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Lattice models provide discontinuous approximations of the displacement field over the computational

domain, which facilitates the modeling of fracture and other discontinuous phenomena. By 

discretizing the domain with two-node elements, however, ordinary lattice models cannot simulate the

Poisson effect in a local (intra-element) sense, which is problematic for some types of analyses. 

Furthermore, such methods are limited in the range of Poisson ratio values that can be simulated. We

present a new approach to remedy such known, yet underappreciated, shortcomings of lattice 

models. In this approach, the Poisson effect is modeled through the introduction of fictitious stresses 

into a regular lattice. Capabilities of the new approach are demonstrated through compressive test 

simulations of homogeneous and heterogeneous materials. The simulation results are compared with 

theory and those of continuum finite element models. The comparisons show good agreement for 

arbitrary Poisson ratios (including ν ⩾ 1/3) with respect to nodal displacement, intra-element stress, 

and nodal stress. This form of discrete method, supplemented by the proposed fictitious measures of 

stress, retains the simplicity of collections of two-node elements.

1. Introduction

Lattice models are attractive for simulating the fracturing of various materials, particularly when 

fracture development is affected by material structure or other forms of heterogeneity present at the 

scale of discretization. Lattice models are typically based on a set of nodes and their interconnection 

via primitive, one-dimensional (1-D) elements. Such models, which include some types of particle 

models, can be viewed as mechanical analogues of the equations of continuum 

mechanics [1], [16], [21], [31]. The nodes can be arranged in regular or irregular patterns. Continuum 

properties are obtained, in an approximate sense, through appropriate assignments of the element 

properties. As described herein, however, lattice models are limited in their abilities to represent local 

stress conditions, particularly with respect to the influence of Poisson’s ratio [6], [18], [12]. Proper 

representation of the Poisson effect is an essential ingredient within most rock mechanics 

simulations, including those affected by multiaxial stress conditions or material heterogeneity.

Beginning with the work of Hrennikoff [19], a variety of discrete methods have been developed to 

represent continua as collections of particles or lattice structures. Particle-based methods, including 

the discrete element method [9], are used to simulate the interaction of discrete features and their 

collective influence on the behavior of geological systems. Micro-mechanical parameters used in the 

discrete elements (i.e., springs or bonds between the particles) can be determined, through 

calibration with laboratory results, to represent macroscopic material behavior [38]. Random particle 
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models are also used to simulate fracture behavior of other geomaterials such as concrete [4], [10]. 

Macroscopic representation of the Poisson effect is accomplished by adjusting the ratio of the 

average strain between the longitudinal and transverse directions [10], [11]. Lattice models are 

another means for studying elasticity and breakdown of a variety of materials and 

structures [17], [33], [22], [15]. Global representation of Young’s modulus and Poisson’s ratio can be 

obtained by adjusting longitudinal and transverse dimensions, or stiffnesses, of the lattice beam 

elements [8], [3], [36]. Whereas such models simulate the Poisson ratio in a global sense, 

inaccuracies are present at the elemental level, which can be viewed as an artificial form of 

heterogeneity that is not present in most models constructed from continuum elements. Moreover, 

direct linkages between input mechanical parameters and experimental measurements are difficult to 

establish for discrete methods [31].

The elasticity of discrete methods, without using free parameters, has been studied. Griffiths and 

Mustoe [16] relate the elastic constants, Young’s modulus and Poisson’s ratio, and the spring 

stiffnesses through an approach based on strain energy density. Such relations are used herein for 

comparison purposes. Liu et al. [25] derive similar relationships to model failure behaviors such as 

breaking displacement, shear resistance, and coefficient of friction. Alternatively, three-node discrete 

element models have been developed to accommodate a volumetric constitutive relation. Hori et 

al. [18] proposed a discrete-type finite element model based on the use of discontinuous shape 

functions for each node. Cusatis and Schauffert [12]developed an integrated framework between 

discrete and continuum methods to overcome the disadvantages of discrete methods. A local 

representation of both Young’s modulus and Poisson’s ratio was obtained by a hybrid system, in 

which a planar lattice is combined with constant strain triangle finite elements [6]. Although these 

discrete approaches accurately represent the Poisson effect with a set of discrete springs, or in 

conjunction with finite elements, the simplicity of two-node elements (as a means for modeling 

material breakdown) is compromised. Munjiza [27] developed a combined finite–discrete element 

method (FDEM), in which elasticity calculations are based on continuum finite element methods, and 

discontinuous behavior is represented by a discrete method. Whereas the transition from continuous 

to discontinuous behavior needs proper attention [5], [29], [30], [34], FDEM capably simulates both 

elasticity and failure processes of geomaterials, as demonstrated through comparisons with theory 

and laboratory studies [26], [24]. Munjiza et al. [28] cover several methods that describe physical 

systems using discrete entities.

