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Loss of epigenetic suppression of retrotransposons
with oncogenic potential in aging mammary luminal
epithelial cells

Parijat Senapati,1,6 Masaru Miyano,2 Rosalyn W. Sayaman,2,3 Mudaser Basam,1,2

Amy Leung,1 Mark A. LaBarge,2,4,5 and Dustin E. Schones1,4
1Department of Diabetes Complications and Metabolism, 2Department of Population Sciences, Beckman Research Institute, City of
Hope, Duarte, California 91010, USA; 3Department of Laboratory Medicine, Helen Diller Family Comprehensive Cancer Center,
University of California, San Francisco, San Francisco, California 94143-0981, USA; 4Irell & Manella Graduate School of Biological
Sciences, City of Hope, Duarte, California 91010, USA; 5Center for Cancer Biomarker Research, University of Bergen,
5021 Bergen, Norway

A primary function of DNAmethylation in mammalian genomes is to repress transposable elements (TEs). The widespread

methylation loss that is commonly observed in cancer cells results in the loss of epigenetic repression of TEs. The aging pro-

cess is similarly characterized by changes to the methylome. However, the impact of these epigenomic alterations on TE

silencing and the functional consequences of this have remained unclear. To assess the epigenetic regulation of TEs in aging,

we profiled DNA methylation in human mammary luminal epithelial cells (LEps)—a key cell lineage implicated in age-re-

lated breast cancers—from younger and older women. We report here that several TE subfamilies function as regulatory

elements in normal LEps, and a subset of these display consistent methylation changes with age. Methylation changes at

these TEs occurred at lineage-specific transcription factor binding sites, consistent with loss of lineage specificity.

Whereas TEs mainly showed methylation loss, CpG islands (CGIs) that are targets of the Polycomb repressive complex 2

(PRC2) show a gain of methylation in aging cells. Many TEs with methylation loss in aging LEps have evidence of regulatory

activity in breast cancer samples. We furthermore show that methylation changes at TEs impact the regulation of genes as-

sociated with luminal breast cancers. These results indicate that aging leads to DNAmethylation changes at TEs that under-

mine the maintenance of lineage specificity, potentially increasing susceptibility to breast cancer.

[Supplemental material is available for this article.]

Aging leads to a progressive decline in tissue and organ function
and is associated with many diseases, including cancer. At the ge-
nomic level, alterations to the epigenome contribute to the devel-
opment of age-associated diseases (López-Otín et al. 2013; Booth
and Brunet 2016). DNA methylation is a relatively stable compo-
nent of the epigenome that is established in early development
and maintained through successive cycles of cell division to pre-
serve cell identity (Bird 2002). DNAmethylation patterns, howev-
er, are known to change with age (Maegawa et al. 2010; Rakyan
et al. 2010; Heyn et al. 2012; Horvath 2013). DNAmethylation lev-
els of specific CpG sites showa significant correlationwith chrono-
logical age; this “epigenetic clock” can predict the biological age of
diverse human tissues (Horvath 2013). It remains unclear, howev-
er, how these changes contribute to increased disease risk.
Moreover, pan-tissue clocks do not capture tissue-specific drivers
of aging, which are essential to understand disease risk (Bell et al.
2019).

Age is the most significant risk factor for breast cancer, as
>75% of breast cancers are diagnosed in women over the age of
50 (Jemal et al. 2007). This is especially true for luminal subtypes

of breast cancer, which account for ∼80% of all age-related breast
cancers (Jenkins et al. 2014). The mammary epithelium is com-
posed of two principal lineages, myoepithelial cells (MEps) and lu-
minal epithelial cells (LEps), with the latter being the chief suspect
cell of origin for luminal breast cancers (Prat and Perou 2009; Fu
et al. 2020). Aging in breast tissue accompanies significant physio-
logical changes that lead to changes inmolecular properties as well
as the proportions of cell types (Benz 2008; Garbe et al. 2012;
Pelissier et al. 2014;Miyano et al. 2017). Humanmammary epithe-
lial cells (HMECs) from older postmenopausal women, when
transformed in vitro, show gene expression patterns characteristic
of luminal breast cancer subtypes (Lee et al. 2015). In contrast,
transformed HMECs from younger premenopausal women show
more properties of basal breast cancers (Lee et al. 2015). Age-de-
pendent changes in abundance and phenotype occur in LEps,
which lose lineage specificity by gaining expression of characteris-
tic MEp genes (Garbe et al. 2012; Pelissier Vatter et al. 2018;
Sayaman et al. 2021) and signaling molecules consistent with
those of immortalized LEps (Pelissier Vatter et al. 2018), suggesting
that age-associated epigenetic changes in LEps are directly related
to elevated cancer risk.

Although numerous studies have characterized the DNA
methylomes of individual epithelial cell populations in human
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and mouse breast tissue (Bloushtain-Qimron et al. 2008; Dos
Santos et al. 2015), there are notmany studies that have interrogat-
ed the effect of age on DNAmethylation profiles of mammary ep-
ithelial cell types. Earlier examinations of DNA methylation
changes with age in breast tissue (Hofstatter et al. 2018; Castle
et al. 2020) either were performed in bulk mammary tissue with
heterogeneous cell populations or interrogated only a subset of
CpGs in the genome (Johnson et al. 2017; Song et al. 2017). A com-
plete understanding of age-associated alterations to DNA methyl-
ation in human mammary LEps and of how this relates to age-
related breast cancer has been lacking.

One of the major functions of DNAmethylation in mamma-
lian genomes is to suppress transposable elements (TEs). The
repetitive content of human genomes, mainly consisting of retro-
transposons such as SINEs, LINEs, and ERVs, accounts for approx-
imately half the genome (Cordaux and Batzer 2009). Although
most of these retrotransposons have lost their ability to propagate,
they still carry latent regulatory potential and can serve as regulato-
ry elements binding transcription factors (Sundaram et al. 2014).
The global loss of DNA methylation observed in cancer cells has
been shown to result in the loss of epigenetic repression of TEs in
many cancer types (Burns 2017; Ishak and Carvalho 2020) and
can drive the expression of oncogenes (Jang et al. 2019).

