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ABSTRACT OF THE THESIS 

 

Identifying Dominant Genetic Associations with Gene Expression in the Human 
Genomes 

 

by 

 

Jing Gu 

Master of Science in Chemistry 

University of California, San Diego, 2017 

Professor Wei Wang, Chair 

 

When mapping expression quantitative trait loci, a linear additive genetic model is 

mostly commonly used to investigate how genetic variants influence transcript levels. 

This model assumes that the phenotype of heterozygotes is halfway between that of the 

low-homozygous and high-homozygous genotypes and may miss non-additive 
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relationships, such as those caused by dominant alleles. Here we examine RNA-Seq data 

to identify dominant genetic associations with gene expression in the human genome. We 

applied a multiple linear regression model on genotypes and RNA-Seq data from 

Genotype-Tissue Expression project. With stringent permutations, we discovered that on 

average, 0.19% of all genes tested (including non-coding RNAs and pseudogenes) show 

evidence for dominant genetic associations across ten different tissues. Most dominant 

effect sizes are positive, implying that the phenotypes of heterozygotes tend to have 

similar gene expression levels to high-expression homozygotes. In 8 out of the 10 tissues 

we examined, we found that genes encoding major histocompatibility complex (MHC) 

proteins are enriched for dominant effects.  
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I. Introduction 
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A. SNPs and quantitative traits 

Despite of the diverse human traits, human genomes in average share 99.9% similarity. 

The variations in a single nucleotide of DNA sequences among individuals are called 

single nucleotide variants (SNVs), and common SNVs with a minor allele frequency of at 

least 1% are defined as single nucleotide polymorphisms (SNPs). While most SNPs do 

not affect human traits, a subset of SNPs, such as those located in regulatory regions, 

contribute to disease susceptibility (Emilsson et al. 2008; Nica et al. 2010).  

 Many human traits are complex and polygenic, which require large sample sizes 

to identify significant genetic associations. With the advent of array and sequencing 

technologies, the whole human genome can be sequenced in a much faster and economic 

way, which makes it possible to examine variants genome-wide to identify associations 

with traits of interest.  

Genome-wide association studies (GWAS) have successfully discovered common 

genetic variation that affects traits. However, the vast majority of GWAS hits are outside 

of genes and are in non-coding regions of the genome (Hindorff et al. 2009). It remains 

challenging to recognize the precise target genes regulated by the variants identified by 

GWAS and the tissues where regulations occur.  Gene expression quantitative trait loci 

give a way to link genetic variation to the genes the variants regulate and may help with 

interpretation of GWAS hits. 
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B.  Gene Expression Quantitative Trait Loci (eQTLs) 

 Gene expression can be treated as a quantitative trait, and it is therefore possible 

to identify SNPs that are associated with its gene expression levels. A SNP that is 

associated with the expression of a gene is known as a gene expression quantitative trait 

locus (eQTL). In the first eQTL study Brem et al. crossed two strains of yeast to 

characterize the SNPs that were linked to transcript levels quantified via microarray 

(Brem et al. 2002). To test if a locus is an eQTL, both the genotypes at the locus as well 

as the transcript levels for the gene of interest are required. When mapping eQTLs, the 

underlying assumption is that two alleles are expressed independently and their 

expression values are combined linearly to predict the expression values of the 

heterozygotes (Figure 1.1). 

 

Figure 1.1 An example of an eQTL with a linear additive association. Schematic 
representation of an additive association between the genotype of a SNP and gene 
expression levels.  
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A simple linear regression model can be applied to test for a linear association between 

genotype of SNPs and transcript abundance. A SNP is said to be associated with the 

expression of a gene when the genotype effect size in the linear model is significantly 

different from zero. Transcript levels for the gene of interest can be tested for association 

with SNPs that are local, distal, or across the chromosome.   
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C. Dominant genetic association 

A dominant association between genotypes and gene expression means that the 

gene expression levels of heterozygotes are significantly different from the mean 

expression value of reference and non-reference homozygotes (Figure 1.2).  

