UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Deep Learning in Chemoinformatics using Tensor Flow

Permalink
https://escholarship.org/uc/item/963505w5

Author
Jain, Akshay

Publication Date
2017

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/963505w5
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Deep Learning in Chemoinformatics using Tensor Flow

THESIS

submitted in partial satisfaction of the requirements
for the degree of

MASTER OF SCIENCE

in Computer Science

by

Akshay Jain

Thesis Committee:

Professor Pierre Baldi, Chair
Professor Cristina Videira Lopes
Professor Eric Mjolsness

2017

(© 2017 Akshay Jain

DEDICATION

To my family and friends.

i

TABLE OF CONTENTS

LIST OF FIGURES

LIST OF TABLES

ACKNOWLEDGMENTS

ABSTRACT OF THE THESIS

1

Introduction
1.1 QSAR Prediction Methods
1.2 Deep Learning

Artificial Neural Networks(ANN)

2.1 Artificial Neuron e
2.2 Activation Function
2.3 Lossfunction e
2.4 Optimization L

Deep Recursive Architectures

3.1 Recurrent Neural Networks (RNN)
3.2 Recursive Neural Networks
3.3 Directed Acyclic Graph Recursive Neural Networks (DAG-RNN)

UG-RNN for small molecules

4.1 DAG Generation
4.2 Local Information Vector
4.3 Contextual Vectors
4.4 Activity Prediction oo
4.5 UG-RNN With Contracted Rings (UG-RNN-CR)
4.6 Example: UG-RNN Model of Propionic Acid

Implementation

Data & Results
6.1 Aqueous Solubility Prediction
6.2 Melting Point Predictiono

il

Page

vi
vii

viii

7 Conclusions
Bibliography

A Source Code

A1 UGRNN . .
A2 Training L

A.3 Prediction

v

LIST OF FIGURES

2.1 Neural Network
2.2 Artificial Neuron
3.1 Recurrent Neural Network,
3.2 Recursive Neural Network
3.3 Directed acyclic graph (DAG) of a Hidden Markov Model
3.4 DAG RNN . . e
4.1 Undirected Graph
4.2 Directed acyclic graphs. Lo
4.3 Aspirin.o
4.4 Cirpo. . . . o e
4.5 Contracted graph of Aspirin with bond types.
4.6 Contracted graph of Cirpo with bond types.
4.7 Propionic acid. Lo
4.8 Propionic acid undirected graph.o Lo
4.9 Propionic acid DAGs
4.10 Application of M¢ to the first DAG.
4.11 UG-RNN approach on Propionic Acid

5.1

6.1
6.2
6.3

LIST OF TABLES

Page

Architecture of 20 encoding neural networks M¢ and output neural networks

Solubility prediction performances on the Small Delaney Dataset (1144 molecules) 27
Solubility prediction performances on the Huuskonen Dataset (1026 molecules) 28
Melting Point prediction performances on Karthekeyan Melting Point Data Set. 28

vi

ACKNOWLEDGMENTS

I would like to thank my thesis advisor Prof. Pierre Baldi of the University of California
Irvine for providing me with this opportunity and guidance throughout my thesis. I am
deeply grateful to Prof. Eric Mjolsnes and Prof. Cristina Videira Lopes being being on the
committee and carefully reviewing my work.

Also, I would like to thank Gregor Urban, a graduate student at the University of California,
Irvine for providing me valuable feedbacks and the help during the implementation part of
the project.

vil

ABSTRACT OF THE THESIS

Deep Learning in Chemoinformatics using Tensor Flow
By
Akshay Jain
Master of Science in Computer Science
University of California, Irvine, 2017

Professor Pierre Baldi, Chair

One of the widely discussed problems in the field of chemoinformatics is the prediction
of molecular properties. These properties can range from physical, chemical, or biolog-
ical properties of molecules to the behaviour or molecules under certain chemical condi-
tions.Traditionally, these properties were calculated using chemical experiments. But with
the increase in computational capabilities, various machine learning methods like neural net-
works and kernel methods have also been tried. These approaches have been successful to a
certain extent. But with recent development in data, deep machine learning techniques have
been developed, which matches or exceed the performance of state-of-the-art techniques.
One such approach is to consider the molecular graphs of the molecules and use them for
prediction. Here, I discuss this approach in great details and provide its application on two

problems: predicting aqueous solubility and melting point.

viii

Chapter 1

Introduction

One of the widely discussed problems in the field of chemoinformatics is the prediction
of molecular properties. These properties can range from physical, chemical, or biological
properties of molecules to the behaviour or molecules under certain chemical conditions.
Traditionally, these properties were calculated using chemical experiments. However, with
the increase in computational capabilities, various machine learning methods like neural net-
works and kernel methods have also been tried [4-8]. These approaches have been successful
to a certain extent. But with recent development in data(increase in the number of datasets
and bigger datasets), deep machine learning techniques have been developed, which matches
or exceed the performance of state-of-the-art techniques. Here, I discuss one such technique
proposed by Lusci et al. [1] and its implementation in Tensor Flow. To access the applicabil-
ity of the method, we use the model to predict two different molecular properties: Aqueous

Solubility and Melting Point.

Aqueous Solubility

Aqueous solubility is the concentration of molecules in the aqueous phase, when aqueous
phase is in equilibrium with its original state, at specified temperature and pressure. The
fact that 80% of the human body is made of water makes this property very important in
drugs and other medicines. The ability to accurately determine the aqueous solubility can

reduce the cost in drug discoveries and avert failures[9)].

Melting Point

Melting Point is a very important characteristic property of a chemical compound. It is
the temperature at which the solid phase of a compound is in equilibrium with its liquid
phase at atmospheric pressure. Recently, interest in the prediction of melting points has

been fostered by the growing body of work on ionic liquids.

1.1 QSAR Prediction Methods

The limitations of experimental determination of chemical properties of molecules have led
to the development of predictive methods. Various in silico prediction techniques have been
suggested, most of which employs the method of QSAR (Quantitative Structure-Activity
Relationship) models [10]. QSARs are based on the assumption that activity of molecule is
directly related to its structure, i.e compounds with similar structure exhibit similar proper-
ties. QSAR models are designed to find relationships between molecular structure(or struc-
ture related properties) and target activity of the chemical compound. These are regression
models, which relate a set of "predictor” variables to the potency of the response variable.
The predictors generally consist of physio-chemical properties or theoretical molecular de-

scriptors of the molecule, and response variable is the activity of the molecule. The general

form of QSAR model is:

Activity = F(structure) = M (E(structure)) (1.1)

QSAR models(function F()) are generally factorised into two functions: the encoding func-
tion E and the mapping function M. The encoding function performs the required transfor-
mation of molecule’s structural properties to a fixed length vector. This step is necessary
because the naturally represented graph structure of molecules are not understood by stan-
dard regression tools. The fixed length representations obtain after E step can now be used to
perform prediction using the mapping function M. In general, Neural Networks and Support

Vector Machines are used to learn mapping function F from the training examples.

Molecular features are at the core of QSAR modelling and various such feature has been
proposed in theory so far. These feature range from the 1-D molecular formula to the 2-D
structural formula[25] to 3-D conformation-dependent and even higher levels orientation of

the molecules.

Over the year through various experiments, several other molecular features were found
to correlate with aqueous solubility, including polar surface area[l3], octanol-water parti-
tion coefficient,[14-16] melting point[17], hydrogen bond count[18], and various molecular
connectivity indexes[19-21]. Many prediction methods[24] uses some combination of these

features to predict aqueous solubility(similarly for melting point).

The accuracy of these models have been limited due to the inability of finding a perfect set
of molecular feature that captures all the properties of the chemical compound [12], and also
due to the errors in the descriptor values, whether measured or calculated [27, 28]. Another
reason behind the current limitations of prediction methods is the small size of the available

training sets and inaccuracy in their experimental values.

1.2 Deep Learning

Over the past few years, deep learning systems have matched and improved the state-of-
the-art in many fields from speech recognition, to computer vision, to artificial intelligence
[30-37]. Hence, it is natural to extend the idea of deep learning to chemoinformatics. Since
the most common and natural form of representation of small molecules is through graphs, it
is useful to develop deep architecture, that are able to understand the properties of molecules
directly through its graphical structure. This can be achieved using the recursive approach
described in [45]. However, the standard recursive approach relies on data represented by
directed acyclic graphs (DAGs), whereas molecules are usually represented by undirected
graphs (UGs). A novel approach of was suggested in Lusci et al. [1], which tries to extend the
idea of DAG, and which I will be discussing in further details. In the next chapter, we review
the neural networks and the basic terminologies used in the general recursive approach for
building deep learning architectures from DAGs and then show how the approach is adapted

to molecular UGs.

Chapter 2

Artificial Neural Networks(ANN)

Artificial neural networks(neural networks from here on) are a computational approach,
which tries to mimic the modelling of a human brain in order to learn to perform tasks
as humans do. Though neural networks try to mimic the human brain, they are far less
complex for the real brain. In fact, NN lacks a lot of details and are quite simple in nature.
The most basic structural and functional unit of the neural network is a neuron (Figure
2.2). These neurons are generally stacked together in the layered structure connected via
weights as shown in Figure 2.1. These systems are self-learning and trained through back
propagation. Neural Networks are the fundamental blocks on which deep architecture are

built.

