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ABSTRACT OF THE THESIS

Processing in Memory using Emerging Memory Technologies

by

Saransh Gupta

Master of Science in Electrical and Computer Engineering (Electronic Circuits and Systems)

University of California San Diego, 2018

Professor Tajana Šimunić Rosing, Chair

Recent years have witnessed a rapid growth in the amount of generated data, owing to

the emergence of Internet of Things (IoT). Processing such huge data on traditional computing

systems is highly inefficient, mainly due to the limited cache capacity and memory bandwidth.

Processing in-memory (PIM) is an emerging paradigm which tries to address this issue. It

uses memories as computing units, hence reducing the data transfers between memory and

processing cores. However, the application of present PIM techniques is restricted by their

limited functionality and inability to process large amounts of data efficiently. In this thesis, we

propose novel techniques which exploit the analog properties of emerging memory technologies.

Not only do these support more complex functions such as addition, multiplication, and search but

xii



also manage and process large data more efficiently. We present a new blocked PIM architecture

which uses inter-block interconnects to accelerate data intensive processing. We also introduce

a heterogeneous architecture having general purpose cores and PIM-enabled memory and a

data-dependent task allocation scheme for it. We apply application specific optimizations and

approximation techniques to further design accelerators for neural networks and database query

systems. While we design a multiplication-by-constant hardware for neural networks, query

processing is accelerated by a novel in-memory nearest search technique. Our neural network

accelerator achieves 113.9× higher energy efficiency and 56.3× speedup as compared to AMD

GPU. The query accelerator provides 49.3× performance speedup and 32.9× energy savings as

compared to recent Intel CPU.

xiii



Chapter 1

Introduction

The Internet of Things is expected to have billions of connected devices that will generate

huge amount of raw data. This data amounted to 16.1 zettabytes (ZB) in 2016 and is expected to

increase 10× till 2025 [1]. In recent years, the number of smart electronic devices has surpassed

the number of humans in the world [2], as shown in Figure 1.1.

Several algorithms try to pre-process and compress big data [3]. These algorithms are

traditionally run on conventional general purpose processors. However, conventional processing

architectures have poor performance when processing big data. This inefficiency comes from

large amount of data movement between the main memory and processing cores [4]. Figure 1.2

shows that DRAM read operation is the costliest operation in a system with a 32-bit read

consuming 1̃70×more energy than a 32-bit floating point multiplication [5]. The limited on-chip

Figure 1.1. Increase in number of connected devices over the years.
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Figure 1.2. The cost of various operations in a typical computer organization. Reading data
from DRAM is the most energy consuming operation.

cache memories in traditional cores along with limited memory bandwidth of main memory,

contribute to inefficiency. For example, running k-nearest neighbors algorithm (classification)

requires calculating the distance of each data point with all existing points in the dataset [6]. To

process 1 billion candidate points, one query needs 150 GFLOPs of computation and 500G of

data communication [7]. This results in significant performance overhead when the data cannot

fit in memory.

Near data computing (NDC) and processing in-memory (PIM) are two efficient tech-

niques which aim to reduce the cost of data movement [8, 9, 10, 11, 12, 13]. NDC puts the

computing units close to the main memory, in order to avoid data movement cost in compu-

tation [14]. On the other hand, PIM exploits the analog characteristics of emerging memory

technologies to enable in-place computations. The goal of both these techniques is to perform

computations on data near/where it is stored. Since they do not send the all data from memory all

the way up to the processing cores, they can reduce the amount of data communication and the

related high costs. These techniques have challenges of their own. While the application of NDC

may be restricted by the difficult integration of memory and logic and the costs of large computing

cores, PIM may be limited by the slow device latencies, low endurance, and limited computing

capabilities. However, the emerging memory technologies have made it possible to overcome the
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challenges faced by PIM and present feasible PIM implementations [15, 16, 17, 18, 19, 20, 21].

Resistive RAM (ReRAM) is one such memory, which enjoys the benefit of low energy, high

switching speeds, high density, and scalability. Many solutions have been proposed which utilize

ReRAM to realize efficient PIM architectures [8, 10, 22]. Some have proposed general purpose

PIM implementations with limited capabilities, while others propose application-specific PIM

accelerators with more advanced functionality. For example, the work in [23] only supports

NOR directly in crossbar memory, while [24, 25] implements implication in memory and [26]

implements majority operation. All other functions are implemented by repeated multiple cycles

of the base operation. There is no exploration about how these can be used at application

level and the related design constraints. On the other hand, some works propose accelerators

targeted towards specific applications like neural networks [10, 27], query processing [28], graph

processing [29], etc which cannot be generalized for other applications.

The goal of this thesis is to take steps to bridge the gap between these two extremes, i.e.

the limited functionality of general PIM techniques and application-specific processors. We first

propose a new PIM architecture which accelerates processing of data intensive workloads. It

makes multi-input in-memory additions and multiplications faster. We introduce configurable

interconnects to reduce the latency of in-memory shift operations and exploit the inherent

parallelism in PIM operations. We observe that in-memory acceleration of applications is

suitable only when these applications are data intensive. This is due to the slower switching of

memory cells as compared to conventional CMOS devices.Hence, we design a heterogeneous

architecture which combines a PIM accelerator with a general purpose processor. It includes

a data management unit which controls the allocation of data intensive tasks to PIM, while

others are executed by the general purpose cores. This allocation prevents PIM operations

from becoming a bottleneck for small applications. We also propose two application specific

accelerators. The neural network accelerator uses PIM techniques along with operation level

optimizations to improve the performance and efficiency of inference tasks. We design a new

in-memory multiplication technique customized for inference task in neural networks. It achieves
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113.9× higher energy efficiency and 56.3× speedup as compared to AMD GPU. We also design

a PIM accelerator for database queries. It uses a novel search technique to enable nearest distance

search in-memory. We combine it with traditional content addressable memory (CAM) and PIM

functionality to execute a wide range of query operations in memory. The query accelerator

provides 49.3× performance speedup and 32.9× energy savings as compared to recent Intel

CPU.

The thesis is organized as follows. Chapter 2 presents a background on memristors and

near/in-memory processing. Chapter 3 introduces a new PIM architecture for data intensive

applications. Chapter 4 proposes a heterogeneous architecture and a data management scheme

for such systems. Chapter 5 & 6 present accelerators for neural networks and database queries

respectively. The thesis is then concluded in Chapter 7.
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Chapter 2

Background and Related Work

2.1 Memristive Memory

Recent years have witnessed the development of emerging non-volatile memory tech-

nologies, such as Conductive Bridging RAM (CBRAM), Resistive Random Access Memory

(ReRAM or RRAM), Phase Change Memory (PCM), and Spin-Transfer Torque Magnetoresistive

RAM (STT-RAM).Several industry leaders have demonstrated large capacity NVM products,

including 16 Gb CBRAM [30], 32 Gb RRAM [31], 8 Gb PCM [32], 1 Gb STT-RAM [33],

and 128 Gb 3D-Xpoint memory. These memories have been shown capable of both storing

and processing data. This versatile nature of these technologies have increased interest in non

von-Neumann architectures.

Memristive technologies are non-volatile and compatible with CMOS fabrication process

[34]. Memristive devices are expected to have low switching energy and fast switching speed.

The read and write times can be as fast as 120 ps [35, 36]. The switching energy is as low

as 1 pJ [36]. The endurance limit of memristors is measured approximately as 1010 allowed

write operations per cell [37] (except STT-RAM, where 1015 is achieved). This limit is likely to

increase to 1015 [38]. Memristive devices are fabricated between two metals, which act as the

top and bottom electrodes of a dielectric material [39]. Hence, memristors can be fabricated in

the metal layers as part of a standard CMOS Back End of Line (BEOL) process. Memristive

memories generally utilize a crossbar structure, with 4F2 density, where F is the feature size.
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Figure 2.1. Working mechanism of memristor device when reading and writing.

Such a memory achieves significantly lower energy and higher scalability, while occupying

negligible area unlike traditional memory technologies like SRAM and DRAM [40, 41]. Digital

data is represented in terms of its resistance, where LRS (low resistance state, RON) is logical ‘1’

and HRS (high resistance state, ROFF ) is logical ‘0.’

General structure of memristor is based on metal/oxide/metal. Two metal layers (e.g. Pt)

sandwich an oxide layer which is based on Ta, Ti and H f [40]. The metal/diode connection

usually shows the Ohmic behavior (shown in Figure 2.1). The data is pre-stored based on the

memristor resistance state. Figure 2.1 shows the functionality of the memristor device in low

and high resistance states. The value is stored on a memristor device based on its hysteresis

mechanism. By applying a large positive voltage across the device (>Vt+), the device changes

its state from an LRS state to HRS, which is called reset. When the device is in the HRS, by

applying a large negative voltage (> |Vt−|), it changes to the LRS. In order to read the memristor

values, we apply a voltage that is less than a write threshold voltage across the device and sense

the current passing through the device. In this way, we can identify the state of the device,

without changing the memristor value [42].
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2.2 Near-Data Computing

Near data computing (NDC) aims to address the issue of data movement by physically

placing computing units closer to the memory chip [43, 44, 45, 46, 14, 47]. It leverages the

high local data bandwidth to accelerate applications. These computing units may range from

small ASICs, FPGAs all the way to GPUs and multi-core systems. These ”cores” are put close

to memory to minimize the overhead of data transfers. Several works have proposed adding

cores at different levels in the memory hierarchy. While many researchers propose to add

computing capability to commodity DRAMs [48, 49, 50, 51], some also use SSDs [52, 53] and

other emerging memory technologies [54, 55, 56, 57] to enable NDC.

Recent advances in die-stacking technology have been exploited by researchers to reduce

the cost of NDC, improving its practicality [58, 59]. Moreover, introduction of new memory

architectures like High Bandwidth Memory (HBM) [60] and Hybrid Memory Cube (HMC) [61]

have resulted in an increased interest in using 3D-DRAMs for NDC. The through-silicon-vias

(TSVs) optimized for 3D architectures enable stacking of multiple DRAM dies on top of a CMOS

logic layer, customized to the requirements of targeted applications. The high memory-level

parallelism in memories like HMC provides better random access performance than traditional

DRAM [62]. In addition, the logic layer in HMC also allows memory operations like read-

modify-write, locking, etc., paving way for accelerating operations in memory [49, 51, 63].

2.3 Processing in-Memory

Processing in-memory (PIM) accelerates computation by reducing the overhead of data

movement and providing high parallelism in some cases [64, 65].

2.3.1 SRAM PIM

Some researches present PIM like techniques for SRAMs. The work in [66] proposes

the concept of compute memory, where computation is deeply embedded into SRAM. It en-
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ables multi-row read access and analog signal processing. Based on this compute memory,

the authors in [67] proposes energy-efficient and high throughput implementation of sparse

distributed memory which is used as an associative processor. The work in [68] introduces a new

content addressable memory (CAM) based on the conventional 6T SRAM cells. They design a

configurable SRAM with both CAM and logic functions. Further, the design in [69] presents

approaches to improve the performance and energy efficiency of this configurable SRAM, called

compute cache. Such caches are able to execute only simple bitwise functions on the data

stored in SRAM cells using sense amplifiers. The work in [70] accelerates machine learning by

doing computations in SRAM cell. However, it uses large DACs to implement it, introducing

significant power and area overhead.

2.3.2 DRAM PIM

The work in [71] exploits the concept of 3D stacking to separate the logic and memory

circuits into different DRAM dies, overcoming the cost challenges involved in integrating

memory and logic. There have been other proposals to enable computing capabilities inside

DRAM [72, 73, 74, 75, 76]. DRAM is inherently destructive in read operations, that is, the

stored bits are invalidated after read operations. Thus, the original data should be backed up

to another cell before any computations, causing undesired overhead in PIM operations [74].

The work in [76, 73, 72] enable processing by modifying the sense amplifiers (SAs) as well as

the 1-transistor-1-capacitor (1T1C) cell structures. These approaches result in additional area

overhead to the conventional design. The In-Memory Intelligence (IMI) architecture proposed

in [75] is a standard DRAM in form and function with the ability for massive SIMD parallelism

and a standard and familiar programming model. It attaches simple bit-serial computing elements

to DRAM array’s sense amplifiers. These elements are based on standard DRAM structures, for

example, slow, dense transistors, and a drastically limited number of metal layers.
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2.3.3 NVM PIM

High density, low-power consumption, and CMOS-compatibility of emerging non-

volatile memories (NVMs), in particular memristor devices, make them appropriate candi-

dates for both storage and computing purposes [54, 77, 78]. A class of PIM techniques in

memristors utilize the inherent dot-product capability of the crossbar structure to implement

logic [79, 80, 81, 82]. The architectures employing such techniques use various peripheral

circuits to implement different functions. The other class of PIM techniques use the analog

properties of memristive devices to realize logic in-memory. Many logic families have been

proposed for computation inside memristive crossbar. Some of these logic implementations

such as stateful implication logic [24, 25] and Memristor Aided loGIC (MAGIC) [23] are purely

realized within memory. The work in [83] extends the bitwise operations in [23] to present

schemes for addition in memristive crossbar memory. They also introduce PIM in transpose

crossbar memory, allowing more flexibility in logic execution. On the other hand, Pinatubo [84]

and MPIM [85] modified sensing circuits to implement fundamental bitwise operations, such as

AND and OR. However, they can not support arithmetic operations, e.g. addition and multiplica-

tion, which are the key functions involved in many applications such as deep learning algorithms

and image processing. The direct application of these schemes in data intensive applications

such as DNNs is highly limited due to the linear dependency of execution latency on the size of

the data. The work in [86] presents a very fast adder based on complementary resistive switches

(CRS). However, CRS-based logic involves reading and sensing the intermediate data during

execution, which makes execution dependent on inputs. Moreover, the area overhead involved in

arrayed addition grows significantly for data intensive workloads.

Of the proposed memristor-based PIM techniques, MAGIC NOR [23] is the simplest to

implement, with its execution being independent from data in memory. An execution voltage, V0,

is applied to the bitlines of the inputs (in case of NOR in a row) or wordlines of the outputs (in

case of NOR in a column) in order to evaluate NOR, while the bitlines of the outputs (NOR in a row)
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or wordlines of the inputs (NOR in a column) are grounded. The work in [83] extends this idea

to implement adder in a crossbar. It executes a pattern of voltages in order to evaluate sum and

carry bits of 1-bit full addition (inputs being A,B,C) given by,

Cout = ((A+B)′+(B+C)′+(C+A)′)′. (2.1a)

S = (((A′+B′+C′)′+((A+B+C)′+Cout)
′)′)′. (2.1b)

Here, S and Cout have been related to the inputs (A,B, and C) in terms of NOR operations.

Here, Cout is realized as a series of 4 NOR operations while S is obtained by 3 NOT operations

(evaluation of A′,B′, and C′) followed by 5 NOR operations. A NOT operation is implemented as

a NOR operation with 1 input. From this point onwards, a NOR operation by default implies a

MAGIC NOR operation. This design takes 12N +1 cycles to add two N-bit numbers.

