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Vortex pinning by surface geometry in superfluid helium

I.H. Neumann and R.J. Zieve
Physics Department, University of California at Davis

We present measurements of how a single vortex line in superfluid helium interacts with a macroscopic bump
on the chamber wall. At a general level our measurements confirm computational work on vortex pinning by
a hemispherical bump, but not all the details agree. Rather than observing a unique pin location, we find that
a given applied velocity field can support pinning at multiple sites along the bump, both near its apex and near
its edge. We also find that pinning is less favorable than expected. A vortex can pass near or even traverse the
bump itself with or without pinning, depending on its path ofapproach to the bump.

Vortex methods have appeared for decades in computa-
tional work on classical fluids in both two and three dimen-
sions [1, 2]. They track the vorticity, which is the curl of
the velocity field, rather than the velocity itself. The velocity
can then be extracted using the Biot-Savart law. Vortex meth-
ods apply naturally to situations where the vorticity is con-
centrated in particular regions of the fluid; applications range
from simulating trailing vortices of aircraft [1] to doing time
updates of the computer graphics in video games [3]. A main
benefit is that evaluating the velocity field does not require
tracking a fine grid of points.

A complication for vortex methods is the treatment of the
vortex cores, which in classical fluids change shape and sizeas
vortex lines bend and move. Using a fixed size for the vortex
cores, while more straightforward in conception and imple-
mentation, is valid only when the core size is small compared
to all other length scales, including the local radius of curva-
ture of the vortex and the spacing between the computational
points along the vortex [4]. This restriction does apply nat-
urally in superfluid4He, where the experimentally measured
core radius is about 1.3̊A, small enough to be ignored on typ-
ical computational and experimental length scales. Conve-
niently, direct comparison between superfluid hydrodynam-
ics calculations and experiment becomes possible. In several
cases such simulations accurately describe non-trivial experi-
mental behaviors [5, 6].

Here we compare vortex pinning in experiment and calcula-
tion, finding discrepancies that may indicate a need to modify
the computational treatment of surfaces. Our measurements
track a single vortex in superfluid helium interacting with a
macroscopic bump. We compare to the computational work
of Schwarz [7], for a hemispherical bump on an otherwise
flat wall. Schwarz uses a flow field that far from the bump is
uniform and parallel to the wall. He finds that if the vortex
is swept into the vicinity of the bump, the bump can capture
and pin the vortex [7]. If the flow velocity is large the vor-
tex continues to move, but for sufficiently low velocities it
remains at the bump. The calculation uses no explicit pinning
forces; rather, the stationary configuration comes about en-
tirely from the vortex settling into an arrangement where the
net velocity vanishes along its core. For a given flow veloc-
ity, the pinned vortex terminates at a unique position on the
bump, in the plane perpendicular to the flow. As the velocity
increases, the pin site moves out along the bump towards the
wall.

Our experimental work confirms the general picture of a

vortex pinning at a bump, but we find some key differences.
First, we observe pinning near both the apex and the edge
of a bump, for the same applied velocity field. Second, in
Schwarz’s work even a vortex on a path that avoids the bump
can be pulled off course, encounter the bump, and pin to it.
By contrast, we find that vortices only pin on the bump if they
encounter it directly and sufficiently close to its center.

Our data come primarily from a cylindrical cell of diameter
5.79 mm, with a large bump midway along its length on the
curved wall. At its widest point this bump has a roughly circu-
lar cross-section of diameter 3.05 mm, and its apex protrudes
a distance 1.27 mm from the circular wall. As described else-
where [6], the cell is mounted on a pumped3He cryostat and
filled with 4He through a small inlet hole in one end. Our
measurements use a fine wire stretched vertically through the
container, and a constant horizontal magnetic field of order25
mT. The inset of Figure1a depicts this geometry. We pass
a brief current pulse through the wire; because of the static
magnetic field, this creates a force displacing the wire from
its equilibrium position. After the pulse ends, the wire’s ten-
sion causes it to vibrate and ultimately to settle back to its
equilibrium position. As the wire moves, we monitor the emf
induced across it due to the horizontal magnetic field.

