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Maintaining functional connectivity is critical for the long-term conservation of 
wildlife populations. Landscape genomics provides an opportunity to assess long-
term functional connectivity by relating environmental variables to spatial patterns 
of genomic variation resulting from generations of movement, dispersal and mating 
behaviors. Identifying landscape features associated with gene flow at large geographic 
scales for highly mobile species is becoming increasingly possible due to more acces-
sible genomic approaches, improved analytical methods and enhanced computational 
power. We characterized the genetic structure and diversity of migratory mule deer 
Odocoileus hemionus using 4051 single nucleotide polymorphisms in 406 individu-
als sampled across multiple habitats throughout Wyoming, USA. We then identified 
environmental variables associated with genomic variation within genetic groups and 
statewide using a stepwise approach to first evaluate nonlinear relationships of land-
scape resistance with genetic distances and then use mixed-effects modeling to choose 
top landscape genomic models. We identified three admixed genetic groups of mule 
deer and found that environmental variables associated with gene flow varied among 
genetic groups, revealing scale-dependent and regional variation in functional connec-
tivity. At the statewide scale, more gene flow occurred in areas with low elevation and 
mixed habitat. In the southern genetic group, more gene flow occurred in areas with 
low elevation. In the northern genetic group, more gene flow occurred in grassland 
and forest habitats, while highways and energy infrastructure reduced gene flow. In the 
western genetic group, the null model of isolation by distance best represented genetic 
patterns. Overall, our findings highlight the role of different seasonal ranges on mule 
deer genetic connectivity, and show that anthropogenic features hinder connectivity. 
This study demonstrates the value of combining a large, genome-wide marker set with 
recent advances in landscape genomics to evaluate functional connectivity in a wide-
ranging migratory species.
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Introduction

Maintaining natural levels of functional connectivity is essen-
tial to sustaining healthy wildlife populations (Cosgrove et al. 
2018, Tucker et al. 2018). Functional connectivity describes 
the influence of the environment on the movement of indi-
viduals (Taylor et al. 1993). It can be difficult to manage func-
tional connectivity of highly mobile terrestrial organisms, 
especially those that migrate seasonally, because they require 
extensive, contiguous habitat and often move across jurisdic-
tional boundaries (Bolger et al. 2008, Middleton et al. 2020). 
Various approaches to estimate functional connectivity exist, 
each of which requires different data types and leads to dif-
ferent inferences. GPS tracking and habitat selection studies 
reveal the influence of environmental variables on daily and 
seasonal movements of migratory species (Lindström et al. 
2014, Monteith et al. 2018). Landscape genetic studies aim 
to understand the influence of environmental variables on 
patterns of genetic variation which can result from genera-
tions of movement and mating behaviors (Manel et al. 2003), 
thereby providing longer-term evaluations of functional con-
nectivity than direct tracking methods (Kool et al. 2013). As 
habitat loss and fragmentation increasingly reduce movement 
options for highly mobile species, it is important to under-
stand how natural and human-impacted environments influ-
ence gene flow (Tucker et al. 2018).

Mule deer Odocoileus hemionus are migratory ungu-
lates that occupy diverse habitats throughout their North 
American range (Mackie 1994). Mule deer populations 
have declined or fluctuated considerably over the past sev-
eral decades due to factors including extreme weather, habi-
tat loss and degradation, and predation (Bishop et al. 2009, 
Hurley et al. 2011, Monteith et al. 2014). Some mule deer 
migrate seasonally to capitalize on spatial variation in food 
resources (Aikens et al. 2017), but whether to migrate and 
how far to migrate can vary across and even within popula-
tions (Sawyer et al. 2016). Despite mixed migration strat-
egies, individual mule deer exhibit higher fidelity to their 
seasonal ranges and migratory routes than many other migra-
tory ungulates (Sawyer et al. 2019). High fidelity to seasonal 
ranges and migratory routes could limit dispersal propensity 
and therefore reduce levels of genetic connectivity among 
mule deer populations. The state of Wyoming, USA includes 
diverse habitats that support different mule deer migration 
strategies. Western Wyoming encompasses several mountain 
ranges and valleys, where mule deer tend to migrate season-
ally from higher-elevation summer ranges to lower-elevation 
winter ranges (Heffelfinger et al. 2003). Eastern Wyoming 
transitions to the Great Plains where mule deer are less likely 
to migrate seasonally due to lower spatiotemporal heteroge-
neity in food resources (Heffelfinger et al. 2003). The bio-
geographic variation in Wyoming provides an opportunity 

to investigate the influence of environmental variables, and 
reliant migration strategies, on genetic connectivity.

