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Noah D. Goodman (ngoodman@stanford.edu)2, Hyowon Gweon (hyo@stanford.edu)2

1 Department of Psychology, Wesleyan University, Middletown, CT 06459
2Department of Psychology, Stanford University, Stanford CA, USA

Abstract

What constitutes good teaching, and what factors do learners
consider when evaluating teachers? Prior developmental work
suggests that even young children accurately recognize and
evaluate under-informativeness. Building on prior work, we
propose a Bayesian model of teacher evaluation that infers the
teacher’s quality from how carefully he selected demonstra-
tions given what he knew. We test the predictions of our model
across 15 conditions in which participants saw a teacher who
demonstrated all or a subset of functions of a novel device and
rated his helpfulness. Our results suggest that human adults
seamlessly integrate information about the number of func-
tions taught, their values, as well as what the teacher knew,
to make nuanced judgments about the quality of teaching; the
quantitative pattern is well predicted by our model.
Keywords: pedagogy, Bayesian models, social learning,
causal learning, pragmatics

Introduction
Learning from others is beneficial, but the benefits come
with hazards. By learning from knowledgeable, helpful oth-
ers, learners can draw powerful inferences that go beyond
the face value of information. However, because its power
hinges on the assumption that the teacher is knowledgeable
and helpful, learning can go awry when teachers are inac-
curate or misleading. Thus it is critical for learners to be
sensitive to others’ quality as teachers.

Reasoning in pedagogical contexts can be formally de-
scribed as a set of mutually constraining inferences (Shafto,
Goodman, & Griffiths, 2014). The teacher selects informa-
tion that increases the learner’s belief in the target hypoth-
esis (pedagogical sampling), and the learner rationally up-
dates his beliefs with the assumption that the information has
been pedagogically sampled. This leads to a strong expec-
tation that information provided by the teacher is not only
true but also sufficient for the learner to draw accurate infer-
ences. For instance, when a teacher pedagogically demon-
strates just one function of a multi-function device, a naı̈ve
learner would (inaccurately) infer that the toy has one, and
only one, function; if there were more, a knowledgeable and
helpful informant would have shown them.

Prior developmental work suggests that young children
draw strong inferences from pedagogically sampled infor-
mation in ways that are consistent with the model predic-
tions (Bonawitz et al., 2011; Xu & Tenenbaum, 2007), and
appropriately respond to teachers who violate pedagogical
sampling (Gweon, Pelton, Konopka, & Schulz, 2014). For
instance, 6- and 7-year-olds rate a teacher as less help-
ful when he demonstrates one function of a multi-function
toy (thus being under-informative), compared to when he

demonstrates one function of a single-function (thus being
fully informative) (Gweon, Pelton, et al., 2014), and given a
binary choice, even four-year-olds favor a fully-informative
teacher over an under-informative teacher (Gweon & Asaba,
2015; see also Barner, Brooks, & Bale, 2011 for similar in-
ferences in linguistic communication). These results suggest
that even early in life, human learners recognize and evalu-
ate “sins of omission”–under-informative pedagogy that mis-
leads the learner to draw an inaccurate inference.

Intuitively, not all sins of omissions are equally blamewor-
thy. What affects our evaluations of under-informative teach-
ing? One simple possibility is that the degree to which we pe-
nalize sins of omission is inversely related to the learner’s de-
gree of belief in the correct hypothesis. Thus the more infor-
mation a teacher omitted, the more blame he would deserve.
However, there are reasons to believe that people make more
nuanced judgments about under-informative teaching.

First, going beyond the amount of omitted information,
people might also consider the value of what was omitted.
Because not all knowledge is equally useful or valuable,
omission can have varying consequences for the learner de-
pending on the utility of the resulting knowledge. Consider
a gadget that has two buttons; one turns the gadget into an
auto-navigating robot vacuum and the other activates a blink-
ing light on the side. Because learning about the former
would be more useful than the latter, showing just the vac-
uum function would be considered less blameworthy than
showing just the blinking light.