We create vortices by rotating the cryostat at low temper-
atures, but we make all our measurements with the cryostat
stationary. Vorticity trapped around all or part of the wire
alters the observed vibration frequencies. We focus on the
frequency splitting between the two lowest modes. The earli-
est measurements with a straight vibrating wire [8] confirmed
that circulation is quantized in superfluid helium, since the fre-
quency splitting expected from a single quantum of circulation
was strikingly stable. However, intermediate values of thefre-
quency splitting also occur. These levels appear when a quan-
tized vortex covers only a fraction of the wire and hence has
a reduced effect on the vibration frequencies. From the ob-
served signal we can identify the spot where the vortex leaves
the wire. The vortex must then continue through the fluid as
a free vortex, and that free portion moves at the local fluid
velocity. Since this motion often leads to small adjustments
to the position where the vortex leaves the wire, our vibrating
wire measurements allow us to track the free vortex portion.

In our physical experiment, the driving field is the flow field
of the trapped vertical vortex, which sweeps the free vortex
segment around the cell. The free vortex terminates on the
cell wall, and if it encounters the bump during its precession,
it can pin to the bump. The resulting experimental signatureis
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that the circulation along the wire stabilizes; the steady energy
loss that we observe during precession ceases, as does the os-
cillatory signal which corresponds to the circuit of the vortex
around the wire.

As a first indication that there is more than one metastable
configuration for the vortex on the bump, we observe not one
but three closely spaced levels for stable circulation. Two ap-
pear in Figure1. On approaching the bump, the vortex first
pins with 20.7 mm of the wire’s length covered by circula-
tion. After several minutes, this level changes to 22.0 mm.
Figure2 includes the remaining level, at 19.6 mm. The dif-
ferences between these heights are comparable to the widest
radius of the bump. Thus the middle level may correspond to
pinning at the apex of the bump, while the other two levels in-
dicate pinning close to the top and bottom of the circle where
the bump meets the wall.

Kelvin waves during the pins confirm that the three lev-
els correspond to pinning at different parts of the bump. The
Kelvin waves appear as rapid oscillations superimposed on
the steady circulation. We have shown previously that Kelvin
waves can be excited by our vibrating wire itself, particularly
when the other end of the vortex is fixed [9]. From our ear-
lier work, the observed oscillation frequencies correspond to
the longest-wavelength modes with the vortex fixed at the cell
wall and free to move vertically along the wire. (Empirically,
since we observe oscillations at the Kelvin wave frequency,
the vortex must not be fixed at the wire.) The wire used for
the present measurements exhibits Kelvin waves often, and
their frequencies provide key geometric information.

Frames b) and c) of Figure1 expand the oscillations visible
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FIG. 1. Top frame, inset: cell geometry, with wire stretchednear
cell axis, a perpendicular magnetic field used to excite and detect the
wire’s vibration, and a bump on the side wall. As drawn a vortex
extends along the wire from the bottom of the cell to the center, then
leaves the wire and terminates on the bump. Top frame, main: motion
of the end of the vortex along the wire. Initial oscillationscorrespond
to the free vortex precessing through the cell. Pinning begins near 90
minutes. Lower frames: expanded views of the Kelvin waves that
occur while the vortex is pinned. The two frames have the same
horizontal scale.

at each of the two stable circulation levels. The horizontal
axis has the same scale in both cases, illustrating clearly that
the oscillations at the first pin have a higher frequency. The
periods are about 52 seconds for the first pinned level and 101
seconds for the second level. The period repeats to within the
uncertainty of about two seconds for all pinning events at the
same level.

The ideal Kelvin wave period in the long-wavelength limit
is

T =
2λ2

κ ln λ

2ao

,

whereao = 1.3 × 10
−7 mm is the vortex core radius,κ =

9.97 × 10
−2 mm2/s is the circulation of the vortex, andλ is

the wavelength of the Kelvin mode [10]. For a vortex with
one end pinned, the lowest-frequency mode has wavelength
four times the length of the free vortex segment. If the pin
site is at the bump apex, then the free vortex length is 1.6
mm and the corresponding period isT = 48 seconds, very
close to the observed value at the middle pin level. A pin site
at the edge of the bump, with vortex length equal to the cell
radius of 2.9 mm, gives a period of 164 seconds. Here the
agreement is not especially good, although that could mean
simply that the vortex does not pin precisely at the edge of the
bump. Indeed, if we model the exposed half of the bump as
half of an ellipsoid, then the straight-line path from the center
of the cell to the bump edge passesthrough the bump. The
observed period of 101 s suggests a vortex length of 2.3 mm.
For our bump, this would occur at a distance 1.2 mm from the
bump axis, which is still quite close to the edge laterally.