2.4 PIM Application Examples

Neural Networks (NNs): Deep neural networks (NNs) demonstrate superior effec-

tiveness for diverse classification problems, image processing, video segmentation, speech

recognition, computer vision and gaming [87, 88, 89, 90]. Although many NN models are

implemented on high-performance computing architectures, such as parallelizable GPGPUs,

running neural networks on the general purpose processors is still slow, energy hungry, and

prohibitively expensive. Attempts have been made to improve NNs’ computation cost but the

data movement between memory and processing cores remains the main bottleneck for NNs’

energy consumption and execution time. Several recent research works reduce this bottleneck by

in-memory acceleration.

The work in [91] presents an SRAM-embedded convolution architecture, which does

not require reading the weights explicitly from the memory. They implement voltage averaging

using ADCs and add local multiply-and-average circuits for computation. The authors in [92]

accelerated on-chip training of always-on machine learning classifiers using analog computations
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in the periphery of the SRAM bitcell array. The CIM-SRAM in [93] presents a cost-aware

solution for DNN AI edge processors which is designed by co-optimizing the previously proposed

SRAM PIM circuits and the system.

The authors in [94] present a novel process-in-memory architecture to process emerging

binary CNN tests in 3D DRAMs. It conducts XNORs inside DRAM arrays, transfers XNOR

results by through-silicon-vias (TSVs), and completes popcounts on the logic die. The work

in [95] introduces a programmable and scalable digital architecture platform for computing

neuro-inspired algorithms. It integrates a parallel compute layer within 3D HMC.

The authors in [10, 27, 96, 97, 98] proposed PIM architectures for implementing NNs in

ReRAM. They utilize the dot-product computation inherently supported by ReRAM crossbars to

implement matrix vector multiplication in memory. These designs utilize multi-level memristor

cells to store data and perform NN computations.

The work in [27] divided a ReRAM bank into three types of subarrays: memory (Mem),

buffer, and full function (FF). Mem subarrays only store data whereas FF subarrays can either

store data or perform NN computations. They reused write drivers and SAs, with some modifica-

tions, to perform the function of DAC and ADC, respectively. Although the sharing of periphery

between computation and memory lowers the area overhead, yet the overhead is significantly

high. The work in [98] extends the work in [27] to provide support for back-propagation and

weight-update, while leveraging peripheral circuitry for inference operation. The sense ampli-

fier implements ReLU and max functions and precision control apart from analog-to-digital

conversion.

A ReRAM-based tiled architecture for accelerating NNs was presented in [97]. Each tile

in [97] has an MCA-based PE (processing engine) array, an eDRAM buffer, a register buffer

and multiple DACs. The input feature maps of CNN are stored in the eDRAM buffer, which

is cached by the register buffer for different convolution steps. Every PE has also an ADC,

some logic elements and SH units. While the ADC works similar to the other works, this work

requires less number of DACs since it uses DACs in only one column, reducing the area and
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power overheads.

The CNN accelerator presented in [10] uses ReRAM dot-product computations for

convolution and classifier layers. The system has multiple tiles each designed with ReRAM

crossbars which store synaptic weights and computations on them. Since a crossbar cannot be

efficiently reprogrammed at runtime, it assigns one crossbar for processing a group of neurons in

any CNN layer. The strength of their design lies in pipelined architecture where different CNN

layers are pipelined, reducing the buffering requirement and increasing the throughput.

The authors in [96] accelerated both training and testing of CNNs using ReRAM crossbar.

They divide MCAs into two types: memory and morphable. The morphable MCAs perform

both computation and data-storage and memory MCAs only store data. The design exploits

both intra-layer and inter-layer parallelism. To exploit intra-layer parallelism, they map the

kernels to multiple MCAs and, then, collect and add their outputs. The number of duplicate

copies of MCAs storing the same weight presents a trade-off between hardware overhead and

throughput. They also propose a pipelined training architecture where inputs inside a batch

can be processed in pipelined manner. They eliminated the use of both DACs and ADCs by

integrating the weighted spike-codes in a counter.

Query Processing: Data management systems (DMS) are the standard tools for collect-

ing and serving large amounts of information for web applications and end users. Over the past

decade, data generation has grown exponentially due the diversity of collection sources [99, 100,

101]. In addition, organizations collect large amounts of information for decision making and

business analytics [102, 103, 104]. In the majority of scenarios, the execution time of DMS

queries tends to increase linearly and sometimes exponentially as more records are stored in a

single server instance. This has been one of the main challenges of DMS and its caused by the

the hardware and software co-design limitations [105].

To increase the performance of query processing, the work in [28] presented a ReRAM-

based PIM architecture for SQL queries. Their technique utilizes the dot-product computation

scheme of ReRAM crossbar to process cells storing identical attribute in different tuples and
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different attributes in the same tuple. They mapped data to ReRAM such that a tuple is stored in

a ReRAM row and attributes of a tuple are stored in columns of a row. Their technique supports

three query operations: restriction (selecting rows that fulfill a criterion), projection (selecting

specific columns in a row) and aggregation (summarizing specific properties of multiple columns

in a group of rows, e.g., adding the values). The multiplication of attributes happens in CPU, for

which data is transferred from memory to CPU. An analog comparator is used for comparison

operations whereas to process the output by equality or Boolean functions, an ADC is used at

row-output for converting the result to digital domain. In a projection operation, ‘1’ is applied

at the column to be read and the remaining columns are supplied with ‘0’ signal. Only sum is

supported in aggregation, which is implemented using column-wise dot-product computation.

The design proposed in [106] further proposed a query optimization method to make

the optimizer fully utilize the performance of the PIM structure and generate an execution

plan specific to the SQL query unit hybrid database system proposed in [28]. They propose

some heuristic rules and a cost-based optimizer for such systems. The heuristic rules are based

on the PIM characteristics of the RRAM-based SQL unit. These rules are required since the

RRAM-based SQL unit supports a subset of typical operations of a database. Hence, the rules

try to utilize the RRAM-based SQL unit whenever possible during query processing to reduce

system cost. The cost-based optimizer helps the system determine if it should choose an index or

PIM to implement a restriction operation.

Graph Processing: Graph processing plays an important role in data processing because

most of data collected from the real world can be represented as graphs like social network [107],

road network [108], and human brain [109]. Since the current trends suggest an explosive growth

of data in near future [110, 111, 112, 113, 114], processing large graphs in an efficient way,

therefore, has become significantly important.

Inspired by this, the work in [4] designed a new programmable accelerator for in-memory

graph processing that can effectively utilize PIM using 3D-stacked DRAM and provided the

programming interface for the same. They introduced novel communication mechanism and
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hardware prefetchers to fully utilize the available memory bandwidth. The work in [63] proposes

a PIM architecture for graph processing on Hybrid Memory Cube (HMC) array. They integrate

SRAM-based on-chip vertex buffers to eliminate local bandwidth degradation. They also

introduce reconfigurable double-mesh connection to provide high global bandwidth.

The work in [29] investigates the use of PIM based ReRAM crossbar for graph pro-

cessing. GraphR [29] is a ReRAM based accelerator which processes graph applications using

matrix multiplication capability of ReRAM crossbar memory. It treats ReRAM crossbar as a

replacement for conventional processing unit and dynamically transfers data from the memory to

a multi-level memory cell based crossbar to finish computations for sub-graphs. Furthermore,

GraphR utilizes ReRAM for matrix-vector multiplication, using ADC and DAC devices for

conversions at the memory periphery.

Hyperdimensional Computing: Although deep learning algorithms work well for many

applications, they are facing scalability and power issues when running on todays computers.

This motivate designing brain-inspired hyperdimensional (HD) computing algorithms which have

significantly lower power consumption, while providing excellent accuracy. Brain-inspired HD

computing explores this idea by looking at computing with ultra-wide words high-dimensional

vectors, or hypervectors [115, 116, 117]. Hyperdimensional computing has been shown to

support a wide range of applications. For example, the design proposed in [118] enables general

speech recognition in high dimensional spaces and then combines them to generate a unique

vector for each output class. The work in [119] introduces a language recognition algorithm

working with high dimensional vectors. Similarly, [120] uses hyperdimensional computing

for DNA sequencing. Researchers have proposed new architectures for hyperdimensional

associative memory that can facilitate energy-efficient, fast, and scalable implementation of HD

in-memory [121]. These analog HD designs use ReRAM based memory to store vectors and

perform HD operations. These designs linearly scale with the number of dimensions in the

hypervectors, while providing orders of magnitude higher efficiency.
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Chapter 3

PIM for Data Intensive Applications

A number of logic families have been proposed for computation inside memristive

crossbar. They focus on logical and arithmetic operations between limited inputs and extend

them linearly for large number of inputs. The direct application of these schemes in data intensive

processing is limited largely due to the dependency of latency of execution on the size of data.

In this thesis, we propose a configurable approximate processing in-memory architecture, called

APIM, which supports addition and multiplication operations inside the non-volatile RRAM-

based memory. APIM exploits the analog characteristic of the memristor devices to enable basic

bitwise computation and then, extend it to fast and configurable addition and multiplication

within memory. We propose a blocked crossbar memory which introduces flexibility in executing

operations and facilitates shift operations in memory. Then, we introduce a novel approach

for fast addition in memory. Finally, we design an in-memory multiplier using the proposed

memory unit and fast adder. For each application, APIM can also dynamically tune the level

of approximation in order to trade the accuracy of computation while improving energy and

performance.

3.1 APIM Architecture

A typical crossbar memory is an array of unit memory cells. In case of RRAM, these

cells are made of resistive switching elements such as memristors. Each cell in the memory
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is accessed by activating the corresponding wordline and bitline. MAGIC makes execution of

operations in a crossbar memory simple. It also allows easy copying of data provided the source

and destination are in the same column/row. While being acceptable in many cases, this memory

structure limits the performance of instructions which involve a lot of shifting and asymmetric

movement of data. One such instruction is multiplication where the multiplicand is shifted and

added. Multiple copy operations can emulate a shift operation. However, such an approach is

impractical when the number to be shifted is large since it requires shifting each and every bit

individually. The problem is aggravated when multiple such numbers are to be shifted.

We hence propose the use of a blocked memory structure as shown in Figure 3.1(a). The

crossbar is divided into blocks. Any new data which is loaded into the memory is stored in the

data block. Whenever there is a request to process data, it is copied to the processing block and

computation is done. The two blocks are structurally the same and can be used interchangeably.

These blocks are connected by configurable interconnects. The interconnects support shift

operations inherently such that ith bitline of one block can be connected to (i+ j)th bitline of

another block. The availability of interconnects allows the memory to shift data while copying

it from one block to another without introducing any latency overhead. This makes shifting an

efficient operation since the entire string of data can be shifted at once, unlike shifting each bit

individually.

3.1.1 Fast Addition in APIM

The design in [83] is good for small numbers but as the length of numbers increases, time

taken increases linearly. A N×M multiplication requires addition of M partial products, each

of size N bits, to generate a (N +M)-bit product. This takes (M−1) · (12(N−1)+1) cycles to

obtain the final product.

In order to optimize latency of addition, we propose a fast adder for memristive memories.

Our design is based on the idea of carry save addition (CSA) and adapts it for in-memory

computation. Figure 3.2(a) shows carry save addition. Here, S1[n] and C1[n] are the sum and
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carry save adder and configurable interconnects. (d) Final product generator.

carry-out bits, respectively of 1-bit addition of A1[n], A2[n], and A3[n]. The 1-bit adders do not

propagate the carry bit and generate two outputs. This makes the n additions independent of each

other. The proposed adder exploits this property of CSA. Since, MAGIC execution scheme doesn’t

depend upon the operands of addition, multiple addition operations can execute in parallel if

the inputs are mapped correctly. The design utilises the proposed memory unit, which supports

shifting operations, to implement CSA like behaviour. The latency of this 3:2 reduction, 3 inputs

to 2 outputs, is same as that of a 1-bit addition (i.e., 13 cycles) irrespective of the size of operands.

The two numbers can then be added serially, consuming 12N +1 cycles. This totals to 12N +14

cycles while the previous adder would take 24N−22 cycles. The difference increases linearly

with the size of inputs.

We use a Wallace-tree inspired structure leveraging the fast 3:2 reduction of our new

adder design, as shown in Figure 3.2(b), to add multiple numbers (9 n-bit numbers in this case).

At every stage of execution, the available addends are divided in groups of three. The addends are

then added using a separate adder (as described above) for each group, generating two outputs

per group. The additions in the same stage of execution are independent and can occur in parallel
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Figure 3.2. (a) Carry save addition (b) Tree structured addition of 9 n-bit numbers

to each other. Our configurable interconnect arranges the outputs of this stage in groups of three

for addition in the next stage. This structure takes a total of four stages for 9:2 reduction, having

the same delay as that of four 1-bit additions. At the end of the tree structure we are left with two

(N +3)-bit numbers which can then be added serially. The tree-structured addition reduces the

delay substantially as carry propagation happens only in the last stage, unlike the conventional

approach where carry is propagated at every step of addition. Although this speed up comes

at the cost of increased energy consumption and number of writes in memory, it is acceptable

because the latency is reduced by large margins as shown in Section 3.3.

3.1.2 Multiplication in APIM

The process of multiplication can be divided into three stages, partial product generation,

fast addition, and final product generation as shown in Figure 3.1. The partial product generation

stage creates partial products of a N×N multiplication. These partial products can then be added

serially (inefficient) or by the fast adder introduced in Section 3.1.1. The fast addition reduces N

numbers to 2. The final product generation stage adds two numbers generated by the previous

stage and outputs the product of N×N multiplication.

A partial product is the result of ANDing the multiplicand (M1) with a bit of the multiplier
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(M2). Hence, N×N multiplication generates N (size of M2) partial products of size N-bits (size

of M1). AND operation can be implemented as a series of three NOR operations as given by,

F = AND (A,B) = NOR (NOR(A), NOR(B)) (3.1)

This requires three cycles given that the inputs A & B and output F are in the same row

or column. In the case of in-memory computation, even if we assume that the numbers to be

multiplied are located adjacent to each other, we would require an empty crossbar row/column

of length NN which is quite large even for N = 16. This would be expensive not only in terms of

area but also in latency, requiring 3NN cycles.

We propose the use of sense amplifiers to develop a faster partial product generator as

shown in Figure 3.1(b). In order to avoid the time and area overhead involved in transposing and

creating multiple copies of multiplier, we read-out the multiplier. The design exploits the fact

that the partial product is the multiplicand itself if multiplier bit is ’1’ and 0 otherwise. M2 is

read bit-wise using the sense amplifier. If the read bit is ’1’, M1 is copied, while nothing is done

when the bit is ’0’. We achieve this by modifying the multiplexer in the controller, incorporating

the sensed bit in the select signals. In this way, we avoid writing data when the bit is zero, thus

saving energy. A copy operation is equivalent to two successive NOT operations. This result is

used for all successive copy operations, limiting the worst case delay of copying to N +1 cycles.

