [I_R]g'L V] —Fk, €cuciz,0 XP ["' '1% V] ' (2)

! Treatment of this reaction as an EC mechanism has been presented elsewhere, %!
where a chemical (C) reaction follows an electrochemical (E) reaction. Therefore, finite
rates of the homogeneous reaction are not considered in this paper.
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provided that the reaction order is proportional to the reaction stoichiometry.
V=&, —d,is the kinetic potential driving force defined as the potential of the metal
electrode relative to a hypothetical reference electrode of a given kind placed just
outside the diffuse layer. At equilibrium, the net current density is zero so that equation

2 yields the open-circuit cell potential

!

RT, | k|, RT, | Scucizo
V. ==—In|—|+ In , 3
oc F ICa F cgl_ 0 ( )

where K{!) = k., /k. is the equilibrium constant.

A second mechanism for the same anodic copper-dissolution process is possible,
where the simple reaction 1 may be written in terms of adsorbed intermediates.

Proposed mechanism Il is given by the following three reactions:

Cloupy = Cl () (4)
Cu + QCI_(IHP) g CuC]Q—(]HP) +e” (5)

Chloride 1ons from solution are first specifically adsorbed at the inner Helmholtz plane,
where Cl™ can then react electrochemically at the copper electrode. The second step in
this mechanism is the one electron-transfer anodic dissolution reaction, where the
reactant and the product species remain adsorbed at the surface. The last step of the
process is the desorption of the copper chloride complexed species to the outer

Helmholtz plane.

A modified form®! of the Butler-Volmer equation is used to describe the poténtial

and ‘concentration dependence of the electron-transfer reaction (equation 5)



(1=B)F
i_ —kalAF FCI_ exp[T

(7)

—B,F
A¢M—l]—Fkb;[FCuClE,1(A F)Qexp[ RT A¢M_

where AT'=T_, —T r and Ay, is the cavity potential difference

Cl-1 ~ " CuClg,l
between the metal and the inner Helmholtz plane. Additionally, the kinetic expressions

for the potential-dependent desorption/adsorption reactions are given by

g =Fky T, exp[ —(1 "ﬂt) A’/’1-2] Fky AT ¢, exp [ﬁl A¢1_2], (8)
where j represents either Cl~ or CuCly and A,_, is the potential difference between
the inner and outer Helmholtz planes. At equilibrium, the rate of each reaction is zero,
so that after eliminating the surface concentrations I'; from the three equations, the

following équilibrium relationship results

RT K2 RT Ccuciz,0
Vee =4 In | .
Vras + F [ Ky K; ]+ P C<2:1—0 ©)

AvBoltzmann distribution has been used to describe the potential dependence of the
lonic concentrations in the diffuse layer, and the interfacial potential difference V is
related to the cavity potentials by V=A¢y_ + A 2+ Ay g+ A%, AP, isa
cavity potential difference located at the inner limit of the diffusion layer and will be

discussed later.

A one-dimensional model of the electrode-electrolyte interface is shown in figure 2
representing the metal electrode, the compact and diffuse regions of the double layer,
and the diffusion layer. The figure illustrates the dependent variables in the microscopic
model specifically for reaction mechanism II, where the concentration and potential
variables are represented by hexagons. There are three species in the solution (m = 3),

and one less species is found at the inner Helmholtz plane (n =2). This yields
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Figure 2. Variables in the microscopic model of the electrode-electrolyte interface
when mechanism II is used.



n +3m + 5, or 16, unknowns and equations in the microscopic model. Again, it should
be noted that the potential and concentrations are not solved for as continuous
functions, as in the macroscopic model, but instead are determined only at the
interfacial planes, making the microscopic algorithm a lumped-parameter model. Let us
next compare the impedances as calculated by the macroscopic and microscopic models

before discussing the system input parameters.

2. Impedances

The impedance of an electrochemical system is defined as ratio of the total
alternating potential to the total alternating current, Z,, = ‘7,0,/ 7. In this section, the
electrochemical impedance is analyzed by examining each contribution to the cell
potential and current. Two approaches for characterizihg the total impedance are taken
based upon the expressions given earlier for the current densities. Although the starting

point of each is different, both utilize a linear-response analysis.

2.1. Macroscopic Model

The impedance of the copper dissolution process as calculated by the macroscopic
model is based on the kinetic expression given by equation 2. Thus, the total cell
potential must be expressed in terms of the theoretical kinetic potential difference V.
The following expression for the total impedancel!l therefore is used

v+ (50 - &;0)

tot = +R0 : (10)
A schematic of the breakdown of the total impedance used in the Stefan-Maxwell

macroscopic model is given in figure 3. Let us next discuss the potentials and currents
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illustrated in the figure that contribute to Z,,,.

The potential V,,, of the metal electrode relative to a reference electrode placed in
the bulk consists of three components: V =&, — &, is the kinetic driving force across
the interface, &, — éo is the potential difference across the diffusion layer (and includes
the diffusion potential and the ohmic drop due to variations in the conductivity), and
the last term in the equation 10, the primary solution resistance R, gives rise to the
ohmic potential drop. It should be noted that @, is the potential just outside the diffuse
part of the double layer, and ‘i)o is the potential of the solution adjacent to the working
electrode which would be determined by a reference electrode of a given kind if there
were no concentration gradients across the boundary layer but the same current

distribution prevailed.

The alternating current can pass from the electrode to the solution either by
means of faradaic-electrode reactions or by charging the double-layer capacity as
illustrated (conceptually) in the figure. This is analogous to the current in a parallel RC
circuit, where the capacitor Cj represents the charging of the double layer and the
resistor I, represents the resistance due to the electrochemical reactions. Because the
electrode reactions also depend on the concentration of species at the inner limit of the
diffusion layer, the resulting mass-transfer component, Z,, of the faradaic impedance is
denoted in the figure with a commonly-used “frequency-dependent’’ circuit element
Wo- Thus, the total electronic-conducting current density T is given by the sum of the

alternating faradaic current density, Tf=27/‘,, and the double-layer charging
1

current density, 70=jw<7. This model uses an idealized view of the electrode-
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electrolyte interface, where the charge in the double layer is related to the potential
difference across the interface by ¢ = Cu V. The double-layer capacity is taken to be a
constant, independent of both concentration and potential, such that one might imagine
that double-layer charging is due principally to the nonreacting ions of the supporting

electrolyte.

