UC Merced UC Merced Previously Published Works

Title

Genome sequences of four novel Endozoicomonas strains associated with a tropical octocoral in a long-term aquarium facility.

Permalink https://escholarship.org/uc/item/95v176pn

Journal Genome Announcements, 14(1)

Authors

Marques, Matilde da Silva, Daniela Santos, Elsa <u>et al.</u>

Publication Date 2025-01-16

DOI

10.1128/mra.00833-24

Peer reviewed

8 | Microbial Ecology | Announcement

Genome sequences of four novel *Endozoicomonas* strains associated with a tropical octocoral in a long-term aquarium facility

Matilde Marques,^{1,2} Daniela M.G. da Silva,^{1,2} Elsa Santos,³ Núria Baylina,³ Raquel Peixoto,⁴ Nikos C. Kyrpides,⁵ Tanja Woyke,⁶ William B. Whitman,⁶ Tina Keller-Costa,^{1,2} Rodrigo Costa^{1,2}

AUTHOR AFFILIATIONS See affiliation list on p. 4.

ABSTRACT We report the genome sequences of four *Endozoicomonas* sp. strains isolated from the octocoral *Litophyton* maintained long term at an aquarium facility. Our analysis reveals the coding potential for versatile polysaccharide metabolism; Type II, III, IV, and VI secretion systems; and the biosynthesis of novel ribosomally synthesized and post-translationally modified peptides.

KEYWORDS Chitinases, *Endozoicomonadaceae*, host-microbe interactions, coral holobiont, symbiosis, bacteria

The bacterial genus *Endozoicomonas* (*Pseudomonadota, Endozoicomonadaceae*) is a subject of increasing research interest owing to its widespread association with marine animals, particularly corals (1–4). However, *Endozoicomonas* spp. are typically difficult to cultivate and maintain in the laboratory (3, 4).

We report the genomes of four Endozoicomonas strains isolated from two Litophyton sp. specimens kept in a 19-m³ tropical exhibition aquarium at the Oceanário de Lisboa, Portugal. Host-derived microbial cell suspensions were retrieved as described previously (2). One gram of coral tissue was homogenized in 9 mL of sterile Ca2+- and Mg²⁺-free artificial seawater (2). The homogenate was serially diluted, plated separately on marine agar diluted 1:2 and R2A diluted 1:10 media, and incubated at 21°C for 4 weeks. Genomic DNA of single colonies was extracted from cultures freshly grown in 1:2 marine broth using the Wizard Genomic DNA Purification kit (Promega, USA). Purity was confirmed by Sanger sequencing of 16S rRNA genes amplified from genomic DNA using universal primers (F27 and R1492). Taxonomy assignment was performed with the SILVA Alignment, Classification, and Tree Service (v1.2.12) and database (v138.1). The same genomic DNA samples were used for genome sequencing at the DOE Joint Genome Institute (JGI) using PacBio sequencing technology (5). For each sample, genomic DNA was sheared to 6-10 kb, treated using SMRTbell Express Template Prep Kit 3.0, and purified with SMRTbell cleanup beads (PacBio). The purified product was enriched using barcoded amplification oligos (IDT) and SMRTbell gDNA Sample Amplification Kit (PacBio). A 10-kb PacBio SMRTbell library was constructed and sequenced on the PacBio Revio system using HiFi chemistry. Raw reads were quality-filtered as per the JGI standard operating practice (SOP) protocol 1061 using BBTools v.38.86 (http:// bbtools.jgi.doe.gov). Filtered reads >5 kb were assembled using Flye v2.8.3 (6). Organism and project metadata were deposited in the Genomes OnLine database (7). Contigs were annotated using the NCBI Prokaryotic Genome Annotation Pipeline (PGAP v.6.7) (8) and the DOE-JGI Microbial Genome Annotation Pipeline (MGAP v.4) (9) coupled to the Integrated Microbial Genomes and Microbiomes system v7 (IMG/M) for comparative analyses (10). Genome completeness and contamination were assessed with CheckM

Editor Elinne Becket, California State University San Marcos, San Marcos, California, USA

Address correspondence to Rodrigo Costa, rodrigoscosta@tecnico.ulisboa.pt, or Tina Keller-Costa, tinakellercosta@tecnico.ulisboa.pt.