The actual delay would vary depending upon the number of ’1s’ in M2.

Although this is a huge improvement in latency from the initial design, we have not

yet considered the cost of shifting the partial products for add operation. Shift operation in a

normal memory crossbar can only be done bitwise, which would be quite large given the number

and size of operands to be shifted. The blocked memory architecture introduced in Section 3.1

proves advantageous in this scenario. If the above operations are performed in a blocked memory

crossbar, the latency of shifting would actually reduce to zero. Shift operation can be clubbed

with copy operation and hence, shifted partial products can be obtained in the processing block
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at no extra delay.

The fast adder discussed in Section 3.1.1 reduces the generated partial products to 2,

owing to its N:2 reduction. Since a step in the fast adder involves parallel additions, it requires

that the three addends of a 3 : 2 adder are present in the same columns (rows) and all such groups

in a step are present in the same rows (columns). Interestingly, arranging the partial products in

this manner involves no added latency as this arrangement can be done while shifting and copying

the data in the partial product generation stage. Instead of writing the partial products one below

the other, the interconnects are set such that the partial products are arranged in the required

way. After the first step of 3 : 2 reduction, we again need to arrange the intermediate results

into groups of three. This can be done by moving these results to the data block, performing the

next 3 : 2 reduction there (blocks being functionally the same), and coming back to the current

block for the following reduction. In this way, N : 2 reduction can be efficiently executed by

utilizing only 2 blocks of the memory, toggling between them at every step. However, if the data

block is specifically reserved for storing data and bars logic execution, a 3-level memory (with

2 processing blocks per data block) can be used. The reduction is done until only 2 addends

remain.

The major advantage of reduction addition is that the time taken by this adder is indepen-

dent of the size of the operands i.e., N×32 multiplication takes the same time in this stage for

any value of N. It varies only by the number of operands to be added. Moreover, since we only

generate a partial product when the multiplier bits are 1, the actual number of operands to be

added is quite small. For instance, with a random input data, there would be only 16 additions

on average for 32×32 multiplication. The final product generation stage adds the two outputs of

the previous stage to generate the required product.

Figure 3.3(a) shows the configurable interconnect used in our design. It can be visualized

as a collection of switches, similar to a barrel shifter, which connects the bitlines of the two

blocks. bn and b′n are bitlines coming into and going out of the interconnect respectively. The

select signals, sn control the amount of shift. These interconnects can connect cells with different
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bitlines together. For example, they can connect bn,bn+1,bn+2, ... incoming bitlines to, say,

b′n+4,b
′
n+5,b

′
n+6, ... outgoing bitlines, respectively, hence enabling the flow of current between

the cells on different bitlines of blocks. This kind of a structure makes shifting operations energy

efficient and fast, having the latency same as that of a normal copy operation. It also allows for

inter-column MAGIC NOR operations between the two blocks. If inputs are stored on nth bitline

of one block, the output of NOR operation can be stored on, say, (n+4)th bitline of another block.

This can be extended to multiple NOR operations in parallel. The shift select signals, sn, are

controlled by the memory controller present at the periphery of memory unit. It is important to

note that all of these blocks still share the same row and column controllers and decoders. So, the

area and logic overhead introduced by the proposed memory unit is restricted to the interconnect

circuit and its control logic.

21



3.2 APIM Approximation

The individual additions in the final stage cannot occur in parallel since they require the

propagation of carry in order to generate the final answer. The two addends in the final stage of

APIM multiplication are of size 2N each. The conventional approach requires 13 ·2N cycles to

compute the result. This latency is dominant as compared to the previous stages of multiplication,

making the last stage a bottleneck of the entire process.

However, we can dramatically speed it up if a fully accurate result is not desired. This is

the case with many highly data intensive applications which tolerate some inaccuracy as long as

it is within the prescribed limits. One approach is to mask some of the LSBs of M2, reducing the

number of computations. The other approach approximates the sum bits in the last stage from

the accurately generated carry bits and saves the delay involved in calculation of the bit. We use

the second approach in the evaluation of our design.

In the first approach, the number of masked bits depends upon the amount of accuracy

desired. Masking the bits of the multiplier effectively reduces the number of partial products to

be added because we don’t generate partial products when the multiplier bit is 0. For example,

masking 8 LSBs of M2 in the first stage reduces a 32× 32 multiplication to 32× 24. Hence,

this method of approximation results in a direct reduction in delay and energy consumption of

multiplication. It comes majorly due to the reduction in computation in the fast adder stage.

However, since this approach masks the bits in the initial stage itself, the error propagates

through the entire process, resulting in huge errors in some cases. This makes it unsuitable for

an application demanding very high accuracy.

In the second approach, our design exploits the fact that the sum bit (S) of an 1-bit

addition is the complement of the generated carry bit (Cout) except for two combinations of

inputs (i.e.,(A,B,C) = (0, 0, 0) and (1, 1, 1)) [122]. It evaluates Cout accurately (hence, preventing

the propagation of error) and then approximates S. Our design uses a modified sense amplifier

(SA). It supports basic memory operation along with MAJ (majority) function as shown in
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Figure 3.4. Error and EDP comparison of the two approximation approaches.

Figure 3.3(b). The carry generated (Cout) as a result of addition of three input bits (A,B,Cin)

is MAJ(A,B,C) i.e., AB+BC+CA. Our circuit level evaluation shows that just reading the

inputs from memory takes about 0.3ns, while our design needs 0.6ns to calculate majority and

compute Cout resulting in an effective delay of less than 1 cycle. One additional cycle is needed

to write the computed Cout to the memory. It acts as an input to the next 1-bit addition, the output

of SA is written such that it is in the same column as that of the next two inputs, saving the

trouble and cost of copying it. Since the carry bit is propagated, these 1-bit additions cannot

occur in parallel to each other. The computation of Cout takes 2 ·2N cycles. All S bits can then

be approximated by just inverting the Cout bits, which costs only 1 cycle and can all be done at

the same time. This technique reduces the latency from 13 ·2N (time taken to add two 2N-bit

numbers) cycles to 2 ·2N +1 cycles. This improvement comes with a significant cost of 25%

error (2 out of 8 cases) for a random input data.

The accuracy can be improved substantially by approximating just a part of the final

product while accurately calculating the rest of the product. The design improves accuracy by

dividing the product into two groups of size k and m bits such that k+m = 2N. The k bits are

calculated using the conventional approach which consumes 13k cycles and produces k accurate

bits in the product. On the other hand, m bits are approximated using the technique described

above, which takes a total of 2m+1 cycles. This increases the accuracy since the k accurate bits

23



are generally the most significant bits and any error in the m least significant bits has less effect

on the result, as shown in Section 3.3.3. The proposed technique implements the final stage with

a latency of 13k+2m+1 cycles. The appropriate values of k and m depend upon the application

in hand. Section 3.3.3 talks about different applications and selecting these values in order to

obtain acceptable results.

While approximation in the last stage reduces the latency, it is still slower that the first

approach in which approximation is done in the first stage. The first approach is more energy

efficient too since it reduces the size of multiplication and uses less resources. However, unlike

the first approach, second approach introduces error only in the final stage of the process. This

approach can thus achieve very low error rates making it suitable for applications requiring precise

results. Figure 3.4 presents a comparison between the two approaches for 32×32 multiplication.

While, approximation in the first stage is convenient for error tolerant applications, approximation

in the last stage can guarantee very high accuracies for similar EDPs. For example, for 32×32

multiplication and an EDP of 1.4×10−16, the error rate for the second approach is less by 5

orders of magnitude as compared to the first approach.

3.3 Results

3.3.1 Experimental Setup

We compare the efficiency of the proposed APIM design with state-of-the-art processor

AMD Radeon R9 390 GPU with 8GB memory. In order to avoid the disk communication in the

comparison, all the data used in the experiments is preloaded into 64GB, 2.1GHz DDR4 DIMMs.

We used Hioki 3334 power meter to measure the power consumption of GPU. We implement

the APIM functionality by changing the multi2sim [123], cycle-accurate CPU-GPU processor.

Performance and energy consumption of proposed hardware are obtained from circuit level

simulations for a 45nm CMOS process technology using Cadence Virtuoso. We use VTEAM

memristor model [124] for our memory design simulation with RON and ROFF of 10kΩ and
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Figure 3.5. Performance comparison of the proposed design with previous work for addition of
N operands, each sized N bits

10MΩ respectively.

We compare the efficiency of APIM and GPU by running six general OpenCL applica-

tions including: Sobel, Robert, Fast Fourier transform (FFT), DwHaar1D, Sharpen and Quasi

Random. For image processing we use random images from Caltech 101 [125] library, while for

non-image processing applications inputs are generated randomly. Majority of these applications

consists of additions and multiplications. The other common operations such as square root

has been approximated by these two functions in OpenCL code. To evaluate the computation

accuracy in approximate mode, our framework compares the approximate output file of each

application with the golden output from calculating exactly. For image processing applications,

we accept 30dB peak signal-to-noise ratio as an accuracy metric. For other applications, the

acceptable accuracy is defined by having less than 10% average relative error. To find a proper

level of accuracy, our framework computes APIM at the maximum level of approximation (32

relax bits). In case of large inaccuracy, it increases the level of accuracy in 4-bit steps until

ensuring the acceptable quality of service.

3.3.2 APIM vs state-of-the-art

Figure 3.5 compares the performance efficiency of the proposed design with the state-

of-the-art prior work [83, 86]. The work in [83] computes addition in-memory using MAGIC
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Table 3.1. Quality of loss and EDP improvement of the proposed APIM compared to GPU in
different level of approximation.

Applications 0 bit 4 bits 8 bits 16 bits 24 bits 32 bits
EDP Imp. QoL EDP Imp. QoL EDP Imp. QoL EDP Imp. QoL EDP Imp. QoL EDP Imp. QoL

Sobel 94× 0% 164× 1.3% 235× 3.1% 305× 6.9% 376× 11.4% 446× 15.6%
Robert 177× 0% 311× 1.2% 444× 2.9% 577× 4.8% 711× 6.8% 844× 9.1%
FFT 203× 0% 356× 2.2% 509× 3.7% 662× 5.8% 815× 8.6% 968× 13.5%

DwHaar1D 90× 0% 157× 0.9% 225× 2.6% 293× 5.7% 361× 7.9% 428× 10.6%
Sharpen 104× 0% 149× 3.4% 206× 5.1% 273× 8.1% 340× 12.5% 410× 18.4%
QuasiR 69× 0% 127× 2.1% 198× 3.5% 258× 5.8% 310× 9.3% 386× 15.7%

logic family, while the work in [86] uses the complementary resistive switching to perform

addition inside the crossbar memory. Our evaluation comparing the energy and performance

of addition of N operands of length N bits each shows that the APIM can achieve at least 2×

speed up compared to previous designs in exact mode. APIM can be at least 6× faster with

99.9% accuracy. The proposed design is even better since the calculations for previous work do

not include the latency involved in shift operations. This improvement comes at the expense of

the overhead of interconnect circuitry and its control logic. However, the next best adder, i.e.,

the PC-Adder [86] uses multiple arrays each having different wordline and bitline controllers,

introducing a lot of area overhead. This overhead is not present in our design since all the blocks

share the same controllers.

3.3.3 Approximate APIM

Table 3.1 shows the energy consumption and performance of the applications running on

APIM in different approximation level. As we explained in Section 3.2, APIM approximates

m least significant bits of the product in the final product generation stage. The value of m

has an important impact on the computation accuracy and performance of multiplication in

APIM design. As Table 3.1 shows, large number of approximate LSBs (m) significantly improve

energy-delay product of APIM, at the expense of increased computation inaccuracy. Similarly,

small m makes the computation more accurate with small benefit. We observed that different

applications satisfy the required accuracy for different values of m. Therefore, our design detects

the application at runtime and then sets the pre-calculated value of m that is obtained offline to

ensure the acceptable quality of computation. Using this adaptive design, our design can achieve
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(c) FFT
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Figure 3.6. Energy consumption and speedup of exact APIM normalized to GPU vs different
dataset sizes.

480× energy-delay product improvement as compared to APIM in the exact mode.

3.3.4 APIM & Dataset Size

Figure 3.6 shows the energy savings and performance improvements of running applica-

tions on APIM exact, normalized to GPU energy and performance. For each application, the size

of input dataset increases from 1Kb to 1GB. In traditional cores, the energy and performance of

computation consists of two terms: computation and data movement. In small dataset (˜KB), the

computation cost is dominant, while running applications with large datasets (˜GB), the energy

and performance of consumption are bound by the data movement rather than computation cost.

This data movement is due to small cache size of transitional core which increases the number of

cache miss. Consecutively, this degrades the energy consumption and performance of data move-

ment between the memory and caches. In addition, large number of cache misses, significantly

slows down the computation in traditional cores. In contrast, in proposed APIM architecture the

dataset is already stored in the memory and computation is major cost. Therefore, regardless

of dataset size (the dataset can fit on APIM), the APIM energy and performance of increases

linearly by the dataset size. Although the memory-based computation in the APIM is slower than

transitional CMOS-based computation (i.e. floating point units in GPU), in processing the large

dataset, the APIM works significantly faster than GPU. In terms of energy, the memory-based

operations in APIM is more energy efficient than GPU. Our evaluation shows that for most

applications using datasets larger than 200MB (which is true for many IoT applications), APIM
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is much faster and more energy efficient than GPU. With 1GB dataset, the APIM design can

achieve 28× energy savings, 4.8× performance improvement as compared to GPU architecture.

This observation shows the need for intelligent allocation of an application or a task to a

PIM accelerator. Chapter 4 introduces a hybrid CPU-PIM architecture and then proposes a data

size-aware management scheme to decide when to process data in CPU or PIM accelerator.

Chapter 3, in part, is a reprint of the material as it appears in M. Imani, S. Gupta, T. Rosing,

“Ultra-Efficient Processing In-Memory for Data Intensive Applications,” Proc. IEEE/ACM

Design Automation Conference, 2017, pp. 1-6.
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Chapter 4

Data Management in a PIM Supported
Heterogeneous System

PIM implementation executing addition and multiplication introduced in Chapter 3 is

much slower than CMOS-based cores in terms of computation. The major advantage of PIM

comes from addressing the data movement issue for large data. Each application consists of

different segments, with each segment using different types of operations and/or data. Hence, an

efficient design needs to run only a fraction of the application on PIM and while the rest still runs

on general purpose cores. We design a heterogeneous architecture, called GenPIM, consisting

of general purpose processor and PIM accelerator. GenPIM supports basic PIM functionalities

in specialized non-volatile memory including: bitwise operations, search operation, addition

and multiplication. For each application, GenPIM identifies the parts with large numbers of

continuous PIM operations, while the rest of non-PIM operations are processed on general

purpose cores.