This paper calls attention to significant shortcomings of discontinuous (lattice) models with respect to 

simulating stress conditions within elastic continua. In particular, models constructed with discrete, 

two-node, elements do not provide a local representation of the Poisson effect. Furthermore, such 

models do not accommodate the full range of Poisson’s ratio, nor even the range exhibited by some 

rocks [14]. A new approach is presented to address these known, yet underappreciated, 

shortcomings. Transverse strains, based on fictitious measures of principal stress calculated at the 

nodal points, are iteratively introduced to accurately represent the Poisson effect within a regular 

lattice. With the proposed approach, element stiffnesses are based directly on the material properties 

(i.e. Young’s modulus and Poisson’s ratio), such that calibration processes are not necessary. To 
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demonstrate the accuracy of the proposed approach, simulation results for homogeneous systems 

under uniform loading are compared with both analytical solutions and practical relationships, which 

have been widely used to determine the spring constants of discrete methods. Comparisons are 

made for intra-element stress, nodal stress, and nodal displacement. Thereafter, the accurate 

modeling of multi-phase systems is demonstrated through comparisons with finite element results.

2. Modeling of elastic continua: limitations of lattice models

Lattice models are based on discontinuous approximations of the field variable over the 

computational domain. This facilitates the modeling of fracture development and other discontinuous 

phenomena. However, there are significant shortcomings of lattice models with respect to 

representing local stress conditions. For example, for the boundary conditions and loading shown 

in Fig.     1a, conventional continuum approaches predict uniaxial compressive stress at any point within

the domain. All normal stress components are either compressive or have zero magnitude. Lateral 

straining (i.e., the Poisson effect) occurs, in accordance with theory. Consider a regular truss network,

configured as shown in Fig.     1b and likewise loaded in compression. It exhibits lateral straining, but 

only at a fixed proportion of the vertical compressive strain. Furthermore, the lateral truss elements 

are in tension, which disagrees with conventional theories of elasticity. Such truss networks exhibit 

vertical cracking when the lateral tension reaches the prescribed tensile strength of the material. 

Whereas cracking parallel to the direction of compressive loading has been observed during physical 

testing, such cracking is typically a consequence of finer-scale material heterogeneity and is more 

appropriately related to strain capacity. Moreover, the truss element forces depend on the orientation 

of the truss network with respect to the direction of loading.

Download high-res image     (138KB)

Download full-size image

Fig. 1. Model response to uniaxial compression: (a) homogeneous continuum and Mohr circle representation of the stress state, 

where σn and σt represent normal and tangential stress, respectively (tensile stress is positive), and (b) unit cell of a regular network of 

truss elements.

By supplementing the truss elements with shear and rotational stiffnesses, a range of macroscopic 

Poisson ratio can be simulated. One such lattice model is presented in the following section. The 

macroscopic Poisson ratio can be controlled by adjusting the relative magnitudes of the axial and 
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shear stiffnesses. However, such lattice models provide a flawed representation of the Poisson effect:

under uniaxial compressive loading, tension is wrongly produced in the orthogonal direction.