2.1 Artificial Neuron

Artificial neurons (Figure 2.2) are the most basic unit of the neural networks. It receives
one or more inputs and sums them to produce outputs. The sum is usually a weighted

sum of the inputs and passed through activation function or transfer function. Neurons are

Output

Figure 2.1: Neural Network
A neural network with one hidden layer. The inputs are passed via weighted connection to hidden
layer. At each neural unit of the hidden layer, the summation function combines all the incoming
weighted inputs, which is finally passed to the output layer.

mathematically described as operation:

y= U(Z w;z; +b) (2.1)

where x; € R is one of the input, w; € R is the weight corresponding to the input node,

b€ R is bias and ¢ : R — R is called activation function.

Bias
b
(x; o——w
Aclivation
Function
Output
Inpul.s< x; O——w, —= f —3

Figure 2.2: Artificial Neuron

2.2 Activation Function

The activation function of the neuron is chosen to have a number of properties. Activation
functions are continuous function and piecewise differential, which allows the network to
be trained during backpropagation. The problem with the linear transfer function is that
any multilayer neural network can effectively be converted into an equivalent single-layer
network and does not support non-linear function. Hence, a non-linear activation function
is necessary to gain the advantages of a multi-layer network network. Various activation
function have been suggested and experimented with, but the most common and widely
used are sigmoid function (2.2), hyperbolic tangent function (2.3) and rectifier linear unit

function (2.4)

Sigmoid(Logistic) Function:

1
= 2.2
Y71 +e* (2.2)
Hyperbolic Tangent Function:
eT — e T
= 2.3
R p— (2.3)
Rectifier Linear(ReLu):
0, <0
X(w) = (2.4)
x x>0

2.3 Loss function

The loss function is used for parameter estimation and estimates the accuracy of the neural
network. It tries to capture the difference between the predictor value and the true value.
The parameters of the neural network are optimised, so as to minimise the loss function.
This allows use to treat the parameter update as the optimisation problem. The type of the
loss function strongly depends on the type of the problem, though it is advisable to choose
a loss function that is differentiable, in order to satisfy optimisation constraints. The most

common loss function for regression problems are:

Root Mean Square Error (RMSE):

n

RMSE = %Z(ti — pi)? (2.5)

i=1
Average Absolute Error (AAE):
AAE = 12n:|t- | (2.6)
~ 2 i — Di .

where n is the total number of data points, p; and t; is the predicted and the target value

respectively for i** data point.

2.4 Optimization

In order to minimise the loss function, we need to update the model parameters. The
way loss function is defined, we can differentiate it and perform gradient descent to find

the loss function optimum. Also, choosing a differentiable activation function allows us to

calculate the gradients at all layers using back propagation. Though gradient descent is
the most common approach, it often gets stuck in local optima. There are various different
optimizers, which tries to solve this problem either by considering second order derivatives
or some heuristics. The most common of these are Conjugate Gradient Descent, Adam

Optimizer, Momentum gradient decent.

Chapter 3

Deep Recursive Architectures

ANN generally has one or two layers between the input and output unit, which works fine
in case of approximating simple functions. But more complex tasks or function requires
multiple levels of learning. In deep architectures, there are multiple layers between the input
and output, allowing the model to use multiple processing layers, composed of multiple linear
and non-linear transformations. These deep layers can be the direct result of the multiple
layers of neurons or the recursive nature of the architecture. Here, we discuss various kind of

recursive deep architecture, upon which the deep learning architecture for molecules is built.

3.1 Recurrent Neural Networks (RNN)

In many cases, inputs are in form of structured data with variable length, for example, a
sequence of words of any length. Neural Networks in their native form are unable to capture
this ordering. It’s mainly because traditional networks assumes that all inputs(and outputs)
are independent of each other. A recurrent neural network (RNN) on the other hands, handle

this by making connections between units to form a directed cycle. This creates an internal

10

state of the network which allows it to store information for previous inputs and can process

sequences of inputs with arbitrary length.

S 0o o
T W w o le Tl VTS
S =040 WCT>

Unfold T w
U U
x

v =

Y

X x X

Figure 3.1: Recurrent Neural Network

3.2 Recursive Neural Networks

A recursive neural network is a deep neural network created by applying the same weights
over structured inputs. This recursive approach produces a prediction over a variable length
input by traversing the given structure. Recursive neural networks are the more generalized
form of recurrent neural network. RNNs works only with the specific type of structure i.e a
linear chain, whereas recursive neural network works with any type of hierarchical structure,

combining child representations into parent representations (Figure 3.2).

3.3 Directed Acyclic Graph Recursive Neural Networks

(DAG-RNN)

DAG RNN is useful when the data can be represented as DAG. The edges typically denote

some kind of causal or temporal relationship between the nodes or variable. DAG-RNN

11

Y6

T4 Is5 i

Figure 3.2: Recursive Neural Network

associates a vector with each node of the graphs and used the directed edges to propagate
information. It places a neural network at each edge to capture the relationship between the
corresponding node. In theory, a different neural network can be applied to each edge, it’s
often useful to share the weights of the neural networks among similar edges. One advantage
of weight sharing is that it reduces the number of parameters in the architectures, which

allows it to train faster and lesser data.

For instance, Figure 3.3 is the graphical model representation of a first-order Hidden Markov
Model (HMM) for sequence data. The HMM is a finite set of hidden states, where each
states transitions to the another states among the set,governed by the transition probabilities
(horizontal edges). At every states, an observation can be generated, according to the
associated probability distribution called emission probabilities (vertical edges). The DAG
associated with a hidden Markov model of the data can be converted to a deep neural
network by using two basic neural network, as shown in Figure 3.4. One neural network for
the transition probabilities and one neural network for the emission probabilities. When the
architecture is unfolded in time or space, it yields a deep neural network with many layers

and shared weights which can be trained by gradient descent (back propagation) and other

12

m

Figure 3.3: Directed acyclic graph (DAG) of a Hidden Markov Model

Figure 3.4: DAG RNN

algorithms.

Chapter 4

UG-RNN for small molecules

All the approaches discussed so far works fine with data that can be represented as a sequence
or a DAG [44-46]. But, molecules are generally represented as undirected graphs (UG) and
may contain cycles, which raise an obvious question of how to extend the approach of DAG-
RNN to UG. One possible solution is to consider to convert the UG into a DAG in some
orderly fashion. Since there can be multiple DAG possible for a UG, the resulting DAG
is going to be quite arbitrary among all the possible DAG’s and might not capture all the
information. Lusci et al. [1] suggests an approach which tries to overcome this limitation
by considering all possible DAG of the molecule and using them as an ensemble. This is
possible because small molecules have a small number of nodes and few cycles, which make

the computation feasible.

Figure 4.1: Undirected Graph

14

VS
Lo

Figure 4.2: Directed acyclic graphs.

We consider all possible acyclic orientations of the undirected graph and use them as an
ensemble. Given an undirected graph, UG-RNN iterates over all the vertices and generates
a DAG using the selected vertex as the root. The DAG has the same number of vertices as
in the UG and all its edges are pointed towards the root vertex along the shortest possible
path. The process is schematically illustrated in Figures 4.1 and 4.2. There may be certain
cases, where the original undirected can be oriented in any direction and more than on one
shortest path exists, resulting in multiple DAGs for one root node. Though we can consider
all these possible DAGs, it will lead to a high number of DAG’s specially in case of multiple
cycles and would require lot more computations. We solve this problem by considering one
random orientation, which allows having fixed number of DAGs. For instance, if a UG has
N vertices, the UG-RNN approach yield N DAGs, i.e one DAG per root vertex. Once DAGs
are generated, we can then apply the DAG-RNN approach discussed in 3.3. The output of

these DAGs are combined to obtain ensemble and make the final prediction.

15

4.1 DAG Generation

Consider a molecular undirected graph with N nodes vy, ...,vy. In order to generate the
DAG(for instance for vertex vy), we first generate shortest path from v; to all the other
nodes vy, ..., vy and since graph is unweighted graph, we can use Dijkstra’s shortest path
algorithm. Let the paths be ps, ..., py, where p; denotes shortest path to node vy. Once we
have all the paths, create a new graph with N nodes vy, ..., vy and edges in paths ps, ..., pn.
In the new graph all the edges are pointing away from vy, so simply reverse all the edge to
get the DAG D;(Dy, represents the DAG generated with vy, as root node). The parent of

node v in Dy, are represented by pal[uk], ey DA™y gy

4.2 Local Information Vector

The local information vector i[v7k}ERl is the vector associated with the properties of vertex
v in the DAG D,. UG-RNN allows the flexibility to choose the nature of information, one
want to associate with each node. This can include atom type, properties of the molecule like
aromaticity, it bonds with neighbours, topological indices, information about local paths(like
part of the cycle). Lusci et al. [1] suggests of using just atom type and bond properties.
The underlying hypothesis behind this it that UG-RNN is able to extract these properties
automatically by crawling. The atom type is encoded as one-hot vector,for instance in case of
three atom types, the atom type is encoded as C = (1,0,0), N = (0,1,0), and O =(0,0,1). For

bonds, we only consider the the bonds between the node and its parents pal[v,k], ey DA™ k-

16

4.3 Contextual Vectors

Each node v in the DAG Dj, has an contextual vector G, associated with it. It tries
to capture the local properties of the node and the properties associated with its parent
pal[wk], -, A", - It can be seen as function (equation ...) of local information vector i,y

and of the contextual vectors of its parent nodes, Gpal[M], eoey Glpgn " The function can be

[v,

represented as:

G-
Gv k= M (Z[v,k]7 Gl’al[u,kp cevy Gpa”[v,k]) (4.1)

)

The function M¢ is recursive function, as contextual vectors are computed as the function
other contextual vectors, and is implemented by using a parameterized neural network. Since,
neural network has fixed size of input vector, a node cannot have arbitrary large number
of parents. We need to have upper bound n to the number of parents a node can have. In
case of small molecules, n=4 works. In case, a node has m parent nodes with m < n, blank
vectors (all zeroes) are passed to the function M as its last n-m arguments. If, a node has

m parent nodes m > n, we choose any random n parents.