4.1 GenPIM: A Generalized PIM

The memory hierarchy in traditional computers have been designed to provide the

maximum data locality for the processing cores. Caches are placed close to the processing cores

to store the data which would probably be accessed in near future. However, in the domain

of big data, the small cache memories do not have the capability to store this huge amount of
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Figure 4.1. Architecture overview of the proposed GenPIM.

data locally. This significantly degrades the efficiency of traditional computers. In addition, the

limited memory bandwidth between DRAM and on-chip memories significantly slows down the

computation when the size of data increases beyond the memory capacity. Processing in-memory

(PIM) is an efficient way to address data movement issue. PIM processes data locally in memory,

i.e. the place where it is stored. Therefore, our design avoids the cost of moving entire data to

processing cores.

Although, the idea of PIM is general, there are several issues that limit the efficiency of

these emerging PIM architectures. In this section, we talk about these limitations and explain

how they can be addressed by the proposed design.

In order to design an efficient PIM architecture, PIM needs to support highly used

operations in each program. For example, addition, multiplication and search operations are

commonly used operations in many applications. In contrast, the operations such as exponential

are not common operations, thus PIM does not need to support such less popular functionalities.

As PIMs are usually realized by modification in memory sense amplifier, (i) PIMs cannot support

many processing functionalities. (ii) Enabling more number of PIM operations significantly

increases the memory cost in terms of area, energy and performance.
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4.1.1 GenPIM Architecture Overview

In order to generalize PIM functionality, our design uses PIM along with a general

purpose processor, e.g. CPU. Figure 4.1 shows the overview of the proposed GenPIM architecture

consisting of conventional processing cores and PIM accelerators. In GenPIM, conventional

cores are connected to the main memory, which has a PIM functionality. Our GenPIM replaces

DRAM with non-volatile memory (NVM) since NVM can support both memory and processing

functionalities. In memory functionality, PIM works similar to DRAM, but with lower efficiency.

A memory controller accesses the NVM data and sends it through the data bus to caches in

processing cores. During PIM functionality, GenPIM applies general PIM operations on the

stored data in memory. Our PIM memory is divided into two blocks, a memory and a processing

block. Processing block can either store the data or apply general PIM functionalities over the

stored values. When the data is stored in memory block, GenPIM moves the data to processing

block in order to apply PIM operations. Note that this internal data movement is performed with

very low latency. Since NVMs are slower than DRAM, we expect to have lower performance

efficiency as compared to using DRAM as main memory. However, this overhead is minor for

big data applications, considering the advantage that PIM operations can provide.

4.1.2 Functions Supported by GenPIM

Addition/Multiplication: These operations are the most important and popular PIM

functionalities which many big data applications can benefit from. For example, emerging big

data applications such as neural network or security algorithms are based on large sized matrix

multiplication. PIM supports these operations, which enables us to significantly accelerate these

operations in-memory. In this work, we used addition and multiplication proposed in Chapter 3

to enable PIM functionality for general purpose applications.

Search: The search operation is another key operation in several big data applications

including: graph processing, machine learning and query processing. PIM can support exact
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Table 4.1. Execution time of arithmetic functions using CMOS-based logic and different PIM
architectures.

32-bit Addition 32-bit Multiplication
CMOS Logic MAGIC [83] & APIM [126] CRS [127] CMOS Logic APIM [126]

4.8ns 458.0ns 74.8ns 24.6ns 1090.3ns

search as well as can search for data with nearest distance to a value [85]. Examples of such

applications include Breadth First Search (BFS) or Single Source Shortest Path (SSSP) in graph

processing or nearest neighbor search in machine learning algorithms such as k-means.

Bitwise: Bitwise computation is another popular set of operations in applications such as

graph or query processing. PIM supports bitwise computation over 8 rows for AND operation

and up to 256 rows for OR operation at the same time [85].

4.2 GenPIM Data Management

In all cores, the computation efficiency is determined by two terms: processing and data

movement costs. Running big data applications makes data movement a dominant factor in

computation cost, while the processing part is fast and efficient. For example, graph processing

workloads consist of millions of vertexes. When running popular BFS and SSSP applications

over graphs, the cost of processing is minor as compared to the data movement cost, since it

requires the system to bring whole data to the caches. This indicates that PIM may not always

outperform CMOS-based processing speed/efficiency (e.g. CPU cores). Instead, it should be

able to address the data movement issue as much as possible. Looking at recent prior work in

this area, we observe that PIM processing speed for addition and multiplication is significantly

slower than CMOS-based cores [127, 83]. Table 4.1 compares the performance of 32-bit addition

and multiplication over PIM and CMOS-based logic. The result shows that over addition and

multiplication, the CMOS-based logic can achieve at least 15.5× and 44.3× higher performance

as compared to PIM processing. However, as the data size increases, PIM becomes more efficient.

This makes PIM a suitable choice to process data intensive applications, which mostly suffer
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Figure 4.2. Execution time of conventional core and PIM addition/multiplication in different
data sizes.

from data movement.

GenPIM is supported by a data management unit, which decides whether to run a part

of data on PIM or general purpose processor. GenPIM categorizes the application’s operations

to PIM compatible and incompatible operations. As we explained, GenPIM supports popular

operations in memory. The part of application which is not supported by PIM, still needs to be

processed on traditional core.

Looking at PIM operations, all operations cannot be accelerated by PIM. In particular,

we observe from Table 4.1 that GenPIM is much slower than CMOS-logic in terms of processing

performance. Therefore, PIM addition/multiplication is not efficient to be processed on (i) small

data sizes since such data easily fits into caches of conventional core, (ii) non-continuous PIM

operations which require frequent access to traditional cores. Let us consider the performance

of data processing over small neural network. Although, neural network consists of several

multiplications in each layer, the data can fit on cache for a small network. In addition, after

each PIM multiplication/addition in neural network layer, PIM requires to access traditional

cores to apply activation function over each neuron output. In this case, traditional cores show

significantly higher performance than PIM to process data. PIM operations are beneficial when

they need to be applied over large amount of data stored in-memory.

To show the impact of data size on PIM, we generate some random data and apply PIM

addition/multiplication over it. Figure 4.2 compares the performance of PIM and traditional
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cores when processing data of different sizes. The result shows that PIM multiplication and

addition can be beneficial when the size of data surpass 10MB. While working on smaller data

size, the CMOS-based logic always outperforms the PIM operations.

Based on this observation, the programmer needs to annotate the code once, identifying

the part of application which can be processed by PIM. Based on this annotation, the compiler

can optimize different parts of code depending on the characteristics of PIM and conventional

cores. Note that this data management is necessary only over addition/multiplication, since the

rest of GenPIM operations, i.e., search and bitwise, have lower latency than CMOS-based logic.

Therefore, they don’t need such code annotation.

4.3 Results

4.3.1 Experimental Setup

To simulate the functionality of the proposed GenPIM, we wrote a Python-based cycle-

accurate simulator which models the hardware functionality of the proposed GenPIM. We

integrate this simulator with GEM5 [128], a cycle-accurate CPU-GPU simulator to completely

simulate the functionality of GenPIM. We compare the efficiency of the proposed design with

Intel i7 7600 CPU with 16GB memory which is placed next to AMD Radeon R9 390 GPU

with 8GB memory. For the measurement of the system and processor power, we used Hioki

3334 power meter and AMD CodeXL [129]. The efficiency of PIM in the proposed GenPIM is

evaluated using the HSPICE simulator. We use VTEAM memristor model [124] for our memory

design simulation with RON and ROFF of 10kΩ and 10MΩ respectively.

We test the efficiency of the proposed GenPIM over two machine learning applications.

Here are the details of the tested applications:

Neural Network: We apply neural network on CIFAR-10 dataset which includes 50000

training and 10000 testing images belonging to 10 classes [130]. The goal is to classify an input

image to the correct category, e.g., animals, airplane, automobile, ship, truck, etc. Table 4.2
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Table 4.2. Neural network configuration over CIFAR-10 dataset.

Network Configurations Accuracy
Conv : 32×32×3,Conv : 32×3×3, Pooling : 2×2,Conv : 64×3×3,
Conv : 64×3×3, Fully connected: 512, 1024 1024, 10 87.7%

shows the configuration and the baseline accuracy of the neural network over CIFAR-10 dataset.

This network consists of four convolutional, one pooling and four fully connected layers.

K-nearest neighbor (k-NN ): It is a popular machine learning classification algorithm.

k-NN works based on similarity search, thus includes several nearest distance search operations.

The original algorithm uses Euclidean distance as accuracy metric [6], but we change this metric

to absolute distance, to make it appropriate for underlying hardware. We test the efficiency of the

proposed design on physical activity monitoring dataset, PAMAP2 [131]. This dataset includes

logs of 8 users and three 3D accelerometers positioned on arm, chest and ankle. They were

collected over different human activities such as lying, walking and ascending stairs. In total,

we extracted 16-136 features for the three accelerates, and then further applied the principal

component analysis (PCA) to select most significant features with 0.1% of variance.

Lattice-based Cryptography: In recent years, lattice-based cryptography has been used

for strong provable security guarantees and apparent resistance to quantum attacks, flexibility for

realizing powerful tools like fully homomorphic encryption, and high asymptotic efficiency [132,

133]. Here we look at the application of lattice-based cryptography in security. The majority of

this application consists of matrix multiplications and additions. We change the size of generated

matrix in the design from 16 to 8192 in order to explore the efficiency of the GenPIM over this

application.

Video Compression: This algorithm involves several matrix multiplication, matrix

transpose, and matrix inversion operations. This dataset is composed by 1296 double compressed

video sequences, extending the dataset [134]. These sequences are obtained starting from 6

uncompressed well-known sequences (4 at CIF resolution and 2 at 4CIF resolution, measuring

from 240 to 300 frames each). To explore the efficiency of the GenPIM over video compression,
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Figure 4.3. Speedup and energy efficiency improvement of proposed GenPIM as compared to
traditional cores.

we ran this algorithm over videos with four different qualities: 720pi, 1080pi, 4K and 8K.

4.3.2 Data size

Figure 4.3 shows the impact of data size on the efficiency of the proposed PIM-based

architecture. For each dataset, the x-axis shows a parameter for each application which changes

the number of computations. For neural network, this parameter is image size. We change

the number of input features for k-NN. The results show the speedup and energy efficiency

improvement of the GenPIM as compared to conventional cores with both systems running the

same applications. The results of energy and performance have been reported for two cases.

The first bar in the figure corresponds to the proposed GenPIM architecture which assigns all

PIM-compatible operations to PIM to process and the second bar shows our adaptive GenPIM

which assigns a job to main processor or PIM depending on the size of data. All results are

normalized to the energy consumption and execution time of CPU core. Our evaluation shows

that over applications with small data size, conventional cores outperform the GenPIM without

data management. It happens because while running applications with small data size, the on-

chip caches can provide proper data locality, which results in high performance on conventional

architectures. However, using GenPIM supported by data management technique, it automatically
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assigns most of the PIM-compatible operations to traditional cores if the data does not satisfy

the GenPIM policy.

Increasing the data size, we observe that GenPIM can achieve significant speedup and

energy efficiency improvement as compared to GPU with or without data movement policy. This

efficiency comes from the ability of PIM to process huge amount of data. Our evaluation shows

that GenPIM can achieve 2.3× and 6.4× speedup as compared to GenPIM without and with data

management policy.

In terms of energy efficiency, we observe that the proposed design always outperforms

the conventional cores with or without using data management policy. This is because PIM

operations are always more efficient than conventional operations on CMOS-based logic. Our

evaluation shows that PIM using proposed data management policy can provide 10.9× energy

efficiency in average over all tested learing applications. PIM using no data management policy

provides lower energy efficiency, i.e. 9.1×. This happens because PIM in this mode degrades

the cache locality and increases data movement between the processor and main memory as

compared to PIM using data management policy.

In recent chapters, we proposed a new PIM supported hybrid architecture for data inten-

sive computations. We also introduced data management solutions to increase the performance

of the hybrid system. In the following chapters, we show how these can be used to significantly

accelerate neural networks and query processing.

Chapter 4, in part, is a reprint of the material as it appears in M. Imani, S. Gupta, T. Rosing,

“GenPIM: Generalized Processing In-Memory to Accelerate Data Intensive Applications,” Proc.

IEEE/ACM Design Automation and Test in Europe Conference, 2018, pp. 1155-1158.
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Chapter 5

Processing In-Memory Architecture for
Neural Network Acceleration

Chapters 3 and 4 presented a novel architecture to implement data intensive computations

efficiently. In this chapter, we show how it can be used to execute neural networks (NNs)

efficiently in memory. We propose a novel NN accelerator, called neural network processing in-

memory (NNPIM), which significantly reduces the overhead of data movements while supporting

all the NN functionalities completely in memory. To realize such computation, our design first

analyzes computation flows of a NN model and encodes key NN operations for a specialized PIM-

enabled accelerator. The proposed NNPIM supports three layers popularly used for designing a

NN model: fully-connected, convolution, and pooling layer. We divide the computation tasks of

the networks into four operations, multiplication, addition, activation function, and pooling. Our

accelerator supports all of these operations inside a crossbar memory.

5.1 Neural Networks

A NN model consists of multiple layers which have multiple neurons. These layers

are stacked on top of each other in a hierarchical formation, so each layer takes the output of

previous layer as input and forwards its output to the next layer. In this thesis, we focus on

three types of layers that are most commonly utilized in practical neural network designs: (i)

convolution layers, (ii) fully connected layers, and (iii) pooling layers. Figure 5.6a depicts one
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neuron. In neural network, each neuron takes a vector of inputs from neurons of the preceding

layer X = 〈X0, · · · ,Xn〉, then computes its output as follows:

ϕ(
n

∑
i=1

WiXi +b)

where Wi and Xi correspond to a weight and an input respectively, b is a bias parameter, and ϕ(.)

is a nonlinear activation function. Prior to the execution of NNs, parameters Wi and b are learned

in a training process. For inference, the pre-trained parameters are used to compute the outputs

of each neuron, called activation units. A neuron produces one activation unit based on two

main operations, the weighted accumulation, i.e. ∑WiXi, and the activation function, i.e. ϕ(.).

By processing all the computation through the layers, also known as feed-forward procedure, it

produces multiple outputs which are used for the final prediction.

In inference, neural networks use a combination of convolution, pooling, and fully

connected layers to process or classify the data. There are two types of data in neural networks:

(i) a large number of trained weights, which we call them network model and (ii) the input data

which is processed by the network. The main computation in neural network involves processing

the input data over network using the trained weights. It leads to several computations between

weights and inputs.

5.2 PIM for Neural Networks

Processing in-memory supports essential functionalities among different memory rows.