In aging, a genome-wide loss of methylation with age has
been observed in human CD4+ T cells and skin keratinocytes
(Heyn et al. 2012; Vandiver et al. 2015; Jenkinson et al. 2017).
Several early studies analyzing the methylation of repetitive ele-
ments in bulk suggested a decline in methylation of Alu and
HERV-K elements with age in human blood cells (Bollati et al.
2009; Jintaridth and Mutirangura 2010). Increased expression of
retrotransposons and active retrotransposition has furthermore
been reported in aging mouse tissues (De Cecco et al. 2013;
Benayoun et al. 2019). Outside of these early studies, a thorough
examination of epigenetic changes at TEs in aging has not been
previously performed. Given that TEs contain latent regulatory po-
tential, loss of epigenetic repression with age has the potential to
lead to altered gene regulation and potentially impact disease
risk. We describe here our investigation into the impact of aging
on the epigenetic repression of TEs in normal mammary LEps,
the primary suspected cell of origin for luminal breast cancers.

Results

Evolutionarily recent LTR elements function as regulatory

elements in mammary LEps

Weperformedwhole-genome bisulfite sequencing (WGBS-seq) on
human mammary LEps from younger (<30 yr or premenopausal)
and older (>55 yr or postmenopausal) women (Supplemental Fig.
S1A; Supplemental Table S1). These age groups were chosen to rep-
resent samples from women who were clearly premenopausal or
postmenopausal to avoid confounding issues of peri-menopause.
We previously showed that LEps from these primary cultures
maintain gene/protein expression and DNA methylation profiles
that mirror those in vivo (Miyano et al. 2017; Pelissier Vatter
et al. 2018; Sayaman et al. 2021). Moreover, these are nonsenes-
cent cells and can therefore be used to interrogate age-dependent
changes in the breast tissue that are distinct from those arising
from cellular senescence.

WGBS libraries were sequenced to ∼30× genome coverage,
generating approximately 1 billion 150-bp paired-end reads (∼86
Gb uniquely mapped sequence per sample) (Supplemental Table

S2) to obtain a representation of ∼95% of individual CpG sites in
our samples (see Methods; Supplemental Tables S2, S3). We com-
pared our DNA methylation profiles with previously published
WGBS studies on distinct HMEC types from reduction mammo-
plasty (RM) tissue of a young (19-yr-old) donor (Pellacani et al.
2016). The cultured LEps resemble the ER-negative (ER−) LEp pop-
ulation (Supplemental Fig. S1B). Moreover, young and old
LEps clustered separately, indicating differences in methylomes
(Supplemental Fig. S1B) that were not apparent when considering
totalmethylation levels (Supplemental Fig. S1C,D).Wedid not ob-
serve any changes in the global methylation levels across the ge-
nome with age, as has been reported in other cell types
(Supplemental Fig. S1C,D; Cole et al. 2017).

We first focused our analysis on the methylation levels of TEs
in young LEps by examining the average methylation of each TE
subfamily. Because evolutionarily recent TEs (inserted <100 mil-
lion yr ago) (Burns and Boeke 2012) are more likely to be silenced
by DNA methylation (Edwards et al. 2017; Greenberg and
Bourc’his 2019), we plotted average DNA methylation with the
evolutionary age of each subfamily (Supplemental Fig. S1E) in
young LEps alone. As expected, most TE subfamilies showed aver-
agemethylation of >70% in young LEps regardless of evolutionary
age, similar to the global methylation levels of the LEp genome
(Supplemental Fig. S1E, S1C). TEs that have been recently active,
such as AluYa5, AluYb8, and AluYb9 elements, showed the highest
average methylation. Many evolutionarily older LINE and ERV
subfamilies (>100 million yr) had lower overall methylation
(<70%), consistent with the loss of CpG density over evolutionary
time (Supplemental Fig. S1E,F; Gonzalgo and Jones 1997). Given
the regulatory potential of TEs, the observation that LTRs of some
evolutionarily recentERVsubfamilieshad lowaveragemethylation
(<70%) (Supplemental Fig. S1E) suggested that these LTRs could be
functioning as regulatory elements in luminal cells.

To assess the potential for TEs to function as regulatory ele-
ments in LEp genomes, we identified overrepresented TE subfam-
ilies among ATAC-seq peaks in young LEps. We overlapped ATAC-
seq peaks with the RepeatMasker annotation (Smit et al. 2023) and
compared the overlap frequency at each TE subfamily with ran-
dom control regions (seeMethods).We foundmany ERV/LTR sub-
families to be enriched at sites of open chromatin, consistent with
these elements being bound by transcription factors and function-
ing as regulatory elements (Fig. 1A; Supplemental Table S4;
Tsompana and Buck 2014).Many of these are LTR elements of evo-
lutionarily recent ERVs, including MER11D (28.46% overlap with
ATAC-seq peaks), LTR13 (45.28%), and LTR10C (24.08%) (Fig. 1A;
Supplemental Table S4). We further confirmed that individual el-
ements from these subfamilies were hypomethylated (<30%meth-
ylation) (Fig. 1B) and had enrichment of ATAC-seq signal (Fig. 1C;
Supplemental Fig. S1G). Within each subfamily, hypomethylated
LTRs (<30% methylation) consisted of unmethylated CpGs span-
ning the entire LTR (Supplemental Fig. S1H, unmethylated pan-
els), whereas the partially methylated LTRs (30%>methylation>
70%) overlapping ATAC-seq peaks had only a subset of CpGs in
the LTR unmethylated (Supplemental Fig. S1H, partiallymethylat-
ed panels). Moreover, subfamilies LTR13 and LTR10F had relative-
ly fewer fully unmethylated copies compared with MER11D
(Supplemental Fig. S1H, cf. ii, iv [unmethylated panels] and i
[unmethylated panel]). For each subfamily, specifically the hypo-
methylated LTRs had open chromatin signals (Supplemental Fig.
S1G, i–iv [unmethylated panels]). For example, a completely
unmethylated MER11D element near the SERHL gene locus har-
bors an open chromatin peak distinct from the SERHL TSS peak
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in young as well as old LEps (Fig. 1D). The low methylation levels
of these elements combined with presence of an open chromatin
site is consistent with them functioning as potential regulatory el-
ements.We then asked if these hypomethylated LTRs have specific
TF binding sites (see Methods). Binding sites for SOX4 and ELF5,
two ER− luminal lineage-specific TFs (Sayaman et al. 2021) were
enriched among the hypomethylated LTRs (Fig. 1E,F). Binding
sites for other luminal expressed TFs, such as NFIA and EGR1,
were also detected among LTR18A-C and MER11D. GATA3 sites
were most enriched among MER11D elements in addition to
STAT5B and SOX4 (Fig. 1E,F). Taken together, these results suggest

that specific subfamilies of evolutionarily recent LTRs have the po-
tential to function as regulatory elements in normal (noncancer)
LEps.

