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ABSTRACT OF THE DISSERTATION 

Living in a High CO2 World: 

 

Aquaculture and Fish that Breathe Air 

 

By 

 

Corey J. Jew 

 

Doctor of Philosophy in Ecology and Evolutionary Biology 

 

 University of California, Irvine, 2019 

 

Professor James W. Hicks, Chair 

 

 

 

Over the past two decades, global aquaculture production has seen significant growth, particularly in 

Vietnam with the use of air-breathing fishes. However, the sudden economic importance of air-breathing 

species, such as Pangasianodon hypophthalmus, has resulted in a significant knowledge gap surrounding 

their basic biology. A fundamental understanding of how these animals work and how they interact with 

their environment is vital for the establishment of data-driven policies and best practice and essential for 

optimizing their growth and production. The aim of this work is to provide the aquaculture industry with 

the knowledge base necessary to fulfill it’s potential in improving food security and meeting the 

sustainable development goals of our planet in the 21st century and beyond. 

 

The content of this dissertation consists of several studies characterizing different aspects of adapting, 

both behaviorally and physiologically, to aquatic hypercapnia and are as follows: Chapter 1 explores the 

effect on pulmonary respiration when brachial CO2 exchange is disrupted either though aquatic 

hypercapnia or forced emersion in Polypterus lapradei. Chapter 2 compares how air-breathing is used 

differently in three Vietnamese aquaculture species when encountered with aquatic hypoxia and 

hypercapnia. Chapter 3 investigates the role of ecophysiology on the use of air-breathing in the avoidance 

behaviors to either hypoxia and hypercapnia in Po. lapradei and Pa. hypophthalmus. Chapter 4 uses 

blood stress bioindicators to assess if hypercapnia levels in Pa. hypophthalmus aquaculture ponds 
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represent a significant physiological challenge. We found Pa. hypophthalmus does not respond from a 

respiratory, behavioral, or blood biomarker perspective when exposed to levels of hypercapnia typically 

found in aquaculture (34 mmHg CO2). This demonstrates the extreme tolerance of Pa. hypophthalmus to 

aquatic hypercapnia acquired though millions of years of evolution to its natural environment, as well as 

suggest a lack of potential benefit for regulating CO2 in aquaculture ponds.  

 

Much of this research focuses on P. hypophthalmus due to its central role in aquaculture, yet several other 

air-breathing fish species were used as a comparative approach to investigate how uniquely evolved 

respiratory systems respond differently. My hope is that that is work can provide scientific data informing 

the impact of hypercapnia in aquaculture practices, and at the same time, demonstrate the diversity of 

evolutionary solutions to an environmental challenge that exist among a fascinating group of organisms, 

the air-breathing fishes.
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INTRODUCTION 

 

Importance of seafood and fisheries 

 

Seafood and seafood products make up a significant contribution to the global food supply and world 

economy. According the FAO’s State of the World Fisheries and Aquaculture 2018 Report, 171 million 

tons are produced globally, driving $152 billion in trade and providing income for millions, particularly in 

developing countries. Of that, human consumption accounts for 151 million tons (88%), which is a per 

capita seafood consumption of 45 lbs. per year. Our dependence on and demand for seafood continues to 

grow as the health benefits of seafood are becoming realized, global populations soar, and emerging 

economies drive the transition from plant to animals-based diets across developing world. 

 

As demand for seafood continues to accelerate, the state of the world fisheries has been in decline, 

according to the FAO’s monitoring of marine fish stocks. The fraction of stocks harvested at or below 

their maximally sustainable rate dove from 90% in 1974 to 66.7% in 2015, while the fraction of stocks 

classified as overfished rose from 10% to 33.1% over the same period. As a result, world-wide production 

from wild capture fisheries has plateaued since the 1990s. 

 

Blue revolution 

 

Despite the stagnation of wild capture fisheries, aquaculture production has seen significant and sustained 

growth in the recent half century, bridging the world’s expanding gap in supply and demand for seafood 

products. This expansion in farming fish and other seafood products beginning in the late 1960s, termed 

the “Blue Revolution”, has continued to accelerate, undergoing double-digit annual growth through the 

1980s and 1990s. In 2016, for the first time food fish consumption from aquaculture surpassed global 
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wild capture fisheries, and today aquaculture remains the fasting growing major food production sector 

(FAO, 2018). 

 

In the West aquaculture is typically thought of as the cultivation of salmonids (trout and salmon), in ocean 

sea pens and concrete raceways. Salmonids are the dominant crop species of many countries with 

temperate climates, however the use of these species require cool temperatures and clear water, making 

them unfeasible for production in tropical regions. Nevertheless, countries with tropical climates, such as 

Vietnam, have seen recent exponential growth over the past two decades utilizing native species adapted 

to local conditions. The successful adoption of these unconventional species into the aquaculture industry 

has driven Vietnam onto the global stage, creating $7.4 billion in exports in 2016. Vietnam is now the 

world’s third largest exporter of fish products, generating more in aquaculture than Europe, Africa, or the 

Americas combined (FAO, 2016). 

 

Much of Vietnam’s export revenue is attributed to the farming of Pangas catfishes (Pangasianodon spp.) 

(FAO, 2016; FAO, 2018). Several members of this group possess the ability to breathe air, such as 

Pangasianodon hypophthalmus, as do a number of other Vietnamese aquaculture species endemic to this 

region. The use of these air-breathing fishes in aquaculture has risen along with the success of the 

industry in Southeast Asia due to their ability to thrive in less than optimal aquatic conditions (e.g., low 

O2,  high CO2 and nitrogenous waste) (Lefevre et al., 2014). Air-breathing fishes, have evolved under 

these environmental conditions, typical of tropical freshwaters, and possess adaptations to these marginal 

aquatic habitats (Graham, 1997). The ability to breath air enables these fishes to access the atmosphere as 

an auxiliary source of O2 when encountering environmental hypoxia (low O2). This allows elevated 

aerobic activity and habitat use area, for foraging, predator evasion, reproduction, and survival, where 

other fishes may be more negatively impacted. Aquaculture ponds often mimic these marginal aquatic 

conditions due to their high stocking densities and intensive feeding rates. Use of these more tolerate 
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fishes are thus naturally ideal for aquaculture, offering higher survivability and lower operational cost in 

water turnover and aeration of artificial ponds.  

 

The knowledge gap and need for research 

 

Although the recent wave of air-breathing fishes in aquaculture has elevated their importance to both the 

global food supply and economics, the body of scientific knowledge surrounding these species is still in 

its infancy. Countries developing the use of these species tend to be emerging economies without long-

established research programs like those in the US, Europe, and Canada. To demonstrate this point, a 

literature search of Pubmed for articles published after 1997 on the genus Pangasius returns 127 results, 

while the same search on rainbow trout (Oncorhynchus mykiss), a single species, returns 8117 articles. 

This lack of scientific research represents a significant knowledge gap in the understanding of the 

fundamental biology of these and other air-breathing fishes used in aquaculture. Scientific research is 

required for the establishment of evidence-based policies and best practices that can drive industry 

efficiency and productivity.  

 

Case study – Hypoxia and P. hypophthalmus  

 

An example of how research as altered the thinking about how environmental conditions effect 

aquaculture species is the impact of aquatic hypoxia on P. hypophthalmus. Starting in the 1980s, rural 

household scale farming of P. hypophthalmus in the Mekong Delta underwent vigorous expansion as a 

result of government policies aimed at promoting food security and supplemental income for primarily 

subsistence communities (Khiem et al., 2010). Many of these farms simply cultured juveniles in flooded 

rice patties and harvested both the fish and rice when draining the patties at the end of the season, a 

practice known as Rice-fish Culture, dating as far back as 900 AD (Halwart et al.). Despite the inability to 

monitor and control aquatic O2 content in these ponds, the success of these systems, and the observation 
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of these animal’s ability to breath air (first published by Browman and Kramer 1985) lead to the notion 

that aquatic O2 was not an issue affecting their cultivation. As large scale commercial facilities replaced 

rural farms, making up 10% aquaculture production 2011 and 70% in 2016, the assumption that 

oxygenation of these ponds was not beneficial above the level necessary for survival persisted with little 

scientific investigation (The World Bank, 2016). In 2014, (Lefevre et al., 2014) published findings that 

showed P. hypophthalmus raised in O2 saturated aquatic conditions resulted in an elevated growth rate 

and decreased food conversation ratio (less food require to increase body mass). While further laboratory 

and pond scale studies are necessary to evaluate the potential benefits of regulating aquatic O2, this 

example highlights the importance of understanding the fundamental biology of P. hypophthalmus and 

other aquaculture species in establishing optimal growth conditions. With the transition from Vietnam’s 

rural household ponds to modern industrial aquaculture farms, aquatic conditions can now be monitored, 

regulated, and standardized, but first these conditions must be defined.  

 

Objective of this research 

 

This research seeks to contribute scientific data toward understanding the environmental effects of CO2 

on air-breathing fishes and provide recommendations on the use of CO2 monitoring and control in 

aquaculture. High CO2 (hypercapnia) in aquatic habitats is created through the same process as hypoxia, 

biological respiration, typically by a high density of aquatic organisms and decomposition of submerged 

organic material. Aquatic hypercapnia has been overlooked in the past because of CO2’s relatively high 

solubility compared to that of O2.  Because CO2 is roughly 30 times more soluble in water than O2, it has 

been assumed that hypoxic stress will always become limiting before CO2 can reach harmful levels. 

However, hypercapnia has been found to accumulate in natural environments, particularly in tropical 

bodies of freshwater which frequently exhibit turbidity, high organic loading, and stagnation (Ultsch, 

1996; Willmer, 1934). These three factors create hypoxic/hypercapnic environments through little 

photosynthetic activity, high rates of bacterial respiration and anaerobiosis, and low mixing with the 
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atmosphere. Anthropogenic influences can also produce hypoxic/hypercapnic environments by 

eutrophication from agricultural runoff, burning of fossil fuels, resequestration and injection of 

atmospheric CO2 into deep ocean sites, and aquaculture (Brauner and Baker, 2009; Damsgaard et al., 

2015; Ishimatsu et al., 2005). Hypercapnia in aquaculture, created by high stocking densities and feeding 

rates, is often exacerbated by the practice of pure O2 injection (Hu et al., 2011; Lefevre et al., 2014). In 

this practice, 100% O2 gas is infused into the water to meet the aerobic demands of growing fish, yet 

result in an aeration rate that is insufficient in removing the associated metabolically produced CO2. 

 

Biological effects of CO2  

 

In general, physiological effects of hypercapnia in fishes have been well studied. During exposure, the 

diffusion gradient by which CO2 is normally released at the gills is reduced (or even reversed if 

hypercapnia is high enough), and a respiratory acidosis occurs (Brauner and Baker, 2009). To reestablish 

acid-base homeostasis, bicarbonate is accumulated through branchial ion exchange. The maintenance of 

new cellular ionic gradients has been shown to be energetically costly and result in long-term 

consequences associated with chronic stress, effecting growth, metabolism, food conversion, and survival 

(Crocker and Cech Jr., 1996; Danley et al., 2005; Hu et al., 2011; Lefevre et al., 2014; Petochi et al., 

2011; Ross et al., 2001).  

 

Relatively less work however has been done on the effects of hypercapnia in air-breathing fishes or their 

tolerance thresholds (Shartau and Brauner, 2014). Air-breathing fishes are inherently different because of 

their dual respiratory system and natural inhabitance of aquatic hypercapnic environments. For example, 

air-breathing fishes generally rely less on aquatic respiration, and as a result, their blood is considered 

chronically hypercapnic compared to their solely water breathing counterparts. Air-breathing fish have 

also been observed to insulate themselves from exposure to aquatic conditions with reduced gill surface 

area and by decreasing branchial ventilation (Ch.1, (Burggren and Haswell, 1979; Graham, 1997; 
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Milsom, 2012; Sanchez et al., 2005). Reduce gill surface area has also been suggested to impact the rate 

of ion exchange that can occur during hypercapnic acid-base compensation (Brauner and Baker, 2009). 

The response of hypercapnia on different species of air-breathing fishes are quite diverse as this group 

represent 65 independent evolutions of air-breathing systems spanning a spectrum of air and water 

breathing and amphibious capacities. Further, while thresholds of CO2 tolerance have been determined for 

species such as rainbow trout, the same have not been established for any air-breathing species. 

According to Ross et al. 2001, aquatic PCO2 should remain at 2 mmHg for maintaining healthy 

populations of rainbow trout (Oncorhynchus mykiss), while above 8 mmHg becomes harmful for survival. 

In contrast, (Damsgaard et al., 2015) found commercial P. hypophthalmus aquaculture ponds regularly 

experience 34 mmHg CO2. While the productivity of these commercial aquaculture ponds illustrates the 

extreme hypercapnic tolerance of P. hypophthalmus, whether these fish are merely tolerating or thriving 

under these conditions remains unknown, as well as if regulating PCO2 at a lower level has the potential 

to provide additional benefits to the health of these animals. 

 

Summary of chapters 

 

The content of this dissertation consists of several studies characterizing different aspects of adapting, 

both behaviorally and physiologically, to aquatic hypercapnia and are as follows: Chapter 1 explores the 

effect on pulmonary respiration when brachial CO2 exchange is disrupted either though aquatic 

hypercapnia or forced emersion in Polypterus lapradei. Chapter 2 compares how air-breathing is used 

differently in three Vietnamese aquaculture species when encountered with aquatic hypoxia and 

hypercapnia. Chapter 3 investigates the role of ecophysiology on the use of air-breathing in the avoidance 

behaviors to either hypoxia and hypercapnia in Polypterus and P. hypophthalmus. Chapter 4 uses blood 

stress bioindicators to assess if hypercapnia levels in P. hypophthalmus aquaculture ponds represent a 

significant physiological challenge. Much of this research focuses on P. hypophthalmus due to its central 

role in aquaculture, yet several other air-breathing fish species were used as a comparative approach to 
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investigate how uniquely evolved respiratory systems respond differently. My hope is that that is work 

can provide scientific data informing the impact of hypercapnia in aquaculture practices, and at the same 

time, demonstrate the diversity of evolutionary solutions to an environmental challenge that exist among a 

fascinating group of organisms, the air-breathing fishes. 
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CHAPTER 1 

CO2 Exchange During Forced Emersion and Aquatic Hypercapnia 

in Polypterids 

 

Introduction 

 

Bimodal breathers, animals that breathe both air and water and typically consume O2 from the atmosphere 

and release CO2 into the aquatic environment. This decoupling of O2 and CO2 exchange across respiratory 

organs and media, revealed by analyzing the respiratory exchange ratio (R: VCO2/VO2) of expired air and 

water, is well established in the air-breathing fishes (Graham,1997; Martin,1995). An R between 0.7-1.0 

is used as an indicator of an animal’s ability to maintain CO2 exchange rates that equal metabolic 

production. However, when broken down by respiratory organ (gills and air-breathing organ), R can 

indicate a preferential exchange of O2 or CO2. For the air-breathing organ of a fish in water, R is typically 

between 0.01- 0.3, while for the gills, R is commonly greater than 1.0 indicating, aerial O2 uptake and 

aquatic CO2 release. 

 

When removed from water, aquatic exchange of CO2 is no longer available. Under these conditions 

maintaining CO2 exchange is vital for regulating blood PCO2 and pH out of water.  However, the 

mechanisms are likely to differ between fishes with independently evolved air-breathing systems. While 

some fishes possess modified gills for exchange in air, without these, gills coalesce, and CO2 exchange 

must be redistributed to the other respiratory surface. Intertidal amphibious fishes maintain an overall R 

between 0.7 - 1.0 as do some freshwater fishes (Channa, Anabas, Trichogaster), but in other species 

(Hoplerythrinus, Heteropneustes, Clarias, Neochanna) R falls below 0.7 indicating CO2 accumulation. 

While many studies have focused on how O2 exchange is repartitioned during emersion in air-breathing 

fishes, few studies have investigated the repartitioning CO2. The repartitioning of CO2 exchange between 

the gills and air-breathing organs during emersion is likely to pose a larger physiological challenge than 
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for O2 because bimodal breathers must adapt with both a change in the respiratory organ and respiratory 

medium for CO2 release.  

  

Aquatic hypercapnia represents another environmental challenge to CO2 homeostasis. In aquatic 

hypercapnia, the blood-water gradient by which CO2 is outward diffused from the gills is reduced or can 

even reversed. Consequently, blood PCO2 will continue to rise and pH fall until the exchange of CO2 can 

be restored either by elevated release via the gills and/or through a transition air breathing. Branchial CO2 

exchange requires elevating blood PCO2 above aquatic conditions, reestablishing the outward blood-water 

diffusion gradient. This entails maintaining a chronic respiratory acidosis, from which acid-base balance 

must be restored through the accumulation of bicarbonate in exchange for chloride ions at the gills 

(Brauner and Baker, 2009; Shartau and Brauner, 2014). Aerial CO2 exchange would also benefit from 

elevated blood PCO2 by driving more CO2 into the air-breathing organ per breath, however, these gains 

would be minimal as CO2 exchange in air-breathing systems are typically ventilation limited (DeJours, 

1981). Solely air-breathing animals maintain both elevated blood PCO2s (15-40 mmHg compared to 3 

mmHg in water breathers) as well as a CO2 ventilatory drive (Milsom, 2002; Ultsch, 1996). The ability to 

detect and increase ventilation in response to CO2 is likely as important for elevating aerial CO2 exchange 

rates in aquatic hypercapnia as it is for animals on land.  