Matilde Marques and Daniela M.G. da Silva contributed equally to this article. Author order was determined in order of increasing seniority.

The authors declare no conflict of interest.

See the funding table on p. 5.

Received 25 July 2024 Accepted 26 October 2024 Published 9 December 2024

Copyright © 2024 Marques et al. This is an openaccess article distributed under the terms of the Creative Commons Attribution 4.0 International license.

								(%)	(%) u				J	Counts ^ć				ıper		ıpeı	ıper
[°] niart2	əzis əmonəD (dM)	ور content (%)	coverage (x) Genome	Number of	Contig N50 (Mb)	Number of reads ^b	bsər əpsrəvA ^d (qd) dîpnəl	Estimated Completeness	Estimated Contaminatioi	sənəD	SDs	АИЯ	АИЯ	АИЯ	ANЯวn	coe _و	^b ms19	JnsBn9D nun noizzecce	ARS accession r9dmun	Bioproject mun noizzezze	alqmszoið nun noizzecce
NE35	5.5	49.0	187.0	4	5	1,788,957	10,318±	99.08	4.41	4,955*	4,828*	137†	25* 25†	97* 107†	5†	3,458*	4,933*	JBEWTA000	SRR280584	IBEWTA000 SRR2805847 PRJNA10758 SAMN39945	SAMN3994
						3,242	3,193.2			4,861†	4,667†							000000	2	03	177
							9,971±												SRR2805847	2	
							3,275.8												m		
NE40	5.5	49.0	202.0	e	5.1	7,826,899 9,477	9,477±	99.14	4.19	4,947*	4,820*	137†	25* 25†	97* 107†	5†	3,458*	4,933*	JBEWTB000	SRR280587	IBEWTB000 SRR2805871 PRJNA10758 SAMN39945	SAMN3994
						10,098	2,410.7			4,849†	4,657†							000000	6	04	184
							9,290±												SRR280587	37	
							2,556.6												20		
NE41	5.5	49.0	195.0	9	5	3,594,929 10,617 ±	10,617±	99.03	4.08	4,981*	4,856*	137†	25* 25†	97* 107†	5†	3,449*	4,929*	JBEWTC000	SRR280587	JBEWTC000 SRR2805871 PRJNA10758 SAMN39945	SAMN3994
						5,045	2,883.3			4,888†	4,699†							000000	2	05	181
							10,003 ±												SRR280587	37	
							2,860.4												13		
NE43	5.5	49.0	196.0	e	5.1	4,034,152 10,290±	10,290±	99.21	4.41	4,941*	4,814*	137†	25* 25†	25* 25† 122* 107† 5†	t 5 t	3,463*	4,939*	JBEWTD000	SRR280587	JBEWTD000 SRR2805871 PRJNA10758 SAMN39945	SAMN3994
						6,017	2,785.9			4,855†	4,667†							000000	7	90	185
							9,884±												SRR280587	37	
							2,807.1												18		
^a All str specim	ains report en on R2A	^a All strains reported in this stue specimen on R2A 1:10 medium.	study havı ım.	e been iso	lated from	the octocor	al host <i>Li</i>	itophyton sl	o. Strains	NE35, NE	41, and N	E43 were	isolated f	rom the s	ame speci	men on N	1A 1:2, wh	ereas strain	NE40 was	^A All strains reported in this study have been isolated from the octocoral host <i>Litophyton</i> sp. Strains NE35, NE41, and NE43 were isolated from the same specimen on MA 1:2, whereas strain NE40 was isolated from a second specimen on R2A 1:10 medium.	m a secon
polleV ^d	s per run or	n two differ	ent SMRT	rells. SRA ¿	arressions .	^b Values per run on two different SMBT cells_SRA accessions are provided per	herrun														

^bValues per run on two different SMRT cells. SRA accessions are provided per run. ^cAnnotation was performed using the DOE-JGI Microbial Genome Annotation Pipeline (MGAP v.4) (*) and the NCBI Prokaryotic Genome Annotation Pipeline (PGAP v.6.7) (†). ^dAnnotation files are publicly accessible on Zenodo (https://doi.org/10.5281/zenodo.13863125).