Let us now turn our attention to analyzing the components of the total impedance

in an attempt to understand better the electrochemical system being studied. This
discussion is most useful for clarifying the assumptions that are frequently made in
attempts to obtain the faradaic impedance from experimental impedance data. The

determination of kinetic parameters and transport properties, e.g. the diffusivity, from

the faradaic impedance has been disussed previously.lsl'[sl

The historically important faradaic impedance is defined by Z, = ‘7/ 7/, where
one loosely can say that Z, is obtained from the measured impedance by correcting for
the diffusion potential, the ohmic potential drop, and the double-layer capacity. The
first two corrections occur in the numerator of equation 10 by using V. This means
that the diffusion potential, a mass-transfer eflect across the boundary layer, is
subtracted as well as the ohmic drop; this distinction is seldom (or never) mentioned in
the literature. The second correction, for the double-layer capacity, manifests itself in
the use of the faradaic current Tf, rather than the total current 7, in the denominator
of equation 10. This correction may not be so simple in principle or practice because it
presumes that one can distinguish between faradaic current and capacitive current.
Frequently the capacitive effect does not overlap the frequency domain of mass-transfer

effects, but it must, in general, be expected to overlap the frequency domain of faradaic
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effects.

Linearization of the current-density expression (equation 2) and the definition of

the faradaic impedance enable the following generalized expression for Z, to be

written!!l
82‘[[ C~,"0
[ i !

where the so called charge-transfer resistance R, is related to the individual charge-

transfer resistances by

1 1 -1 81‘!'1
— =Y — , and R = . 12
r, "% R, [ 5 12
Numerical solution of the multicomponent transport equations yields the concentration
and the potential profiles adjacent to the rotating disk. From the surface

concentrations and the kinetic potential difference, the current and therefore the

faradaic impedance can be calculated.

~ =

The solution impedance, Z,,, = (9, — ¥,)/ T+ Rg, as it will be called, consists of
two terms. The first, although typically neglected, results from the establishment of a
diffusion potential and ohmic drop (accounting for the variable conductivity) due to
concentration variations across the diffusion layer. This effect should be expected to be

most significant in concentrated solutions. The second contribution to Z,,, is the ohmic

oin

resistance out to a reference electrode in the bulk, where conductivity variations are

negligible. Assuming a primary current distribution!”) to the rotating disk yields

Rq=rmry/dxK,.
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2.2. Microscopic Model

The objective of the microscopic model is to account for the frequency dispersion
of the double-layer capacity by providing a detailed description of the interfacial-
reaction processes. The interfacial kinetic expressions 7 and 8 are written in terms of

cavity potential differences within the double layer, and therefore, a different breakdown

of the total cell potential is required. The resulting total impedancela] is given as follows

Ay + A, + A%, o+ A'qur

Z,,, = - —=
tot i~ + jwg

+ Rq , (13)
and a schematic illustrating the various terms of Z;,, is given in figure 4.
The total alternating current density is seen in the figure to be the sum of the

electron-transfer current density, Te_ =), 11-,, and the double-layer charging current,
l ?

Tc = jwq. The charge can be determined from the following form of Gauss’s law

‘7 = izt Ay, = CM—1A$M—1 ; ‘ (14)
where A, is the potential difference between the metal electrode and the inner
Helmholtz plane. The effective capacitance, Cy_,, is determined by the permittivity
€y—1 and the inner-layer thickness dy,_,. The electron-transfer reactions are potential
and concentration dependent such that the electron-transfer impedance, defined by'

Z,-=A4%y, /1 .- » consists of two components: the electron-transfer resistance, R,

and the impedance due to the concentration-dependent reactions, denoted by We_ in
the equivalent circuit. R__ is the high-frequency limit of Z.- and is defined by

RZ = 8i_[0AYy,.
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The double-layer capacity is not taken to be a constant, as was done in the

macroscopic model, but instead depends on the charge in the compact (¢; = F Y] zif,-’l)
i

and diffuse (¢, =FY zifi’d) layers. A charge balance on the inner Helmholtz plane
)

yields

jwgy=1i.—i, , (15)
where 74 is the alternating current density due to the desorption/adsorption reactions
that occur between the IHP and the OHP. These potential and concentration-dependent
reactions give rise to the desorption/adsorption impedance, Z, =A$1_2/Ta , and is

the sum of the the kinetic resistance, R;! = 8i,/0Av,_,, and the frequency-
dependent circuit element, Wa. The charge ¢, can be related to Cy_, and C;_, by
Gauss's law.

A charge balance on the diffuse layer gives

joiy =T, =7, (19)
where 1 is the alternating ionic-conducting current density passed through the
electrolyte. The charge ;2 is related to components of the double-lyer capacity by
Gauss’s law, qN2 = —CI_QAIYJ'I_Q, and by the definition of the differential diffuse-layer
capacity Cy; = —(9qa/3As_y). The charge balance on the diffuse layer is similar to

the material balance
jwly = N2 — Ny(z =0) , (17)
where this conservation equation for each species can be multiplied by F z; and summed

over all species yielding the current density relationship (equation 16), since

?a =F }'2 N2, Equation 17 is most useful because one can see that the flux of a
i
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minor species at the inner limit of the diffusion layerl®l

N.(z=0) —D; dc; D;/6 .
. = = = n c;

gives rise to an impedance denoted in the figure by Wd, where —1/6(0) = — CiolCigls -

(18)

the convective-Warburg impedance function for a rotating disk,”® valid for dilute

solutions and no migration. The prime denotes differentiation with respect to § = z/6;.

