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ABSTRACT: Untargeted metabolomics is frequently performed on
human fecal samples in conjunction with sequencing to unravel the gut
microbiome functionality. As sample collection efforts are rapidly
expanding, with individuals often collecting specimens at home,
metabolomics experiments should adapt to accommodate the safety
and needs of bulk off-site collections and improve high throughput.
Here, we show that a 95% ethanol, safe to be shipped and handled,
extraction part of the Matrix Method pipeline recovers comparable
amounts of metabolites as a validated 50% methanol extraction,
preserving metabolic profile differences between investigated subjects.
Additionally, we show that the fecal metabolome remains relatively
stable when stored in 95% ethanol for up to 1 week at room
temperature. Finally, we suggest a metabolomics data analysis workflow based on robust centered log ratio transformation, which
removes the variance introduced by possible different sample weights and concentrations, allowing for reliable and integration-ready
untargeted metabolomics experiments in gut microbiome research.

■ INTRODUCTION
Humans are colonized at birth by microorganisms, forming
complex communities known as microbiota, which evolve
through the course of the host life, shaping and influencing its
physiology and metabolism.1 Among others, the gut micro-
biota has been shown to actively influence neurodevelopment
before2,3 and after partum4−6 and to induce distal tumors via
carcinogenic metabolism.7 For these reasons, elucidating the
functionality of these microbial communities has become
paramount, and mass spectrometry-based untargeted metab-
olomics has established itself as the to-go tool for these types of
investigations.8

Multiomics large-scale longitudinal or cross-sectional micro-
biome studies represent a challenge both for sequencing and
metabolomics as samples are usually collected in different
settings and cannot always be immediately snap-frozen in
liquid nitrogen and stored at −80 °C, which is considered the
gold standard. Additionally, when designing large-scale studies,
the safety of subjects and shipping costs, which dramatically
increase if refrigeration is involved, should be taken into
consideration. The microbiome field tackled these problems by
showcasing that fecal microbiome collection and storage in
95% ethanol (EtOH) at room temperature stabilizes the
microbial communities up to 8 weeks.9 Most importantly,
EtOH is also safer to handle when compared to other alcohols,
such as methanol (MeOH), which is extremely toxic and
requires special equipment to be properly handled. Building on

this, we recently introduced the Matrix Method,10 which
employs a high-throughput pipeline that leverages sample
collection in single barcoded Matrix tubes containing 95%
EtOH and automatized robots. This method not only reduces
costs, time, and well-to-well DNA contamination but also
enables the extraction of metabolites from the same biological
sample, offering an all-in-one solution streamlined multiomics
analyses. EtOH extraction from fecal metabolomics studies has
been tested before,11−14 but an in-depth downstream data
analysis comparison with another common extraction method
(50% MeOH),15−18 used for the discovery of novel bile acids
conjugates19 and the recently introduced reverse metabolomics
approach,20 was missing.
Here, we showcase that the 95% EtOH metabolomics

extraction part of the Matrix Method for bulk microbiome
analyses yields equivalent results of a common, but more
laborious and time-consuming, 50% MeOH extraction for
human fecal samples. We also show that 95% EtOH can
stabilize the fecal metabolome at room temperature for up to 1
week, allowing for safe off-site collection and possibly reduced
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shipping costs. Finally, we highlight how a robust center log
ratio (RCLR) transformation data analysis workflow for
untargeted fecal metabolomics data overcomes problems of
uneven sampling collection and allows for direct integration
with microbiome data.