 

Although the effects of aquatic hypoxia have been well studied, how air-breathing fish respond to aquatic 

hypercapnia has received relatively less attention. This is due to the high solubility of CO2 in water 

resulting in an almost infinite sink in which CO2 can be dissolved in without altering PCO2.  However, 

aquatic PCO2 has been found to reach elevated levels due to natural and anthropogenic processes. For 

example, aquaculture ponds have been measured up to 38 mmHg CO2 (Damsgaard et al., 2015) and up to 

60 mmHg CO2 in bodies of tropical freshwater (Ultsch, 1996; Willmer, 1934). This range of PCO2 

approaches or exceeds the values measured in the arterial blood of a typical terrestrial animal (40 mmHg). 

How organisms respond to aquatic CO2 is not only ecologically important, but evolutionarily as well, as 
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hypercapnia may have played a key role in conditioning early vertebrates for life on land. Ultsch 1996 

proposed that aquatic hypercapnia may have preadapted primitive tetrapods to develop a high buffering 

capacity and blood PCO2 to levels found in modern terrestrial vertebrates before leaving the water.  

 

The vertebrate water to land transition was a major event in vertebrate evolution and the polypterid family 

has been used as a model in to investigate air-breathing behavior (Graham et al., 2014) and developmental 

plasticity (Standen et al., 2014; Wilhelm et al., 2015) in early tetrapods. These heavily scaled African 

freshwater fishes are the most basal extant actinopterygian group, closest related to the sarcopterygian 

lineage (Inoue et al., 2003), and possess features similar to tetrapods and lungfish in their ventrally paired 

lungs and pulmonary circulation (Graham, 1997; Lechleuthner et al., 1989; Perry, 2007). The polypterid 

family consist of the two genera, Erpetoichtys, which is known to be amphibious, making voluntary 

excursions onto land (Sacca and Burggren, 1982), and Polypterus, which although yet to be observed to 

voluntarily emerse itself, Polypterus senegalus has been demonstrated to survive in 3 mm of water for 8 

months (Standen et al., 2014). Both species (P. senegalus and E. calabaricus) are facultative air-

breathers, able to rely on full on gill breathing in normoxic water, and also facultative water-breathers, 

able to rely exclusively on lung breathing (Babiker, 1984; Magid, 1966; Magid et al., 1970; Pettit and 

Beitinger, 1981; Pettit and Beitinger, 1985; Sacca and Burggren, 1982). However, how air-breathing is 

influenced by is role in CO2 exchange is not well understood. 

 

This study uses two members from the polypterid family, Polypterus lapradei and Erpetoichtys 

calabaricus, to quantify the partitioning of pulmonary and cutaneous gas exchange when aquatic CO2 

release is restricted during forced emersion and aquatic hypercapnia. Respiratory partitioning between 

pulmonary and cutaneous exchange were measured during forced emersion by assessing wave forms from 

unrestricted flow-through respirometry (Jew et al., 2013) and were validated against previous methods 

measuring of respiratory partitioning using a septum placed between the head and body of the animal. 

Measurements of expired pulmonary gases and gill and lung breathing frequency demonstrated a 
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transition to air breathing in both ventilatory effort and O2 and CO2 exchange in response to progressive 

aquatic hypercapnic exposure.  

 

Methods 

 

Animal Handling 

 

Polypterus lapradei and Erpetoichtys calabaricus were obtained though the aquarium trade and shipped 

to the University of California, Irvine (UCI), where they were held in aquaria connected in a recirculating 

system at 25°C. Fish were fed a diet of blood worms and chopped shrimp and with a 12/12h light/dark 

cycle. All experiments were approved by UCI’s Institution for Animal Care and Use Committee (protocol 

# 2013-3105). 

 

Forced Emersion 

 

7 P. lapradei (m=107±5 g, mean±s.e.m) and 7 E. calabricus (m=18±1 g) were placed in respirometry 

chambers made from PVC or acrylic pipping with rubber stoppers and ports for air on each end. Fish 

were acclimated to the chamber for one hour and measurements were made over the subsequent two 

hours. Room air was continuously flowed through the chamber and analyzed for O2 and CO2 using the 

same methods described in (Jew et al., 2013). From these continuous measurements, total O2 and CO2 

exchange (ṀO2 total and ṀCO2 total), air-breathing frequency (FAB), and partitioning of lung and cutaneous 

respiration were determined. Recordings of CO2 showed peaks corresponding to air-breathes above an 

elevated baseline level (and the inverse for O2). The integration of these peaks was determined to be the 

rate of pulmonary exchange, while the elevated baseline was the rate of cutaneous respiration. To correct 

for background respiration, blanks were run after each fish was removed. 
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Aquatic Hypercapnia 

 

P. lapradei (n=10, m=114 ± 4 g) was placed in a custom acrylic tank consisting of a lower compartment 

filled with water in which the fish was held and an upper enclosed compartment, allowing the fish to air 

breath ad libitum.  Water was gravity fed into the front of the tank by elevated reservoirs. The flow rate 

was held constant by maintain a steady head pressure in these reservoirs using a custom-built float switch 

and pump system. The reservoirs were aerated with different gas mixtures, 0, 15, 40, and 60 mmHg CO2 

with O2 held at 155 mmHg and balanced by N2. Mixtures were controlled using a Gas Mixing Flowmeter 

(GF-3, Cameron Instruments Co., Port Aransas, Texas, USA) which were then bubbled in the reservoirs 

via air stones. Exposure to progressive hypercapnia was controlled by opening respective reservoir valves 

which fed into the tank. To confirm that tank was in equilibrium with the aerated CO2 concentration, a pH 

probe was placed in the back of the tank and the pH was checked against a pH/CO2 calibration curve. The 

air phase was continuously flushed with room air and the exiting gases were dried using an air sample 

dehydrator (ND-2, Sable Systems, Las Vegas NV) and measured for O2 and CO2 content (Oxzilla II and 

CA-10, Sable Systems, Las Vegas NV). These continuous measurements revealed dips and peaks in O2 

and CO2 concentrations corresponding to air-breathing events. The integration of these dips and peaks 

were used to calculate aerial O2 consumption (ṀO2 air) and aerial CO2 excretion (ṀCO2 air). Air-breathing 

frequency was also measured from these recordings and R was calculated using the equation: 

 

𝑅 =
𝑉𝐶𝑂2 𝑎𝑖𝑟

𝑉𝑂2 𝑎𝑖𝑟
 

 

Gill ventilation frequency (FG) was recorded using a video camera. Fish were acclimated to the tank for 

an hour in air equilibrated water, exposed to each CO2 concentration for one hour, and then followed by 

returning to air equilibrated water for one hour. 
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Data sampling and analysis 

 

Data was recorded using a MP 100 BIOPAC system (Biopac Systems Inc., Santa Barbara CA, USA) and 

stored in AcqKnowledge. To test for statistical differences between treatments, one-way repeated-

measures ANOVAs and post-hoc Tukey Tests were run using SigmaPlot (p<0.05). 

 

Results 

 

Forced Emersion 

 

Gas exchange rates for P. lapradei and E. calabaricus are show in Figure 1. No statistical significance 

was found between the two species for cutaneous, pulmonary, and total R values, and in CO2 and O2 

partitioning. In both species, pulmonary exchange made up a large majority of VO2, while less so for 

VCO2, although still more than half. The resulting R values were also similar in both species, being high 

for cutaneous exchange (1.75) and low for pulmonary exchange (0.57). Total R for both respiratory 

organs combined were at the expected RQ value of 0.8. 

 

Aquatic hypercapnia 

 

In P. lapradei, gill ventilation (FG) decreased throughout progressive hypercapnia and returned to pre-

exposure levels during recovery, while air breathing frequency (FAB), and aerial O2 and CO2 exchange 

(VO2 air and VCO2 air) and R all showed the opposite trend (Figure 2). While VCO2 air returned to pre-

exposure levels when recovered in normal CO2 conditions, VO2 air decreased below pre-exposure levels. 

The resulting R during recovery was also elevated above pre-exposure levels. R values ranged from 0.1 in 

normocapnia to 1.6 in the highest hypercapnia level.  
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Mean O2 content per breath remained constant though out all conditions (p>0.05), while CO2 content 

increased in progressive hypercapnia exposure and returned to pre-exposure conditions on recovery in 

normocapnia (Figure 3). 

 

Discussion 

 

Air exposure 

 

During emersion, gills can no longer function to aquatically eliminate CO2 and blood PCO2 rises to a new 

equilibrium in air-breathing fishes (Daxboeck et al., 1981; DeLaney et al., 1977; Ishimatsu and Itazawa, 

1983; Pelster et al., 1988). Blood PCO2 was not measured in this study, however elevation in blood PCO2 

likely occurred since polypterids lack gill specializations for branchial exchange out of water (Sacca and 

Burggren, 1982). An elevated blood-air CO2 gradient in the lungs and skin, as well as a respiratory drive 

sensitive to CO2, as see in hypercapnic exposure (Fig. 2), function together to maintain PCO2 homeostasis 

during emersion. The resulting overall R of 0.75 in P. lapradei and E. calabaricus, indicate that 

polypterids can completely offload metabolically produced CO2 when out of water and maintain PCO2 

homeostasis.  

 

Both P. lapradei and E. calabaricus rely heavily on lungs for O2 exchange when on land. The majority of 

CO2 exchange also occurred at the lungs, however, cutaneous respiration also plays a significant role 

accounting for 40% of ṀCO2 total compared to only 18% of ṀO2 total (Fig. 1D). This divergent partitioning 

of O2 and CO2 exchange between respiratory organs is reflected in R values being high for the skin (1.75) 

and low for the lungs (0.57) (Table 1, Fig. 1).  

 

ṀCO2 total for E. calabaricus (0.073 +/- 0.004 ml O2 g-1 hr-1) match values reported by (Pettit and 

Beitinger, 1985) but are less than those reported by (Sacca and Burggren, 1982) for submerged (0.088 ml 
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O2 g-1 h-1) and forcibly emersed (0.117 ml O2 g-1 h-1). In the latter study, O2 respiratory partition was 

measured using a rubber septum separating the gases exposed to the head and body, and reported the 

lungs 40%, gills 28%, and skin 32% of ṀO2 total when submerged, and lungs 63% and body 37% when out 

of water. Similar values for ṀO2 total and respiratory partitioning validate these methods for E. 

calabaricus. However, methods involving septums have been shown to underestimate cutaneous 

respiration if significant gas exchange occurs though the skin covering the head region. (Urbina et al., 

2014) addressed this issue with septums in Neochanna burrowsius, calculating as high as 8% of branchial 

ṀO2 could be attributed to cutaneous respiration from skin covering the head region. Measurements of 

cutaneous respiratory partitioning could be underestimated further in cases where gas exchange along the 

body is not uniform, such as in the densely capillerized cephalic epidermis of some mudskippers (Zhang 

et al., 2003). Methods for measuring respiratory partitioning provided in this study avoid these issues with 

septum respirometry, however, they do require the subject species have a distinct intermittent ventilatory 

pattern. (Jew et al., 2013) was only able to measure partitioning in the mudskipper Periophthalmus 

modestus post-exercise when buccopharyngeal ventilation resembled a “gulp and hold” pattern, and not at 

rest when the opercula were held open and “fluttering” was observed. No studies on emersion in 

Polypterus are available for comparison. 

 

Cutaneous respiration during emersion is common adaptation in air-breathing fishes ranging from 10% in 

the non-amphibious Trichogaster trichopterus to 40-70% in amphibious intertidal fishes depending on 

species (Graham, 1997; Martin, 1995; Sayer, 2005). Fewer studies, however, have measured the effects of 

emersion on CO2 partitioning in air-breathing fishes. Table 1 is an exhaustive list of species in which both 

O2 and CO2 partitioning were measured between the head and body compartments in air-breathing fish 

during emersion. Cutaneous respiration makes up a significant portion of gas exchange either favoring 

CO2 exchange or having a similar proportion to O2 exchange in most cases. T. trichopterus (non-

amphibious) again is on the low range of cutaneous respiration for CO2 (10%) with the Japanese 

mudskipper, P. modestus, known for its amphibious behavior, on the high end (94%). Some studies have 
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proposed that fish that breath air using organs derived from gills are able to maintain high rates of CO2 

release in air due to the presence of carbonic anhydrase, however no strong correlation has been found 

across species supporting this theory (Burggren and Haswell, 1979; Graham, 1997).  While P. modestus is 

likely dependent on cutaneous respiration for CO2 offloading on land due the high proportion of total 

respiration, in contrast, Polypterus is likely to be able to survive without cutaneous respiration. Polypterus 

has a complex set of lungs effective at meeting its entire metabolic demands for O2 (Babiker, 1984), and it 

is thus likely the lungs can function to meet all CO2 demands as well.  
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Species %ṀCO2 body %ṀO2 body R head R body Reference 

Blennie pholis 49 51 0.79 0.93 (Pelster et al., 

1988) 

Clinocottus 

analis 

22 29 0.92 0.66 (Martin, 1991) 

Neochanna 

burrowsius 

58 43 0.69 1.25 (Urbina et al., 

2014) 

Galaxias 

maculatus 

68 64 0.67 0.82 (Urbina et al., 

2014) 

Lepidogalaxias 

salmandroides 

69 83 1.2 0.57 (Martin et al., 

1993) 

Trichogaster 

trichopterus 

12 12 0.75 0.75 (Burggren and 

Haswell, 

1979) 

1P. modestus 

(post-exercise) 

93 87 0.67 1.22 (Jew et al., 

2013) 

1P. lapradei 38 16 0.58 1.78 This study 

1E. calabaricus 44 20 0.57 1.83 This study 

 

Table 1.1. Contribution to Cutaneous Respiration in Air-breathing Fishes. 

Contribution of cutaneous respiration to total ṀCO2 total and ṀO2 total between head and body 

compartments (%ṀCO2 body, %ṀO2 body) and associated respiratory exchange ratio (R) during forced 

emersion. 1Respiratory partitioning measured by flow-through respirometry without a septum.  



19 
 

Cutaneous respiration in polypterids and most other air-breathing fishes show a preference for CO2 over 

O2 exchange with R values above 0.7 (Table 1), similar to patterns found other vertebrates that utilize 

cutaneous respiration. In anurans, cutaneous R values are typically greater than 2.0 and make up 70-80% 

of ṀCO2 total but only 30-40% of ṀO2 total (Hutchinson et al., 1968). In urodela, cutaneous exchange 

exhibits R values between 1.6-2.0 and comprise 80-90% of ṀCO2 total and 30-50% of ṀO2 total (Whitford 

and Hutchison, 1960). A large proportion of CO2 exchange occurs at the skin compared to O2 due to the 

difference in gas diffusion constants. CO2 has much higher solubility but similar molecular weight as O2 

leading to CO2 diffusing 20 times more rapidly though a respiratory surface than O2 (West, 2012). In 

respiratory organs that require active ventilation (e.g., lung, gas, bladders, buccopharyngeal pouches), 

CO2 quickly diffuses in and reaches equilibrium with lung gases. In contrast, during apnea the O2 content 

and R slowly decline. This was observed in Synbranchus marmoratus during normal and artificial 

ventilation of the air-breathing organ (Graham and Baird, 1984a; Graham et al., 1995), in P. senegalus 

with semi-continuous sampling of lung gases (Magid et al., 1970), and similar studies with Arapima and 

Channa (Ishimatsu and Itazawa, 1981; Randall et al., 1978a). In air-breathing organs requiring 

ventilation, CO2 offloading is limited by the rate of ventilation, while in cutaneous respiration, the skin is 

constantly ventilated by the external environment. Although when in water, bounder layers can slow the 

rate of diffusion, their effect in air is small due to air’s low viscosity not hinder cutaneous ventilation 

(Feder and Burggren, 1985). Thus, conductance and not convention is the limiting factor in cutaneous 

systems explaining why CO2 is favored over O2 exchange.  