The final potential difference in equation 11, and illustrated in the figure 4, is the
diffusion potential A%,ﬁ. Although this potential is typically small for dilute solutions,
it is included for completeness. The ohmic potential difference, A¥,;, =i Rg, is
calculated using the bulk solution conductivity k.. The ohmic drop that arises from a
variable conductivity due to concentration variations across the diffusion layer is not
accounted for, as was done in the macroscopic impedance model. The importance of

this omission will be discussed in the results section.

Finally, it is hoped that the discussion here makes it clear that the variation of the
impedance with frequehcy of an electrochemical system cannot adequately be accounted
for by a finite combination of ‘“‘true’ resistors and capacitors, although it has been
customary to do so. The equivalent circuit is included simply to illus.tra.te system
behavior qualitatively. It is the interfacial reactions that determine the charge
distribution within the double layer, and the charge, —q = q; + ¢,, is a function of the
surface concentrations of all species within the double layer as well as the potential.
Therefore, to determine the frequency dependence of the electrochemical impedance, it
i1s necessary to solve the lumped-parameter microscopic model numerically for the

potentials across the interfacial planes and the surface excesses of all electroactive
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species. The current can then be determined from equations 7 and 8, and consequently

the total impedance can be calculated using equation 13.

3. Model Parameters

Two mathematical models for the frequency response of a rotating disk electrode
have been reviewed. The parameters used in the models to characterize a particular
electrochemical system have well-defined physical meaning, but some interfacial
parameters are not directly measurable. Let us next present the parameters necessary
for the model calculations, including .a discussion of the selected values. Bulk transport
properties are obtained from the literature; physically-justified values are assumed (and
are not adjusted) for the Gauss’s law parameters used to describe the charge at the
interface; and thermodynamic and kinetic arguments are used to determine the

(adjustable) equilibrium and rate constants, respectively.

3.1. Transport Properties

The properties of interest in the electrolytic solution are the bulk-solution ionic
concentrations, diffusion coefficients, the electrical conductivity, and the viscosity.
Table 1 gives the values of the physical prof)erty data corresponding to the copper-
dissolution process in 0.1 M HCI at 298.15 K. These parameters are independent of the

specific reaction mechanism used in the model and are assumed to be constant.

The bulk conductivity of the electrolytic solution is related to the specified bulk

concentrations and mobilities of the charge carrying species by
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Table 1. Values of the physical property data for the electrolyte.

D; X 10° ¢ o X 10*

species (cm?/s)  (mol/cm?)
ClI~ 2.032 1.0
CuCly 0.568!4l 0.0
H* 9.312 1.0

Ky =0.046 (Q-cm)™ v =8.9X 1073 cm?/s

F? 2
IC=—RT ZZ{D"C" , (19)
3
where the ionic mobilities have been related to the diffusion coefficients by the Nernst-
Einstein relationship D; = RTu;. The ionic diffusion coefficients at infinite dilution are

reported in table 1 as given in reference (9], unless specified otherwise. The viscosity of
the infinitely dilute solution at 25° C is given by Robinson and Stokes. 10l Additionally,
the dielectric permittivity €,,, is a property of the electrolytic solution and is given in

table 2.

3.2. Gauss’s Law Parameters

Table 2 summarizes the physical parameters that are used in Gauss’s law to
characterize the charge in the double layer. Values are selected for these parameters

and are not adjusted.

First, the distances between the interfacial planes are specified, since linear

potential profiles are assumed for the lumped-parameter microscopic model. Molecular
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Table 2. Physical parameters characteristic of the interfacial double layer.

(M-1) (1-2) (2) (soln)
M—IHP IHP—OHP OHP—0 0—00
d;(A) 1 2 A=10"cm 8 =1.3%X10"3cm
€; X 10" (F/cm) 0.1 0.2 7.0 7.0
C; (uF /cm?) 10 10 72 -

Cy = 5,10, 30 uF / cm?

dimensions of dehydrated and hydrated ions yield values for dy_; and dy_,,
respectively. The Debye length A characterizes the thickness of the diffuse layer and
depends on the ionic strength of the solution (0.1 N for the value reported in table 2).
The Levich equation gives the Nernst-di[fusion—layer thickness & for a rotation speed of

2000 rpm.

The dielectric permittivity of an infinitely dilute electrolytic solution (and diffuse
layer), is obtained by using the relative dielectric constant for water. Within the
compact part of the double layer, the electric field is greater than in the solution, and
the permittivity is smaller due to dielectric saturation.®! Close to the surface, oriented

water molecules are most aligned yielding the smallest permittivity.

The microscopic integral capacitance, Cj=ej/dj (where j refe;s to a region
within the interface), is calculated using the values of the permittivities and thicknesses
given in table 2. Values of the double-layer capacity used in the macroscopic model also
are given In the table. The overall differential capacity is defined by

Cy = 3q/0(¥y — 1¥,) and can be related to the interfacial capacities by
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where

oo N Ceuciz,o
K, K;

exp

(- wo)] . (21)
An efflective  capacity for no  specific  adsorption is given by
1/Cg=1/Cy_y +1/C13+1/C,

Finally, the available number of sites on the metal surface for reaction is given by

- 2 . . “ .
I =107% mol/cm® This maximum surface concentration of adsorbed species

depends on the sizes and packing relationship of the surface and adsorbate molecules.

The value chosen corresponds to 16.6 /{2/molecule.

