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METHOD Open Access

scAI: an unsupervised approach for the
integrative analysis of parallel single-cell
transcriptomic and epigenomic profiles
Suoqin Jin1†, Lihua Zhang1,2† and Qing Nie1,2,3*

Abstract

Simultaneous measurements of transcriptomic and epigenomic profiles in the same individual cells provide an
unprecedented opportunity to understand cell fates. However, effective approaches for the integrative analysis of
such data are lacking. Here, we present a single-cell aggregation and integration (scAI) method to deconvolute
cellular heterogeneity from parallel transcriptomic and epigenomic profiles. Through iterative learning, scAI
aggregates sparse epigenomic signals in similar cells learned in an unsupervised manner, allowing coherent fusion
with transcriptomic measurements. Simulation studies and applications to three real datasets demonstrate its
capability of dissecting cellular heterogeneity within both transcriptomic and epigenomic layers and understanding
transcriptional regulatory mechanisms.

Keywords: Integrative analysis, Single-cell multiomics, Simultaneous measurements, Sparse epigenomic profile

Background
The rapid development of single-cell technologies allows
for dissecting cellular heterogeneity more comprehen-
sively at an unprecedented resolution. Many protocols
have been developed to quantify transcriptome [1], such
as CEL-seq2, Smart-seq2, Drop-seq, and 10X Chromium,
and techniques that measure single-cell chromatin acces-
sibility (scATAC-seq) and DNA methylation have also
become available [2]. More recently, several single-cell
multiomics technologies have emerged for measuring
multiple types of molecules in the same individual cell,
such as scM&T-seq [3], scNMT-seq [4], scTrio-seq [5],
sci-CAR-seq [6], and scCAT-seq [7]. The resulting single-
cell multiomics data has potential of providing new in-
sights regarding the multiple regulatory layers that control
cellular heterogeneity [8, 9].
Gene expression is often regulated by transcription

factors (TFs) via interaction with cis-regulatory genomic
DNA sequences located in or around target genes [10, 11].
Epigenetic modifications, including changes in chromatin

accessibility and DNA methylation, play crucial roles in the
regulation of gene expression [12, 13]. Many tools have
been developed for the integrative analysis of transcrip-
tomic and epigenomic profiles in bulk samples [14–16].
For example, Zhang et al. integrated the analysis of bulk
gene expression, DNA methylation, and microRNA ex-
pression using joint nonnegative matrix factorization [16].
Argelaguet et al. [17] presented MOFA, a generalization of
principal component analysis (PCA) which is applicable to
both bulk and single-cell datasets [18, 19].
Single-cell multiomics data are inherently heterogenous

and highly sparse [9]. Although many integration methods
initially developed for bulk data might be applicable to such
data, it has become increasingly clear that new and different
computational strategies are required due to unique charac-
teristics of single-cell data [9]. In particular, scATAC-seq
data are extremely sparse (e.g., over 99% zeros in sci-CAR-
seq) and nearly binary [20], thus making it difficult to reli-
ably identify accessible (or methylated) regions in a cell.
A growing number of methods have been developed

for scRNA-seq data integration [21–23]. However, only
few methods have been proposed for integrating multio-
mics profiles, and these methods were designed for data
measured in different cells (i.e., not the same single cells)
but sampled from the same cell population [22–25].
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MATCHER used a Gaussian process latent variable model
to compute the “pseudotime” for every cell in each omics
layer and to predict the correlations between transcrip-
tomic and epigenomic measurements from different cells
of the same type [24]. A coupled nonnegative matrix
factorization method performed clustering of single cells
sequenced by scRNA-seq and scATAC-seq through con-
structing a “coupling matrix” for regulatory elements and
gene associations [25]. Recently, Seurat (version 3) [22]
and LIGER [23] were developed for integrating scRNA-
seq and single-cell epigenomic data. Both of these
methods first transform the epigenomic data into a syn-
thetic scRNA-seq data through estimating a “gene activity
matrix,” and then identify “anchors” between this syn-
thetic data and scRNA-seq data through aligning them in
a low-dimensional space. The gene activity matrix is cre-
ated by simply summing all counts within the gene body
+2 kb upstream. Such strategy may introduce improper
synthetic data due to complex transcriptional regulatory
mechanisms between gene expression and chromatin ac-
cessibility. The improper synthetic data may further lead
to imperfect alignment when they are applied to parallel
transcriptomic and epigenomic profiles, and likely affect
downstream analysis. Moreover, the inference of interac-
tions between transcriptomics and epigenetics often re-
quires both measurements from the same single cell [8].
Here, we present a single-cell aggregation and integration

(scAI) approach to integrate transcriptomic and epigenomic
profiles (i.e., chromatin accessibility or DNA methylation)
that are derived from the same cells. Unlike existing inte-
gration methods [16, 17, 22, 24–26], scAI takes into consid-
eration the extremely sparse and near-binary nature of
single-cell epigenomic data. Through iterative learning in
an unsupervised manner, scAI aggregates epigenomic data
in subgroups of cells that exhibit similar gene expression
and epigenomic profiles. Those similar cells are computed
through learning a cell-cell similarity matrix simultaneously
from both transcriptomic and aggregated epigenomic data
using a unified matrix factorization model. As such, scAI
represents the transcriptomic and epigenomic profiles with
biologically meaningful low-rank matrices, allowing identifi-
cation of cell subpopulations; simultaneous visualization of
cells, genes, and loci in a shared two-dimensional space;
and inference of the transcriptional regulatory relationships.
Through applications to eight simulated datasets and three
published datasets, and comparisons with recent multio-
mics data integration methods, scAI is found to be an effi-
cient approach to reveal cellular heterogeneity by dissecting
multiple regulatory layers of single-cell data.

Results
Overview of scAI
To deconvolute heterogeneous single cells from both tran-
scriptomic and epigenomic profiles, we aggregate the sparse/

binary epigenomic profile in an unsupervised manner to
allow coherent fusion with transcriptomic profile while pro-
jecting cells into the same representation space using both
the transcriptomic and epigenomic data. Using the normal-
ized scRNA-seq data matrix X1 (p genes in n cells) and the
single-cell chromatin accessibility or DNA methylation
data matrix X2 (q loci in n cells) as an example, we
infer the low-dimensional representations via the fol-
lowing matrix factorization model:

minW 1;W 2;H;Z ≥0α X1−W 1Hk k2F
þ X2 Z∘Rð Þ−W 2Hk k2F þ λ Z−HTH

�� ��2
F

þ γ
X

j

H : j
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where W1 and W2 are the gene loading and locus load-
ing matrices with sizes p × K and q × K (K is the rank),
respectively. Each of the K columns is considered as a
factor, which often corresponds to a known biological
process/signal relating to a particular cell type. Wik

1 and
Wik

2 are the loading values of gene i and locus i in factor
k, and the loading values represent the contributions of
gene i and locus i in factor k. H is the cell loading matrix
with size K × n (H.j is the jth column of H), and the
entry Hkj is the loading value of cell j when mapped onto
factor k. Z is the cell-cell similarity matrix. R is a binary
matrix generated by a binomial distribution with a prob-
ability s. α, λ, γ are regularization parameters, and the
symbol ∘ represents dot multiplication. The model aims
to address two major challenges simultaneously: (i) the
extremely sparse and near-binary nature of single-cell
epigenomic data and (ii) the integration of this binary
epigenomic data with the scRNA-seq data, which are
often continuous after being normalized.

Aggregation of epigenomic profiles through iterative
refinement in an unsupervised manner
To address the extremely sparse and binary nature of
the epigenomic data, we aggregate epigenomic data of
similar cells based on the cell-cell similarity matrix Z,
which is simultaneously learned from both transcrip-
tomic and epigenomic data iteratively. Epigenomic data
can be simply aggregated by X2Z. However, this strategy
may lead to over-aggregation, for example, in one sub-
population, similar cells exhibit almost the same aggre-
gated epigenomic signals, which improperly reduces the
cellular heterogeneity. To reduce such over-aggregation,
a binary matrix R, generated from a binomial distribu-
tion with probability s, is utilized for randomly sampling
of similar cells. After normalizing H with the sum of
each row equaling 1 in each iteration step and Z°R with
the sum of each column equaling 1, then the aggregated
epigenomic profiles are represented by X2(Z ∘ R). The ith
column of X2(Z ∘ R) represents the weighted combination

Jin et al. Genome Biology           (2020) 21:25 Page 2 of 19



of epigenomic signals from some cells similar to the ith
cell. These strategies not only enhance epigenomic signals,
but also maintain cellular heterogeneity within and be-
tween different subpopulations.

