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ABSTRACT OF THE DISSERTATION 
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   To understand factors that affect brain connectivity and integrity, it is beneficial to 

automatically cluster white matter (WM) fibers into anatomically recognizable tracts. Whole 

brain tractography, based on diffusion-weighted MRI, generates vast sets of fibers throughout the 

brain; clustering them into consistent and recognizable bundles can be difficult as there are wide 

individual variations in the trajectory and shape of WM pathways.  Here I propose a novel 
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automated tract clustering algorithm based on label fusion – a concept from traditional intensity-

based segmentation. Streamline tractography generates many incorrect fibers, so this top-down 

approach extracts tracts consistent with known anatomy, by mapping multiple hand-labeled 

atlases into a new dataset. Then, I fuse clustering results from different atlases, using a mean 

distance fusion scheme. To compute population statistics, I develop a point-wise correspondence 

method to match, compare, and average WM tracts across subjects. 

   The complete workflow is demonstrated in two large-scale population studies. In one study, the 

major 17 tracts were extracted from 105-gradient high angular resolution diffusion images 

(HARDI) of 198 young normal twins to show the 3-D genetic heritability profile for each tract. 

In the other study, the fornix tracts of 210 participants were segmented from the Alzheimer’s 

Disease Neuroimaging Initiative (ADNI) database to study its relationship with cognitive 

decline. 

   Besides studying the local connectivity with fiber clustering, I also investigate whole brain 

connectivity from a different perspective. Many connectivity studies parcellate the brain into 

regions and count fibers extracted between them. The resulting network analyses require 

validation of the tractography, as well as region and parameter selection. I propose a 

mathematical formulation based on studying the eigenvalues of the Laplacian matrix of the 

diffusion tensor field at the voxel level. This voxelwise matrix has over a million parameters, but 

I derive the Kirchhoff complexity and eigen-spectrum through elegant mathematical theorems, 

without heavy computation. These novel measures were used to estimate the voxelwise 

connectivity in multiple biomedical applications such as Alzheimer's disease and intelligence 

prediction.  
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CHAPTER 1 

Introduction 

   Diffusion-weighted magnetic resonance imaging (DT-MRI) (Basser et al., 1994) is a powerful 

non-invasive brain imaging technique introduced in (Le Bihan et al., 1986; Merboldt et al., 1985; 

Taylor et al., 1985). DT-MRI measures water diffusion in tissues, and provides biologically and 

clinically relevant information on white matter (WM) integrity and connectivity not available 

from other imaging modalities. It is increasingly used to study pathology and connectivity of 

WM pathways in the living brain (Thomason et al., 2011; Jahanshad et al., 2012a; Daianu et al., 

2013).  

 

   Recently, DT-MRI has been extended to more sophisticated models of local diffusion, such as 

high angular resolution diffusion imaging (HARDI) (Tuch, 2004), diffusion spectrum imaging 

(Wedeen et al., 2005), or even hybrid imaging where large numbers of angular samples are 

collected at several diffusion weightings (Zhan et al., 2011). With these imaging protocols, we 

can more accurately reconstruct fibers that mix and cross. 

 

   Tractography is a method to reconstruct the pathways of major WM fiber bundles, by fitting a 

curved path through the directional diffusion data at each voxel. Deterministic tractography 

(Mori et al., 1999; Conturo et al., 1999; Basser et al., 2000) recovers fibers emanating from a 

seed voxel by following the principal direction of the diffusion tensor or the dominant direction 

of the diffusion orientation distribution function (ODF). However, deterministic tractography has 
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limitations: it depends on the choice of initial seed points and can be sensitive to the estimated 

principal directions. To overcome those drawbacks, probabilistic tractography methods have 

been proposed (Behrens et al., 2003; Parker et al., 2003a; Aganj et al., 2011). They can be 

computationally more intensive but can be more robust to partial volume averaging effects and 

uncertainties in the underlying fiber direction, which are inevitable due to imaging noise. 

 

   Several approaches have been developed to study brain connectivity using whole-brain 

tractography. Jahanshad et al. (2011) computed a whole-brain connectivity matrix based on 

streamline tractography and anatomical parcellation. Network-based analysis of this matrix can 

identify factors that affect the interconnectedness of regions in the brain. For example, 

Ingalhalikar et al. (2013) revealed connectivity pattern differences between males and females. 

Prasad et al. (2011) applied a probabilistic WM atlas to extract major fiber bundles and 

represented them using a “maximum density” path. A mean curve was used to represent each 

bundle in each subject. Fractional anisotropy (FA) values, and other indices of diffusion, can be 

compared along this path across a population, using ‘along-tract’ statistics (Corouge et al., 2006; 

Colby et al., 2011). 

 

   Obviously it is important to accurately identify WM structures and fibers from whole-brain 

tractography. If fibers are grouped into bundles, the results can offer valuable insight on how 

disease affects the integrity of particular WM tracts (Price et al., 2007, 2008). Clustering 

methods can group fibers obtained from tractography into organized bundles or tracts, enabling 

large population studies of disease and genetic effects on tract integrity, or even tract shapes. 
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One simple yet practical strategy selects anatomically well-known WM tracts that interconnect 

anatomical regions of interest (ROIs) (Wakana et al., 2007; Zhang et al., 2010). 3-D models of 

tracts can facilitate large-scale population studies (Yushkevich et al., 2008; Brouwer et al., 

2010). Even so, the final results often need substantial manual intervention to help screen out 

false positive fibers. 

 

   Automatic fiber clustering would accelerate and empower population studies, so long as the 

results are accurate and reliable. A typical framework for fiber clustering defines a pairwise 

similarity/distance between each pair of fibers in a large set of candidate fibers, to group them 

into separate and distinct tracts. Many different fiber similarity metrics have been proposed, such 

as the mean vector and the covariance matrix of fiber points (Brun et al., 2004), the number of 

points shared within the same voxel (Jonassan et al., 2004), an associativity vector (Wang et al., 

2012), the average mean distance (Gerig et al., 2004; Xia et al., 2005; O’Donnell et al., 2006), 

Hausdorff distance (Gerig et al., 2004; Xia et al., 2005), and Mahalanobis distance (Maddah et 

al., 2008), etc. Also, various clustering algorithms have been advocated, such as hierarchical 

clustering (Gerig et al., 2004; Xia et al., 2005; Visser et al., 2010), expectation-maximization 

(Wang et al., 2012), fuzzy c-means (Li et al., 2010), k-nearest neighbors (Ding et al., 2003), 

normalized cuts (Brun et al., 2004), dual rooted graphs (Tsai et al., 2007), and spectral clustering 

(O’Donnell and Westin, 2007; Wassermann et al., 2008). 

 

   If clustering algorithms have no anatomical information to guide them, tracts may not 

correspond to any anatomically familiar subdivisions. There is also no guarantee that the same 
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basic sets of bundles will be generated again in datasets from new subjects, making it hard to 

compare results from one study to the next. Also, a user typically needs to specify the number of 

clusters or a threshold to decide when to stop merging or splitting clusters. Clustering results can 

vary drastically when different numbers of clusters are specified. “Bottom-up” methods cluster 

fibers into larger groups until major tracts are aggregated, but they may not efficiently filter out 

erroneous fibers buried in the large number of streamlines (100,000-1,000,000) generated by 

whole-brain tractography. 

 

   Recent hybrid approaches extract the well-known WM tracts using a combination of prior 

information from an anatomically-labeled atlas and similarity-based clustering. Wassermann et 

al. (2010) proposed a Gaussian process framework to generate a fiber ‘dendrogram’ and selected 

which ones to merge through a query system based on parcellated volumetric information. Li et 

al. (2010) clustered tracts via anatomical ROI guidance, and then passed them through 

similarity-based fuzzy c-means clustering. Guevara et al. (2012) implemented a two-level (intra-

subject and inter-subject) centroid-based average-link hierarchical clustering. The resulting 

clusters were manually labeled to form a multi-subject WM atlas. A new tractography data set 

was similarly segmented and the clusters were labeled using a supervised classification based on 

the atlas. 

 

   The large number of false positive fibers produced by streamline-based tractography hinders 

large population studies. An atlas-based top-down clustering method resolves this, by requiring 

that all subjects’ WM tracts fall within a pre-defined set of shapes or regions. Even so, an atlas 
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based on one individual subject’s anatomy is not sufficient to capture the variability of individual 

WM tracts. One classical solution is called multi-atlas labeling or label fusion. This has 

commonly been applied to label brain structures on standard anatomical MRI (Rohlfing et al., 

2004; Hackemann et al., 2006; Lotjonen et al., 2010; Sabuncu et al., 2010; Chou et al., 2007, 

2008, 2009). 