 
Figure 1.2 An example of eQTL with a dominant association. Schematic 
representation of gene expression levels against number of non-reference alleles. The 
black arrows indicate that in dominant associations heterozygous individuals have higher 
or lower expression than expected. 
 

As an example suppose allele A produces 5 transcripts and allele B produces 1 

transcript (Figure 1.3). When both alleles are independently expressed, the heterozygote 

genotype, AB, should generate 6 transcripts. However, under a dominant model, the 

expression of the heterozygote AB might be much higher (e.g. 10), which is close to 

individuals that are homozygous for high-expression alleles. One possible mechanism for 

this dominant effect is interallelic interaction, which causes the low-expression allele B to 

increase its expression of RNA transcripts. Lewis proposed this mechanism as 

“transvection” in 1954, when he observed intra-allelic complementation in Drosophila 
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melanogaster (Lewis 1954). A second possible mechanism could be that the high-

expression allele A upregulates itself to compensate for the low expression of allele B. 

There has been evidence showing that X-linked genes are upregulated in mammals, C. 

elegans and Drosophila, using both microarray and RNA-Seq data (Deng et al. 2011; 

Nguyen and Disteche 2006; Adler et al. 1997). 

 
Figure 1.3 A schematic representation for theoretical mechanisms to explain 
dominant effects. The red curves represent gene transcripts. Yellow arrows show the 
interaction that potentially causes dominant associations. Red arrows indicate the change 
in transcript abundance. 
  

Several studies have shown dominant patterns in transcript levels across multiple 

model organisms. As shown in Table 1.1, there are considerable differences in the 

percentages of genes that show dominant effects in different organisms. These 

differences may be biological, but could also potentially reflect different methodologies 

and definitions of dominance between stidues.  
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We hypothesize that there also exist dominant genetic associations with transcript 

abundance in the human genome. A previous study on human samples identified 208 

eQTLs (~1% of the genes tested) with dominant effects on gene expression levels, by 

quantifying whole blood gene expression using microarrays (Powell et al. 2013). 

Compared to microarrays, RNA-Seq is known to have a broader dynamic range and 

higher sensitivity and specificity to detect rare transcripts. Here we use RNA-Seq data to 

generate gene expression profiles and develop a statistical model to identify gene 

expression quantitative trait loci with dominant effects (dominant eQTLs) in the human 

genome. This may help us better understand how human genetic variantion influences the 

transcriptome.  

Table 1.1 A summary of studies that detect genes showing dominant effects across 
multiple organisms 

Paper Organisms 

Percentage of  

genes showing  

dominant effects 

Gibson et al. 2004 Drosophila melanogaster ~ 40% 

Vuylsteke et al. 2005 Arabidopsis thaliana 1% - 40% 

Cui et al. 2006 Mice <1% 

Stupar et al. 2007 Maize ~ 10% 

Powell et al. 2013 Human ~ 1% 
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II. Statistical model and computational approaches 
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A. Statistical Model 

We developed a multiple linear regression model to detect dominant associations 

between SNPs and gene expression levels. 

 

 

 

Here, GA stands for the number of non-reference alleles. For a bi-allelic SNP, GA = 0 if 

genotype is reference homozygous; GA = 1 if genotype is heterozygous; and GA = 2 if 

genotype is non-reference homozygous. To allow for dominant effects, we introduce an 

additional variable GD, where GD = 1 if genotype is heterozygous; and GD = 0 if the 

genotype is either reference or non-reference homozygous. “E” denotes the observed 

gene expression levels. Our model assumes that the noise across samples to is normally 

distributed. To apply our model, we first transformed the gene expression levels to be a 

standard normal distribution.  

Our alternative hypothesis is there is a dominant genetic association such that the 

effect size of GD (β2) is not equal to zero. On the other hand, the null hypothesis is that 

there is no evidence for a dominant association and β2 is not significantly different from 

zero. Under the null hypothesis, SNPs can have either no association (β1=0) or an 

additive association with gene expression levels (β1 ≠0). An ANOVA model can be used 

instead of a multiple linear regression to detect both additive and dominant effects of the 

genotype; however, the F-test used in the ANOVA model aims to test if at least one beta 

is significantly different from zero. This does not fulfill our objective, as we specifically 

(1) 
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wish to test whether there is evidence showing that β2 is not equal to zero. Alternatively, 

a t-test can be used to test the effect sizes of GA and GD separately.  