Integration of binary and count-valued data via projection
onto the same low-dimensional space
Through aggregation, the extremely sparse and near-
binary data matrix X2 is transformed into the signal-
enhanced continuous matrix X2(Z ∘ R), allowing coherent
fusion with transcriptomic measurements (Fig. 1a).
These two matrices are projected onto a common co-
ordinate system represented by the first two terms in the
optimization model (Eq. (1)). In this way, cells are
mapped onto a K-dimensional space with the cell load-
ing matrix H, and the cell-cell similarity matrix Z is ap-
proximated by H′H, as represented by the third term in
Eq. (1). The sparseness constraint on each column of H
is added by the last term of Eq. (1).

Downstream analysis using the inferred low-dimensional
representations
scAI simultaneously decomposes transcriptomic and epi-
genomic data into multiple biologically relevant factors,
which are useful for a variety of downstream analyses
(Fig. 1b–d). (1) The cell subpopulations can be identified
from the cell loading matrix H using a Leiden commu-
nity detection method (see the “Methods” section). (2)
The genes and loci in the ith factor are ranked based on
the loading values in the ith columns of W1 and W2 (see
Fig. 1b and the “Methods” section). (3) To simultan-
eously analyze both gene and loci information associated
with cell states, we introduce an integrative visualization
method, VscAI. By combining these learned low-rank
matrices (W1, W2, H, and Z) with the Sammon mapping
[27] (see the “Methods” section), VscAI simultaneously
projects genes and loci that separate the cell states into a
two-dimensional space alongside the cells (Fig. 1c). (4)
Finally, the regulatory relationships between the marker
genes and the chromosome regions in each factor or cell

Fig. 1 Overview of scAI. a scAI learns aggregated epigenomic profiles and low-dimensional representations from both transcriptomic and
epigenomic data in an iterative manner. scAI uses parallel scRNA-seq and scATAC-seq/single cell DNA methylation data as inputs. Each row
represents one gene or one locus, and each column represents one cell. In the first step, the epigenomic profile is aggregated based on a cell-
cell similarity matrix that is randomly initiated. In the second step, transcriptomic and aggregated epigenomic data are simultaneously
decomposed into a set of low-rank matrices. Entries in each factor (column) of the gene loading matrix (gene space), locus loading matrix
(epigenomic space), and cell loading matrix (cell space) represent the contributions of genes, loci, and cells for the factor, respectively. In the
third step, a cell-cell similarity matrix is computed based on the cell loading matrix. These three steps are repeated iteratively until the stop
criterion is satisfied. b scAI ranks genes and loci in each factor based on their loadings. For example, four genes and loci are labeled with the
highest loadings in factor 3. c Simultaneous visualization of cells, marker genes, marker loci, and factors in a 2D space by an integrative
visualization method VscAI, which is constructed based on the four low-rank matrices learned by scAI. Small filled dots represent the individual
cells, colored by true labels. Large red circles, black filled dots, and diamonds represent projected factors, marker genes, and marker loci,
respectively. d The regulatory relationships are inferred via correlation analysis and nonnegative least square regression modeling of the identified
marker genes and loci. An arch represents a regulatory link between one locus and the transcription start site (TSS) of each marker gene. The
arch colors indicate the Pearson correlation coefficients for gene expression and loci accessibility. The red stem represents the TSS region of the
gene, and the black stem represents each locus
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subpopulation are inferred by combining the correlation
analysis and the nonnegative least square regression
modeling of gene expression and chromatin accessibility
(see Fig. 1d and the “Methods” section). Overall, these
functionalities allow the deconvolution of cellular het-
erogeneity and reveal regulatory links from transcrip-
tomic and epigenomic layers.

Model validation and comparison using simulated data
To evaluate scAI, we simulated eight single-cell datasets
with the sparse count data matrix X1 and the sparse binary
data matrix X2 (i.e., paired scRNA-seq and scATAC-seq).
To recapitulate the properties of the single-cell multio-
mics data (e.g., a high abundance of zeros and binary epi-
genetic data), we generated bulk RNA-seq and DNase-seq
profiles from the same sample with MOSim [28]. Then,
we added the effects of dropout and binarized the data. A
detailed description of the simulation approach and the
simulated data are shown in Additional file 1: Supplemen-
tary methods (Simulation datasets) and Additional file 2:
Table S1. These datasets encompass eight scenarios with
different transcriptomic/epigenomic properties: different
sparsity levels (dataset 1), different noise levels (dataset 2),
missing clusters in the epigenomic profiles (i.e., clusters
defined from gene expression do not reflect epigenetic dis-
tinctions) (dataset 3), missing clusters in the transcrip-
tomic profiles (i.e., clusters defined from epigenetic profile
do not reflect gene expression distinctions) (dataset 4),
discrete cell states (dataset 5), a continuous biological
process (dataset 6), imbalanced cluster sizes with the same
number of clusters defined from both transcriptomic and
epigenomic profiles (dataset 7), and imbalanced cluster
sizes with missing clusters in the epigenomic profiles
(dataset 8).
First, we compared the visualization of cells using the

scRNA-seq data, scATAC-seq data, and aggregated
scATAC-seq data, respectively (Fig. 2a). Due to the in-
herent sparsity and noise in the data, the cells were not
well separated in the scRNA-seq data and the scATAC-
seq data using Uniform Manifold Approximation and
Projection [29] (UMAP) (Fig. 2a) and t-SNE (Additional
file 2: Figure S1), in particular for datasets 5 and 6. How-
ever, the cell subpopulations were clearly distinguishable
in the low-dimensional space when using the aggregated
scATAC-seq data generated by scAI for all eight differ-
ent scenarios (Fig. 2a). In addition, the cell subpopula-
tions were well separated when visualized by VscAI,
which embedded cells in two dimensions by leveraging
the information from both scRNA-seq and scATAC-seq
data (Fig. 2b). For dataset 3 and dataset 4, in which one
cluster was missing in either the transcriptomic or the
epigenomic data alone, scAI was able to reveal all the
anticipated clusters. For example, in dataset 4, only four
clusters were revealed in the scRNA-seq data, but five

clusters were embedded in the scATAC-seq data (the
fourth row of Fig. 2a). Without the addition of the
scATAC-seq information, four clusters were detected
(Additional file 2: Figure S2), whereas the integration of
both the scRNA-seq and the scATAC-seq data revealed
five clusters. In the first five datasets, the cell states are
discrete whereas dataset 6 depicts a continuous transi-
tion process at five different time points. The continuous
transitions in these five cell states were well character-
ized by scAI with the aggregated scATAC-seq data but
could not be captured by using only the sparse scATAC-
seq data with UMAP (the sixth row of Fig. 2a) and t-
SNE (Additional file 2: Figure S1). For the datasets 7 and
8 with imbalanced cluster sizes, scAI accurately revealed
all the expected clusters. In particular, three cell clusters
were observed in the low-dimensional space of both
scATAC-seq and aggregated scATAC-seq data in the
dataset 8 (the eighth row of Fig. 2a). However, five cell
clusters were well distinguished after integrating with
scRNA-seq data, as shown in the VscAI space (the
eighth row of Fig. 2b).
Next, we used the area under receiver operating char-

acteristic curve (AUC) to quantitively evaluate the accur-
acy of scAI in reconstructing cell loading matrix H, gene
loading matrix W1, and locus loading matrix W2, which
were used for identifying cell clusters, factor-specific
genes, and loci in the downstream analyses, respectively.
scAI was found to perform robustly and accurately with
different sparsity levels and noise levels (Fig. 2c). For ex-
ample, even with the sparsity levels of X1 and X2 at 98%
and 99.6% in dataset 1, and 79.4% and 97.5% in dataset
5, scAI was able to reconstruct these loading matrices
with high accuracy (Fig. 2c).
Moreover, to study whether stronger noise or the ini-