Furthermore, people might be sensitive to the reason be-
hind the omission (i.e., the teacher’s intentions). In eval-
uating harmful actions, both children and adults are sensi-
tive to the intent of a perpetrator and appropriately exonerate
those who caused accidental harms due to their ignorance or
false beliefs (Hebble, 1971; Yuill & Perner, 1988; Young,
Cushman, Hauser, & Saxe, 2007). In linguistic communica-
tion, listeners flexibly adjust their interpretation of an utter-
ance depending on the speaker’s knowledge; if the speaker
didn’t have the knowledge to justify the stronger alternative,
listeners don’t draw implicatures (Goodman & Stuhlmüller,
2013). Thus even in the absence of explicit information
about others’ intentions, people spontaneously use informa-
tion about the others’ epistemic states to infer their intent.
Similarly, in evaluating sins of omission, people might care
about whether or not the teacher knowingly omitted some-
thing. Consider someone who demonstrated just one func-
tion of a four-function gadget, simply because he was un-
aware of the other three functions. Although he might be
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independently blamed for his ignorance, we might exoner-
ate him from being guilty of a “sin of omission” because his
ignorance suggests that the omission was unintended.

In this study, we investigate whether people consider the
amount and the value of information as well as the teacher’s
knowledge to evaluate under-informative pedagogy. Previ-
ous Bayesian models of pedagogical reasoning have been
extremely useful in formalizing our intuitions about what an
ideal learner might infer from pedagogically sampled data
(Shafto et al., 2014) and in how learners might choose be-
tween different teachers. For instance, Shafto, Gweon, Far-
gen, and Schulz (2012) looked at people’s evaluations of ef-
ficient vs. inefficient teaching, and modeled people’s rela-
tive preferences between two teachers as a ratio of two like-
lihoods. However, these models assume that teachers are
always fully knowledgeable and that all facts that could be
taught are equally valuable. Furthermore, they do not pro-
vide explicit, systematic predictions about people’s evalua-
tions of teachers based on their knowledge.

Building on prior work, here we provide a computational
model of teacher evaluation. The model captures the idea
that good teachers will work harder to teach well, where
“teaching well” is specified by the pedagogical sampling as-
sumption. We extend the underlying pedagogical model to
account for incomplete knowledge of the teacher as well
as the value of information taught. To test the model pre-
dictions, we designed a behavioral task to get parametric
evaluations of teachers’ ability in which we manipulated the
knowledge of the teacher, the value of the knowledge, and
the amount of knowledge communicated to the learner.

Model
Reasoning about a pedagogical situation requires a notion
of the causal relations between the world and the teacher’s
actions—an intuitive theory of pedagogy that captures the
teacher’s goal of informing the learner, and specifies what
examples should be given to teach a particular fact or con-
cept. This theory can be used in learning from teachers (as
in Shafto et al., 2014), but also learning about the teach-
ers themselves—the importance they place on informing the
learner and their ability to do so by choosing effective exam-
ples of things that will be useful to the learner. To formalize
a theory of pedagogy, we first describe how a teacher might
choose what demonstrations to give in different situations.
We do so with the standard softmax decision rule:

p(d| f ,α) ∝ eα U(d)−C(d), (1)

where f is the set of functions known to the teacher, and
d is the set of demonstrations he provides to the learner.
C(d), which we set equal to the number of demonstrations
provided, corresponds to the cost of a given set of demon-
strations, and U(d) is the utility a learner is expected to ac-
crue from the demonstrations (Eq. 2). The parameter α con-
trols the degree to which the teacher chooses to maximize
the pedagogical utility of his demonstration. Thus α can be
interpreted as the teacher’s “quality.” An indifferent teacher

(α = 0) would choose demonstrations at random, preferring
less costly demonstrations; as α increases, a teacher would
be more likely to select demonstrations that have high peda-
gogical utility, as good teachers would.