 

In contrast, an air-breathing organ requiring ventilation, such as lungs, create ventilatory limited system 

favoring O2 over CO2 exchange. O2 exchange is maximized by containing a large diffusive capacity 

through high surface area with thin air-blood distances, while internalizing these delicate surfaces 

provides protection from physical trauma and desiccation. Changes in lung ventilation have a large 

impact in CO2 exchange while leaving O2 exchange unchanged. Cutaneous respiration’s role in CO2 is 

therefore expected to have a larger influence on lowering ventilation rates and associated energetic 
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savings than its use for O2 exchange. Thus, cutaneous respiration in Polypterus may provide an auxiliary 

route for gas exchange, particularly for CO2, lowering the pulmonary ventilatory requirement for CO2 

homeostasis. 
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Figure 1.1. CO2 and O2 Exchange by Respiratory Organ in P. lapradei and  

E. calabricus. 

 (A) CO2 and (B) O2 exchange and (C) respiratory exchange ratio (R) by respiratory organ, and (D) 

pulmonary fraction of total exchange for CO2 and O2 in P. lapradei (n=7) and E. calabricus (n=10) 

during forced emersion. An * indicates statistical significance between species as determined by unpaired 

t-test. No statistical difference was found between the two species for each R value or partitioning of CO2 

or O2. Results are shown as mean ± s.e.m. 
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Figure 1.2. Respiratory Parameters During Progressive Aquatic Hypercapnia  

in P. lapradei. 

A) Gill ventilations frequency (FG), (B) air-breathing frequency (FAB), (C) O2 and (D) CO2 exchange, and 

(E) respiratory exchange ratio (R) for P. labradei during exposure to various levels of aquatic 

hypercapnia. Treatments sharing letters are not statistical different as determined using a one-way 

repeated-measures ANOVA and post hoc Tukey Test. Results are shown as mean ± s.e.m. n=10 for 

aquatic hypercapnia exposures, n=7 for emersion. 
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Aquatic Hypercapnia 

 

Aquatic hypercapnia reduces or even reverses the blood-water brachial gradient at the gills creating a 

respiratory acidosis until rates of CO2 efflux that match CO2 production can be reestablished. P. lapradei 

elevates CO2 efflux by increasing pulmonary ventilation and reduces aquatic exposure by decreasing 

branchial ventilation (Fig. 2). Despite normoxic conditions, O2 and CO2 exchange are recoupled as both 

sites of gas exchange transition to from the water-breathing to air-breathing organs when exposed to 

progressive aquatic hypercapnia. These findings are similar to those reported in P. senegalus in which O2 

consumption from air and gill ventilation progressively decreased in aquatic hypercapnia (1-12% CO2) 

(Babiker, 1984). However, in P. senegalus pulmonary ventilation increased up to 1% CO2 and was 

subsequently depressed between 1.5-12% CO2 although still above normocapnic levels.  

 

CO2 respiratory drive 

 

The same transition of ventilatory effort from water to air breathing in response to aquatic hypercapnia 

has been observed in other air-breathing fishes, with increases in air breathing in some (Synbranchus, 

Lepisosteus, Trichogaster) and increases in air breathing coupled with reductions in gill ventilation in 

others (Amia, Ancistrus, Hypostomus, Hoplerynthinus, Lepdoserin, Protopterus, Neoceratodus) 

(Burggren, 1979; Graham, 1997; Milsom, 2012; Sanchez et al., 2005). Respiratory changes in P. lapradei 

are likely driven by external facing CO2 chemoreceptors located on the gills found in water-breathing and 

air-breathing fishes (reviewed in Milsom, 2012). Although central chemoreception, shown to be present 

in the sarcopterygian lungfish and possibly the basal actinopterygians (Amia, Lepisosteus), no data is 

available on this topic for P. lapradei.  

 

Hypercapnia’s effect on gas exchange  
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Exposure to aquatic hypercapnia can increase ṀCO2 air (and R) in two ways, through elevated pulmonary 

ventilation and through elevated blood PCO2 increasing the blood-air diffusion gradient. Although we 

were not able to directly measure the latter in this study, the increased volume of CO2 exchanged with 

each breath is an indicator of elevated blood PCO2 (Fig 3). Because lung PCO2 quickly equilibrates with 

the pulmonary blood supply, an increased FAB is expected to have no change (or decrease) in the per 

breath CO2 volume. This rise in per breath CO2 volume despite heightened FAB indicate higher lung PCO2 

equilibrium driven by elevated blood PCO2. 

 

ṀO2 air increased in progressive hypercapnia as inhibition of branchial ventilation reduced O2 uptake from 

water. O2 exchange per breath stayed constant though progressive hypercapnia exposure despite elevated 

FAB, indicating an elevated rate of aerial O2 extraction. T. trichopterus and Clarias batrachus were also 

found to increased ṀCO2 air and ṀO2 air in response to aquatic hypercapnia (Burggren, 1979, Ch. 2). 

(Graham and Baird, 1984b) reported that ṀCO2 air in S. marmoratus was a function of aquatic PCO2, 

however found ṀO2 air was independent of ṀCO2 air and instead a function of breath hold duration. 

Similar findings were reported in Monopterus albus, a close relative to S. marmoratus (Ch. 2).  
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Figure 1.3. Volume of O2 and CO2 Exchanged per Breath During Progressive  

Aquatic Hypercapnia Exposure in P. lapradei. 

Volume of (A) O2 and (B) CO2 exchanged per breath during exposure to progressive aquatic hypercapnia 

in P. labradei. Treatments sharing letters are not statistical different as determined using a one-way 

repeated-measures ANOVA and post hoc Tukey Test. Results are shown as mean ± s.e.m. n=10 for 

aquatic hypercapnia exposures, n=7 for emersion. 
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Blood PCO2 

 

Blood PCO2 may be elevated though transbranchial loading of CO2, when external PCO2 is above blood 

PCO2 and CO2 diffuses inward. Many of the adaptations found in air-breathing fish proposed to reduce 

transbranchial O2 loss in aquatic hypoxia, would also function to reduce transbrachial CO2 loading. These 

include low gill surface area, thick diffusion distance, and reduced gill ventilation. Polyperids possess 

many of these features, yet there are no measurements of blood PCO2 during aquatic hypercapnia to 

verify their transbrachial CO2 load or O2 loss. The South American lungfish, Lepidosiren paradoxa, and 

the African lungfish, Protopterus dolloi, also have highly reduced gill area and are obligate air breathers. 

However, when exposed to hypercapnia, a respiratory acidosis was found to occur in L. paradoxa 

(Sanchez et al., 2005), while Protopterus dolloi experienced no change in acid-base balance (Perry et al., 

2005). Protopterus dolloi was proposed to maintain constant blood status though increased pulmonary 

CO2 excretion. In T. trichopterus, the elevation in ṀCO2 in hypercapnia was attributed to an increase in 

metabolic rate from increased air breathing evidenced by an elevated ṀO2 and an overall R not different 

from control (R = 0.81).  

 

Comparison between forced emersion and hypercapnia 

 

Increases in ṀCO2 air can be achieved though both exposure to aquatic hypercapnia or emersion though an 

elevation of blood PCO2 and FAB. In P. labradei, the rate of pulmonary CO2 exchange achieved though 

forced emersion was similar to that when exposed to aquatic hypercapnia of 15 - 40 mmHg CO2 (Fig. 2). 

If blood PCO2 was in equilibrium with the aquatic environment, this is within the range found in other 

air-breathing fishes during emersion (DeLaney et al., 1977; Ishimatsu and Itazawa, 1983; Randall et al., 

1978b). Elevated blood PCO2 is common in air-breathing fishes and is met with an ability to accumulate 

bicarbonate for blood acid-base compensation up to 15-20 mmHg CO2 and a preferential regulation of 

intracellular pH at higher levels of hypercapnia (Shartau and Brauner, 2014). To minimize the need for 
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acid-base compensation, control of CO2 exchange must be obtained. The ability of P. labradei to maintain 

pH and CO2 equilibrium both on land or in aquatic hypercapnia therefore depends on both its ability to 

detect and drive pulmonary ventilation in response to CO2.   

 

Implications 

 

Both during emersion and aquatic hypercapnic exposure, the normal route of CO2 aquatic elimination via 

the water is restricted, resulting in an elevation of arterial PCO2 (a respiratory acidosis). Blood PCO2 

continues to rise and pH falls until the rate CO2 exchange can meet the rate of metabolic production by 

another means. On land this can be though cutaneous or pulmonary respiration, and in aquatic 

hypercapnia, solely though the lungs. Skin functions as an effective respiratory surface in water and air 

due to water’s high capacity for CO2 and air’s low viscosity. However, these exposed surfaces must 

remain permeable and moist making animals dependent on cutaneous respiration vulnerable to 

desiccation and limited from longer terrestrial sojourns. Although cutaneous respiration has been shown 

to be regulated though capillary recruitment, increases in gas exchange rates during times of elevated 

activity or temperature are usually met by active forms of ventilation (Reviewed in Feder and Burggren, 

1985). Cutaneous respiration is therefore most effective in moist areas when gas exchange demands are 

low. 

 

Lungs provide a respiratory surface with high diffusive capacity for gas exchange which are protected 

from the outside environment. However, this protection results in a ventilatory limitation that effects CO2 

and O2 differently and has an associated energetic cost. Due to the higher tissue conductance of CO2 

relative to O2, lungs tend to be ventilatory limited for CO2 while diffusion limited to O2 exchange 

(DeJours, 1981). Thus, high rates of ventilation favor CO2 exchange, yet are energetically costly, while 

much lower rates are required for effective O2 exchange. Animals inhabiting moist environments, such as 

amphibians, utilize cutaneous respiration to passively maintain CO2 offloading, releasing active forms of 



29 
 

ventilation (e.g., pulmonary) to be paced at maintaining O2 rather than CO2 homeostasis (Feder and 

Burggren, 1985). The ultimate outcome is maximizing gas exchange and minimizing energetic cost by 

exploiting the difference in respiratory gases and bimodal breathing systems. 

 

Although early tetrapods were thought to have heavy scales and an epidermis too thick to allow efficient 

gas exchange, more recent insights consider cutaneous respiration possible (Clack, 2012). Grooves for 

blood vessels through dermal bone indicate the presence of an epidermal layer with capillaries superficial 

enough for O2 and CO2 diffusion. Further, P. labradei and E. calabaricus demonstrate that a large 

proportion of gas exchange can take place through thick scales.  It has been suggested that a gas 

permeable integument would be disadvantageous in aquatic hypercapnia due to CO2 loading (Ultsch 

1996).  However, studies investigating perfusion of cutaneous surfaces in amphibians show that its 

permeability can be regulated in response to unfavorable respiratory conditions (Feder and Burggren, 

1985). It is thus possible that cutaneous exchange provided the first tetrapods on land a low-cost mode of 

eliminating CO2 during emersion. Although many air-breathing fishes demonstrate a CO2 respiratory 

drive, central CO2 receptors are only unequivocally present in the Sarcopterygian lineage (Milsom, 2002). 

Regardless of whether amphibious behavior appeared before the presence of central CO2 reception, 

cutaneous respiration may have played a valuable role in staving off respiratory acidosis on land in 

primitive tetrapods freeing lungs functioned primarily for O2 acquisition. Cutaneous respiration could 

then be slowly phased out during the shift from O2 to CO2 ventilatory drive, present in all current 

terrestrial vertebrates, and as higher selective pressures were placed on an animal’s aerobic capacity and 

desiccation resistance further from the water’s edge.  
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CHAPTER 2 

The Effects of Aquatic Hypercapnia on Respiration in Air-breathing Fishes 

 

Introduction 

 

The role of aquatic hypoxia in the evolution, physiology, and behavior of air-breathing fishes has been 

well studied (Graham, 1997).  In contrast, the influence of aquatic hypercapnia (high CO2) has received 

relatively little attention. The focus on aquatic hypoxia stems from the hypothesis that reductions in 

aquatic O2 drove the evolution of vertebrate air-breathing and terrestriality. In addition, the relatively low 

solubility of O2 compared to CO2 in water led to the notion that CO2 was not a significant stimulus in 

shaping ventilatory and gas exchange patterns. In aquatic environments hypoxia is common, whereas the 

high solubility of CO2 allows unhindered offloading of metabolically produced CO2 (DeJours, 1981). 

Thus, unloading of CO2 by water breathers is effective and arterial blood PCO2 rarely exceeds 5 mmHg.  

Consequently, studies of respiration in air-breathing fishes typically focus on aquatic hypoxia and 

normocapnia, stimulating fish to obtain O2 from the atmosphere via the air-breathing organ and releasing 

CO2 into the water via the gills or integument.  This uncoupling of O2 and CO2 exchange between 

respiratory organs is reflected in numerous reports of respiratory exchange ratios (R; VCO2/VO2) of the 

air-breathing organ between 0.01 and 0.30 (reviewed in Graham, 1997), while R for aquatic branchial 

exchange is often greater than 1.0 (Martin, 1995). Although gases exhaled from air-breathing organs have 

been shown to have an R elevated in some obligate air breathers (Arapima gigas) or in aquatic hypoxia 

(Channa argus, Anabas testudineus, Trichogaster trichopterus), R in submerged air-breathing fishes 

remains in this low range (Burggren, 1979; Glass et al., 1986; Hughes and Singh, 1970; Randall et al., 

1978). This indicates that CO2 offloading at the gills remains sufficient despite the reductions in gill 

ventilation and surface area, a characteristic of many air-breathing fishes. Interestingly, when water is 

removed as a sink for CO2, and the animals are only in air, such as for intertidal amphibious fishes, R can 

exceed 0.7 (Martin, 1995). 
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The notion that aquatic environments do not pose a challenge to CO2 exchange disregards the extent of 

which CO2 can accumulate within various aquatic environments. Hypercapnia and hypoxia can often 

occur together and are common in tropical freshwater habitats (Ultsch, 1987; Willmer, 1934). These 

environments generally have heavy organic loads and are turbid and stagnant, creating high rates of 

bacterial respiration, little photosynthetic activity, and low mixing with the atmosphere. The levels of CO2 

can also be elevated through bacterial anaerobic fermentation resulting in hypercapnic/hypoxic 

environments. Elevated CO2 levels above 60 mmHg have been shown to occur naturally alongside 

aquatic hypoxia (Ultsch, 1996; Willmer, 1934). In these marginal aquatic habitats, the scarcity for O2 is 

hypothesized to be the driving force behind the evolution of vertebrate air breathing, though the 

abundance of CO2 may have played an additional, important role preparing early respiratory systems for 

terrestriality (Ultsch, 1987; Ultsch, 1996). Anthropogenic influences can also exacerbate these conditions 

through numerous avenues such as eutrophication from agricultural runoff, burning of fossil fuels, 

resequestration and injection of atmospheric CO2 into deep ocean sites, and aquaculture (Brauner and 

Baker, 2009; Damsgaard et al., 2015a; Ishimatsu et al., 2005).  In densely packed aquaculture ponds 

hypercapnia is a critical factor restricting growth (summarized in Lefevre et al., 2014).  In these 

situations, the common practice of pure O2 injection into the water to meet the aerobic demands of 

growing fish, result in an aeration rate that is insufficient in removing the associated metabolically 

produced CO2 (Hu et al., 2011; Lefevre et al., 2014). For example, in Vietnamese aquaculture ponds used 

to grow Pangasianodon hypophthalmus, aquatic PCO2 values above 34 mmHg are measured (Damsgaard 

et al., 2015a). In this example, it is possible that aquatic CO2 levels may have been higher as the measured 

levels approached the maximum detection range of the measurement devices (personal communication).  

 

Regardless of the source, in aquatic hypercapnia, the gradient by which CO2 is passively offloaded from 

the gills to the water becomes reduced and thus branchial exchange can become ineffective at maintaining 

CO2 homeostasis. Furthermore, if ambient PCO2 exceeds that of ventral aortic blood, the diffusion 
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gradient is reversed resulting in branchial loading of CO2 and elevation of arterial PCO2. Aquatic 

hypercapnia thus creates a rising respiratory acidosis until CO2 offloading can be adjusted to meet 

metabolic production by allowing blood PCO2 to increase and maintaining outward diffusion gradient 

across the gills (pattern 1) or switching gas exchange to the air-breathing organ, increasing reliance of 

aerial respiration (pattern 2).  

 

Pattern 1: CO2 exchange via the gills 

 

For purely water breathing fishes offloading CO2 at the gills by preserving a favorable blood-water 

diffusion gradient is the only mechanism available for CO2 homeostasis. It requires an elevation of blood 

PCO2 to levels greater than aquatic PCO2 and adjustment to the accompanying respiratory acidosis. This 

strategy and the associated acid-base compensation incurs an elevated energetic cost of ion transport 

through the accumulation of bicarbonate at the gills and depletion of plasma chloride (Brauner and Baker, 

2009). This mechanism benefits from a large gill surface area providing for sufficient CO2 efflux and 

ion/pH-regulation (Brauner and Baker, 2009). In species of fish adopting pattern 1, aquatic hypoxia 

would drive the rate of air-breathing (FAB) to match aerial O2 consumption (MO2 air), rather than CO2 aerial 

offloading (MCO2 air).  