Age-dependent methylation changes occur at TE subfamilies that

contain lineage-specific transcription factor binding sites

Having established the methylation status of TEs in young LEps,
we next assessed how TE methylation changes with age. We first
identified differentially methylated regions (DMRs) by compar-
ing the methylomes of old versus young LEps (see Methods;

A

D E

F

B C

Figure 1. Evolutionarily recent LTR elements have signatures of regulatory elements inmammary luminal epithelial cells (LEps). (A) Top 20 TE subfamilies
(mostly LTRs) enriched in open chromatin peaks in young LEps. Evolutionary age is indicated for each subfamily. The size of the dot indicates the number of
elements overlapping ATAC-seq peaks, and the color indicates log2 enrichment (observed/expected). (B) Boxplot of DNAmethylation levels for each copy
of the 10 most evolutionarily recent LTR subfamilies that were enriched among open chromatin regions. (C) ATAC-seq profile across all elements of
MER11D, LTR13, LTR10C, and LTR10F subfamilies in young LEps. (D) Genome Browser tracks show a representative example of a hypomethylated
(<30%methylation)MER11D element in LEps. The bottom panel shows smoothed line plots ofmethylation levels at the same element highlighted in green.
(E) Transcription factor binding motifs enriched among hypomethylated (<30% methylation) LTR sequences of evolutionarily recent subfamilies. The P-
values for enrichment over scrambled sequences are listed. (F) Bar plots show the percentage of hypomethylated TE sequences (<30% methylation) that
contain indicated TF binding motifs.
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Supplemental Fig. S2A,B; Supplemental Table S5). We over-
lapped DMRs with ATAC-seq peaks and found that DMRs with
methylation loss showed an overall gain in chromatin accessi-
bility in old LEps. Conversely, DMRs with methylation gain
showed decreased chromatin accessibility (Supplemental Fig.
S2C).

We next examined the presence of specific TE subfamilies at
DMRs.AlthoughmanyTEs in the genomeoverlappedDMRs, those
of the ERV class were particularly enriched over background (Fig.
2A,B). At DMRs with age-dependent methylation loss, HERVH,
MER52A, MER52D, and LTR2752 elements were overrepresented
(Fig. 2A; Supplemental Table S6A). LTR2752 elements are

A

E F

B C

D

Figure 2. Age-dependentmethylation changes occur at TE subfamilies that contain lineage-specific transcription factor binding sites. (A,B) TE subfamilies
enriched at DMRs with methylation loss (A) and methylation gain (B). The size of the dot represents the number of elements with methylation loss or gain.
All TEs with more than 10 copies overlapping DMRs are shown for completeness. (C) Transcription factor binding motifs enriched in HERVH-int, MER52A,
and MER52D elements with methylation loss. The P-values for enrichment over scrambled sequences are shown. (D) Percentage of elements containing
indicated transcription factor motifs across TEs with methylation loss. (E) ATAC-seq profile at TEADmotifs within HERVH-int elements showingmethylation
loss with age. (F) Genome Browser tracks show a representative example of a HERVH-int element losing methylation in old samples. The bottom tracks are
from ATAC-seq data showing a gain of accessibility at the DMR. The bottom panel shows kernel-smoothed line plots of the highlighted region.
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annotated as MER52A elements in Repbase (Bao et al. 2015) so we
did not include themas a separate group for further analysis. DMRs
withmethylationgainwere enriched forLTR10C,HERVE, LTR16C,
andMER11D elements (Fig. 2B; Supplemental Table S6B).We next
examined TF bindingmotifs enriched in these elements and found
that among TEs that lose methylation, HERVH-int elements
showed enrichment for TEAD4 and TEAD1 binding sites (Fig. 2C,
D), and MER52A and MER52D elements were enriched with
EGR1 binding sites (Fig. 2C,D). The location of the DMR within
HERVH-int elements was also consistent with the presence of a
TEADbinding site (Supplemental Fig. S3B). Similarly,DMRswithin
MER52A and MER52D elements were located around EGR1 bind-
ing sites (Supplemental Fig. S3C,D). Enrichment of TEAD (family)
and EGR1 binding sites is known to occur at active regulatory ele-
ments in basal cells/MEps (Pellacani et al. 2016). DMRswithmeth-
ylation loss at non-TE regions also showed enrichment of TEAD
and EGR1 binding sites (Supplemental Fig. S3A; Supplemental
Table S7A). These results indicate that methylation changes at
TEs may impact gene regulatory networks. Given that open chro-
matin at transcription factor binding sites can be used to infer TF
binding (Tsompana and Buck 2014), we next assessed the ATAC-
seq signal at these binding sites.We found increased ATAC-seq sig-
nal in old LEps at TEAD binding sites within HERVH-int elements
(Fig. 2E,F). These data are in line with previous studies suggesting
that aging LEps acquire a basal-like gene expression signature
(Pelissier Vatter et al. 2018; Sayaman et al. 2021) and that LEps spe-
cifically dysregulate YAP, a transcriptional coactivator that binds
DNA through TEADs (Garbe et al. 2012; Pelissier et al. 2014).

Among TEs that gain methylation, LTR10C elements showed
enrichmentofNF-Y (NFYA andNFYC), SMAD3, and SOX4binding
sites (Supplemental Fig. S3E). HERVE elements were enriched for
YY1, TFAP2C, and SMAD3, whereas MER11D showed enrichment
of SOX4 and SMAD3 binding sites (Supplemental Fig. S3E). SOX4
and GATA3 are luminal lineage-specific TFs (Asselin-Labat et al.
2007; Sayaman et al. 2021), and their binding sites are enriched
within active regulatory elements in the luminal lineage (Pellacani
et al. 2016). As shown above, LTR10C andMER11D elements have
low methylation levels and signatures of regulatory function in
young LEps (Fig. 1; Supplemental Table S4). Moreover, SOX4 ex-
pression decreases with age in LEps (Sayaman et al. 2021), suggest-
ing that loss of TF binding at these luminal lineage-specific sites
leads to epigenetic suppressionbyDNAmethylation. Furthermore,
we observed additional lineage-specific TF binding sites to be en-
riched at other TE subfamilies, such asMIRb and L2(a-c), that over-
lap DMRs (Supplemental Fig. S3G). Specifically, binding sites of
ELF5, a luminal lineage-specific TF, are abundant among MIRb,
MIR, and L2(a-c) elements (Supplemental Fig. S3G), as well as
non-TE DMRs that gain methylation with age (Supplemental Fig.
S3F; Supplemental Table S7B). Altogether, these results suggest
that consistent methylation changes at TEs reflect changes in line-
age-specific regulation in LEps with age.