tial data with less discriminative patterns have effects on
the performance of scAI, we added stronger noise and
sparsity levels, and also made the initial data less dis-
criminative among clusters by increasing the parameter
value coph, on the simulation dataset 8. We found that
the noise levels and parameter coph values have little ef-
fects on the reconstructed loading matrices. The sparsity
level affects the performance if it is larger than some
threshold (e.g., the sparsity of scRNA-seq and scATAC-
seq data is larger than 98.9% and 99.5%, respectively), as
shown in Additional file 2: Figure S3.
Finally, we applied MOFA [17], a multiomics data in-

tegration model designed for bulk data and single-cell
data, to the eight datasets (Fig. 2d, e). MOFA decom-
poses multiomics data matrices into several weight
matrices and one factor matrix using a statistically gen-
eralized principal component analysis method. For all
the datasets except for dataset 7, the factors learned by
MOFA only accounted for the variability of the scRNA-
seq data, and could not capture the variance in the
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Fig. 2 Performance of scAI and its comparison with MOFA using eight simulated datasets. a 2D visualization of cells by applying UMAP to scRNA-
seq, scATAC-seq, and aggregated scATAC-seq data obtained from scAI. Each row shows one example of each scenario from the simulated
datasets. Cells are colored based on their true labels. b Cells are visualized by VscAI. c Accuracy of scAI (evaluated by AUC) in reconstructing cell
loading (blue color), gene loading (orange color), and locus loading (yellow color) matrices, respectively. For each scenario, we generated a set of
simulated data using five different parameters, which are indicated on the x-labels. The numbers outside and inside the brackets represent the
parameters in the simulated scRNA-seq and scATAC-seq data, respectively. We applied scAI to each dataset 10 times with different seeds and
then calculated the average AUCs with respect to the ground truth of the loading matrices. Datasets 5 and 6 were generated based on real
datasets, which do not have ground truth of the gene/locus loading matrices. d Variance explained by each latent factor (LF) using MOFA. e
Comparison of the accuracy (evaluated by normalized mutual information, NMI) of scAI and MOFA in identifying cell clusters
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scATAC-seq data (Fig. 2d). We compared scAI with
MOFA on cell clustering (Fig. 2e), finding MOFA does
not perform as well as scAI for these simulation datasets
(Fig. 2e).
The analysis on simulation data indicates scAI’s poten-

tial in aggregating scATAC-seq data, identifying important
genes and loci, and uncovering discrete and continuous
cell states in single-cell transcriptomic and epigenomic
data with inherently high sparsity and noise levels.

Identifying subpopulations with subtle transcriptomic
differences but strong chromatin accessibility differences
To evaluate scAI in capturing cell subpopulations in
complex tissues, we analyzed 8837 cells from mamma-
lian kidney using the paired chromatin accessibility and
transcriptome data [6]. In a previous study, a semi-
supervised clustering method was applied to the scRNA-
seq data, and then, aggregated epigenomic profiles were
generated based on the identified cell clusters [6]. As
such, the cellular heterogeneity induced by epigenetics
was unable to be captured in this method.
scAI identified 17 subpopulations with either distinct gene

expression or chromatin accessibility profiles with the de-
fault resolution parameter equaling 1 (see the “Methods”
section; Fig. 3a, b, d; Additional file 1). Compared to the ori-
ginal findings [6], our integrative analysis of transcriptomic
and chromatin accessibility profiles indicated that the known
cell types such as Collecting Duct Principal Cells (CDPC)
were much more heterogeneous. We identified two subpop-
ulations of CDPC (C9 and C12, Additional file 2: Figure
S4a) that were captured by factor 2 and factor 8, respectively
(Fig. 3c). Gene loading analysis of these two factors revealed
that Fxyd4 and Frmpd4 are the specific markers of C9, while
Egfem1 and Calb1 are the specific makers of C12 (Fig. 3c,
and Additional file 2: Figure S4b and c). Importantly, while
some identified subpopulations showed only subtle differ-
ences in their transcriptomic profiles, they exhibited distinct
patterns in their epigenomic profiles (Fig. 3b, d). For ex-
ample, C2 and C7 (subpopulations of proximal tubule S3
cells (type 1)), and C8 and C10 (subpopulations of proximal
tubule S1/S2 cells) have similar gene expression profiles
(Fig. 3b), but, exhibit strong differential accessibility patterns
(Fig. 3e). The average signals of each locus across cells in
each subpopulation are significantly different (Fig. 3e).
To further characterize these differential accessible loci

and identify the specific transcriptional regulatory mech-
anisms of these epigenetics-induced subpopulations, we
performed gene ontology enrichment and motif discov-
ery analysis using GREAT and HOMER, respectively
(Fig. 3f). Notably, for the two subpopulations C8 and
C10 of proximal tubule S1/S2 cells, the C8-specific ac-
cessible loci were related to the chromatin binding and
histone deacetylase complex, and were further enriched
for binding motifs of MAFB and JUNB, both of which

are known regulators of proximal tubule development
[30]. Differential accessible loci of C10 were enriched in
VEGFR signaling pathway, consistent with the role in
the maintenance of tubulointerstitial integrity and the
stimulation of proximal tubule cell proliferation [31].
Moreover, we applied chromVAR [32] to analyzing the

differential accessible loci between C2 and C7, and C8
and C10, respectively. chromVAR calculates the bias
corrected deviations in accessibility. For each motif,
there is a value for each cell, which measures how differ-
ent the accessibility for loci with that motif is from the
expected accessibility based on the average of all the
cells. By performing hierarchical clustering of the calcu-
lated deviations of top 30 most variable TFs, we found
that these TFs were divided into 2 clusters, and each TF
cluster was specific to 1 particular cell subpopulation,
which was found to be consistent with the clustering by
scAI (Additional file 2: Figure S5).

Revealing underlying transition dynamics by analyzing
transcription and chromatin accessibility simultaneously
Next, we applied scAI to data from lung adenocarcinoma-
derived A549 cells after 0, 1, and 3 h of 100 nM dexa-
methasone (DEX) treatment, including scRNA-seq and
scATAC-seq data from 2641 co-assayed cells [6]. scAI re-
vealed two factors, where factor 1 was enriched with cells
from 0 h and factor 2 was enriched with cells from 3 h
(Fig. 4a). Factor-specific genes and loci were identified by
analyzing the gene and locus loading matrices (Fig. 4b).
Among them, known markers of glucocorticoid receptor
(GR) activation [33–35] (e.g., CKB and NKFBIA) were
enriched in factor 2, and markers of early events after
treatment [36] (e.g., ZSWIM6 and NR3C1) were enriched
in factor 1. We collected TFs of these known markers
from hTFtarget database (http://bioinfo.life.hust.edu.cn/
hTFtarget/). Interestingly, the TF motifs, such as FOXA1
[37], CEBPB [38], CREB1, NR3C1, SP1, and GATA3 [39],
also had high enrichment scores in the inferred factors
(Fig. 4c), in agreement with that these motifs are key tran-
scriptional factors of GR activation markers [40]. Particu-
larly, CEBPB binding was shown positively associated with
early GR binding [41], and GR binds near CREB1 binding
sites that makes enhancer chromatin structure more ac-
cessible [42]. In the low-dimensional space visualized by
VscAI, markers of early events, such as ZSWIM6 and
NR3C1, were located near cells from 0 h, while markers of
GR activation, such as CKB, NKFBIA, and ABHD12, were
located near cells from 3 h (Fig. 4d), providing a direct and
intuitive way to interpret the data.
To systematically assess the top ranked genes and loci

in the identified factors, we performed pathway enrich-
ment analysis of genes with MSigDB [43] and loci with
GREAT [44]. As expected, several processes relevant to
GR activation were uncovered, such as the “neurotrophin
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signaling pathway,” a pathway previously reported to have
a direct effect on GR function [45]. The “Fc epsilon RI sig-
naling pathway” was enriched in factor 2 (Additional file 2:
Figure S6a), which is in good agreement with that the
reduction of Fc epsilon RI levels might be one of the
favorable anti-allergic functions of glucocorticoids in
mice [46]. Furthermore, processes such as “genes
involved in glycogen breakdown (glycogenolysis),”
“genes involved in glycerophospholipid biosynthesis,”
and “pentose and glucuronate interconversions” were
enriched in the nearby genes of the factor-specific
loci (Additional file 2: Figure S6b).