 

Pattern 2: CO2 exchange via the air breathing organ 

 

In air breathing fish exposed to hypercapnic aquatic environments, this alternative mode of CO2 exchange 

switches the primary avenue for CO2 exchange from the gills to the air-breathing organ. Consequently, 

this strategy requires a respiratory system sensitive to CO2, similar to that present in terrestrial 

vertebrates. Species adopting this pattern would reduce blood/water exchange for O2 and CO2. For 

example, such mechanism would include a small gill surface area, large diffusion distances, and 

restricting water- and/or blood-perfusion of branchial surfaces though reduced branchial ventilation and 
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shunting of blood past the gills. These morphological and physiological features in some air-breathing 

fishes minimize the potential for transbranchial O2 loss, as well as CO2 loading (Graham, 1997; Randall et 

al., 1981; Ultsch, 1996). Air-breathing in such species would be elevated in aquatic hypercapnia, and FAB 

would match MCO2 air, rather than MO2 air, in fish adopting pattern 2.   

 

These patterns represent the two extreme ends of the spectrum and we anticipate the diversity of air-

breathing fishes to demonstrate a gradient of responses based on their capacities for air and water 

breathing. Using this framework, this study seeks to understand how aquatic conditions influence the 

distribution of O2 and CO2 exchange between the gills and air breathing organs in three species of tropical 

freshwater fishes indigenous to Southeast Asia, with each species possessing independently evolved air-

breathing organs and variation in their capacities for air-breathing, water-breathing, and amphibiousness. 

The first species, Monopterus albus, is an eel-like amphibious burrow dweller which breathes air by 

inflating paired buccal pouches lined with vascularized epithelia (Hughes and Datta Munshi, 1979). 

Because the gills of M. albus are highly reduced making it an obligate air breather, we also predict a 

reduced capacity for aquatic CO2 exchange, favoring respiratory Pattern 2 when exposed to aquatic 

hypercapnia. The second species, Clarias batrachus, is a facultative air-breather and a member of the 

walking catfishes, a well-known genus of air breathers (Jordan, 1976). Walking catfish are amphibious 

and known to make voluntary excursion onto land to feed or in search of new habitats (reviewed in 

Graham, 1997). The air-breathing organ in C. batrachus consists of paired superbranchial chambers 

located dorsal-posterior to the branchial cavity lined with respiratory epithelia, gill fans that separate the 

air chamber from the branchial cavity, and bony outcroppings derived from the 2nd and 4th gill arch, 

known as a tree organ, that fill the chamber (Hughes and Datta Munshi, 1979). Although C. batrachus 

lack the extreme gill reductions found in M. albus, its amphibious behavior suggests a capacity for 

adequate aerial CO2, suggesting a respiratory pattern between 1 and 2. Finally, Pangasianodon 

hypophthalmus is a non-amphibious air-breathing catfish, which utilizes a modified swim bladder for air 

breathing. It is a facultative air breather with a gill surface area that has been shown to be plastic, varying 
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to a size comparable to water-breathing fishes, and with a very low diffusion distance (Lefevre et al., 

2011; Phuong et al., 2017; Phuong et al., 2018). This high capacity for capacity for aquatic gas exchange 

suggest P. hypophthalmus will favor respiratory pattern 2 when exposed to aquatic hypercapnia. 

 

Materials and Methods 

 

Specimens 

 

Specimens of M. albus (248 ± 25 g, mass ± S.E.; n=8), were obtained from an aquaculture facility in Can 

Tho, Vietnam and shipped to Aarhus University, Aarhus, Denmark and housed at 27 ̊C. Specimens of C. 

batrachus (47 ± 7 g; n=6) and P. hypophthalmus (28 ± 7 g; n=7) were obtained through the aquarium 

trade and housed in aquaria at 30 ̊C. Fish were maintained in a 12/12 h light cycle and fasted at least 24 h 

before experimentation. All experiments were performed at Aarhus University and approved by the 

Danish Ministry of Food Agriculture and Fisheries (2016-15-0201-00865). 

 

Bimodal respirometry 

 

To measure the simultaneous rates of O2 uptake from air and water and CO2 release into air, fish were 

placed in a bimodal respirometer described in (Lefevre et al., 2016a). This respirometer consisted of a 

water phase and an air phase in which the animal could freely breathe either media (Fig. 1). The water 

phase acted as an intermittent closed respirometer consisting of the holding chamber (2.5 l), an O2-optode 

(Visiferm DO Arc 120, Hamiltion, Reno, US), a circulation pump, and a flush pump automated by a 

custom made controller box (Aarhus University, Aarhus, DK). O2 uptake from the water (MO2 water) was 

calculated by measuring the decline in PO2 in the water phase over a 15-minute measurement period. 

After each measurement period, the water was flushed for 15 minutes with new water. The air phase of 

the bimodal respirometer was modified for flow-through respirometry in which the air phase was 
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continuously perfused with room air during the measurement period. The air stream was then dried using 

a ND-2 air sample drier (Sable Systems, Las Vegas, US) and a CaCO2 column, and then measured for O2 

(570A Oxygen Analyzer, Servomex, Crowborough, UK) and CO2 (CA-10, Sable Systems, Las Vegas, 

US) concentrations. The flow-through air phase system revealed dips and peaks in O2 and CO2 

concentrations corresponding to air-breathing events. The integration of these dips and peaks were used to 

calculate the volume of aerial O2 consumption (VO2 air) and aerial CO2 release (VCO2 air), similar to 

methods used in (Jew et al., 2013). Injecting known volumes of O2 and CO2 into the chamber verified 

these measurements. MO2 air and MCO2 air are the mass specific mass of O2 and CO2 exchanged at the air 

phase. Air-breathing frequency (FAB) was also measured from the continuous flow-through sampling of 

the air phase by measuring the timing interval between dips and peaks in O2 and CO2 content, 

respectively. O2 partitioning (%MO2 air), the percentage of O2 consumption from air relative to total O2 

consumption from both air and water (MO2 total) and R were calculated using the equations:  

%𝑀O2 air =
𝑀O2 air

𝑀O2 total
 x 100 

R =
�̇�CO2 air

�̇�O2 air

 

 

Aquatic gas manipulation 

 

To manipulate aquatic PO2 and PCO2 levels, respirometers were placed in large plastic tubs filled with 

water external to the respirometers. PO2 was regulated in the external water by bubbling room air and N2 

through air stones controlled by a Hamilton optode connected to a controller box. PCO2 was regulated by 

bubbling compressed CO2 though microbubble diffusers controlled by an Oxyguard Pacific Commander 

System with a pH and a PCO2 probe (Oxyguard International A/S, Farum, Denmark). Water inside the 

respirometers was equilibrated with external PO2 and PCO2 conditions during flush periods when water 

was exchanged. 
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Fishes were allowed acclimate to the respirometers for 10 h in air equilibrated water (normal conditions: 

PO2=159 mmHg, PCO2=0 mmHg), followed by 10 hours of aquatic hypoxic normocapnia (PO2 =50 

mmHg, PCO2= 0 mmHg), 10 h of aquatic hypoxic hypercapnia (PO2=50 mmHg, PCO2=38 mmHg), and 

10 h of normoxic hypercapnia (PO2 =159 mmHg, PCO2=38 mmHg). The level of hypoxia was chosen 

based on a compromise between the PO2 required to elicit a significant increase in air breathing (Thomsen 

et al., 2017) and the frequency of changing tanks of compressed N2. All trials were started at 

approximately 2 p.m. which may have resulted in a time-of-day effect, however this schedule was 

necessary to ensure trials were completed during a limited time window. The level of hypercapnia was 

chosen to matched those found in P. hypophthalmus aquaculture ponds by (Damsgaard et al., 2015a). 

Only the last 5 hours of each conditions were used and averaged together to avoid the transition period 

between treatment in an attempt capture these animals in a steady state. An exception was made for the 

hypoxic hypercapnia treatment, in which a consistent and contrasting trend was observed between 

species, and the data was consequently averaged across three 3 h intervals. After each trial, specimens 

were removed from the respirometers and weighed, and background respiration was measured for at least 

1 hour. To correct for diffusion of atmospheric O2 into the water phase, empty chambers were also run in 

hypoxia. Because all trials were run in the same treatment order, there exist the possibility of a 

confounding order effect. However, this was unavoidable as fish required time to adjust to air breathing 

inside the respirometry chamber under normal conditions to avoid mortalities. It was necessary for the 

hypercapnia treatment to be last due to the extended period of time required to return PCO2 to normal 

levels via aeration. All fish were tested at their respective holding tank temperatures. 

 

Data analysis 

 

Data were recorded in AcqKnowledge, BIOPAC Systems, Inc. and analyzed in R.  Statistical significance 

(P<0.05) of variables between conditions was determined by repeated-measures ANOVA with a post-hoc 

Tukey Test.  
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Results 

 

Aerial CO2 Exchange  

 

For all species tested, MCO2 air remained low in normal and hypoxic normocapnic conditions and was 

significantly elevated in hypoxic hypercapnia (P<0.001) (Table 1). In M. albus, however, MCO2 air was 

only significantly elevated after 9 h (P<0.001), while the other two species remained elevated throughout 

the exposure period. Subsequently, in normoxic hypercapnia, MCO2 air in both C. batrachus and M. albus 

fell slightly whilst remaining above control levels (P<0.001, P=0.034). 

 

In all species, aquatic hypoxia alone failed to elicit a rise in aerial R, while exposure to hypoxic 

hypercapnia or normoxic hypercapnia significantly elevated R (P<0.001) (Table 1). With hypoxic 

hypercapnic exposure, R in C. batrachus and P. hypophthalmus were elevated and plateaued after 6 and 3 

h, respectively, while in M. albus R continued to rise over 3, 6, and 9 h. 

Aerial and Aquatic O2 Exchange 

 

In M. albus and C. batrachus, low aquatic O2 reduced MO2 water significantly compared to normal 

conditions (P<0.001, P<0.001) and was further reduced in hypoxic hypercapnia (Table 1). Hypercapnia 

alone also depressed MO2 water compared to normal conditions in both species (P<0.001, P<0.001), 

however less so than when hypoxia was also present. In M. albus, MO2 air did not significantly change 

across all conditions (P=0.291), however reductions in MO2 water increased %MO2 air in response to 

hypoxia and hypoxic hypercapnia compared to normal (P<0.001, P<0.001). Changes in MO2 water, 

however, did not have an effect on MO2 total across conditions. In contrast, MO2 air in C. batrachus was 

increased in hypoxia and hypoxic hypercapnia (P<0.001, P<0.001), however, MO2 total was still depressed 

in all treatments compared to normal (P<0.001). The resulting %MO2 air had an inverse response to MO2 
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water in each condition. In P. hypophthalmus, no major changes were identified for MO2 water, MO2 air, MO2 

total or %MO2 air between hypoxia and hypoxic hypercapnia. 

 

Air-Breathing Frequency 

 

Air-breathing frequency in C. batrachus, increased significantly in aquatic hypoxia compared to normal 

conditions (P<0.001), remained elevated throughout exposure to aquatic hypoxic hypercapnia (P<0.001), 

and then significantly decreased upon exposures to normoxic hypercapnia (P=0.013) (Table 1). P. 

hypophthalmus show a similar trend with no change in FAB between aquatic hypoxia and hypoxic 

hypercapnia (P=0.211). M. albus, on the other hand, showed a much different air-breathing response than 

the other two species with no change between normal and hypoxic conditions (P=0.998) and a slow 

graded increase over the 9 hours of hypoxic hypercapnic exposure. In normoxic hypercapnia, FAB was 

reduced from hypoxic hypercapnia but remained elevated with respect to normal conditions, although not 

statistically significant from either. 
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 Condition Normal 
Hypoxic 

Normocap

nia 

Hypoxic 

Hypercapn

ia 

3 h 

Hypoxic 

Hypercapn

ia 6 h 

Hypoxic 

Hypercapn

ia 9 h 

Normoxic 

Hypercapnia 

M. albus MO2 water 15±1a 5±1b 3±1c 3±1c 3±1c 10±1d 

 MO2 air 17±3a 16±2a 19±4a 19±5a 20±3a 11±2a 

 MO2 total 32±2a 20±2a 22±4a 22±5a 23±3a 22±2a 

 %MO2 air 52±6a 76±4b 79±7b 78±11b 83±4b 48±7a
 

 MCO2 air 6±1a 3±1a 8±2a 17±5b 26±3b 18±4b 

 R 0.26±0.02a 0.12±0.01b 0.33±0.04a 0.69±0.08ac 0.98±0.06d 1.10±0.10d 

 FAB 8±1a 6±1a 10±2a 14±4ab 21±3b 14±3ab 

C.  MO2 water 230±31a 40±6b 21±3c 16±6c 17±4c 81±7d 

batrachus MO2 air 30±24a 159±18b 141±9b 145±13b 142±9b 78±10a 

 MO2 total 261±34a 211±15b 170±9b 161±10b 165±7b 164±10b 

 %MO2 air 9±6a 79±4bc 87±1b 90±3b 89±3b 48±6c 

 MCO2 air 3±3a 11±3a 61±8bc 81±10b 77±9b 40±7c 

 R 0.06±0.01a 0.04±0.01a 0.31±0.02b 0.39±0.02c 0.39±0.03c 0.35±0.03bc 

 FAB 4±3a 22±4b 23±2b 27±4b 25±3b 13±2a 

P. 

hypophtha

lmus 

MO2 water - 191±43a 203±40a 218±45a 174±31b - 

hypoph. MO2 air - 102±16a 136±13ab 82±18a 153±5b - 

 MO2 total - 287±29a 339±30b 301±43ab 343±39ab - 

 %MO2 air - 39±7ab 41±6ab 30±7a 46±5b - 

 MCO2 air - 3±1a 63±9b 34±7c 67±6b - 

 R - 0.02±0.00a 0.33±0.03b 0.30±0.02b 0.32±0.02b - 

 FAB - 17±3ab 23±4ab 15±4a 24±3b - 

 

Table 2.1. Bimodal Respirometry Variables for M. albus, C. batrachus, and P. hypophthalmus. 

 Mean respiratory variables under various conditions for M. albus (n=8), C. batrachus (n=6), and P. 

hypophthalmus (n=7). Superscript letters indicated statistically significant differences between conditions 

determined by repeated-measures ANOVA and post-hoc Tukey Test. 

MO2 water, aquatic O2 uptake; MO2 air, aerial O2 uptake; MO2 total, total O2 uptake; MCO2 air, aerial CO2 

release; %MO2 air, percent of total O2 uptake from air, R, respiratory exchange ratio. Units for FAB, MO2, 

and MCO2 are h-1, mg O2 kg-1 hr-1, and mg CO2 kg-1 hr-1
,
 respectively. 
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Respiratory and Ventilatory Relationship 

 

Figure 1AD shows the relationship between FAB and MO2 air, MCO2 air, and R in each species. In M. albus, 

although FAB and MCO2 air are strongly matched across all conditions, MO2 air and R also show increases 

with FAB.  Normoxic (circles) and hypoxic points (squares) largely encompassed the same FAB range in M. 

albus, while instead the normocapnic (blue) and hypercapnic (red) are separated into lower range and the 

higher range of FAB, respectively.  

 

In C. batrachus and P. hypophthalmus, FAB closely matched MO2 air across all conditions (Fig. 1BC), 

while MCO2 air and R deviated between the normocapnic (blue) and hypercapnic (red) conditions (Fig. 

1EFHI). MCO2 air and R remained low in normocapnic conditions while showing increases with FAB in 

hypercapnic conditions. FAB in normocapnic and hypercapnic conditions occupy the full range in C. 

batrachus, while normoxic points (circles) occupy the lower bounds compared to hypoxic points 

(squares).  P. hypophthalmus also shows the same overlap of FAB across normocapnic (blue) and 

hypercapnic (red) conditions. 
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Figure 2.1. Aerial Gas Exchange in Relation to Air-breathing Frequency for  

M. albus, C. batrachus, and P. hypophthalmus. 

Aerial O2 consumption (MO2 air), aerial CO2 offloading (MCO2 air) and respiratory exchange ratio (R) in 

relation to air-breathing frequency (FAB) for individuals of M. albus, C. batrachus, and P. hypophthalmus 

under normal (blue circles), hypoxic normocapnic (blue squares), hypoxic hypercapnic (red squares), and 

normoxic hypercapnic (red circles) aquatic conditions. Units for FAB, MO2, and MCO2 are h-1, mg O2 kg-1 

hr-1, and mg CO2 kg-1 hr-1
,
 respectively.  
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Discussion 

 

Air breathing in vertebrates has independently evolved 65 times and has generated a diversity of systems 

and methods for gas exchange (Farrell, 2011; Graham, 1997; Ishimatsu, 2012; Martin, 2014; Shartau and 

Brauner, 2014). Although hypoxia is usually considered the primary driver of air-breathing among fishes, 

we found a spectrum of respiratory responses in three species exposed to a combination of aquatic 

hypoxia and hypercapnia.  

 

A large amount of variation exists both between the literature and our data and within the literature itself. 