As all the edges in the DAG are pointing towards the root node, the above process produces a
final contextual vector G,, j at the root node. This vector receives some information directly
or indirectly from all the other nodes of the DAG and can be seen as the summary of the

DAG from the view of the root node.

4.4 Activity Prediction

At the end of crawling process, the N different views are combined to get the overall de-

scription of the molecule Gpyeture. There are various ways of combining the final contextual

17

vectors, but here to keep things simple, we just add them. Hence Ggyeture can be defined

as:

WE

Gro (4.2)

GstTucture =

i

1

This Ggructure can be treated as the vectorial representation of the molecule and is used
to make predictions about the molecule. The final prediction is produced by the output

function M©
Activity = MO (G gructure) (4.3)

The output function M can be implemented by a feed-forward neural network. Though
other types of parameterized function can be used like SVM, by using neural networks for
M¢ and MO, the overall architecture is deep feed-forward neural network, which can be
trained by gradient decent [49-52] to minimise the error between predicted and true values.
Given a training data set of decent size, the model can be trained in fully automatic and task-
specific manner. Once the parameters of the M and M© networks are trained successfully,

G structure Provides an optimal encoding for prediction.

4.5 UG-RNN With Contracted Rings (UG-RNN-CR)

One of the common problems with deep architectures is that it can run into the problem
of vanishing gradient or exploding gradients during backpropagation [53, 54].In back prop-
agation, gradients are calculated using the chain rule, i.e. gradient of ”front” layers are
calculated by multiplying the gradients of deeper layers. If the gradients are small, the gra-
dient decreases exponentially and the front layers are never trained. This is called gradient

vanishing. And if the gradients are large, this can lead to gradient explosion. The problem

18

gets severe as the depth of the deep architecture increases. One possible solution to avoiding
vanishing gradient or gradient explosion is by reducing the depth of the architecture. Since
the actual size of networks M and M© are quite small, we essentially need to reduce the
depth of the recursive architectures. We achieve this by contracting the rings in the original
to a single point, which results in smaller UGs. It is very common in molecules to have one
or more cycles. An example of a molecule with a single ring is Aspirin (Figure 4.3) and an

example of a polycyclic molecule is Cirpo (Figure 4.4). In order to reduce the rings, we

OH

O

Figure 4.3: Aspirin.

F COOH

0

Figure 4.4: Cirpo.

fist compute the smallest set of smallest rings [56, 57| of the molecular graph G. Now, each
ring R is contracted to a single node with a new label R, where n is the length of the ring.
All the edges connecting the non-ring nodes to the ring nodes are connected to the new
node. In the case of polycyclic molecules, a new node associated with a ring R can also be
connected to other newly created nodes with edge label as for single-bond edges. Applying
this procedure to the graphs representing Aspirin and Cirpo yields the graphs in Figures 4.5

and 4.6, respectively.

19

Figure 4.6: Contracted graph of Cirpo with bond types.

4.6 Example: UG-RNN Model of Propionic Acid

Propionic acid (Figures 4.7) is one of the naturally occurring carboxylic acids, which we use

here as an example to demonstrate the UG-RNN approach

O

OH

Figure 4.7: Propionic acid.

The UG of Propionic acid has 5 nodes(implicit Hydrogen atoms are ignored) as shown in
Figure 4.8. The first step is to convert the UG into 5 DAG by the procedure discuss in 4.1

(Figure 4.9, root atoms highlighted).

20

Figure 4.8: Propionic acid undirected graph.

N
@]
O/ 0

oo q@/ oG
I

@]
S ® RoRRCERS

- &) : O ©\I

Figure 4.9: Propionic acid DAGs

The second step is to initialize the contextual vector of each source nodes in all DAGs and
crawl the DAGs along the edges using the neural network M¢, to calculate the contextual
vector for all the internal nodes, up to the root node. The contextual vectors for source node
are set to 0. For instance, in the top DAG in Figure 4.9 with root node vs, the contextual
vector of the parents two source nodes: v; (carbon atom) and wvs(oxygen atom) are set
to 0 and only the input vector associated with the nodes are used. Information is then

propagated along the DAG structure using Equation 4.1 to compute the contextual vector

21

Prediction

Figure 4.11: UG-RNN approach on Propionic Acid
Sum of five G vectors to produce the vector Ggrycture - The output function M % produces the
final prediction.
of each internal node, and ultimately of the root vs, resulting in the vector G5, (Figure

4.10). The same procedure is applied to the other four DAGs, producing five vectors, one

for each DAG. These five contextual vector associated with the roots of the DAGs are then

22

summed together to generate the vector Ggyycture, describing the whole molecular graph
(Figure 4.10). In the final step consists, this vector Gsyyerure 18 mapped to the property of
interest using the neural network corresponding the output function M. The parameters
of M% and MO are then adjusted by training the architecture on dataset, reducing the error

between the predicted and true value.

23

Chapter 5

Implementation

One of the biggest problems with deep architecture is the amount of time and computation
required for training the models. Hence, its implementation is really crucial. In recent years,
various frameworks have been developed, which tries to increase the performance of neural
networks. TensorFlow is one of the latest addition to these frameworks, developed by Google.
One of the biggest motivation behind using TF is the ability to run on 64-bit Linux or Mac
OS systems, with multiple CPUs and GPUs.

We use a standard three-layer neural network(with one hidden layer) for both the encoding
function M¢ and the output mapping function M©. In order to train and test the models,
the data is randomly divided training and test set in 90/10 proportion. Models are trained
using the training set and the test set is used for testing and performance evaluation. Fur-
thermore, the training set is randomly split into proper training set and validation set in

80/20 proportion. The validation set is used to fit the hyperparameters of the models

The parameters of the model are optimised in order to get the lowest RMSE. (root mean
square error) using gradient descent. We experimented with various learning rates 7, varying

it from 10! to 10* and the most optimal value found is 102. We train the models for 300

24

epochs.

In order to reduce the residual generalisation error [68], we use an ensemble of 20 models with
a different number of hidden units and outputs units, as described in Table 5.1. These 20
models are stacked together and their outputs are combined together to create an ensemble.
Though there are various methods of stacking models together, we use three: random forest

regression, best 10 models and greedy, and one that gives the least root mean square error

(RMSE) on the validation set is used to make predictions on the test set.

Neural Network

MG Hidden Units

M¢S Output Units

MO Hidden Units

Model 1
Model 2
Model 3
Model 4
Model 5
Model 6
Model 7
Model 8
Model 9
Model 10
Model 11
Model 12
Model 13
Model 14
Model 15
Model 16
Model 17
Model 18
Model 19
Model 20

— = =
Do S ©00 10Otk W1~~~ -~~~

— = =
C)JCOOOOOOOOJWOOOOOOMHO@OO\IQCﬂka

(S8

Ot Ot Ot Ot Ot Ot O Ot Ot Ot Ot Ot Ot Ot Ot Ot Ot Ot Ot

Table 5.1: Architecture of 20 encoding neural networks M¢ and output neural networks M©

25

Chapter 6

Data & Results

In order to compare the performance of UG-RNN with other methods, we use three metrics:
Root Mean Square Error (RMSE 2.3), Absolute Average Error (AAE 2.3) and Pearson

correlation coefficient (R 6.1)

Zn:l (ti - f)(pz - 25)
= Z 6.1
\2/2?:1 (t: — 7?)22?:1 (pi — p)? (6.1)

where p and t are the average prediction and target values respectively. In some places, we

calculate R? in order to compare it with other published results.

6.1 Aqueous Solubility Prediction

In order to train and test the UGRNN approach, we use 2 publicly available datasets, which

has been widely used by others for benchmarking solubility prediction methods.

Through various experiments, it has been found that using octanol-water partition coefficient

leads to more accurate aqueous solubility predictions. Hence, we also assess the performances

26

of both the UG-RNN and UG-RNN-CR models, where the input to M%consists of Gstructure
and the log P,ciano- This allows us to access the generalization capability of the UG-RNN
and UG-RNN-CR models and better understand the kind of information contained in the

vector Gst'ructu're .