While the DEX treatment of A549 cells is known to
increase both transcription and promoter accessibility
for markers of GR activation [6], little is known on the
regulatory relationships. We inferred regulatory links be-
tween cis-regulatory elements and target marker genes
using perturbation-based correlation analysis and further
identified bounded TFs that regulate target marker genes
using nonnegative least square regression (see the
“Methods” section). To assess the accuracy of the infer-
ence, we evaluated whether these regulatory relationships
were enriched in an independent database of TF-target re-
lationships for human (hTFtarget, http://bioinfo.life.hust.

Fig. 3 Identifying new epigenomics-induced subpopulations by simultaneously analyzing transcriptomic and epigenomic profiles in mouse kidney. a
UMAP visualization of cells, which are colored by the inferred subpopulations. b Heatmap of differentially expressed genes. For each cluster, the top 10
marker genes and their relative expression levels are shown. Selected genes for each cluster are color-coded and shown on the right. c UMAP plots
show the cell cluster-specific patterns of the identified factors (left), and the ranking plots show the top marker genes in the corresponding factors
(right). In the projected factor pattern plots, cells are colored based on the loading values in the factor from the inferred cell loading matrix. In gene
ranking plots, genes are ranked based on the gene scores in the factor from the gene loading matrix. Labeled genes are representative markers. d
Heatmap showing the relative chromatin accessibility of cluster-specific loci. e Heatmap of the raw chromatin accessibility of individual cells (left) and
the average chromatin accessibility of cell clusters (including C2, C7, C8, and C10) (right) using differential accessible loci among the cell clusters. f
Regulatory information of eight identified cell clusters. The identities of these subpopulations were shown on the most left
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Fig. 4 Revealing cellular heterogeneity and regulatory links of dexamethasone-treated A549 cells. a Heatmap of the cell loading matrix H
obtained by scAI. Cells are ordered and divided into early, transition, and late stages based on hierarchical clustering. The bar at the bottom
indicates the collection time of each cell. b Genes are ranked in each factor based on gene scores calculated from gene loading matrix, in which
the known markers are indicated. c Loci are also ranked based on locus scores from locus loading matrix, in which the motifs and the
corresponding logo of some TFs of the known marker genes are indicated. The binding TFs of the known marker genes and the chromosome
loci of these motifs were found from hTFtarget database. d Visualization of cells by VscAI. Known marker genes (left panel) and motifs related
with these marker genes (right panel) were projected onto the same low-dimensional space. The same motifs such as SMAD3 and NR3C1 are
shown in two opposite positions, as they are enriched in different loci. These loci were located within 10 kb of marker genes’ regulatory regions,
which were extracted from the database (http://bioinfo.life.hust.edu.cn/hTFtarget/) in lung tissue. Here, we visualized the motifs instead of
individual loci for easier understanding. e The fold enrichment (FE) values of inferred regulatory links of the known markers, which were validated
by the hTFtarget database. f Inferred regulatory links of gene ABHD12 for each factor and the epigenome browser visualization of DNase-seq
data and NR3C1 ChIP-seq data derived from chromatin regions near TSS of ABHD12. The red stem represents the TSS region of the gene, and
the black stem represents each locus. Five regulators which correspond to the inferred regulatory links were indicated. The gray region shows the
distinct regulatory links (regulated by NR3C1) between 0 h and 1 and 3 h. g The pseudotemporal chromatin accessibility trajectory was inferred
with the aggregated scATAC-seq data. Cells were visualized in the first two diffusion components (DCs). The gray line is the fitted principal curve.
Bottom: the percentages of cells at the three time points during the inferred pseudotime, which was divided into 10 bins. h Inferred pseudotime
of three key genes. The black line indicates the fitted expression levels using cubic splines. i Left: “Rolling wave” plot shows the normalized
smoothed accessibility data for the pseudotime-dependent accessible loci clustered into two groups. Middle: the normalized smoothed gene
expression data for the pseudotime-dependent genes along the inferred accessibility trajectory using the aggregated scATAC-seq data. Loci and
genes are ordered based on the onset of activation. Right: the corresponding gene dynamics along the cellular trajectory inferred only using
scRNA-seq data
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edu.cn/hTFtarget/) (see the “Methods” section). Encour-
agingly, high enrichment of the inferred regulatory rela-
tionships for the key markers of GR activation was
observed (Fig. 4e), and the inferred regulatory relation-
ships were able to be validated using ChIP-seq and
DNase-seq data from ENCODE (https://www.encodepro
ject.org/). For the GR activation marker ABHD12 that was
highly enriched in factor 2, we identified distinct regula-
tory links between factor 1 (enriched with cells from 0 h)
and factor 2 (enriched with cells from 3 h). Among its reg-
ulators, the glucocorticoid receptor NR3C1 was revealed
in factor 2 (Fig. 4f). Visualizing the chromatin signals of
ChIP-seq data of NR3C1 and DNase-seq data using
WashU Epigenome Browser (https://epigenomegateway.
wustl.edu/browser), we found that most cis-regulatory ele-
ments are located in the open regions of the DNase-seq
data, and that NR3C1 exhibits signals within 50 kb of the
transcription start site (TSS) of ABHD12 at 1 and 3 h but
no signals at 0 h in the ChIP-seq data. This is consistent
with our prediction on the regulation between NR3C1
and ABHD12 existing in factor 2, but not in factor 1.
scAI provides an unsupervised way to aggregate sparse

scATAC-seq data from similar cells through iterative re-
finement, which facilitates and enhances the direct analysis
of scATAC-seq data. We next assess the performance of
the aggregated scATAC-seq data in comparison with the
raw scATAC-seq or scRNA data, in terms of the identifica-
tion of cell states, the low-dimensional visualization of cells,
and the reconstruction of the pseudotemporal dynamics.
The previous study [6] identified two clusters that com-
prised a group of untreated cells and a group of DEX-
treated cells, in which treated cells collected from 1 and 3 h
form one cluster. Our analysis recovered three cell states,
including an early state enriched by cells from 0 h, a transi-
tion state enriched by cells from 1 h, and a late state
enriched by cells from 3 h (Fig. 4a). Due to the high sparsity
(96.8% for scRNA-seq and 99.2% for scATAC-seq) and the
near-binary nature of the scATAC-seq data, dimension
reduction methods, such as t-SNE, were found to fail to dis-
tinguish the different cell states (Additional file 2: Figure
S6c). However, scAI uncovered distinct cell subpopulations,
as seen in the low-dimensional space, based on the aggre-
gated data (Additional file 2: Figure S6c).
We next study the pseudotemporal dynamics of A549

cells using our previously developed method scEpath
[47]. Compared to the trajectory inferred using only the
scRNA-seq data, which lacks well-characterized GR acti-
vation trends for cells measured at three different time
points (Additional file 2: Figure S6d), a clear and consist-
ent trajectory was inferred when using the aggregated
scATAC-seq data (Fig. 4g, h). We identified pseudotime-
dependent genes and loci that were significantly changed
along the inferred trajectories. The pseudotemporal dy-
namics of these genes along the trajectory inferred using

only the scRNA-seq data were found to be discontinu-
ous, in contrast to the aggregated scATAC-seq data
obtained from scAI led to continuous trajectory (Fig. 4i).
Previously, we used the measure scEnergy to quantify
the developmental process [47]. Here, we found no sig-
nificant differences in the single-cell energies between
different time points when only using the scRNA-seq
data. However, significantly decreased scEnergy values
were seen during treatment according to the aggregated
scATAC-seq data (Additional file 2: Figure S6e).
Overall, the aggregated scATAC-seq data by scAI can

better characterize the dynamics of DEX treatment, and
scAI suggests new mechanisms regarding the GR activa-
tion process in DEX-treated A549 cells, including a tran-
sition state and differential cis-regulatory relationships.