In M. albus, although MO2 water was similar to values reported in Lefevre et al., (2016) using similar 

methods, our air-breathing variables (MO2 air, %MO2 air, and FAB) under normal conditions were lower, 

although %MO2 air was similar under hypoxia and hypoxic hypercapnia. A difference in time of day 

(overnight vs. in the morning when facility staff was present) when measurements were taken, might 

contribute to this reduction in air-breathing as M. albus retracts from quietly ventilating at the surface 

when disturbed (personal observation). Singh and Hughes (1971) found in active C. batrachus, a similar 

MO2 total to fish in this study, but a %MO2 air = 63% as compared to 9% in this study under normal 

conditions. Jordan (1976) reported a similar %MO2 (10%) to our study, but a much lower MO2 total (104 at 

25°C as compared to 261 mg O2 kg-1 hr-1 at 30°C in this study). Despite these differences likely caused by 

contrasting methods (e.g., 6 l vs 2.5 l respirometry chambers, manual vs. automatic sampling, volumetric 

vs. flow through respirometry, temperature), our R and FAB values were similar to those in both studies. 

Data for P. hypophthalmus also differed from Lefevre et al. (2011) where a slightly less hypoxic 

treatment (45 mmHg) resulted in higher MO2 water and lower %MO2 air. Our %MO2 air values do, however, 

lie within theirs upper reported range for P. hypophthalmus. Despite the variation from other studies, 

much of which can be likely attributed to changes in behavioral state or difference in methods, the 

conclusions from this study are not changed as they are based on comparisons of repeated measure across 

conditions and thus serve as their own controls. 
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The presence of aquatic hypercapnia had a dramatic influence on aerial CO2 exchange within species 

while aquatic hypoxia had little effect. In aquatic hypercapnia, blood PCO2 likely became elevated from 

an initial influx of exogenous CO2 and a buildup of metabolically produced CO2 as the outward blood-

water diffusion gradient at the gills and integument became reduced or even reversed. Elevated blood 

PCO2 thus increased diffusion into the air-breathing organ and the CO2 content of each breath, resulting in 

elevated MCO2 air and R in all species in this study.  

 

It is not surprising that we observed MCO2 air and R increases with FAB. Due to the high diffusive constant 

of CO2 relative to O2,  during a breath hold the PCO2 in the air-breathing organ quickly equilibrates with 

the blood, while PO2 continues to be extracted over time (West, 2012). Ventilation is thus the limiting 

step to aerial CO2 exchange, and the longer a breath is held, the lower R of exhaled gas becomes. This has 

been shown in S. marmoratus by Lomholt and Johansen (1976) in which air sampled via a buccal catheter 

had an R of 0.7 immediately after inhalation of an air breath and 0.2 after 10 minutes of a breath hold, as 

well as in other studies with similar findings in A. gigas, C. argus, and Polypterus senegalus (Ishimatsu 

and Itazawa, 1981; Magid et al., 1970; Randall et al., 1978). Thus regardless of whether air-breathing is 

used for PCO2 regulation or is in response to O2 demand and aerial CO2 exchange was merely a passive 

by-product of shorter breath hold duration, we expect elevated MCO2 air and R with increases in FAB. Our 

study was not able to determine the contribution of MCO2 air to internal PCO2 regulation, however, it is 

likely to aid in species where FAB is sensitive to aquatic hypercapnia, such as in M. albus and C. 

batrachus (Table 1). 

 

In M. albus, respiratory patterns for MCO2 air in Figure 1D match the increases in FAB consistent with 

pattern 2, and suggesting active offloading of CO2 via the air-breathing organ. Regulation is the most 

likely scenario in M. albus, as supported by elevated FAB in response to aquatic hypercapnia shown both 

in Table 1 and Figure 1A, where normocapnic points (blue) remain in the lower FAB range compared to 
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hypercapnic points (red). The lack of a direct effect of aquatic hypoxia on FAB in M. albus may be due to 

its extremely high hemoglobin affinity (P50=4.1 mmHg at 3% CO2, Damsgaard et al., 2014), far below the 

PO2 used in this study. However, MO2 air in Figure 1A appears similar to that predicted by pattern 1 

indicating some air-breathing response but to internal O2 demands rather than external conditions (e.g., 

hypoxia vs. hypercapnia, Table 1). Still, hypercapnic points tend to deviate to the right of the 

normocapnic points, indicating that for the same MO2 air, FAB is further elevated by CO2 (Fig. 1A). In M. 

albus, air breathing seems to play a primary role in offloading and regulating internal CO2. Reduced gill 

surface area and high arterial blood PCO2 under normal conditions (>20 mmHg; Damsgaard et al., 2014) 

further suggest that the gills of M. albus are ineffective at aquatic CO2 offloading and aerial exchange of 

CO2 a necessity.  

 

The respiratory patterns of C. batrachus in Figure 1B and Table 1 fit those characteristic of pattern 1, 

suggesting an air-breathing system mainly driven by aquatic hypoxia. Increases in FAB are clearly 

matched with MO2 air, and data points representing conditions with normal PO2 levels (circles) cluster 

along the lower FAB range compared to low PO2 levels (squares). However, aquatic hypercapnia alone also 

elevates FAB above normal conditions (Table 1) indicating a sensitivity to CO2. The combined effect of 

hypoxia and hypercapnia did not elevate FAB above that of hypoxia alone, suggesting maximum 

respiratory drive can be elicited solely by O2 stress. MCO2 air in C. batrachus in Figure 1E remains low for 

normocapnic points (blue) while hypercapnic points (red) increase along with FAB further suggesting a 

dominant control of respiration by O2 but also a sensitivity to CO2 when hypercapnia is present. Despite 

elevations in MCO2 air, low R values indicated CO2 offloading is primarily occurring aquatically (Fig. 1H). 

Taken together, air breathing in C. batrachus is driven by both O2 and CO2, and CO2 is exchanged at both 

the gills and air-breathing organ. 

 

P. hypophthalmus offloads PCO2 almost completely through the gills (pattern 1) as evidenced by data 

shown in Table 1 and respiratory patterns in Figure 1CF and uses air breathing solely to maintain O2 
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homeostasis. Ventilatory and gas exchange patterns during normal conditions and normoxic hypercapnia 

were not determined for P. hypophthalmus in this study, as pilot data showed very low air-breathing rates, 

making it difficult to obtain air-phase measurements. This is in agreement with other studies that show 

negligible air breathing in aquatic normoxia and hypercapnia (Lefevre et al., 2011; Thomsen et al., 2017). 

Regardless, P. hypophthalmus shows a ventilatory response and CO2 and O2 exchange consistent with 

pattern 1, with close overlap of hypoxic and hypoxic hypercapnic MO2 air points (Fig. 1C), and no change 

in FAB with the addition of hypercapnia (Table 1). 

 

R values from this study are difficult to interpret because MCO2 air can be both metabolically and 

environmentally derived. Hence we cannot calculate the actual proportion of CO2 respired into the air 

versus water. Without blood PCO2 measurements, we cannot determine whether these animals were in a 

steady state, however, the rate of change in R during the course of hypoxic hypercapnia exposure may be 

an indicator of changes in blood PCO2. At the onset of hypoxic hypercapnia, P. hypophthalmus 

immediately increased R, while in C. batrachus and M. albus R slowly increased after 6 and 9 h 

respectively (Table 1). The elevation in R likely reflects the time course of changes in blood PCO2. In P. 

hypophthalmus the time course of changes in R matched those of blood gas measurement in Damsgaard et 

al. 2015 (<3 h to equilibration), however, similar data has not been collected on the other two species. 

The much slower change in R in C. batrachus and M. albus may be due to a slower rate of loading of 

external CO2 at the gills and integument. The rate of CO2 loading would be determined by the branchial 

and cutaneous perfusion and diffusion capacities (i.e., diffusion distance and surface area). P. 

hypophthalmus has both a high surface area and thinner diffusion distance (212 mm2 g-1, 1.67 µm) and 

thus a higher diffusion capacity than C. mossambicus (17.33 mm2 g-1, 1.97 µm), a related species to C. 

batrachus (Maina and Maloiy, 1986; Phuong et al., 2017). Although measurements of gill surface area 

could not be found for M. albus, it likely has the lowest diffusive capacity of the three species with a 

significantly reduced gill surface area (filaments on only the first three gill arches) and a higher diffusion 

distance (4.09 µm) found in a relative, M. cuchia (Hughes and Datta Munshi, 1979; Iversen et al., 2013). 
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M. albus is further insulated from aquatic hypercapnia as it uses its buccal chamber for air-breathing, such 

that during a breath hold, gill ventilation ceases (Iversen et al., 2013). Although the integument in another 

synbranchid (S. marmoratus) is known to contribute between 30-60% of MO2 total (Graham et al., 1986), 

its permeability may be overstated due to its relatively low overall metabolic rate. However, MO2 water may 

still be maintained through these surfaces using an extremely high hemoglobin affinity (Damsgaard et al., 

2014). In M. albus, its mode of breathing as well as the morphological features that insulate the blood 

from the aquatic environment may be responsible for the putative slow change in internal PCO2 and R. 

Blood PCO2 may even be maintained below aquatic conditions as was found in Protopterus dolloi 

exposed to aquatic hypercapnia (40 mmHg), where blood PCO2 remained constant, attributed to increased 

pulmonary CO2 excretion (Perry et al., 2005). Even if M. albus is unable to maintain its blood PCO2 

below the ambient levels when exposed to hypercapnia for prolonged durations, a slower rate of CO2 

uptake will of course also slow the rate at which the acid-base disturbance occurs, giving more time for 

pH compensation by transepithelieal ion-transfer. This will potentially reduce the magnitude of the pH 

disturbance relative to the perturbation otherwise observed if air-breathing had not been utilized. This 

cannot be determined directly from our results, as the difference in the rate and size of acid-base 

disturbance would have to be compared between fish with and without access to the surface (i.e. only 

with aquatic gas exchange available) – which is not possible in an obligate air-breather such as M. albus.  

 

Along with R, FAB was also elevated slowly in M. albus and may indicate the presence of internal facing 

CO2/H+ chemoreceptors. Change in FAB with exposure to hypoxic hypercapnia match a slow graded 

change in internal PCO2 rather than the immediate and sustained elevation of the external environment. 

Similarly, in the spotted gar, which is argued to possess central CO2/H+
 chemoreceptors (Wilson et al., 

2000), exposure to aquatic hypercapnia of 8 mmHg caused a gradual increase in FAB over an 8 hour 

period (Smatresk and Cameron, 1983). Regardless of internal or external facing chemoreception, the air-

breathing response to aquatic hypercapnia alone is present in some fishes (Ancistru chargresi, 

Hypostomus plecostomus, S. marmoratus, Lepisosteus osseus, A. calva) but absent or blunted in others 
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(Misgurnus anguillicaudatus, Gillicthys mirabilis, Electrophorus electricus, P. hypophthalmus) (Graham, 

1997; Milsom, 2012; Thomsen et al., 2017).  

 

How animals respond to hypercapnia is an important issue from an environmental, anthropogenic, and 

evolutionary perspective. Air-breathing fishes have evolved to thrive in these marginal aquatic habitats 

that are both hypoxic and hypercapnic. Presumably, the first terrestrial vertebrates emerged from similar 

habitats, likely utilizing many earlier adaptations to these harsh aquatic conditions for life on land. One 

central theme in the terrestrial transition is the shift from water to air breathing and insulation from 

aquatic conditions. Hypoxia has been thought to be the dominant driver in this transition, and 

hypothesized to cause the reduction in gill diffusion capacity found in numerous fishes to limit 

transbranchial O2 loss (Graham, 1997; Randall et al., 1981). The reduced ability to breath water likely 

served as a more important preadaptation for life on land rather than the capacity to breath air in terms of 

CO2 exchange. However, hypoxia alone does not always guarantee these changes and the transition from 

water to air breathing. As evidenced by P. hypophthalmus, O2 exchange can be shifted to air breathing, 

while CO2 exchange remains at the gills and dependent on the aquatic environment. Rather, how a fish 

responds to hypercapnia and where they lie along spectrum of responses between pattern 1 or 2 may be a 

good predictor of amphibiousness and an important factor as a preadaptation for terrestrial life. Our data 

show a correlation between pattern 2 and amphibiousness where the exchange of O2 and CO2 are 

recoupled. Ultsch (1996), proposed that physiological traits that allowed survival in hypercapnic bodies of 

water provided a suite of preadaptations for terrestrial life that also include elevated blood PCO2 and 

bicarbonate buffering capacity, reduced pH, and an air-breathing drive sensitive to CO2/H+.  

 

Findings from this study demonstrate contrasting effects of aquatic hypercapnia on three phylogenetically 

diverse species of air-breathing fishes. All fishes can increase CO2 exchange at the air-breathing organ, 

however, some do so by actively increasing air ventilation and others only as a passive property of 

elevated PCO2 in the blood diffusing into the air-breathing organ. In the latter case, CO2 exchange is 
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mainly maintained through gills. These differences stem from the independent evolutions of air-breathing 

system among fishes yielding unique respiratory systems, behaviors, and physiological responses. Our 

data do not evaluate which method is more effective in dealing with aquatic hypercapnia, but rather 

demonstrate the diversity of possible evolutionary outcomes in response to the same environmental 

challenge. 
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CHAPTER 3 

Hypoxia and Hypercapnia Avoidance Behaviors in Air-breathing Fishes 

 

Introduction 

 

Fish that live in tropical freshwater habitats must overcome harsh environmental conditions. These 

environments generally have heavy organic loads and are turbid and stagnant, creating high rates of 

bacterial respiration, little photosynthetic activity, and low mixing with the atmosphere. The result is 

animals inhabiting these areas frequently experience hypoxic and hypercapnic aquatic conditions, and 

such environments pose a significant challenge for gas exchange (Ultsch, 1996; Willmer, 1934). Aquatic 

hypoxia can limit an animal’s capacity for aerobic metabolism, reducing its ability for locomotion, 

growth, reproduction, and survival. Aquatic hypercapnia is also known to negatively impact growth and 

survival by causing a respiratory acidosis and, at high enough levels, an anesthetic affect (Bernier and 

Randall, 1998; Brauner and Baker, 2009; Ishimatsu et al., 2005; Ross et al., 2001).  

 

One strategy of dealing with these conditions is behavioral; simply avoid aquatic hypoxia and 

hypercapnia and move to another area. Both laboratory and field studies have shown fishes possess 

hypoxic and hypercapnic avoidance behaviors, actively seek out other areas with more favorable 

conditions (Beitinger and Pettit, 1984; Black et al., 1954; Kates et al., 2012; Kramer, 1987). However, 

leaving an area is not without its costs, as it limits an animal’s habitat use area, for forging, predator 

evasion, and mating opportunities (Kramer, 1983; Kramer, 1987). Avoidance behavior is thus an 

integrated response that involves the tradeoffs between the cost incurred from inhabiting poor aquatic 

conditions and the opportunity cost of leaving. 

One adaptation to inhabiting waters that frequently become hypoxic and hypercapnic is the ability to 

breath air (Graham, 1997). In fact, hypoxia has been hypothesized to be the primary environmental 

stressor that drove the 64 independent evolutions of air breathing in fishes. Air-breathing enables these 
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fishes to use the atmosphere as an auxiliary source of O2, thereby allowing the rate O2 consumption to 

continue independently of aquatic O2 content. These fishes circumvent detrimental effects of aquatic 

hypoxia and possess a distinct competitive advantage in marginal aquatic habitats through increased 

aerobic capacity and habitat utilization. However, the cost of swimming to the surface to breathe air has 

its own tradeoffs as well summarized (Kramer, 1987). These include the energetic and time costs of 

surfacing and increased predation risk. Thus, the relationship between air-breathing and habitat selection 

is complex, poorly understood, and likely differs among the diversity of air-breathing fish species and 

their ecological roles. 

 

Avoidance behavior to both hypoxia and hypercapnia are of increasing interest in both wildlife 

management and the aquaculture industry. Avoidance behaviors have been proposed for invasive species 

control utilizing a plum of hypercapnia as non-physical dispersal barrier and in aquaculture to drive self-

transferring of fish between tanks (Clingerman et al., 2007; Kates et al., 2012). Little is known about the 

avoidance behaviors in air-breathing fishes which is of increasing relevance as the use of these fishes in 

aquaculture has seen significant growth over the last two decades. Understanding the fundamental biology 

of air-breathing fishes and defining favorable grow out conditions is vital for the healthy and efficient 

production of these animals (Lefevre et al., 2014).  

 

To test how air-breathing influences hypoxia and hypercapnia avoidance, we observed the behavior of 

two air-breathing fishes with and without air access. The first species, Polypterus lapradei is native to 

African tropical freshwater habitats and a member of a primitive predatory family of fishes possessing 

paired ventral lungs. The second species, Pangasianodon hypophthalmus, is a catfish native to Southeast 

Asia rivers and utilizes a modified gas bladder for breathing air. Although air-breathing in both species is 

driven by O2, only in Po. lapradei is air-breathing also driven by CO2 (Ch.1, Ch.2)(Thomsen et al., 2017). 