 

   In traditional image segmentation, a deformable atlas may be used, in which an atlas is non-

rigidly registered to the image to be labeled. The resulting deformation may then be used to map 

the training labels onto the new image. Multiple atlases and registrations may also be used to 

transfer multiple training labels to the new subject’s space. The final labeling can be obtained by 

applying a weighting approach to the labels transferred from different atlases. Label fusion has 

two advantages: 1) it is easier to accommodate large individual variations in anatomy if one does 

not have to rely on a single atlas; 2) multiple registrations improve robustness against occasional 

registration failures and non-global minima of the registration cost function. The same idea can 

also improve voxel-based or tensor-based morphometry (Leporé et al., 2008b). 
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CHAPTER 2 

Fiber Alignment and Spectral Clustering 

   Before I introduce the multi-atlas label fusion clustering technique, I would like to present my 

preliminary work about how 3-D elastic registration improves fiber alignment and automated 

spectral clustering. 

 

2.1 Introduction 

   A typical framework for spectral clustering is first to define a similarity metric (commonly 

based on distance) and a similarity matrix between all pairs of fibers. The eigenvectors of this 

similarity matrix are calculated. Finally, a clustering algorithm - for example,  -means - 

classifies the fibers in the spectral space spanned by the first   eigenvectors (  is the cluster 

number, usually defined manually). Some classic clustering work has been presented by 

O’Donnell and Westin (2007) and Wassermann et al. (2008). 

 

   It is highly desirable to cluster fiber tracts into groups consistently in a large population study. 

An open question, which we address here, is whether this clustering is more successful when 

fibers have already been pre-aligned across subjects, via deformable image registration. For all 

of the clustering methods mentioned above, diffusion-weighted images are usually only linearly 

registered across subjects (O’Donnell and Westin, 2007; Ziyan et al., 2012). Surprisingly, non-

rigid registration is rarely used before clustering. Here we use a variety of distance and overlap 
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metrics to test whether non-rigid (3-D elastic) registration of diffusion data can improve the 

alignment of embedded tracts. We also assess, in turn, whether the improved fiber alignment 

may facilitate clustering. The overall goal of this work is to improve the power of multi-subject 

analysis of diffusion imaging data, and improve the automation of large-scale tract-based studies. 

 

2.2 Methods 

2.2.1 Subjects and Image Acquisition 

   High angular resolution diffusion imaging (HARDI) images were acquired as part of a larger 

study of 374 young adults with a 4 Tesla Bruker Medspec MRI scanner. T1-weighted images 

were acquired with an inversion recovery gradient echo sequence with parameters: 

T1/TR/TE=700/1500/3.35 ms, flip angle=8°, slice thickness=0.9mm, and a 256x256x256 

acquisition matrix. HARDI images were acquired by single-shot echo planar imaging with 

parameters: TR/TE=6090/91.7ms, 23cm FOV, and a 128x128x55 acquisition matrix. Axial slice 

thickness =1.79mmx1.79mmx2mm. 105 volumes of images were acquired for each subject: 11 

with no diffusion sensitization, that is, T2-weighted b0 volumes and 94 diffusion-weighted 

volumes (b = 1159 s/mm
2
). As they were recruited for a large genetic study, the subjects were 

120 young adult monozygotic twins, 90 same-sex dizygotic twins, and 164 mixed-sex dizygotic 

twins. The genetic aspects were not pursued in this paper, so the subjects were just treated as 

individuals. All subjects were right-handed and had no history of head injury or mental illness. 
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2.2.2 Registration 

Image registration was conducted in four steps (Jahanshad et al., 2010): 

   Step I: Each subject’s anatomical T1-weighted image and set of HARDI images were linearly 

aligned to the Colin27 high-resolution single-subject template (Holmes et al., 1998). 

 

   Step II: After eddy current correction with FSL software (http://fsl.fmrib.ox.ac.uk/fsl/), the 

voxel-wise average of each subject’s 11 b0 images was elastically registered to the same 

subject’s aligned T1-weighted images using inverse-consistent elastic registration (Leow et al., 

2007). This step used mutual information as a cost function for an elastic deformation model 

implemented using the spectral method (Fast Fourier Transform). To correct for EPI-related 

distortions, the resulting 3-D deformation fields (which had a 32x32x32 resolution in the 

frequency domain) for each subject were applied to the rest of the 94 HARDI volumes. 

Following EPI distortion correction, fractional anisotropy (FA) was computed from the 105-

gradient HARDI images using FSL. The rest of the registration steps used distortion-corrected 

FA images. 

 

   Step III: We created a geometrically-centered, minimal deformation target (MDT) from a 

randomly selected set of 32 subjects’ FA maps using a nonlinear viscous fluid registration 

(Leporé et al., 2008a), which allows large deformations without causing singularities in the 

deformation field (i.e., regions of non-positive Jacobian determinant). All the FA images of each 

subject were then registered to the MDT by elastic registration (Leow et al., 2007). The resulting 

http://fsl.fmrib.ox.ac.uk/fsl/
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finer-scale 64x64x64 resolution deformation fields were used to align all subjects’ FA images 

into the same coordinate space. 

 

   Step IV: Finally, to better align white matter regions of interest, the MDT and each subject’s 

FA images were thresholded to include only the regions where FA>0.25. Individual thresholded 

FA images were once again registered to the thresholded MDT, using a third set of 3-D 

64x64x64 resolution deformation fields. We found in our prior work (Jahanshad et al., 2010) that 

this iterative registration process leads to good alignment of FA maps for statistical studies. 

 

2.2.3 Tractography 

   We then performed whole-brain tractography with a global probabilistic approach that uses the 

Hough transform as a voting procedure (Aganj et al., 2011). We first generated a large number 

of initial seed points inside the brain. From each initial point, as many passing curves as possible 

were considered (this could depend on the data resolution and available computational 

resources). A score was assigned to each curve based on the normalized and dimensionless 

orientation distribution function (ODF) estimator in q-ball imaging (Aganj et al., 2010), and also 

considering the FA along the path. Curves with the highest scores were picked as the fibers that 

passed through each seed point. We extracted fibers for each subject from the linearly aligned 

HARDI images (after step I in Section 2.2.2) and saved the coordinate points of each fiber in a 

text document, as a look-up table for later nonlinear alignments. 
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2.2.4 Spectral Clustering 

   We used the spectral clustering method described in (von Luxburg, 2007). A similarity matrix 

(the fiber similarity) was constructed based on the distances between fibers. We used the metric 

in (O’Donnell and Westin, 2007) to calculate the distance between fibers   and  . First, we found 

the closest point on fiber   for each point on fiber   and stored the distance. The distance was 

averaged after computing distances from all the points on fiber  . We denote it as    . Spectral 

clustering requires a symmetric matrix. Therefore, we took the average of the directed distances 

    and    .As a result, the distance between two fibers became undirected. Then, a Gaussian 

kernel was applied to convert the distance to a similarity measure              
     .   

determines the range of distances over which fibers may be considered similar. We chose      

voxels, for this study. 

 

   An astronomical number of fibers are available when performing multi-subject clustering. To 

shorten the computation time, we defined a neighborhood (e.g., 5 voxels) around the coordinate 

points along a fiber. We only calculated the distances between the fibers that crossed this 

neighborhood of the specified fiber. Other fibers were classified as having no connection with 

this particular fiber. Next, a normalized graph Laplacian matrix was created, defined as    

               , where   is the identity matrix and   is a diagonal matrix, whose diagonal 

elements are the sum of each row of    . By manually setting the cluster number  , the first   

generalized eigenvectors of        were computed. 
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   Finally, the  -means algorithm was used to cluster the points (which represent individual 

fibers) in the space spanned by the   eigenvectors. Figure 2-1 shows an example clustering 

result when      by running the algorithm as described above. 

 

Figure 2-1. A representative result of spectral clustering in 4-Tesla 105-gradient HARDI data 

from one individual subject (with      clusters). Each cluster is labeled with a separate color. 

Top and side views of the brain are shown. Several major tracts are evident, including the forceps 

major, which runs through the splenium of the back of the corpus callosum (green), and the 

fibers running in the callosal genu (light blue). 

 

2.2.5 Non-rigid Fiber Warping 

   Before performing multi-subject clustering, we also warped the fibers from all subjects by 

applying the deformation fields generated in Section 2.2.2. We applied all deformation mappings 

in sequence through tri-linear interpolation. An illustration is shown in Figure 2-2. 
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2.2.6 Evaluation 

   Two metrics were selected to evaluate the performance of non-rigid image registration on fiber 

alignment. We used the mean distance between the “corresponding” fibers of the two subjects 

and the percentage of the fibers that had a “better match” after warping. The “corresponding” 

fibers refer to the two individual fibers in each of two different subjects with the shortest distance 

between each other. The fiber distance is defined as the mean of the distances from the 

coordinate points over one curve to the nearest points on the other curve. It is symmetrized by 

taking the average of two directed distances between the two curves. This is detailed in Section 

2.2.4. These corresponding fibers do not necessarily form part of an overall one-to-one mapping 

of all the fibers between the two subjects. We calculated the mean distance of all the 

corresponding fibers within these two subjects and used it as an index of registration quality. A 

“better match” means that a closer corresponding fiber from the other subject is found for a 

particular fiber in one subject. 