 

 
 

Figure 2.1 An illustration of eQTL analysis. An example of a cis-eQTL where SNPs in 
a 100 kb window from the start and end of a gene are tested for association with the 
gene’s expression levels. The red bar represents the top SNP with the strongest 
association. The boxplot shows the distribution of expression values separately for each 
genotype group (Figure adapted from Nica and Dermitzakis 2013). 
 

We chose a window size of 100kb to test if SNPs nearby genes have any 

dominant associations with gene expression levels (Figure 2.1). It has been shown that 

most eQTLs with strong additive associations are relatively close (<100kb) to the genes 

they are associated with (Yvert et al. 2003; Brem et al. 2002; Morley et al. 2004). To save 

computational time and avoid the complexity of distal interactions, we focused on SNPs 

that are nearby genes. Furthermore, we limited ourselves to common SNPs (≥5% minor 
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allele frequency) that are bi-allelic and located on the autosomal chromosomes. We did 

not use SNPs on the X or Y chromosomes because it can be difficult to interpret results 

from the sex chromosome due to the effects of imprinting and X inactivation.  
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B. Highly correlated SNPs cause hypothesis tests to be non-independent. 

For each gene, there could be hundreds to thousands of SNPs being tested for 

dominant associations. Without correction, the family-wise error rate would be much 

bigger than the preset significance threshold of 𝛼= 0.05. Our approach to control for the 

false positive rate (𝛼) is to calculate the false discovery rate (FDR) using the step-up 

method of Benjamini & Hochberg (1995). FDR is defined as the expected proportion of 

erroneous rejections among all the rejections (Benjamini, Y., and Hochberg, Y. 1995). 

The underlying assumption for this method is that tests are independent to each other, 

however, SNPs that are near to each other in the human genome have highly correlated 

genotypes due to linkage disequilibrium (International HapMap Consortium 2005). The 

non-independence of the SNPs means that correcting for false positive rates is very 

complicated. As an alternative approach, we decided to correct the false positive rate only 

for the top SNP with the lowest P-value (strongest association) for each gene. It is 

convenient to only have one SNP to work with per gene, even though a limitation is that 

we are assuming each gene has either 0 or 1 associations, when in fact some genes may 

have more than one association.  
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C. Permutation scheme for obtaining the empirical null distribution 

By definition, p-values of independent tests under the null should be uniformly 

distributed. However, the distribution of the lowest p-values chosen for each gene are 

skewed toward much smaller values even under the null. Therefore, obtaining the 

empirical null distribution for the lowest p-values after each permutation is required to 

adjust the observed lowest P-value for each gene. Typically, direct permutations are used 

to approximate the null distribution. With R permutations, an adjusted P-value cannot be 

smaller than 1/(R+1), which indicates a large number of permutations are necessary to 

achieve a low P-value. For instance, a million permutations are required to obtain a P-

value of around 10&'. Therefore, direct permutation scheme for genome-wide analysis is 

very computationally intensive to reach low P-values.  

We adopted a more efficient permutation scheme, which uses beta distribution to 

approximate the smallest P-values obtained through permutations (Ongen et al. 2016). It 

has been shown that order statistics of independent identically distributed random 

variables form a beta distribution (Jones et al. 2009). Based on the assumption that 

ranked kth P-values from each round of permutation are also beta distributed, Ongen 

found that the lowest P-values obtained from L tests form a beta distribution with shape 

parameters k and n:  

   U ~ Beta (k, n)     (2) 

Both shape parameters can be estimated by maximizing the log-likelihood given a null 

set of P-values ({p1, p2, p3, p4, ...pn}) obtained from permutations. Then an adjusted P-

value Pb can be computed as  

pb = P (U ≤ pn)      (3) 
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This approach is efficient because approximating the tail of null distribution 

instead of directly sampling from it requires far fewer permutations to achieve the desired 