Therefore, we expect air-breathing to effect hypoxia avoidance in both Po. lapradei and Pa. 

hypophthalmus, but hypercapnia avoidance in only Po. lapradei. 
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Materials and Methods 

 

Polypterus lapradei and Pangasianodon hypophthalmus were obtained though the aquarium trade and 

kept in a recirculating aquarium system at the University of California Irvine on a 12/12 h light cycle. 

Aquarium water was held at 30°C and fish were feed commercial feed (Starmilling Co., Perris, CA) twice 

daily.  
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Figure 3.1. Shuttle Box Schematic and PO2 Example Trace. 

(A) Shuttle box set and (B) PO2 example during hypoxia trial. (A) Conditions in each arena were 

monitored separately by PO2 and pH probes and regulated by bubbling compressed gases into mixing 

chambers. Position was recorded using a camera placed above the shuttle box. (B) Animals were 

acclimated for 1 hour in air equilibrated water. Position was then monitored for 1 h with left and right side 

in the same condition, 1 h right side challenge (hypoxia or hypercapnia), 1 h left side challenge, and 

returned to identical condition again. 
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To determine if avoidance behavior was present, we used a shuttle box set up consisting of two 

intersecting circular arenas (diameter=60 cm, depth = 20 cm) allowing a 12 cm wide passageway between 

either side (Fig. 1). Water on each side was pumped into two elevated 25 l mixing chambers which 

gravity fed back into their respective arenas creating opposing circular flow. 

 

Shuttle box conditions were monitored and regulated by a custom-built system consisting of O2 and pH 

probes (Atlas scientific) connected to an Arduino microcontroller. This system bubbled compressed air, 

N2, and CO2 into the mixing chambers by operating a series of solenoid valves. To convert pH to PCO2, a 

calibration curve was made using a pH probe and gas mixer Figure 2.  One fish was placed at a time in a 

random arena and were allowed 1 hour of acclimation, followed by another hour during which conditions 

in both arenas were identical to serve as a control. A hypoxic or hypercapnic challenge was then imposed 

on one side, after which conditions were switched between sides, and then brought back to identical levels 

again, each for an hour. Aquatic PO2 and PCO2 levels tested are reported in Table 1. During hypoxia trials 

PCO2 was held at ambient (0 mmHg), and during hypercapnic trials PO2 remained above 130 mmHg. For 

trials where air access was denied, a plastic netting and with PVC frame was placed below the water’s 

surface. PO2 and pH were recorded every 30 s, and fish position was monitored at 30 s intervals using a 

time lapse camera. Videos were digitized in MatLab using DLTdv digitizing tool (Hedrick, 2008). 

Differences in time spent on the right versus left arena during the phases of each trail were analyzed for 

statistical significance by repeated measures ANOVA with post-hoc Tukey test or paired T-test.  To 

describe the degree of avoidance behavior, an avoidance score for each trial was calculated using the 

following equations: 

𝐴𝑣𝑜𝑑𝑖𝑒𝑛𝑐𝑒 𝑠𝑐𝑜𝑟𝑒 (%) =  
𝑇𝑖𝑚𝑒 𝑠𝑝𝑒𝑛𝑡 𝑜𝑢𝑡𝑠𝑖𝑑𝑒 ℎ𝑦𝑝𝑜𝑥𝑖𝑐 𝑎𝑟𝑒𝑛𝑎 −

𝑇𝑜𝑡𝑎𝑙 𝑇𝑖𝑚𝑒
2

𝑇𝑜𝑡𝑎𝑙 𝑇𝑖𝑚𝑒
2

𝑥100 

This score represents the percentage of time spend outside of the hypoxic arena above random chance 

(half of total time). An avoidance score of 0% would mean equal time was spent in each arena, and 100% 
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would mean the entire time was spent outside the hypoxia arena. This value was averaged for individual 

across right and left side challenges, and the formula was for hypercapnia as well. 
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Figure 3.2. Calibration curve for pH/PCO2 conversion. 

 Calibration curve was created by bubbling known CO2 and air mixtures into a water sample and 

recording pH at equilibrium. T=30°C, Total Alkalinity = 120 CaCO3 eq. 
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Figure 3.3. Example data from Po. lapradei hypoxia trials (AB) with and (CD) without air access.   

Top panels (AC) show percentage of time spent in right arena for individual fish by colors and bottom 

panels (BD) show mean ± s.e.m. Letters signify statistical significance (p<0.05) determined by ANOVA 

with post-hoc Tukey Test. 
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Results 

 

Hypoxia avoidance  

 

At 75 mmHg O2, Po. lapradei spent equal time in either arena across treatments when able to air breathe 

but demonstrated a hypoxia avoidance behavior when air access was denied (Table 1, Fig. 3). This 

resulted in a contrasting in hypoxia avoidance score with (8±4 %) and without air access (71±14 %) under 

the identical hypoxic intensities. 

 

Pa. hypophthalmus did not demonstrate any hypoxia avoidance behavior at any level of hypoxia tested 

even when air breathing was denied (Table 1). No difference in time spent in either arena during a 

hypoxia challenge of 75 mmHg with or without air-access, nor was there a difference at 50 or 37 mmHg 

O2. Nevertheless, at 37 mmHg O2, Pa. hypophthalmus was observed attempting to breathe air indicating 

hypoxic stress. Hypoxia avoidance score remained low (1-17%) in all trials, even without air access. 
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Species High PO2 

(mmHg) 

Low PO2 

(mmHg) 

Air 

access 

N (mass) Avoidance 

Score (%) 

Avoidance 

Behavior 

Po. lapradei 115 75 Yes 8 (196±16 

g) 

8±4 No 

 
115 75 No 7 (178±12 

g) 

71±13 Yes 

Pa. 

hypophthalmus 

115 75 Yes 11 (72±10 

g) 

2±14 No 

 
115 75 No 9 (75±6 g) 1±5 No 

 
70 50 No 6 (66±6 g) 17±14 No 

 
50 37 No 5 (67±5 g) 3±7 No 

 

Table 3.1. Hypoxia Avoidance Trial PO2 and Results.  

Avoidance behavior was determined present if location between right side and left side challenge 

significantly differed by ANOVA. PCO2=0 mmHg for all trials. Avoidance score represents the 

percentage of time spend outside of the hypoxic arena above random chance (half of total time). 
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Hypercapnia avoidance 

 

Po. Lapradei demonstrated a hypercapnia avoidance behavior with and without the ability to air breathe, 

yet the threshold was elevated when air breathing was denied (Table 2). No difference in time spent in 

either arena was observed at 38 mmHg CO2 without air access. At 57 mmHg CO2, Po. Lapradei spent 

significantly less time in the high PCO2 arena when air access was denied (avoidance score= 68±14 %) 

but not when air access was available (15±15 %). With a hypercapnia challenge of 137 mmHg Po. 

Lapradei avoided hypercapnia even when able to breathe air (avoidance score=52±16%). 

 

Pa. hypophthalmus displayed a hypercapnia avoidance behavior, but access to air-breathing did not 

change the threshold of this behavior (Table 2). No difference in the time spent in either arena was 

observed in 38 mmHg CO2 with air access. In 57 mmHg CO2, no statistical difference was detected with a 

repeated measures ANOVA with or without air access. However, due to the ANOVAs’ low statistical 

power resulting from low sample sizes, paired t-tests were run between right and left side challenges 

treatments and revealed statistical significance both with and without air-access. Regardless the small 

difference in avoidance scores (21±7 % with and 32±13 % without air access) indicate air breathing had 

little impact behavior. With a hypercapnia challenge of 137 mmHg Pa. hypophthalmus avoided 

hypercapnia even when able to breathe (avoidance score =79±9%). 
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Species High 

PCO2  

Low pH  

Low PCO2  

High pH  

Air 

access 

N 

 (mass) 

Avoidance 

Score (%) 

Avoidance 

Behavior 

Po. lapradei 38 mmHg 

6.8  

19 mmHg 

7.0 

No 6  

(199±19 g) 

2±9 No 

 
57 mmHg 

6.5  

38 mmHg  

6.8 

Yes 7  

(182±21 g) 

15±15 No 

 
57 mmHg 

6.5  

38 mmHg 

6.8  

No 6  

(164±23 g) 

68±14 Yes 

 
137 mmHg 

6.1  

57 mmHg 

6.5 

Yes 10 

 (173±19 g) 

52±16 Yes 

Pa. 

hypophthalmus 

38 mmHg 

6.8  

19 mmHg 

7.0  

Yes 15  

(82±4 g) 

9±8 No 

 
57 mmHg 

6.5  

38 mmHg 

6.8 

Yes 11  

(80±9 g) 

21±7 No – 

ANOVA  

Yes – t-test 
 

57 mmHg  

6.5  

38 mmHg 

6.8  

No 8  

(101±5 g) 

32±13 No - 

ANOVA  

Yes – T-test 
 

137 mmHg  

6.1 

57 mmHg  

6.5  

Yes 10  

(99±10 g) 

79±9 Yes 

 

Table 3.2: Hypercapnia Avoidance Trial PCO2 and Results.  

Avoidance behavior was determined present if location between right side and left side challenge 

significantly differed by ANOVA (or T-test if noted). PO2 > 130 mmHg for all trials. Avoidance score 

represents the percentage of time spend outside of the hypercapnic arena above random chance (half of 

total time). 
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Discussion 

 

Hypoxia avoidance  

 

Air breathing allows fish to access the atmosphere as an auxiliary source of O2 and enables them to 

maintain rates of O2 consumption independent of aquatic supply. Air-breathing fishes therefore elude the 

high cost of inhabiting hypoxic waters associated with the reduction in metabolism and resulting in a 

distinct advantage over solely water breathing fishes in similar marginal aquatic habitats. Po. lapradei is 

an air breather and behaved as expected, inhabiting water independent of aquatic PO2. Thus air-breathing 

lowers the hypoxic threshold for habitat selection, enabling Po. lapradei to increase its viable habitat 

range. However, Po. lapradei does retain a hypoxia avoidance behavior that can be observed when air 

access is denied. The lack of a hypoxia avoidance behavior was also found in another air-breather from 

the polypterid family, Erpetoicthys calabaracus, with air access, yet without air access was not tested 

(Beitinger et al., 1985).  

 

In contrast, Pa. hypophthalmus did not demonstrate a hypoxia avoidance behavior at any aquatic PO2 

tested, even when air-access was denied. We are confident the severity of hypoxia used in this study 

(37mmHg) was a significant challenge for Pa. hypophthalmus as the air-breathing threshold was reported 

to be 40-59 mmHg O2 (Lefevre et al., 2011a; Thomsen et al., 2017) with a Pcrit without air access of 55 

mmHg O2 (Lefevre et al., 2011a) (Fig. 4). This is further supported by the observation of frequent 

attempts in the 37 mmHg O2 trial to reach the surface through the netting and air breathe. Pa. 

hypophthalmus is not tolerant to the levels of hypoxia used in this study, yet a hypoxia avoidance 

behavior was not observable.  
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Figure 3.4. Thresholds for hypoxia avoidance behaviors in Po. lapradei and Pa. hypophthalmus. 

 1(Lefevre et al., 2011a) 2(Thomsen et al., 2017) 3(Damsgaard et al., 2015) 
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In the wild, physical restriction from the water’s surface is extremely rare, but there are many behavioral 

or physiological barriers to air-breathing, including risk of predation and energetic and opportunity costs 

(Kramer, 1987). Under the framework of optimal use theory where O2 is the critical resource, Kramer, 

1987 models a number of scenarios in which fish in hypoxia would choose a number of alternative 

behaviors to air-breathing. Under optimal use theory, the chosen behavior will be the one that maximizing 

the amount of O2 obtained while minimizing the cost. For example, if occupying hypoxic water at depth 

and the energetic requirement to traversing the water column is significant, an animal may choose to 

leave this area rather than stay and breathe air. Depth has been shown to be a large factor determining the 

cost of air-breathing, particularly in benthic fishes, increasing not only energetic, but time cost of 

surfacing. In Coreydoras aeneus, Kramer and McClure, 1981 showed an inverse relationship between 

depth (10-120 cm) and air breathing frequency and estimated that the cost of air-breathing can exceed its 

resting metabolic rate and 25% of its time budget. Elevated energetic demands of air breathing in deeper 

water has been shown to increase food consumption, as well as reduce the food conversion ratio and 

growth rate in the striped snakehead (Channa striata) (Arunachalam et al., 1976; Pandian and 

Vivekanandan, 1976; Vivekanandan and Pandian, 1977). Other activities are sometimes prioritized over 

air breathing as it can represent a significant opportunity cost. For example, C. aeneus spends less time air 

breathing when feeding opportunities are available (Kramer and McClure, 1980) and newts have also 

been observed to spend less time air breathing during courtship (Halliday, 1977). Air-breathing is also 

reduced when the predation risk high, as demonstrated by (Kramer et al., 1983) showing reduced 

breathing rates in six species of air-breathing fishes when an avian predator is present. Under the 

circumstances above, if the cost of air-breathing is substantial, hypoxia avoidance may be the optimal 

behavioral response over air-breathing. 

 

Differences in the behavioral ecology of Po. lapradei and Pa. hypophthalmus may explain the presences 

and absence of a hypoxia avoidance behavior in these two species. Po. lapradei is a sedentary benthic 

predator only rising on rare occasions to air breathe. The cost of air breathing for Po. lapradei would be 
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significantly elevated in deeper water and while stalking prey. In contrast, Pa. hypophthalmus is a highly 

active migratory river fish, inhabiting the upper water column. A telemetry study reported that Pa. 

hypophthalmus rarely descends below 1 m depth in aquaculture ponds (Lefevre et al., 2011b). Its constant 

presence near the water’s surface suggest that air-breathing is always available, and of low time and 

energetic cost.  Further, the metabolic rate of Pa. hypophthalmus is 5 times that of Po. lapradei (during 

forced emersion) and in a related species, Po. senegalus, (submerged) (Jew in Prep Ch1.) (Babiker, 1984; 

Lefevre et al., 2011a). Air breathing likely represents a much lower proportion of total energy budget of 

Pa. hypophthalmus than Po. lapradei. The selective pressure to maintain a hypoxia avoidance behavior 

may therefore also be reduced in Pa. hypophthalmus if constantly inhabiting hypoxic environments and 

the cost of air breathing is always low. 

 

One way possibly mechanism by which a hypoxia avoidance behavior may be absent in Pa. 

hypophthalmus is a stronger dependence on internal than external facing O2 chemoreceptors. External 

facing O2 chemoreceptors detect aquatic PO2, as opposed to internal facing receptors that detect blood 

PO2. The orientation of receptors involved in different components of the cardiorespiratory response to 

hypoxia (e.g., tachycardia, vascular resistance, branchial ventilation and amplitude, air-breathing) have 

been shown to be variable between water and air-breathing species and within air-breathing species 

(reviewed in (Milsom, 2012). For example, the air-breathing (and air surface respiration) reflex occurs in 

response to stimulation of only external facing receptors by NaCN injection into the bucco cavity in 

tambaqui (Colosso mesopotamicus) and bowfin (Amia calva), only to internal facing receptors by NaCN 

injection into the blood in the jeju (Hoplerythinus unitaeniatus), gar (Lepisosteus osseus), and African 

lungfish (Protopterus), and to both orientations in the mullet (Mugil cephalu) (Florindo, 2006; Lahiri et 

al., 1970; Lopes et al., 2010; Mckenzie et al., 1991a; Mckenzie et al., 1991b; Shingles et al., 2005; 

Smatresk, 1986; Smatresk and Cameron, 1983; Smatresk et al., 1986). While the hypoxia avoidance 

behavior has not been linked to chemoreceptor orientation and is an integrated response of multiple 

physiological and behavioral factors (Kramer, 1987), the ability to detect external O2 would be an 
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essential part of locating habitats with differing O2 content. However, detecting external O2 is likely not 

important for Pa. hypophthalmus, frequently inhabiting hypoxic environments and with a low cost of air-

breathing. Rather monitoring internal O2 would be the more important O2 homeostasis, resulting in a 

blunted response to input from external facing O2 receptors and a low selective pressure for maintaining 

this system. 

 

Hypercapnia avoidance 

 

Both Po. lapradei and Pa. hypophthalmus were found to possess a hypercapnia avoidance behavior, 

however only in Po. lapradei was the threshold and degree of avoidance affected by the ability to air-

breath. This was expected as Po. lapradei is known to have an air-breathing response to aquatic 

hypercapnia (Ch. 1) while Pa. hypophthalmus does not (Thomsen et al., 2017) (Ch. 2).  