 

   To evaluate how fiber warping affected the population clustering, we calculated overlap 

percentages for the fibers within the same clustered bundle (e.g., the forceps major which runs 

through the posterior region of the corpus callosum) using different neighborhood sizes for the 

group clustering. The overlap percentage is defined as 100 times the following fraction 

                                                             

                                                             
  

where nbhd   and   are the neighborhoods (e.g., 5-voxel neighborhoods) used to compute the 

similarity matrix in Section 2.2.4. Presumably, different neighborhood sizes will produce 
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different clustering results. The overlap percentages before and after warping were compared 

(see Section 2.3.2) to assess how stable the population clustering results were after fiber 

warping. 

 

Figure 2-2. Two “corresponding” fibers are shown (blue colors, top left; “corresponding” is 

defined in Section 2.2.6). These are then warped, step by step, through the three deformation 

fields generated in the registration step. 

 

2.3 Results 

   To make computations easier, two groups, with a total of 20 subjects were selected from the 

HARDI database of 374 subjects to perform a sample population clustering analysis. Ten 

subjects were randomly selected and the other ten were those whose deformation fields in the 

registration step had the greatest magnitude on average across the brain. There were no twin 
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pairs within either group to avoid any genetic influence (artificial resemblance) in the warping 

results. 

 

2.3.1 Fiber alignment 

   In Table 2-1, quantitatively, we show that fiber alignment is indeed improved after using the 

information from 3-D elastic image registration. For each subject, we first calculated the average 

distances between “corresponding” fibers (defined in Section 2.2.6) with every other subject in 

the population of each group, and then took the mean of these average distances within a group 

as group mean distance (G.M.D.). We calculated it both before and after warping. We also 

counted the percentages of “better matched” (also defined in Section 2.2.6) fibers after warping 

between that subject and every other subject. Next, a group mean of these percentages was taken 

as the mean better matched fiber (B.M.F.) percentage for that group. As a result, the G.M.D. 

between corresponding fibers from one subject to the others was shortened from 2.44 voxels to 

2.05 voxels, giving a p-value of 2.14x10
-8

 in a paired t-test. These statistics were derived for the 

randomly selected group – a significant 16% improvement. We also analyzed results for the 

subjects with the greatest anatomical deviation from the mean template, as computed from the 

deformation maps. For this “most highly deviating” group the G.M.D. dropped from 2.89 voxels 

to 2.27 voxels with a p-value 2.27x10
-7

, according to a paired t-test. Interestingly, a p-value 

9.95x10
-4

 in a separate t-test between the improvements in the two groups indicated that elastic 

fiber warping was more helpful for the set of subjects whose images deviated more. This is in 

line with common sense: the method is genuinely better aligning tracts in those with greater 

initial deviations. On average, the majority of fibers were better aligned (i.e., found a B.M.F. in 
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another subject) after non-rigid warping in both the randomly selected subgroup (by 70%) and 

the “most highly deviating” group (by 73%). 

   To visualize these effects, Figure 2-3 shows the same fibers for all ten subjects in the most 

anatomically deviating group in a particular cluster before and after elastic warping. Clearly, the 

overall path of the fiber set is “tidier”, after warping, and more obviously clustered. 

 

Table 2-1. Mean fiber matching distances and the percentages of better matched fibers (after 

versus before warping) from one particular subject to the rest of the sample population. 

Group 

G.M.D.
1
 between corresponding 

fibers (voxel) 
 Improv-ed Pct. 

of G.M.D. 

Group Mean 

B.M.F.
2
 Pct. 

Pre-warp Post-warp 
p-value of  

t-test 

Randomly 

Selected Subjects 
2.44 2.05 2.14x10

-8
 16% 70% 

Most Highly 

Deviating 

Subjects 

2.89 2.27 2.27x10
-7

 21% 73% 

1
 G.M.D. = Group Mean Distance 

2
 B.M.F. = Better Matched Fibers 
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Figure 2-3. The same fibers of all 10 subjects in the most anatomically deviating group in one 

cluster are shown, before (left) and after (right) 3-D elastic warping. 

 

2.3.2. Clustering Robustness 

   The overlap percentages (defined in Section 2.2.6) for the fibers belonging to the forceps 

major - which travels through the posterior region of the corpus callosum - were calculated for 

different neighborhood sizes. The neighborhood size is a free parameter needed to compute the 

similarity matrix for clustering. Taking the 2.5-voxel neighborhood as a reference, we compared 

it to other neighborhood sizes, by assessing the overlap percentages for each subject from the 

population clustering results. The mean across the group and the p-values of the paired t-tests 

assessing improvements due to warping are shown in Table 2-2. For both groups, we saw 

significant improvements based on the p-values. Therefore, fiber warping does generate more 

robust results, even when different parameters are used in the clustering algorithm. 
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   Figure 2-4 shows the forceps major bundle in the posterior region of corpus callosum in a 

representative subject, before and after elastic fiber warping. 

 

 
Figure 2-4. Top views of fibers clustered as the forceps major at the back of corpus callosum, 

using different neighborhood sizes in the spectral clustering method. Arrows point to the regions 

with different levels of consistency in clustering results with and without fiber warping. 
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Table 2-2. The mean overlap percentages of fibers in the forceps major in the posterior region of 

the corpus callosum, when different neighborhoods were used to compute the similarity matrix 

used for clustering (the 2.5-voxel neighborhood was considered as the reference). 

Group 

Mean Overlap Percentage 

5 vs. 2.5-voxel neighborhood 8 vs. 2.5-voxel neighborhood 

Pre-warp Post-warp Pre-warp Post-warp 

Randomly Selected Subjects 58% 68% 51% 62% 

p-value of t-test 1.18x10
-6

 9.59x10
-9

 

Most Highly Deviating Subjects 93% 96% 69% 95% 

p-value of t-test 0.026 2.67x10
-6

 

 

2.4 Discussion 

   In this preliminary work, we showed that the information obtained from nonlinear registration 

of HARDI may be used to improve fiber alignment for clustering in multi-subject studies. 

Improved fiber alignment can lead to more robust clustering, even under reasonable variations in 

the algorithm parameters. 

 

   The spatial resolution of the deformation fields in this work was lower than the image 

resolution, which made interpolation necessary to calculate the fiber positions after warping. In 

future, we will assess whether fiber alignment would be further improved by running the elastic 

registration on a finer computational grid. This would avoid interpolation, and may align features 

more precisely. The spatial regularity of the applied deformation field is also relevant, and 
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higher-dimensional registrations are not necessarily better. With higher frequency warping, a 

fiber may become increasingly twisted. This may eventually adversely affect the curvature and 

smoothness of the original fiber. In the future, we will investigate whether higher-dimensional 

deformations, with higher spatial frequencies, would further improve fiber alignment, or whether 

there is an optimal intermediate trade-off. 

 

   In this work, we only took advantage of information obtained by registering scalars derived 

from the diffusion tensor images, which typically have lower resolution than T1-weighted 

images. Naturally, registration based on a combination of both HARDI and T1-weighted images 

may further improve fiber alignment (Studholme et al., 2007). Nevertheless, based on our work, 

non-rigid fiber warping seems to be a beneficial step before performing clustering in population 

studies. 
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CHAPTER 3 

Multi-atlas Label Fusion Clustering 

3.1 Overview 

   Here we extend label fusion to fiber clustering and introduce a multi-atlas framework to 

automatically extract anatomically meaningful white matter (WM) tracts. First, whole-brain 

tractography was generated, as a basis to perform clustering (Section 3.2). Then, we manually 

constructed a number of WM fiber tract atlases, consisting of several major WM tracts. The 

regions of interest (ROIs) of a single-subject standard template were warped to our manual 

atlases through registration and the tracts were extracted using a look-up table and manually 

edited (Section 3.3). In contrast to prior “bottom-up” methods, we used the WM tracts in 

multiple hand-labeled atlases as prior anatomical information. To cluster tracts in a new subject, 

the corresponding tracts from our manual atlases were warped to that subject’s space and a 

multi-level fiber clustering scheme was applied to label the tracts (Section 3.4). Our “top-down” 

approach transfers tract labels by selecting only fibers similar to the corresponding tracts in the 

atlases, based on a similarity measure. This eliminates many false positive fibers hidden in the 

~1,000,000 fibers per subject produced by streamline tractography. Multiple atlases adapt to the 

variability of tract shapes in new subjects. This reduces the number of outliers and picks fibers 

that can be incorrectly omitted when registering a single atlas to the whole-brain tractography in 

a new subject. Finally, we used label fusion to combine the clustered results from individual 

atlases (Section 3.5). These steps are summarized in Figure 3-1. 
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Figure 3-1. Flow chart of steps in our fiber clustering framework. (1) Manual WM atlases were 

constructed through warped ROI extraction from a standard template; (2) A multi-level fiber 

clustering scheme was used to label tracts in new subjects; (3) Final results were created by 

fusing individual results from step (2). 