3. Lattice model formulation

Hereafter, a specific form of lattice model, based on the rigid-body-spring concept of Kawai [23], is 

used to discretely represent elastic continua. This approach has been used to simulate elasticity and 

breakdown of a variety of materials [7], [13], [2]. For a triangular array of nodal points, the lattice 

geometry is shown in Fig.     2a. In this study, nodal connectivity is prescribed and remains constant 

throughout the analysis: contact modeling used in the Distinct Element Method (DEM) is not 

considered. For this 2-D case, each node has two translational and one rotational degrees of 

freedom. Each element ij is composed of a zero-size spring set that is connected to nodes iand j via 

rigid links. The spring set is formed from two axial (normal and tangential) springs, kn and kt, and one 

rotational spring, kφ, as shown in Fig.     2b. The spring coefficients are assigned according to

in which E is the Young’s modulus, Aij is the area of the facet common to nodes i and j (Fig.     2a), hij is 

the distance between the same nodes, and Iij is the second moment of area Aij. By adjusting α1 and α2,

macroscopic modeling of both elastic constants (E and Poisson ratio, ν) is possible.
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Fig. 2. (a) Portion of a triangular mesh; and (b) a zero-size spring set located at the centroid of Aij within element ij.

By equating strain energy densities of an elastic continuum (in plane stress) and a regular triangular 

lattice, the spring coefficients are related to the elastic constants as follows [16]:

where the range of Poisson ratio is limited to −1 < ν < 1/3. Similar formulations can be found 

elsewhere [20], [25] and are widely used to determine the spring constants of discrete methods. For a

particular value of the Poisson ratio, it is possible to rewrite Eq. (2) in terms of α1 and α2. For example,

for ν = 0.2, α1 and α2 become 1.25 and 1.25/3, respectively, which are used herein for comparison 

purposes. Whereas strain conditions obtained by Eq. (2) for regular lattices have been validated, the 
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local stress conditions have not been discussed [16]. The following section introduces existing 

procedures to determine local stress conditions from the lattice structure, and a new approach to 

accurately represent the Poisson effect.

4. Elastic stress analysis

4.1. Stress calculation

The state of stress can be determined within the lattice elements or at the nodes [32], [37]. After 

solving the governing field equations to determine nodal displacements, the forces within the normal 

and tangential springs (Fnand Ft) are calculated. These spring forces are used in each of the following 

forms of stress calculation.

Intra-element stress vector: The stresses associated with the normal and tangential springs are

The rotational spring contributes to the element stiffness, but it is not considered in the stress 

calculations.

Nodal stress tensor: The hexagonal cell associated with node i is sectioned through the node and 

perpendicular to the direction of interest defined by angle θ (Fig. 3). The forces on the newly formed 

cut face are determined by summing the weighted force contributions of all M elements connecting 

into the node [6], [37]:
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Fig. 3. (a) Force components acting on each facet of a hexagonal cell, and (b) force components on cut face defined by angle θ.

The weighting factor Rm is set equal to A′m/Am, where Am is the area of facet m and A′m is the area of 

facet m on the negative side of the cut plane, with respect to the normal direction (Fig.     3b). If the cut 
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plane intersects the facet, 0 < Rm < 1; otherwise, Rm equals zero or unity depending on whether all 

vertices of facet m are located on the positive or negative side of the cut plane, respectively. The 

stress components are then

where Aθ is the area of the cut face (Fig.     3b). By calculating σnθ and σtθ for two mutually perpendicular 

cut faces, principal stress can be determined. The principal stress quantities at each node can be 

obtained from the characteristic polynomial (i.e., quadratic or cubic equation in 2-D or 3-D, 

respectively). In this study, a practical method for determining the polynomial roots is used [35]. The 

nodal stress tensor calculation is an integral part of the new approach discussed in the following 

section, whereas the intra-element stress vector is used to evaluate the numerical results discussed 

in Section 5.1.

4.2. Fictitious stress approach

We propose a discrete modeling of continua that avoids the spurious stress production described in 

Section 2. Considering a planar regular grid under general loading conditions (e.g., Fig.     4a), the 

following steps are taken:

Step 1. The lattice model is constructed and nodal displacements are determined for the case 

of α1 = α2 = 1 (Eq. (1)), which corresponds to ν = 0. Principal stresses, σI, are calculated at 

each nodal site based on the nodal stress tensor calculations described in Section 4.1. 

Likewise, principal strains, εI, can be calculated. The index I = 1 or 2 for the direction of the 

major or minor principal stress/strain, respectively.

Step 2. We define a fictitious measure of orthogonal strain, by using the calculated principal 

strains and actual non-zero value of νaccording to:

Multiplying both sides by E, the fictitious stress can be calculated as:

Now, the fictitious force at a node (e.g., Fig.     4b) is

where Aθ is the area of the cut facet through the lattice node. The normal to Aθ,I is in direction I. 