 

Air-breathing hyperventilation for the purpose of blood PCO2 regulation in aquatic hypercapnia has yet to 

be demonstrated in fishes. The mostly likely reason for the presence of a hypercapnia air-breathing reflex 

in Po. lapradei is in response to changes in internal pH, important to acid-base regulation during 

amphibious activity. However, Po. lapradei, also shows a reduction in branchial ventilation in 

hypercapnia (Ch.1) when submerged, possibly reducing trans-branchial exchange of CO2 and 

transitioning to pulmonary exchange. The current study shows air breathing also elevates the threshold of 

hypercapnia avoidance behavior and thus an increase in CO2 tolerance. Although this suggest Po. 

lapradei utilizes air breathing to rectify the respiratory acidosis and regulate blood PCO2 in hypercapnia, 

this requires verification by blood PCO2 measurements.  

 

In contrast, Pa. hypophthalmus solely uses branchial ion exchange for acid-base compensation 

(Damsgaard et al., 2015). Thus, air access had little impact on Pa. hypophthalmus during aquatic 

hypercapnic exposure, offering little change in avoidance behavior (Fig. 5). As with the diversity of air-
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breathing systems among fishes, dissimilar strategies of CO2 exchange and coping with hypercapnia in 

Pa. hypophthalmus and Po. lapradei are the result of independent colonizations of marginal aquatic 

habitats. These independent evolutionary histories ultimately determine the role of air-breathing in 

hypercapnic avoidance behaviors between these two species. 
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Figure 3.5. Avoidance scores for (A) Po. lapradei and (B) Pa. hypophthalmus trials. 

 Values shown are mean ±s.e.m. Avoidance score represents the percentage of time spend outside of the 

hypoxic or hypercapnic arena above random chance (half of total time). Air access had a large effect on 

avoidance score under identical PCO2s in Po. Lapradei, while very little impact in Pa. hypophthalmus. 
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Conclusion 

 

Avoidance behavior to hypoxia and hypercapnia in Po. lapradei are both influenced by the ability to 

breath air. Po. lapradei possess an O2 and CO2 air-breathing reflex and use air-breathing to increase 

hypoxia and hypercapnia tolerance expanding their viable habitat use area.  When unable to air breathe, 

avoidance behavior becomes more common. 

 

In contrast, in Pa. hypophthalmus does not possess a hypoxia avoidance behavior, and hypercapnia 

avoidance is not influenced by the ability to breath air. Although an O2 air-breathing drive is present in 

Pa. hypophthalmus, the loss of an avoidance response may be explained by its natural behavior to inhabit 

the upper water column. It is likely that air-breathing is always accessible to Pa. hypophthalmus and thus 

environmental hypoxia and the need to avoid such conditions is ever an issue. In Pa. hypophthalmus, air-

breathing plays almost no role in coping with hypercapnia and thus access to air-breathing also has no 

influence avoidance behavior. 

Air breathing clearly enables the inhabitance of hypoxic environments however its role in hypercapnia 

tolerance is more complex. Avoidance behavior is an integrated response of sensory systems, 

physiological requirements, and ecological strategies resulting in differences demonstrated here in how 

this behavior is used, altered, or lost. Many of these influencing factors are likely a result of the diverse 

natural and evolutionary histories of air breathing systems and ecological roles found among air-breathing 

fishes. Application of avoidance behaviors for air-breathing fishes both in the use of denying air access 

and intensity of hypoxia or hypercapnia reflect this diversity and must be characterized on a species by 

species basis. 
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CHAPTER 4 

The Effects of Aquatic Hypercapnia on Stress Blood Biomarkers in Pangasianodon hypophthalmus 

 

Introduction 

 

Over the past decade the use of air-breathing fishes in aquaculture has grown dramatically (FAO, 2018; 

Lefevre et al., 2014). This is partially due to the ability of air-breathing fishes to survive in harsh aquatic 

environments (low in O2 and pH, high in CO2 and nitrogenous waste) reducing operational cost in water 

turnover, aeration, and mortality. However, survival refers to the ability to tolerate such conditions and 

does not necessarily confer thriving or maximizing their growth potential. For example, the air-breathing 

catfish, Pangasianodon hypophthalmus, survives in hypoxic aquaculture ponds as low as 8-12 mmHg O2 

(Damsgaard et al., 2015a; Lefevre et al., 2011). Yet providing further oxygenation of these ponds (above 

Pcrit) enables higher rates of survival and reduced food conversion ratios (less feed required for growth) 

(Lefevre et al., 2014). Thus, additional gains in aquaculture production and efficiency can be created by 

maintaining water quality parameters above what is merely required for survival, and characterizing 

conditions under which these animals thrive are important for sustaining healthy and productive stocks. 

The first step in creating an industry framework of data driven standards and practices to optimize 

production is to identify environmental conditions that are suboptimal, and stressful to such fish species.   

 

Stress in animals is the response to a physical, chemical, or perceived disturbance that threatens 

homeostasis. Stress is not inherently harmful as these adaptive mechanisms allow an animal to cope with 

a stressor and reestablish its homeostatic state. However, if a stressor is severe or long-term, and 

compensation represents a significant energetic cost, these physiological mechanisms can become 

maladaptive and negatively impact health and survival. Using aquatic hypoxia as an example, swimming 

to the surface to air-breathe is a stress response that is adaptive as it reestablishes tissue oxygenation. 

However, if hypoxia is severe and chronic, requiring frequent and energetically expensive trips to the 
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surface, stress can become harmful, reducing feed conversion ratios and growth rates. In the latter case, 

immediate needs are prioritized to the detriment of long-term investments, and stress becomes 

maladaptive. The stress response, and the cascade of its effects, are broken down into three general 

categories: Primary, secondary, and tertiary (Barton, 2002; Wendelaar Bonga, 1997). The primary 

response is the neuroendocrine response releasing catecholamines from the adrenal medulla, stimulating 

the hypothalamic-pituitary-innerrenal (HPI) axis to release corticoids into circulation. Next, the secondary 

response features adjustments at the tissue and system level, including changes in metabolism, respiration, 

acid-base status, immune function, and changes to plasma and cellular ion and metabolite concentrations. 

This includes changes in hematological factors such as blood glucose and lactate and hematocrit. The 

tertiary response involves changes to whole-animal performance resulting from primary and secondary 

stress, that include growth, disease resistance, metabolic scope, behavior, and survival. Understanding 

stress physiology and characterizing stressful condition in an artificial environment is essential in 

aquaculture for ensuring heathy and productive stocks. Growth rates are influenced by food acquisition, 

consumption, assimilation, and metabolic rate; all factors in stress. Consequently, environmental stressors 

should be limited to maximize growth and survival.  

 

Stressed caused by aquatic hypercapnia (high CO2) can limit production in aquaculture (Crocker and 

Cech Jr., 1996; Danley et al., 2005; Foss et al., 2003; Hu et al., 2011; Lefevre et al., 2014; Petochi et al., 

2011). Hypercapnia is caused by lack of aeriation and biological respiration, whether it be from high 

stocking densities and feeding rates or microbial activity. Hypercapnia is exasperated by practices such a 

pure O2 injection, where 100% O2 gas is injected into ponds to meet aerobic demands, yet these aeration 

rates are insufficient to remove the associated production of CO2 (Hu et al., 2011).  

 

Exposure to hypercapnia causes lowering (and if high enough, reversal) of the diffusive gradient by which 

CO2 is offloaded at the gills.  This results in a rise in arterial CO2 and a respiratory acidosis. Acid-base 

compensation subsequently occurs through the accumulation of bicarbonate in exchange for chloride ions 
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(Brauner and Baker, 2009). Although preferential regulation of intracellular pH is likely to occur in air-

breathing fishes, a change in extracellular pH would result in elevated transport of ion between 

intracellular and extracellular spaces (Shartau and Brauner, 2014). Stress can be caused if acid-base 

homeostasis is disrupted either before compensation can occur, or if hypercapnia intensity is beyond the 

compensation capacity (Brauner and Baker, 2009). Both intracellular and extracellular pH homeostasis is 

central to survival in vertebrates as changes in pH are known to alter protein shape and disrupt cell 

function. All vertebrates are capable of homeostatic compensation to changes in environmental CO2 and 

physiological acid-base perturbations. However, in environments that are chronically hypercapnic, the 

energetic cost of additional ion transport and maintenance of new electrochemical gradients associated 

with pH compensation can be an added cause of chronic stress. This has been shown in marine fish, when 

exposed to an elevated PCO2 of only 1460 µatm (1.2 mmHg), where O2 consumption of gut tissue 

increased by 8% due to additional ion transport after 2-4 weeks (Heuer and Grosell, 2016).  Finally, blood 

acidification alters hemoglobin binding affinity though the Root and Bohr effect and can lead to 

reductions in arterial oxygenation and systemic O2 transport (Perry et al., 1989). 

 

The acute effects of hypercapnic stress are known to be agitation, behavioral avoidance, increased 

ventilation and hematocrit, and accumulation of blood catecholamines, cortisol, glucose, and lactate, and 

an anesthetic effects (Dennis et al., 2016; Iwama et al., 1989; Kates et al., 2012; Petochi et al., 2011; Ross 

et al., 2001). Chronic (days-months) hypercapnic exposure has been shown to limit food conversion ratio, 

growth, and survival (Crocker and Cech Jr., 1996; Danley et al., 2005; Hu et al., 2011; Lefevre et al., 

2014; Petochi et al., 2011; Ross et al., 2001). For some aquaculture species, CO2 thresholds for ensuring 

health and growth have been established. According to Ross et al. 2001, the aquatic PCO2 should remain 

at 2 mmHg for maintaining health populations of rainbow trout (Oncorhynchus mykiss), while above 8 

mmHg becomes harmful for survival. The same aquatic CO2 standards have yet to been investigated for 

raising air-breathing fishes. Recent studies indicate that aquaculture ponds for P. hypophthalmus exceed 

34 mmHg (Damsgaard et al., 2015a). While the productivity of these commercial aquaculture ponds 
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illustrates the extreme hypercapnic tolerance of P. hypophthalmus, whether these fish are merely 

tolerating or thriving under these conditions remains unknown. This study seeks to understand if this level 

of hypercapnia elicits a stress response in P. hypophthalmus for the purpose of indicate if further reducing 

aquaculture pond CO2 has the potential to provide additional gains in growth and productivity. 

 

During hypercapnic exposure we anticipate different patterns of stress depending on whether P. 

hypophthalmus is responding to the acid-base disturbance, maintenance of new ionic gradients, or not 

responding at all. Figure 1 depicts three response patterns that describe changes in a hypothetical stress 

indicator as well as changes in blood acid-base parameters during exposure to aquatic hypercapnia.  If 

hypercapnia is not found to be stressful, we predict a stress response pattern to reflect model A, where no 

change occurs between normocapnic and hypercapnic exposure. Model B would correlate pH disturbance 

with stress, where the initial respiratory acidosis elicits an increase in the stress indicator level yet returns 

to pre-exposure level as acid-base compensation occurs. Model C indicates hypercapnia is stressful 

beyond the initial acid-base disturbance due to the elevated cost of transporting ions and maintaining high 

plasma bicarbonate and low chloride levels.  

 

In this study we measured blood glucose and lactate and hematocrit as indicators of stress in P. 

hypophthalmus when exposed to a level of aquatic hypercapnia mimicking aquaculture conditions.  
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Figure 4.1. Response of Acid-base Parameters and a Hypothetical Stress Indicator During 

Exposure to Aquatic Hypercapnia.  

Model (A) suggests this level of hypercapnia is not stressful. In model (B), stress indicator concentration 

correlates with acid-base disturbance suggesting the stress response is to the disruption of pH 

homeostasis. Model (C) stress indicator concentration matches PCO2. This suggest stress is present 

beyond pH compensation, possibly due to cost of additional ion transport and maintenance of a new 

electrochemical gradient.  
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Materials and Methods 

 

Experimental animals 

 

Pangasianodon hypophthalmus were obtained though the aquarium trade and raised in a recirculating 

system at the University of California, Irvine at 30°C on a 12:12 h light-dark cycle. Animals were fed 

commercial pellets (Starmilling Co., Perris, CA) twice daily. Husbandry and experimental procedures in 

this study were approved under UC Irvine IACUC Protocol # 2013-3105-1. 

 

Animal preparation  

 

Animals were anaesthetized in an aqueous solution of clove oil (0.16 mL L-1 clove oil, 1.45 mL L-1 

ethanol) until cessation of opercular ventilation and transferred to a surgical set up with the gills irrigated 

with an aerated dilute solution of clove oil (0.11 mL L-1 clove oil, 1.00 mL L-1 ethanol). A PE50 catheter 

was implanted into the dorsal aorta through the roof of the mouth using the Seldinger technique with a 

sharped guitar string as a guide wire. The catheter exited the mouth through a whole drilled in the rostrum 

and was secured with suture to the upper jaw and dorsal spine. Catheters were filled with heparinized 

Ringer’s (10 UI) and burn sealed. To avoid tangling, catheters were kept at the surface using fly fishing 

foam strike indicators (Maxcatch Fishing, Qingdao, China) and orthodontic elastic rubber bands. Animals 

were allowed to recover overnight in the experimental tank. 

 

Experimental Tank 

 

Exposure to hypercapnic conditions occurred in an experimental tank constructed of PVC (180 cm L, 90 

cm W, 24 cm H) and divided into thirds to allow fish to be run in triplicate simultaneously, using plastic 

netting secured with aquarium grade silicon. Experiment tanks were fill with dechlorinated tap water 
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(total alkalinity =120 CaCO3 eq L-1). Water was pumped from one end of the tank into a mixing chamber 

(60 cm L, 38 cm W, 36 cm H) which gravity fed back into the experimental tank on the opposite end. The 

mixing chamber contained air stones for aeration and microbubble gas diffusers (PentairAES, Cary, NC) 

for injecting CO2. Experimental tank conditions were monitored and regulated by a custom-built system 

consisting of O2 and pH probes (Atlas scientific) connected to an Arduino microcontroller. This system 

bubbled air and CO2 into the mixing chamber by operating a series of solenoid valves connected to 

compressed gasses. To convert pH to PCO2, a calibration curve was made by bubbling various CO2 

mixtures into a water sample and measuring the resulting pH when in equilibrium (Fig. 2). PO2 was 

maintained above 136 mmHg O2 and at 30°C during the entire experiment. 
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Figure 4.2. PCO2/pH Calibration Curve. Values generated by bubbling known concentrations of CO2 

into water samples and measuring pH at equilibrium. Total Alkalinity = 120 CaCO3 eq. 
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Sampling and blood analysis 

 

To measure change in blood acid-base status and stress indicator concentrations, 0.15 mL of blood was 

drawn from the implanted catheters at 0, 3, 24, 48, and 72 h after hypercapnic exposure. Catheters were 

subsequently flushed with heparinized Ringer’s and resealed. Control trials remained in normocapnic 

conditions and were sampled at 0, 24, 48, and 72 h. Blood pH and PCO2 was measured using a handheld 

I-stat blood analyzer with G3+ cartridges (Abbott Point of Care Inc., Princeton, NJ). Hematocrit was 

measured as the fractional volume of red blood cells after centrifugation at 12,000 rpm for 3 minutes. 

Blood glucose was measured with a Max Plus Glucose monitor (Nova Biomedical, Waltham, MA) and 

lactate was measured using a Lactate Plus Meter (Nova Biomedical, Waltham, MA). 

 

To validate lactate and glucose meter measurements, calibration curves (Fig. 3a, 4a) were made by 

creating predictable mixtures of P. hypophthalmus donor blood and concentrated or diluted Ringer’s 

solutions with known concentrations. Calibration curves for known values versus of error of measured 

values (Δ = Measured – Calculated) were also made (Figure 3b, 4b). Use of the I-stat for blood pH 

measurements in fish was previously verified by (Harter et al., 2011). (Harter et al., 2011) also reported a 

relative correlation between PCO2 and I-stats measurements, albeit a consistent overestimation only when 

reading below 19 mmHg. Therefore, lower values from the current study should be taken as estimates 

only, however the relative values are useful. 

To verify the range and responsiveness of stress indicators, physically activity was induced by chasing 

specimen (n=5) by hand in experimental tank to exhaustion (no longer responding to tail pinch) and 

sampled 30 min post-exercise. 

 

Data analysis  
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Statistical significance of blood parameters from normocapnia (0 h) was tested by repeated-measures 

ANOVA with post-hoc Tukey Test. A linear model was used to compare calculated versus measured 

blood glucose and lactate values, as well as Δ glucose and Δ lactate values. Pre and post-exercise values 

were compared by paired t-test. 

 

Results 

 

In experimental fish, arterial PCO2 was significantly increased at 3 h and remained elevated for the 

following 72 h (Fig. 5). At 3 h, arterial pH was reduced, however only significantly lower than 0 h at 3 h 

and 24 h. Blood glucose and lactate concentrations and hematocrit were not significantly different from 

normocapnic values at any time. Lactate measurements were frequently below the detection limit of the 

instrument. Control fish experienced no change in arterial pH or PCO2. Blood glucose and lactate values 

and hematocrit also showed no significant change.  