For our model to predict how people evaluate the teacher,
we must specify the utility of the teacher: what counts as
successful teaching? Shato et al. suggested that the teacher’s
utility should be proportional to the log-probability that the
learner will guess the correct hypothesis (2014). To apply
this idea to cases where a device has different functions that
vary in value, we must generalize this utility to capture the
fact that there are different aspects of the device that the
teacher could convey, each of which has its own utility to
the learner. Thus we can define the pedagogical utility of a
particular set of demonstrations (d) as:

U(d) = ∑
i

V ( fi) ln pL( fi|di) (2)

where di is 1 if the ith function was presented and 0 other-
wise, pL( fi|di) is the teacher’s model of the learner’s beliefs
about function i after demonstration di, and V ( fi) is the value
of function i. This pedagogical utility function is a general-
ization of previous accounts which examined the special case
where all functions are equally valuable (effectively drop-
ping V ( fi) from the equation). Assuming that a demonstra-
tion of each function provides an equal amount of informa-
tion to the learner, and that a priori belief in each function is
the same, Eq. (2) becomes (up to an additive constant which
does not impact decisions):

U(d) = ∑
i

kdiV( fi), (3)

where k is a constant reflecting the change in the learner’s
belief that a function exists, resulting from a demonstration
(this constant will be absorbed into the overall calibration of
utility below).

The demonstrations that a teacher selects using Eq. (1),
which uses this pedagogical utility (Eq. 3), depends on the
precise balance between the cost of demonstrations, the
teacher’s quality, and the value of each function. The demon-
stration cost pulls against the tendency of high-quality teach-
ers to teach everything they know, such that a high-quality
teacher with high communication costs may only teach the
high value functions.

To use this theory of pedagogy to evaluate (rather than
learn from) a teacher, consider a person who knows that
a teacher knows functions f and observes the teacher’s d
demonstration(s). This observer can use Bayes’ rule to in-
vert their model of how teacher’s select demonstration (Eq.
(1)) to infer the teacher’s quality:

p(α| f ,d) ∝ p(d| f ,α)p(α), (4)

where p(α) represents the person’s prior beliefs of the
teacher’s quality (we assume p(α) ∼ Uniform(0,1)). The
resulting estimates of teacher quality are sensitive to the
teacher’s epistemic state and the value of the functions
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demonstrated. For example, the quality estimate of a teacher
who demonstrates two low-value functions but also knew of
a high value function will be lower than someone who just
knew the two low-value functions he taught. Similarly, a
teacher who knows both a high- and a low- value function
would get the highest rating for showing both, a lower rating
for omitting the low-value function, and an even lower rating
for omitting the high-value function.

Experiment
Methods
Participants All participants were recruited from Amazon
Mechanical Turk, and were paid $0.50 for compensation.
We excluded a total of 462 participants from analyses based
on a priori criteria (responses to check questions; see Proce-
dure) and 71 for participating more than once. The final sam-
ple consisted of 1024 participants (Age: µ(σ) = 36.2(12.6),
range: 18 - 72 yrs; 575 female).

Stimuli We generated cartoon scenarios in which one char-
acter (e.g., Paul) encounters a novel device and discov-
ers all four, or a subset (one or two) of its functions, and
then shows another character (e.g., Laura) all or a sub-
set of its functions. The device had four distinctive but-
tons that corresponded to each function. Pressing a red
circular button made the device verbally report the current
time; the purple lightning-shaped button reported the local
weather; the orange crescent-shaped button made the device
say “hello!”; and the green square button generated a beep
sound. The relative values of these functions were validated
by a separate group of 52 mTurk participants who rank-
ordered the four functions by their usefulness. Weather and
Time (µ(σ) = 3.4(0.29) ranked higher than Beep and Hello
(µ(σ) = 1.6(0.29); t(51) = 23.3p< .001), with no difference
within the high-value pair or the low-value pair (p’s> .298).