Habitat selection studies have highlighted the influence of 
topography, vegetation type and other environmental vari-
ables on mule deer movement (Nobert et al. 2016, Coe et al. 
2018, Monteith et al. 2018), as well as anthropogenic dis-
turbances such as roadways, residential sprawl and energy 
development (Northrup et al. 2015, Wyckoff et al. 2018, 
Dwinnell et al. 2019, Sawyer et al. 2020). Despite consid-
erable movement research throughout the species’ range, 
landscape genetic studies are limited to California where 
both natural ecological variation and human developed infra-
structure are associated with mule deer gene flow (Pease et al. 
2009, Mitelberg and Vandergast 2016, Fraser et al. 2019). 
Landscape genetic studies in other regions of the mule deer 
range, where demographics and landscapes are much differ-
ent, would further understanding of mule deer ecology and 
inform management.

Identifying landscape features associated with gene flow 
at large geographic scales for highly mobile species is becom-
ing increasingly possible due to more accessible genomic 
approaches, improved analytical methods and enhanced com-
putational power (Manel and Holderegger 2013, Spear et al. 
2016). The ability to generate large, genome-wide datasets 
of single nucleotide polymorphisms (SNPs) for non-model 
organisms (Peterson et al. 2012) enhances detection of fine-
scale genetic variation, which is particularly useful for con-
tinuously distributed, highly mobile animals that have subtle 
levels of genetic structure (e.g. woodpeckers, Aguillon et al. 
2018, mountain lions, Trumbo et al. 2019 and marine fish, 
D’Aloia et al. 2020). Analytical improvements include meth-
ods to optimize resistance values associated with environmen-
tal variables based on genetic data itself (Graves et al. 2013, 
Peterman 2018), rather than relying on expert opinion, which 
can be biased or lacking for a study system (Zeller et al. 2012). 
Optimization strategies have also been improved by the ability 
to calculate resistance distances along multiple paths between 
individuals (McRae et al. 2008) and by the inclusion of non-
linear resistance surfaces that likely reflect relationships more 
accurately (Shirk et al. 2010, Zeller et al. 2017). Increasing 
computational power permits researchers to perform these 
memory-intensive analyses for larger study areas and at finer 
spatial resolutions, though computational feasibility remains 
a challenge (Zeller et al. 2012, Peterman et al. 2019).

We combined these advances to determine the influ-
ence of the environment on the genetic structure of mule 
deer across a large geographic area in the core of the range, 
Wyoming, USA. We evaluated the influence of natural and 
anthropogenic environmental variables on gene flow at mul-
tiple geographic scales (i.e. within genetic groups and state-
wide) using individual-based comparisons. We hypothesized 
that fidelity to seasonal migration strategy would reduce 
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genetic connectivity across the state, and therefore predicted 
that we would detect genetic structure related to seasonal 
ranges. We also hypothesized that environmental variables 
found to influence daily and seasonal movements also would 
affect gene flow.

Material and methods

Sample collection

Our study area spanned the state of Wyoming, USA (Fig. 1). 
During the autumn hunting seasons in 2014–2016, the 
Wyoming Game and Fish Department (WGFD) collected 
retropharyngeal lymph nodes from harvested mule deer as 
part of their disease surveillance program and later donated 
these samples to our laboratory. The WGFD recorded collec-
tion date, hunt area and harvest location (e.g. GPS coordi-
nates, descriptive location), and used ArcGIS to assign GPS 
coordinates to samples with sufficient descriptive locations 
to confidently identify harvest location. Mule deer mating 
and seasonal migration both occur during the sample col-
lection period, so we cannot discern which seasonal range 
animals were harvested on, though the large geographic 

scale of the study should compensate for variation in harvest 
location.

We selected 600 samples (Fig. 1) to extract DNA from 
based on sex ratio (aiming for equal representation of males 
and females, though most harvested deer are males), sample 
location, and location data specificity (preference for GPS 
locations over descriptive locations). We included samples 
lacking GPS locations in genetic structure and diversity 
analyses but excluded them from landscape genomic analyses 
because the latter requires specific location data.

Library preparation and sequencing

We used Qiagen DNeasy Blood and Tissue Kits (Qiagen, 
Valencia, California) to extract DNA from selected samples, 
then quantified DNA concentrations using a BioTek Synergy 
HTX Multi-Mode Microplate Reader (BioTek Instruments, 
Winooski, Vermont). From the extracted samples, we selected 
480 samples (297 males, 183 females) with the highest DNA 
concentrations and normalized each sample to 50 ng µl−1 for 
library preparation.