The Kelvin waves at the third pin level have an intermediate
period near 62 seconds. This corresponds to a vortex length
of 1.76 mm, which would place the pin site 0.97 mm off the
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FIG. 2. Several approaches of a vortex to the bump, showing the re-
producibility of the pin levels. Each curve has an arbitraryhorizontal
shift.
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axis. Since the glue ran down in this direction when the bump
was affixed to the cell wall, this edge does have a more gradual
height change and the observed values for the pin location and
Kelvin wave period are plausible.

Figure2 is a compendium of several vortex pinning events.
In three cases a vortex pins to the bump apex, then works free
spontaneously after about 8 minutes and shifts to a site closer
to the bump edge. By contrast, the pins at both the top and
bottom edges of the bump never come free without deliberate
heating on our part to dislodge the vortex. Thus it appears that
for this geometry pinning to the bump apex is less stable than
pinning closer to the bump edge. This temporary pinning does
not occur in the computational work [7]. One possible reason
for the difference is the much lower dissipation in our actual
experiment. The computational vortices are far more able to
dispose of excess length through Kelvin oscillations and the
resulting energy loss; in our experiment, the oscillationsmay
continue at high amplitude and eventually dislodge the vortex.

As noted above, both the pin levels and the Kelvin wave pe-
riods for each level are highly reproducible, strongly suggest-
ing that vortices repeatedly pin at the same few spots. How-
ever, the initial approaches of the vortices are far from identi-
cal. Each trace begins with a few cycles of a slow oscillation,
with period about 10 minutes. This feature corresponds to
precession about the wire of the free vortex segment. Minima
and maxima in this precession indicate particular directions of
the free vortex within the cell. Since the heights of the minima
and maxima vary from one trace to another, the different vor-
tices must approach the bump along different trajectories but
still reach the same pin locations. This cannot occur purely
from microscopic roughness at the pin site; macroscopic en-
ergy considerations must play a role in guiding the vortex to
the site. Similarly, the three vortices that move from a pin
site at the bump apex to one at the bump edge trace out dif-
ferent paths. For example, as Figure2 shows, the number of
large-amplitude Kelvin wave periods before the vortex settles
is different for each trace.

One unusual energy consideration that could contribute to
the existence of multiple pin sites is the Gaussian curvature of
the surface [11, 12]. Regions of negative Gaussian curvature
are predicted to be more favorable for defects than regions of
positive curvature. The arguments rely on energetics of two-
dimensional systems, and a proposed test in superfluid helium
involves a thin layer of superfluid [11]. In a three-dimensional
system, surface energy terms are likely to be much smaller
than bulk terms, but they may still provide an incremental con-
tribution that leads to a metastable pin location.

A Gaussian curvature effect could explain the particularly
unexpected location of one of our pin sites. Since the vor-
tex must be perpendicular to the bump at its pin location, any
pin site other than the bump apex requires the vortex to curve.
For a stable pinned vortex, the velocity field produced by this
curvature exactly cancels the applied velocity field. Following
this logic, in our experiment we expect the stable pin site tolie
towards the bottom edge of the bump. Yet our measurements
repeatedly show a vortex pinning near thetop edge, where the
self-induced velocity near the bump augments the applied ve-
locity. A pinning force, perhaps deriving from the energetics

of Gaussian curvature, is needed to retain the vortex at this
spot.

Another result from Schwarz’s calculations is that if the
fluid velocity is low enough for a vortex to pin, then the vor-
tex will do so as long as it moves along a path that passes
within about one bump radius of the edge of the bump [7].
The distortion of the velocity field by the bump pulls the vor-
tex inward until it encounters the bump. By contrast, we find
that whether or not the vortex pins depends strongly on its ex-
act approach to the bump. The spikes in Figure2 in the two or
three precession cycles immediately before a vortex pins in-
dicate that the vortex is moving over the surface of the bump
but not pinning. If the end of the vortex traverses the bump,
then the length of the free vortex shrinks abruptly. The length
of circulation trapped on the wire increases sharply to com-
pensate, causing the spike in our data. As the level at which
the vortex encounters the bump approaches the bump center,
the spike magnitude increases. For certain approach paths the
vortex pins at the bump, although for others with essentially
the same applied velocity field the vortex does not pin. The
difference from the simulations may stem from our lower dis-
sipation or from our applied velocity field’s not being uniform.