 

3.2 Tractography 

   We performed whole-brain tractography with Camino (http://cmic.cs.ucl.ac.uk/camino/), an 

open source software package that uses either streamline or probabilistic methods to reconstruct 

fiber paths. It uses a spherical harmonic (SH) representation to represent the diffusion orientation 

distribution functions (ODF); this can be more robust to noise and may even be more accurate 

for detecting fiber crossings than the original numerical q-ball reconstruction method 

(Descoteaux et al., 2007). Explicitly, the SH basis may be expressed as follows: 

http://cmic.cs.ucl.ac.uk/camino/
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       √

            

        
  

                                               (3.1) 

where    denotes the order,   denotes the phase factor,   [   ],   [    ], and   
  is an 

associated Legendre polynomial. Signal at each gradient direction may be approximated as a 

linear combination of a modified version of this SH basis. We used the 6th order ( =6) SH series 

to reconstruct ODF for our high angular resolution diffusion imaging (HARDI) data and a 

maximum of 3 local ODF maxima (where fibers mix or cross) were set to be detected at each 

voxel. 

 

   Next, we performed fiber tracking with a probabilistic algorithm, called the ‘Probabilistic 

Index of Connectivity’ (PICo) (Parker et al., 2003b), in Camino. At first, we created a simulated 

data set for diffusion probability density function (PDF) calibration, based on the signal-to-noise 

ratio of our dataset. Then, based on different diffusion distribution uncertainty models (Bingham 

or Watson), simulated data was reconstructed to generate a look-up table, which was in turn used 

to produce the PDF estimates of the actual data from the derived local ODF maxima. Seed points 

were chosen at those voxels whose fractional anisotropy (FA) values were greater than 0.4. 

Monte Carlo simulation was used to generate fibers proceeding from the seed points throughout 

the entire brain. Streamline fiber tracing followed the voxel-wise PDF profile with the Euler 

interpolation method for 10 iterations per each seed point. The maximum fiber turning angle was 

set to 40°/voxel, and tracing stopped at any voxel whose FA was less than 0.2. 
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3.3 White Matter Tract Atlas Construction 

   We randomly selected five subjects (none were members of the same twin pair, three males 

and two females) from our HARDI data set (see Chapter 4 for details) and constructed WM 

tract atlases. In this context, atlas means a hand labeled representation of the fibers in a subject. 

The FA images of all the atlases were registered to a single-subject template called the “Type II 

Eve Atlas” (a 32-year old healthy female) (Oishi et al., 2009). The entire brain of the “Eve” 

template was parcellated using 130 bilateral ROIs (Zhang et al., 2010). 

 

   The labeled template ROIs were re-assigned to the five registered atlases, respectively, by 

warping them with the deformation fields generated by Advanced Neuroimaging Tools (ANTs) 

(Avants et al., 2008, http://picsl.upenn.edu/software/ants/). Fibers that traversed the ROIs were 

extracted according to the look-up table in Zhang et al. (2010). For example, the corticospinal 

tract was extracted from fibers passing between the precentral gyrus and the cerebral peduncle. 

Finally, each tract was manually edited to remove visible outliers. We rounded the floating point 

coordinate locations along a fiber to the location of the closest voxel. For a given tract, there is a 

certain set of ROIs that it is expected to intersect – this may be two or more. If any of the fiber’s 

discrete lattice points fell into the ROI, we would consider that this fiber traversed the ROI; 

otherwise, it didn’t. A fiber must traverse all the required ROIs for a given tract to be considered 

as a candidate member of that tract, or it will be discarded. There was no ambiguity in deciding 

whether a fiber belonged to a tract or not, because it was counted as traversing the set of 

expected ROIs or not. 

 

http://picsl.upenn.edu/software/ants/
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   Currently, each atlas is comprised of 17 major WM tracts: left (L) / right (R) corticospinal tract 

(CST), L/R anterior thalamic radiation (ATR), L/R cingulum (CGC), L/R inferior fronto-

occipital fasciculus (IFO), L/R inferior longitudinal fasciculus (ILF), L arcuate fasciculus (part of 

the superior longitudinal fasciculus) (ARC), and six segments of the corpus callosum – 

projecting to both frontal lobes (CC-FRN), precentral gyri (CC-PRC), postcentral gyri (CC-

POC), superior parietal lobes (CC-PAR), temporal lobes (CC-TEM), and occipital lobes (CC-

OCC) (Hofer et al., 2006). We did not include the right arcuate fasciculus as not all subjects had 

this tract in its entirety (Catani et al., 2007), and that would have made statistical analysis 

difficult. Figure 3-2 shows all 17 WM tracts that we created and views of overlaid tracts from 

different angles (back, left side, and bottom views). 
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Figure 3-2. A representative WM fiber atlas computed, and manually edited, from 4-Tesla 105-

gradient HARDI data, showing the 17 major tracts. We created these, with manual editing, in 5 

subjects and propagated the tracts into new subjects. The tracts on the left side and the corpus 

callosum segments are viewed from the left, while the tracts on the right are viewed from the 

right. Back, left side, and bottom views of tract overlays are shown in the middle of the figure. 

 

3.4 Multi-level Fiber Clustering 

   For each test subject (i.e., each new data set to be labeled), whole-brain tractography was 

extracted using Camino as well. We designed a multi-stage fiber clustering scheme to pick out 

appropriate candidate fibers for each tract. 

 



26 

3.4.1 Length-based Clustering 

   Image noise and limits in image resolution cause whole-brain tractography to generate many 

implausible short-length streamlines. All of our target fiber bundles are major tracts, so it was 

reasonable to assume that no component fiber is shorter than 35 mm. Streamlines shorter than 

this were removed. Of course this leads to some arbitrary limit in the types of tracts surveyed, 

and we have to concede that some true short fibers may be suppressed as well as many false 

ones.  

 

3.4.2 ROI-based Clustering 

   The labeled “Eve” template ROIs were re-assigned to the subjects in our data set with the 

ANTs registration. Fibers that did not traverse the ROIs for a particular tract were removed. This 

reduced the number of detected fibers from around a million to a few hundreds or thousands of 

fibers of interest. 

 

   A few previous studies showed reliable and reproducible clustering results with either manual 

ROI placement (Wakana et al., 2007) or automated placement (Zhang et al., 2010). In our 

workflow, this step was also helpful to ease the computation when further refining the results in 

the next step (Section 3.4.3). With the automated ROI placement, we could effectively reduce 

the number of fibers of interest for a particular tract. Since it was a standard procedure 

consistently applied to all the subjects in our dataset, it established a basis to compare subjects 

for population studies. 
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3.4.3 Distance-based Clustering 

   After applying ROI constraints and the filters above, most of the short and obviously erroneous 

fibers were removed. To eliminate the remaining false fibers (see Figure 3-3) we implemented a 

geometry-based clustering algorithm to select only those streamlines whose shapes and locations 

were similar to those of manually constructed WM atlases in Section 3.3. 

 

   First, we registered the test subject’s FA image to the FA image of each tract atlas using ANTs. 

Each atlas’s tracts were then warped to the subject space with the corresponding deformation 

fields generated from the FA registration. 

 

   We defined a fiber distance metric to decide the subject’s fibers that should be included in any 

individual warped atlas tract. For any pair of fibers  
 
 and  

 
, we defined the symmetric 

Hausdorff distance (Gerig et al., 2004):  

  ( 
 
  

 
)                                                                        (3.2) 

where     is the asymmetric Hausdorff distance. 

   (     )         
       

                                                     (3.3) 

      is the Euclidean norm and the ordered pair ( 
 
  

 
) indicates an asymmetric distance from  

 
 

to  
 
.  ’s and  ’s are the coordinate points along fibers  

 
 and  

 
, respectively. 
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   Initial fuzzy fiber labeling based on each individual atlas was performed simply by aggregating 

fibers passing within a neighborhood of each atlas fiber, and setting the appropriate label. Figure 

3-3 illustrates how the right corticospinal tract is parsed out from the original whole-brain 

tractography following the multi-level fiber clustering steps. 

 

3.5 Fiber Label Fusion 

   We chose the Hausdorff distance metric for the fiber clustering phase to select only streamlines 

with similar geometric shapes, and lying in the same region as the atlas tracts. However, due to 

the WM variability of individual atlases, different atlases may ‘nominate’ different candidates. 

We extended the well-established label fusion concept from traditional structural image 

segmentation to the WM fiber space. We defined a mean fiber distance to rank the fibers 

nominated by individual atlases. For each fiber, the mean fiber distance was defined as: 

      
∑    ∑                         

 
                                          (3.4) 

where    is the Hausdorff distance between an unlabeled subject’s fiber and the i-th atlas, 

        is the empirical cutoff threshold chosen in Section 3.4.3,      is the upper bound 

Hausdorff distance within which a subject fiber can be possibly considered a candidate for a 

given tract, and   is the number of atlases. We ranked all the candidate fibers from different 

atlases based on their      ’s. The smaller its      , the higher its rank. For each particular 

tract, a fusion percentage was defined to include fibers whose      ’s were among the top 
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specified percentage. For example, if we set the fusion percentage as 90%, this means that we 

keep 90% fibers whose ranks are among the top 90% according to their      ’s and throw away 

the rest. 

 

Figure 3-3. Here we show how many of the streamlines generated by the original tractography 

are filtered to form the corticospinal tract, step by step, through multi-level fiber clustering. 