We prepared samples for reduced-representation sequenc-
ing following a protocol modified from Parchman et al. 
(2012). Briefly, we digested the DNA using EcoRI and 

Figure 1. Map of our study area (the state of Wyoming, USA) with harvest locations of individual mule deer represented by black points. 
Inset map shows the location of Wyoming within the USA. Surrounding states are labeled by their two-letter code (CO = Colorado, 
ID = Idaho, MT = Montana, NE = Nebraska, SD = South Dakota, UT = Utah). Interstate highways are shown as black lines and are labeled.
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MseI enzymes, ligated Illumina adapters and unique bar-
codes to digested fragments, and amplified the fragments 
using PCR. We used AMPure XP beads (Beckman Coulter, 
Brea, California) to clean and concentrate the PCR product 
and then size selected for 350–450 base pair fragments with 
a BluePippin (Sage Science, Beverly, Massachusetts). The 
University of Oregon Genomics and Cell Characterization 
Core Facility sequenced the prepared libraries on five lanes 
of an Illumina HiSeq4000 (Illumina, San Diego, California) 
with 150 base pair single-end reads.

Assembly and data processing

We filtered out contaminants and Illumina adapters using 
bowtie2 (Langmead and Salzberg 2012), then de-multiplexed 
reads. We aligned reads to a mule deer reference genome 
(16 208 scaffolds, N50 = 838 758, GenBank Accession: 
GCA_004115125.1, Russell et al. 2019) with the Burrows–
Wheeler Alignment maximal exact matches algorithm in 
BWA (Li and Durbin 2009). After alignment, we identified 
and filtered SNPs using Samtools (Li et al. 2009). To exclude 
sequencing errors, we discarded SNPs with a mapping quality 
score below 20, with a Phred quality score below 19 or with 
a minor allele frequency below 0.01. We required at least 
three reads per sample to call a genotype at a given locus to 
maximize the number of loci retained with sufficient geno-
type certainty to calculate inter-individual genetic distances 
based on all loci combined (Buerkle and Gompert 2013, 
Fumagalli 2013). To address linkage disequilibrium, we only 
retained the first SNP per read. To remove potential paralogs, 
we discarded SNPs with more than two alleles, with excess 
heterozygosity or with a sequencing depth greater than 100 
(Willis et al. 2017). Because our analyses assumed neutral 
processes, we identified and removed loci potentially under 
selection using BayeScan with a false discovery rate of 0.1 
(Foll and Gaggiotti 2008). Finally, we required loci to have 
data for at least 60% of samples, and discarded samples with 
data missing for more than 60% of loci. We checked for close 
relatives using VCFtools (Danecek et al. 2011).

Genetic structure and diversity

We tested for isolation by distance (IBD) using the individ-
ual-based spatial autocorrelation test in GenAlEx (Peakall 
and Smouse 2012). We binned sample pairs into 12 distance 
classes at 50-km intervals, and then calculated genetic dis-
tances among sample pairs in each distance class (Smouse and 
Peakall 1999). We calculated 95% confidence intervals using 
999 bootstrap iterations and generated a null model of no 
spatial autocorrelation with 999 data permutations. We per-
formed this test for all samples together, for samples within 
each genetic group, and for each sex separately because mule 
deer exhibit male-biased dispersal which could lead to differ-
ent IBD results for each sex (Powell et al. 2013).

We characterized the genetic structure of mule deer in 
Wyoming using STRUCTURE, TESS3 and a principal 

components analysis (PCA). We used StrAuto (Chhatre 
and Emerson 2017) to run STRUCTURE (Pritchard et al. 
2000) on the University of Wyoming ‘Teton Computing 
Environment, Intel x86_64 group’ (Advanced Research 
Computing Center 2018). Our analysis used the admixture 
and correlated allele frequencies models, included a burn-
in of 100 000 iterations and 500 000 Markov chain Monte 
Carlo iterations, and tested K = 1–10 possible genetic groups 
with 20 replicates of each K. We determined the most likely 
number of genetic groups by evaluating mean likelihood 
scores and ΔK in Structure Harvester (Evanno et al. 2005, 
Earl and vonHoldt 2012). We also ran the spatially explicit 
clustering program TESS3 in the R package tess3r (Caye et al. 
2018), which accounts for geographic distance among sam-
ples to estimate ancestry coefficients (Caye et al. 2016). We 
tested K = 1–10 possible genetic groups with 20 replicates of 
each K and used default parameter settings. We performed a 
PCA based on pairwise genetic covariance calculated from 
loci shared by each sample pair to avoid potential bias associ-
ated with replacing missing data with population mean allele 
frequencies.