 TABLE 1
 General sequencing statistics and genome features of the Endozoicomonas sp. reported in this study

Pfam ID	Description	NE35	NE40	NE41	NE43
pfam00728	Glycosyl hydrolase family 20 (beta-N-acetylhexosaminidase)	1	2	1	1
pfam01915	Glycosyl hydrolase family 3 (glycoside hydrolase)	5	5	5	5
pfam17167	Glycosyl hydrolase 36 superfamily (chitobiose phosphorylase)	2	2	2	2
pfam03644	Glycosyl hydrolase family 85 (GH18 chitinase-like)	1	1	1	2
pfam00703	Glycosyl hydrolases family 2 (beta-galactosidase)	4	4	4	4
pfam04616	Glycosyl hydrolases family 43 (arabinase)	2	2	2	2
pfam00182	Chitinase class I (GH19 chitinase)	1	1	1	1
pfam01832	Mannosyl-glycoprotein endo-beta-N-acetylglucosaminidase	1	1	1	1
pfam01522	Polysaccharide deacetylase	4	4	4	4
pfam02302	PTS system, Lactose/Cellobiose specific IIB subunit	2	2	2	2
pfam09614	CRISPR-associated protein (Cas_Csy2)	1	1	1	1
pfam09615	CRISPR-associated protein (Cas_Csy3)	1	1	1	1
pfam09618	CRISPR-associated protein (Cas_Csy4)	1	1	1	1
pfam01527	Transposase	2	2	2	2
pfam13007	Transposase C of IS166 homeodomain	7	7	7	7
pfam01609	Transposase DDE domain	12	12	12	12
pfam05157	Type II secretion system (T2SS), protein E, N-terminal domain	2	2	2	2
pfam00482	Type II secretion system (T2SS), protein F	3	3	3	3
pfam00263	Bacterial type II and III secretion system protein	4	4	4	4
pfam00437	Type II/IV secretion system protein	6	6	6	6
pfam08988	Type III secretion system, cytoplasmic E component of needle	1	1	1	1
pfam18269	T3SS EscN ATPase C-terminal domain	2	2	2	2
pfam11104	Type IV pilus assembly protein PilM	1	1	1	1
pfam05638	Type VI secretion system effector, Hcp	4	4	4	4
pfam04717	Type VI secretion system/phage-baseplate injector OB domain	4	4	4	4
pfam00812	Ephrin	1	1	1	1
COG ID	Description				
COG0666	Ankyrin repeat	6	6	6	6
COG0457	Tetratricopeptide (TPR) repeat	11	11	11	11
COG0790	TPR repeat	2	2	2	2
COG2319	WD40 repeat	1	1	1	1
COG2356	Endonuclease I	1	1	1	1
COG0648	Endonuclease IV	2	2	2	2
COG0778	Nitroreductase	4	4	4	4
COG1566	Multidrug resistance efflux pump	1	1	1	1
SM-BGCs	Description				
RiPP-like	Ribosomally synthesised and post-translationally modified peptides	3	3	3	3
Arylpolyene	Aryl polyene	1	1	1	1
Aryipolyene		1		1	1

FIG 1 Presence and abundance of select functional features of the *Endozoicomonas* sp. genomes described in this study. Values of each entry represent the numbers of coding sequences assigned to Pfam (top) and COG (middle) functions per genome (https://doi.org/10.5281/zenodo.13863125), and the number of SM-BGCs (bottom) coding for major compound classes identified with antiSMASH v.7.0 (https://doi.org/10.5281/zenodo.13683288).