■ EXPERIMENTAL SECTION
Sample Collection and Extraction. Human fecal samples

were collected and immediately stored at −80 °C from healthy
volunteers under approved protocols from the University of
California San Diego (IRB#141853) with informed consent.
Three fecal samples from three different adult subjects (one
male and two females) were randomly selected and aliquoted
for untargeted metabolomics analysis. Multiple aliquots of
different weights (10, 20, and 30 mg) were generated in
triplicates from the three different fecal samples. Aliquots were
transferred in either 95% (v/v) ethanol (EtOH) or 50% (v/v)
methanol (MeOH). Samples were immediately extracted,
except for a subset of samples that were left in 95% EtOH
for either 24 h or 1 week at room temperature to check the
fecal metabolome stability. Samples to which 400 μL of 95%
EtOH was added were extracted via the Matrix Method
pipeline,10 simply consisting in shaking samples at 1200 rpm
for 2 min in a SpexMiniG plate shaker (SPEX SamplePrep part
#1600, NJ, USA), followed by a 5 min centrifugation step at
2700g. The supernatant (400 μL) was then collected and
stored at −80 °C for downstream analysis. Samples to which
800 μL of MeOH was added underwent a validated extraction
protocol,20 involving homogenization with a 5 mm stainless-
steel bead in a TissueLyser II (QIAGEN) for 5 min at 25 Hz,
incubation at 4 °C for 30 min, and centrifugation at 21,130g
for 10 min. The supernatant (400 μL) was then collected and
dried overnight using a CentriVap instrument. Samples were
then stored at −80 °C until resuspension. All supernatants,
from EtOH and MeOH extractions, were dried overnight using
a CentriVap instrument and then resuspended in 200 μL of
50% MeOH containing 1 μM of sulfamethazine as the internal
standard. A pooled sample (QCpool) was then generated by
collecting and mixing 10 μL from each biological sample and
aliquoting 200 μL. Blank samples, consisting only of extraction
solution, were also prepared. Finally, the samples were
incubated for 1 h at −20 °C, centrifuged at 21,130g for 10
min, and transferred in 2 mL glass vial (Thermo Scientific) for
ultrahigh-performance liquid chromatography tandem mass
spectrometry (UHPLC-MS/MS) analysis.
UHPLC-MS/MS Experiment. Samples were randomized

and analyzed using an untargeted metabolomics analysis
platform comprising a Vanquish UHPLC system coupled to
a Q-Exactive Orbitrap mass spectrometer (Thermo Fisher
Scientific). The chromatography system consisted of a
Phenomenex C18 column (1.7 μm particle size, 2.1 mm ×
50 mm) and a mobile phase of solvent A (water + 0.1% formic
acid) and solvent B (acetonitrile + 0.1% formic acid).
Injections of 5 μL of samples, with a flow rate of 0.5 mL/
min, followed this gradient: 0−1 min, 5% B; 1−7 min, 5−99%
B; 7−8 min, 99% B; 8−8.5 min, 99−5% B; 8.5−10 min, 5% B.
MS/MS data were acquired in the data-dependent acquisition
mode using positive electrospray ionization (ESI+). Briefly,
ESI parameters were set as follows: 53 L/min sheath gas flow,
14 L/min aux gas flow rate, 3 L/min sweep gas flow, 3.5 kV
spray voltage, 269 °C intel capillary, and aux gas heater set to
438 °C. MS scan range was set to 100−1500 m/z with a
resolution at m/z 200 set to 35,000 with 1 microscans.

Automatic gain control (AGC) was set to 5E4 with a
maximum injection time of 50 ms. Up to 5 MS/MS (TopN
= 5) spectra per MS1 were collected with a resolution at m/z
200 set to 17,500 with 1 microscans. Injection time was 50 ms
with an AGC target of 5E4. The isolation window was set to
2.0 m/z. Normalized collision energy was set to a stepwise
increase of 20, 30, and 40 eV with an apex trigger set to 2−15 s
and a dynamic exclusion of 10 s.
UHPLC-MS/MS Data Processing. Obtained raw files were