These operations should be general enough to benefit many applications. Neural network

computation is based on a few basic operations, so executing them in-memory can allow us to

run whole application inside a memory. This would reduce data movement issue and accelerate

any network locally in memory. The goal of PIM is to locally perform operations between

these inputs and weights inside a memory block, such that there is no need to send data up to

processor. To support all the required operations in memory, we design a PIM architecture which
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can perform addition, multiplication, activation function, and pooling locally in memory. These

operations are managed inside a memory using simple controllers.

The memory architecture used in this work supports the following functions on the same

hardware:

Addition/Multiplication: Our design can execute the addition of three data values, in

memory, by activating their corresponding rows. If more values have to be added at the same

time, our design implements addition in a tree structure. The multiplication inside memory

is performed in a similar way, by generating all possible partial products and adding them in

parallel in memory. Their hardware implementation has been discussed in Section 3.1.

Activation Function: Traditionally, Sigmoid function has been used as an activation

function [135]. This function is defined as: S(x) = 1/1+ e−x. Implementing this functionality in

memory requires modeling exponential operations. Our design can handle this operation by using

the Taylor expansion of the Sigmoid function and considering the first few terms to approximate

the Sigmoid function. The Taylor expansion only consists of addition and multiplication. We can

easily implement any function in memory as long as it is representable by Taylor expansion and

the more terms we consider in Taylor expansion, the better the model is for activation functions.

Prior work showed that it is not necessary to use Sigmoid as an activation function. Instead,

using simple ”Rectified Linear Unit” clamped at a certain point (e.g. X=a could provide similar

or better accuracy than Sigmoid. In that case, the activation function can be implemented using

a single comparator which checks if input X surpasses a value a. Note that in case of rectified

linear unit, activation function can be processed simply inside a controller.

Pooling: Our hardware implements in-memory pooling using nearest search operation.

PIM stores the output of convolution layer inside a memory block with nearest search capability.

Then to find the maximum value, our design searches for a row with the closest distance

(maximum similarity) to inf value. This inf value in hardware is the maximum value which can

be represented by hardware. Using this block, we can search for the MAX value among the

selected rows inside the memory. Similarly, the MIN pooling can be implemented by searching
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for the smallest value in lookup table (− inf).

5.3 NNPIM Design

5.3.1 NNPIM Overview

As described before, an inference task in neural network involves multiplying inputs

with the weights, which are calculated during the training phase. Once a network is trained,

the weights remain constant and do not change over different inference tasks. The previously

proposed hardware designs to accelerate neural networks do not exploit this property of neural

networks. In such cases, multiplication with fixed weights is computationally as expensive as

that with variable weights.

NNPIM uses this fixed nature of weights to reduce the complexity of in-memory neural

network multiplications. Instead of using the weights directly, NNPIM breaks down the weights

into simpler factors. These factors are chosen such that multiplying a number with them just

requires a shift and add/subtract operation. Hence, instead of exhaustively generating all the

partial products and adding them, we rely on the fixed nature of weights to pre-process them

and calculate their “multiplication-friendly” factors. All these computations utilize the PIM

operations proposed in Section 5.2.

A neural network usually involves a large number of weights. Using this large number of

weights restricts the enhancements which in-memory processing can provide. We realize that

the memory requirement and energy consumption of NNPIM depend on the number of weights.

Hence, we use weight sharing to reduce the number of unique weights in each neuron. Since all

the computations in NNPIM happen in-memory, we design NNPIM such that this reduction in

weights directly results in a decrease in the number of memory blocks required for computations.
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5.3.2 Weight Clustering in NNPIM

The conventional NN requires a large number of multiplications. We leverage shared

weights to reduce number of operations, i.e. multiple inputs of each neuron share the same value,

however, a naive implementation of weight sharing can result in undesirable loss of accuracy.

We devise a greedy algorithm to select the near optimized shared weights that reduce the loss of

accuracy; instead of applying shared weights to the already trained NN, we train the NN in a

way that weight sharing does not impose much loss of accuracy.

The weights of each layer are fixed in the inference phase; in order to share the weights,

the clustering algorithm is applied on the fixed weights. Assuming that a fully-connected layer

maps N neurons into M outputs, the corresponding matrix WM×N is clustered once and a single set

of weights are generated for the whole matrix. For convolution layers, the weights corresponding

to different output channels are clustered separately: a convolution layer mapping N channels

into M channels using a weight tensor Wh×h×N×M is divided into M different tensors and each

tensor is clustered separately, resulting in M different weights.

After clustering, each weight replaces by their closest centroids. The objective of

clustering is to minimize the within cluster sum of squares (WCSS):

min
ci1,...,ciNclusters

(WCSS =
Nclusters

∑
k=1

∑
W l

i j∈cik

||W l
i j− cik||2) (5.1)

where C = {ci1,ci2, ...,ciNclusters} are the cluster centroids. We use K-means algorithm for cluster-

ing. Weight clustering essentially finds the best matches that can represent this distribution, and

replaces all parameters with their closest centroids. Weight clustering is often accompanied by

some degree of additive error, ∆e = eclustered− ebaseline.

To compensate for this error, our algorithm retrains the neural network based on the new

weight constraints. After each retraining, our design again clusters the weights and estimates the

quality of the classification using the new cluster centers. The procedure of weight clustering and
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retraining continues until the estimated error becomes smaller than a desired level. Otherwise the

retraining procedure stops after a pre-specified number of epochs. Figure 5.1 shows the accuracy

of neural network for MNIST dataset during different retraining iterations. The result shows

that retraining improves the classification accuracy by finding a suitable clusters for each neuron

weights.

One major advantage of weight sharing is that it can significantly reduce the number of

required multiplications. Each neuron in neural network multiplies several input data, say n,

with pre-stored weights. Therefore, each neuron requires to multiply n input-weight pairs. Using

weight clustering, the number of distinct weights in each neuron can be reduced to k, where

k << n. Instead of multiplying all input-weight pairs, we can simply add all inputs which share

the same weight and finally multiply the result of addition with the weight value. This method

reduces the number of multiplications in each neuron from n to k. This significantly accelerates

the NNPIM computation, since in PIM the multiplication performs much slower than addition.

Moreover, our hardware enables fast addition of multiple input vectors in-memory. Hence, the

inputs corresponding to the same weight can first be added together using carry save addition.

Then, the result can be multiplied with the weight. In other words, multiple multiplications are

broken down into a large addition and a multiplication. In this way, we reduce the number of

computations required as well as the complexity of operations involved.

5.3.3 NNPIM Multiplication

The multiplier in Section 3.1 performs exhaustive binary multiplication. It generates

a partial product for each ’1’ present in the multiplier and performs addition. Although this

approach is general and works for all applications but it can lead to unnecessary latency overheads

in certain cases. For example, multiplication by 255 (b11111111) would require generation of 8

partial products, corresponding to each ’1’, and their subsequent addition. The same operation

can executed by multiplying by 256, i.e. shifting by 8 bits, and then subtracting the multiplicand

from the obtained result.
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Figure 5.1. An example of MNIST classification accuracy during different retraining iterations
when the NN weights are represented as eight cluster centers.

Bernstein algorithm [136] factorizes the constant multiplier into factors which are a

power of 2 or a power of 2 ± 1. It uses branch and bound based search pruning and finds the

factors based on a formulation for their costs. Figure 5.2 gives an example of how the algorithm

can reduce the number of operations. In this case, binary multiplication takes 6 instructions

whereas the factor-based multiplication takes only 4 instructions. The binary method is the worst

case factorization which can be obtained using the algorithm.

Using this algorithm involves finding suitable factors. It can be time consuming and may

add unwanted latency if the operands change frequently. However, such an algorithm can be

useful if one of the operands is constant. In that case, the constant operand can be factorized once

and these factors can be referenced every time the constant is involved in multiplication. This

makes such factorization suitable for neural networks, where the weights are always constant

and only the inputs are variable. NNPIM exploits this property by storing the factors of the

weights and using these factors for computations. We now discuss two ways in which we use

Bernstein algorithm to improve computations in neural networks. One approach aims to minimize

the energy consumption of the design while the other approach presents a latency-optimized
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Figure 5.2. Example of Bernstein’s Algorithm

technique.

Energy-Optimized NNPIM: The hardware in Section 3.1 utilizes carry save addition to

reduce the latency of multiplication. However, in order to minimize the propagation of carry and

reduce the latency, it implements a large number of partially redundant parallel operations. This

consumes significant amount of energy. A naive energy-efficient design would process all partial

products serially, adding two at a time. Such a design is intuitive but does not exploit the constant

operands in neural networks. The inference phase of neural networks involves multiplication of

many input vectors with weights obtained from the training phase and fixed during inference.

This phase is defined by multiplication of variables, i.e. input vectors, with constants, i.e. weights,

making it a suitable application for Bernstein algorithm. We can accelerate the testing phase by

factorizing the weights and using these factors instead of actual weights for computation. For the

example discussed before, binary implementation requires 6 serial shift or add operations, while

NNPIM only requires 4 serial shift, add, or subtract operations.

Latency-Optimized NNPIM: The above approach based on Bernstein algorithm is

perfect when the total energy consumption of the design is the major concern. Bernstein

algorithm reduces the number of operations required but does not necessarily accelerate the

overall in-memory processing. In carry save addition, carry is propagated only in the end

to minimize the time taken to compute the final product. Breaking the weights into smaller

factors requires the computation of multiple intermediate products to achieve the final output.
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Figure 5.3. Generating the partial products in latency-optimized NNPIM

Factorizing 119 into 7 and 17 leads to two carry propagation stages instead of one. Since

carry propagation is the bottleneck in the multiplication process, many such operations make it

impossible to gain time from the reduced number of instructions.

In order to reduce latency, NNPIM uses an adder structure similar to that in Section 3.1

while taking into consideration the constant operand in neural networks. It exploits the fact

that in binary representation, a sequence of 1s, for example b00011111, can be written as a

difference of two shifted 1s, i.e. b00011111 = b00100000−b00000001. Instead of generating

multiple shifted partial products, NNPIM generates only two partial products. It is similar to

Booth’s recoding but differs in the way it is implemented in memory. Instead of applying the

operations serially as in the case of Booth’s recoding, we modify subtraction to make it suitable

for parallel execution. To maintain uniformity by executing only addition instructions, NNPIM

simplifies subtraction as shown in Figure 5.3. In the figure, generation of 2’s complement of

M1 involves inversion of M1 and addition of 1. Inversion is a single MAGIC NOR step, where

all the bits can be inverted in parallel. Moreover, 1 is added to the shifted version of M1. The

LSB of the shifted M1 is always 0, converting the addition of 1 (Add1 in Figure 5.3) to a simple

SET operation on LSB. The two partial products can then be added normally as in case of a

conventional multiplication.

The above technique may not be applicable directly since it is highly unlikely for the
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weights to always be a sequence of 1’s. Hence, we propose a modified version of Bernstein

algorithm which is suitable for carry save addition. Instead of breaking down the constant

operands into smaller factors, we break them down into chunks of continuous 1s as shown

in Figure 5.4. These smaller parts of constants are then reduced using the same concept as

discussed above. Since this approach generates two partial products for a series of 1s, reduction

is done only when there are more than 2 consecutive 1’s. In the example shown in Figure 5.4,

the binary execution would require 11 partial products, but the optimized one generates just 6

partial products. Unlike the factors obtained by Bernstein algorithm, these partial products are

added in parallel using carry save addition. This reduces the latency of NNPIM significantly.

Figure 5.5 compares the energy-optimized and latency-optimized approaches for 32-bit

multiplication. The result shows that energy-optimized approach can provide 2.3× higher energy

efficiency as compared to latency-optimized approach, while the latency-optimized is 1.8×

faster.

5.3.4 NNPIM Architecture

Figure 5.6 details the architecture of the proposed NNPIM. Figure 5.6a shows the

overview of the architecture of NNPIM. Each neuron in NN has a corresponding computation

unit. Each of this unit is made up of several computation sub-units, one for every weight

corresponding to the inputs of the neuron. Every unit has an additional computation sub-

unit which is responsible for accumulation of all the multiplication results for a neuron and

implementing the activation function, which we call activation unit. The outputs from all the

activation units are sent to the pooling unit. In case pooling is not required, the output of

activation units is used directly for the next layer.

NNPIM is entirely based on crossbar memory. The crossbar structure is divided into

smaller blocks, upper blocks and lower blocks as shown in Figure 5.6b. All these blocks are

architecturally and functionally the same as described in [126]. Each computation sub-unit as

well as activation unit is one such block pair (pair of one upper and one lower block). All the
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Figure 5.4. Optimizing NNPIM by reducing the complexity of weights

Figure 5.5. Execution time and energy consumption of 32-bit NNPIM multiplication in energy
and latency-optimized.

computations for a weight are executed in the corresponding block pair. Hence, a neuron with N

weights will have N computation sub-units which implies N block pairs. The major peripheral

circuitry including the bitline and wordline controllers, sense amplifiers, row/column decoders,

etc. are shared by all these pairs.

Each upper block is connected to the corresponding lower block via configurable inter-

connects as shown in Figure 5.6c. These interconnects are collection of switches, similar to

a barrel shifter, which connects the bitlines of the two blocks. bn and b′n are bitlines coming

into and going out of the interconnect respectively. The select signals, sn control the amount of
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Figure 5.6. Architecture overview of the proposed NNPIM. (a) Overall view of neural network
implementation in-memory; (b) in-memory implementation of neuron; (c) circuit for configurable
interconnect; (d) functions used in NNPIM.

shift. These interconnects can connect cells with different bitlines together. For example, they

can connect bn,bn+1,bn+2, ... incoming bitlines to, say, b′n+4,b
′
n+5,b

′
n+6, ... outgoing bitlines,

respectively, hence enabling the flow of current between the cells on different bitlines of blocks.

This kind of a structure makes the otherwise slow shifting operations energy efficient and fast,

having the latency same as that of a normal copy operation. It is important because neural

networks involve large number of shift operations (mainly due to multiplication), which could be

a bottleneck if not dealt at the hardware level.

All the outputs of multiplication for a neuron are accumulated and Taylor expanded

activation function is implemented in the activation unit, which is made up of the same sub-unit

as described above. The outputs of all these units are sent to the pooling unit. This pooling unit

is a usual crossbar memory which doesn’t require splitting the memory into multiple blocks. The

pooling unit works on the in-memory search operations. The outputs from all the activation units

are written and the outputs closest to +in f/− in f are selected for MAX/MIN pooling.

In a general purpose implementation, the weights would be stored in memory and the

inputs would get multiplied with the stored weights in parallel in different blocks. However, such

an architecture will not be able to take advantage of the optimizations proposed in the previous

sections. NNPIM uses a control-store architecture, where a control word for a block is defined by

a shared operand and the corresponding local control vector (CV). Instead of storing the actual
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fixed weights in the memory, we pre-program the control words in the memory. These control

words are optimized based on the techniques proposed before. The memory unit loads a control

word and implements the operation without worrying about the actual weights.