(v1.2.3) (11). AntiSMASH v7.1 (12) was used to identify secondary metabolite biosynthetic gene clusters (SM-BGCs). Default parameters were used for all software, unless otherwise specified.

Sequencing statistics and genome features are shown in Table 1. Average nucleotide identities (ANIs), calculated with FastANI v0.1.3 on KBase (13, 14), among strains NE35, NE40, NE41, and NE43, were above 99.9% in all pairwise comparisons. All four strains shared approximately 89.3% ANI with their closest relative, as determined by phylogenomics, including all *Endozoicomonas*-type strains with a publicly available genome: *Endozoicomonas gorgoniicola* $PS125^{T}$ (GCA_025562715), also isolated from an octocoral (15).

All four genomes encode several glycoside hydrolases, featuring chitinase, polysaccharide deacetylase, N-acetylglucosaminidase, and beta-galactosidase-encoding genes, congruent with the emerging view of complex carbon metabolism among *Endozoicomonadaceae* spp. associated with marine invertebrates (16–18). Multiple protein domains underlying Type II, III, IV, and VI secretion systems were predicted to be encoded in all genomes. Additionally, three CRISPR–Cas antiviral defense systems, several eukaryoticlike repeat protein motifs, and the potential to synthesize putatively novel ribosomally synthesized and post-translationally modified peptides, among other natural products, were encoded (Fig. 1).

ACKNOWLEDGMENTS

This study was financed by the "Blue Bioeconomy Pact" (Project N°. C644915664-00000026), co-funded by Next Generation EU European Fund, under the incentive line "Agendas for Business Innovation" within Funding Scheme 5-Capitalization and Business Innovation of the Portuguese Recovery and Resilience Plan (RRP). Further support was provided by the Portuguese Foundation for Science and Technology (FCT) through the projects UIDB/04565/2020 and UIDP/04565/2020 of iBB and the project LA/P/0140/2020 of i4HB. Sequencing, assembly, and annotation of the four Endozoicomonas sp. genomes were performed at the Joint Genome Institute (JGI) as part of the Genomic Encyclopedia of Type Strains, Phase V (KMG-V): Genome sequencing to study the core and pangenomes of soil and plant-associated prokaryotes. The work (proposal: 10.46936/10.25585/60001079) conducted by the U.S. Department of Energy Joint Genome Institute (https://ror.org/04xm1d337), a DOE Office of Science User Facility, is supported by the Office of Science of the U.S. Department of Energy operated under Contract No. DE-AC02-05CH11231. M.M. is the recipient of a PhD scholarship conceded by FCT through the MIT Portugal program (10.54499/SFRH/BD/151376/2021). D.M.G.D.S. is the recipient of a MSc grant conceded by the "Blue Bioeconomy Pact" project. T.K.-C. is the recipient of a Research Scientist contract conceded by FCT (CEECIND/00788/2017).

AUTHOR AFFILIATIONS

¹Institute for Bioengineering and Biosciences and i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal

²Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal

³Oceanário de Lisboa, Esplanada D. Carlos I, Lisbon, Portugal

⁴King Abdullah University of Science and Technology, Red Sea Research Center, Thuwal, Saudi Arabia

⁵Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA

⁶Department of Microbiology, University of Georgia, Athens, Georgia, USA

AUTHOR ORCIDs

Matilde Marques b http://orcid.org/0000-0001-9443-0893 Raquel Peixoto b http://orcid.org/0000-0002-9536-3132 Nikos C. Kyrpides b http://orcid.org/0000-0002-6131-0462 Tanja Woyke b http://orcid.org/0000-0002-9485-5637 William B. Whitman b http://orcid.org/0000-0003-1229-0423 Tina Keller-Costa b http://orcid.org/0000-0003-3702-9192 Rodrigo Costa b http://orcid.org/0000-0002-5932-4101