P-value. Ongen et al. found that 500 permutations allowed them to obtain accurate p-

values by this method. Therefore, we applied their permutation scheme with 1000 

permutations to obtain P-values that are well-calibrated under the null hypothesis.  
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D. Speed up dominant eQTL analysis via matrix multiplication 

Even using the above scheme to reduce the number of required permutations, our analysis 

pipeline took around 6 days to run on a single GTEx tissue using a compute cluster (196 

cores). To examine multiple tissues, we need to improve the computation time required 

for genome-wide analysis. In particular, we performed multiple linear regression using 

the lm function from the R stats package and we wondered if it was possible to speed up 

this aspect of the pipeline. Matrix eQTL takes advantage of R’s implementation of large 

matrix operations to achieve faster speed (Shabalin 2012), and we adapted their approach 

to increase the speed of our calculations. Instead of performing multiple linear regression 

for each permuted phenotype and repeating 1000 times, we first generated a matrix of 

1000 permuted gene expression levels and then applied matrix multiplication between the 

gene expression matrix and the genotype matrix to obtain correlation coefficients. We 

first standardized the genotype and expression variables such that they have zero mean 

and unit sum of squares. Then the calculation of sample correlations can be simplified as 

the inner product between each permuted gene expression vector and genotype vector via  

 cor(e, g) = )(+&+)(-&-)
)(+	&+)/)(-	&-)/

 = 𝛴𝑒𝑔	 =	< 𝑒, 𝑔 >    (4) 

Therefore, one large matrix multiplication generates all of the gene-SNP correlations, 

which are further used to compute t-statistics (Figure 2.2). By adapting the matrix 

multiplication algorithms to our own model, we are able to shorten the step of linear 

regression from 6 days to less than 3 hours for the whole genome. The algorithm for the 

analysis of each gene is as follows: 



 

 

16 

(1) Permute the gene expression values 1000 times to obtain a gene expression matrix 

E 

(2) Center variables e, gA, gD by subtracting their means to remove the intercept β0 

(3) Orthogonalize gD with respect to gA to remove the effect of gD that can be 

explained by gA  

     

(4) Standardize e, gA, 𝑔7   

(5) Compute test statistics r1
2, r2

2, R2 = r1
2 + r2

2 = <gA, e>2 + <𝑔7, e>2 

(6) Calculate the T-statistic T1 = 89 :&;&9
9&</

 for testing β1 and T2 = 8= :&;&9
9&</

for testing 

β2, where k = 2 for the number of variables tested (gA, 𝑔7). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(5) 
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Figure 2.2 The workflow of using matrix multiplication and beta approximation as 
permutation scheme to speed up the running time. Figure adapted from Shabalin et al. 
2012. 
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III. Application to the GTEx data set 
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A. The GTEx data set 

The Genotype Tissue Expression dataset (version: v6.p1.c1) was downloaded 

from dbGAP. Our analysis was focused on 10 tissue types: adipose (subcutaneous), tibial 

artery, lung, muscle (skeletal), tibial nerve, skin (sun exposed), thyroid, esophagus 

(mucosa), cells transformed fibroblasts, and whole blood. The sample size for each of 

these tissues is at least 280, which maximizes our statistical power to detect dominant 

associations. The GTEx Consortium genotyped all samples using their blood-derived 

DNA and performed 76-base pair paired-end mRNA sequencing on RNA extracted from 

each tissue (GTEx Consortium. 2015). GTEx performed data preprocessing involving 

RNA-seq alignment and genotyping, which is described in the supplementary materials 

of their paper (GTEx Consortium. 2015).   