The shared controller for the bitline and wordline, takes in 2-bit operands as shown in

Figure 5.6b. Each operand, detailed in Figure 5.6d, corresponds to a specific function required

by NNPIM for computations. Each pair of upper and lower blocks in our architecture has an

independent shift controller which governs the bit shifts between the two blocks. The shift

controller is a simple circuit which activates a particular select line depending upon the control

vector sent to it. The control vector has two fields: (i) active flag which indicates whether the

shift controller is active in that cycle and (ii) a 5-bit field indicating the amount of shift. A

computational unit has a common shared operand list, while each sub-unit (i.e. each block pair)

has its own CV list. A memory with N block pairs has N configurable interconnects and hence,

N shift controllers. Each operand sent to the shared controller has a corresponding control vector

for each shift controller. Our architecture enables independent shifts among different pairs of

blocks while introducing very little overhead as shown in Section 5.4.

Example: Figure 5.7 shows sample execution of two NNPIM multiplications in parallel,

In1×W1 and In2×W2. After applying the optimization described in Section 5.3.3, the first

multiplication results in 5 partial products while the second multiplication results in 6 partial

products. The partial products generation by a shift and subtraction (i and ii in Figure 5.7)

take three operations each. Here, in order to reduce the number of operations, the shifts before

and after the subtraction are combined together. Also, the last operation in the example is not

required by W1. So, the enable bit in the control vector for W1 is set to zero.

5.3.5 In-Memory Parallelism

NNPIM uses a blocked memory structure as shown in Figure 5.6b. Here, each block

processes computation corresponding to one weight. Since each block pair in NNPIM has a

shift controller, all these blocks can independently implement multiplication in parallel and
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W1:  0100011111001111 W2:  0110111100111110

In1:  0100010011001010 In2:  0011100010011001

i) ((10000-00001) x In1) << 0
ii) ((100000-000001) x In1) << 6

i) ((100000-000001) x In2) << 1
ii) ((10000-00001) x In2) << 8

Op CV List W1 CV List W2

0 0 1 0 01 0 0 1 1 01= 4 (4+0) = 6 (5+1)0 0

0 0 0 0 01 0 0 0 0 11= 0 = 10 1

= Shift

= Set

0 0 0 0 01 0 0 0 0 11= 0 = 1 1 0 = Inv-Sh

0 1 0 1 11 0 1 1 0 01= 11 (5+6) = 12 (4+8)0 0

0 0 1 1 01 0 1 0 0 01= 6 = 80 1

= Shift

= Set

0 0 1 1 01 0 1 0 0 01= 6 = 8 1 0 = Inv-Sh

0 1 1 1 01 0 1 1 0 11= 14 = 130 0 = Shift

x x x x x0 0 1 1 1 01 = 140 0 = Shift

Figure 5.7. Operands and control vectors for two parallel NNPIM multiplications.

computation for multiple weights can happen simultaneously. The number of computations

possible in parallel directly effect the number of neurons that can be processed in parallel. This

is limited by the size of the memory available. Assume that our memory allows for 2k block

pairs. In a network where each neuron has 512 weights corresponding to 512 inputs, our memory

can implement just 4 (=2k/512) neurons in parallel. This can be a bottleneck in large networks.

Weight sharing turns out to be useful in such cases as it restricts the number of unique

weights for each neurons, thereby enabling the execution of more neurons in parallel. For the

case discussed above, the number of neurons possible to be executed in parallel increases from 4

to 32 when the number of weights are restricted to 64. This further increases to 64, 128, and 256

when the number of weights are restricted to 32, 16, and 8 respectively. More the number of

neurons executed in parallel, lesser is the overall latency of the network. Hence, weight sharing

not only reduces the number of computations but also increases the overall performance of the

network as further verified in Section 5.4.
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5.4 Experimental Results

5.4.1 Experimental Setup

We designed the NNPIM framework support, which retrains NN models for the accelera-

tor configuration, in C++ while exploiting two back-ends, Scikit-learn library [137] for clustering

and Tensorflow [138] for the model training and verification. For the accelerator design, we

use Cadence Virtuoso tool for circuit-level simulations and calculate energy consumption and

performance of all the NNPIM memory blocks. The controller has been designed using System

Verilog and synthesized using Synopsys Design Compiler in 45nm TSMC technology. We use

VTEAM memristor model [124] for our memory design simulations with RON and ROFF of

10kΩ and 10MΩ respectively.

We evaluate the efficiency of the proposed NNPIM over six popular neural network

applications:

Handwriting classification (MNIST) [139]: MNIST includes images of handwritten digits.

The objective is to classify an input image to one of ten digits, 0 . . . 9.

Voice Recognition (ISOLET) [140]: ISOLET consists of speech signals collected from 150

speakers. The goal is to classify the vocal signal into one of 26 English letters.

Indoor Localization (INDOOR) [141]: We designed a NN model for the indoor localization

dataset. This NN localizes into one of 13 places where there is high loss in GPS signals.

Activity Recognition (HAR) [142]: The dataset includes signals collected from motion sensors

for 8 subjects performing 19 different activities. The objective is to recognize the class of human

activities.

Object Recognition (CIFAR) [143]: CIFAR-10 and CIFAR-100 are two datasets which include

50000 training and 10000 testing images belonging to 10 and 100 classes, respectively. The goal

is to classify an input image to the correct category, e.g., animals, airplane, automobile, ship,

truck, etc.

Table 5.1 presents the NN topologies and baseline error rates for the original models
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Table 5.1. NN models and baseline error rates for 6 applications (Input layer - IN, Fully
connected layer - FC, Convolution layer - C, and Pooling layer - PL.)

Dataset Network Topology Error
MNIST IN : 784, FC : 512, FC : 512, FC : 10 1.5%
ISOLET IN : 617, FC : 512, FC : 512, FC : 26 3.6%
INDOOR IN : 520, FC : 512, FC : 512, FC : 13 4.2%

HAR IN : 561, FC : 512, FC : 512, FC : 19 1.7%
CIFAR-10 IN : 32×32×3,CV : 32×3×3,PL : 2×2,

CV : 64×3×3,CV : 64×3×3,FC : 512, FC : 10 (100)
14.4%

CIFAR-100 42.3%

before weight sharing. The error rate is defined by the ratio of the number of misclassified

data to the total number of a testing dataset. Each NN model is trained using stochastic gradi-

ent descent with momentum [144]. In order to avoid overfitting, Dropout [145] is applied to

fully-connected layers with a drop rate of 0.5. In all the NN topologies, the activation functions

are set to “Rectified Linear Unit” (ReLU), and a “Softmax” function is applied to the output layer.

5.4.2 NNPIM & Weight Sharing

We compare the efficiency and accuracy of the NNPIM over different application with

and without weight sharing. Table 5.2 shows the impact of weight sharing on the classification

accuracy of NNPIM. Table 5.2 shows the NNPIM quality loss (QL) for different applications

when the number of shared weights in each neuron changes from 8 to 64. The QL is defined

as the difference between NNPIM accuracy with and without weight sharing. Our evaluation

shows that a network with 64 shared weights can provide the same accuracy as a design without

weight sharing. Further reducing the number of weight to 8 reduces the classification accuracy of

applications. For instance, CIFAR-10 and CIFAR-100 lose 1.2% and 2.8% quality respectively

when the number of shared weights decreases to 8.

NNPIM exploits this weight sharing in order to accelerate neural network computation

by reducing the multiplication cost. Figure 5.8 shows the energy consumption and memory
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Table 5.2. Quality loss of different NN applications due to weight sharing.

Dataset 8 weights 16 weights 32 weights 64 weights
MNIST 1.1% 0.26% 0% 0%
ISOLET 0.33% 0.12% 0% 0%
INDOOR 0.38% 0.24% 0.13% 0%

HAR 2.1% 0.32% 0.14% 0%
CIFAR-10 1.2% 0.29% 0.09% 0%

CIFAR-100 2.4% 1.2% 0.8% 0%

requirement of NNPIM running different applications with different weight sharing. The reported

improvements are compared to energy consumption of the same applications running on AMD

Southern Island GPU. The energy efficiency of NNPIM significantly improves as the number

of shared weights reduce. Our evaluation shows that NNPIM without weight sharing provides

14.6× energy efficiency improvement as compared to GPU architecture. We observe that NNPIM

gets energy efficiency improvements from removing the data movement cost and efficient in-

memory computation. However, in terms of performance the NNPIM advantage comes mostly

from addressing the data movement issue.

The NNPIM advantages are more obvious on large networks such as CIFAR-10 and

CIFAR-100, since these networks have more data movement. Weight sharing can significantly

improve the NNPIM efficiency by reducing the computation cost. The result shows that using 64

shared weights provides 113.9× energy efficiency improvement and 14.8× speedup as compared

to GPU architecture while ensuring 0% quality loss. Similarly, accepting 1% and 2% quality

loss, the average energy efficiency improvements of NNPIM increase to 370.4× and 786.3×

respectively. Weight sharing does not impact the performance of NNPIM since all neurons in a

layer are implemented in parallel and consecutive layers still need to be processed serially.

Figure 5.8 also shows the required NNPIM memory size for different amounts of weight

sharing. NNPIM requires significantly lower memory size for PIM operation as compared to

NNPIM without weight sharing. As our results show, decreasing the number of weights by half,
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(f) CIFAR-100

Figure 5.8. Energy consumption and memory size requirement of NNPIM with and without
weight sharing.

reduces the number of required multiplications by half. Our evaluation over all applications

indicates that by reducing the number of weights to 64, NNPIM will provide maximum quality

while using 7.8× less memory as compared to NNPIM without weight sharing. Similarly,

ensuring less than 1% and 2% quality loss, NNPIM uses 12.4× and 15.6× lower memory size

as compared to NNPIM without weight sharing.

5.4.3 Energy-performance Efficiency

In this section we compare the energy consumption and execution time of NNPIM with

DaDianNao [146] and ISAAC [10], the state-of-the-art NN accelerators. All designs have been

tested over six different applications. For NN accelerators, we select the best configuration

reported in the papers [10, 146]. For instance, ISAAC design works at 1.2GHz and uses 8-bits

ADC, 1-bit DAC, 128×128 array size where each memristor cell stores 2 bits. DaDianNao works

at 600MHz, with 36MB eDRAM size (4 per tile), 16 neural functional units, and 128-bit global

bus. We see that of the previously proposed designs, ISAAC performs better over all datasets.

Figure 5.9 shows the energy efficiency improvement and speedup of NNPIM, DaDianNao and

ISAAC as compared to AMD GPU architecture. Our evaluation shows that NNPIM outper-
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Figure 5.9. Comparing the energy consumption and execution time of NNPIM with state-of-the-
art NN accelerators.

forms both DaDianNao and ISAAC over all applications. For example, benchmarking with

MNIST, proposed NNPIM can provide 2.8× energy efficiency improvement and 2.9× speedup

as compare to DaDianNao. These improvements are higher over CIFAR-10 and CIFAR-100, as

NNPIM provides higher computational efficiency over large networks. Considering the average

improvements over all applications, our design can achieve 4.9× (1.3×) energy efficiency im-

provement and 5.7× (2.4×) speedup as compared to DaDianNao (ISAAC) while providing the

same classification accuracy. While accepting 1% quality loss, the NNPIM energy efficiency

improves to 9.5× and 2.5× as compared to DaDianNao and ISAAC respectively.

5.4.4 Area Overhead

Comparing the area overhead of NNPIM to conventional crossbar memory shows that the

NNPIM takes 3.8% area of the chip. This area corresponds to 2.9% for the registers storing the

network weights and 0.9% for the barrel shifter used for multiplication. In addition, the weight
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sharing significantly reduces the NN model size and the number of required hardware to process

the weights. Our result shows that the NNPIM area overhead is negligible compared to prior

PIM-based DNN accelerators [10, 146] which use large ADCs and DACs to covert the data from

digital to analog and analog to digital.

This chapter showed how complex arithmetic computations can be done over a large

amount of data in-memory. This efficient PIM technique was then used to design a PIM

architecture for neural networks. In the following chapter, we extend the functionality of to

non-arithmetic operations like search and show how it can accelerate query processing.

Chapter 5, in part, has been submitted for publication of the material as it may appear in

S. Gupta, M. Imani, H. Kaur, T. Rosing, “NNPIM: A Processing In-Memory Architecture for

Neural Network Acceleration,” IEEE Transactions on Computers, 2019.
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Chapter 6

Efficient Query Processing in NVM

Previous chapters proposed architectures for traditional arithmetic computations. How-

ever, applications like query processing use a wide range of functions like aggregation and

prediction functions, bit-wise operations, addition, joins, exact and nearest distance search

operations. Conventionally these operations have been implemented using sequential arithmetic

operations over large chunks of data. In this chapter, we exploit the analog characteristic of

non-volatile memory to enable these operations in-memory. We design a novel non-volatile,

memory-based query processing accelerator, called NVQuery. It is an efficient PIM-based query

processor which supports a wide range of query functions. The configurable crossbar memory

structure of our design supports these functions inside the memory.

6.1 NVQuery Accelerator

Fig. 6.1 shows the general architecture of the proposed NVQuery. The proposed NVQuery

integrates with DRAM and enables the main processor to accelerate query processing. NVQuery

can also be used as a secondary storage to improve the effective DRAM capacity. NVQuery

consists of N banks, where each has k memory blocks. Each memory block can be configured as

memory or query accelerator.

Our design is a heterogeneous architecture, where the NVQuery co-operates with main

processor (CPU) in order to find the query result. In NVQuery, each memory block returns a
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Figure 6.1. Proposed architecture with N banks and k×N blocks. The right part details the
crossbar implementation of memory banks along with the supporting control logic.

result of the query, independent from other blocks. Therefore, to find the result of a query from

the whole data set, the main processor receives output response of each memory block (a total of

N× k values instead of the entire data). Finally, it processes data to find the result of query over

the entire data set. In this way, the load on memory bandwidth due to query processing and its

related costs are significantly reduced. Table 6.1 lists different configurations that NVQuery can

take including: nearest search, search, and memory. For each of the configurations, we show the

status of different memory peripherals for some example functions. In this section, we describe

the functions supported by our proposed non-volatile query processor, NVQuery. Table 6.2 lists

the NVQuery support functionalities. NVQuery supports a large number of essential functions

including aggregation (MIN, MAX, Average, SUM, and Count), boolean functions (such as AND,

OR), addition, comparison (equality or non-equality), and different types of Join. In addition,

NVQuery can also process prediction functions such as Exist, Search Condition, Like,

Group, Between, and Top in memory.