converted into .mzML open-access format using ProteoWizard
MSConvert21 and deposited on GNPS/MassIVE under the
accession number MSV000095260. Feature detection and
extraction was performed via MZmine 3.9 via batch
processing.22 The .xml file used for batch processing can be
found on the associated GitHub page. Briefly, data were
imported using MS1and MS2 detector via factor of lowest
signal with noise factors set to 3 and 1.1, respectively.
Sequentially, mass detection was performed, and only ions
were acquired between 0.5 and 8 min, with MS1 and MS2
noise levels set to 5E4 and 1E3, respectively. Chromatogram
builder parameters were set at five minimum consecutive scans,
1E5 minimum absolute height, and 10 ppm for m/z tolerance.
Smoothing was applied before the local minimum resolver,
which had the following parameters: chromatographic thresh-
old of 85%, minimum search range retention time of 0.2 min,
and minimum ratio of peak top/edge of 1.7. Then, the 13C
isotope filter and isotope finder were applied. Features were
aligned using join aligner with weight for m/z set to 3 and
retention time tolerance set to 0.2 min. Features not detected
in at least three samples were removed before performing peak
finder. Ion identity networking and metaCorrelate were
performed before exporting the final feature table. The
GNPS and SIRIUS export functions were used to generate
the feature table containing the peak areas and the .mgf files
necessary for downstream analyses. Feature-based molecular
networking was performed in GNPS2 (https://gnps2.org/
status?task=40d2affb3df544d4a2bbf6841a62d45a#),23 and it
was used to annotate metabolic features via MS/MS spectral
matching to the GNPS library, which represent a level 2
annotation according the Metabolomics Standard Initiative.
Annotations were obtained via parent ion mass matching with
a 0.02 tolerance, a minimum of five matching fragment ions,
and a cosine score similarity > 0.7. A list of all annotated
molecular features can be found in the “Library Results” tab of
the FBMN job page. Molecular classes of ions with m/z < 800
were predicted using CANOPUS Natural Product Classifier
(NPC) via SIRIUS 5.8.24

Data Analysis. Feature Table was imported in R 4.2.2 (R
Foundation for Statistical Computing, Vienna, Austria) for
downstream data analysis. Total extracted peak area per sample
was calculated and correlated with the sample run order to
identify possible acquisition problems during the run. The
internal standard (IS) peak present in each sample
(Sulfamethazine [M + H], m/z 279.0908 and retention time
2.26 min) was also extracted and correlated to the sample run
order. The coefficients of variance (CVs) of six different
standards (amitriptyline, sulfadimethoxine, sulfamethazine,
sulfamethizole, sulfachloropyridazine, and coumarin 314)
present in the QCmix sample, which was run every 10
biological samples, were inspected to evaluate the run quality.
The CVs of each acquired feature were also calculated using
the QCpool,25 which was also run for every 10 biological
samples. The CV was calculated by dividing the mean of the
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extracted peak areas by the standard deviation. Feature table
was cleaned via blank subtraction. Features only detected in
the blank and QCmix samples or those that mean peak areas
were not at least 10 times the ones observed in the QCpool
were discarded. The package ‘homologueDiscoverer v 0.0.0.9’
was used to remove detected PEGs (polyethylene glycol)
contaminants.26 Features with near zero-variance were
removed using ‘caret v 6.0’.27 The package ‘mixOmics v
6.22’ was used for multivariate analysis.28 Principal component
analysis (PCA) and partial least-squares discriminant analysis
(PLS-DA) were performed after RCLR transformation via
‘vegan v 2.6’.29 In the PCA models, PERMANOVA was used
to evaluate group centroid separation, while PERMDIPS2 was
used to evaluate homogeneity of variance between groups.
PLS-DA models’ performances were evaluated using leave-one-
out (loo) cross-validation. Variable importance (VIP) scores
were calculated per feature and features with VIPs > 1 were
considered significant. The package ‘UpSetR v 1.4’ was used to
generate the upset plots.30 High density region (HDR) plots
were generated using ‘ggdensity v 1.0’. Log2 fold changes
(Log2FC) were calculated by taking the log2 of divided means
of the relative abundance of the peak areas of the group of
interest. When the mean was 0, a pseudocount of 1 × 10−9 was
added. Linear mixed effect models were obtained using
‘lmerTest v 3.1’ using subject id as the random effect. The
packages ‘tidyverse v 2.0’ and ‘ggpubr v 0.6’ were used for data
manipulation and visualization. Code used for the analysis and
to generate the figures of the manuscript is available on
GitHub (https://github.com/simonezuffa/Manuscript_
Matrix_Metabolomics).