Small Delaney Dataset

The Delaney dataset [16] contains 2874 molecules together with their measured aqueous
solubility (logmol/L at 25 C). We use this data set to compare UG-RNN with the GSE
method [24]. The GSE was obtained on the smaller set of the molecules from the original
dataset, commonly known as ”Small” Delaney Dataset. This dataset is also used by various

kernel methods [58, 80] for benchmarking, with yields better results than GSE.

Models R* | RMSE | AAE
UG-RNN 0.90 | 0.61 0.45
UG-RNN-CR 0.86 | 0.75 0.52
UG-RNN+LogP 090 | 0.61 | 0.44
UG-RNN-CR+LogP 0.92 | 0.59 0.44
GSE [24]] - | 047
2D Kernel (param d=2)[80] | 0.91 | 0.61 | 0.44

Table 6.1: Solubility prediction performances on the Small Delaney Dataset (1144 molecules)

Results obtained the solubility prediction on Small Delaney Dataset are shown in Table
6.1. The UG-RNN+logP gives the best result among all the 4 models, though it is very
close to the UG-RNN approach. The UG-RNN-CR doesn’t perform as well as the UG-
RNN approach. The addition of logP information leads to a significant improvement in
UG-RNN-CR approach. The UG-RNN model matches or surpass the performance of the

other published results, although the differences are very small.

27

Huuskonen Data Set

This dataset contains 1297 organic molecules selected by Huuskonen [59]; listed together
with their aqueous solubility values. We benchmark various UG-RNN predictor against the

current state-of-the-art 3D Kernel Methods [80].

Models R? | RMSE | AAE
UG-RNN 0.86 0.72 0.50
UG-RNN-CR 0.77 0.95 0.66
UG-RNN+LogP 0.90 0.59 0.43
UG-RNN-CR+LogP | 0.90 0.62 0.45
RBF Kernel[62] 0.90 | - -

3D Kernel [80] 0.91 0.15 0.11

Table 6.2: Solubility prediction performances on the Huuskonen Dataset (1026 molecules)

Results obtained for solubility prediction the Huuskonen Dataset are shown in Table 6.2.The
results are similar to ones observed on Delaney dataset. The UG-RNN+logP model achieves
the best results across all the models. Adding the logP information lead to significant
improvement in both UG-RNN-CR approach, but not as much in UG-RNN approach. The

result obtained by UG-RNN models are similar to other published methods.

6.2 Melting Point Prediction

We use the Karthekeyan Melting Point Data Set reported by Karthikeyan et al. [78] to access

the performance of UGRNN models for melting point predictions.

Models R?* | RMSE | AAE

UG-RNN 0.53 | 44.40°C | 34.57°C
UG-RNN-CR 0.47 | 46.26°C | 37.28°C
Karthikeyan et al. [78] (ANN) | 0.42 | 52.0°C | 41.3°C
2D Kernel(d=10) [80] 0.56 | 42.71°C | 32.58°C

Table 6.3: Melting Point prediction performances on Karthekeyan Melting Point Data Set.

28

This dataset contains 4173 diverse compounds, with melting points in the range from 14°C

to 392.5°C.

Results obtained for melting point prediction on the Karthekeyan Dataset are shown in 6.3.
The result of UG-RNN method is very similar to the state-of-the-art 2D-Kernel methods.
Just like the result on solubility datasets, UG-RNN-CR works worse than the UG-RNN

approach.

29

Chapter 7

Conclusions

UG-RNN are a general class of machine learning models that maps the undirected graphs to
desired property. The successful application of UG-RNN approach on aqueous solubility and
melting points shows us that it’s ability to automatically extract the information from the
molecular representations of the graph. This has a huge advantage over the other approaches,
as it completely removes the need of finding the optimal feature set for every property. For
properties like aqueous solubility, where the feature sets are not known, this can lead to a

significant improvement, saving time and costs.

In all the experiments, we have found that the UG-RNN-CR models have weaker predictive
capabilities when compared to the UG-RNN. This can be attributed to the loss of informa-
tion due to the ring contraction. This also suggests that the decrease in depth does not lead
to significant improvements. The addition of logP information significantly increases the effi-
ciency of UG-RNN-CR models but doesn’t help much in the case of UG-RNN models, hence

providing evidence that UG-RNN models are able to extract this information implicitly.

In future, the approach of UG-RNN can be applied to any problem in molecular biology,

as long as the inputs can be represented as simple molecular graphs. The approach can be

30

further improved to consider the 3D information along with it 2D molecular graph.

31

Bibliography

1]

[10]
[11]

[12]

[13]

[14]
[15]
[16]

A. Lusci, G. Pollastri, and P. Baldi. Deep architectures and deep learning in chemoin-
formatics: The prediction of aqueous solubility for drug-like molecules. J. Chem. Inf.
Model., 53:1563-1575, 2013.

B. Scholkopf and A. J. Smola. Learning with Kernels. MIT Press: Cambridge, MA,
2012.

L. Ralaivola, S. J. Swamidass, H. Saigo, and P. Baldi. Neural networks. Special Issue
on Neural Networks and Kernel Methods for Structured Domains, 18:1093-1110, 2005.

C. Azencott, A. Ksikes, S. J. Swamidass, J. Chen, L. Ralaivola, and P. Baldi. J. chem.
inf. model. 47:965-974, 2007.

A. Ceroni, F. Costa, and P Frasconi. Bioinformatics. 23:2038-2045, 2007.
P. Mah and J-P Vert. Machine learning. 75:3-35, 2009.

M. Kayala, C. Azencott, J. Chen, and P. Baldi. J. Chem. Inf. Model, 51:2209-2222,
2011.

M. Kayala and P. Baldi. J. Chem. Inf. Model, 52:25262540, 2012.

H. V. D. Waterbeemd and E Gifford. Nature Reviews, 2:192-204, 2003.

A. Starita, A. Micheli, and A. Sperduti. J. Chem. Inf. Comput. Sci, 1:202-218, 2000.
H Fhner. Ber. Dtsch. Chem. Ges, 57B:510-515, 1924.

M. Hewitt, M. T. D. Cronin, S. J. Enoch, J. C. Madden, and J. C. Roberts, D.
W.and Dearden. J. Chem. Inf. Model, 49:2572-2587, 2009.

J. Reynolds, D. B. Gilbert, and C Tanford. Proc. Natl. Acad. Sci. U.S.A, 71:2925-2927,
1974.

C. Hansch, J. E. Quinlan, and G. Lawrence. L. J. Org. Chem, 33:347-350, 1968.
B. Faller and P Ertl. Adv. Drug Delivery Rev, 59:533-545, 2007.

J. S. Delaney. J. Chem. Inf. Comput. Sci, 44:1000-1005, 2003.

32

[17]
[18]

[19]
[20]

[21]

[22]
[23]
[24]

[25]

[26]
[27]
28]

[29]
[30]
[31]
[32]

[33]

[34]

[35]

[36]

S. H. Yalkowsky and S. C. Valvani. J. Pharm. Sci., 69:912-922, 1980.

M.J. Kamlet, R. M. Doherty, J-L. M. Abboud, M. H. Abraham, and R. W. Taft. J.
Pharm. Sci, 75:338-348, 1986.

M. Randic. J. Am. Chem. Soc., 97:6609-6615, 1975.

L. B. Kier and L. H Hall. Molecular Connectivity in Chemistry and Drug Design.
Academic Press: New York, 1976.

L. B. Kier and L. H Hall. Molecular Connectivity in Structure Activity Analysis. John
Wiley & Sons: New York, 1986.

A. Leo, C. Hansch, and D. Elkins. Chem. Rewv., 71:525-616, 1971.
A. Leo. Chem. Rev., pages 1281-1306, 1993.
N. Jain and S. Yalkowsky. J. Pharm. Sci., 90:234-252, 2001.

H. Timmerman, R. Todeschini, V. Consonni, R. Mannhold, and H. Kubiny. Handbook
of Molecular Descriptors. Wiley-VCH: Weinheim, Germany, 2002.

B. Louis, V. K. Agrawal, and P. V. Khadikar. Fur. J. Med. Chem., 45:4018-4025, 2010.
J. Dearden. Fxpert Opinion in Drug Discovery, 1:31-52, 2006.

R. M. Dannenfelser, M. Paric, M. White, and S Yalkowsky. Chemosphere, 23(2):141—
165, 1991.

W. Jorgensen and E. Duffy. Adv. Drug Delivery Rev., 54(30):355-366, 2002.
G. Hinton, S. Osindero, and Y. Teh. Neural Comput., 18:1527-1554, 2006.
Bengio Y and LeCun Y. Scaling learning algorithms towards Al 2007.

Lee H, Grosse R, Ranganath R, and Ng A. Convolutional deep belief networks for
scalable unsupervised learning of hierarchical representations. 2009.

Lee H, Pham P, Largman Y, Ng A., Bengio Y, Schuurmans D, Lafferty J, Williams
CKI, and Culotta A. Advances in Neural Information Processing Systems, 22:1096—
1104, 20009.

G. Hinton, N. Srivastava, A. Krizhevsky, 1. Sutskever, and R. R Salakhutdinov. Im-
proving neural networks by preventing co-adaptation of feature detectors. 2012.

P. Di Lena, K. Nagata, and P Baldi. Improving neural networks by preventing co-
adaptation of feature detectors. Bioinformatics, 28:2449-2457, 2012.