B. Dominant eQTL Analysis  

The gene expression levels quantified using RNA-seq were first normalized into 

reads per kilobase of transcript per million mapped reads (RPKM) and the minimum 

threshold was set to be RPKM > 0.1 in at least 10 individuals. For each gene, the gene 

expression levels were inverse quantile normalized to a standard normal distribution 

across samples. Common SNPs were extracted by filtering out SNPs with minor allele 

frequency less than 5%. The principal components (PCs) of the genotype matrix were 

computed to account for differences in genetic ancestry among GTEx samples. The top 3 

genotype PCs, five observed covariates (gender, age, race, ethnicity and BMI), and 

hidden covariates (such as those caused by batch effects) inferred via Probabilistic 
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Estimation of Expression Residuals (PEER) (Stegle et al. 2012) were regressed out to 

generate a residual expression matrix. 

C. Results 

 We applied multiple linear regression between genotypes of common SNPs that 

are +/- 100 kb away from genes and their corresponding gene expression levels. Figure 

3.1A shows a quantile-quantile (Q-Q) plot of the observed p-values against the p-values 

expected under the null hypothesis for all ten tissues. By comparing the Q-Q plots of β1 

and β2’s p-values, we found that the β1’s p-values deviate from the null expectation much 

earlier than the β2’s p-values (Figure 3.1A). This agrees with previous findings that a 

large fraction of SNPs have an additive association with the expression level of a nearby 

gene (Yvert et al. 2003; Brem et al. 2002; Morley et al. 2004). However, there are also a 

substantial fraction of SNPs that show evidence for dominant effects on gene expression. 

Interestingly, whole blood has more SNPs with dominant associations than all the other 

tissues, with 156 SNP-gene pairs with non-zero effect sizes for β2 under FDR = 5%.  

The standardization step for both genotype and expression variables transforms 

the effect size into a correlation coefficient between expression and genotype values, 

which therefore ranges from -1 to 1. The effect sizes of additive eQTLs form a more 

symmetrical distribution than those of dominant eQTLs (Figure 3.1B). The effect sizes of 

dominant eQTLs (β2) are skewed to the positive side, which indicates an unbalanced 

direction for dominant effects. This implies that the gene expression levels of most 

heterozygotes that exhibit dominance tend to be closer to those of the homozygotes with 

high-expression alleles than the low-expression alleles. The overall effect size of additive 

eQTLs is larger than that of dominant eQTLs.  
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Figure 3.1 Quantile-quantile plots for P-values and distribution of effect sizes for 
both additive and dominant variables. (A) The observed p-values from testing whether 
the effect sizes of additive (β1) and dominant (β2) variables are significantly different 
from 0 are plotted against expected p-values under the null hypothesis, which are 
uniformly distributed between 0 and 1. The red line is the null expectation. (B) 
Histograms of effect sizes for β1 and β2. The distribution of β1 is more symmetric.   
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Table 3.1 provides a summary of results from 10 tissues. Whole blood has a much 

higher percentage of genes that show dominant effects, which could potentially be 

explained by the large sample size of this tissue (n = 381) and the fact that the statistical 

power of our method is affected by sample size. However, the muscle tissue has a similar 

sample size (n= 395) but has far fewer dominant eQTLs. Surprisingly, muscle and whole 

blood tissues have the highest percentage of genes with dominant effects but do not have 

a higher proportion of genes with pure additive effects (18.2% and 18.3% respectively, 

compared to the average proportion of 20.4%).  

Table 3.1 Number of genes that show dominant effects or pure additive effects as 
well as sample sizes for each tissue 

 
* The genes tested for genetic associations include non-coding RNAs and pseudogenes.  

 

 

 

* 
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For purely additive eQTLs with no evidence for a significant dominant effect, 

there is a clear linear association between SNP genotypes and normalized gene 

expression values (Figure 3.2A) and the median of expression values for heterozygotes is 

halfway in between those of homozygotes. When there are additional dominant effects, 

depending on the direction of the effect, the median of heterozygotes’ expression values 

is either higher or lower than expected under the linear model (Figure 3.2 B, C). 