FUNDING

Funder	Grant(s)	Author(s)
Next Generation EU European Fund	C644915664-00000026	Rodrigo Costa
MEC Fundação para a Ciência e a Tecnologia (FCT)	UIDB/04565/2020	Rodrigo Costa
MEC Fundação para a Ciência e a Tecnologia (FCT)	UIDP/04565/2020	Rodrigo Costa
MEC Fundação para a Ciência e a Tecnologia (FCT)	LA/P/0140/2020	Rodrigo Costa
U.S. Department of Energy (DOE)	10.46936/10.25585/60001079	William B. Whitman

AUTHOR CONTRIBUTIONS

Matilde Marques, Formal analysis, Investigation, Writing – original draft, Writing – review and editing | Daniela M.G. da Silva, Formal analysis, Investigation, Writing – review and editing | Elsa Santos, Data curation, Resources, Visualization, Writing – review and editing | Núria Baylina, Data curation, Resources, Writing – review and editing | Raquel Peixoto, Conceptualization, Supervision, Writing – review and editing | Nikos C. Kyrpides, Funding acquisition, Resources, Writing – review and editing | Tanja Woyke, Data curation, Funding acquisition, Resources, Validation, Writing – review and editing | William B. Whitman, Funding acquisition, Resources, Writing – review and editing | Tina Keller-Costa, Conceptualization, Investigation, Supervision, Writing – review and editing | Rodrigo Costa, Conceptualization, Funding acquisition, Project administration, Resources, Supervision, Validation, Writing – original draft, Writing – review and editing

DATA AVAILABILITY

The genome sequences of the four *Endozoicomonas* sp. strains have been deposited in GenBank/NCBI. GenBank accession numbers are listed in Table 1. The assemblies of NE35, NE40, NE41, and NE43 are available under the BioProject accession numbers PRJNA1075803, PRJNA1075804, PRJNA1075805, and PRJNA1075806, respectively. The raw reads are available under accession numbers SRR28058472 and SRR28058473 for NE35, SRR28058719 and SRR28058720 for NE40, SRR28058712 and SRR28058713 for NE41, and under SRR28058717 and SRR28058718 for NE43. COG and Pfam annotation results on IMG/M v7 and AntiSMASH results are available under https://doi.org/10.5281/ zenodo.13863125 and https://doi.org/10.5281/zenodo.13683288, respectively.

REFERENCES

- Esteves AIS, Hardoim CCP, Xavier JR, Gonçalves JMS, Costa R. 2013. Molecular richness and biotechnological potential of bacteria cultured from irciniidae sponges in the north-east Atlantic. FEMS Microbiol Ecol 85:519–536. https://doi.org/10.1111/1574-6941.12140
- Keller-Costa T, Eriksson D, Gonçalves JMS, Gomes NCM, Lago-Lestón A, Costa R. 2017. The gorgonian coral *Eunicella labiata* hosts a distinct prokaryotic consortium amenable to cultivation. FEMS Microbiol Ecol 93:1–14. https://doi.org/10.1093/femsec/fix143
- Sweet M, Villela H, Keller-Costa T, Costa R, Romano S, Bourne DG, Cárdenas A, Huggett MJ, Kerwin AH, Kuek F, Medina M, Meyer JL, Müller M, Pollock FJ, Rappé MS, Sere M, Sharp KH, Voolstra CR, Zaccardi N, Ziegler M, Peixoto R. 2021. Insights into the cultured bacterial fraction of corals. mSystems 6:e0124920. https://doi.org/10.1128/mSystems.01249-20
- Pogoreutz C, Ziegler M. 2024. Frenemies on the reef? Resolving the coral-Endozoicomonas association. Trends Microbiol 32:422–434. https:// doi.org/10.1016/j.tim.2023.11.006
- 5. Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P, Bettman B, et al. 2009. Real-time DNA sequencing from single

polymerase molecules. Science 323:133–138. https://doi.org/10.1126/science.1162986

- Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, Clum A, Copeland A, Huddleston J, Eichler EE, Turner SW, Korlach J. 2013. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 10:563–569. https://doi.org/10.1038/ nmeth.2474
- Mukherjee S, Stamatis D, Li CT, Ovchinnikova G, Bertsch J, Sundaramurthi JC, Kandimalla M, Nicolopoulos PA, Favognano A, Chen IMA, Kyrpides NC, Reddy TBK. 2023. Twenty-five years of genomes online database (GOLD): data updates and new features in v.9. Nucleic Acids Res 51:D957–D963. https://doi.org/10.1093/nar/gkac974
- Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, Lomsadze A, Pruitt KD, Borodovsky M, Ostell J. 2016. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 44:6614– 6624. https://doi.org/10.1093/nar/gkw569
- Huntemann M, Ivanova NN, Mavromatis K, Tripp HJ, Paez-Espino D, Palaniappan K, Szeto E, Pillay M, Chen I-MA, Pati A, Nielsen T, Markowitz VM, Kyrpides NC. 2015. The standard operating procedure of the DOE-JGI microbial genome annotation pipeline (MGAP v.4). Stand Genomic Sci 10:86. https://doi.org/10.1186/s40793-015-0077-y

- Chen IMA, Chu K, Palaniappan K, Ratner A, Huang J, Huntemann M, Hajek P, Ritter SJ, Webb C, Wu D, Varghese NJ, Reddy TBK, Mukherjee S, Ovchinnikova G, Nolan M, Seshadri R, Roux S, Visel A, Woyke T, Eloe-Fadrosh EA, Kyrpides NC, Ivanova NN. 2023. The IMG/M data management and analysis system v.7: content updates and new features. Nucleic Acids Res 51:D723–D732. https://doi.org/10.1093/nar/gkac976
- Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. 2015. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25:1043–1055. https://doi.org/10.1101/gr.186072.114
- Blin K, Shaw S, Augustijn HE, Reitz ZL, Biermann F, Alanjary M, Fetter A, Terlouw BR, Metcalf WW, Helfrich EJN, van Wezel GP, Medema MH, Weber T. 2023. antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res 51:W46–W50. https://doi.org/10.1093/nar/gkad344
- Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. 2018. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 9:5114. https://doi.org/10.1038/ s41467-018-07641-9
- 14. Arkin AP, Cottingham RW, Henry CS, Harris NL, Stevens RL, Maslov S, Dehal P, Ware D, Perez F, Canon S, et al. 2018. KBase: The United States

department of energy systems biology knowledgebase. Nat Biotechnol 36:566–569. https://doi.org/10.1038/nbt.4163

- Pike RE, Haltli B, Kerr RG. 2013. Description of Endozoicomonas euniceicola sp. nov. and Endozoicomonas gorgoniicola sp. nov., bacteria isolated from the octocorals Eunicea fusca and Plexaura sp., and an emended description of the genus Endozoicomonas. Int J Syst Evol Microbiol 63:4294–4302. https://doi.org/10.1099/ijs.0.051490-0
- Keller-Costa T, Kozma L, Silva SG, Toscan R, Gonçalves J, Lago-Lestón A, Kyrpides NC, Nunes da Rocha U, Costa R. 2022. Metagenomics-resolved genomics provides novel insights into chitin turnover, metabolic specialization, and niche partitioning in the octocoral microbiome. Microbiome 10:151. https://doi.org/10.1186/s40168-022-01343-7
- da Silva DMG, Pedrosa FR, Ângela Taipa M, Costa R, Keller-Costa T. 2023. Widespread occurrence of chitinase-encoding genes suggests the *Endozoicomonadaceae* family as a key player in chitin processing in the marine benthos. ISME Commun 3:109. https://doi.org/10.1038/s43705-023-00316-7
- Jensen S, Frank JA, Arntzen MØ, Duperron S, Vaaje-Kolstad G, Hovland M. 2021. *Endozoicomonadaceae* symbiont in gills of *Acesta* clam encodes genes for essential nutrients and polysaccharide degradation. FEMS Microbiol Ecol 97:70. https://doi.org/10.1093/femsec/fiab070