■ RESULTS AND DISCUSSION
Fecal samples from 3 different human subjects were aliquoted
to generate 72 replicates (Figure 1). Triplicates of different
weights, 10, 20, and 30 mg, were generated and extracted via
two different pipelines. The first one consisted of a 50%
MeOH fecal extraction protocol, previously described,20 while
the second one involved a 95% EtOH extraction part of the
recently introduced Matrix Method pipeline.10 This consists of
the collection of fecal samples in Matrix tubes containing 400

μL of 95% EtOH, followed by 2 min shaking at 1200 rpm and
5 min centrifugation at 2700g. Importantly, this automatized
high-throughput pipeline allows for the simultaneous extrac-
tion of DNA, allowing multiomics analyses in microbiome
research. Additionally, two batches of triplicates collected in
95% EtOH were left at room temperature for 1 day and 1
week, respectively, to replicate possible collection scenarios of
storing, shipping, and assessing fecal metabolome stability in
95% EtOH.
95% EtOH Extraction Part of the Matrix Method

Recapitulates a 50% MeOH Fecal Extraction Protocol.
Unsupervised dimensionality reduction via PCA of 20 mg of
triplicates showed clear clustering of subject fecal metabolic
profiles using both 95% EtOH and 50% MeOH extractions
(Figure 2A). PERMANOVA identified subject id as the highest
source of variance in the data (R2 = 0.47, F = 10.98, p < 0.001),
followed by extraction method (R2 = 0.14, F = 6.68, p <
0.001). Out of a total of 4616 unique metabolic features, 75%
(3463) were recovered by both extraction methods (Figure
2B). These included 94% (235) of the total annotated features
via the GNPS library. Interestingly, the Matrix Method (95%
EtOH) appeared to capture a higher number of additional
features (849) compared to that of the MeOH extraction
(304). These extraction-specific features were classified as
small peptides and fatty acid conjugates for MeOH and
oligopeptides, glycerolipids, and fatty amides for EtOH
according to CANOPUS NPC superclass predictions (Supple-
mentary Table 1). Pairwise PCA and PLS-DA models were
generated for each extraction method to identify the metabolic
features responsible for subject discrimination. These features
were then selected to compare both pipelines. All PCA and
PLS-DA score plots displayed clear clustering by subject
(Supplementary Figure 1). All PLS-DA models obtained a
classification error rate of 0, indicating a perfect discriminating
performance. Extracted VIP scores from the PLS-DA models
displayed significant correlation between the two extraction
pipelines (Supplementary Figure 2), with the highest
concordance as observed in the HDR plots (Figure 2C). On
average, the PLS-DA models identified 1764 features with VIPs
> 1 involved in subject discrimination. Notably, when
considering exclusively the top 100 features obtained in the

Figure 1. Study design. Fecal samples were collected from three different human subjects and aliquoted to investigate two different extraction
pipelines: a 95% ethanol (EtOH) extraction part of the Matrix Method and a 50% methanol (MeOH) extraction protocol. Three different analyses
were conducted. (1) In the extraction study, 20 mg of aliquoted fecal samples were immediately processed after thawing to investigate metabolites
recovery differences between 50% MeOH and 95% EtOH pipelines. (2) In the storage study, 20 mg of aliquoted fecal samples were immediately
processed or left at room temperature for 1 day and 1 week in 95% EtOH before undergoing the Matrix Method to investigate fecal metabolome
stability in 95% EtOH. (3) In the weight study, 10, 20, and 30 mg of aliquoted fecal samples were extracted via both 95% EtOH and 50% MeOH
pipelines to investigate a weight-bias free data analysis workflow. Colors indicate subject origin. Numbers (10, 20, 30) indicate weight in mg of the
aliquoted fecal sample. The immediately processed 20 mg 95% EtOH samples (a−i) have been used in the extraction, storage, and weight study,
while the immediately processed 20 mg of 50% MeOH samples (l−t) have been used in the extraction and weight studies.
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MeOH models, 86, 85, and 92% were also recovered and
classified as significant by the 95% EtOH models. Features of
interest identified by the multivariate analysis were also
investigated via univariate analysis. A high degree of correlation
(R > 0.9) was observed for the feature Log2FC between

subjects obtained via the two different extraction pipelines
(Figure 2D). Focusing on annotated molecules of interest in
microbiome research, such as primary and secondary bile acids,
indole amino acids, vitamin B, heme catabolism, microbial N-
acyl lipids, and long chain fatty acids, the 95% EtOH extraction