Uncovering coordinated changes in the transcriptome
and DNA methylation along a differentiation trajectory
To study data with simultaneous single-cell methylome
and transcriptome sequencing [3, 8, 48], we applied scAI
to a dataset obtained from 77 mouse embryonic stem
cells (mESCs), including 13 cells cultured in “2i” media
and 64 serum-grown cells, which were profiled by paral-
lel single-cell methylation and transcriptome sequencing
technique scM&T-seq [3]. The DNA methylation levels
were characterized in three different genomic contexts,
including CpG islands, promoters, and enhancers, which
are usually linked to transcriptional repression [49, 50].
Because DNA methylation data are sparse and binary,

direct dimensional reduction may fail to capture cell
subpopulations (Fig. 5a). scAI was able to distinguish cell
subpopulations after aggregation (Fig. 5a), showing three
subpopulations, C1, C2, and C3. Among them, C3 was
captured by factor 1 with cells cultured in “2i” media
and a few serum-grown cells, while C1 and C2 were cap-
tured by factors 2 and 3, respectively, with other serum-
grown cells (Additional file 2: Figure S7).
Based on the top gene and locus loadings in each factor,

we identified 688, 877 and 422 marker genes and 2164,
953 and 4461 differential methylated loci in C1, C2, and
C3, respectively, with distinct gene expression and methy-
lation patterns among these three groups (Fig. 5b). More-
over, methylation levels of loci near marker genes also
showed group-specific patterns (Fig. 5b). Several known
pluripotency markers (e.g., Essrb, Tcl1, Tbx3, Fbxo15, and
Zpf42) exhibited the highest gene enrichment scores in
factor 1 but the lowest gene enrichment scores in factors
2 and 3. In contrast, differentiation markers, such as Krt8,
Tagln, and Krt19, exhibited higher gene enrichment
scores in factor 3 but lower enrichment scores in factors 1
and 2 (Fig. 5c). Factor 2 exhibited an intermediate state
with a relatively low expression level of both pluripotency
and differentiation markers. Interestingly, several new
marker genes of this intermediate state were observed,
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such as Fgf5, an early differentiation marker involved in
neural differentiation in human embryonic stem cells [51].
Factor-specific loci located in the CpG, promoter, and en-
hancer regions of marker genes are also shown in Fig. 5c.
The pluripotency markers Essrb and Tcl1 had higher gene
enrichment scores, and their corresponding CpG, pro-
moter, and enhancer regions had higher locus enrichment
scores in factor 1. This relationship is consistent with the
fact that some DNA methylation located in the CpG, pro-
moter, and enhancer regions exhibit a negative relation-
ship with the expression level of target genes.
A continuous differentiation trajectory, which was

characterized by the differentiation of naïve pluripotent
cells (NPCs) into primed pluripotent cells and ultimately

into differentiated cells (DCs), was observed using VscAI
(Fig. 5d). Additionally, the embedded genes and factors
showed how specific genes and factors contribute to the
differentiation trajectory. For example, pluripotency
markers, such as Zpf42, Tex19.1, Fbxo15 Morc1, Jam2,
and Esrrb [52, 53], were visually close to factor 1, while
differentiation markers, such as Krt19 and Krt8 [54],
were close to factor 3 (Fig. 5d). Interestingly, although
both pluripotency and differentiation markers were not
highly expressed in the early differentiated state in factor
2, some methylated loci of these markers (e.g., CpG re-
gions of Zfp42 and Tex19.1, enhancer region of Jam2
and Tcl1, and promoter region of Anxa3) were enriched
in factor 2 (Fig. 5d). These observations might be because

Fig. 5 Uncovering coordinated changes between the transcriptome and DNA methylation within an embryonic stem cell differentiation
trajectory. a Comparisons of principal component analyses (PCA) of scRNA-seq data, single-cell DNA methylation data, and aggregated single-cell
DNA methylation data learned by scAI. Cells are colored based on the cell subpopulations identified using scAI. Marker shapes denote the culture
conditions. b Heatmap of the expression level and methylation level of cluster-specific marker genes (left), loci (middle), and loci within 500 kb of
the TSS of marker genes (right) in the three cell clusters. c Genes and loci are ranked based on their enrichment scores in each factor. Labeled
genes (top) are known pluripotency markers or differentiation markers. Labeled loci (bottom), including CpG sites, enhancers, and promoters, are
located within 500 kb of the TSS of marker genes in each factor. d VscAI visualization of cells and known pluripotency markers and differentiation
markers derived from transcriptome (top) and DNA methylation (bottom) data
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their other regions (CpG, enhancer, or promoter) are
methylated or DNA methylation is not the main driven
force for transcriptional silencing. Overall, scAI shows co-
ordinated changes between transcriptome and DNA
methylation along the differentiation process.

Comparison with three multiomics data integration
methods
We next compared scAI with three recent single-cell in-
tegration methods, MOFA [17], Seurat (version 3) [22],
and LIGER [23], on A549 and kidney datasets. Similar to
the observations on the simulation datasets (Fig. 2d),
MOFA cannot capture the variations in the scATAC-seq
data as the variances explained by the learned factors in
the scATAC-seq data were nearly zero (Additional file 1:
Supplementary methods (Details of data analysis by
MOFA) and Additional file 2: Figure S8a-e). While Seurat
and LIGER were designed for connecting cells measured
in different experiments, we applied them to the two co-
assayed single-cell multiomics data to test whether they
are able to make links between co-assayed cells. We
assessed the comparison using two metrics: (a) entropy of
batch mixing and (b) silhouette coefficient. The entropy of
batch mixing measures the uniformity of mixing for two
samples in the aligned space [55], for which scRNA-seq
and scATAC-seq profiles were treated as two batches, and
a higher entropy value means better alignment. The sil-
houette coefficient quantifies the separation between cell
groups using distance matrices calculated from a low-
dimensional space [55], for which cell group labels were
taken from the original study [6] and a higher silhouette
coefficient indicates better preservation of the differences
and structures between different cell groups.
The t-SNE analysis shows the co-assayed cells were

aligned better by LIGER than Seurat when the two
methods were applied to A549 dataset (Fig. 6a). This ob-
servation is further confirmed by computing the entropy
of the batch mixing based on the aligned t-SNE space.
We also computed the entropy of perfect alignment (i.e.,
the t-SNE coordinates of each pair of co-assayed cells
are the same), and found that LIGER showed higher
entropy value than Seurat, but lower entropy than the
perfect alignment (Fig. 6a). In addition, we explored the
quality of time point-based grouping of cells on the t-
SNE space. Cells from 1 and 3 h were mixed together on
the t-SNE space generated by Seurat, while there was a
gradual change of cells from 0 to 3 h on the t-SNE
space generated by LIGER (Fig. 6b). We also per-
formed t-SNE on the cell loading matrix inferred by
scAI (Additional file 2: Figure S8f), and found that
scAI was able to capture the gradual change of cells
transitioning from 0 to 3 h. Quantitatively, scAI pro-
duced significantly higher silhouette coefficients than
those from both Seurat and LIGER (Fig. 6b).

In the kidney dataset, by computing the entropy of the
batch mixing based on the aligned UMAP space, we ob-
served significantly lower entropy of Seurat and LIGER
than that of the perfect alignment (Fig. 6c). We then also
calculated the silhouette coefficient using the UMAP
space for all three methods (Fig. 6d and Additional file
2: Figure S8f). Again, significantly higher silhouette coef-
ficients were observed in scAI, in comparison with those
in Seurat and LIGER (Fig. 6d). Together, these results
suggest that integration methods designed for measure-
ments in different cells (e.g., Seurat and LIGER) may not
accurately identify correspondences between the co-assayed
cells, leading to errors in downstream analysis, and the inte-
gration of parallel single-cell omics data needs specialized
methods, such as scAI, to deal with the epigenomic data
with inherently high sparsity and to better preserve intrinsic
differences between cell subpopulations.

Comparison with methods using single omics data
To evaluate the significance of the parallel profiling of
multiomics over single omics data, we compared scAI
with methods that use only transcriptomic data or only
epigenomic data on both simulation and real datasets.
Specifically, we compared scAI with two methods de-
signed for only scRNA-seq data, including Seurat and
SC3 [56], and two methods designed for only scATAC-
seq data, including Signac (https://satijalab.org/signac/)
and scABC [57]. On simulation datasets, we evaluated
the performance of cell clustering using normalized mu-
tual information (NMI). On real datasets, we compared
the clustering based on those four methods with prior
labels using UMAP.
On simulation datasets, we observed comparable

NMI values between scAI and SC3, but slightly lower
values of Seurat (Additional file 2: Figure S9). For the
clustering of scATAC-seq data, both Signac and
scABC showed significantly lower NMI values com-
pared to those by scAI using both scRNA-seq and
scATAC-seq data. On A549 real datasets, by visualiz-
ing cells in UMAP, we found that both Seurat and
SC3 were unable to detect the transition stage and dis-
tinguish cells from 1 and 3 h. Cell clusters identified
by Signac and scABC using scATAC-seq data alone
were found to be inconsistent with the prior labels
(Additional file 2: Figure S10a). On kidney dataset,
Seurat was unable to distinguish the DCTC cells and
CDPC cells, and Signac and scABC were also producing
clusters inconsistent with prior labels (Additional file 2:
Figure S10b). On mESC dataset, while both Seurat
and SC3 correctly identified the cell subpopulations,
clusters identified by Signac and scABC also mixed
together in UMAP (Additional file 2: Figure S10c).
Overall, scAI is able to consistently identify the ex-
pected clusters and also the clusters with subtle
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transcriptomic differences but strong chromatin ac-
cessibility differences (as shown in kidney dataset),
showing the importance of integrating parallel single-cell
multiomics data.