Design We varied the number of functions the teacher dis-
covered (1, 2, or 4), the utility of the functions he discov-
ered (H for high, L for low), and the number of functions he
demonstrated to the learner (1, 2, or 4). Crossing these vari-
ables while excluding impossible cases yielded 15 conditions
(see Figure 2A for a full list of conditions). For instance, in
the KA TA condition the teacher Knew All and Taught All;
in KHL TH, he knew two functions (one high-value and one
low-value) but taught only one high-value function. The ex-
act function taught among the two equally valued functions
(e.g. Weather vs. Time) was counterbalanced throughout.

Procedure Participants were randomly assigned to one of
the 15 conditions and were shown the cartoon scenario that
corresponded to that condition. The first phase of the car-
toons introduced the device to ensure that the participants
knew about all the functions; the second phase showed the
teacher discovering some or all of the device’s functions. In
the third phase, the learner entered the room1 and asked the

1In conditions where the teacher did not know all the functions,
the learner’s entrance interrupted the teacher’s discovery; this was
to minimize the possibility that the participants’ ratings were af-

Figure 1: Schematic of procedure in the KLL TL condition.
The teacher discovers two low-value functions and teaches
just one low-value function.

teacher to show her how the device works. In the fourth
phase, the teacher demonstrated some, or all, of its functions
(see Figure 1). Participants then answered the critical ques-
tion: 1. Overall, how would you rate his teaching abilities?
We also asked additional questions in fixed order (2. Which
functions did he discover? 3. Which functions did he teach?
4. How well-intentioned do you think he was? 5. How nice
do you think he is? 6. Given what he knew, how good a
job did he do? 7. How willing would you be to learn from
him?). Finally we asked the first question again (8. Over-
all, how would you rate his teaching abilities?). We used a
seven-point Likert scale for questions 1 and 4-8. Questions
2 and 3 were used as check questions to exclude participants
who did not pay close attention.

Results and Discussion
Participants’ ratings of teacher ability in the first and the last
questions (Q1 and Q8: the teacher’s overall teaching abili-
ties) were highly correlated (r(1021) = 0.833, p < .001). We
therefore used the average of the two ratings in our analy-
ses. See Figure 2A for mean ratings of teacher ability in

fected by the teacher’s incompetence or failure to discover all func-
tions.
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all conditions. We conducted a linear regression to exam-
ine the effect of (1) the number of functions demonstrated
by the teacher, (2) the value of these functions, and (3) num-
ber of functions the teacher knew on participants’ estimate
of his ability. We coded these three factors as continuous
variables (to code the effect of the value of the demonstrated
functions as a continuous variable, we quantified it as the
proportion of the high valued functions known to the teacher
that were demonstrated). All three factors were highly sig-
nificant predictors. The higher the number of demonstra-
tions the higher the teacher was rated (β = 1.1, t(796) =
17, p < .001); the higher the value of his demonstrations, the
higher he was rated (β = .66, t(796) = 4.8, p < .001); and
the more functions the teacher knew, the lower he was rated
(β = −.3, t(796) = 17, p < .001); that is, when the teacher
did not know as many functions, people were more likely to
exonerate him for his limited knowledge. We further inves-
tigated these main effects with targeted analyses of a subset
of the conditions that highlights the predicted effects of (a)
naı̈ve omission, (b) the teacher’s prior knowledge, and (c) the
effect of prompting intention and knowledge.

a) Naı̈ve omission We first looked at conditions in which
the informant discovered only a subset of the device’s func-
tions, but taught everything he knew (KL TL, KH TH,
KLL TLL, KHH THH). A 2 (number: 1 or 2) x 2 (value:
H or L) ANOVA found a significant main effect of number
(F(1,297) = 21.1, p < .001). We also observed a marginally
significant main effect of value (F(1,297) = 2.9, p = .088),
and the interaction was not significant (F(1,297) = .27, p =
.603). Thus even when the teacher communicated all he
knew, participants’ ratings still reflected the number of func-
tions taught.