This fictitious force is balanced by opposing forces acting on the cell facets (Fig.     4b). The 

magnitude of the force on each facet is proportional to the projected area of the facet on Aθ,I. 

These fictitious forces are resolved into normal and tangential components and introduced into
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the spring network. The set of fictitious forces associated with a given cell is self-equilibrating, 

as shown in Fig.     4c.

Step 3. Nodal displacements are calculated again, with the boundary conditions used in Step 1

and the fictitious spring forces obtained in Step 2. The new principal stresses, σσI, are calculated

at each nodal site. The procedure ends if ||σσI-σI|| < e, which is a predefined tolerance; 

otherwise Steps 2 and 3 are repeated with updated σI=σσI. With each iteration successively 

smaller increments of fictitious spring force are accumulated until the solution converges.
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Fig. 4. (a) Planar regular lattice under biaxial compression (showing nodal and elemental arrangements, along with associated 

hexagonal cells); (b) fictitious forces applied to a sectioned cell; and (c) fictitious forces acting on a complete cell.

For the special case of σ2 = 0 with no lateral restraint, iteration is not required: ||σσI-σI|| ≈ 0. With such 

boundary conditions, the fictitious spring forces stretch the lattice network in the lateral direction, but 

do not change the stress field. This results from the proper distribution of the fictitious spring forces 

(Fig.     4b) based only on the fictitious stress at the lattice nodes (Eqs. (9), (10)). The contribution of this

fictitious spring force to the network is analogous to uniform thermal expansion in a 1-D bar without 

restraint. Another special case in which iteration is not required is when both vertical and lateral 

boundaries are restrained as shown in Fig.     4a. For such boundary conditions, the fictitious stresses 

for each subsequent iteration k = 2, 3,…, n, are

where . The cumulative effect of the iteration process can be expressed 

as:
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Substituting Eqs. (12), (13) into Eqs. (14), (15), respectively, asymptotic values of the fictitious 

stresses can be obtained

For general boundary conditions, iteration is required over Steps 2 and 3. Convergence is expected, 

because the fictitious spring forces become smaller by a factor of ν, which is generally less than 0.5, 

for each successive iteration. Since the stiffness matrix remains the same for the displacement 

calculations in Steps 1 and 3, and any subsequent iterations, the computational expense of this 

approach is minor. For example, if the displacements are determined by Gaussian elimination in the 

first pass through Step 1, subsequent displacement calculations are made by the process of back 

substitution, using the factorized stiffness matrix and updated load vector. This approach is in some 

ways similar to that of Fang et al. [13], who iteratively introduce the Poisson effect into a rigid-body-

spring lattice. This is done by adding a residual force vector, associated with the Poisson effect, into 

the right-hand side of the matrix equations that express global force equilibrium. Although the present 

discussion focuses on elastic response, the proposed procedure can be applied within fracture 

analyses. Hereafter, the accuracy of this fictitious stress approach is demonstrated in the following 

section.

5. Compression test simulation

Consider a rectangular domain with a quasi-circular inclusion (Fig. 5). Homogenous or 

heterogeneous systems are modeled by assigning the same set, or differing sets, of material 

properties for the inclusion and its surroundings. Uniform compressive strain is introduced by 

imposing a vertical displacement, δ, on the top platen, without lateral restraint.
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Fig. 5. (a) Planar lattice with 19,547 nodes under compressive loading, and (b) enlarged view at the central area. The material 

properties of cell types 1 and 2 are same for the homogeneous system (Section 5.1), whereas they differ for the heterogeneous system 

(Section 5.2).

5.1. Homogeneous systems

In the following elastic analysis, results of the proposed approach for ν = 0.2 and 0.4 are compared 

with results based on two different sets of spring constants: (i) α1 = α2 = 1 for ν = 0; and (ii) α1 = 1.25 

and α2 = 1.25/3 for macroscopic representation of ν = 0.2 according to Eq. (2). The case of ν = 0.4 is 

presented to demonstrate capabilities of the approach for Poisson ratios outside the range 

accommodated by ordinary lattice models. Comparisons are made in terms of nodal displacement, 

nodal stress, and elemental stress. The results presented in this section are based on a single 

sequence of the fictitious stress approach without iteration. Table 1 presents the average values and 

standard deviations of the computed displacement, uh, which has been normalized by the exact 

value, u. All results presented in the table agree reasonably well with theory. Notably, regular lattices 

based on the fictitious stress approach accurately represent the Poisson effect beyond the upper limit 

of ν = 1/3 for ordinary lattice models.