Discussion
A key challenge in analyzing single-cell multiomics data is
to integrate and characterize multiple types of measure-
ments coherently in a biologically meaningful manner.

Fig. 6 Comparisons with multiomics data integration methods. a t-SNE visualizations of scRNA and scATAC-seq data from co-assayed
A549 cells, colored by measurements (RNA vs. ATAC) after integration with Seurat (left) and LIGER (middle). Right panel: comparisons of
alignment score (quantified by the entropy of batch mixing) from perfect alignment (termed as gold-standard) with that computed from
the aligned t-SNE space using Seurat and LIGER. p values are from the Wilcoxon rank-sum test. b Cells are colored by the data collection
times. Right panel: comparisons of silhouette coefficient computed from the t-SNE coordinates of each cell generated by scAI with that
computed from the aligned t-SNE space using Seurat and LIGER. c, d UMAP visualizations of scRNA and scATAC-seq data from co-
assayed mouse kidney cells colored by measurements (RNA vs. ATAC) (c) and published cell labels (d) after integration with Seurat and
LIGER. The alignment score and silhouette coefficient were also shown

Jin et al. Genome Biology           (2020) 21:25 Page 12 of 19



Often, different components in such multiomics measure-
ments exhibit fundamentally different features, for ex-
ample, some data are binary and inherently sparse whereas
the other are more akin to a continuous distribution after
normalization [9]. We presented an unsupervised method,
scAI, for integrating scRNA-seq data and single-cell chro-
matin accessibility or DNA methylation data obtained from
the same single cells. scAI learned three sets of low-
dimensional representations of high-dimensional data: the
gene, locus, and cell loading matrices describing the rela-
tive contributions of genes, loci, and cells in the inferred
factors, and the cell-cell similarity matrix used for aggregat-
ing sparse epigenomic data. These learned low-rank matri-
ces allow direct identification of cell subpopulations/states
and the associated marker genes or loci that characterize
each subpopulation, and provide a convenient visualization
of cells, genes, and loci in the same low-dimensional space.
Simultaneous analyses of the gene and locus loading matri-
ces enable inference of the regulatory relationships be-
tween the transcriptome and the epigenome. Together,
scAI provides an effective and biologically meaningful way
to dissect heterogeneous single cells from both transcrip-
tomic and epigenomic layers.
The sparse and binary nature of single-cell ATAC-seq

or DNA methylation data poses a computational challenge
in analysis. Aggregation has been a primary method for
analyzing such data [20]. For example, Cicero, an algo-
rithm used for predicting cis-regulatory DNA interactions
from scATAC-seq data, aggregates similar cells using a k-
nearest neighbors approach based on a reduced dimen-
sional space (e.g., t-SNE and DDRTree) [58]. However, as
shown in our simulated data and real co-assayed data, di-
mensional reduction techniques often fail to capture cell
similarity from the chromatin accessibility or DNA methy-
lation profiles. To deal with this difficulty, scAI first com-
bines sparse epigenomic profiles from subgroups of cells
that exhibit similar gene expression and epigenomic pro-
files. These similar cells are analyzed by learning a cell-cell
similarity matrix based on a matrix factorization model.
The differences between such learned similarity matrix
and the similarity matrix computed using only scRNA-seq
or only aggregated scATAC-seq data were also investi-
gated (Additional file 1 (Comparison of cell-cell similarity
matrix) and Additional file 2: Figure S11 and Figure S12).
Our iterative and unsupervised approach combines infor-
mation from multiple-omics layers by taking advantages
of the strengths in optimization models.
To investigate whether scAI might make epigenomic

data seemingly more distinct than they actually are, we
employed the following two strategies on simulation
datasets. Firstly, we compared the aggregated scATAC-
seq data obtained from scAI with the raw ATAC-seq
data prior to making them sparse and binarization
(termed as bulk ATAC-seq data hereafter) in two ways:

the direct visualization of loci patterns using heatmap
and the low-dimensional visualization of cells using
UMAP. The bulk ATAC-seq data and the aggregated
scATAC-seq data were found to exhibit the same loci
patterns (Additional file 2: Figure S13a). Both bulk
ATAC-seq and aggregated scATAC-seq data were found
to be distinct across clusters (Additional file 2: Figure
S13b). These observations were consistent across all the
eight simulation datasets. Secondly, we randomly permuted
scATAC-seq data across all cells before applying scAI to
the scRNA-seq data and the permuted scATAC-seq data.
We found that the aggregated permuted scATAC-seq data
were still distinct across clusters in some cases in UMAP
(Additional file 2: Figure S13c), partly because there were
still differential accessibility patterns across these clusters
after permutation (Additional file 2: Figure S13d). Next,
we considered an extreme case where all the values of
scATAC-seq data are equal and found aggregated
scATAC-seq data did not produce any artificial clus-
ters, partly due to our normalization strategy in which
scAI aggregates scATAC-seq profile after normalizing
Z°R with the sum of each column equaling 1. On the
other hand, scAI is able to identify cell clusters with
high accuracy on all simulation datasets (Fig. 2e). Our
analysis suggests scAI robustly maintains cellular het-
erogeneity within and between different subpopulations
when it enhances epigenomic signals.
To investigate whether scAI introduces high portion

of false positives during differential accessibility analysis
using aggregated scATAC-seq data, we calculated the
percentage of false positive differential accessible loci
based on the aggregated scATAC-seq data by comparing
them to the differential accessible loci identified using
the bulk ATAC-seq data. Specifically, the percentage of
false positives was defined as the percentage of differen-
tial accessible loci that were not in the set of differential
accessible loci identified using the bulk ATAC-seq data.
We adopt the Wilcoxon rank sum test for accessibility
of cells in each subpopulation and the remaining cells.
We found that the percentages of false positive differen-
tial accessible loci were less than 7% on simulation data-
sets (Additional file 2: Figure S14). A direct visualization
for the datasets 7 and 8 with imbalanced cluster size
shows consistent loci patterns and highly overlapped differ-
ential accessible loci between the aggregated scATAC-seq
data and bulk ATAC-seq data (Additional file 2: Figure
S15). These results suggest that the aggregation strategy has
a good control of false positives for differential accessibility
analysis.
The single-cell multiomics data are sparse and have

large amounts of missing values. The scRNA-seq data
have two states: non-zero and zero values. The zero
values might be either non-expressed values or due to
dropout events [59]. The single-cell methylation data
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have three states: methylated, unmethylated, and missing
values. While replacing missing values by zeros and
adopting a model that can potentially impute the miss-
ing values, a strategy used in scAI, might improve down-
stream analysis due to the fact that the large portions of
missing values contain true zero values, such approach
likely has several limitations. First, it might introduce
false signals when the missing values might actually
correspond to non-zero signals. Second, such approach
cannot distinguish methylated and missing states for the
DNA methylation data. One way to address such diffi-
culty is to throw away the missing values, which is
particularly useful for the methylation data (e.g.,
scM&T-seq [3]) because it allows to distinguish methyl-
ated and missing values. One powerful approach is to
use probabilistic models, such as MOFA [17] and its
successor MOFA+ [19], which do not include those
missing value regions when computing the likelihood. In
principle, we can throw away the missing values in scAI
by incorporating a binary matrix into the second term of
our model (Eq. (1)), an approach similar to incomplete
nonnegative matrix factorization model [60].
Comparing with recent methods, such as MOFA [17],

Seurat [22], and LIGER [23], scAI is able to capture cell
states with higher accuracy for the multiomics data in
which only gene expression or chromatin accessibility
may be discriminated between cell states, for example,
to uncover novel cell subpopulations with distinct epige-
nomic profiles but similar transcriptomic profiles, as
seen in the kidney dataset. Such capability of identifying
cell subpopulation exhibiting only distinct epigenetic
profiles will facilitate further analysis of epigenetics in
controlling cell fate decision and may help to reveal im-
portant transcriptional regulatory mechanism [61]. Simi-
lar to uncovering new cell subpopulation, scAI can
uncover new cell transition states induced by epigenetics
as seen in the analysis of the dexamethasone-treated
A549 cell dataset [6], and identify co-regulations coordi-
nated between transcriptome and DNA methylation, as
seen in the mESC dataset.
For the methods (e.g., Seurat and LIGER) that are de-

signed for integrating single-cell data measured in different
cells, in principal, they can be applied to the parallel single-
cell multiomics data. However, we found that these two
methods yield deficient alignment between co-assayed cells,
as seen in the A549 and kidney datasets. Such alignment er-
rors might affect downstream analysis such as inferring
regulatory links. Moreover, these two methods, unlike scAI,
need to transform other types of features such as chromatin
accessibility or DNA methylation into gene level, which
leads to limited resolution and cannot make full use of epi-
genomic information. As parallel single-cell multiomics data
becomes more widely available, methods like scAI will be
essential to make sense of this new type of data.