Figure 2. Data analysis comparison between 95% EtOH and 50% MeOH extraction pipelines. (A) PCA on RCLR-transformed peak areas shows
clear clustering based on subject (PERMANOVA: subject R2 = 0.47, p < 0.001 and extraction R2 = 0.14, p < 0.001). (B) Top-right-hand side
displays that more than 75% of the obtained features were recovered by both extraction pipelines, encompassing 94% of the total annotated
features. Additionally, EtOH appeared to recover a higher number of oligopeptides, glycerolipids, and fatty amides, whereas MeOH recovered more
small peptides and fatty acid conjugates (Supplementary Table 1). (C) HDR plots of feature VIP scores obtained via subject pairwise PLS-DA
models stratified for the extraction method display a high degree of concordance. (D) Scatter plots of the pairwise Log2FC obtained via pairwise
subject comparison in both extraction methods. Linear regression shows significant correlation (R > 0.9, p < 2.2 × 10−16) between the two
methods. Asterisks in PCA score plots indicate group centroids.
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recovers and returns results comparable to those obtained via
50% MeOH extraction. Recovery examples of tri- and
dihydroxylated bile acids, lysine, and histidine microbially
conjugated bile acids, indoles such as tryptophan and
propionic acid, vitamin B5, stercobilin, arginine-C5:0, and ω-
3 arachidonic acid are available in Supplementary Figure 3.
Fecal Metabolome Remains Stable for Up to 1 Week

at Room Temperature in 95% EtOH. PCA of triplicates
exclusively extracted via the 95% EtOH pipeline showed clear
clustering of samples based on subject ID (PERMANOVA, R2
= 0.50, F = 15.24, p < 0.001) and a smaller effect of sample
storage (PERMANOVA, R2 = 0.08, F = 2.56, p < 0.001), which
included immediate processing or storage at room temperature
for either a day or a week in 95% EtOH (Figure 3A). Out of
the 4566 features obtained via EtOH extraction, 88% (3996)
were captured at all time points, comprising 94% (231) of all
annotated features (Figure 3B). The majority of the features
distinctively characterizing immediate (imm), week, immediate
and day, and immediate and week extractions (156 out of 570)

were not classified by CANOPUS (Supplementary Table 2).
The subsequent most affected predicted classes were small
peptides (65) and oligopeptides (48). Additionally, to
determine if the storage time at room temperature could
affect the metabolic features responsible for subject classi-
fication, 27 subject pairwise PLS-DA models were generated
comparing samples of each subject at each different time point.
Comparisons between immediate extractions were considered
as “ground truths,” and the relative recovery of those significant
features was investigated for the different time points (Figure
3C). On average, 95.6, 91.6, and 94.7% of the top 100 “ground
truth” features were recovered for each pairwise subject
comparison. This suggested that the fecal metabolome could
remain relatively stable in 95% EtOH for up to 1 week at room
temperature without losing predictive power for subject
discrimination. Log2FC in relation to storage time (immediate
vs 1 week) of the metabolic were also explored for each subject
(Supplementary Figure 4A). Interestingly, the median fold
changes of the discriminating features of interest identified via