 

3.6. Results 

3.6.1. Cluster Visualization 

   Figure 3-4 shows how we obtained one example tract - the left arcuate fasciculus - in a test 

subject – a new subject whose scan was not used to create the fiber atlases. The first row shows 

the atlas (hand-labeled) versions of the tract. The second row shows the different candidates for 

this tract in the same test subject, based on using each atlas to decide which fibers it should 

contain (Section 3.4.3). The final result for this tract was obtained by applying the label fusion 

scheme in Section 3.5. It is not hard to see that the label fusion process can help to eliminate 
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outliers, and it can also add missing fibers to a single candidate labeling of the tract. A manually 

edited segmentation result is also included for comparison (see the right bottom panel). 

 

Figure 3-4. Label fusion result obtained from the five manually labeled atlases for the left 

arcuate fasciculus (in blue) in a test subject (viewed from the left). A manual segmentation is 

included for comparison at the bottom right. 

 

   Figures 3-5 and 3-6 show the label fusion results for the 17 segmented tracts in four randomly 

selected subjects. Despite individual variations, the overall tract shapes are consistent across the 

population. Figure 3-7 shows the combined WM fiber clustering results for the four test 

subjects. The types of tracts and their colors are as in Figure 3-2. The average fiber number in 

our full set of clustering results is ~40,000 per subject, or roughly 1/10th of the fibers from the 
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initial tractography. There are three factors that affect how many fibers are included in the final 

results. First, in this work, we mainly focused on 17 major anatomically well-known white 

matter tracts. Therefore, only those tracts are shown in Figure 3-7. Many other less-known tracts 

are not shown and could be added in future work, although it might be more challenging to 

reliably find smaller tracts in the mix of all the other major pathways. Second, streamline whole-

brain tractography generates large numbers of false positive fibers and those need to be removed 

for our ultimate goal – population studies. Last, fiber clustering may show enormous individual 

variation when applied across a population. However, to perform an effective population study, 

we only included fibers whose shape shares the most common characteristics throughout the 

population for each tract. This was our intent when we built our manually constructed atlases. 

Clearly we would need to admit that some clinically interesting variation is missed by focusing 

on a set of standard tracts. But finding additional consistent tracts across subjects is challenging 

and runs the risk of including false positives. 
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Figure 3-5. Clustering results in four randomly selected subjects for the left and right anterior 

thalamic radiations (L/R-ATR), the left and right corticospinal tracts (L/R-CST), the left and 

right cingulums (L/R-CGC), the left and right inferior fronto-occipital fasciculi (L/R-IFO), and 

the left and right inferior longitudinal fasciculi (L/R-ILF). Tracts on the left side are viewed from 

the left, while the tracts on the right are viewed from the right. 
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Figure 3-6. Clustering results - for the same four subjects as in Figure 3-5 - for the left arcuate 

fasciculus (L-ARC) and six segments of the corpus callosum – projecting to both frontal lobes 

(CC-FRN), precentral gyri (CC-PRC), postcentral gyri (CC-POC), superior parietal lobes (CC-

PAR), temporal lobes (CC-TEM), and occipital lobes (CC-OCC). All the tracts are viewed from 

the left. 
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Figure 3-7. Back, left side, and bottom views of the same four subjects’ (in Figure 3-5 and 

Figure 3-6) compositional fiber clustering results are shown. The original whole-brain 

tractography (the leftmost column) is included for comparison, clearly showing the utility of the 

data reduction. 

 

3.6.2. Quantitative Validation 

   To quantitatively evaluate the proposed framework, we converted each of the fiber tracts to a 

binary image, where voxels that the tracts cross were marked as 1, and 0 otherwise. Then we 

used the Dice coefficient to assessing the overlap or agreement between two tracts, defined as: 
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                                                (3.5) 

where     is the volume of the region that the tract penetrates. 

 

   Due to the wide variability between different tracts, we need to tune the parameters of our 

algorithm to optimize its performance. We have two key parameters to adjust. One is the 

Hausdorff distance threshold used to select fibers for each tract per atlas (        in Equation 

(3.4)), and the other is the percentage of fibers included in the final label fusion stage described 

in Section 3.5. 

 

   In addition to the 5 subjects we used for our manually constructed atlases, we randomly 

selected another 7 subjects (non-twin pairs, three males and four females) from our data set (12 

in total) and manually segmented the 17 tracts mentioned in Section 3.3. Initially, we tuned  

        and the fusion percentage with the leave-one-out method using the 5 manually labeled 

atlases. We first used a loose Hausdorff distance bound (             in Equation (3.4)), 15 

mm, to select the candidate fibers for each tract per atlas so that all the true fibers were included 

without introducing too many false fibers. Then we optimized the percentage threshold for 

inclusion in label fusion from 20% to 100% (in increments of 5%) to obtain the optimal 

percentage (the best Dice coefficients against manual segmentation). Next, we varied the 

Hausdorff distance threshold (       ) from 3 mm to 15 mm (in increments of 1 mm) to decide 

the optimal distance, while the optimal fusion percentage was used from the previous step. The 

optimal parameters for each tract are shown in Table 3-1. The optimized parameters were then 
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applied to the seven randomly selected subjects as the test data. Figure 3-8 compares the average 

Dice coefficients of all clustered tracts between the training data set and the test data. The error 

bars stand for the standard deviation of the Dice coefficients for each tract. Not surprisingly, the 

training data outperformed the test data for almost all the tracts, except for the left fronto-

occipital fasciculus (L-IFO). Figure 3-9 shows the average Dice coefficients for all tracts with 

our label fusion method and ROI-only clustering (based on the look-up table in Zhang et al., 

2010), against manual segmentation for the test subjects only. Overall, our algorithm 

outperformed the ROI method for every tract, and also gave a smaller variance, especially for 

those tracts that have unclear or loose ROI constraints (CGC, ILF, and CC-TEM). 
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Figure 3-8. Average Dice coefficients of all the tracts described in Section 3.3 for the training 

data set (five manually constructed atlases by the leave-one-out test) and the test data set (the 

average of seven randomly selected subjects from our data set) using our label fusion method 

against manual segmentation. The general pattern of coefficients above 0.8 indicates good 

agreement of automatically segmented and hand-segmented tracts. 
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Figure 3-9. The average Dice coefficients of all the tracts described in Section 3.3 for our label 

fusion method and the ROI method against manual segmentation. The label fusion method 

universally performs very well (dark blue bars), even when the ROI method (red) performs 

poorly. 

  



39 

Table 3-1. The values of the clustering distance threshold and the fusion percentage for each 

tract described in Section 3.3 that were used to cluster the 198 subjects in our data set. 

Tract 

Name 

L/R-

ATR 

L/R-

CGC 

L/R-

CST 

L/R-

IFO 

L/R-

ILF 

L-

ARC 

CC-

FRN 

CC-

PRC 

CC-

POC 

CC-

PAR 

CC-

TEM 

CC-

OCC 

       
    

 12 12 12 12 12 12 12 12 12 12 12 12 

Fusion 

Pct. 

(%) 

100 85 95 95 70 95 90 95 100 95 45 100 

 

3.6.3. Clustering Parameter Selection 

 

                                   (a)                                                                    (b) 

 

(c) 

Figure 3-10. Changes in the average Dice coefficients are shown, over the seven test subjects 

against the fusion percentages that were applied in the label fusion stage (Section 3.5) for all the 

tracts described in Section 3.3. 
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   To rationalize our choice of the two key parameters, the fusion percentage and the clustering 

distance threshold (       ), here we examined how the clustering performance varied with these 

two parameters. Figures 3-10(a-c) show the changes in the average Dice coefficients over the 7 

test subjects used for each tract, respectively, when the fusion percentages increase from 20% to 

100%, that is, choosing the top 20% to 100% ranked candidate fibers obtained from the 5 

manually constructed atlases, based on the mean clustering distance defined in Equation (3.4), 

where         =      = 15mm. 

 

   A high fusion percentage leads to fewer missing or false negative fibers from the candidates 

obtained from other manually constructed atlases. However, a high fusion percentage will also 

include more false positive fibers from all the candidates. Tracts that have helpful constraints 

based on ROIs (ATRs, CGCs, CSTs, IFOs, L-ARC, CC-FRN, CC-PRC, CC-POC, CC-PAR, and 

CC-OCC) usually have fewer false positives in each candidate. Therefore, the benefit of 

reducing the false negatives tends to overwhelm the gain in false positives when the fusion 

percentage goes up. Dice coefficients increase until they hit plateaus between 85% and 100%; 

however, for those tracts whose ROI constraints are relatively loose (IFOs and CC-TEM), the 

plateaus come much sooner when the fusion percentages are still relatively low (less than 70%). 

This is because eliminating more false positive fibers in each candidate is more critical for 

maintaining a high Dice coefficient. The percentages listed in Table 3-1 were therefore adopted 

for all the subjects in our data set. 
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                                   (a)                                                                    (b) 

 

(c) 

Figure 3-11. The changes of the average Dice coefficient in seven test subjects versus the 

clustering distance threshold (       ) (Section 3.4.3) for all the tracts described in Section 3.3. 