Stochastic methylation loss at TEs and methylation gain

at CpG islands with age

Aging is associated with increased cell-to-cell variation in gene ex-
pression (Martinez-Jimenez et al. 2017) and DNA methylation
(Hernando-Herraez et al. 2019). Increased cell-to-cell variation in
DNA methylation can lead to changes in methylation patterns
that may not be detected as significant methylation changes in
populations of cells (Jenkinson et al. 2018). Because we used a
FACS-enriched LEp population, we quantified this cell-to-cell var-

iation in methylation patterns using methylation entropy, a
measure of methylation discordance between adjacent CpGs
(Jenkinson et al. 2018). We calculated the methylation entropy
levels for 150-bp windows across the genome in young and old
LEps to examine whether there was increased methylation hetero-
geneity in old LEps. Methylation entropy increases either when
unmethylated regions have a stochastic gain in methylation or
when methylated regions undergo stochastic loss of methylation
(Fig. 3A,B). Considering both these scenarios, we observed an over-
all increase inmethylation entropy in old LEps (Supplemental Fig.
S4A). We identified regions with greater methylation entropy in
older individuals and found a net decrease in methylation levels
from young to old LEps at these regions (Supplemental Fig. S4A–
C), consistent with the fact thatmost of the genome is methylated
in normal cells, with the exception of CpG islands (CGIs) (Edwards
et al. 2017). Of these, regions that are unmethylated in young LEps
and display increased methylation entropy withmethylation gain
in aging LEps were mainly at CGIs (69.2%; 1017 of 1469) (Fig. 3C;
Supplemental Fig. S4D). Conversely, regions that are methylated
in young LEps and display increased entropy with methylation
loss were found primarily at TEs (70.3%, 76,575 of 108,877; com-
pared with random regions [simulated 1000×] 57.03%, 62,094.7 of
108,877) (Fig. 3D; Supplemental Fig. S4E). These results indicate
that increased DNA methylation heterogeneity with age leads to
stochastic methylation gain at CGIs and methylation loss at TEs.

To examine the potential consequences of age-associated sto-
chastic methylation changes in breast cancer, we used a published
WGBSdata set of30primary tumorscontainingER+ (luminalbreast
cancer) and ER− (basal) breast cancer samples (Brinkman et al.
2019). We checked the entropy and methylation levels of the set
ofCGIs that showed increased entropywith age in thebreast tumor
samples. Luminal breast tumors showed higher methylation and
entropy than old LEps (Fig. 3E; Supplemental Fig. S4F), whereas
the basal tumors did not show such an increase in methylation
and entropy at the same set of CGIs (Fig. 3E). This result suggests
that the increasedmethylationandentropyobservedatCGIs is spe-
cific to the luminal subtypes of breast cancer. These CGIs were fur-
thermore enriched for Polycomb repressive complex 2 (PRC2)
target genes, which are known to be hypermethylated in luminal
breast cancer (Fig. 3F;Holmet al. 2010).CGIs showingmethylation
gain in luminal breast tumors were more likely to be marked by
H3K27me3 signifying PRC2 occupancy in ER− luminal cells com-
pared with those that remained unmethylated (Supplemental Fig.
S4G). In contrast, the CGIs that remain unmethylated in luminal
breast cancer are predominantly marked by H3K4me3 in normal
luminal cells (Supplemental Fig. S4G; ER− luminal H3K27me3
andH3K4me3datawere obtained fromPellacani et al. 2016). These
results indicate that increased DNAmethylation entropy with age
leads to stochasticmethylation gain especially at PRC2 targetCGIs,
which is further exacerbated in luminal breast cancers.

We also examined themethylation levels from the breast can-
cer samples for the set of TEs that have increased methylation
entropy with age. These TEs displayed a general decrease in
methylation in both basal and luminal breast tumors compared
with old LEps, unlike CGIs, which gained methylation only in lu-
minal tumors (Fig. 3G). Methylation loss was also more subtle
thanmethylation gain, possibly owing to other protectionmecha-
nisms, such as KZFPs, thatmight be expressed during the process of
tumorigenesis. We then examined whether any TE subfamilies are
particularly affected by stochastic methylation loss and found that
Alu elements such as AluS, AluY, and AluJ were most enriched
among these regions (Fig. 3H; Supplemental Table S8).Wemapped
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Figure 3. Increased methylation entropy with age in normal LEps predicts CpG island (CGI) methylation gain and Alumethylation loss in breast cancer.
(A) Schematic depicting changes in entropy associated with stochastic methylation gain at CGIs. (B) Schematic depicting changes in entropy associated
with stochastic methylation loss at fully methylated regions such as repeat elements. (C ) Methylation and entropy levels at unmethylated CGIs with an
increase in entropy. (D) Methylation and entropy levels at fully methylated regions with an increase in entropy. (E) Kernel density plots of methylation
and entropy levels at unmethylated CGIs with an increase in entropy with age. Luminal breast cancer (LumBC) samples (red) show an increase in DNA
methylation and entropy at these CGIs, whereas basal breast cancer (BasalBC) samples (brown) do not. (F) MSigDB gene sets enriched in CGI promoters
that gain methylation entropy with age. BENPORATH gene sets represent PRC2 target genes identified in embryonic stem cells. (G) Kernel density plots of
methylation and entropy levels at fully methylated regions with an increase in entropy with age. Both luminal breast cancer (red) and basal breast cancer
samples (brown) show a decrease in DNA methylation with an increase in entropy at these regions. (H) TE subfamilies enriched at regions that show in-
creased entropy with methylation loss. The size of the dot represents the number of elements. (I) Boxplot shows the CpG score of TEs that show stochastic
methylation loss. TEs are grouped by subfamily.
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the regions of increased entropy atAluSz6 elements and found that
these regions are randomly located throughout the length of the
Alu elements (Supplemental Fig. S4H) in contrast to the specific lo-
cationsofhypomethylated regions andDMRs inLTRs.TheseAlu el-
ements also showed a higher CpG score than other TEs (Fig. 3I),
indicating that CpG-dense Alu elements losemethylation stochas-
tically with age and in breast cancer.