b) Informant’s prior knowledge We then looked at con-
ditions in which the informant taught two functions but ei-
ther taught all he knew (KHH THH, KLL TLL) or a subset
of what he knew (KA THH, KA TLL). A 2 (prior knowl-
edge: Knew Two (Taught All) or Knew All (Omitted)) x 2
(value: HH, LL) ANOVA found a significant effect of Prior
Knowledge (F(1,285) = 30.9, p < .001): Even though the
teacher showed the same number of functions, participants
took into account the teacher’s knowledge when rating his
teaching abilities. See Figure 2B. We also saw a signif-
icant main effect of value (F(1,285) = 12.0, p = .001) as
well as an interaction (F(1,295) = 5.6, p = .019). More
specifically, the value of functions taught affected ratings
only when the teacher taught just a subset of what he knew
(t(132) = 3.8, p < .001); if he taught all he knew, the value
had no effect (t(153) = .084, p = .40).

c) The effect of prompting intention and knowledge Our
questionnaire had 8 questions, with the first and the last ques-
tion serving as our main dependent measure. Between these
two identical questions, people were asked a few check ques-
tions as well as questions that prompted them to think about
the knowledge of the teacher and the intention of the teacher.
Thus it is possible that people are more likely to consider

others’ knowledge after having been explicitly prompted to
think about it; if so, answering these questions would lead
to amplified differences in people’s ratings of omissions. To
test this idea we performed an exploratory analysis compar-
ing conditions in which the informant always taught just one
function, with his knowledge base ranging from one to four
functions across conditions. We used the difference between
the two “Overall” questions as the DV (as opposed to the
mean) in a one-way ANOVA and found a significant main
effect of prior knowledge (F(2,527) = 31.9, p < .001). That
is, the less the teacher knew, the more likely participants
were to give a more generous rating for the teacher. When
the teacher taught just one function but knew just one or two
functions, people significantly increased their ratings relative
to their initial rating (K1: µdi f f (σ) = 0.77(1.1), t(145) =
8.4, p < .001; K2: µdi f f (σ) = 0.25(.95), t(256) = 4.1, p <
0.001). Conversely, when the teacher knew all functions but
just taught one function, participants gave a harsher rating in
the final question relative to their initial rating (µdi f f (σ) =
−.12(.63), t(126) = 2.1, p = .035).

Model Fit The two free parameters in the model—the dif-
ference in the utility of knowing a high vs. a low value
function, and the cost the teacher incurs by communicating a
function—were fit to the mean of participants’ estimates of
the teacher’s overall ability. As seen in Figure 2C, the result-
ing model well predicts these ability estimates (R2=0.96).

General Discussion
Here we presented a formal Bayesian account of how a
learner might evaluate a teacher. Our model considers the
amount of information a teacher provided, the value of that
information, and what he knew (but didn’t show) to infer his
“quality” as a teacher. Going beyond using the amount of
communicated information as a proxy for evaluating teach-
ers, our behavioral results showed that human learners spon-
taneously consider both the reason behind a teacher’s omis-
sion (i.e., he didn’t show because he didn’t know) as well
as the consequences for the learner (i.e., teaching X is more
valuable for the learner than teaching Y). Participants appro-
priately penalized or exonerated a teacher, generating graded
ratings that reflect the teacher’s quality in ways that are con-
sistent with our formal analysis.

Both knowledgeability and helpfulness are important traits
of good teachers, but not everyone around us is equally
knowledgeable and helpful. In fact, violation of pedagogical
sampling occurs frequently in real-world learning contexts.
For instance, a well-intended, helpful teacher might provide
insufficient information because he didn’t have all the rele-
vant knowledge. A fully knowledgeable teacher might omit
information because she thought it is not worth teaching.
Furthermore, we have an intuitive sense that a “good” teacher
is not just someone who provides everything he knows; it is
someone who knows what’s best for the learner and prior-
itizes teaching “what matters”. Critically, what matters for
the learner might not be the same as what matters for the
teacher. Although our model does not yet capture all the
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Figure 2: A. Mean teacher ability rating in all 15 conditions. B. The effect of value depends on whether or not the teacher
knew more than he taught. C. Comparison of behavioral data and the model predictions. Each colored point corresponds to a
bar in the same color in A. The fit between model and human data is R2 = 0.96.

complexities and sophistication in gauging someone’s qual-
ity as a teacher, it builds on, and importantly extends, prior
computational work on pedagogical reasoning by assuming
that human learners integrate different sources of informa-
tion to distinguish potentially misleading teachers from those
who are truly knowledgeable and helpful.