Here, the optimal values of the fusion percentage (shown in Table 3-1) were selected. 

 

   Figure 3-11(a-c) show the change of the average Dice coefficients versus the cutoff clustering 

distances        , when the fusion percentages are fixed at the values listed in Table 3-1. It 

seems that the average Dice coefficients become stable after         > 10mm. This is probably 

because a smaller         is too conservative and excludes too many true fibers. Hence, we 

chose         = 12mm uniformly for all the tracts, which corresponded to the percentage of 

fibers eliminated during manual labeling of the atlases for the given tract. 
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3.6.4. Label Fusion vs. Single Atlas 

   Label fusion-based segmentation methods take advantage of the information of multiple atlases 

and generally outperform methods that only use a single atlas. We listed the mean Dice 

coefficients against manual segmentation between label fusion clustering and single atlas 

clustering in Table 3-2. The parameters of label fusion clustering were chosen as in Table 3-1. 

The mean Dice coefficients were computed over the 7 test subjects chosen in Section 3.6.2. For 

comparison, we calculated Dice coefficients using a single atlas out of the 5 manually 

constructed atlases with         = 12mm. The single-atlas mean Dice coefficients were averaged 

over all the 5 atlases and all the 7 test subjects (35 combinations) per tract. Table 3-2 justifies 

fusing multiple atlas results in cases where the performance of a single atlas is well below the 

average performance of all the five atlases. 
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Table 3-2. The average Dice coefficients and their standard deviations over the seven test 

subjects against manual segmentation for label fusion on the five manually labeled atlases and 

only a single atlas being used (the average was computed over the five atlases). 

Mean Dice   Standard Deviation 

Tract Name L-ATR R-ATR L-CGC R-CGC L-CST R-CST 

Label 

Fusion 
0.92   0.04 0.93   0.02 0.88   0.04 0.85   0.09 0.91   0.04 0.90   0.03 

Single Atlas 

Avg. 
0.88   0.05 0.90   0.05 0.88   0.04 0.84   0.08 0.91   0.04 0.89   0.04 

Tract Name L-IFO R-IFO L-ILF R-ILF L-ARC  

Label 

Fusion 
0.93   0.04 0.91   0.04 0.82   0.06 0.80   0.09 0.92   0.02  

Single Atlas 

Avg. 
0.92   0.04 0.89   0.06 0.80   0.04 0.78   0.09 0.86   0.06  

Tract Name CC-FRN CC-PRC CC-POC CC-PAR CC-TEM CC-OCC 

Label 

Fusion 
0.95   0.02 0.92   0.04 0.91   0.06 0.91   0.03 0.81   0.07 0.91   0.04 

Single Atlas 

Avg. 
0.95   0.02 0.92   0.05 0.90   0.06 0.91   0.03 0.81   0.06 0.89   0.05 

 

3.6.5. Number of Atlases 

   How many atlases should be used in the label fusion scheme is always an open question. 

Among other examples, Chou et al. (2007, 2008, 2009) studied this for the case of lateral 

ventricular segmentation on standard anatomical MRI. In our case, we performed an 

experimental analysis to explore the choice of atlas number. We used the twelve subjects 

(including the five atlases) in Section 3.6.2 in our analysis. The five atlases plus two more 

additional subjects formed our atlas pool. We calculated the average dice coefficients between 
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the clustering results of the rest of the five subjects against their manual segmentations while we 

used 1, 2, 3, 5, and 7 atlases from our pool. The atlas selection was random. The clustering 

parameters were chosen as the same as those in Table 3-1. The results are shown in Table 3-3. 

The Dice coefficients of L-ATR and R-ATR increased 8%~9% from a single atlas to two atlases 

and continued going up as more atlases were used. For R-CGC, L-ILF, CC-TEM, and CC-OCC, 

the Dice coefficients seemed to be benefited with more atlases, too. Overall, the Dice 

coefficients approaches stable after three atlases, while more atlases didn’t decrease the Dice 

coefficients. However, by considering our small test sample size and balancing the tradeoff 

between stability and computation cost, five atlases may be suitable to be representative of our 

data set. Based on the validation results in Section 3.6.2, the five atlases we selected could 

effectively cluster the tracts for new subjects in our data set. 
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Table 3-3. The average Dice coefficients over five test subjects against manual segmentation for 

different numbers of atlases applied. 

Mean Dice Coefficients  

# of Atlases 1 2 3 5 7 

L-ARC 0.901 0.897 0.906 0.914 0.920 

L-ATR 0.833 0.908 0.910 0.919 0.919 

R-ATR 0.829 0.898 0.927 0.928 0.927 

L-CGC 0.872 0.883 0.875 0.878 0.878 

R-CGC 0.859 0.880 0.876 0.870 0.877 

L-CST 0.921 0.917 0.914 0.911 0.911 

R-CST 0.899 0.903 0.902 0.903 0.902 

L-IFO 0.933 0.940 0.938 0.934 0.930 

R-IFO 0.911 0.910 0.910 0.902 0.906 

L-ILF 0.797 0.797 0.815 0.811 0.823 

R-ILF 0.800 0.786 0.789 0.794 0.797 

CC-FRN 0.943 0.947 0.946 0.946 0.945 

CC-PRC 0.916 0.914 0.913 0.912 0.913 

CC-POC 0.903 0.901 0.903 0.903 0.903 

CC_PAR 0.908 0.902 0.906 0.908 0.907 

CC-TEM 0.782 0.787 0.796 0.797 0.829 

CC-OCC 0.897 0.911 0.911 0.912 0.911 

 

3.7 Discussion 

   It is obvious that tract clustering quality is influenced by the quality of tractography. A better 

tractography algorithm that produces fewer false fibers makes clustering easier and more 

accurate. The whole-brain tractography methods place seeds throughout the brain and produce 

streamlines in a short period of time. However, many false fibers are created, for example, in the 

left and right inferior longitudinal fasciculi and the temporal segment of the corpus callosum, as 

there are multiple fiber crossings in the regions traversed by those tracts. Since our purpose was 

to perform large scale population studies, we were inclined to be more conservative and keep 

only fibers that form a consistent tract shape across the population. When we picked a 
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representative sample for a particular tract, we followed the same principle. For example, the 

cingulums have many branches along their way from the frontal lobe to the temporal lobe. We 

removed those branches in our representative tract samples for population studies. It is not 

practical to find corresponding fibers for those branches across the population. We only studied 

the common areas across most subjects. 

 

   While our methods achieved robust performance in fiber clustering, it is important to note there 

are many parameters that could be tuned in whole-brain tractography, which no doubt could 

potentially affect the final clustering results. First, tractography is based on mathematical input 

models, such as tensor, ODF, fiber orientation density (Tournier et al., 2004), etc.; then, 

tractography can be deterministic or probabilistic (e.x. PICo); next, in terms of tracking 

algorithms, it can be fiber assignment by continuous tracking (FACT) (Mori et al., 1999), Euler 

(Basser et al., 2000), Runge-Kutta (Basser et al., 2000), tensor deflection (TEND) (Lazar et al., 

2003), etc.; as to interpolation algorithms, it may be nearest-neighbor, linear, TEND, etc..; 

finally, multiple stopping criteria can be chosen, such as masking, fiber maximum turning angle, 

the lowest anisotropy to terminate tracking, etc.. Furthermore, there are many tractography 

software packages available for brain imaging research (DTI Studio, Diffusion Toolkit, Camino, 

MRtrix, etc.). Each package might produce slightly different tractography results. Because of the 

lack of ground truth, the problem of selecting the parameters and software packages for optimal 

clustering performance needs more dedicated exploration and will be important future work. 
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   In our multi-level fiber clustering algorithm (Section 3.4), non-linear FA registration was used 

to align fibers between the atlases and the subjects. Ideally, an ODF-based registration method 

might be used to reorient the fibers between different spaces. However, such a registration 

scheme would have much larger cost in terms of computing resources and time (a few hours per 

registration) if it were performed on a large-scale, as in the label fusion scheme. In contrast, FA 

registration takes only around 5 minutes per registration on our data set. Moreover, we have 

found that fiber alignment is indeed improved significantly with FA-based elastic registration 

(Chapter 2 or Jin et al., 2011a). 

 

   It is always difficult to compare different clustering algorithms quantitatively as we lack 

ground truth for both the tractography and the white matter segmentation. Even though their 

relative accuracy is hard to assess, it is easier to point to some conceptual similarities and 

differences among the various approaches that have been proposed for tract clustering. Many 

“bottom-up” methods (e.g., Gerig et al., 2004; Xia et al., 2005; O’Donnell and Westin, 2007; 

Maddah et al., 2008; Visser et al., 2010) use the relationship between neighboring fibers in one 

single subject and apply standard clustering algorithms to segment the tracts individually. These 

methods can assign each and every extracted fiber to a class, which means all the fibers are 

retained and represent WM variability in an individual. Even so, they do not necessarily yield a 

method to match tracts across subjects – a step commonly needed for large-scale population 

studies. In other words, if clustering is applied independently to data from numerous individuals, 

there may be no easy way to match the tracts across subjects or find correspondences. On the 

other hand, “top-down” methods (Wakana et al., 2007; Li et al. 2010; Zhang et al., 2010) impose 

ROI constraints to effectively filter out a massive number of false positive streamlines generated 
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by tractography. The tracts segmented may also have a clearer anatomical interpretation, as 

known ROIs are used to define them. This then offers a common set of tracts, enabling 

population studies. Still other methods (Maddah et al., 2008; Wassermann et al. 2010; Wang et 

al., 2012; Guevara et al. 2012) were driven by elegant mathematical/statistical models. However, 

many of these methods have not been used or widely tested in clinical research. 