A. Krizhevsky, I. Sutskever, and G. Hinton. Advances in Neurallnformation Processing
Systems. 2012.

33

[37]

[38]
[39]

[40]
[41]
[42]
[43]
[44]

[45]
[46]
[47]

[48]

[49]
[50]
[51]
[52]
[53]

[54]

[55]

[56]

R. Socher, J. Pennington, E. H. Huang, A. Y. Ng, and C.D Manning. Semi-Supervised
Recursive Autoencoders for Predicting Sentiment Distributions. 2011.

G. Hinton and R. Salakhutdinov. Science, 312:504, 2006.

Y. Bengio, P. Lamblin, D. Popovici, H. Larochelle, and U. Montreal. In Advances in
Neural Information Processing Systems, 19:153, 2007.

D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol, P. Vincent, and S. Bengio. J. Mach.
Learn. Res., 11:625-660, 2010.

P Baldi. Designs, Codes, Cryptogr, 65:383-403, 2012.

Y. LeCun, O. Matan, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard,
L. D. Jackel, and H. S Baird. Handwritten zip code recognition with multilayer networks.
Proc. IEEE, 2:35-40, 1900.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Proc. IEEFE, 86:2278-2324, 1998.

P. Baldi, S. Brunak, P. Frasconi, G. Pollastri, and G. Soda. Bioinformatics, 15:937-946,
1991.

P. Baldi and G. Pollastri. J. Mach. Learn. Res, 4:575-602, 2003.
L. Wu and P. Baldi. Neural Networks, 21:1392-1400, 2008.

D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Techniques.
MIT Press: Cambridge, MA, 2009.

P. Baldi and S. Brunak. Bioinformatics: The Machine Learning Approach, 2nd ed. MIT
Press: Cambridge, MA, 2001.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Nature, 323:533-536, 1986.
P. Baldi. Neural networks. IEEFE Trans., 6:182-195, 1995.

G. Pollastri and P. Baldi. Bioinformatics, 18:62-70, 2002.

P. Baldi and G. Pollastri. J. Mach. Learn. Res., 4:575-602, 2003.

Y. Bengio, P. Simard, and P. Frasconi. Neural networks. IEEE Trans, 5(2):157-166,
1994.

H. Larochelle, Y. Bengio, J. Louradour, and P. Lamblin. J. Mach.Learn. Res, 10:1-40,
2009.

J. March. Advanced Organic Chemistry: Reactions, Mechanisms,and Structure, 3rd ed.
New York: Wiley, 1985.

A. J. Zamora. Chem. Inf. Comput. Sci., 16:40-43, 1976.

34

[57]

[58]

[59]
[60]

[61]

[62]
[63]

[64]

[65]
[66]
[67]
[68]
[69]
[70]

[71]

[72]

B. T. Fan, A. Panaye, J. P. Doucet, and A. Barbu. J. Chem. Inf.Comput. Sci, 33:
657-662, 1993.

C. A. Azencott, A. Ksikes, S. J. Swamidass, J. H. Chen, L. Ralaivola, and P. Baldi. J.
Chem. Inf. Comput. Sci, 47:965-974, 2007.

J. Huuskonen. J. Chem. Inf. Comput. Sci., 40:773-777, 2000.

S. H. Yalkowsky and D. R. M. The Arizona Database of AqueousSolubility and College
of Pharmacy. University of Arizona: Tucson, AZ, 1990.

Physical/Chemical Property Database(PHYSOPROP). SRC Environmental Science
Center: Syracuse, NY, 1994.

H. Fr hlich, J. K. Wegner, and A Zell. QSAR Comb. Sci., 23:311-318, 2004.

C. Bergstroem, M. Strafford, L. Lazorova, A. Avdeef, K. Luthman, and P. Artursson.
J. Med. Chem., 46:558-570, 2003.

A.; Bergstrom C.; Zamora I.; Artursson P. Wassvik, C.; Holmen. Fur. J. Pharm. Sci.,
29:294-305, 2006.

P. Faller, B.; Ertl. Adv. Drug Delivery Rev., 59:533-545, 2007.

J.; Dressman J. Glomme, A.; Maerz. J. Pharm. Sci., 94:1-16, 2005.

A. Linas, R. Glen, and J. Goodman. J. Chem. Inf. Model., 48:1289-1303, 2008.
L. Hanses, L.; Salamon. IEEFE Trans, 12:993-1001, 1990.

Marvin Beans. Chemaxon. http://chemaxon.com (accessed July 1, 2013).

Dragon Professional Software for Windows. Milano Chemo-metrics and QSAR Research
Group.

M. J ONeil. The Merck Index. 13th ed.; Merck & Co. Inc.: Whitehouse Station, NJ,
2001.

T. S. Schr eter, A. Schwaighofer, S. Mika, A. T. Laak, D. Suelze, U. Ganzer, N. Hein-
rich, and K.-R. M ller. Estimating the Domain ofApplicability for Machine Learning
Qsar Models: A Study on Acqueous Solubility of Drug Discovery Molecules. Springer
Science+Business Media B.V.: Dordrecht, The Netherlands, 2007.

T. I. Netzeva and et al. ATLA, Altern. Lab. Anim., 33 (2):1-19, 2005.

I. V. Tetko, P. Bruneau, D. C. Mewes, H.-W.and Rohrer, and G. I. Poda. Drug Discovery
Today, 11 (15/16):700-707, 2006.

Tropsha A. Variable Selection ()QSAR Modeling, Model Validation, and Virtual Screen-
ing. In Annual Reports in Computational Chemistry; Spellmeyer, D. C., Ed.; Elsevier:
Amsterdam, The Netherlands; Volume 2, Chapter 7, 2006.

35

[76]
[77]
(78]

[79]

[80]

N. R. Bruneau, P.; McElroy. J. Chem. Inf. Model., 46:1379-1387, 2006.
A. N. Tegge, Z. Wang, J. Eickholt, and J. Cheng. Nucleic Acids Res., 37:515-518, 2009.

M. Karthikeyan, R. C. Glen, and A Bender. General melting point prediction based on
a diverse compound data set and artificial neural networks. J. Chem. Inf. Model., 45:
581-590, 2005.

C. A. S. Bergstrom, U. Norinder, K. Luthman, and P. Artursson. Molecular descriptors
influencing melting point and their role in classification of solid drugs. J. Chem. Inf.
Model., 43:1177-1185, 2003.

C-A Azencott, A. Ksikes, S. J. Swamidass, J. H. Chen, L. Ralaivola, and P. Baldi.
One- to four-dimensional kernels for virtual screening and the prediction of physical,
chemical, and biological properties. J. Chem. Inf. Model., 47(3):965-974, 2007.

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,
Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Joze-
fowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga,
Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit
Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasude-
van, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke,
Yuan Yu, and Xiaoqgiang Zheng. TensorFlow: Large-scale machine learning on het-
erogeneous systems, 2015. URL http://tensorflow.org/. Software available from
tensorflow.org.

36

http://tensorflow.org/

Appendix A

Source Code

A.1 UGRNN

from
from

from

__future__ import absolute_import
__future__ import division
__future__ import print_function

import os

import

import

import

import

from
from
from

from

ugrnn
ugrnn
ugrnn

ugrnn

logging

matplotlib.pyplot as plt

tensorflow as tf

numpy as np

import config
.molecule import Molecule
import nn_utils

.utils import get_metric

37

logger = logging.getLogger(__name__)

class UGRNN(object) :
def __init__(self, model.-name, encoding_nn_hidden_size,
encoding_nn_output_size ,
output_nn_hidden_size , batch_size=1, learning_rate=0.001,
add_logp=False):

777 Build the wugrnn model up to where it may be used for inference.”””

logger.info(” Creating the UGRNN”)

logger.info(Initial learning rate: {:} . format(learning_rate))

self.model_-name = model_name

self . batch_size = batch_size

777 Create placeholders”””

self.local_input_pls = [tf.placeholder(tf.float32, shape=[None, None,
Molecule.num_of_features()]) for i in

xrange(self.batch_size)]

self.path_pls = [tf.placeholder(tf.int32, shape=[None, None, 3]) for i
in xrange(self.batch_size)]

self . target_pls = [tf.placeholder(tf.float32) for i in xrange(self.
batch_size)]

self.logp_pls = [tf.placeholder(tf.float32) for i in xrange(self.
batch_size)]

self.sequence_len_pls = [tf.placeholder(tf.int32) for i in xrange(self
.batch_size)]

self.global_step = tf.Variable (0, name=’global_step’, trainable=False)

self.global_step_update_op = tf.assign(self.global_step, tf.add(self.

global_step , tf.constant(1l)))

»77Set the hyperparameters for the model”””

38

self.learning_rate = learning._rate x tf.pow(config.

learning rate_decay_factor , tf.to_float (self.global_step),

name=None)

self.encoding_nn_output_size = encoding_nn_output_size
self.encoding_nn_hidden_size = encoding_nn_hidden_size
self.encoding_nn_input_size = 4 % encoding_nn_output_size 4+ Molecule.