A different geometry provides additional evidence that a
vortex can pin at the edge or apex of a bump. In this cell
the bump is attached not to the side wall but to one of the
endcaps, with the wire glued to the bump apex. Thus a vortex
that is trapped along the entire length of the wire terminates
at the apex. Alternatively, a vortex that leaves the wire shortly
before it reaches the bump and traverses the superfluid as a
free vortex can pin near the edge of the bump. We cannot
distinguish these two situations directly. In principle the beat
frequency is slightly smaller if the vortex does not cover the
entire wire. Unfortunately, for any reasonable configuration
the missing length would be quite small, and the frequency
difference would be unobservable. In part this is because the
measurement sensitivity is vastly reduced near the ends of the
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FIG. 3. Thermal cycling to depin a vortex from the wire; see text
for details. Right (red) axis is temperature; left (black) axis is the
frequency splitting of the lowest modes of the wire. The trace begins
with a single quantum of circulation surrounding the entirewire; co-
incidentally, the frequency splitting for this circulation happens to be
very close to 1 Hz.
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FIG. 4. Depin temperatures for eight cells. The shape of the cell’s
end cap (cone, flat, bump, or hemispherical indentation) is sketched
below the data points for that cell. All caps have cylindrical symme-
try. Each point corresponds to a single pinned vortex and indicates
the temperature reached when the vortex left the wire. For the vortex
shown in Figure 3, this temperature is 1.34 K, the maximum temper-
ature of the final heating cycle.

wire compared to the middle. The wire’s displacement during
vibration has nodes at the ends of the cell, so circulation near
the ends has little influence on the wire’s motion.

However, we do observe an indirect signature related to the
stability of pinned vortices. Figure3 illustrates how we test
stability. We provide thermal energy by raising the tempera-
ture of the cryostat. At the higher temperatures the damping
of the vibrating wire is too high to extract the circulation,so
after a few minutes we cool the cryostat and check whether

the circulation level has changed. If it has not, we heat again
to a slightly higher temperature, repeating until the vortex de-
pins. After the vortex dislodges, the ensuing precession signal
indicates that the vortex now lies along only part of the wire’s
length, with one end terminating on the cylindrical wall.

Figure4 shows the temperatures at which vortices depin for
several cells with different endcap configurations. Each point
represents a single pinned vortex, with the temperature de-
rived from a heating sequence such as that in Figure3. Many
of the cells show a large spread of depinning temperatures for
different vortices, possibly depending on details of the heating
cycles or on the interplay between the circulation and the end
of the wire. Nonetheless, some patterns emerge, such as the
high stability of vortices in the cell that ends with the hemi-
spherical indentation. Three of the eight cells have endcaps
with bumps. In those three, but not in any others, the depin
temperatures cluster into two groupsm which may correspond
to pinning at the bump apex and at the bump edge. A vortex
pinned at the bump edge is already close to the outer wall of
the cylinder, and we expect it to have a smaller energy barrier
to overcome in depinning compared to a vortex that follows
the entire wire. Hence the lower-temperature depins for each
bump could occur for vortices pinning near the bump edge,
while those at higher temperature signify vortices pinningat
the apex. We note that the thin cell with a bump has some
particularly low depin temperatures and also has the closest
approach of the bump edge to the outer wall of the cell.

Our measurements agree with the qualitative picture of vor-
tex pinning that arises from numerical simulations. However,
given the past successes of superfluid hydrodynamics cal-
culations, the discrepancies may indicate additional physics
not accounted for in the computations. We observe multiple
metastable pin sites on a single convex bump. In addition, vor-
tices passing near the bump do not spiral inward and pin. On
the contrary, even vortices that encounter the bump directly
sometimes pass over it without pinning. We are pursuing fur-
ther computational and experimental work to resolve these is-
sues.

We acknowledge funding from UC Davis.
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