3.3. Equilibrium Parameters

The electrode-electrolyte interface is characterized under equilibrium conditions by
the “macroscopic” and ‘“microscopic’ equilibrium constants, and knowledge of the
surface coverage (or adsorption energy of individual ions) would enable the equilibrium
constants to be determined. However, thermodynamic data are not available for the
adsorbed intermediates in the proposed reaction mechanism II, and the microscopic
equilibrium constants must be chosen on some other basis. Additionally, values of the
interfacial equilibrium constants cannot be selected independently and are subject to
thermodynamic constraints. For example, the open-circuit cell potential, as determined

by the microscopic model (equation 9), must be equivalent to the open-circuit potential
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given by the macroscopic Nernst equation 3. Thus, depending on the fractional
occupation, ©;, =T, /T, of the adsorbed ions at the inner Helmholtz plane, the set
of microscopic equilibrium constants can change, but must remain thermodynamically
consistent with the macroscopic equilibrium constant K, In this section, a
thermodynamic basis for determining the equilibrium constants is described. In the
next section, details of the iterative procedure for selecting the specific values for all

thermodynamic and kinetic parameters will be discussed.

First, in order to demonstrate the applicability of our stoichiometry accounting

method discussed in the previous paper,|3] the stoichiometric coefficients of all the
species in mechanism II are given in table 3. Species that appear on the left side of
reactions 4, 5, and 6 (when written as an anodic or desorption reaction) have positive

stoichiometric coefficients; all products have negative stoichiometric coefficients.

At equilibrium, and in the absence of corrosion, the interfacial reactions have a
zero net rate. The charge-transfer equilibrium constants can be determined
subsequently as functions of the equilibrium interfacial concentrations and potentials.

The equilibrium constant of the electron-transfer reaction 5 is determined from equation

Table 3. Stoichiometric coefficients for species 7 in reaction ! for mechanism II.

rIn metal inner Helmholtz plane | outer Helmholtz plane
N e Cu | CI” CuCly CI- H* CuCly
1 1 -1

2 -1 1 2 -1

3 1 -1
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7 by setting : - =0, and solving for K, yielding
g1, 2

O,
CuClg,1 F
Kgl) =(1-— E ej,l) 92_2 exp[——RT A%DM_I] . (22)
J Cl—1

Again, assuming fast rates of reaction and a Boltzmann distribution, equation 8 yields

the equilibrium constant of the desorption/adsorption reactions as follows:

1-%6;, .
K,(”) = Cpo _GJ,T— exp RT (Ao + AV ,) J ‘ (23)

A wealth of information concerning the interfacial properties is incorporated
within the three microscopic equilibrium constants. For example, the equations given

above for the equilibrated interface can be solved systematically (see figure 5), along

with Gauss’s lawl® for the IHP and the diffuse layer, to obtain the interfacial potential
differences and the surface concentrations of the adsorbed ions in terms of the

electrolyte concentration cyc) and the concentration of the minor species ¢y o-o A
2

schematic summarizing this equilibrium-calculational procedure is given in figure 5.
The additional input parameter shown in the figure is the cavity potential difference,
A, =1y — D, that relates the quasi-electric potentiall® & used in the macroscopic
model to the outer or cavity potential ¢ used in Gauss’s law in the microscopic model.
Equating the open-circuit potential equations 3 and 9 yields the constant

Ki
i K2K3

in terms of the macroscopic and microscopic equilibrium constants.

The equilibrium constants K; and Kj for the ion-adsorption reactions 4 and 6

provide a measure of the adsorption energy of an ionic species and, therefore, generally
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Figure 5. Schematic of the equilibrated-interfacial calculations made in the
microscopic model.
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determine the level of coverage of the inner Helmholtz plane. One can see this by
setting the A’s equal to zero in equations 22 and 23 (as a first approximation by

ignoring Gauss’s law) and selecting reasonable values for the concentrations Coro and

€ cuctz,0° (Results of the steady-state macroscopic model indicate the order of

magnitude of the product concentration adjacent to the electrode with consideration of
the mass-transfer limitations and the observed current densities.) This calculational
procedure is used to determine the following values for the equilibrium constants:

K, =9.98 X 1072 mol/cm?, K, =998, and K; = 3.39 X 10™° mol/cm?®.

Results based on the given set of equilibrium parameters are given in figures 6 and
7. The concentration-distribution map (figure 6) illustrates the thermodynamic
relationship between surface coverages and bulk ionic concentrations. Also shown on
figure 6 is the result (8; =107 indicated by an open circle) as calculated by the
adjustable (within thermodynamic constraints) microscopic equilibrium constants to be
used later in the paper. For this case, all charge is assumed to be specifically adsorbed
(¢2=0), and the potential difference, Ay, ,, is related to the charge (¢ = —gq)
adsorbed at the inner Helmholtz plane by Gauss’s law (equation 14). A small surface
coverage is the basis for this set of adsorption constants because the electrode surface is

taken to be sparsely covered.

3.4. Kinetic Parameters

Thermodynamic equilibrium considerations alone cannot be used to determine the
distribution of charge within the double layer unless all the interfacial reactions are

infinitely fast. When finite rates of the charge-transfer reactions need to be accounted
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for, the concentration and potential dependent kinetic expressions given earlier should
be utilized in conjunction with Gauss’s law and the transport equations. The details of

characterizing these interactions quantitatively were described in reference [3].

The only parameters in the microscopic model remaining to be discussed are the
electron-transfer and desorption/adsorption reaction kinetic constants. Selection of the

backward rate constant k, ; for each charge-transfer reaction / is made using an iterative

procedure, where the experimental impedance datal!l is used as a guide. Let us next

discuss further the measured impedance results for the copper chloride system.

It is well known!'! that the copper dissolution process is predominately mass-
transfer controlled, but a contribution, possibly due to adsorption kinetics, can be
identified by the frequency dependence of the measured complex impedance. In the
high-frequency limit of figure 1, the slope is greater than a convective-diffusion 45°
(Warburg) line. Thus, the adjustable rate constants are selectéd to account for the fast,

but finite, rates of reaction.