We map all query functionalities explained in Table 6.1 to NVQuery which can work in

three main configurations: (i) look-up table (LUT) with capability of exact search, (ii) nearest

distance search, and (iii) memory. We propose a new memory architecture which can process

data locally without reading it. In each of these configurations, our design shown in Fig. 6.1
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Table 6.1. NVQuery supported configurations

Configuration Example Functions CAM Input CAM SA Memory SA Comment

Nearest Search
MIN Least Nearest NA L: Least possible value
MAX Greatest Nearest NA G: Greatest possible value

TOP K IQ (FIFO) Nearest NA Requires k iterations
Search Exact Search IQ (FIFO) Exact NA IQ: Input query

Memory
Bitwise NA NA AND/OR CAM input: Bitline driver
Memory NA NA MEM CAM input: Bitline driver
Addition NA NA MAJ CAM input: Bitline driver

Table 6.2. NVQuery supported functionality

Notation Functions
Aggregation F(SI)→ SO MIN, MAX, Average, Count

Bit-wise Operations F(SI)→ SO AND, OR, XOR (Combination of AND, OR)
Addition F(SI)→ SO In-memory addition

Comparison = ≤ ≥ Bit-wise and value-wise comparison
Predict p Exist, Search condition, Top, Like, Group, Between

Join ./, , , . . . Inner, Left, Right, Outer, Semi joins

processes query operations without approximating the result. In the following subsections, we

explain how each query operation can be supported in memory.

6.1.1 Exact Search

The most common operation in many query processors is looking up for a set of data

which matches with input query. A typical search query involves a brute-force search through a

LUT till the data is located. This is usually implemented in one of the two ways, (i) word-by-

word search and (ii) bit-by-bit search. A word-by-word search looks through every stored word

in the LUT sequentially and finds a match. In the worst case, it involves processing each and

every element present in the LUT. The bit-by-bit search scans through one bit (but same index)

for multiple words at a time. The first iteration analyses a particular bit index of every word in

the LUT, looking for a match with the corresponding entry in the input query. The following

iterations are performed only on the words filtered by previous iterations. This approach does

not analyze all the elements since the size of candidate pool decreases after each iteration. The
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exact search operation supports the following functions in NVQuery:

Exist: It is used to test the existence of some specific data in the LUT. The exact search

can be directly used to implement this function.

Count: It is used to get the number of rows that match a certain criteria. The Count

output can be obtained by counting the number of hits for an exact search query. Our design

adds a counter block to NVQuery in order to support this query.

Like: It is used to find the existence of a specific data or pattern of data in the rows.

It involves searching for occurrence at (i) a particular position and (ii) any position. The first

case can be easily implemented using the exact search mode in the same way as the Exist

function. The second case requires repeated use of exact search mode for all the occurrence

patterns possible. This comes with an inherent latency overhead due to multiple serial exact

searches.

Group by: It is used to group the rows on the basis of one or more columns. The

grouping is usually based on the output of some operation applied to the data in the column.

Multiple serial exact searches are used to find the rows belonging to different groups.

6.1.2 Nearest Distance Search

NVQuery can be configured to perform the closest distance search operation inside the

memory. The bit-by-bit search described above can be used to implement this functionality.

Here, the nearest data is the one which remains selected for the maximum number of iterations.

Our design exploits this functionality to support aggregation functions like MIN and MAX and

prediction functions like Top k. Running these queries on traditional core has a time complexity

of O(logn). However, our hardware can find MIN, MAX queries in a single cycle and Top k in k

cycles.

MIN: This query runs on a set of stored data to find the minimum value. To perform this

query in LUT, NVQuery block adopts the nearest distance search configuration and searches

for the data which has the closest distance to the minimum possible value. In case of unsigned
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numbers, our design searches for an entry which has the closest distance to zero. In the case

of signed values, this number is the largest possible negative number (single one followed by a

chain of zeros, i.e., 1000...0).

MAX: To find the data with the maximum value, we search for the entry which has the least

distance from the largest positive number. For unsigned values, the largest value is a chain of

ones (1111...1), while in the case of signed numbers, this value is represented by a zero followed

by a chain of ones (0111...1).

Top k: To search for k values closest to the input data, we perform the nearest distance

search for k iterations. After each iteration, our design deactivates the selected word and repeats

the nearest distance search on the remaining words. This approach gives a set of k nearest values

arranged in the order of their proximity to the input. Our design also supports bit-wise/value-wise

comparison by searching for the exact and nearest values.

Between: This operator takes in two inputs, the lower and upper limits, and outputs

those values from the stored data which are equal to or between these limits. Traditional

implementations of this function involve a lot of computational overhead, comparing each value

with the limits. The nearest distance search proposed above enables efficient implementation

of this operator. Instead of finding the values nearest to the upper and lower limits, we find the

values nearest to the midpoint of the total range. Then the values are sorted as explained in

Section 6.2.2. NVQuery compares the values with the input limits and selects the entries which

lie between them. Instead of naively searching through the data, NVQuery uses binary search to

find the corner cases and reduce the computational overhead.

6.1.3 Join

NVQuery supports different types of joins namely, inner, left, and right joins.

Our implementation is similar to in-memory hash joins, but more efficient due to NVM-based

PIM. Ideal implementation of join would involve fetching the data from memory to the core and

searching through the involved tables. Although, optimizations like hash join reduce the amount
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of data to be transferred yet the cost of data movement is a lot. NVQuery reduces this overhead

by reducing searching for keys inside the memory itself. The exact search discussed earlier is

used to implement joins.

Equi joins involve searching for exact match of the join key through the tables. Exact

search mode can be easily extended to implement different kinds of equi joins, enabling the

records that are needed for the final join computation. Memory read bus along the columns

of a table is used to read the desired columns of the rows with matching data. The read data

is copied to the memory location pertaining to the final join output. Limited 4K row capacity

forces the implementation to break the table into multiple 4K slices or blocks, this does not affect

the computational complexity of the implementation and the impact on execution time is also

minimal. A choice between a block or slice is made based on the query and size of the input.

NVQuery is flexible enough to cater to any combination of columns to implement

different types of joins like inner, left, and right joins. Multi joins are implemented by saving the

temporary result of two table joins and iteratively applying joins to that.

Different SQL implementations use a combination of nested loop, merge and hash

joins. Execution complexity of these methods vary based on availability of index on the

join property. The worst case complexities are O(NM),O(MlogN +NlogM) and O(N +M)

respectively, where N,M are the table sizes. NVQuery’s worst case execution complexity is

equivalent to hash joins, though it does not require explicit hashing of the join key like hash joins

do.

6.1.4 Bit-wise Operations and Addition

A traditional processor implements bit-wise logic operations in the main core. The

operands are fetched from the main memory and brought through the memory hierarchy all

the way up to the core. The core then performs the required computations. On the other

hand, our design implements these operations in the memory, avoiding the need to transfer

data from memory. For executing these operations, NVQuery is set into memory configuration
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Figure 6.2. Circuit level implementation of CAM SA, Memory SA, and Row Driver.

and the output is obtained from memory SA. This operation can support the following queries:

AND, OR, XOR and Average. Our design supports average query by using a counter and sending

the data to main processor.

6.2 Hardware Support

This section describes the hardware implementation of NVQuery and the way in which

it supports the functions described in Section 6.1. NVQuery is designed using a crossbar non-

volatile memory architecture. The crossbar is configured in such a way that a set of two storage

elements in the crossbar corresponds to one bit data. Data 0 is stored as {RHIGH RLOW}, while 1

is stored as {RLOW RHIGH}. However, our architecture does not use any access transistors for

these elements, hence it is called 0T-2R. Implementations like 2T-2R require access transistors.

This makes the design unsuitable for a crossbar memory, reducing the area density benefit of

non-volatile memories. Moreover, the presence of transistors introduces non-linearity to the

system. On the other hand, 0T-2R doesn’t need access transistors and can be implemented on a

conventional crossbar memory, making it more area efficient.

As shown in Fig. 6.1, the crossbar memory in NVQuery is supported by peripheral

components. The controller receives the input query and generates the appropriate control
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signals. It is also responsible for collecting the output of the block and forwarding it for further

processing. The multiplexer managed by the controller, selects the input which drives the bitlines

of the crossbar memory. This input can either be the input query (in case of search operations)

or greatest positive value (corresponding to MAX) or least representable value (corresponding to

MIN). The column driver drives the bitlines of the crossbar. It not only applies the execution

voltages for different operations but also maps the input query to the required bitline voltage

levels. Row driver is responsible for charging the wordlines (also called match-lines due to the

nature of operations). It is also responsible for selecting/activating different words (rows) in the

memory. It also provides a limited set of voltage options essential to the working of crossbar.

The crossbar is equipped with sense amplifiers (SAs) on both the wordlines (CAM SA) and the

bitlines (memory SA). Fig. 6.2 shows these SAs. The CAM SAs are responsible for detecting

charging and discharging behavior of wordlines. The nMOS-capacitor circuit acts as a latch.

The inverter-diode-NOR circuit deactivates the wordlines as soon as the first edge is detected or

the sampling signal for Exact is set. As a result, the latch is set only for the wordlines which

discharge before this deactivation. The memory SAs are buffers with special resistors to support

bit-wise and memory operations as described in Section 6.2.3. We next discuss how NVQuery

enables different functions discussed in Section 6.1.

6.2.1 Exact Search

To implement the LUTs discussed in Section 6.1.1, NVQuery uses content addressable

memory (CAM) configuration of crossbar. Fig. 6.2 shows the structure of non-volatile crossbar

CAM, capable of searching for stored data which exactly matches the input query. During

search operation, all the match-lines (MLs) pre-charge to Vdd . The input buffer (column driver)

distributes the query point to all CAM rows using vertical bitline. Any cell with the same stored

data as input query discharges the ML. The sense amplifier, connected to the horizontal ML,

determines the equality of the input and stored data by sampling the ML voltage [147].

Consider a data set which contains the name, age, height, and income of people in
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Figure 6.3. Energy consumption and performance of running join operations with different table
sizes on traditional cores and the proposed NVQuery.

different companies. The query SELECT F(income) FROM COMPANY1 is an example of SQL

query. For this query, a query processor first selects all people in the list which are working for

the COMPANY1. Then it applies another query function, F, on the income of all selected people.

NVQuery eliminates the need for multiple sequential searches. It can perform a single step

search by activating the bitlines corresponding to COMPANY1 and income simultaneously. The

output of the query is given by the rows with fastest discharging MLs. This not only saves

time by eliminating multiple searches but also the power involved in repeated charging and

discharging of MLs. Each memory block/LUT returns an output to the controller. Finally, the

output data from each block is processed by the main processor which evaluates the final query

result.

6.2.2 Nearest Distance Search

CAM has been extensively used to implement search operations. Different versions of

CAM implementations (e.g. TCAM) on different types of hardware (crossbar, 2T-2R, 3T-1R,
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Figure 6.5. Timing characteristic of CAM block in nearest distance search configurations.

etc.) have been active topics of research recently. However, majority of the previous work

revolves around exact and nearest hamming distance search operations. Hamming distance is a

good criterion when considering hyper-dimensional vectors where the index of a bit does not

matter. Only the face value of a bit and the total number of mismatches between the stored

data and the input query are considered. Such a comparison is not practical for many real life

applications where a query to the processor is dependent on the binary weighted values of the

stored data.

To support such queries, some researchers have proposed the division of a memory block

into stages [148]. In such an architecture, the first m most significant bits of data are stored in the

first stage, the next m significant bits in the second stage and so on. Then, a search is performed
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sequentially, starting from the first stage. The output of a stage selects the rows to be activated

in the following stage. This increases the weight of the initial stages with respect to the later

stages. However, the m bits in a stage are treated as having the same binary weight. This leads

to inaccurate results in many cases. In this work, we address this issue by introducing a new

method to assign binary weights to the bits within a stage.

For a search in conventional CAM, the match-lines (MLs) are pre-charged to Vdd and

then bitlines are driven with Vdd or 0 depending upon the input query. The MLs of rows with

more number of matches discharge earlier. The line to discharge first is the one with minimum

mismatch with the input query. To give binary weight to the bits, we modify the bitline driving

voltage. Suppose a stage contains m bits (m−1 : 0). The bitlines which were earlier driven with

Vdd and now driven with a voltage Vi =Vdd/2(m−1−i) where i denotes the index of a bit in the

stage. Fig. 6.4 shows CAM in nearest search configuration for a stage size of 4 bits. As shown in

Fig. 6.5, a match in the most significant bit results in faster ML discharging current than lower

indices. We exploit this difference and design a CAM which can find the binary value nearest to

the input query.

The different discharging currents also allow us to sort the data, with the nearest data

discharging first. This sorting is easy for a smaller number of records. However, as the number

of records increase, it becomes difficult to differentiate data depending upon the discharging

currents. In such a case, nearest search is implemented in groups with limited rows selected at a

time.

Now, as the number of bits increases, the bitline voltage Vi becomes very small. We limit

the minimum available voltage source output to 100mV . Moreover, the maximum voltage that

can be applied is limited by the threshold voltage of the non-volatile elements. This ensures

that the data in the memory is preserved. This upper bound is set to 1.8V . Hence, the allowable

voltage levels include 0.1V,0.2V,0.4V,0.8V and 1.6V , restricting the stage size to 5 bits. In this

work, we split the CAM into multiple stages of 4-bits each for simplicity and then search for the

nearest distance row in a serial manner, starting with the stage containing the most significant
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bits.

6.2.3 Bit-wise Operation and Addition

Although a search based CAM can accelerate several functionalities in NVQuery, it

cannot support a major part of queries such as addition, average, and all bit-wise operations. In

order to make NVQuery a general design for query processing accelerator, we modify the sense

amplifiers in the vertical bitlines to support bit-wise operations. Fig. 6.2 shows the sense amplifier

in a single NVQuery bitline to support bit-wise operations. In this mode, each block works as

memory instead of CAM, where one of the vertical bitlines in each CAM cell is activated. The

tail of the shared bit-line is connected to a sense amplifier. Since our design supports AND and

OR functions, the sense amplifier has two main parts: one for AND operation and a simple sense

amplifier to support OR. These circuits work on the basis of the leakage current through the

vertical bitline. When several rows in memory are active, each row leaks current through vertical

bitlines depending upon the resistance value. If the stored bit is 1 (low resistance), this current

is large, while in the case of 0, leakage is significantly small. The goal of OR operation is to

identify the presence of at least one high (1) bit in all activated rows. Therefore, we use a sense

resistor, R>0, such that in the case of at least single high bit, it turns the output signal to one.

However, for AND operation the goal is to find a case such that at least one input is not 1. In that

case, the AND circuitry uses an appropriate sense resistance.

Interestingly, prior work shows that crossbar memory can further support addition within

the memory [83, 126]. This approach breaks down an operation into a series of NOR operations.

The logic family used in the paper executes NOR in crossbar memory with a latency of just 1 cycle.