The additive model typically used in mapping eQTLs may fail to identify some 

genetic associations with gene expression. When the effect size (β1) for the additive 

variable GA is zero, some of the eQTLs that we identify still show significant effect sizes 

(β2) for the dominant variable GD (Figure 3.2 D, E). When we examined some of these 

eQTLs, we found that the median expression value of heterozygotes was the highest or 

lowest of the three genotype classes, and we categorized them as over-dominant or under-

dominant eQTLs.  
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Figure 3.2 Boxplots of log2 of gene expression values in RPKM against genotype 
groups. Individuals were divided into three genotype groups based on the genotype of 
the SNP with the strongest association with the expression level of the gene. The 
genotype to the left is from reference homozygotes, while the genotype to the right is 
from non-reference homozygotes. Based on the way how the types of dominant 
associations were defined, each example was labeled with their own dominant type 
shown in blue.  
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To further examine the types of dominant associations that we observe, we 

grouped dominant eQTLs into three categories—standard dominant, over-dominant and 

under-dominant—based on the following procedure:  

1) Compute the median gene expression values for all the three genotype groups;  

2) Choose the homozygous genotype group that has a median expression value 

that is closest to that of the heterozygous group; 

3) Apply a two-sided t-test to test whether the homozygous group and the 

heterozygous group have significantly different mean expression values. 

When the mean expression values between the tested two groups are significantly 

different, there are three possible classifications for the eQTL depending on the median 

expression value of heterozygotes. If the heterozygous group has the highest median 

expression among the three genotype groups, the eQTL is over-dominant; if the 

heterozygous group has the lowest expression, the eQTL is under-dominant; otherwise, it 

is classified as a standard dominant eQTL. When there is no evidence that the two tested 

groups have different mean expression values, we again classify the eQTL as standard 

dominant. 

 The majority of the dominant eQTLs identified across the 10 tissues, show a 

standard dominant effect on gene expression (Figure 3.3). Dominant eQTLs with over-

dominant or under-dominant effects are fairly rare, and are not well-explained by the 

theoretical mechanisms proposed in Figure 1.3.  The under- and over- dominant eQTLs 

therefore require further investigation.  
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Figure 3.3 Distribution of dominant types across multiple tissues.  
 
 The positions of dominant eQTLs relative to the transcription start site (TSS) of 

the genes they are associated with may give us some insight into how they function. As 

expected, additive eQTLs with no dominant effects are centered around the TSS (Figure 

3.4A), which is consistent with previous findings that eQTLs are enriched in close 

proximity to the genes they are associated with (Battle et al. 2014; Veyrieras et al. 2008). 

A similar trend was observed for dominant eQTLs, which are located close to the gene 

TSSs (Figure 3.4B). It would be interesting to further compare the positions of the eQTL 

SNPs with the positions of SNPs with similar characteristics that have no association 

with gene expression levels.  
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Figure 3.4 Positions of purely additive eQTLs and dominant eQTLs from their 
corresponding genes’ transcription start sites. (A) eQTLs that show purely additive 
effects, were divided into two groups based on the sign of the additive effect size (β1), 
turqoise for +β1 and red for −β1. (B) The same color scheme was used for the dominant 
effect size (β2). 
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As our method has enabled us to identify a substantial fraction of genes that show 

dominant effects in different tissues, we would like to know how many of these genes 

have dominant associations in multiple tissues. The majority of genes with dominant 

effects only occur in one of the tissues, which is probably due to incomplete statistical 

power and the limited amount of tissues that have relatively large sample sizes (Figure 

3.5A). Among the 13 genes that occur in at least 7 tissues, 4 of them are pseudogenes and 

5 are HLA genes. (Figure 3.5B). In total, 20.7% of the genes that show dominant effects 

across tissues are pseudogenes, which is significantly higher than the proportion in genes 

that show additive effects (12.1%;  P = 8.1´10-15 by Fisher’s exact test).    
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Figure 3.5 Number of genes showing dominant effects across tissues. (A) The number 
of tissues where the same gene is found to have dominant association with gene 
expression levels. (B) The identities of genes that occur in at least 7 tissues.  

A 
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To understand the function of dominant eQTLs on gene regulation, we looked 

into the average expression values across individuals. Interestingly, genes that show 

dominant effects have lower average gene expression levels compared to those that only 

show additive effects. This observation was consistent across all the tissues tested.  