num_of_features ()
self.add_logp = add_logp
if self.add_logp:

self.output_nn_input_size = self.encoding_nn_output_size + 1
else:

self.output_nn_input_size = self.encoding_nn_output_size
self .output_nn_hidden_size = output_nn_hidden_size
self.initializer _fun = nn_utils.get_initializer (config.initializer)
self . flattened_idx_offsets = [(tf.range(0, self.sequence_len_pls[i]) =

config . max_seq-len x 4) for i in

xrange (0, self.batch_size)]

self.trainable_variables = []

self.create_UGRNN_variable ()

prediction_op = self.add_prediction_op(self.local_input_pls[0],
self.path_pls[0],
self.logp_pls[0],
self .sequence_len_pls[0],
self . flattened_idx_offsets [0])

self.prediction_ops = [prediction_op]

for i in xrange(l, self.batch_size):

with tf.control_dependencies ([self.prediction_ops[i — 1]]):

prediction_op = self.add_prediction_op(self.local_input_pls|[i

39

self.path_pls[i],

self.logp-pls[i],

self.sequence_len_pls[i
I

self.
flattened_idx_offsets
[i])

self.prediction_ops.append(prediction_op)

self.loss_op = self.add_loss_op ()

self.train_op = self.add_training_ops ()

def create_.UGRNN_variable(self):
with tf.variable_scope (”EncodingNN”) as scope:
contextual_features = tf.get_variable(” contextual_features”,
[config.max_seq_len x config
.max_seq_len x 4,
self.
encoding_nn_output_size
I
dtype=tf.float32 ,
initializer=tf.
constant_initializer (0),

trainable=False)

with tf.variable_scope(’hiddenl’) as scope:
weights = nn_utils.weight_variable ([self.
encoding_nn_input_size ,
self.encoding_nn_hidden_size
I
initializer=self.

initializer_fun)

40

nn_utils.bias_variable ([self.encoding_-nn_hidden_size

biases =

1

self.trainable_variables.append(weights)

self.trainable_variables.append(biases)

with tf.variable_scope(’output’) as scope:

nn_utils.weight_variable (

weights =
[self.encoding_nn_hidden_size

self.encoding_nn_output_size],

initializer=self.initializer_fun)

biases = nn_utils.bias_variable ([self.encoding_nn_output_size

1)

self.trainable_variables.append(weights)

self.trainable_variables.append(biases)

with tf.variable_scope (”OutputNN”) as scope:

with tf.variable_scope(hiddenl’) as scope:

nn_utils.weight_variable(
self.output_nn_hidden_size],

weights =
[self.output_nn_input_size ,

self.initializer_fun , 'weights_decay’)

biases = nn_utils.bias_variable ([self.output_-nn_hidden_size])
self . trainable_variables.append(weights)

self.trainable_variables.append(biases)

with tf.variable_scope(’output’) as scope:

weights =
[self.output_nn_hidden_size ,
"weights_decay)

nn_utils.weight_variable(
1],

self.initializer_fun ,
self . trainable_variables.append(weights)
sequence_len ,

feature_pl, path_pl, logp_pl,

def add_prediction_op (self ,
41

flattened_idx_offset):
with tf.variable_scope (”EncodingNN” | reuse=True) as scope:
step = tf.constant (0)
contextual_features = tf.get_variable(”contextual_features”)
contextual_features = contextual_features.assign(
tf.zeros ([config.max_seq_len x config.max_seq_len x 4,
self.encoding_nn_output_size],

dtype=tf.float32))

_, step, -, -, -, contextual_features, _ = tf.while_loop(
UGRNN. cond , UGRNN. body ,
[sequence_len , step, feature_pl,
path_pl,
flattened_idx_offset , contextual_features ,
self.encoding_nn_output_size],
back_prop=True,

swap-memory=False , name=None)

use flattened indicesl

step_contextual_features = UGRNN. get_contextual_feature (
contextual _features=contextual_features ,
index=0,
flattened_idx_offset=flattened_idx_offset ,

encoding _nn_output_size=self.encoding_ nn_output_size)

indices = tf.pack([tf.range(0, sequence_len), tf.range(0,
sequence_len)], axis=1)

step_feature = tf.gather_nd(feature_pl, indices)

inputs = tf.concat (1, [step_-contextual_features, step_feature])

encodings = UGRNN. apply_EncodingNN (inputs, config.activation_type)

molecule_encoding = tf.expand_-dims(tf.reduce_sum (encodings, 0), 0)

42

x = tf.expand_dims(logp_-pl, 0)
x = tf.expand_dims(x, 1)
if self.add_logp:
outputNN_input = tf.concat(l, [x, molecule_encoding])
else:

outputNN_input = molecule_encoding

with tf.variable_scope (”OutputNN” | reuse=True) as scope:
prediction_op = UGRNN. apply _OutputNN (outputNN_input ,

config.activation_type)

return prediction_op

@staticmethod
def cond(sequence_len, step, feature_pl, path_pl, flattened_idx_offset ,
contextual_features , encoding_-nn_output_size):

return tf.less(step, sequence_len — 1)

@staticmethod
def body(sequence_len, step, feature_pl, path_pl, flattened_idx_offset ,
contextual_features , encoding._nn_output_size):
zero = tf.constant (0)

one = tf.constant (1)

input_begin = tf.pack([zero, step, zero])

input_-idx = tf.slice(path_pl, input_begin, [-1, 1, 1])
input_idx = tf.reshape(input_idx, [—1])
indices = tf.pack ([tf.range(0, sequence_len), input_idx], axis=1)

step_feature = tf.gather_nd(feature_pl, indices)

output_begin = tf.pack([zero, step, one])

tf.get_variable_scope().reuse_variables ()

43

contextual _features = tf.get_variable(” contextual_features”)

step_contextual_features = UGRNN. get_contextual_feature (
contextual_features=contextual_features ,
index=input_idx ,
flattened_idx_offset=flattened_idx_offset ,

encoding_nn_output_size=encoding_nn_output_size)

nn_inputs = tf.concat (1, [step_-contextual_features, step_feature])
updated_contextual_vectors = UGRNN. apply EncodingNN (nn_inputs ,
config.

activation_type

)

output_idx = tf.squeeze(tf.slice(path_pl, output_begin, [—1, 1, 2]))

contextual_features = UGRNN. update_contextual_features (
contextual_features=contextual_features ,
indices=output_idx ,
updates=updated_contextual_vectors,

flattened_idx_offset=flattened_idx_offset)

with tf.control_dependencies ([contextual_features]):
return (sequence_len
step + 1,
feature_pl ,
path_pl,
flattened_idx_offset |,
contextual_features ,

encoding_nn_output_size)

def add_training_ops(self):

def apply_gradient_clipping(gradient):

44

def

if gradient is not None:
return tf.mul(tf.clip_by_value(tf.abs(grad), 0.1, 1.),
tf.sign(grad))
else:

return None

optimizer = tf.train.GradientDescentOptimizer(learning_-rate=self.
learning_rate)
optimizer = tf.train.AdamOptimizer(learning_rate=self.learning_rate ,
betal=0.9, beta2=0.999,
epsilon=1le—08,

use_locking=False , name='Adam’)

loss_op = self.loss_op + config.weight_decay_factor x tf.add._n(

[tf.nn.12 _loss(v) for v in tf.get_collection (’weights_decay’)])

gvs = optimizer.compute_gradients(loss_op)

if config.clip_gradient:

gvs = [(apply_gradient_clipping(grad), var) for grad, var in gvs]

train_op = optimizer.apply_gradients(gvs)

return train_op

add_loss_op (self):
loss_op = |
tf.square(tf.sub(self.prediction_ops|[i], self.target_pls[i])) for
i
in xrange(0, self.batch_size)]
loss_op = tf.add.n(loss_op , name=None) / 2

return loss_op

45

def train(self, sess, epochs, train_dataset, validation_dataset):

train_metric = self.evaluate(sess, train_dataset)

validation_metric = self.evaluate(sess, validation_dataset)

plt.subplot(2, 1, 1)
plt.title (’Training.data.set’)

plt.axis ([0, epochs, 0, train_metric[0]])

plt.subplot(2, 1, 2)
plt.title (’Vaidation._data.set’)

plt . axis ([0, epochs, 0, validation_metric[0]])

plt.ion ()

logger.info (’Start.Training’)

steps_in_epoch = train_dataset.num_examples // self.batch_size

for epoch in xrange(0, epochs):
for i in xrange(0, steps_in_epoch):
feed_dict = self.fill_feed_dict (train_dataset , self.batch_size

)

- = sess.run([self.train_op], feed_dict=feed_dict)

train_dataset.reset_epoch (permute=True)

sess.run ([self.global_step_update_op])

if epoch % 10 = 0:
train_metric = self.evaluate(sess, train_dataset)
validation_metric = self.evaluate(sess, validation_dataset)
plt .subplot (2, 1, 1)

plt.scatter (epoch, train_metric[0], color="red’, marker=".")

46

def

def

plt.scatter (epoch, train_metric[l], color="blue’, marker=".")

plt.subplot (2, 1, 2)

plt.scatter (epoch, validation_metric[0], color="red’, marker="
.77)

plt.scatter (epoch, validation_metric[1l], color="blue’, marker=
77-77)

learning_rate = self.get_learning._rate (sess)

plt.pause (0.05)
logger .info (
"Epoch:.{:},.Learning.rate_{:.8f}_..Train . RMSE: . {:.4f},_
Train AAE: _{:.4f}_Validation RMSE_{:.4f},_Validation.