This functionality is supported by NVQuery due to its regular structure (unlike CAMs with

access transistors), enabling it to perform data computations within memory. In the case when

approximate results are acceptable, the sense amplifier at the bitlines can be used to improve the

performance of NVQuery. The truth table for 1-bit full adder shows that the sum bit (S) can be

obtained by inversion of the carry bit (C) in 75% of the cases. The sense amplifier calculates C
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Table 6.3. Approximation in 16-Bit Addition

Approximated Bits 4 8 12 14 16
Error (%) 0.006 0.098 1.56 6.25 25

Energy (pJ) 3.52 2.41 1.3 0.75 0.197
Latency (ns) 182 133 84.7 60.5 36.3

(majority) in one step by simply using an appropriate sense resistance. S is obtained by inverting

C. This introduces a worst case error of 25%. However, this error is reduced significantly by

approximating only some LSBs depending upon the level of accuracy desired. The MSBs

are calculated accurately using the techniques described in [83]. Table 6.3 shows the error

corresponding to different number of approximated bits for an 8-bit addition. By calculating the

carry bit correctly, the proposed approximation approach limits the effect of an error to one bit

and does not propagate it.

Addition is extended to implement average function. The output of successive additions

is sent to the processor, where the average is obtained by bit-shifting or simple division.

6.3 Approximation in NVQuery

In most cases, a query does not require a unique or completely precise answer. Instead, it

requires a fast result with good enough accuracy. Approximate computing is an effective way

of improving the energy and performance by trading some accuracy. Much of the prior work

seeks to exploit this fact in order to build faster and more energy efficient systems which are

capable of responding to our needs with just good enough quality of response [148, 149, 150].

However, most of the existing techniques provide less energy or performance efficiency due to

considerable data movement and lack of configurable accuracy.

NVQuery can work in both exact and approximate mode. Approximate mode provides

the advantage of better metrics, both in terms of latency and power consumption. However, this

comes at the cost of loss in accuracy. Here, we investigate two ways of approximation: (i) bit

trimming and (ii) voltage scaling.
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6.3.1 Bit Trimming

One common way to apply approximation in query search is trimming or neglecting

bits. Our design neglects few least significant bits of input data in order to accelerate the query

functionality. For other bits, NVQuery performs the search serially on the blocks, starting from

the most significant bits. The level of approximation is tuned by determining the number of

neglected blocks. The upper and lower computation bounds are defined by the number of cut

bits. For each input in query, the lower bound is defined by all trimmed bits being zero while the

upper bound by all trimmed bits being one.

LV < V <UV

UV − LV = 2K−1

Where V is the exact value of V , and LV and UV are the lower and upper bounds respectively

when the last k bits are trimmed. Therefore, our design guarantees that the NVQuery error rate

on aggregation functions, (Minimum, Maximum, Average, Mean, etc.) is

ErrorQuery < 2M−K−1

where M is the total number of bits.

For a 5-bit CAM stage with a nominal Vdd of 1.6V , Vi = {0.1V,0.2V, 0.4V,0.8V,1.6V}

for i= {0,1,2,3,4}. This leads to an effective difference of {1.5V,1.4V,1.2V,0.8V,0V} between

ML and the bitline. If the lower bits in a block are approximated to have the same weight, then

the required number of voltage levels can be reduced. However, the voltage levels for the
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Table 6.4. NVQuery Approximation at Different Supply Voltages

Voltage 1V 0.87V 0.8V 0.74V 0.7V 0.67V
Errors bits 0 1 2 3 4 5

Norm. Energy 1 0.68 0.39 0.22 0.17 0.11

non-approximated bits should be chosen such that

Vi =


(k+1)×0.1V, i = k

2×Vi, i > k
(6.1)

where k is the number of approximated bits. This ensures that the effective weight of the

approximated bits is at least 1 LSB (0.1V ) less than the first accurate significant bit. For example,

if the lower 2 bits are approximated to have the same weight, then the required voltages are

{0.1V,0.1V,0.3V,0.6V,1.2V}. This further reduces the required Vdd for ML, reducing the total

energy requirement of the computation.

6.3.2 Voltage Scaling

In NVQuery, approximation is done by applying voltage overscaling (VoS) on selective

CAM blocks [151]. While CAM works without any error with nominal Vdd , lower supply

voltages increase the possibility of error on CAM matching and memory functionality. Table 6.4

lists the possible errors for each CAM block at different supply voltages. For instance, a 6-bit

CAM block at 870mV supply voltage can match the input query with stored data with a single

bit mismatch. Similarly, at 800mV and 740mV, the CAM block can search for data with 2-bit

and 3-bit Hamming distance respectively from the input key.

Our design puts the blocks in different approximation levels based on their impact on

approximation. For instance, if the ith block is configured with h-bit error, the i−1th block needs

to have h/2-bit error. Generally, when the goal is to allow K bit error, we can estimate the error
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distance of each bit as follows:

h = K/(1+1/2+1/4+ ... +1/2N)

Comparing these two ways of applying approximation shows that voltage overscaling can provide

much higher advantage as compared to bit ignoring. In bit ignoring, the energy saving and

speedup limits to a few bits which we neglected processing them. For example, in 6-bit CAM,

trimming 2-bit, will give us 2/6 = 33% energy savings.

6.4 Experimental Results

6.4.1 Experimental setup

For detailed evaluation of the proposed NVQuery, we run circuit-level simulations in

HSPICE with 45nm TSMC technology. We use VTEAM [124] model of memristors with

ION/IOFF ratio of 103 for non-volatile memory crossbar design. We develop software-based

cycle-accurate simulator (based on C++) which emulates the functionality of the designed

NVQuery. This allows us to speed up the simulation time significantly and verify the proposed

design with diverse practical data sets. The simulator has accurate models of the hardware,

e.g., time and power extracted from the circuit-level simulation to evaluate the efficiency of

the proposed design. We compare NVQuery performance and energy efficiency with state-

of-the-art query processing approaches running on the same technology node. We evaluate

two popular approaches, sampling-based approximate querying (SAQ) [152] and deterministic

approximate querying (DAQ) [105] on Intel i7 7600 CPU with 8GB memory. For measurement

of the processor power, we use Hioki 3334 power meter. We use a dataset consisting a table of

Census of 10 million tuples using 32-bit unsigned integers to compare the efficiency of different

techniques. This data is popularly used to model populations of various types ranging from cities

and organizations to word frequencies in natural language corpora. The SQL server contains a

single table with one 10GB column of randomly generated records. In the rest of the paper, power
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Figure 6.6. Energy consumption and performance of query processing running on traditional
core and the proposed NVQuery.

and performance results have been reported for 1000 queries from aggregation and prediction

functions over five randomly generated datasets. Join operation uses a different dataset, as the

previously described dataset is not ideal for join based operations (need more than one column

for join). Dataset includes 6 columned tables, randomly populated. Size of the table ranges from

22 to 217. The upper limit on the size is a function of the maximum datasheet size in MS Excel

(220) and realistic join compute times.

6.4.2 NVQuery Efficiency

Here we highlight the advantage that NVQuery can provide in computing each query

function. Table 6.5 compares the energy savings and performance speedup of running different

queries on proposed NVQuery as compared to a digital ASIC design. Each energy is reported

when 10 queries run on 1k dataset. The selected dataset is small so that the reported values

compare the computation energy without data movement cost. The digital system is designed

using System Verilog in 45nm ASIC flow. The result shows that NVQuery improves the

computation cost of all queries significantly. Specifically, queries such as MAX, MIN and/or

TOP k can be processed in a single cycle, instead of processing in O(n) or O(logn) time.

Our evaluation shows that our design can provide 11.8× energy improvement and 26.85×

performance speedup on average compared to digital approach for nearest distance search-based

queries. Similarly, our design can achieve on average 13.7× and 92.1× (5.8× and 0.9×) energy

savings and performance speedup over exact search (memory functionalities, e.g. addition).
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Table 6.5. Energy Consumption and Performance Speedup of Queries in NVQuery Normalized
to Digital Design over 1k Data

Nearest search Search Memory

Queries
MAX/
MIN Top 1

Search/
Count

Addition/
Average Bit-wise

Energy Improv. 9.5× 14.1× 13× 5.8× 46.7×
Speedup 24.2× 29.5× 92.1× 0.9× 122.6×

Table 6.6. Energy-Delay Product Improvement of SAQ, DAQ and Proposed NVQuery

Query Accelerators 0% 1% 2% 4% 6% 8% 10%

SAQ [152] Error bound 0% 1.5% 3.1% 5.2% 7.4% 8.5% 10.9%
EDP Improv. 4.1× 6.7× 8.3× 11.8× 17.2× 24.4× 39.8×

DAQ [105] trimmed bits 0-bit 1-bit 2-bit 4-bit 6-bit 7-bit 9-bit
EDP Improv. 16.4× 24.2× 36.9× 52.1× 69.2× 85.5× 104.5×

NVQuery Relaxed bits 0-bit 2-bit 4-bit 6-bit 8-bit 11-bit 15-bit
EDP Improv. 431× 505× 807× 1,515× 2,288× 2,587× 3,154×

NVQuery is also efficient in executing different join operations. For a small table with 22 rows,

NVQuery provides 2.3x speedup and 5.9x energy savings on average as compared to conventional

systems. However, the performance and energy efficiency of NVQuery increases with table

size. For example, for a table with 215 rows, NVQuery provides speedup and energy efficiency

improvement of 21x and 83x respectively. Although, the performance of in-memory addition is

less than that of digital-based design, but considering the cost of data movement, it makes sense

to process data locally in-memory. In large size query processing, the data movement dominates

the computation cost, which motivates us to perform in-memory computations to avoid data

movement issue.

6.4.3 NVQuery & Dataset Size

While running real dataset, the main advantage of NVQuery comes from addressing

the data movement issue. Fig. 6.6 shows the average energy consumption and performance

of running query processing on traditional core and NVQuery when the data set size changes

from 1GB to 10GB. Our evaluation shows that the NVQuery has an advantage in processing
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Figure 6.7. Energy consumption and performance of the NVQuery at different approximation
levels.

the nearest distance search and related functions such as MIN, MAX or Top queries. However,

to see the average NVQuery improvement, we generate the same number of queries running

on the dataset. Our evaluation shows that increasing the data size significantly increases the

energy and execution time of traditional cores. However, this increment is minor in NVQuery

as it can locally process the data. As our result in Table 6.5 shows, NVQuery not only avoids

the overhead of data movement, but also provides much cheaper computation than traditional

cores. This difference is more prominent when the size of the dataset passes 8GB, which is the

available main memory size in our tested platform. In such case, the traditional cores require to

bring data up from the hard disk, which significantly slows down the computation. Comparing

the energy and performance of NVQuery for 10G data shows that, our design can achieve 34.7×

energy savings and 49.3× performance speedup as compared to traditional processor running

the same query tasks.

6.4.4 NVQuery Approximation

Fig. 6.7 shows the energy, performance and energy-delay product, when NVQuery has

been approximated using bit trimming and voltage scaling. The x-axis in the graph shows the

number of relaxed bits. In addition, the red line in EDP graph shows the average relative error of

query processing at different levels of approximation. Although the latency remains constant

in the case of approximation by voltage scaling, it can achieve much higher efficiency than bit

trimming. Our evaluation shows that NVQuery approximation using bit trimming and voltage
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scaling can provide 490.7× and 507.9× EDP improvement as compared to NVQuery in exact

mode while ensuring less than 0.2% average relative error. The efficiency of the voltage scaling

approximation becomes more significant in deep approximation. For instance, while accepting

2% error, approximation by voltage scaling can achieve 45.0× and 17.6× energy savings and

speedup (807× EDP improvement).

We also compare the efficiency of the proposed NVQuery with the state-of-the-art approx-

imate query accelerators SAQ [152] and DAQ [105] using 8G dataset size. The NVQuery and

DAQ approximation is defined based on the number of blocks under voltage overscaling and the

number of least significant bits neglected respectively. In SAQ the error rate is determined based

on the requested error bound. Table 6.6 shows the energy-delay product (EDP) improvement of

the different query accelerators as compared to traditional CPU core when the level of approxi-

mation changes from 0% to 10%. For each error rate, we select those configurations of SAQ and

DAQ which result in the best EDP improvement. As Table 6.6 shows, increasing the number of

relaxed bits improves the energy consumption of our design. Our experimental evaluation shows

that, NVQuery can achieve 105.0× and 26.2× EDP improvement as compared to SAQ and DAQ

designs in exact mode. The main advantage of NVQuery comes from addressing data movement

issue. The NVQuery can provide higher efficiency when it works in approximate mode, since

our memory-based design put a larger portion of memory under voltage overscaling in order

to achieve the same error rate as DAQ design. In other words, when DAQ neglects m-bits for

accelerating query processing, our memory-based design can get the same accuracy by putting

larger portion of memory blocks under voltage overscaling (shown in Table V for 4-bit stage

size). Our evaluation shows that in approximate mode, NVQuery can achieve 79.2× and 30.1×

EDP improvement as compared to SAQ and DAQ respectively, while providing similar error

rate.
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6.4.5 Area Overhead

NVQuery has both memory and query processing functionalities. We added peripheral

circuitry to crossbar memory to support nearest distance exact search operation, bit-wise/addition

operations, counter and controller. Fig. 6.8 shows that proposed NVQuery has up to 5.1% area

overhead compared to the conventional crossbar. The search circuitry takes 2.1% extra area.

Counter and bit-wise circuits add 0.3% and 1.5% area overhead to design. Finally, the controller

and registers take the rest 1.2% area overhead.

Chapter 6, in part, is a reprint of the material as it appears in M. Imani, S. Gupta, A.

Arredondo, T. Rosing, “Efficient Query Processing in Crossbar Memory,” Proc. IEEE/ACM

International Symposium on Low Power Electronics and Design, 2017, pp. 1-6 and M. Imani, S.

Gupta, S. Sharma, T. Rosing, “NVQuery: Efficient Query Processing in Non-Volatile Memory,”

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2018.
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Chapter 7

Conclusion

This thesis explored the hardware aspect of PIM at various levels. It began with a

basic implementation of PIM focused on individual operations such as bitwise computations,

addition, and multiplication. Chapter 3 proposed a novel architecture to optimize these basic

operations for data intensive workloads. It exploits the inherent parallelism in PIM operations

while introducing simple hardware changes which significantly enhance the performance and

efficiency of in-memory processing of large amount of data. Chapter 4 then integrated the

architecture proposed in Chapter 3 with a general purpose core to design a hybrid system. It

also introduces data management schemes to ensure maximum performance. Chapters 5 and 6

use this hybrid system to design application-specific accelerators. The proposed architectures

achieve orders of magnitude of improvement in both performance and energy efficiency.

However, there are opportunities to further improve PIM systems. On one side, there

is a need for appropriate software interface (including a PIM optimized programming model,

execution model, and mapping schemes) to provide support for automated porting of code to

new PIM architectures. On the other side, there is scope for improving the performance and

reliability of individual PIM operations and the overall architecture. Research in these directions

would help in emergence of PIM as the next big computing paradigm.
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