 

 
Figure 3.6 Comparison of average gene expression levels between eQTLs that only 
show additive effects and dominant eQTLs across tissues. The box-plot shows log10 
of mean gene expression values across individuals.  
 

We further grouped genes into gene ontology (GO) categories and tested for an 

enrichment of genes associated with dominant eQTLs using Fisher’s exact test 

(Ashburner et al. 2000). Using this method, we found that 8 out of 10 tissues have 

dominant genes significantly enriched in the major histocompatibility complex (MHC). 

For instance, genes with dominant effects in the whole blood tissue are significantly 
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enriched for genes from the MHC GO category (p=5.5´10-9; FDR=2´10-5. After 

removing genes in the MHC GO category, none of the other GO categories in biological 

process, cellular component, or molecular function are significant at the FDR=0.05 level.   
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IV. Discussion 
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We examined common SNPs that were +/- 100kb away from genes on autosomal 

chromosomes and applied a multiple linear regression model to detect dominant genetic 

associations with gene expression levels. We corrected for the SNP with the lowest P-

value for each gene using a beta approximation permutation scheme, which requires 

fewer permutations to achieve desired p-values (Figure 2.2). To further speed up our 

pipeline, we performed large matrix operations instead of repeatedly calling the lm 

function in the R stats package. With these optimizations, we were able to run our 

method on large samples with a much higher efficiency. By applying a multiple linear 

regression model, we found that 0.19% of all the genes tested (including long non-coding 

RNAs and pseudogenes) show dominant genetic associations in ten human tissues.  The 

effect sizes of dominant variables (β2) are on average smaller than those of additive 

variables (β1) and are highly skewed to positive numbers (Figure 3.1). This implies that, 

for most dominant eQTLs, the expression levels of heterozygotes are closer to that of the 

high-expression homozygous genotype than expected. In other words, in most dominant 

associations, the expression levels of heterozygotes were upregulated. The majority of 

dominant eQTLs are classified as standard dominant for each tissue, rather than over-

dominant or under-dominant. Few of the genes that are associated with dominant eQTLs 

in one tissue are associated with dominant eQTLs in other tissues (Figure 3.5). This may 

reflect our incomplete power to detect dominant eQTLs or indicate that many dominant 

eQTLs are tissue-specific. Dominant eQTLs are located in close proximity to the genes 

they are associated with. Finally, genes with dominant eQTLs tend to have lower mean 

expression values, and this observation is consistent across tissues (Figure 3.6). It is 
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unclear to us why genes with lower mean expression values are more prone to have 

dominant effects but it is possible that genetic variants exert dominant effects to 

compensate for the low expression of genes.   

Gene ontology (GO) analysis enabled us to find that 8 out of 10 tissues have 

dominant genes enriched in the major histocompatibility complex (MHC). The variants 

nearby MHC genes are highly polymorphic, which may give rise to mapping bias toward 

reference alleles. Potentially this bias could distort linear relationship between genotypes 

and expression values, however it is not clear if mapping bias would result in false 

dominant associations and dominant associations have previously been observed in the 

MHC region. Specifically, Lenz et al. discovered that genetic variants in the MHC region 

have a dominant association with the risk of autoimmune diseases such as rheumatoid 

arthritis and celiac disease (Lenz et al. 2015). While this raises the intriguing possibility 

of a link between dominant gene expression within the MHC region and autoimmune 

disease risk, further study is required to rule out the possibility of mapping artifacts 

within this highly polymorphic region.  

In the future, allele-specific expression analysis can be performed to see if reads 

overlapping heterozygous sites come equally from both alleles or are biased to one allele. 

This approach can help us better understand the mechanism of dominant associations 

(Figure 1.3) and can reveal whether dominant eQTLs act in cis or trans to regulate gene 

expression. It would also be interesting to see if dominant eQTLs are enriched with other 

functional and genomic annotations such as enhancers and transcription factor binding 

sites. Due to our limited statistical power to detect dominant associations, a larger dataset 
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with more tissues may help to discover more genes with dominant genetic associations.  
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