Our behavioral results were remarkably well predicted by
the model predictions. When the teacher knew all functions
of the device, people’s evaluations were rationally affected
by both the number and the value of the functions he taught;
the more he showed, and the more valuable the functions that
he showed, the higher people rated his teaching effective-
ness. Furthermore, given two teachers who taught exactly the
same functions, people’s judgments reflected the knowledge
of the teacher; the less he knew (thus the less he omitted), the
more generous the ratings were. While we used the average
of the first and the last questions for better reliability, these
effects were robustly present even in people’s responses to
the first question (R2 = .93). These results suggest that hu-
man adults spontaneously consider both the potential intent
of the teacher’s omission and its consequences for the learner
to give nuanced, graded judgments about others’ qualities as
teachers even without being explicitly prompted about their
intentions or knowledge.

One might wonder why we still observed an effect of num-
ber of demonstrated functions when the teacher taught all
he knew (see Naı̈ve Omission under Results). This is still
reasonable, because the teacher’s quality as judged by the

observer is still influenced by the pedagogical utility of the
demonstration. Consistent with what is predicted by our
model, in our behavioral task participants were asked to eval-
uate the teacher’s overall helpfulness, rather than the blame-
worthiness of the omission per se.

In the current model, the teacher’s quality was defined
as the degree to which he considered pedagogical utility
when choosing demonstrations, with the assumption that the
learner would learn what was shown once. However, this
global weighting represents just one of many dimensions on
which teaching can be evaluated. Indeed, people’s evalua-
tions of teaching may be even more nuanced than our model
presented here, and sensitive to factors that are left unex-
plored in our current work. For example, one of the hall-
marks of a good teacher is sensitivity to the difficulty of the
subject material for the learner (i.e., “this is a difficult con-
cept, so I should show this example multiple times”), as well
as the learner’s epistemic states, learning style, and abilities
(i.e., “she is quick so I shouldn’t dwell on this”, or “I’ll skip
what he already knows”). Thus in some cases, omissions
might not only be forgivable but even desired, especially
when transmitting information can be costly (see Gweon,
Shafto, & Schulz, 2014 for children’s sensitivity to learner’s
epistemic states and cost of information). These abilities cor-
respond to rich knowledge of the subject domain and a more
sophisticated model of learners’ abilities and goals, both of
which were simple in the current model.

Furthermore, we have assumed that both the learner and
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the teacher have identical utility functions. Indeed, this is
often not true in the real world, particularly in cases where
young children or students learn from adult teachers; chil-
dren are often taught what adults think is valuable for chil-
dren, rather than what children they themselves think is valu-
able (e.g., the value of math or history classes). Even within
learners and within teachers there are vast differences in how
they value and prioritize different kinds of knowledge. These
are subtle yet critically important considerations that go into
designing curriculums in real-world educational settings, and
where future computational and empirical work can be use-
ful in formalizing what constitutes “good teaching.”

In our current work, we have considered cases where a
teacher omits functions with positive values. However, there
are cases where omission leads to negative consequences
(e.g., a building manager who forgot to announce 3-day
water shutdown in your apartment). In fact, these are the
kinds of omissions that can elicit the harshest evaluations,
and perhaps the most indicative of informants who should
be avoided in the future. Understanding the asymmetries
in omitting positively-valued and negatively-valued informa-
tion is an interesting topic for future work.