Evolutionarily recent TEs show variable methylation loss with age

Althoughmethylation entropymeasures the discordance between
themethylation status of neighboringCpGs onDNA strands of the
same individual (Xie et al. 2011), inter-individual variability mea-
sures differences in methylation levels at the same CpG/region
acrossmultiple individuals (Gunasekara et al. 2019). Given our ob-
servation of increased methylation entropy with age, we next ex-
amined whether aging would lead to increased inter-individual
variability. Comparing single CpG methylation for all CpGs with
at least 3 × coverage, we observed a higher methylation variability
in older individuals (Supplemental Fig. S5A). However, differences

at single CpG sites are prone to high false-positive rates (Bock
2012), and some amount of DNAmethylation variability is expect-
ed in human populations owing to genetic variation.We therefore
used the systemic interindividual variation (SIV) approach (see
SupplementalMethods;Gunasekara et al. 2019) to identify system-
ic interindividual epigeneticvariants, and foundthese regions tobe
enriched at TEs. Among the variably methylated TEs, the evolu-
tionarily recent elements tended toward DNA methylation loss,
whereas theolder TEs (>100million yr) tended to gainmethylation
in old LEps (Fig. 4A–D). Although evolutionarily recent Alu ele-
ments, such as AluY and AluS, are highly abundant in the genome,
several AluS subfamilies, such as AluSc, AluSp, and AluSq, were en-
riched over background for variable methylation loss (Fig. 4E). In
addition, primate-specific LINEelements (L1PA2-6) andHERVHel-
ementswere also enriched among sites of variablemethylation loss
(Fig. 4E).

We next examined the TF motifs enriched at the TE subfami-
lies with variable methylation loss in old LEps. We found that Alu
subfamilies containmotifs forHomeoboxTFs suchasNKX3-2 (pre-
viously known as BAPX1) and nuclear receptor TFs such as RARA

A

B

C F

D

E

Figure 4. Evolutionarily recent TEs show variable methylation loss with age. (A–D) Evolutionary age of all TE (A), SINE (B), LINE (C), and LTR/ERV (D)
elements that are variably methylated with methylation loss or gain. Evolutionary ages of only the significantly enriched TE subfamilies are plotted. (E)
TE subfamilies enriched in regions with variable methylation loss. Dots show the observed/expected ratio for each TE subfamily. The expected number
of overlaps in shuffled controls was used to calculate the ratio. The color of the dots represents evolutionary age, whereas size represents the number
of elements. (F ) TF binding motifs enriched within each TE subfamily with variable methylation loss. The color scale is –log10(P-value) of TF motif
enrichment.
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(Fig. 4F), which are up-regulated in breast cancers as observed from
analyzing expression levels across The Cancer Genome Atlas
(TCGA) breast cancer cohort (TCGA-BRCA) RNA-seq data (Supple-
mental Fig. S5G,H). The younger L1PA subfamilies L1PA(2-4) have
motifs for many TFs, including binding sites for SIX4, GATA,
FOXA1, and estrogen response elements (EREs), which are bound
by estrogen receptor 1 (ESR1) (Fig. 4F; Supplemental Fig. S5I–L).
GATA3, FOXA1, andESR1arehighlyup-regulated in luminalbreast
cancers (Perou et al. 2000), as confirmed in the TCGA-BRCA RNA-
seq data (Supplemental Fig. S5I–L). Therefore, themethylation loss
at TEs harboringGATA, FOXA, andESR1binding sites could lead to
binding by the respective TFs and promote aberrant TE activity in
breast cancer.

TEs that lose methylation with age are activated in breast cancer

Given our observations that evolutionarily recent transposons lose
methylation with age and contain motifs for TFs overexpressed in
luminal breast cancer, we examined whether breast cancers show
loss of epigenetic suppression at these same TEs. Loss of TE sup-
pression can lead to aberrant TE-derived transcripts and alternative
isoforms owing to splicing with neighboring genes in cancer cells
(Jang et al. 2019). To investigate the potential of this happening in
breast cancer, we examined published RNA-seq data from high-
grade ductal carcinoma in situ (DCIS), a formof precancer in breast
(Abba et al. 2015). We quantified gene and TE expression changes
in DCIS compared with normal tissues; 554 age-hypomethylated
TEs showed higher expression in DCIS. Of these, 468 (84%) were
TEs that show variable hypomethylation with age, and the addi-
tional 86 TEs were within DMRs with methylation loss. As with
the loci that show variable methylation loss in older samples,
HERVH-int elements and L1PA2 elements were most common
among the TE subfamilies that showed aberrant expression in
DCIS. A representative example of a HERVH-int element that loses
methylation in aging LEps and breast cancers is shown (Fig. 5A).
Aberrant transcription from this HERVH-int element was observed
in DCIS samples and not in normal breast tissue (Fig. 5A). We also
found examples of exonization of TEs, such as a MIRb element
within an exon of a noncoding RNA, DRAIC, that is expressed in
DCIS (Supplemental Fig. S6A). Although aberrant transcription
from hypomethylated TEs in DCIS was clear, we did not observe
breast cancer subtype specificity in the expression of these TEs.

We next examined whether TEs showing methylation loss
with age (DMRs), function as regulatory elements in breast cancers.
To this end, we used ATAC-seq data from TCGA-BRCA. We identi-
fied1197TCGA-BRCAATAC-seqpeaks thatoverlapTEswithmeth-
ylation loss in aging LEps (Fig. 5B). Although some TEs were
accessible in basal subtype tumors (418 of 1197), a majority of
them were accessible across luminal tumors (779 of 1197 peaks)
(Fig. 5B). Breast tumors that were diagnosed as lobular carcinomas
had particularly high chromatin accessibility across all TEs (Fig. 5B,
cyan color in primary diagnosis), including those that losemethyl-
ation in aging LEps, such as HERVH-int elements. These results in-
dicate that TEs hypomethylated with age may be primed to
function as aberrant regulatory elements in breast cancers.