Using the R package diveRsity, we calculated pairwise 
FST among groups with 95% confidence intervals calculated 
using 1000 bootstrap iterations (Weir and Cockerham 1984, 
Keenan et al. 2013). We calculated observed and expected 
heterozygosity for each genetic group and statewide with 
the R package hierfstat (Goudet 2005). We estimated effec-
tive population size (Ne) with 95% confidence intervals for 
each genetic group using the linkage disequilibrium method 
in NeEstimator v2.1 (Do et al. 2014), and applied a correc-
tion for the number of chromosomes (n = 35; Wurster and 
Benirschke 1967) as suggested for Ne estimates based on 
genome-wide SNP data (Waples et al. 2016). We did not 
report Ne at the statewide level because the presence of sub-
structure can inaccurately deflate Ne estimates (Wang 2016, 
Gagne et al. 2018).

Landscape genomics

We used individual-based landscape genomics to investigate 
the relationship between landscape resistance (i.e. how much 
an environmental variable promotes or inhibits gene flow; 
Peterman 2018) and pairwise genetic distances (i.e. genetic 
dissimilarity, a proxy for gene flow; Smouse and Peakall 
1999) among samples both within genetic groups and at the 
statewide scale (Manel et al. 2003). We excluded from land-
scape genomic analyses samples without GPS locations, and 
for analyses within each genetic group, we excluded samples 
that genetically assigned to the group, but were harvested 
outside of the general geographic area of the group to avoid 
biasing results with these geographic outliers.

We assigned resistance values to environmental variables 
using seven functional transformations and competed them 
against each other to determine which set of resistance values 
best matched the genetic data (Zeller et al. 2017). The seven 
transformations tested included positive linear, negative lin-
ear, positive monomolecular convex, negative monomolecular 
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convex, positive monomolecular concave, negative monomo-
lecular concave and inverse Ricker (Supporting information; 
Zeller et al. 2017). Positive and negative transformations 
represent increasing or decreasing resistance with increasing 
values of the environmental variable, respectively. The mono-
molecular functions allow for nonlinear relationships that 
may reflect landscape resistance more accurately. The inverse 
Ricker transformation represents low resistance at interme-
diate values of the environmental variable. For line features 
(e.g. highways), we only tested positive and negative linear 
transformations because these variables were binary (i.e. 
presence/absence of the feature). We used the transformed 
resistance rasters to calculate resistance distances among all 
pairs of samples using the commuteDistance function in the 
R package gdistance (van Etten 2017), which applies circuit 
theory to average multiple paths between sample locations 
(McRae et al. 2008). We represented our null model of IBD 
with a pairwise geographic distance matrix calculated using 
the Haversine formula, which accounts for the earth’s curva-
ture, using the R package fossil (Vavrek 2011).

We selected ten environmental variables for our landscape 
genomic analyses based on previous mule deer studies focus-
ing on landscape genetics (Pease et al. 2009, Fraser et al. 2019) 
or habitat selection (Sawyer et al. 2006, Lendrum et al. 2012, 
Northrup et al. 2015, Nobert et al. 2016, Coe et al. 2018, 
Monteith et al. 2018). We tested topographic features (eleva-
tion, slope, topographic roughness; Jarvis et al. 2008), land 
cover (proportion shrubland, proportion forest, proportion 
grassland; Homer et al. 2020), natural features (rivers; U.S. 
Geological Survey 2010) and anthropogenic features (high-
ways, interstate highways, oil and gas wells; Wyoming Oil 
and Gas Conservation Commission 2012, U.S. Geological 
Survey 2014) (Fig. 2, Supporting information). We cropped 
all rasters to our study area plus a 50-km buffer around the 
state to reduce edge effects for samples located near study area 
boundaries. To standardize resistance values across rasters, we 
resampled rasters to a resolution of 270 m2 (the finest com-
putationally feasible resolution) and scaled resistance values 
to 1–100 (resampling methods in Supporting information; 
Hijmans 2020).