 

Glucose and lactate validation 

 

Both glucose and lactate measurements were closely correlated with calculated values yielding a highly 

significant relationship (Table 1, Fig. 3 and 4). Both Δglucose and Δlactate did not show a significant 

relationship in either slope or y-intercept indicating measured values were not skewed nor did the 

relationship differ across concentrations.  
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Figure 4.3. Verification of Blood Glucose Measurements. Blood samples from P. hypophthalmus were 

mixed with known concentrations of glucose dissolved in Ringer’s solutions (n=12). Known 

concentrations are compared with analyzer measured values (A) and error (Δ= measured – calculated) 

(B). Solid line represents fitted linear model (p-value shown), dotted line indicates line of identity, dashed 

line indicates zero. 
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Figure 4.4. Verification of Blood Lactate Measurements. 

Blood samples from P. hypophthalmus were mixed with known concentrations of lactate dissolved in 

Ringer’s solutions (n=12). Known concentrations are compared with analyzer measured values (A) and 

error (Δ= measured – calculated) (B). Solid line represents fitted linear model (p-value shown), dotted 

line indicates line of identity, dashed line indicates zero. 
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Measurement A b R2 p-value 

Glucose 8.143 ± 7.351 0.889 ± 0.118* 0.827 <0.001 

Δ Glucose -8.143 ± 7.351 0.111 ± 0.118  0.069 >0.05 

Lactate -0.272 ± 0.438 1.075 ± 0.0819* 0.945 <0.001 

Δ Lactate 0.514 ± 0.369 -0.121 ± 0.0671 0.244 >0.05 

 

Table 4.1. Parameter Estimates, R2, and p-values for Glucose and Lactate Meter Validation 

Parameter estimates (mean ± s.e.m.), R2, and p-values for the relationships between calculated blood 

glucose (n=14) and lactate (n=12) versus analyzer measurements and versus error (Δ). 

* indicates parameter statistical significance from 0, determined by linear model.  

Linear relationship according to: Measured (x) = a + b × (calculated) and Δ (x)=a + b × (measured) 

Error (Δ) = measured – calculated 
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Activity Stress 

 

Blood glucose, lactate, and hematocrit values showed a significant increase at 30 min post-exercise Fig. 

6). Glucose showed a 60 % increase from 55±6 dL mL-1
 to 88±4 dL mL-1. Blood lactated was initially not 

detected (<0.2 mmol L-1) yet rose to 8±3 mmol L-1, and hematocrit was elevated from 22±4 % to 32±4 % 

post-exercise. 

 

Discussion 

 

No changes in stress indicators were observed in this study suggesting aquatic hypercapnia of 38 mmHg 

CO2 does not represent a significant physiological challenge for P. hypophthalmus or an environmentally 

stressful condition. 

 

Although measuring cortisol is useful for studying acute stressors, it is less informative in chronic 

exposure studies as concentrations in blood are known the decrease over time due to endocrine exhaustion 

and innerrenal desensitization (Martinez-Porchas et al., 2009). In contrast to cortisol, glucose is a more 

reliable indicator for chronic studies with a response time of minutes to days after introduction of a 

stressor. Stress related hyperglycemia during suboptimal or stressful conditions is mediated by cortisol 

activated glycolytic and gluconeogenic processes, as well as directly by catecholamines in an effort to 

poise energy stores for a fight-or-flight response (Martinez-Porchas et al., 2009; Wendelaar Bonga, 1997). 

Blood glucose levels are also positively correlated with metabolic rate during stress exposure (Wendelaar 

Bonga, 1997). No change in glucose was observed in this study, suggesting no change in activity and a 

lack of a hypercapnic stress response. Resting blood glucose in P. hypophthalmus (40-60 mg dL-1) in  

aquatic normo- and hypercapnia were similar to levels found in other unstressed fishes (Dennis et al., 

2016; Kates et al., 2012; Petochi et al., 2011; Santos et al., 2013). This study verified the use of homecare 

blood glucose monitor, Max Plus Glucose, for use with fish. Previous studies have found other glucose 
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meters are also useful with fish, albeit recommending the use of relative values, rather than absolute, due 

to consistent underestimations (Stoot et al., 2014; Wells and Pankhurst, 1999). Our study found that Max 

Plus Glucose is a valid substituted for these devices, yet with the ability to use absolute values. 

 

Lactate is produced by anaerobic metabolism during activity and is considered an indicator of stress as it 

is accumulated under suboptimal conditions (Wendelaar Bonga, 1997). Changes in lactate can indicate a 

change in behavior and an increase in activity in the form of agitation or attempted escape of a stressor by 

locomotion. No elevation in both blood lactate and glucose, suggesting there is no change in activity 

associated with seeking new environments and is in agreement with the lack of a hypercapnic avoidance 

behavior at 38 mmHg reported in Ch.3. Further, branchial ventilation, also an indicator of stress 

signifying an increase on O2 consumption due to activity or agitation (Wendelaar Bonga, 1997), was 

found not to be elevated at this level of hypercapnia (Thomsen et al., 2017). Resting blood lactate both in 

normo- and hypercapnia were frequently below the detection limit of the Lactate Plus Meter (<0.2 mM) 

which is not uncommon for other fishes at rest (Bernier and Randall, 1998; Dennis et al., 2016; Kates et 

al., 2012; Stoot et al., 2014). The use of the Lactate Plus Meter for use in fish was validated in this study. 

Blood lactate measurements have also been verified for other lactate meters (Brown et al., 2008; Stoot et 

al., 2014; Wells and Pankhurst, 1999), still, resting blood lactate levels in fishes approach 1 mmol L-1 

making any handheld lactated meter difficult for use in unstressed animals (Brown et al., 2008). 

 

During stress, interrenal CA release elevates hematocrit through splenic contraction increasing the 

number of cells in circulation (Wendelaar Bonga, 1997). The resulting increase in hematocrit and 

hemoglobin concentration improves the O2 transport capacity to meet the elevated activity demands of a 

stressful environment. Although changes to the O2 transport system in response to hypercapnic exposure 

are sometimes associated with blood acidification and impairment of blood binding due to the Root and 

Bohr effects (Perry et al., 1989), it is now largely accepted that fish possess CO2 reflexes independent of 

blood O2 status (Gilmour, 2001; Milsom, 2002). Regardless, blood O2 status in P. hypophthalmus is 
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unlikely to be effected by hypercapnia due to the lack of a Root effect in this animals and its extremely 

high hemoglobin binding affinity (P50=4.6 mmHg O2) (Damsgaard et al., 2015b). Damsgaard et al., 

2015a) reported a hematocrit of 22% in P. hypophthalmus which is within the range of our observed 

values. Our finding that hematocrit did not change suggest circulating levels of CA were also not 

elevated. Taken together, with no change in other secondary stress response indicators (blood glucose and 

lactate and hematocrit), we are unlikely to observe a tertiary stress response and a negative impact on 

health on P. hypophthalmus at this level of hypercapnia. 
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Figure 4.5. Blood Acid-base Parameter and Stress Indicator Concentrations During Exposure to 

Aquatic Hypercapnia 

 Mean±s.e.m displayed for blood acid-base parameter and stress indicator concentrations during exposure 

to aquatic hypercapnia. P. hypophthalmus arterial (A) pH, (B) PCO2, (C) glucose, (D) lactate, and (E) 

hematocrit were measured in samples drawn via dorsal aortic cannulation. * indicates significant 

difference from normocapnia (0 h). 
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Figure 4.6. The Effect of Exercise on Stress Indicator Concentrations.  

Mean±s.e.m. blood glucose (A) and lactate (B) and hematocrit (C) before and 30 min post-exercise in P. 

hypophthalmus (n=5). Control lactate values were not detected (N.D.) due to the minimum detection limit 

of instruments. * indicates statistical significance by paired t-test. 
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Effects of hypercapnia 

The acute effects of hypercapnia on respiration, blood acid-base status, and behavior in P. hypophthalmus 

have been recently investigated (Damsgaard et al., 2015a; Thomsen et al., 2017), (Jew ch.2 and ch.3). 

Although exposure to aquatic hypercapnia does increase CO2 released into the air, air breathing does not 

aid in blood PCO2 regulation. Rather, P. hypophthalmus responds to hypercapnia as would a solely water 

breathing fish, blood PCO2 quickly equilibrates with the aquatic environment and undergoes a rapid drop 

in pH. At 34 mmHg CO2, the respiratory acidosis is slowly compensated over 48 hours through branchial 

ion exchange. In our study exposure to 38 mmHg had a similar compensation time and did not to elicit a 

change in the stress indicators measured in this study, blood glucose and lactate and hematocrit. This 

suggest the respiratory acidosis associated with an acute exposure to 38 mmHg is not stressful for P. 

hypophthalmus, nor is the longer term acid-base compensation. In contrast, stress from physical activity 

elevated all three stress indicators, confirming the responsiveness of these parameters in P. 

hypophthalmus. 

 

Other studies 

Studies in other species found CO2 thresholds occurred at lower levels of hypercapnia than in P. 

hypophthalmus. European sea bass (Dicentrarchus labrax) exposed to aquatic hypercapnia of 25 mmHg 

CO2 elevated glucose and hematocrit over 96 h (Petochi et al., 2011). The largemouth bass (Micropterus 

salmoides) was reported to have elevated glucose and hematocrit in response to 16 mmHg CO2 but with 

no change in lactate (Kates et al., 2012). In this same study, blood glucose and hematocrit increased in the 

bluegill (Lepomis macrochirus) after 1 hour, while in the silver carp (Hypophthalmichthys molitrix) and 

big head carp (Hypophthalmichthys nobilis), glucose and lactate increased, and hematocrit instead 

decreased. Rainbow trout exposed to 37 mmHg CO2 for the purpose of anesthetization elevated plasma 

lactate (Bernier and Randall, 1998). Ross et al., 2001 reported exposure to 7.6 mmHg CO2 resulted an 

increase in hematocrit in the brook trout (Salvelinus fontinalis), black dace (Rhinichthys atratulus), and 

slimy sculpin (Cottus cognatus) after 1 hour, as well as an elevation in blood glucose in the book trout. 
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The above mentioned species all occur in temperate freshwater or saltwater habitats. Little information is 

available regarding CO2 thresholds for stress in tropical freshwater fishes or air-breathing fishes except 

for (Damsgaard et al., 2015a), who also found no change in hematocrit in P. hypophthalmus at 34 mmHg 

CO2. Air-breathing fishes are known to occur in tropical freshwater habitats which frequently experience 

hypoxic and hypercapnic conditions (Graham, 1997; Ultsch, 1996; Willmer, 1934). Consequently, 

hypercapnic thresholds for stress and tolerance are expected differ between air-breathing fishes and those 

found in temperate or salt water habitats. While hypoxia has been attributed to being the driving force 

behind the approximately 65 independent evolutions of air breathing in fishes, adaptations to hypercapnia 

are known to exist as well, such as elevated blood PCO2, bicarbonate, and capacity for branchial ion 

exchange (Damsgaard et al., 2015a; Ultsch, 1987). Thus, the lack of a stress response at this 

comparatively higher PCO2 is not surprising and likely reflects the evolutionary history of P. 

hypophthalmus inhabiting these marginal aquatic habitats. 

 

Conclusion 

 

This study provides new physiological data on the stress response of P. hypophthalmus to hypercapnia 

and contributes to the estimation of CO2 threshold levels required to ensure healthy and productive 

populations. Stress indicators were not changed in response to elevated CO2, suggesting that the level of 

hypercapnia found in aquaculture ponds (38 mmHg) is not a significant environmental challenge for P. 

hypophthalmus. It is unlikely therefore that additional aeration for the purpose of controlling PCO2 below 

this level will result in additional benefits for production. This agrees with preliminary data on juvenile 

fish by Bayley et al. (unpublished) showing no change in growth rate when raised in normocapnic versus 

hypercapnic environments over 3 months. The ability to thrive in hypercapnic environments likely 

originated as part of a suite of adaptations allowing P. hypophthalmus to inhabit the marginal aquatic 

environments they naturally occur in, making this fish a rational candidate for aquaculture production. 
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SUMMARY AND CONCLUSION 

 

Comparative aspects across species 

 

Chapters 1-3 contained comparative studies in which the response of multiple species to environmental 

challenges were observed. Chapter 1 compared two members of the Polyperid family which showed little 

difference in their responses to forced emersion likely due to the similarity and homology of their 

respiratory systems (Graham, 1997). Chapter 2 and 3 investigated a phylogenetically diverse set of 

species with distinct air-breathing systems, and a spectrum of air and water breathing capacities and 

amphibious behaviors. The widely differing physiological and behavioral responses observed are a result 

of the unique integration of both form and function and ecophysiologies. These findings demonstrate the 

how evolutionary and natural history can shape a diversity of solutions to the same environmental 

challenge.  

 

Hypercapnia and P. hypophthalmus 

 

Our findings in Chapter 2, 3, and 4 show that exposure to hypercapnia at a level of 38 mmHg CO2 does 

not create a significant physiological challenge for P. hypophthalamus, from a respiratory, behavioral, or 

stress biomarker assessment, respectively. Although a respiratory acidosis was shown to occur (Ch 4., 

Damsgaard et al., 2015), this level of hypercapnia did not show any further signs of respiratory distress. 

No change in air breathing was observed in Chapter 2, in agreement with Thomsen et al., 2017, who also 

reported branchial ventilation was not altered. No change in respiration further suggesting metabolic rate 

and behavior was also not altered as a response to aquatic hypercapnia. This observation is in agreement 

with our blood stress biomarkers in Chapter 4 showing no indication of physiological stress. Chapter 3 

reported only a slight hypercapnia avoidance behavior during acute exposure to hypercapnia. It is possible 

that this would not be observable after 48 h of acclimation once acid-base compensation has occurred. 
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Taken together, regulation of ponds below 38 mmHg CO2 appears to have little potential benefit for the 

aquaculture of P. hypophthalamus. This level of CO2 also would also not be effective for self-tank 

transfer as shown in O. mykiss (Clingerman et al., 2007).  

 

Implications: Aquaculture and Fish that Breathe Air 

 

The potential benefits of, or lack thereof in this case, regulating PCO2 below 38 mmHg, still must be 

verified by long-term growth and food conversion studies as well as with experiments assessing the 

combined effects of multiple environmental stressor. For example, hypercapnia has been shown to 

enhance nitrite toxicity in P. hypophthalamus, although the mechanism is not yet understood (Hvas et al., 

2016). Size and development are also an important factor in the ability for P. hypophthalamus to cope 

with environmental challenge. In the same study nitrite susceptibility was found to be size dependent and 

Phuong et al., 2018 showed gill surface area, potentially available for gas and ion exchange, changes 

throughout development. It would be important to understand the effects on hypercapnia on different size 

classes of P. hypophthalamus both in its effect on growth, development, and tolerance plasticity. Whether 

juveniles of P. hypophthalamus are more susceptible and early protection from hypercapnia is require, or 

if early exposure results in adaptive developmental plasticity of tolerance in adult life, as show in 

zebrafish (Danio rerio) for hypoxia tolerance (Shingles et al., 2005), would be valuable knowledge for the 

aquaculture industry. 

 

Findings from this research provide a starting point for the establishment of CO2 thresholds for regulation 

in the cultivation of P. hypophthalamus as well as other air-breathing fishes incorporated in this 

dissertation. I believe the most important implication from the comparative aspect of this work is that air-

breathing fishes are different and respond differently to environmental challenges. The diversity of 

responses shown here stem from unique natural and evolutionary histories. These comparative aspects on 

gas exchange, acid-base balance, metabolism, and response to environmental challenges in air-breathing 
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fishes have received a recent surge in attention over the past decade, as appreciation of what were once 

thought to be nuance difference between species may have important economic consequences (Lefevre et 

al., 2014). Yet what has been uncovered thus far represents only the tip of the iceberg and many future 

studies are essential for the optimization of aquaculture conditions tailored to the diversity among this 

group of fishes. Further basic and applied research is necessary to gain a fuller comprehension of these 

fascinating animals’ fundamental biology, not only for the sake of gaining insight into life on our planet, 

but also necessary for the establishment of evidence-based policies that can improve aquaculture practices 

and contribute to the ongoing success of the Blue Revolution. 

 

As the growth of the human population continues, we will be faced with the ongoing challenge of feeding 

a hungry planet and building a sustainable future. Aquaculture remains a fertile opportunity for providing 

ongoing food security, being the most efficient means of producing animal protein, (1.6 compared to 1.9 

for chickens and 8.0 for cattle), while at the same time creating the lowest carbon footprint (one seventh 

that of cattle) (FAO, 2018; Fry et al., 2018). Despite the projected 37% increase in worldwide aquaculture 

production by 2030, this growth will only cover 40% of the hike in global fish demand, driven by 

population and income growth (FAO, 2018). An assessment of Vietnam’s aquaculture industry by The 

World Bank identifies investments in R&D as the primary factor limiting this sectors further expansion 

and ability to cope with climate change (The World Bank, 2016). My hope is that work done here can to 

support these efforts, aiding in economic development, food security, reduced industry environmental 

impact, and the conservation of wild fish stocks and our natural ocean resources.  
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