Table 1. Average values, μ, and standard deviations, σstd, of normalized displacements, uh/u, for uniaxial compression 

loading.

Poisson ratio, ν 0.0 0.2 0.2 0.4

Coefficients of Eq. (1) α1 = α2 = 1 α1 = 1.25, α2 = 1.25/3 α1 = α2 = 1 α1 = α2 = 1

Fictitious stresses introduced No No Yes Yes

Loading direction values μ 1.0000 0.9999 0.9999 0.9998

(1.0000)a (1.0000)a

σstd 3.21 × 10−10 2.75 × 10−4 1.25 × 10−4 2.49 × 10−4

(1.91 × 10−8)
a

(8.80 × 10−8)a

Lateral direction values μ – 1.0001 1.0002 1.0002

(1.0000)a (1.0000)a

σstd – 2.00 × 10−3 3.01 × 10−3 3.01 × 10−3

(6.06 × 10−6)
a

(6.03 × 10−6)a

a Values in parentheses are based on correct application of the fictitious stresses on the elements framing into 

boundary nodes.

The current implementation of the stress calculations (Section 4.1) does not account for the lack of 

elements associated with boundary facets. The stress values along the boundaries are therefore 

inaccurate, which degrades the accuracy of the fictitious stress approach. If the fictitious stresses are 

correctly applied to the elements connected to the boundary nodes, the overall accuracy is improved 

as shown by the values in parentheses in Table 1.

Fig. 6 shows the Mohr circle representation of stress at each of the internal nodes, as provided by the

nodal stress tensor calculations for θ = nπ where n = 0 to 2 with an interval of 1/18. Each of the dots 
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represents the stress pair (σnθ and σtθ in Eq. (6)) results for each node for a particular inclination of the 

cut plane, θ. For the case of α1 = α2 = 1, including applications of the fictitious stress approach, Mohr’s

circle of stress is accurately produced at all internal nodes. Here, too, the ability to model cases 

where ν > 1/3 is demonstrated. On the other hand, discrepancies with the theoretical results arise for 

the case of macroscopic representation of ν = 0.2 by assigning α1 = 1.25 and α2 = 1.25/3. In particular,

the major principal stress at each node is non-zero.
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Fig. 6. Mohr’s circle representation of nodal stress state under uniaxial compressive loading.

Fig. 7 shows the vectorial stress pair results, obtained by Eq. (3), for all elements in the domain. The 

number of distinct stress values appearing in Fig. 7 is small, since a regular mesh has been used to 

discretize a homogeneous material under uniform loading. Here too, the local stress representation of

the fictitious stress approach agrees well with theory, whereas errors occur for the case where ν = 0.2

(α1 = 1.25 and α2 = 1.25/3). For this case, the lateral elements exhibit tensile stress, which does not 

appear in an elastic continuum under the same loading pattern, as discussed in Section 2. Such a 

discrepancy would strongly and incorrectly influence the modeling of fracture based on elemental 

stresses.
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Fig. 7. Elemental stress states for a homogeneous material under uniaxial compressive loading.

The needs to remedy inadequacies in representing the Poisson effect are even greater when using 

irregular lattices [3]. The large amount of scatter, which is due to irregular geometry of the lattice, 

cannot be removed by calibration of the spring coefficients. Such form of artificial heterogeneity is 

undesirable in that it does not correspond to physical features of the material. We anticipate 

implementing the fictitious stress approach within irregular lattice models for general stress analyses 

of elastic materials. The same steps outlined in Section 4.2 are retained. The main difference is in the

calculation of fictitious forces assigned to each facet (Fig.     4b), which is more involved for irregular 

polygonal cells. Future developments are necessary to extend the approach to irregular and three-

dimensional lattices.

5.2. Heterogeneous systems

The same 2-D domain and boundary conditions used in the previous example are employed, except 

a stiffer inclusion is centrally installed within the domain (Fig. 5). The inclusion and matrix phase have 

a modular ratio Ei/Em = 3, whereas the Poisson ratio is assumed to be the same for both phases. 