Recall that in our behavioral results, we observed a change
in people’s ratings between the first and the last questions
(both of which were about his overall teaching abilities; see
The effect of prompting intention and knowledge under Re-
sults). Between these two questions, people answered ques-
tions that prompted them to think about the teacher’s inten-
tions and his knowledge. Even though these prompts are not
necessary for accurate evaluation, the effect of these prompts
suggest that explicitly thinking about these factors can make
the differences even more pronounced. One interesting pos-
sibility is that people’s ability to think about others’ beliefs
(Theory of Mind) is directly related to the extent to which
learners consider the teachers’ knowledge and intentions.
Thus one might predict that people with impaired or low
Theory of Mind abilities might (a) show less consideration
of the teacher’s knowledge and intent, but (b) benefit more
from explicit prompting of these factors. Follow-up research
is under way to investigate these possibilities.

We note that although our behavioral experiments allowed
a precise manipulation of what was taught and what the
teacher knew, it leaves an open question about whether stu-
dents in real-world pedagogical settings are also sensitive to
these factors. Furthermore, our participants were third-party
observers of a teacher-student interaction rather than the stu-
dents themselves. An interesting extension of this work is to
ask whether young learners, as students, also consider these
factors to evaluate teachers in more realistic, live interactions
with a teacher.

As learners in the real world, we often face a challenge
of dealing with both uncertainty about the world as well
as the uncertainty about others’ qualities as teachers. How
real-world learners exploit diverse sources of information,
including their own exploration of the world, to simultane-
ously learn about both other people and about the world is

an incredibly rich and exciting area for future computational
and empirical work. Our work provides an important step to-
wards delineating the factors that we all consider in learning
from whom to learn.

Acknowledgments
This work was supported by Varieties of Understanding grant
from the John Templeton Foundation to HG and Jerome
Davis Research Fund at Oberlin College to IB.

References
Barner, D., Brooks, N., & Bale, A. (2011). Accessing the un-

said: The role of scalar alternatives in children’s pragmatic
inference. Cognition, 118(1), 84–93.

Bonawitz, E., Shafto, P., Gweon, H., Goodman, N. D.,
Spelke, E., & Schulz, L. (2011). The double-edged sword
of pedagogy: Instruction limits spontaneous exploration
and discovery. Cognition, 120(3), 322–330.

Goodman, N. D., & Stuhlmüller, A. (2013). Knowledge and
implicature: Modeling language understanding as social
cognition. Topics in cognitive science, 5(1), 173–184.

Gweon, H., & Asaba, M. (2015). Knowing what he could
have shown: The role of alternatives in children’s evalu-
ation of under-informative teachers. Proceedings of the
37th Annual Conference of the Cognitive Science Society.

Gweon, H., Pelton, H., Konopka, J. A., & Schulz, L. E.
(2014, September). Sins of omission: Children selectively
explore when teachers are under-informative. Cognition,
132(3), 335–341.

Gweon, H., Shafto, P., & Schulz, L. E. (2014). Children
consider prior knowledge and the cost of information both
in learning from and teaching others. Proceedings of the
36th Annual Conference of the Cognitive Science Society.

Hebble, P. W. (1971). The development of elementary
school children’s judgment of intent. Child Development,
1203–1215.

Shafto, P., Goodman, N. D., & Griffiths, T. L. (2014). A
rational account of pedagogical reasoning: Teaching by,
and learning from, examples. Cognitive psychology, 71,
55–89.

Shafto, P., Gweon, H., Fargen, C., & Schulz, L. (2012).
Enough is enough: Inductive sufficiency guides learners
ratings of informant helpfulness. In Proceedings of the
34th annual conference of the cognitive science society.

Xu, F., & Tenenbaum, J. B. (2007). Sensitivity to sampling
in bayesian word learning. Developmental science, 10(3),
288–297.

Young, L., Cushman, F., Hauser, M., & Saxe, R. (2007). The
neural basis of the interaction between theory of mind and
moral judgment. Proceedings of the National Academy of
Sciences, 104(20), 8235.

Yuill, N., & Perner, J. (1988). Intentionality and knowledge
in children’s judgments of actor’s responsibility and re-
cipient’s emotional reaction. Developmental Psychology,
24(3), 358.

171


	cogsci_2015_166-171