We used maximum-likelihood population-effects (MLPE) 
mixed models in the R package lme4 (Bates et al. 2015) 
to determine which functional transformation performed 
best for each environmental variable (Clarke et al. 2002, 
van Strien et al. 2012). The MLPE approach accounts for 
non-independence of pairwise comparisons by including 
individual as a random effect and outperforms other mod-
eling approaches for individual-based landscape genetics 
(Shirk et al. 2018). We evaluated model performance using 
the Bayesian information criterion (BIC), which outperforms 
R2 for ranking landscape genetic MLPE models (Row et al. 
2017). To control for geographic distance inherent in all 
resistance-distance calculations and to reduce the likelihood 
of type I error, we included IBD as a covariate in all mod-
els (Row et al. 2017). Once we found the best performing 
functional transformation for each variable for each genetic 
group and across the state, we tested the resistance-distance 

matrices for collinearity. We retained variables with Pearson’s 
correlation coefficients below 0.7 and variable inflation fac-
tors below five because collinearity can lead to incorrect 
interpretation in multivariate models (Dormann et al. 2013). 
Because we only included variables in our study that we 
thought would influence mule deer gene flow, we ran MLPE 
models for all variable subsets. All models with ΔBIC below 
five were considered top models. Top models were then refit 
using restricted maximum likelihood (REML) to estimate 
unbiased beta coefficients with 95% confidence intervals 
(Clarke et al. 2002, van Strien et al. 2012). Environmental 
variables with positive beta coefficients and confidence 
intervals not overlapping zero were considered significant. 
Row et al. (2017) found that variables with significant nega-
tive beta estimates typically indicated a non-true relationship 
in the context of landscape genetic modeling because if there 
was truly a negative relationship between the response and 
explanatory variables, then a negative functional transforma-
tion should have been selected as the top model and resulted 
in a positive beta estimate. Because we tested both positive 
and negative transformations of resistance values for every 
variable, we considered variables with negative beta estimates 
to be nonsignificant. We calculated marginal R2 (mR2) as a 
metric of model fit (Nakagawa and Schielzeth 2013) using 
the R package MuMIn (Bartoń 2020).

Results

Assembly and data processing

Of the 480 samples sequenced, we discarded 19 samples with 
fewer than 12 000 reads after de-multiplexing; the next low-
est sample had over 500 000 reads. After removing contami-
nants, the remaining 461 samples had 95.0–99.2% of reads 
align to the mule deer reference genome. Initial quality filter-
ing resulted in two million SNPs, which was halved after fil-
tering for maximum read depth and number of alleles. After 
filtering for minimum read depth and minor allele frequency, 
we had 340 000 SNPs, and then had 4069 SNPs after remov-
ing loci with data missing in more than 60% of samples. We 
removed two outlier loci and 16 loci with excess heterozygos-
ity. Finally, we discarded 55 samples that had missing data at 
more than 60% of loci. We did not detect any close relatives 
to remove. Our final dataset included 406 individuals (250 
males, 156 females) and 4051 loci.

Genetic structure and diversity

We detected low levels of positive spatial autocorrelation  
(r < 0.007) at distances up to 200-km, indicating the presence 
of IBD at shorter distances among sample pairs (Supporting 
information). We did not detect significantly different spatial 
autocorrelation among genetic groups or between sexes, so 
we report results for all samples together. Our STRUCTURE  
analysis showed the highest likelihood of 1–3 genetic groups 
(Supporting information) and the ΔK method supported 
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three genetic groups (Fig. 3a, Supporting information). 
When K = 3, STRUCTURE admixture proportions revealed 
geographic clustering of genetic groups, roughly represent-
ing western, northern and southern regions of Wyoming, 
with admixture towards the center of the state and several 
geographic outliers that assigned highly to one genetic group 
but were harvested outside of the general geographic area of 
the group (Fig. 3c). When K = 2, the western and southern 
genetic groups collapsed into one group (Supporting infor-
mation), suggesting the presence of some hierarchical struc-
ture. The PCA showed a single genetic cluster, but the three 
genetic groups identified by STRUCTURE were distin-
guishable with overlap among them (Fig. 3b). TESS3 could 
not clearly resolve the number of genetic groups (Supporting 
information), however, when we selected K = 3, the TESS3 
genetic map (Supporting information) looked similar to the 
STRUCTURE assignment map (Fig. 3c). We proceeded 
with the three genetic groups designated in STRUCTURE 
for comparative landscape genomics, hereafter referred to as 
the western group, northern group and southern group.

FST values were low, but significantly differed from zero 
among all pairs of genetic groups. FST between the western 
and northern groups was 0.0051 (95% CI = 0.0037–0.0064), 
between the western and southern groups was 0.0042  
(95% CI = 0.0028–0.0057), and between the northern and 
southern groups was 0.0049 (95% CI = 0.0036–0.0063). 
Observed and expected heterozygosity were similar among 
groups, and the western group had the highest estimated 
Ne while the southern group had the lowest (Supporting 
information).