Parallel single-cell sequencing provides a great oppor-
tunity to infer the regulatory links between transcriptome
and epigenome [9]. In this study, the regulatory links be-
tween chromatin regions and marker genes were inferred
by combining the correlation analysis and the nonnegative
least square regression, as seen in the A549 dataset. Be-
cause many factors such as chromatin regulators, histone
modification, and the microenvironment can affect the
transcriptional regulation [62], more complex and accur-
ate models are needed to improve the accuracy of regula-
tory relationship inference. While it remains to be done,
scAI provides a computational tool for integrating parallel
single-cell omics data, including visualization, clustering,
differential expression/chromatin accessibility analysis,
and regulatory relationship inference.

Conclusions
Here, we present scAI, which is one of the first computa-
tional methods for the integrative analysis of single-cell
transcriptomic and epigenomic profiles that are measured
in the same cell. scAI was shown to be an effective tool to
characterize multiple types of measurements in a biologic-
ally meaningful manner, dissect cellular heterogeneity
within both transcriptomic and epigenomic layers, and
understand transcriptional regulatory mechanisms. Due to
rapid development of single-cell multiomics technologies,
scAI will facilitate the integrative analysis of the current
and upcoming multiomics data profiled in the Human
Cell Atlas as well as the Pediatric Cell Atlas [63].

Methods
Optimization algorithm for scAI
The optimization problem (Eq. (1)) is solved by a multi-
plicative update algorithm, which updates variables W1,
W2, H, and Z iteratively according to the following equa-
tions (Additional file 1: Supplementary methods (Details
of scAI) and Additional file 2: Figure S16):

Wij
1←Wij

1

X1HT
� �ij

W 1HHT
� �ij

W ij
2←Wij

2

X2 Z∘Rð ÞHT
� �ij

W 2HHT
� �ij

Hij←Hij αWT
1 X1 þWT

2 X2 Z∘Rð Þ þ λH Z þ ZT
� �� �ij

αWT
1 W 1 þWT

2 W 2 þ 2λHHT þ γeeT
� �

H
� �ij

Zij←Zij XT
2 W 2H

� �
∘Rþ λHTH

� �ij

XT
2 X2 Z∘Rð Þ� �

∘Rþ λZ
� �ij ;

where Wij
I ; I ¼ 1; 2 represent the entry in the ith row

and jth column of W1 (p × K) and W2 (q × K). Hij and
Zij represent the ith row and the jth column of H (K ×
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n) and Z (n × n). e (K × 1) represents a vector with all
elements being 1. In each iteration step, H is scaled with
the sum of each row equaling 1.
In this algorithm, we initialize W1, W2, H, and Z using

a 0–1 uniform distribution and generate a binary matrix
R using a Bernoulli distribution with a probability s. α
and λ are parameters to balance each term, and γ is a
parameter to control sparsity of each row of H. The default
values for those parameters are as follows: s = 0.25, α = 1, λ
= 10,000, and γ = 1. The rank K is determined by a
stability-based method [28] (Additional file 1: Supplemen-
tary methods (Rank selection) and Additional file 2: Figure
S17 and Figure S18). Since H is scaled by row, the entry of
matrix H is less than 1. Thus, the magnitude of the third
term is small and λ usually is large to ensure the import-
ance of this term. The parameter α is set to be small be-
cause the magnitude of this term is usually relatively large,
which does not mean that W1 and W2 are not important
in the model. The parameters used in all the datasets are
summarized in Additional file 2: Table S2. Robustness ana-
lysis on the parameter indicates that the overall perform-
ance of scAI is relatively robust to choices of parameter
values within certain ranges (Additional file 1: Supplemen-
tary methods (Robustness analysis) and Additional file 2:
Figure S19).

Identification of cell subpopulations
From transcriptomic and epigenomic profiles, scAI projects
cells into a cell loading matrix H, which is a low-dimensional
representation of both profiles. The subpopulations are then
identified by clustering through H using the Leiden commu-
nity detection method [64]. Specifically, a shared nearest
neighbor (SNN) graph is first constructed by calculating the
k-nearest neighbors (20 by default) for each cell based on the
matrix H. Then, the fraction of shared nearest neigh-
bors between the cell and its neighbors is used as
weights of the SNN graph. Next, we identify cell sub-
populations by applying the Leiden algorithm [64] to
the constructed SNN graph with a default resolution
parameter setting of 1.

Identification of cell subpopulation-specific marker genes
and epigenomic features
After determining the cell subpopulations, we adopt a
likelihood-ratio test for gene expression of cells in the kth
cell subpopulation and cells not in the kth cell subpopula-
tion. Genes are considered as the kth cell subpopulation-
specific marker genes if (i) the p values are less than 0.05,
(ii) the log fold-changes are higher than 0.25, and (iii) the
percentage of cells with expression in the kth cell subpopu-
lation is higher than 25%. Cell subpopulation specific-
epigenomic features are identified using a similar approach.

Visualization of cells, genes, and loci in a 2D space
scAI simultaneously decomposes gene expression matrix
and accessibility or methylation matrix into a set of low-
rank matrices, including the gene loading matrix W1,
locus loading matrix W2, cell loading matrix H, and cell-
cell similarity matrix Z. Based on these inferred low-
dimensional representations, we simultaneously visualize
cells, genes, and loci in a single two-dimensional space
using similarity weighted nonnegative embedding [65].
Specifically, we first compute the coordinates of the in-
ferred factors. H is smoothed by the similarity matrix Z
using Hs = H × Z. Then, we compute pairwise similarity
matrix S between factors (rows of Hs) by cosine distance.
The similarity matrix S is converted into a distance

matrix D according to D ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1−SÞp

: The Sammon
mapping method [27] is then used to project the dis-
tance matrix D onto a two-dimensional space (a matrix
with K rows (K is the number of factors) and 2 col-
umns). The values in this two-dimensional matrix are
scaled (ranging from zero to one) to obtain the coordi-
nates of factor C according to C = (Ckx,Cky), where Ckx

and Cky represent the x and y coordinates of the kth
factor.
Next, we compute the coordinates of cell j (E = (Ejx,

Ejy)) in the two-dimensional space according to:

Ejx ¼
P

k
ðHkjCkxÞαP
k
ðHkjÞα ; Ejy ¼

P
k
ðHkjCkyÞαP
k
ðHkjÞα ;

where the parameter α controls how tight the allowed
embedding is between the cells and the factors. The rea-
sonable value range is from 1 to 2. Large values move
the cells closer to the factors, while it may distort the
data when α is higher than 2. α = 1.9 is used as default.
The coordinates of cells E are further smoothed by the
similarity matrix Z using Es = E × Z and then are used
for visualization.
Finally, we embed the marker genes and loci into the

same two-dimensional space according to W1 and W2 as
follows:

FI
jx ¼

P
k
ðWjk

I CkxÞ
α

P
k
ðWjk

I Þ
α ; FI

jy ¼
P

k
ðWjk

I CkyÞ
α

P
k
ðWjk

I Þ
α ;

where I = 1,2 represents the embedding of genes and
loci, respectively. Accordingly, using this integrative
dimension-reduction approach, the marker genes and
loci that separate cell states alongside the cells can be vi-
sualized together to help interpretation of multiomics
data in an intuitive way.