A trial and error procedure is used to select a set of three equilibrium constants
and three backward rate constants that when used in the microscopic impedance model
yield simulated results that match the experimental data. The method is based on
guessing a value for the surface coverage of adsorbed ions at the I[HP, which enables the
interfacial equilibrium constants to be det;rmined analytically from simplified forms of
the general equations described in the previous section. Moderately small coverages are
selected so that the number of available sites on the surface do not limit the reactions.

Relatively large values for the backward rate constants are then chosen, but must be

iterated upon until numerical results give the desired steady-state current density and
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impedance curves.

The set of equilibrium constants and kinetic parameters (backward rate constants
and symmetry factors) used in the microscopic model are summarized in table 4. The
forward rate constants k,; also are given for completeness, but they are not
independent adjustable parameters. The microscopic-model parameters are based on a
surface coverage of ©; =1073, but it should be pointed out that the impedance
simulations are sensitive to this parameter (values of 107! and 10~% were tried before
getting the desired results). This coverage, when used in equation 20, yields a value for

the macroscopic double-layer capacity of C = 6 uF /cm®.

Also given in table 4 are the equilibrium constant K, and backward rate constant

k; used in mechanism [. These parameters were reported elsewhere®/8 to describe the
copper dissolution process in 0.1 N HCI and have not been adjusted. The symmetry

factors B, are not varied in either mechanism.

Table 4. Kinetic parameters for the charge-transfer reactions in mechanisms I and II.

Equilibrium Rate Constants Symmetry
reaction Constant Forward Back Factor
{ K kf,l kb,l By
IL1 10* cm®/mol 10% cm*/mol's ~ 107'em/s %
IL. 1 9.98%10~2 mol /cm? 9.98X107 1 /s 10° cm® /mol's %
II. 2 4.71x10° 1.41x10°% cm*/mol®*s  3%10% cm*/mol®s %
.3 3.39X107° mol /cm? 3.39%10% 1/s 10° cm®/mol's %
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4. Results
Results of the macroscopic and microscopic impedance models are to be presented

for the largely mass-transfer controlled anodic dissolution of copper in 0.1 M HCLM
This system is a good test case for the purpose of exploring and providing an
understanding of the nature of the interface, since slow reaction kinetics do not dictate
or complicate the impedance response. Macroscopic impedance results are given first

followed by the microscopic model results.

The electrochemical impedance for a copper disk rotating at 2000 rpm in 0.1 N
hydrochloric acid is calculated by the macroscopic model based on the overall
dissolution reaction (equation 1). The resulting electrode frequency response (at
V = —0.205 V) is plotted in the complex plane in figure 8 based on a constant double
layer capacity. Total impedance results for three different values of Cy (5, 10, and
30 uF /cm?) are illustrated on this Nyquist plot showing the negative of the imaginary
part of the impedance versus the real part of Z with the frequency as a parameter. In
addition to the total impedance, the faradaic and solution impedances are shown in
figure 8, denoted by dashed and dotted lines, respectively. Let us now discuss further

the components of Z,,,.

The faradaic impedance was defined earlier so that it includes not only the effect of
the faradaic charge-transfer reactions but also that of any concentration variations at
the electrode surface that affect the rate of the electrochemical reactions. Because the
reaction is fast, the 45° line, or Warburg diffusion impedance, dominates the faradaic
impedance since the charge-transfer resistance is small. Thus, these mass-transfer

effects are characterized by the second term on the right of equation 9, the convective-
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Figure 8. Complex-plane plot of the impedance for the anodic dissolution of copper as
calculated by the Stefan-Maxwell macroscopic model based on mechanism I
Simulations of the total (Cy =10 uF/cm?), faradaic, and solution impedances are
denoted by solid, dashed and dotted lines, respectively. The total impedance based on
Cy= 5 and 30 pF/cm® also are given by chain-dashed and chain-dotted lines,

respectively.
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Warburg impedance. The high-frequency limit of Z, is given by B, = lim {Z/}, but is
W — X

negligible on the scale of figure 8, again because reaction 1 is fast. The polarization

resistance, the low-frequency limit of the faradaic impedance R,= limo{ Z;}=R,+ R,
w —

=1272 Q-cm?, reduces to the mass-transfer resistance R,. The faradaic impedance is
characterized by R, and the convective-diffusion time constant ryp. Tpp o< Sc/3/Qis
a function of the rotation speed £ and the Schmidt number S¢ =v/D;, where Sc is
based on the kinematic viscosity v and the diffusion coefficient of the minor (CuCly)

species.

The solution impedance arises from the potential difference across the diffusion

layer. Although Z,,, is negligible for the conditions reported here, the inductive loop

oln

that appears near the origin is interesting and therefore is illustrated in the expanded

view in figure 8. This feature in the solution impedance arises from the maximum that

occurs in the steady-state potential proﬁle,[l2I which results from the diffusion potential

balancing the potential as given by Ohm’s law. This behavior, where the electric field in

the solution is reversed, has been shown!™® to occur for a number of different

electrochemical systems.

The total impedance calculated using the base-case capacitance value of
10 uF /em? (solid curve in figure 8) consists of one loop because the electrochemical
reaction is fast (the charge-transfer resistance is negligible on the scale of the figure),
and therefore an additional inner (high frequency) heterogeneous—rgaction loop is not
observed next to the low-frequency convective-Warburg impedance. Instead, the

impedance resulting from the double-layer capacity simply shifts the frequency
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dependence of the dominant mass-transfer (Warburg) impedance due to the overlapping
capacitive time constant. The net effect is a high-frequency slope greater than 45° - the
expected result for a convective-diffusion impedance. The solution resistance Rg is the
high frequency limit of Z,,, because the time scale is so short that other effects cannot
manifest themselves as factors influencing the current. However, B also is negligible

relative to the polarization resistance.

The total impedance based on Cj; =5 and 30 uF /cm? are also given in figure 8 by
chain-dashed and chain-dotted curves, respectively. As Cj, — 0, the total impedance

reduces to the faradaic impedance, since

'
Zit =

1
1 3
Ej— + ]wCJ,I +Rg . (25)
Equation 25 is obtained from the more general total impedance equation 8 by assuming

that the solution potential is negligible and that 70 = jwCy V.