AAE_{:.41}".
format (epoch, learning_rate[0], train_metric[0],
train_metric[1], validation_metric[0],

validation_metric [1],

precision=8))

logger .info (’Training._Finished)

evaluate (self , sess, dataset):
predictions = self.predict(sess, dataset)
targets = dataset.labels

return get_metric(predictions, targets)

predict (self , sess, dataset):
dataset.reset_epoch ()

predictions = np.empty(dataset.num_examples)
for i in xrange(0, dataset.num_examples):

feed_dict = self.fill_feed_dict (dataset, 1)

prediction_value = sess.run([self.prediction_ops[0]], feed_dict=
feed_dict)
predictions[i] = np.mean(prediction_value)

47

def

def

def

def

return predictions

fill_feed_dict (self, dataset, batch_size):
assert batch_size <= self.batch_size
molecules_feeds , targets_feeds = dataset.next_batch(batch_size)
feed_dict = {}
for i in xrange(batch_size):
feed_dict [self.local_input_pls[i]] = molecules_feeds[i].

local_input_vector

feed_dict [self.path_pls[i]] = molecules_feeds[i].directed_graphs
feed_dict [self.target_pls[i]] = targets_feeds|[i]
feed_dict [self.sequence_len_pls[i]] = molecules_feeds[i].

local_input_vector.shape[1]

if self.add_logp:

feed_dict [self.logp-pls[i]] = molecules_feeds[i].logp

return feed_dict

get _learning_rate (self , sess):

return sess.run ([self.learning_rate])

save_model (self , sess, checkpoint_dir, step):

logging .info (”Saving._model_{:}” .format(self.model_name))

saver = tf.train.Saver(self.trainable_variables , max_to_keep=1)
checkpoint_file = os.path.join (checkpoint_dir, ’'model.ckpt’)

saver.save (sess , save_path=checkpoint_file)

restore_model (self , sess, checkpoint_dir):
logging.info(” Restoring model {:}7.format(self.model_name))
saver = tf.train.Saver(self.trainable_variables)

saver.restore (sess, tf.train.latest_checkpoint(checkpoint_dir))

48

@staticmethod
def get_contextual_feature(contextual_features , index,
flattened_idx_offset , encoding_nn_output_size):
»n»
Contextual vector is flatted array

indexr is 1D index with

” 0

indices = index 4 flattened_idx_offset
values = [indices, indices, indices, indices]
indices = tf.pack(values, axis=1, name='pack’)

indices = indices + tf.constant ([0, 1, 2, 3])

indices = tf.reshape(indices, [—1])
contextual_vector = tf.gather(contextual_features, indices)
contextual_vector = tf.reshape(contextual_vector ,

[-1, 4 * encoding_nn_output_size])

return contextual_vector

@staticmethod
def update_contextual_features(contextual_features, indices, updates,
flattened_idx_offset):
first_indices , second_indices = tf.split (1, 2, indices)
indices = tf.squeeze(first_indices 4+ second_indices)
indices = indices + flattened_idx_offset
contextual _features = tf.scatter_add(contextual_features , indices,
updates , use_locking=None)

return contextual_features

@staticmethod
def apply_EncodingNN (inputs, activation_type):
activation_fun = nn_utils.get_activation_fun (activation_type)
with tf.variable_scope(’hiddenl’) as scope:
weights = tf.get_variable (" weights”)

biases = tf.get_variable(” biases”)

49

hiddenl = activation_fun (tf.matmul(inputs, weights) + biases)

with tf.variable_scope(’output’) as scope:
weights = tf.get_variable (” weights”)
biases = tf.get_variable(” biases”)

return activation_fun (tf.matmul(hiddenl, weights) + biases)

@staticmethod

def apply OutputNN(inputs, activation_type):

A.2

activation_fun = nn_utils. get_activation_fun (activation_type)
with tf.variable_scope(’hiddenl’) as scope:

weights = tf.get_variable (” weights”)

biases = tf.get_variable(” biases”)

hiddenl = activation_fun (tf.matmul(inputs, weights) 4+ biases)
with tf.variable_scope(’output’) as scope:

weights = tf.get_variable (”weights”)

return tf.matmul(hiddenl, weights)

Training

from __future__ import absolute_import
from __future__ import division

from __future__ import print_function
import argparse

import logging

import os

import numpy as np

50

from ugrnn.input_data import DataSet
from ugrnn.ugrnn import UGRNN
from ugrnn. utils import model_params

np.set_printoptions (threshold=np.inf, precision=4)

import tensorflow as tf

FLAGS = None

def main(_):
model_dir = os.path.join (FLAGS. output_dir , FLAGS. model_name)

if tf.gfile.Exists(model_dir):
tf. gfile.DeleteRecursively (model_dir)
tf. gfile . MakeDirs(model_dir)

with tf.Graph().as_default():
Create a session for running Ops on the Graph.

sess = tf.Session ()

logp_col_name = FLAGS.logp_col if FLAGS.add_logp else None

logger.info (’Loading_Training_dataset _from.{:}’.format (FLAGS.
training_file))
train_dataset = DataSet(csv_file_path=FLAGS. training_file ,
smile_col_name=FLAGS. smile_col ,
target_col_name=FLAGS. target_col ,
logp_col_name=logp_col_name ,

contract_rings=FLAGS. contract_rings)

logger.info (’Loading_validation._dataset _from.{:}’.format (FLAGS.

validation_file))

51

if

validation_dataset = DataSet(csv_file_path=FLAGS. validation_file ,
smile_col_name=FLAGS. smile_col ,
target_col_name=FLAGS. target_col ,
logp_col_name=logp_col_name ,

contract_rings=FLAGS. contract_rings)

logger.info (" Creating .Graph.”)

ugrnn_model = UGRNN(FLAGS.model name, encoding_nn_hidden_size=FLAGS.
model_params [0] ,
encoding_nn_output_size=FLAGS.model_params[1],
output-nn_hidden_size=FLAGS.model_params|[2],
batch_size=FLAGS. batch_size , learning_rate=0.001,
add_logp=FLAGS. add_logp)

logger.info (" Succesfully .created._graph.”)

init = tf.global_variables_initializer ()

sess.run(init)

logger.info (’Run.the_Op_to.initialize .the_variables’)
ugrnn_model. train (sess , FLAGS. max_epochs, train_dataset ,

validation_dataset)

ugrnn_model.save_model (sess, model_dir, FLAGS. max_epochs)

__name__ =— ’__main__":

log_format = *%(asctime)s.—_%(name)s_—_%(levelname)s._—_%(message)s’
logging . basicConfig(level=logging .INFO, format=log _format)

logger = logging.getLogger(__name__)

parser = argparse.ArgumentParser ()

52

parser.add_argument ('——model_name’, type=str, default="default_.model’,

help="Name.of_the_model ”)

parser.add_argument (’—max_epochs’, type=int, default=300,

help='Number_of _epochs_to_run_trainer.’)

parser .add_argument ('—batch_size’, type=int, default=10,
help="Batch.size . ")

parser.add_argument ('——model_params’, help="Model_Parameters” , dest="

model_params” , type=model_params)

parser.add_argument (’—learning_rate’, type=float, default=0.001,

help="Initial_learning._rate’)

))

parser.add_argument ('—output_-dir’, type=str, default="train’,

help="Directory _for._storing._the_trained .models”)

)

parser.add_argument (’—training_file’, type=str, default="ugrnn/data/
delaney/train_delaney .csv’,
help="Path_to_the_csv._file_containing._training._.data.
set ”)

)

parser.add_argument ('—validation_file’, type=str, default="ugrnn/data/

delaney/validate_delaney.csv’,
help="Path_to_the_csv.file_containing._validation._data.

set ”)

parser.add_argument (’—smile_col’, type=str, default=’smiles’)

parser.add_argument (’—logp_col’, type=str, default="logp’)

parser.add_argument ('—target_col’, type=str, default="solubility’)

53

b

parser.add_argument (—contract_rings’, dest="contract_rings

action="store_true’)

parser.set_defaults (contract_rings=False)

parser.add_argument ('—add _logp’, dest="add_logp’,

action="store_true’)

parser.set_defaults (add-logp=False)

parser.add_argument ('—clip_gradient ’, dest='clip_gradient ’,

action="store_true’)

parser.set_defaults (clip_gradient=False)

FLAGS = parser.parse_args ()

tf.

app . run (main=main)

A.3 Prediction

from __future__ import absolute_import
from __future__ import division

from __future__ import print_function

from sklearn import linear_model

from sklearn.ensemble import RandomForestRegressor

import
import

import

import

argparse
logging

0S

numpy as np

o4

)

9

from ugrnn.input_data import DataSet
from ugrnn.ugrnn import UGRNN

from ugrnn.utils import model_params, get_metric

np.set_printoptions (threshold=np.inf)

import tensorflow as tf

FLAGS = None

def save_results(file_path , targets, predictions):

data = np.array ([targets, predictions])

data = data.T

f = open(file_path , ’'w+7)

np.savetxt (f, data, delimiter=",", fmt=["%.4f’, >%.4f’], header="Target ,.
Prediction” , comments="")
f.close ()

def get_prediction_from_model (model_-name, encoding_-nn_hidden_size ,
encoding _nn_output_size ,
output_nn_hidden_size, test_dataset ,
validation_dataset):

model_dir = os.path.join (FLAGS. output_dir , model_name)

if not tf.gfile.Exists(model_dir):

raise Exception(”Invalid._path_or_the_.model_paramter_doesnot_exist”)
with tf.Graph().as_default ():