Identification of factor-specific marker genes and
epigenomic features
Using scAI, we obtain gene loading and locus loading
matrices, W1 and W2, and the values in each column of
W1 and W2 are respectively used to identify the genes
and epigenomic features associated with each factor. To
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rank the gene i in factor k, we define a gene score: Sik1

¼ Wik
1 =

X

j

W jk
1 . Similarly, we rank the loci in each factor

by defining a locus score based on W2.
To identify factor-specific marker genes and epige-

nomic features, we divide the genes and loci into two
groups for each factor. The z-score is computed for each

entry in each column of W1 and W2: zik1 ¼ ðWik
1 −μ

j
1Þ=σk1

and zik2 ¼ ðWik
2 −μ

j
2Þ=σk

2 , where μk1; μ
k
2 are the average

values of the kth column in W1 and W2, respectively,
and σk1; σ

k
2 are the corresponding standard deviations.

Let AGk and ALk represent the sets of candidate genes
and loci, respectively, associated with the kth factor if zik1
; zik2 are greater than T (0.5 by default). Smaller T value
gives more features that might contain redundant infor-
mation, whereas larger T value might leave key features
out. We also divide the cells into two groups for each
factor using the similar method. In more detail, we com-
pute the z-score for each entry in each row of the cell
loading matrix H by zkj = (Hkj − μk)/σk. If zkj is greater
than T, cell j is assigned to Ck

1 ; otherwise, it is assigned
to Ck

2 . Next, using a Wilcoxon rank-sum test for the
candidate genes in AGk in cells in Ck

1 and Ck
2, we statisti-

cally test the differences of the candidate genes in the
different cell groups. Candidate genes are considered as
factor-specific marker genes if (i) the p values are less
than 0.05, (ii) the log fold-changes are higher than 0.25,
and (iii) the percentage of cells with expression in Ck

1 is
greater than 25%. Factor-specific epigenomic features
are identified using the similar approach.

Inference of factor-specific transcriptional regulatory
relationships
Once the factor-specific marker genes and loci are deter-
mined, we next infer the regulatory links between them.
For factor k, the two sets AGk and ALk consist of the
identified factor-specific marker genes and loci, respect-
ively. For a gene gi in AGk, we select a locus set Likð⊆ALk
Þ , which includes loci within 500 kb of the transcription
start site (TSS) of gi, as candidate regulatory regions for
a gene gi. To determine whether the expression level of
gi is influenced by the accessible status of the candidate
regions in Lik , we use a perturbation approach based on
the correlations between the expression level and acces-
sibility. In this approach, first, we compute the Pearson
correlation P1 between the gi expression level and the
accessibility of each locus in Lik in all cells. Second, we
perturb the gi expression levels by setting its expression
in cells in cell group Ck

1 to 0 and then compute the
weighted correlation P2 between the perturbed gi expres-
sion level and the accessibility of Lik in all cells with Hk.

as its weight, where Hk. represents the kth row of H.
Third, we set the accessibility of Lik in cells in cell group

Ck
1 to 0 and then compute the weighted correlation P3

between the original gi expression level and the per-
turbed accessibility of Lik in all cells with Hk.. Finally, we
compute the differential correlation according to dP1 =
∣ P1 − P2 ∣ , dP2 = ∣ P1 − P3∣. The regulatory links be-
tween gene gi and loci lsik ⊆L

i
k are indicated if the differen-

tial correlation of dP1 or dP2 is greater than the average
value of P1 and the original correlation P1 is greater than
the average value of P1.
For the identified regulatory links between genes

and loci, to determine which transcription factors
(TFs) regulate each gene gi, we first identified TF mo-
tifs enriched in the loci set lsik using chromVAR [32].
When running chromVAR using default parameters,
the raw scATAC-seq data matrix of all loci was used
as an input. Then, we regressed the gene expression
level Ei

Ck
1
of each gene across cells in Ck

1 with that of

the identified TFs EiTF
Ck

1
using nonnegative least squares

regression, i.e., β̂
i ¼ arg minβikEiTF

Ck
1
−Ei

Ck
1
βik2

2
; s:t:βi≥0 .

Regulatory relationships were inferred if the regres-

sion coefficients β̂
i
of the TFs were greater than zero.

Validation of the inferred regulatory relationships
To validate the inferred regulatory relationships in A549
dataset, we collected all TFs that regulate the marker
genes (ABHD12, BASP1, CDH16, CKB, NFKBIA, NR3C1,
PER1, SCNN1A, and TXNRD1) from the hTFtarget data-
base (http://bioinfo.life.hust.edu.cn/hTFtarget/), which cu-
rated a comprehensive TF-target regulation from various
ChIP-seq datasets of human TFs from NCBI Sequence
Read Archive (SRA) and ENCODE databases. We take
ABHD12 as an example to compute the fold enrichment
of the inferred regulatory relationships in this database.
Among the total 374 collected TFs in chromVAR, 92 TFs
are found to regulate ABHD12 in hTFtraget. Among our
identified 12 TFs of ABHD12 using chromVAR, 7 TFs are
found to regulate ABHD12 in hTFtraget. Thus, the fold
enrichment of our predicted regulations of ABHD12 is
calculated by (7/12)/(92/374) = 2.37. A fold enrichment
value greater than 1 indicates an over-representation of
the inferred regulations in the database.

Datasets and preprocessing
The kidney and A549 datasets were downloaded from
GSM3271044 and GSM3271045, and GSM3271040 and
GSM3271041, respectively. The preprocessed mESC data-
set was obtained from a previous study [17]. The detailed
description of these datasets and their preprocessing were
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shown in Additional file 1: Supplementary methods
(Details of datasets and preprocessing).

Feature selection
Two feature selection methods were used in this study.
If the cell groups were known (e.g., at the time of data
collection), the most informative genes were selected
using a Wilcoxon rank-sum test with the same parame-
ters as in the identification of factor-specific features.
For example, for the scRNA-seq data in the A549 data-
set, we identified the differentially expressed genes at
different time points and used these genes as informative
genes for the downstream analyses. For other datasets,
the average expression of each gene and the Fano factor
were first calculated. The Fano factor, defined as the
variance divided by the mean, is a measure of dispersion.
Next, the average expression of all genes was binned into
20 evenly sized groups, and the Fano factor within each
bin was normalized using z-score. Then, genes with nor-
malized Fano factors larger than 0.5 and average expres-
sions larger than 0.01 were selected. Moreover, we also
selected genes with larger Gini index values [66]. Gini-
Clust R package was run with default parameters. Briefly,
genes whose normalized Gini index is significantly above
zero (p value < 0.0001) are labeled high Gini genes and
selected for further analysis. For the kidney dataset, we
selected the informative genes using the second method
and loci that were within 50 kb of the TSS of these in-
formative genes.

Method comparisons on three datasets
We compare the performance of scAI with three other
methods, including MOFA [17], Seurat (version 3) [22],
and LIGER [23]. MOFA takes normalized scRNA and
scATAC-seq data as inputs, then infers latent factors
using a generalized PCA and assesses the proportion of
variance explained by each factor in each type of data.
Seurat derives a “gene activity matrix” from the peak
matrix of the scATAC-seq data by simply summing all
counts within the gene body + 2 kb upstream, represent-
ing a synthetic scRNA-seq dataset to leverage for inte-
gration. Seurat then co-embeds the scRNA-seq and
scATAC-seq cells in the same low-dimensional space by
identifying “anchors” between the ATAC-seq and RNA-
seq datasets. Since LIGER does not provide specific
functions for integrating scRNA-seq and scATAC-seq
or DNA methylation data, we used scRNA-seq data
and the inferred “gene activity matrix” from Seurat as
inputs for integrative analysis. The detailed description
of how these comparisons were performed is available in
Additional file 1: Supplementary methods (Details of
method comparisons on three datasets).
Based on the first two dimensions of t-SNE or UMAP,

we quantify the alignment score of the scRNA-seq and

scATAC-seq cells using entropy of batch mixing, and
assess the separation of the cell groups using silhou-
ette coefficient. These two evaluation metrics were
defined in [55]. The detailed description is available
in Additional file 1: Supplementary methods (Details
of method comparisons on three datasets).
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