To determine whether methylation loss at TEs can lead to
changes in the expression of genes that are thought to be impor-
tant in breast cancers, we mapped the age-hypomethylated TEs
to genes within 500 kb. This windowwas chosen based on data in-
dicating that >75% of all 3D promoter interactions occur within
500 kb (Javierre et al. 2016).We calculated the correlation of TE ex-
pressionwith each genemappedwithin this window inDCIS sam-

ples. After filtering out TEs that were intragenic and had reads on
the same strand as the host gene, we mapped 256 TEs to 2176
genes. We identified 462 genes that were significantly correlated
(adjusted P-value <0.05) with the expression of a nearby TE
(Supplemental Table S9). A randomly selected set of 256 TEs
with no methylation change with age yielded 331 genes signifi-
cantly correlated with the TE expression. Four representative ex-
amples of significantly correlated TE–gene pairs are shown (Fig.
5C). Genome Browser tracks show the RNA-seq signal at the
L1PA4 element and the nearby ZNF92 gene (Spearman’s correla-
tion: 0.65, P-value: 2.21×10−5) (Supplemental Fig. S7A). ZNF92
is also highly expressed in luminal subtype breast tumors com-
pared with basal tumors (Fig. 5D). These results suggest that TEs
in deleterious locations of the genome are reawakened through
variable loss of methylation, potentially contributing to the regu-
lation of genes associated with breast cancers. Overall, our data
suggest that the reawakening of TEs is directly related to increased
breast cancer susceptibility with age.

Discussion

TEs, which are ubiquitous in the human genome, are potentially
harmful to the host genomewhen not silenced. The primary func-
tion of DNAmethylation in eukaryotic genomes is in the silencing
of these elements. Reactivation of TEs has been shown in cancer
cells, coincident with a global loss of DNA methylation (Burns
2017; Ishak and Carvalho 2020). Previous studies using PCR-based
quantification strategies reported an overall decline in methyla-
tion of Alu and HERV-K elements with age in human blood cells
(Bollati et al. 2009; Jintaridth and Mutirangura 2010). Increased
expression of retrotransposons and active retrotransposition has
been reported in aging mouse tissues (De Cecco et al. 2013;
Benayoun et al. 2019), and increased LINE-1 expression has been
reported in senescent human fibroblasts in vitro (De Cecco et al.
2019). However, these studies used bulk quantitative strategies
such as RT-qPCR, which are not ideal owing to high sequence sim-
ilarity between multiple active and inactive copies of repetitive el-
ements. A WGBS study comparing DNA methylation levels of
CD4+ T cells between a neonate and a centenarian reported that
12% of DMRs that lost methylation with age overlapped Alu ele-
ments (Heyn et al. 2012). However, the methylation changes at
TEs and any downstream consequences were not systematically
investigated in these individuals. Our approach allowed us to in-
vestigate the impact of aging on DNA methylation at specific TEs
using nonsenescent mammary epithelial cells. Our results show
that evolutionarily recent (e.g., primate and hominid-specific)
transposons are more likely to be silenced by DNA methylation
in young cells. These same elements show stochastic methylation
loss with age. In agreement with previous reports, we showed that
several recent Alu insertions (primate-specific) lose methylation
stochastically with age. This stochastic loss of TE silencing is po-
tentially an important component of understanding differential
susceptibility to cancer. Our data also underscore the need for
the use of human cells or organoids for future studies.

We further show that the methylation loss observed at TEs
with age becomes exacerbated in frank luminal breast cancers.
The derepressed TEs lead to aberrant transcription and potentially
function as regulatory elements in breast cancer cells. We show
that hypomethylated TEs regulate genes associated with luminal
subtype breast cancers. TEs also contribute lineage-specific TF
binding sites consistent with loss of lineage fidelity with age.
Retrotransposon activation has been widely observed in nearly
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every human cancer, including breast cancer (Rodic ́ et al. 2014;
Rooney et al. 2015). TE activation has been observed in premalig-
nant lesions aswell (Ishak andCarvalho 2020), suggesting that ear-
ly events in tumorigenesis may be driven by retrotransposon
activity. We show here, for the first time, that loss of transposon
silencing is evident in aging LEps that could predispose toward
breast cancer. Future studies are needed to characterize the role
of these TEs in the early events of mammary cancer initiation.

Previous studies analyzing aging-associated DNA methyla-
tion changes in human mammary LEps either have used array-
based technologies (Miyano et al. 2017; Hofstatter et al. 2018;
Castle et al. 2020; Sayaman et al. 2021) or were performed using
composite tissues that represented a mixture of cells (Johnson
et al. 2017; Song et al. 2017; Hofstatter et al. 2018; Castle et al.
2020). Array probes are mainly enriched at genic regions, and
intergenic elements, including repeats and distal regulatory ele-
ments, are underrepresented (Bell et al. 2019; Gunasekara et al.

2023). Furthermore, different cell lineages have unique responses
to aging (Miyano et al. 2017; Kimmel et al. 2019), making pure
cell populations critical for interpretation. Our use of WGBS on
sorted normal HMECs addresses both shortcomings.

Previous DNAmethylome studies in human cells suggested a
global loss of methylation with age (Heyn et al. 2012; Vandiver
et al. 2015; Jenkinson et al. 2017). Those studies were performed
using CD4+ T cells from a neonate and a centenarian (Heyn et al.
2012), sorted CD4+ T cells (Jenkinson et al. 2017), and skin kerati-
nocytes (Vandiver et al. 2015) from young (<25 yr) and old (>70 yr)
individuals. The global methylation loss with age is accompanied
by a global increase in entropy or methylation discordance
(Jenkinson et al. 2017). We did not observe a global methylation
loss or a global increase in entropy in mammary LEps with age.
This could be because of the higher fidelity of DNA methylation
maintenance in luminal cells or because of a smaller age gap be-
tween young (<30 yr) and old (>55 yr) individuals in our study.

A

C D

B

Figure 5. Transposable elements (TEs) with age-dependent methylation loss are activated in breast cancer. (A) A representative HERVH element with var-
iable loss of methylation in old samples and breast cancer (BC) samples. The estrogen receptor (ER) expression status of the tumors is shown for the BCWGBS
tracks. The bottom tracks are RNA-seq tracks fromDCIS samples showing cryptic transcription of theHERVH element. All RNA-seq tracks are scaled to the same
value, and the PAM50 subtype is indicated on the left. (B) Heatmap showing signals across 74 TCGA-BRCA samples for ATAC-seq peaks that overlap TEs hypo-
methylated with age. ATAC-seq peaks (rows) and TCGA BRCA samples (columns) are split into three clusters, each using k-means clustering. (C) Dot plot of
RNA-seq counts at indicated TE and gene pairs that are correlated across DCIS samples. Each dot represents an individual sample. Spearman’s correlation
coefficients and P-values are indicated. (D) Expression of ZNF92 in normal tissues and five PAM50 subtypes of breast tumors from the TCGA BRCA collection
(P-value luminal A [LumA] vs. basal and luminal B [LumB] vs. basal; P-value<2.2 ×10−16, using a two-tailed Wilcoxon signed-rank test).
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DNA methylome studies in aging mouse livers also showed no
global methylation loss, but specific changes at regulatory ele-
ments were detected (Cole et al. 2017). Whereas global methyla-
tion loss was not detected, we did detect methylation changes at
regulatory elements and detect variable methylation changes at
evolutionarily recent transposons.