Landscape genomics

Our statewide modeling included 370 individuals with 
sufficient harvest location information. After removing 
geographic outliers for the analyses within genetic groups 
(Supporting information), modeling included 107 individ-
uals in the western group, 136 individuals in the northern 
group and 100 individuals in the southern group. The domi-
nant land cover type across the state was shrubland, however, 

Figure 2. Raster images of environmental variables used in landscape genomic analyses. The extent includes the study area (i.e. the state of 
Wyoming) plus a 50-km buffer around the state to account for edge effects. The variables include (a) elevation, (b) slope, (c) topographic 
roughness, (d) proportion shrubland, (e) proportion forest, (f ) proportion grassland, (g) rivers, (h) highways and interstates and (i) oil and 
gas wells.
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the proportion of different land cover types varied across 
groups (Supporting information). The western group had 
the highest proportion of shrubland and forest and the low-
est proportion of grassland, while the northern and southern 

groups both had intermediate proportions of shrubland and 
grassland and low proportions of forest. The western group 
had the highest mean elevation, slope and topographic rough-
ness (Supporting information). The southern group had the 

Figure 3. Genetic structure results based on K = 3 using 4051 SNPs for 406 Wyoming mule deer collected in 2014–2016 represented by (a) 
STRUCTURE admixture proportions and (b) principal components analysis. STRUCTURE admixture proportions are also shown as (c) 
pie charts indicating the geographic location of individual samples.
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highest density of highways while the western group had the 
lowest (Supporting information). The northern group had 
the highest density of oil and gas wells (Supporting infor-
mation). We report the best-performing functional transfor-
mation for each environmental variable in each analysis in 
Supporting information, and we report the global model for 
each analysis (after removing collinear variables) in Table 1.

For the statewide analysis, we identified three top mod-
els, which included proportion grassland, elevation and a 
combination of proportion grassland and elevation (Table 2, 
Supporting information). All the covariates in top models had 
positive beta estimates with confidence intervals not overlap-
ping zero. Elevation had a positive linear function, meaning 
that more gene flow occurred at lower elevation. The selec-
tion of the inverse Ricker function for grassland indicated 
that more gene flow occurred in areas of mixed land cover or 
transitions from grassland to either shrubland or forest.

For the western group, the top model was the null model 
of IBD, and no other models had ΔBIC below five (Table 
2, Supporting information). This result indicates that geo-
graphic distance among samples explained patterns of gene 
flow better than resistance from environmental variables in 
this part of the state. The model with the next lowest BIC 
(ΔBIC = 7.7) included proportion grassland, but the grass-
land variable was not significant.

For the northern group, we identified five top models that 
included proportion grassland, proportion shrubland, oil 
and gas wells, proportion forest and highways as significant 
covariates; the IBD covariate in each model was not signifi-
cant (Table 2, Supporting information). Proportion grassland 
had a negative monomolecular convex function, indicating 
that more gene flow occurred in areas with high proportions 
of grassland. Proportion shrubland had a positive mono-
molecular convex function, indicating that more gene flow 
occurred in areas with low proportions of shrubland. Oil and 
gas wells had a positive monomolecular concave function, 
indicating that more gene flow occurred in areas with low to 
moderate densities of wells. Proportion forest had a negative 
monomolecular convex function, indicating that more gene 
flow occurred in areas with high proportions of forest. And 
lastly, highways had a positive linear function, indicating that 
more gene flow occurred in areas with fewer highways.

For the southern group, the one well-supported model 
included elevation as a significant covariate, and the IBD 

covariate was not significant (Table 2, Supporting informa-
tion). Elevation had a positive linear function, indicating that 
more gene flow occurred in lower elevation areas.

Discussion

Detecting environmental variables associated with genetic 
patterns can be difficult for highly mobile, continuously dis-
tributed species (e.g. lobster, Benestan et al. 2015, black bears, 
Puckett and Eggert 2016), but here we identified natural and 
anthropogenic landscape features associated with gene flow 
in mule deer. These features varied statewide and within each 
genetic group, demonstrating the presence of scale-depen-
dent and regional variation in functional connectivity. Our 
top landscape genomic models included a variety of func-
tional transformations of resistance values, bolstering support 
for the need to consider non-linear relationships between 
environmental variables and gene flow (Shirk et al. 2010). 
Overall mR2 values were somewhat low (mR2 = 0.003–0.06), 
but landscape genetics studies of other highly mobile mam-
mals report similar values (Thatte et al. 2019, Trumbo et al. 
2019) and the environment is one of many influences on spa-
tial patterns of genetic variation (Manel et al. 2003).