Figure 3. Fecal metabolome is relatively stable for up to 1 week at room temperature in 95% EtOH. (A) PCA on RCLR-transformed peak areas
shows strong clustering based on subject id and little effect of storage time (PERMANOVA: subject R2 = 0.50, p < 0.001 and extraction R2 = 0.08, p
= 0.015). (B) Upset plot displays that more than 88% of the obtained features are recovered via both extraction methods; these include 94% of the
total annotated features. Most of the features exclusively characterizing the different storage time points are not annotated, and no class prediction
can be obtained via CANOPUS. (C) Lollipop plots displaying the percentage of recovery of the top 100 features discriminating subjects via
pairwise PLS-DA models. Immediate extractions (imm vs imm) are considered the “ground truth” (100%). Dashed lines represent the average
percentage of recovery of the “ground truth” obtained via pairwise models constructed using different storage time points. Asterisks in PCA score
plot indicate group centroids.
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the pairwise PLS-DA models were 0.705 (Subject A vs Subject
B), 0.430 (Subject B vs Subject C), and 0.530 (Subject A vs
Subject C), suggesting a relative stability during storage time of
the features of interest (Supplementary Figure 4B).
RCLR Transformation Can Address Discrepancies in

Fecal Sample Collection. A recurrent issue in off-site fecal
sample collection is the uneven sample amount collected by
the individuals and the variability in the fecal water content.
These can affect the per sample metabolite recovery and
introduce bias into the downstream data analysis. Although
lyophilization and weighting of the fecal samples can be
implemented before data acquisition, these are time-consum-
ing and unpractical when analyzing thousands of samples, and
several technical errors can be introduced, such as repeated
freeze−thaw cycles, intersample contamination, and others. To
overcome these limitations, post data acquisition normalization
methods can be deployed. Here, we investigate the use of
RCLR transformation in fecal untargeted metabolomics data as
a method to improve accuracy in data analysis. Originally
introduced to tackle the microbiome data compositionality,29

the RCLR transformation suits the semicompositionality
nature of fecal untargeted metabolomics data. Additionally,
RCLR allows for easy interpretability and seamless multiomics
integration with associated RCLR-transformed microbiome

data using tools such as Joint-RPCA31 and DIABLO.32 We
investigated the extraction of different sample weights, 10, 20,
and 30 mg, in both 95% EtOH and 50% MeOH extraction
pipelines. PCA of RCLR data shows no effect of sample weight
in both extraction methods (PERMANOVAs, R2 < 0.05, p >
0.08), with most of the variance explained by subject id (R2 =
∼60%) and no difference in the dispersion of the samples
(PERMDISP2, p > 0.45) between the different subjects
(Figure 4A). On the contrary, PCA of raw data or relative
abundance transformed data displayed less tightened clusters
based on subjects, significant differences between group
variances (PERMDISP2, p < 0.001), and small but still
significant effect of the sample weight (Supplementary Figure
5). Upset plot revealed that the number of detected
metabolites was not affected by sample weight, suggesting
that just 10 mg is sufficient to cover the detectable fecal
metabolome in reverse-phase LC-MS/MS data acquired in the
positive ionization mode (Figure 4B). Finally, we explored
correlations between weight, total obtained gDNA (genomic
DNA, ng/μL), and cumulative extracted peak areas from
samples processed via the Matrix Method (95% EtOH) and
stored for 1 week at room temperature. Linear mixed effect
models, accounting for repeated measures on the same
subjects, found weight to be a significant predictor of total

Figure 4. RCLR transformation in fecal untargeted metabolomics data. (A) PCA on RCLR-transformed peak areas removes sample weight variance
in both 95% EtOH and 50% MeOH extractions (PERMANOVA: weight R2 < 0.05, p > 0.08) and creates homogeneous variance for samples
belonging to the same subject. (B) Upset plot displays that 99.9% of the features are captured by all of the different weight aliquots, also comprising
all of the annotated features. Pie chart displays CANOPUS-predicted NPC pathways. (C) Scatter plot illustrates that extracted gDNA from the
fecal samples is positively associated with the total extracted peak areas. Linear mixed effect model with subject id as random effect (β = 0.010, SE =
0.004, p = 0.0221). β = estimate; SE = standard error. Asterisks in PCA score plots indicate group centroids.
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extracted gDNA (β = 0.25, SE = 0.08, t(23) = 2.92, p =
0.00768; Supplementary Figure 6A) and the total extracted
peak areas (β = 0.01, SE = 0.001, t(23) = 9.23, p = 3.36 ×
10−9; Supplementary Figure 6B). Interestingly, gDNA recovery
appeared also to be significantly correlated with the total
extracted peak areas [β = 0.01, SE = 0.004, t(24.98) = 2.441, p
= 0.0221] but with variation in the slopes and intercepts
between subjects (Figure 4C).
Limitations. This study focuses exclusively on human fecal