For larger values of Cy;, the impedance spectra in the complex plane approaches a
semicircle. The frequency wp,, =2mf .  associated with the maximum in the
imaginary part of the total impedance can be related to the time constant 7 =1/w,,..
Because the solution and charge-transfer resistances are small, the kinetic time constant,
T=(Rq + R,)Cy, is not important. Instead, the total impedance is characterized by
T=(Rq+ R,)Cy, where the magnitude of the impedance loop is determined by the
mass-transfer  resistance R, since Rg+R,~Rg+ R,  The characteristic
dimensionless frequency at the impedance maximum of the total impedance (Cy = 30
uF fem?) loop is K, = 1.6, whereas K pax = 3 for the faradaic-impedance loop with no

parallel capacitance.
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Finally, it should be noted that the spacing of the frequencies on the complex-plane
plot are highly nonuniform and visual interpolation can be difficult. Therefore, the

same results given by figure 8 are presented next in the form of a Bode plot.

The total, faradaic, and solution impedances are presented in figure 9, where the
logarithm of the magnitude of the impedance is plotted vs. the logarithm of the
dimensionless frequency K. One advantage of the Bode plot is that the high frequency
limit of the faradaic impedance, denoted by a dashed line, yields the charge-transfer

resistance, a horizontal line at Klim log | Zfl = log IR, | =0.158, with a phase angle of
—+ 0O

0° (although not shown); the complex-plane plot (figure 8) failed to provide
R, = 1.44 Q-cm? quantitatively. The low-frequency limit of the faradaic impedance

again yields the polarization resistance R, = 1272 Q-cm?

. In the intermediate high-to-
moderate frequency range, the Warburg impedance is a straight line with a slope of
—1/2 and a phase angle of —45°. An equivalent circuit model of the convective
diffusion process is a transmission linel'*! made up of a series of resistors and capacitors.

Therefore, the corner frequencies of the faradaic impedance are not related to individual

resistors and a capacitance.

The magnitude of the solution impedance is given by an almost horizontal line, on

the scale of the figure, at Klim long”,,,I =loglRQ| =0.932. An enlargement of
—+ 00

Z

soin 15 Included. This unexpected behavior on the Bode plot can be explained by the

same reasoning as given earlier when Z,,,, in the complex plane was discussed.

The total impedance for the base-case capacitance value of 10 uF /cm? is given by

the solid line. The high-frequency limit is a horizontal line corresponding to
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Figure 9. Bode plot of the total (Cy; =10 pF /em?), faradaic, and solution
impedances for copper dissolution. The S-M simulations are based on mechanism I and
are denoted by solid, dashed and dotted lines, respectively. The total impedance based

on Cy= 5 and 30 pF fem?® are given by chain-dashed and chain-dotted lines,
respectively.

34



35

Klim {Z,,,} =8.544 Q-cm® and the low-frequency limit yields Rp+Klim0{Z“,"}
— o —

= 1281 Q-cm? The impedance of a “perfect capacitance” is represented as a straight
line with a slope of —1 and a phase angle of —90°. The high-to-moderate frequency
range of Z,,, corresponds to capacitive-like behavior. At lower frequencies, the slope
shifts toward —1/2. The corner frequencies should be characterized by 7#F) = RqaCy

and #LF) & (Rq + R,) €y for the high and low frequency limits, respectively.

The total impedance based on C, =35 and 30 uF /cm? are also given on the Bode
plot in figure 9 by chain-dashed and chain-dotted lines, respectively. As Cy increases,
the high-frequency corner point decreases, and the negative close-to-unity slope is
maintained over a wider frequency range. Again, at lower frequencies, the slope shifts
toward —1/2. The low-frequency corner point is less sensitive to the value of the

capacitance.

Results from both the macroscopic and microscopic impedance models are
illustrated on the complex-plane plot in figure 10. The total impedance as calculated by
the Stefan-Maxwell model (dotted line) is again based on mechanism I and a constant
Cy =10 uF /em?® whereas the impedance from the microscopic model (solid line) is
based on mechanism II and a capacitance that depends on the charge in the compact
and diffuse layers. The latter simulated result is based on a set of parameters obtained
from using ©; =10~ for Cl~ and CuCl;. In other words, an 0.2 % total surface
coverage is the basis for the numerical calculation and yields impedance results, Z,(;‘,M),
with two distinct regions in the moderate-to-high frequency range. At high frequencies,

the slope of the Z“M) (solid) curve in figure 10 is greater than one, similar to the
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Figure 10. Complex-plane plot of the total impedance as calculated by the
macroscopic and microscopic models based on mechanisms I (dotted line) and II (solid
line), respectively. The Stefan-Maxwell faradaic impedance is denoted by a dashed line.
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impedance results in figure 1.F The effective capacitance of the impedance appears to be
close to 10 uF /cm? whereas at lower frequencies, the impedance becomes mass-transfer
controlled, and the effective capacitance decreases. In all but the high-frequency limit,
Z"M) corresponds to the Stefan-Maxwell faradaic impedance (dashed line). Thus, the
macroscopic model yields reasonably accurate simulated results, but the microscopic
model is necessary to yield a detailed and quantitative description of double-layer

adsorption effects.

The total and faradaic impedances as calculated by the Stefan-Maxwell model
using mechanism I are denoted in figure 11 by dotted and dashed lines, respectively.
These results were presented in Bode form in figure 9 and are included here for
comparison purposes only. Therefore, they will not be discussed further. The total
microscopic impedance, based on mechanism II, but for a different set of rate constants,
is given by a chain-dotted line in the figure. This set of parameters [to be described
below| is denoted mechanism II (b); whereas, the set described earlier (table 4) [and
denoted mechanism II (a)] is taken to be the base case and is given by a solid line in the
figure. Simulations based on a new set of parameters are included to illustrate the

importance and influence of the kinetic rate constants.