 

   The contribution of our paper is to take account of individual variability by constructing 

multiple white matter atlases. A top-down method is also used to extract anatomically 

meaningful tracts. We will also propose a novel fiber correspondence scheme to show how to use 

our clustering results to answer real-world biological questions (Chapter 4 and Chapter 5). 
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CHAPTER 4 

Genetic Heritability 

4.1. Introduction 

   The relationship between genetics, brain structure, and function has long been debated in 

various disciplines such as medicine, sociology, education, and neuroscience. How is the brain 

influenced by nature (genetics) and nurture (environment)? Many studies have addressed this 

question from different perspectives.  In early structural MRI studies of twins, Thompson et al. 

(2001) and Wright et al. (2002) created 3-D maps and regional estimates of genetic effects on 

cortical gray matter measures, and parcellated regions of interest. More recently, Hulshoff et al. 

(2006) found that there is some overlap in the genes that affect regional brain measures (such as 

gray and white matter densities) and intelligence. 

 

   Most prior studies regarding heritability of brain structures were based on T1-weighted 

anatomical MRI; however, T1-weighted MRI cannot provide information on white matter fiber 

tracts in the brain. For two decades, diffusion tensor imaging (DTI) has been increasingly used to 

study pathology and connectivity of white matter pathways. DTI offers directional information 

on the diffusion of water molecules in brain tissue. Fractional anisotropy (FA), as a measure of 

microstructural directionality, tends to be higher when fiber tracts are more directionally 

coherent. Recent genetic analyses of DTI have found moderately high heritability for several 

diffusivity measures including the FA (Chiang et al., 2011), which is also widely considered a 

measure of fiber integrity. Specific genes have recently been discovered that influence FA 
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(Braskie et al., 2011). Structural equation models and heritability analyses have also been 

extended to handle the full diffusion tensor (Lee et al., 2010), and orientation density functions 

(ODFs) that represent the diffusion process (Leporé et al., 2010). 

 

   The major disadvantage of voxel-based analysis of FA values is that their subtle subvoxel 

effects that occur along a fiber tract cannot be observed, and tract geometry is overlooked. It is 

impossible to relate the geometric characteristics of tract shape to genetics solely from an FA 

map. Most recently, Brouwer et al. (2010) assessed genetic and environmental influence on fiber 

tracts in children by constructing average fiber bundles based on manually defined regions of 

interest; nevertheless, the manual seeding of tracts makes it hard to analyze a large dataset, and 

limits the coverage to a few tracts. 

 

   We illustrate our method to study tract heritability based on the clustering results from our 

algorithm (Chapter 3). As individual WM fiber tracts are highly variable in shape, it can be 

difficult to find corresponding fibers that belong to the same tract across a population. Recent 

studies examined the skeleton of tracts, with methods such as tract-based spatial statistics 

(TBSS) (Smith et al., 2007; Bodini et al., 2009) or the average fiber tracts (Brouwer et al., 2010; 

Prasad et al., 2011) to perform statistical analyses of diffusion parameters in a large population. 

Nevertheless, these approaches do not always retain the full 3-D profile of information from the 

tracts. To address this, we use a point-wise tract correspondence method to study clustered tract 

parameters in 3-D. We calculate heritability statistics from corresponding tract points to 
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understand genetic influences on the brain’s tracts, and to demonstrate a practical use of our 

entire workflow. 

 

4.2 Subjects and Image Acquisition 

   We analyzed a dataset from 198 healthy young adult twins (mean age: 23.2 +/- 2.1SD) from 99 

families in Australia. All twins were right-handed. No subjects had any major medical condition 

or psychiatric illness. All subjects were evaluated to exclude any pathology known to affect brain 

structure. Diffusion imaging was available in 99 complete pairs – 62 monozygotic pairs (21 

male-only pairs) and 37 same-sex dizygotic twin pairs (12 male-only pairs). 

 

   High angular resolution diffusion imaging (HARDI) scans were acquired with a 4T Siemens 

Bruker Medspec MRI scanner, using single-shot echo planar imaging with parameters: TR/TE = 

6090/91.7ms, 23cm FOV, and a 128x128 acquisition matrix. Each 3-D volume consisted of 55 2-

mm axial slices, with no gap, and 1.79x1.79mm
2
 in-plane resolution. 105 image volumes were 

acquired per subject: 11 with no diffusion sensitization, i.e., T2-weighted b0 volumes, and 94 

diffusion-weighted volumes (b = 1159 s/mm
2
). The raw HARDI images were corrected for eddy-

current induced distortions with FSL (www.fmrib.ox.ac.uk/fsl/). The gradient table that 

represented the diffusion scanning angles was adjusted accordingly. 

  

file:///C:/Users/yjinbhhs/Downloads/Courses/UCLA%20courses/Dissertation/www.fmrib.ox.ac.uk/fsl/
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4.3. Methods 

4.3.1. Fiber Matching 

   To perform group studies, we first need to establish some kind of correspondence between 

fibers of the segmented tracts across the population. For each tract, we chose a representative 

sample among our manually constructed atlases. The representative sample was then projected 

into individual new subject space as follows. After applying the registration warp (Section 3.4.2) 

to the representative tract, we defined the corresponding point in the new subject space for each 

point in the sample tract. The corresponding point was defined as the point in the new subject 

tract closest to the warped sample point, if such a point exists within a given neighborhood, or 

the original sample projection, if not. An illustration of fiber matching is shown in Figure 4-1. 

 

Figure 4-1. An illustration of tract projection. 
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4.3.2. Genetic Analysis 

   Monozygotic (MZ) twins share 100% of their genetic variants whereas dizygotic (DZ) twins 

share, on average, 50% of their genes. A simple and widely-used estimate of heritability in twin 

studies is to assess how much the intra-class correlation for MZ twin pairs (   ) exceeds the DZ 

twin correlation (   ). Falconer’s heritability statistic (Falconer and Mackay, 1996) is defined as: 

                                                                    (4.1) 

The statistic estimates the proportion of the overall variance due to genetic differences among 

individuals. Of course more sophisticated structural equation models can be used, but here the 

main purpose was just to give an example of a statistical manipulation of the tracts, to compute a 

statistic of interest. Jin et al. (2011b) used the mean and the standard deviation of the Euclidean 

distances between individual fibers and the mean curve for a particular tract as metrics, where 

the mean distance is related to the tract thickness. Here, interpolated FA values at corresponding 

tract points (from Section 4.3.1) were used to calculate intra-class correlations     and    . 

 

   To account for the multiple comparisons problem that arises when testing a statistical 

hypothesis at every fiber point, the false discovery rate (FDR) was used (Benjamini and 

Hochberg, 1995) at the conventional 5% level to provide corrected critical   values for the maps 

of     and     in Falconer’s heritability statistic.     and     whose associated   values were 

larger than 0.05 were set to 0. The Falconer's heritability statistic    was computed from     and 

    at points whose p-value passed FDR. 

  



54 

4.4. Results 

4.4.1 Genetic Analysis 

   For each tract, we selected a representative example among our 12 subjects with manually 

segmented tracts in Section 3.6.2. We projected the tract representation to the remaining 197 

subjects, following Section 4.3.1. The search range was a 10-mm radius sphere. The FA values 

at sub-voxel fiber points were used to calculate     and     for a particular tract. Falconer’s 

heritability statistic on FA was computed from Equation (4.1). To make the computation easier, 

we uniformly resampled each fiber at 15 equidistant points and reduced the number of fibers in 

the representative tract, ensuring that the region enclosing the original tract was still covered 

entirely by the remaining fibers. 