Our results provide a comprehensive analysis of the methyla-
tion changes at TEs inmammary LEpswith age. As LEps are the pu-
tative cell of origin for luminal breast cancers, these findings are
relevant in understanding the role of TEs in increasing breast can-
cer risk. However, because of the limited availability and culturing
potential of normal LEps, we were unable to perform mechanistic
experiments to show the regulatory role of TEs in aging cells and
tumorigenesis. Future studies are needed to fully understand the
DNA methylation of candidate TEs and their regulatory activity
during the process of tumorigenesis. Furthermore, because of a
higher cost associated with WGBS experiments, we were able to
profile a limited number of individual samples. In the future, a
more targeted approach will be needed that will use candidate re-
gions identified in our study to detect DNA methylation changes
in a larger number of samples in a more cost-effective manner.
Additionally, it has been previously shown that pregnancy alters
the methylome of mammary epithelial cells (Choudhury et al.
2013; Dos Santos et al. 2015; Huh et al. 2015). Pregnancy-related
DNA methylation changes have been observed in all epithelial
cell types including LEps in mouse breast tissue (Dos Santos
et al. 2015). That study found that pregnancy induced persistent
methylation loss at genes associated with mammary gland devel-
opment, lactation, and involution. Moreover, those hypomethy-
lated sites were found to be enriched for STAT5A/B binding sites.
We did not find any significant enrichment of STAT binding sites
within DMRs with methylation loss (Supplemental Fig. S2C;
Supplemental Table S7), nor did we find any DMRs at lactation
or mammary gland development genes (Supplemental Table S5).
For these reasons, we believe our observations regarding DNA
methylation changes with aging are unlikely to be confounded
by parity-related changes. However, because of the lack of parity
information for our samples, we are not able to conclusively delin-
eate pregnancy-related changes from age-related changes.

Global loss of methylation and focal increase inmethylation,
termed “epigenetic drift,” has been reported to occur with age and
in cancer (Issa 2014). Focal increases in methylation occur mainly
at CGIs. We observed increased methylation entropy and methyl-
ation gain at CGIs with age, which is further enhanced during the
transition to luminal breast cancers. These CGIs were predomi-
nantly PRC2 targets known to gain methylation in other cancer
types (Easwaran et al. 2012). Loss/repositioning of PRC2 has
been proposed to lead to increased DNA methylation at PRC2 tar-
gets. Presumably, CGIs with increased methylation entropy are in
the process of becoming hypermethylated in luminal breast can-
cers. Hypermethylation of PRC2 targets seems specific to the lumi-
nal subtype of breast cancer (Holm et al. 2010), although the
reasons for this are unclear. Altogether, our results provide further
evidence in support of the observation that epigenetic changes
with age could determine susceptibility toward breast cancer.

Methods

Isolation of mammary LEps

LEps were isolated from fourth passage (p4) cultures of prestasis fi-
nite-lifespan HMECs from normal reduction mammoplasty (RM)

tissues (Garbe et al. 2012). Primary nonimmortalized HMECs
were generated and maintained, as described previously (LaBarge
et al. 2013). Cells were grown inM87Amediumwith cholera toxin
and oxytocin at 0.5 ng/mL and 0.1 nM, respectively. These prima-
ry cultures retain lineage-specific and age-dependent gene expres-
sion profiles that are consistent with uncultured organoid tissues
indicating minimal culture-induced artifacts (Miyano et al. 2021;
Sayaman et al. 2021). Moreover, p4 HMEC cultures contain ER− lu-
minal cells andMEps; ER+ luminal cells are lost in primary cultures
as they are postmitotic. As ER− LEps represent the bulk of themam-
mary epithelial cell population (Petersen et al. 1987) and as our
previous studies showed significant age-dependent changes in
ER− LEps compared with MEps (Sayaman et al. 2021), we used
ER− LEps for this study.

p4 HMECs were stained with anti-human CD133-PE (Biole-
gend, clone 7) and anti-human CD271 (Biolegend, clone ME20.4)
by following standard flow cytometry protocol. The LEp popula-
tion was enriched using an Aria III (Becton Dickinson) flow sorter
by gating on forward and side scatter to eliminate abnormal or sen-
escent cells and by selecting theCD133+/CD271− fraction. Because
LEps show loss of lineage fidelity with age, we use CD133+ and
CD271− as LEp markers. We have previously shown that these
markers are not impacted by age or senescence (Garbe et al. 2012;
Pelissier Vatter et al. 2018). The different HMEC strains used for
WGBS and ATAC-seq are described in Supplemental Table S1. The
type of analysis was chosen based on the strain that had enough
cells after flow sorting on the dayof the experiment to avoidpoten-
tial batch effects.

WGBS

We examined the DNAmethylome of primary LEps from younger
(<30 yr) premenopausal and older (>55 yr) postmenopausal wom-
en. Genomic DNA from FACS-enriched LEps was extracted using
the quick-DNAmicroprep kit (ZymoResearch).WGBS-seqwas per-
formed at Admera Health Biopharma Services. Genomic DNA was
bisulfite-converted using the Zymo EZ DNA methylation kit
(Zymo Research) per the manufacturer’s protocol.

Library preparation was then performed using the Accel-NGS
methyl-seqDNA library kit (Swift Biosciences) per themanufactur-
er’s recommendations. Equimolar pooling of libraries was per-
formed based on QC values. Samples were sequenced on an
Illumina NovaSeq S4 (Illumina) with a read length configuration
of 150-bp paired-ends. We obtained about 38× coverage per ge-
nome to an average of 414million paired-end reads (Supplemental
Table S2).

Sequencing reads were hard-trimmed 15 bp from both
ends using Trim Galore! (version 0.4.5; https://github.com/
FelixKrueger/TrimGalore) to remove unwanted methylation bias
arising from the library preparation. Adapter contamination was
also removed using Trim Galore! using the ‐‐illumina option.
Trimmed reads were aligned to the human reference genome
(hg19) using Bismark (version 0.19.1) (Krueger and Andrews
2011) with the ‐‐bowtie1 option (Langmead et al. 2009). Bismark
(deduplicate_bismark) was used to remove PCR duplicates. Meth-
pipe (version 3.4.3) (Song et al. 2013) was used to determine the
methylation status of individual CpG sites. The hg19 reference ge-
nome contains about 56.4million CpG loci (hg19) or 28.2million
CpG dyads. Methylation levels were calculated for individual CpG
dyads and are henceforth referred to as CpG sites. A comparison of
TE content in hg19 and hg38 is included in the Supplemental
Material.