The microscopic kinetic-rate constants were chosen such that the low-frequency

limits approximate the macroscopic model results. Values of 1279 and 1286 Q-cm? are

t An alternative explanation has been given for why the experimental high-
frequency data deviate from convective-Warburg behavior (and an expected slope of
one). In reference [5], reaction 1 is treated as an E C reaction mechanism, and finite
rates of the following homogeneous complexing reaction give rise to an additional
impedance loop. For a large value of the chemical reaction rate constant, this can yield
a high-frequency shoulder in the complex plane with a slope greater than one.
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Figure 11. Bode plot of the total impedance as calculated by the microscopic
model based on mechanisms II (a) and (b) and denoted by solid and chain-dotted lines,
respectively. The Stefan-Maxwell total and faradaic impedances also are given and are
denoted by dotted and dashed lines, respectively.
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obtained for mechanisms II (a) and (b), respectively, which should be compared to the
Stefan-Maxwell result, Rg +Rp =1281 Q-cm?  The high-frequency limit yields
quantitatively the solution resistance, Ry = 8.6652 Q-cm?, differing slightly (1.4%) from
the Stefan-Maxwell result given earlier because the latter accounts for the diffusion
potential and variation of conductivity. The intermediate frequency range of the
microscopic impedance results has two distinguishing regions, as was also seen on the
previous complex-plane plot. At moderate-to-high frequencies, Z, has a slope close to
—1 similar to Stefan-Maxwell totai impedance and an effective capacitance that

2. At moderate-to-low frequencies, the slope shifts to a

corresponds to C, =5 uF /cm
value of —1/2 indicating the importance of mass-transfer effects, and the effective

capacitance decreases.

The total impedance curve denoted mechanism II (b) is based on the following set
of rate constants for reactions 2 to 5: k, =10% cm3/mols, 5x10% 1/s, and 108
cm®/mol's, respectively. On figure 11, the frequency dependence of the transition from
dominating mass-transfer eflects to adsorption-kinetic control shifts due to the change in
the adsorption reaction resistance. Decreasing the adsorption rate constant (larger R,),
as has been done for mechanism II (b), causés the slope to shift from —1/2 at a slightly
lower frequency. In other words, faster adsorption rates cause the effective capacitance

to become significant only at a slightly higher frequency.

Next, we should examine the microscopic impedance results in more detail. The
total, electron-transfer, and desorption/adsorption impedances are shown in figure 12

for mechanism II (b). Z,_ and Z, are denoted by dashed and dotted lines, respectively.

Z,(;‘,M) should be compared to the total impedance in figure 8 obtained for mechanism II.
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Figure 12. Complex-plane plot of the total, electron-transfer, and adsorption
impedances as calculated by the microscopic model based on mechanism II (b) and
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The different combination of parameters yields similar total impedance results, although

the individual Z_ and Z, components are different. However, until more measurements

are carried out to confirm the existence of two different slopes in the moderate-to-high
frequency range on the complex impedance plane, we cannot conclude which is the best
set of parameters. Instead, we have demonstrated how to account for the proper
concentration and potential dependence of the capacitance and have given results

illustrating the frequency dispersion effect of the double-layer capacity.

5. Discussion of Results

5/ we discussed the use of the ac-impedance method for

Previously,
electrochemically measuring the rates of homogeneous reactions taking place in the
solution. Here, we postulate an extension of that procedure, although results are not
given. Frequently, homogeneous reactions are fast so that the reaction is taken to be
equilibrated in the diffusion layer. However, finite rates of the chemical reaction must
be accounted for in a thin reaction zone adjacent to the electrode surface. The thickness
of the reaction layer is often comparable to that of the diffuse double layer, and rather
complicated corrections then have to be carried out to allow for the variation in
concentration and for the effect of the double-layer electric field on the transport of ions
to the electrode. The microscopic model that has been used here is capable of
investigating these complex interactions where electron-transfer, desorption/adsorption,
finite rates of the homogeneous reaction, and diffusion and ohmic losses are all coupled.

Finally, the microscopic model can be used for proposing different complex reaction

mechanisms and predicting the resulting frequency dependence of the total impedance.
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6. Conclusions

Results of two mathematical models have been presented. Both theoretical
frameworks are used to determine the total impedance resulting from the current
response (charge transfer and double-layer charging) to potential variations in the
working electrode relative to a reference electrode placed in the bulk solution. The
electrochemical impedance has been analyzed by examining each contribution of the
total cell potential and current, which yielded impedance terms typically neglected in
other ac-impedance treatments. Although, double-layer and transport phenomena are
accounted for in both models, the emphasis of each algorithm is quite different;
interfacial desorption/adsorption reactions coupled with electron-transfer reactions are
the focus of the microscopic model, whereas transport in the diffusion layer and overall
faradaic reactions are emphasized in the macroscopic model. Concentrated-solution
theory, accounting for migration, convection, and multicomponent diffusion, is utilized
in the Stefan-Maxwell program, whereas a simple dilute-solution Warburg diffusion

layer is applied in the microscopic model.

A measure of the validity of the models can be obtained by comparison to
experimental data. In this paper, we have used the macroscopic and microscopic models
to study the largely mass-transfer controlled copper dissolution process in 0.1 M HCL
At the higher frequencies, the slope of a convective-diffusion (Warburg) impedance is
expected to be 45°, but the impedance measurements given in figure 1 show a larger
than 45° slope. The macroscopic-impedance model simulations, based on an overall
dissolution reaction, predict this trend in the experimental data by accounting for a

constant double-layer capacity, where the overlapping capacitive time constant distorts



43

(by increasing the slope of) the convective-diffusion 45° line. A refinement in the
interpretation of the experimental data is that desorption/adsorption kinetic limitations
can contribute to the steep high-frequency slope due to frequency dispersion of phe
double-layer capacity. The microscopic double-layer model accounts for a more detailed
three-step (adsorpt;ion/charge—transfer/desprption) reaction mechanﬂism having fast, but
finite, rates of reaction. The later simulations yield an additional impedance loop in the

high-frequency range, which (depending on the choice of surface coverage and rate

constants) appear as a single loop with a larger than 45° Warburg slope.