We detected three genetic groups of mule deer with 
admixture among groups. The presence of geographically 
clumped genetic groups aligns with the high fidelity of mule 
deer to seasonal ranges and migration routes observed in GPS 
tracking studies (Sawyer et al. 2019), but admixture among 
the three groups, especially at the center of the state, shows 
that interbreeding or movement occurred between neighbor-
ing groups. We found several individuals that assigned highly 
to one group but were harvested in the geographic area of 
another group, which indicates some longer-range dispersal 
movements. We reported observed and expected heterozy-
gosity and Ne, which serve as benchmarks for comparison 
with future genome-wide SNP datasets.

Our modeling revealed that low elevation (statewide and 
in the southern group), grasslands (in the northern group) 
and transitional habitats (statewide) promoted gene flow, 
suggesting that winter range habitat is important for genetic 
connectivity. Most mule deer breed on their winter range, 
which is typically low elevation, relatively open habitat such 
as shrublands and grasslands (Heffelfinger et al. 2003).  

Table 1. Global landscape genomic models relating inter-individual genetic distances (GD) to landscape resistance for Wyoming mule deer 
collected in 2014–2016, using 4051 SNPs. Analyses included 370 deer statewide, 107 deer for the western genetic group, 136 deer for the 
northern genetic group and 100 deer for the southern genetic group. Environmental variables included elevation (elev), slope, proportion 
shrubland (shrub), proportion forest (forest), proportion grassland (grass), highways, oil and gas wells (wells) and geographic distance (IBD). 
We included individual (ind) as a random effect in every model to account for the nonindependence of pairwise comparisons. We tested all 
possible subsets of the global model for each analysis. We report ΔBIC as a metric of performance for each global model as compared to 
top models reported in Table 2.

Genetic group Global model ΔBIC

Statewide GD ~ elev + shrub + forest + grass + highways + wells + IBD + ind 37.7
Western group GD ~ slope + shrub + forest + grass + rivers + highways + wells + IBD + ind 47.2
Northern group GD ~ scrub + forest + grass + highways + wells + IBD + ind 32.9
Southern group GD ~ elev + shrub + forest + grass + highways + wells + IBD + ind 28.6
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We also found, however, that high proportions of forest pro-
moted gene flow in the northern region, which could suggest 
that summer range habitat is important for genetic connec-
tivity because forested areas are more common in mule deer 
summer range (i.e. mountain ranges). During mild autumns, 
deer may breed while intermixed with other populations on 
summer range. Mule deer generally show high fidelity to their 
seasonal ranges and migratory routes (Sawyer et al. 2019), 
but the mixing of deer on summer range makes dispersal 
(i.e. young animal leaves natal region; Jakopak et al. 2019) 
or switching (i.e. adult animal changes seasonal migration 
strategy) events more plausible. In the western group, where 
more mule deer migrate than the rest of the state, the only 
top model was the null model of IBD. The western region 
includes several mountain ranges representing shared sum-
mer ranges for deer that spend winters in different foothills 
and valleys (Fig. 3). It is possible that deer mixing on shared 
summer range outweighs any influence of the landscape on 
gene flow in this area. Investigation of genetic structure in 
GPS-tracked deer could further elucidate the influence of dif-
ferent seasonal ranges on genetic connectivity.

We found negative effects of anthropogenic disturbance 
in the form of highways and oil and gas wells on gene flow 
in the northern group. Though highways are a relatively new 
addition to the landscape in evolutionary terms and were not 
detected as a genetic barrier in another Wyoming ungulate, 
pronghorn (LaCava et al. 2020), most wildlife-vehicle col-
lisions in Wyoming and across the western United States 
involve mule deer (Huijser et al. 2009, Coe et al. 2015). 
Further, some roadways in Wyoming act as movement bar-
riers to mule deer (Kauffman et al. 2018) and highways in 
southern California have also reduced mule deer gene flow 
(Mitelberg and Vandergast 2016, Fraser et al. 2019). Our 
findings suggest that through time, such barrier and mortal-
ity effects may reduce genetic connectivity for mule deer.

The negative relationship between gene flow and well 
density in the northern group aligns with studies show-
ing that mule deer consistently avoid energy infrastructure 
(Sawyer et al. 2017, Dwinnell et al. 2019). The north-
ern group had the highest density of oil and gas wells by a 
large margin (Fig. 2i, Supporting information), which likely 
accounts for the inclusion of well density in a top model for 

Table 2. Top landscape genomic MLPE mixed models (ΔBIC < 5) relating inter-individual genetic distances to landscape resistance statewide 
and within genetic groups of Wyoming mule deer collected in 2014–2016, using 4051 SNPs. Functional transformations of environmental 
variables include positive linear (+ linear), positive monomolecular convex (+ convex), positive monomolecular concave (+ concave), nega-
tive monomolecular convex (− convex) and inverse Ricker (Supporting information). Marginal R2 (mR2) reported as a metric of model fit. 
Beta (β) estimates and 95% confidence intervals (95% CI) were calculated by refitting the model with restricted maximum likelihood. 
Positive 95% CIs not overlapping zero were considered significant. IBD = isolation by distance.