Create a session for running Ops on the Graph.

sess = tf.Session ()

55

logger.info(” Creating Graph.”)

ugrnn_model = UGRNN(model_name, encoding_nn_hidden_size=
encoding _nn_hidden_size ,
encoding_nn_output_size=encoding_nn_output_size ,

output_nn_hidden_size=output_nn_hidden_size ,

add_logp=FLAGS. add_logp)

logger.info(” Succesfully created graph.”)

init = tf.global_variables_initializer ()

sess.run(init)

logger.info(’Run the Op to initialize the wvariables ’)

logger.info(Restoring model parameters’)

ugrnn_model . restore_model (sess, model_dir)

prediction_validate = ugrnn_model.predict (sess, validation_dataset)

prediction_test = ugrnn.model. predict(sess, test_dataset)

test_results_file_path = os.path.join(model_dir, ”test_result.csv”)
validation_results_file_path = os.path.join (model_dir, ”validation_result.

csv’”)

save_results (test_results_file_path , test_dataset.labels, prediction_test)
save_results (validation_results_file_.path , validation_dataset.labels

prediction_validate)

return prediction_validate , prediction_test

def ensemble_prediction_linear_regression (validation_dataset ,

all_validation_predictions , all_test_predictions):

56

Ir = linear_model.LinearRegression (fit_intercept=False)
Ir.fit (all_validation_predictions.T, validation_dataset.labels)
emsemble_preditions = lr.predict(all_test_predictions.T)

print (7 Liner Regression Weights: 7, lr.coef_)

return emsemble_preditions

def ensemble_prediction_rf_regression(validation_dataset ,
all _validation_predictions , all_test_predictions):
rfr = RandomForestRegressor(n_estimators=1000)
rfr.fit (all_validation_predictions.T, validation_dataset.labels)
emsemble_preditions = rfr.predict(all_test_predictions.T)

return emsemble_preditions

def ensemble_prediction_average (validation_dataset , all_validation_predictions
, all_test_predictions):

emsemble_preditions = np.mean(all_test_predictions , axis=0)

return emsemble_preditions

def ensemble_prediction_top_k(validation_dataset , all_validation_predictions ,
all_test_predictions , k=10):
no_of _models = len(all_validation_predictions)
errors = []
for i in xrange(0, no_of_models):
metric = get_metric(all_validation_predictions[i], validation_dataset.
labels)

errors .append (metric[0])

errors = np.array(errors)
index_of_best_networks = errors.argsort () [:k]

logging.info(”Top {:} models: {:}”.format(k, index_of_best_-networks))

57

def

def

emsemble_preditions = np.mean(all_test_predictions [index_of_best_networks
], axis=0)

return emsemble_preditions

ensemble_prediction_greedy (validation_dataset , all_validation_predictions ,
all_test_predictions):

current_prediction = np.zeros(len(all_validation_predictions [0]))

index = 0

index_of_best_networks = []

index_of_next_best = get_next_best_model (index, current_prediction ,

all_validation_predictions ,validation_dataset.labels)

while index_of_next_best != —1:
index_of_best_networks.append(index_of_next_best)
current_prediction = (index * current_prediction +

all_validation_predictions [index_of_next_best]) / (index + 1)
index+=1
index_of_next_best = get_next_best_model (index, current_prediction ,
all_validation_predictions ,

validation_dataset .labels)

logging .info (”Best_models:_{:}” .format(index_of_best_networks))
emsemble_preditions = np.mean(all_test_predictions [index_of_best_networks
], axis=0)

return emsemble_preditions

get_next_best_model (index, current_prediction, all_predictions , targets):

no_of_models = len(all_predictions)
current_error = (get_metric(current_prediction, targets))[0]
next_best_model_index = —1

58

for i in xrange(0, no_of_models):

temp_prediction = (index x current_prediction 4+ all_predictions[i]) /
(index + 1)
metric = get_metric (temp_prediction, targets)

if metric[0] < current_error:
next_best_model_index = i

current_error = metric[0]

return next_best_model_index

def main(_):
logger .info (’Loading_Models_From.{:} ’.format (FLAGS. output_dir))

logp_col_.name = FLAGS.logp_col if FLAGS.add_logp else None
test_dataset = DataSet(csv_file_.path=FLAGS. test_file , smile_col_name=FLAGS
.smile_col ,
target_col_name=FLAGS. target_col , logp_col_-name=
logp_col_name ,

contract_rings=FLAGS. contract_rings)

validation_dataset = DataSet(csv_file_path=FLAGS.validation_file ,
smile_col_name=FLAGS. smile_col ,
target_col_name=FLAGS. target_col ,
logp_col_name=logp_col_name ,

contract_rings=FLAGS. contract_rings)

validation_predictions = np.empty ((len (FLAGS. model_names) ,
validation_dataset .num_examples))
test_predictions. = np.empty ((len (FLAGS. model_names), test_dataset.

num_examples))

59

for i in xrange(0, len(FLAGS.model_names)):
predictions = get_prediction_from_model (FLAGS. model_names|[i], FLAGS.
model _params[i][0],
FLAGS. model_params[i][1],
FLAGS. model_params[i][2],
test_dataset ,

validation_dataset)

validation_predictions[i, :] = predictions [0]
test_predictions_[i, :] = predictions[1]
ensemble_predictor = [ensemble_prediction_rf_regression ,

ensemble_prediction_top_k , ensemble_prediction_greedy]

predictor_.names = ["Random._forest._regression”, "Top_.10", 7 Greedy”]

for fun, name in zip(ensemble_predictor, predictor_names):
emsemble_preditions = fun(validation_dataset , validation_predictions
test_predictions.)
prediction_metric = get_metric(emsemble_preditions, test_dataset.
labels)
logger.info ("Method_{:} _RMSE: _{:}, _AAE: _{:},_R:_{:}” . format (name,
prediction_metric [0], prediction_metric[1],

prediction_metric

[2]))

final_prediction_path = os.path.join (FLAGS. output_dir, ”
ensemble_test_prediction.csv”)

save_results (final_prediction_path , test_dataset.labels,
emsemble_preditions)

logging .info (7 DONE

logging .info (”7)

logging .info (77)

60

if

__name__. =— ’__main__":

log_format = *%(asctime)s.—_%(name)s_—_%(levelname)s_—_%(message)s’
logging . basicConfig(level=logging .INFO, format=log _format)

logger = logging.getLogger(__name__)

parser = argparse.ArgumentParser ()

)

parser.add_argument ('—model_names’, nargs=’+’, type=str,

help="Name_of_the_models_used_for._prediction’)

parser .add_argument ('—model_params’, help="Model_Parameters” , dest="
model_params” , type=model_params, nargs='+")
parser.add_argument ('—output_dir’, type=str, default="train’,

help="Root._.Directory .where_the_..model_parameters_are.

stored’)

parser.add_argument ('—test_file ’, type=str, default="ugrnn/data/delaney/
validate_delaney .csv’,
help="Path_to_the_csv.file_containing._test._.data_set’)

)

parser.add_argument ('—validation_file ’, type=str, default="ugrnn/data/

delaney/test_delaney.csv’,
help="Path_.to_.the_.csv.file_containing.validation._data.
set ”)
parser.add_argument ('—smile_col’, type=str, default=’smiles’)

parser.add_argument ('—logp_col’, type=str, default="logp’)

parser.add_argument ('—target_col’, type=str, default="solubility’)

61

parser.add_argument (’—contract_rings’, dest="contract_rings’,
action="store_true’)

parser.set_defaults (contract_rings=False)

parser .add_argument ('—add_logp ’, dest="add_logp’,
action="store_true’)

parser.set_defaults (add_logp=False)

parser.add_argument ('—optimize_ensemble’, dest=’optimize_ensemble’,
action="store_true’)

parser.set_defaults (optimize_ensemble=False)

FLAGS = parser.parse_args ()
assert len (FLAGS.model_params) = len (FLAGS.model_names)

tf.app.run(main=main)

62

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	ABSTRACT OF THE THESIS
	Introduction
	QSAR Prediction Methods
	Deep Learning

	Artificial Neural Networks(ANN)
	Artificial Neuron
	Activation Function
	Loss function
	Optimization

	Deep Recursive Architectures
	Recurrent Neural Networks (RNN)
	Recursive Neural Networks
	Directed Acyclic Graph Recursive Neural Networks (DAG-RNN)

	UG-RNN for small molecules
	DAG Generation
	Local Information Vector
	Contextual Vectors
	Activity Prediction
	UG-RNN With Contracted Rings (UG-RNN-CR)
	Example: UG-RNN Model of Propionic Acid

	Implementation
	Data & Results
	Aqueous Solubility Prediction
	Melting Point Prediction

	Conclusions
	Bibliography
	Source Code
	UGRNN
	Training
	Prediction