LEpDNAmethylation profiles were comparedwith published
WGBS data of ER+ luminal, ER− luminal, and basal/MEp cells iso-
lated from RM breast tissue (noncultured cells) to rule out any
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culture-induced artifacts (Pellacani et al. 2016). Our LEp DNA
methylation profiles correlated very well with ER− luminal cells
(Pearson correlation coefficient r≥0.78 for young LEps and r≥
0.76 for old LEps). At promoters, the same trend was observed
with correlation coefficients being higher (r≥0.9 for LEps com-
pared with ER− luminal) (Supplemental Fig. S8).

ATAC-seq and analysis

Fifty thousand live FACS sorted young (n= 4) and old (n=4) LEps
were used for Tn5 transposition in duplicates using the Omni-
ATAC method (Corces et al. 2017). Libraries were sequenced to a
depth of 40 million paired reads each on an Illumina HiSeq 2500
system. Raw sequencing reads were trimmed using Trim Galore!
(version 0.4.5; https://github.com/FelixKrueger/TrimGalore) to re-
move adapters. Trimmed reads were aligned to the human refer-
ence genome (hg19) using Bowtie (Langmead et al. 2009) with
the ‐‐best -k 1 -X 2000 ‐‐mm ‐‐chunkmbs 1024 parameters. Un-
mapped reads, mates, and low-quality reads and secondary align-
ments were removed using SAMtools (Danecek et al. 2021). PCR
duplicates were identified using Picard and removed using SAM-
tools. The reads were shifted by four bases on the sense strand
and fivebaseson theantisense strand toaccount forTn5bias.Reads
from technical replicateswere pooled to generate pseudoreplicates.
Peaks were called using MACS2 version 2.1.1.20160309 (Zhang
et al. 2008) using -p 0.01 ‐‐nomodel ‐‐shift -37 ‐‐extsize 73 ‐‐SPMR
‐‐keep-dup all ‐‐call-summits as parameters. Peak calls from techni-
cal replicates and pseudoreplicates were compared using IDR to get
the most conservative set of peaks for each sample.

Enrichment of TE subfamilies at open chromatin sites, DMRs,

and variably methylated regions

The extent of overlap of open chromatin regions (ATAC-seq peaks),
DMRs, andvariable regions at repeat subfamilies (RepeatMasker an-
notation) (Smit et al. 2023)was calculatedusingBEDTools intersect
(Quinlan andHall 2010). Randomly shuffled control regions of the
same length were generated 1000 times, and the expected number
of overlaps was calculated using BEDTools intersect. Enrichment
values were calculated by dividing the number of DMR overlaps
(observed) by the average number of random overlaps (expected).
P-values were calculated by dividing the number of extreme values
(at either tail of the distribution) from random overlaps by 1000.
Significantly enriched repeat subfamilies had P<0.05, enrichment
greater than 1.5-fold, and more than 10 copies overlapping DMRs
or variable regions.

Motif analysis

Motif enrichment analyses at specific TE subfamilies were per-
formed using AME available in the MEME suite using the
HOCOMOCO v11 human TF motif database (Bailey et al. 2015).
The enrichment of motifs in given sequences was calculated over
shuffled control sequences. Motif scanning was performed using
FIMO (Grant et al. 2011), available in the MEME suite (Bailey
et al. 2015) with default parameters. Only binding sites with TFs
that were expressed (TPM>1) in LEps or MEps were used for fur-
ther analyses. For ATAC-seq peaks and DMRs, only the sequence
overlapping a TE was used for motif analysis.

DMR identification

DMRfinder (Gaspar and Hart 2017) was used to identify DMRs.
Briefly, CpG sites with at least 4 × coverage in at least six out of
10 samples were determined. Genomic regions with at least four
CpG sites within a distance of 100 bp were identified. The maxi-

mum length of regions was set to 500 bp. Regions with coverage
of fewer than 20 reads were discarded. The final set of regions
was then used to calculate DMRs with >20% change (P-value<
0.05) between pooled young and old samples. Motif enrichment
analyses at DMRs were performed using findMotifsGenome.pl in
HOMER (Heinz et al. 2010). For each set of genomic regions, back-
ground sequences with matched GC content were selected. P-val-
ues for motif enrichment were calculated using the cumulative
binomial distributions.

RNA-seq analysis

RNA-seq data from normal and DCIS samples were obtained from
the NCBI Gene Expression Omnibus (GEO; https://www.ncbi
.nlm.nih.gov/geo/) (accession number GSE69240) (Abba et al.
2015). We used this data set as it was paired-end stranded data,
which performs relatively better with TE quantification tools
than unstranded and single-end data. FASTQ reads were quality-
and adapter-trimmed using Trim Galore! with the ‐‐paired option.
Quality-trimmed reads were aligned to the hg19 genome using the
squire Map function of the SQuIRE pipeline (Yang et al. 2019).
Subsequently, squire count andcall functionswereused tomeasure
geneandTEexpressionchanges inDCIS comparedwithnormal tis-
sues. TEs with increased expression in DCIS were first identified
(log2FC>0.5, Padj < 0.05). The SQuIRE call output contains infor-
mation about the expressed strand. TEs with reads in the opposite
strand as the TE itself were filtered out as those reads are likely from
thehost gene for intragenic TEs. Genes that werewithin ±500 kb of
variably methylated TEs were then identified, and gene–TE pair
listswere created and annotatedbasedonwhether theTEwas intra-
genic (inside the gene) or intergenic (outside the gene). Intragenic
TEswere further annotated basedonwhether the reads from the TE
were on the same or opposite strand as that of the host gene. TEs
that showed reads on the same strand as its host genewere discard-
ed from the TE–gene pair list. Spearman’s correlation values were
calculated for log-transformed counts of genes and TEs from each
gene–TE pair. Significantly correlated gene-TE pairs have adjusted
P-values < 0.05 (Benjamini–Hochberg method).

Data access

All raw andprocessed sequencing data generated in this study have
been submitted to the NCBI Gene Expression Omnibus (GEO;
https://www.ncbi.nlm.nih.gov/geo/) under accession number
GSE153696 (WGBS and ATAC-seq).
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