Here, two cases are considered: ν = 0, and ν = 0.2, for which the corresponding contour diagrams of 

principal tensile stress are shown in Fig. 8, Fig. 9, respectively. In both figures, the normalizing factor 

is σ = Emδ/L. Each figure also presents results based on constant strain triangle (CST) finite elements.

For objective comparisons, the finite element (FE) discretization is based on the same Delaunay 
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tessellation that defines the lattice topology (Fig. 5). For the fictitious stress approach, three iterations 

are required to satisfy the convergence criterion defined in step 3 of Section 4.2, where 

tolerance e was set in accordance with the level of accuracy of the nodal stress calculations. Only the

right half of the domain is shown due to the symmetry of the domain and boundary conditions.
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Fig. 8. Principal tensile stress local to a stiff circular inclusion within a rectangular domain under applied compressive strain, for ν = 0: 

(a) lattice model with α1 = α2 = 1, and (b) finite element method (FEM).
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Download full-size image

Fig. 9. Principal tensile stress local to a stiff circular inclusion within a rectangular domain under applied compressive strain, for ν = 0.2: 

(a) lattice model using the fictitious stress approach, and (b) finite element method (FEM).

For the case with ν = 0 (Fig. 8), the lattice results and FE results agree well and exhibit higher tensile 

stresses above and below the inclusion. For the case with ν = 0.2 (Fig. 9) as well, the results from 

both approaches agree well. However, the region of highest tensile stress appears to the side of the 

inclusion. Accuracy of the proposed approach is further demonstrated in Fig. 10, which compares 

principal tensile stress values along vertical and horizontal lines from the inclusion boundary for the 

cases of ν = 0 and ν = 0.2, respectively. Differences between the lattice and FE results are partly due 

to the averaging of finite element stresses to obtain nodal values, from which the contours have been 

drawn. Representation of the inclusion boundary differs depending on whether lattice or triangular 

finite elements are used, which also contributes to differences in the stress values.
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Fig. 10. Principal tensile stress along: (a) a vertical line originating from the upper boundary of the inclusion for ν = 0; and (b) a 

horizontal line originating from the right boundary of the inclusion for ν = 0.2.
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It is clear that the Poisson effect can greatly influence the stress conditions within heterogeneous 

systems even when the Poisson ratio of each phase is the same. Similar results have been achieved 

by coupling lattice models with triangular finite elements [6]. Whereas their results require the use of 

continuum finite elements, the approach proposed herein involves only two-node lattice elements, 

which facilitates the modeling of some aspects of fracture. Classical lattice models represent fracture 

as an event-by-event process, in which each event (i.e., the breaking of a single lattice element) is 

preceded by a linear elastic solution of the equilibrium equations [17]. As a next step, we anticipate 

conducting the fictitious stress approach within each solution cycle, such that the Poisson effect is 

represented within stress values utilized by the fracture criteria.

6. Conclusion

Due to the two-node element representation of the displacement field, ordinary lattice models do not 

properly simulate local stress conditions for general elastic media (i.e., for arbitrary choices 

of E and v within appropriate limits). Direct relationships between the macroscopic elastic constants 

and the spring constants have been sought. Such relationships may satisfy strain conditions for 

regular lattices. As shown herein, however, the local stress conditions are not satisfied even for 

regular lattices. For irregular lattices, stress values not only differ from theory, but also exhibit a large 

scatter. Such discrepancies complicate the modeling of fracture with stress-based criteria.

The approach presented herein remedies the inabilities of regular lattice models to calculate local 

measures of stress. Based on tensorial representations of stress at each node, a set of fictitious 

forces are calculated and introduced into the lattice in a manner that correctly produces the Poisson 

effect. The stiffnesses of the lattice elements are defined by the elastic constants (E, v) without any 

need for calibration with laboratory test results. The examples provided herein demonstrate both 

global strain and local stress representations are correctly captured for arbitrary Poisson ratio. 

Previous restrictions on the upper limit of ν for regular planar lattices are overcome, as demonstrated 

by results for ν ⩾ 1/3 in this paper. Future developments are necessary to extend the approach to 

irregular and three-dimensional lattices.
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