There are many parameters in the microscopic model that characterize the double
layer and cannot, in general, be independently measured. Thus, a detailed description
of the equilibrated interface was given, which included surface-coverage and potential
distribution maps as a function of supporting electrolyte concentration. Additionally,
an iterative procedure for selecting equilibrium constants and kinetic rate constants has
been discussed. The results of these procedures can be used to gain insight into the
importance and influence of these parameters. Ounly a small number of carefully
selected sets of parameters yielded quantitative agreement with the experimental data.
Future experiments can be designed to further characterize the copper system and to
verify the applicability of the mathematical models. Finally, the two models together
provide a powerful arsenal for characterizing the total electrochemical impedance of

many systems.

e
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List of Symbols

concentration of species ¢ just outside the diffuse layer,
mol /cm?

concentration of species 7 in the bulk solution, mol/cm?®

overall double-layer capacity used in the macroscopic
model, F/cm?

effective double-layer capacity, F/cm?
capacity of region j used in the microscopic model, F/cm?

capacity of region between the metal and the inner
Helmholtz plane, F/cm?

capacity of region between the inner and outer Helmholtz
planes, F/cm?

capacity of region between the outer Helmholtz plane and
the outer limit of the diffuse layer, F/cm?

distance between metal surface and the inner Helmholtz
plane, cm

distance between the inner Helmholtz plane and the outer
Helmholtz plane, cm

diffusion coefficient of species i, cm?/s

symbol for the electron

frequency, Hz

Faraday’s constant, 96,487 C/equiv

total current density, A /cm?

current density of desorption/adsorption reaction /, A/cm?

capacitive current density, A/cm?



q)

46

current density of electron-transfer reaction /, A /cm?

current density of faradaic reaction /, A /cm?
alternating current density, A /cm?
= V —1 imaginary number

anodic and cathodic rate comstant for a charge transfer
reaction in the macroscopic model

forward and back rate constants for an
desorption/adsorption reaction in the microscopic model

dimensionless frequency
equilibrium constant
number of electrons involved in electrode reaction !

surface charge density on the metal side of the double layer,
C/cm?

surface charge density at the inner Helmholtz plane, C/cm?

surface charge density in the diffuse part of the double
layer, C/cm?

rate of charge-transfer reaction /, mol/cm®s
radius of disk, cm

universal gas constant, 8.3143 J/mol-K
primary solution resistance, ohm-cm?

stoichiometric coefficient of species i in electrode reaction {
Schmidt number

absolute temperature, K

mobility of species i, cm*mol /J-s



Vtot,

=<

tot

<!

Z,

ol

!

Z

ot

Greek symbols:
By
Loy

Fi,d

max

AT

(N9

kinetic potential difference (electrode potential relative to '

given reference electrode placed just outside the diffuse
layer), V

total potential (electrode potential relative to given
reference electrode placed in the bulk solution), V

total alternating potential (electrode potential relative to
given reference electrode placed in the bulk solution), V

alternating kinetic potential difference (electrode potential
relative to given reference electrode placed just outside the
diffuse layer), V

charge number of species ¢

complex adsorption impedance, ohm-cm?

complex electron-transfer impedance, ohm-cm?

complex faradaic impedance, ohm-cm?

complex solution impedance, ohm-cm?

complex total impedance, ohm-cm?

equivalent circuit approximation for the complex total
impedance, ohm-cm?

transfer coefficient of reaction !
surface concentration of species  at the IHP, mol/cm?

surface concentration of species ¢ in the diffuse layer,
o
mol/cm*

. . ) 0

maximum number of active surface sites, mol/cm*
. . 9

available surface sites, mol/cm*

scaling factor for the diffusion layer of species 7, cm

Nernst diffusion layer thickness, cm
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Ay

A ¢2—0
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permittivity of region j, F/cm or C/V-cm

cavity potential difference between electrode and inner
Helmholtz plane, V

cavity potential difference between inner and outer
Helmholtz planes, V

cavity potential difference across the diffuse layer, V
ohmic cavity potential difference, V

cavity diffusion potential, V

cavity reference potential difference, V
dimensionless Warburg impedance function
surface coverage of species 1

conductivity of the bulk solution, ohm™!-cm™!
Debye length, cm

kinematic viscosity, cm?/s

dimensionless axial distance for rotating-disk convective-
diffusion equation

3.141592654
time constant, s
electric potential of the metal electrode, V

potential of a real reference electrode placed in the bulk
solution, V

potential of a hypothetical reference electrode of a given
kind placed just outside the diffuse layer, V

potential of a hypothetical reference electrode of a given
kind placed just outside the diffuse layer as if there were no
concentration gradients across the boundary layer, V
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subscripts:

1

2

superscripts:

(M-1)

49
alternating potential of a hypothetical reference electrode of
a given kind placed just outside the diffuse layer, V
alternating potential of a hypothetical reference electrode of
a given kind placed just outside the diffuse layer as if there
were no concentration gradients across the boundary layer,
\Y%

perturbation frequency, rad/s

frequency characteristic of the maximum of an impedance
loop, rad/s

angular rotation speed, rad/s

at the metal electrode surface
just outside the diffuse part of the double layer

in the bulk electrolyte, where there are no concentration
variations

at the inner Helmholtz plane

at the outer Helmholtz plane

between metal and IHP

between IHP and OHP

between OiiP and outer limit of diffuse layer
at the inner Helmholtz plane

at the outer Helmholtz plane

complex part
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