Genetic group Variable Functional transformation ΔBIC mR2 β 95% CI for β
Statewide Intercept 0 0.05 909.20 905.11–913.28

IBD 0.93 0.59–1.26
Grass inverse Ricker 6.18 4.95–7.41

Statewide Intercept 3.67 0.03 909.20 905.16–913.23
IBD 0.73 0.35–1.10
Elevation + linear 4.58 3.65–5.51

Statewide Intercept 4.25 0.04 909.20 905.15–913.24
IBD 0.70 0.32–1.07
Grass inverse Ricker 3.69 1.46–5.91
Elevation + linear 2.26 0.57–3.94

Western group Intercept 0 0.006 912.61 905.78–919.45
IBD 1.91 1.30–2.53

Northern group Intercept 0 0.03 904.57 897.84–911.31
IBD −0.83 −1.73 to 0.07
Grass − convex 4.50 2.81–6.19

Northern group Intercept 2.28 0.06 904.57 897.86–911.29
IBD −0.33 −1.10 to 0.44
Shrubland + convex 6.54 3.97–9.10

Northern group Intercept 3.06 0.003 904.57 897.78–911.37
IBD −1.45 −2.61 to −0.28
Wells + concave 2.75 1.66–3.85

Northern group Intercept 3.79 0.02 904.57 897.74–911.41
IBD −1.06 −2.10 to −0.03
Forest − convex 4.19 2.50–5.89

Northern group Intercept 4.61 0.02 904.57 897.72–911.43
IBD −1.33 −2.48 to −0.18
Highways + linear 4.07 2.39–5.75

Southern group Intercept 0 0.02 903.91 896.80–911.02
IBD −0.37 −1.51 to 0.77
Elevation + linear 3.96 2.30–5.62
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this group specifically. Interestingly, the positive relation-
ship between low elevation and genetic connectivity seen in 
other parts of the state was not present in top models for the 
northern group. Development is often concentrated in low 
elevation areas (Copeland et al. 2009), so it is possible that 
the negative development effect we detected in the northern 
group counteracted the benefit of low elevation habitat. As 
development continues to expand in Wyoming and through-
out North America (Leu et al. 2008, Trainor et al. 2016), 
functional connectivity for mule deer and other migratory 
ungulates may be more difficult to sustain.

Our study highlights environmental variables that pro-
mote and inhibit mule deer gene flow, providing crucial 
information for land-use planning and conservation efforts. 
Maintaining functional connectivity is central to wildlife man-
agement (Fletcher et al. 2016) and requires consideration of 
numerous biological patterns and processes (Kool et al. 2013). 
Combining genetic data with other lines of evidence (e.g. GPS 
tracking data) can improve decision making related to manage-
ment such as habitat preservation (Zeller et al. 2017) or miti-
gating barrier impacts of roads (Balkenhol and Waits 2009).

We employed a stepwise approach to set resistance values 
empirically and consider non-linear functional relationships 
(Zeller et al. 2017), however, we were unable to perform full 
optimization of the resistance values (Peterman 2018) in our 
large study area at the desired resolution due to computational 
limitations, despite having access to a large computing cluster 
(Advanced Research Computing Center 2018). In addition, 
some of the best performing functional transformations for 
covariates seemed biologically unintuitive (e.g. in the statewide 
analysis, highways had a positive relationship with genetic dis-
tance while interstate highways had a negative relationship; 
Supporting information), however, the improbable transfor-
mations did not end up in top multivariate models (Table 2). 
If a variable does not influence gene flow, then the process of 
selecting the best functional transformation essentially involves 
selecting among functions that do not represent a significant 
relationship, and therefore it seems reasonable that an unin-
tuitive function could be selected. In the future, researchers 
could consider either excluding improbable functional trans-
formations completely or removing variables before multi-
variate modeling if an improbable functional transformation 
is selected as performing best. Despite these limitations, the 
methods used here can be applied to study functional connec-
tivity of other highly mobile, continuously distributed species 
across large geographic areas. The variation in environmental 
variables important to gene flow among our analyses adds to 
a growing body of literature that demonstrates the need to 
evaluate functional connectivity at different geographic scales 
and in regions with different environmental characteristics 
(Short Bull et al. 2011, Robertson et al. 2018, Kozakiewicz  
et al. 2019).
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