samples, and it has not been validated for other types of
biosamples. Data were acquired via reverse-phase liquid
chromatography and positive ionization mode. For this reason,
nondetected features might display a different behavior.
Provided annotations are obtained via parent ion m/z and
MS/MS spectral matching, resulting in a level 2 annotation
according to the metabolomics standards initiative.33 CANO-
PUS was used to generate molecular class predictions of
unknown MS/MS spectra; as such, these predictions should be
considered putative.

■ CONCLUSIONS
The presented study highlights that the recently introduced
Matrix Method, which implements a 95% EtOH extraction,
performs as well as a commonly used 50% MeOH extraction
method for metabolomics analysis of human fecal samples.
Moreover, the use of EtOH is safer compared to MeOH, and it
can be handled by nonscientific personnel in the case of bulk
off-site sample collections. Additionally, we showcase how the
fecal metabolome remains relatively stable when stored in 95%
EtOH for up to 1 week at room temperature, maintaining
discriminating power between the investigated samples. This is
important as samples cannot always immediately be stored at
−80 °C, the most ideal condition, and refrigerated shipping
can represent a high economic burden. Finally, we highlight
how data analysis via RCLR transformation helps to remove
variance possibly introduced by uneven sampling and discuss
how this transformation suits better integrative microbiome
studies. In conclusion, the 95% EtOH extraction of the Matrix
Method represents a valid and more economically alternative
to other widely used 50% MeOH extractions.

■ ASSOCIATED CONTENT

*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.analchem.4c05142.

PCA and PLS-DA score plots of pairwise subject
comparisons, correlation between VIP scores obtained
from pairwise PLS-DA models with either 50% MeOH
or 95% EtOH extraction, boxplots of univariate analysis
of annotated metabolites including bile acids, indoles,
vitamins, and fatty acids, fold changes after storage for 1
week at room temperature, PCA score plots of raw data
or data after relative abundance normalization for both
50% MeOH and 95% EtOH, correlation between
sample weight and extracted gDNA or cumulative peak
areas, and tables with NPC superclass predictions for
extraction methods comparison (50% MeOH vs 95%
EtOH) or storage comparison (immediate vs 1 week)
(PDF)

■ AUTHOR INFORMATION

Corresponding Author
Simone Zuffa − Skaggs School of Pharmacy and
Pharmaceutical Sciences and Collaborative Mass
Spectrometry Innovation Center, University of California San
Diego, La Jolla, California 92093, United States;
orcid.org/0000-0001-7237-3402; Email: szuffa@

health.ucsd.edu

Authors
Vincent Charron-Lamoureux − Skaggs School of Pharmacy
and Pharmaceutical Sciences and Collaborative Mass
Spectrometry Innovation Center, University of California San
Diego, La Jolla, California 92093, United States

Caitriona Brennan − Department of Pediatrics and Division
of Biological Sciences, University of California San Diego, La
Jolla, California 92093, United States

Madison Ambre − Department of Pediatrics, University of
California San Diego, La Jolla, California 92093, United
States

Rob Knight − Department of Pediatrics, Department of
Computer Science and Engineering, Shu Chien-Gene Lay
Department of Bioengineering, and Halıcıoğlu Data Science
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Mutabdzǐja, L.; Damiani, T.; Pudney, C. J.; Earll, M.; Helmer, P. O.;
Fallon, T. R.; Schulze, T.; Rivas-Ubach, A.; Bilbao, A.; Richter, H.;
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