 

   Figure 4-2, 4-3, and 4-4 show Falconer’s heritability statistics on FA after correcting for 

multiple comparisons with FDR. As heritability must be positive and lies between 0 and 1, 

Falconer’s heritability statistics were set to 0 if their estimator was negative and 1 if it was 

greater than 1. Locations in red show greater genetic influence than those in blue. The 

percentages of points with high genetic influence (set arbitrarily to  
 
 > 0.7) for each tract 

described in Section 3.3 are also listed in Table 4-1. Genetic factors tend to have greater 

influence on the tracts on the left side than the right side (ATR, CGC, CST, and ILF), except for 

the IFO. 
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(a) L-ATR                               (b) R-ATR 

 

(c) L-CGC                                (d) R-CGC 

 

(e) L-CST                               (f) R-CST 

Figure 4-2. Color maps of Falconer’s heritability statistic on FA for (a) the left anterior thalamic 

radiation, (b) the right anterior thalamic radiation, (c) the left cingulum, (d) the right cingulum, 

(e) the left corticospinal tract, and (f) the right corticospinal tract. Warmer colors show regions 

with higher genetic influence ( 
 
 ~ 1). Tracts on the left side are viewed from the left, while the 

tracts on the right are viewed from the right. 
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(a) L-IFO                               (b) R-IFO 

 

(c) L-ILF                               (d) R-ILF 

 

                           (e) L-ARC 

Figure 4-3. Color maps show Falconer’s heritability statistic on FA for (a) the left inferior 

fronto-occipital fasciculus, (b) the right inferior fronto-occipital fasciculus, (c) the left inferior 

longitudinal fasciculus, (d) the right inferior longitudinal fasciculus, and (e) the left arcuate 

fasciculus. Warmer colors show regions with higher genetic influence ( 
 
 ~ 1). Tracts on the left 

side are viewed from the left, while the tracts on the right are viewed from the right. 
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(a) CC-FRN                               (b) CC-PRC 

 

(c) CC-POC                               (d) CC-PAR 

 

(e) CC-TEM                               (f) CC-OCC 

Figure 4-4. Color maps of Falconer’s heritability statistic on FA for the six segments of the 

corpus callosum – projecting to both (a) frontal lobes, (b) precentral gyri, (c) postcentral gyri, (d) 

superior parietal lobes, (e) temporal lobes, and (f) occipital lobes. Warmer colors show regions 

with higher genetic influence ( 
 
 ~ 1). All of the corpus callosum segments are viewed from the 

left. 
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Table 4-1. The percentage of fiber points in all clustered tracts where high genetic influence is 

detected (arbitrarily set to  
 
 > 0.7). The high genetic influence detected in the frontal regions of 

the corpus callosum (CC-FRN) may reflect its generally higher FA, which tends to lead to higher 

SNR for statistical analysis. 

Tract 

Name 
L-ATR R-ATR L-CGC R-CGC L-CST R-CST L-IFO R-IFO L-ARC 

Pct. (%) 8.6 7.1 4.2 1.2 7.8 4.5 15.4 13.6 7.8 

Tract 

Name 
L-ILF R-ILF 

CC-

FRN 

CC-

PRC 

CC-

POC 

CC-

PAR 

CC-

TEM 

CC-

OCC 
 

Pct. (%) 7.7 11.2 17.5 7.9 6.2 4.6 5.6 6.8  

 

4.4.2. Stability Analysis 

   Falconer's heritability statistic is defined as twice the difference between the MZ intra-class 

correlation and the DZ intra-class correlation as described in Equation (4.1). The intra-class 

correlations are associated with the variances between and across members of pairs of twins in 

each group. One important consideration is that the estimated heritability (or any other statistic) 

needs to be robust to the details of parameter selection – for example, it may change as the 

interpolated FA values of the corresponding fibers points change if different radii of sphere are 

chosen to find corresponding points for each tract across the population. We evaluated the 

stability of Falconer's heritability statistic for each tract by computing the percentage of fiber 

points whose Falconer's heritability statistics change by less than 0.2 (this is admittedly arbitrary) 

when changing the radius of the sphere used to search for corresponding points across the 

population (those familiar with the tract-based spatial statistics (TBSS) method will note that a 

similar dependency may arise for the cross-subject correspondences used in TBSS). Table 4-2 

lists the stability of Falconer's heritability statistics for all clustered tracts when the radius of the 
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search sphere changes from 5 mm to 10 mm to 15 mm. Overall, Falconer's heritability statistic is 

stable for most tracts except CC-TEM. Therefore, the results in Section 4.4.1 do provide 

somewhat robust information on genetic influences for each tract. As the number of twin pairs 

increases, the Falconer's heritability should have tighter confidence limits. The relatively low 

stability of CC-TEM arises because the clustering result for the CC-TEM bundle has a large 

variance (its Dice coefficient in Section 3.6.2 is also the lowest). This is perhaps due to the large 

variations in the tractography results in that area. 

Table 4-2. The stability of Falconer’s heritability statistic (the percentage of points in the tract 

whose Falconer's heritability statistic changes by less than 0.2) with changes in the spherical 

neighborhoods (radius 5-15 mm) used to find corresponding points for each tract over the 

individuals in our dataset. 

Stability 

(%) 
L-ATR R-ATR L-CGC R-CGC L-CST R-CST L-IFO R-IFO L-ARC 

5mm vs. 

10mm 
89 90 91 90 89 86 81 81 87 

15mm 

vs. 

10mm 

93 94 96 94 87 87 90 87 91 

 L-ILF R-ILF 
CC-

FRN 
CC-PRC 

CC-

POC 

CC-

PAR 

CC-

TEM 

CC-

OCC 
 

5mm vs. 

10mm 
77 84 90 80 84 78 61 83  

15mm 

vs. 

10mm 

87 93 93 82 88 81 66 92  
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4.5 Conclusion 

   Here we presented an automatic fiber clustering workflow that uses anatomical information 

from multiple manually made atlases. The top-down approach helps to suppress effects of false 

positive streamlines by placing constraints on locations and shapes of tracts through their 

Hausdorff distance to warped hand-labeled atlases. The candidates from multiple atlases are 

combined with a fusion strategy. The clustering results are illustrated visually and quantitatively 

validated for a randomly selected sample data set. The clustering results from our method were 

more accurate than those from the ROI-only method. We also showed an example of how to 

perform a group statistical analysis (a heritability study) by using the sub-voxel fiber diffusion 

information mapped onto the clustered tracts. The complete workflow provides us with a 

practical tool for future large population studies that may reveal how the brain is affected by 

genetic factors, and by a variety of psychiatric or neurological disorders such as Alzheimer’s 

disease (Chapter 5). 
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Chapter 5 

Automated Multi-atlas Labeling of the Fornix  

and its Integrity in Alzheimer’s Disease 

5.1. Introduction 

   Alzheimer’s disease (AD) is a progressive, degenerative disorder that attacks the brain’s nerve 

cells, or neurons, resulting in loss of memory, thinking and language skills, and behavioral 

changes. An estimated 26.6 million people worldwide and 5.2 million Americans of all ages 

have AD in 2013. It is the 6th leading cause of death in the United States overall and the 5th for 

those aged 65 and over. Amyloid-beta plaques and tau protein tangles in the brain are hallmarks 

of the disease. Cerebrospinal fluid measures of pathology or amyloid plaque imaging (e.g. 11C-

PIB PET) may be good diagnostic markers and may also predict future decline. However, there 

is an effort to define cheaper and less invasive biomarkers, using MRI and its variants to assess 

perfusion, activation or fiber integrity. More recently, diffusion tensor magnetic resonance 

imaging (DTI) (Basser et al., 1994) has become a popular method to reconstruct the local profile 

of water diffusion in tissues, yielding information on white matter (WM) integrity and 

connectivity that is not available from standard anatomical MRI. Region-of-interest (ROI)-based 

voxel analyses have been used to identify AD-related abnormalities in the fronto-occipital 

fasciculi, the inferior longitudinal fasciculi, the cingulum, and the forceps major based on DTI-

derived parameters, such as fractional anisotropy (FA) and measures of mean, radial, or axial 

diffusivity (Teipel et al., 2007). DTI may provide useful information for clinical diagnosis of 

AD, and can help in detecting fiber tract and network breakdown not visible on standard MRI. 
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   Among those WM fiber tracts, the fornix is critical for normal cognitive functioning. It is the 

major output tract of the hippocampus, arching around the thalamus and connecting the medial 

temporal lobes to the hypothalamus. Even though it is well known that the hippocampal atrophy 

is associated with AD (Morra et al., 2008) and the fornix is the main white matter pathway to 

and from the hippocampus, the fornix is less well-studied as a predictor of cognitive impairment 

as AD progresses. This is mainly because the fornix is very hard to segment due to its small 

volume relative to the typical voxel size of MRI or DTI. Even so, because AD typically begins in 

the hippocampus and medial temporal lobes, it makes sense to evaluate the tracts innervating this 

crucial region, which is involved in both learning and memory. Prior studies either manually 

delineated ROIs for the fornix (Oishi et al., 2012) or automatically deformed a template onto 

each subject in a population (Fletcher et al., 2013). The 1-D mean FA of the main fornix body or 

the 2-D crest line of locally maximal FA intensities across voxels have been used in statistical 

analyses, such as tract-based spatial statistics, usually in small cohorts of subjects.  

 

   To overcome these limitations, here we take a different approach to automatically segment the 

fornix from 3-D whole-brain tractography. Based on the fornix ROI from a publicly available 

WM atlas (Oish et al., 2009), we first manually constructed five fornix atlases as prior 

anatomical information. Then, we transfered the tract label to new subjects by selecting only 

fibers that are similar to the corresponding fornix atlases, based on a similarity measure. Multiple 

atlases help to adapt to the variability of tract shapes in new subjects. Next, we used a label 

fusion scheme to fuse the clustered results obtained from individual atlases. Many fiber 

clustering methods have been proposed, but it is not always clear how to apply them to large-

scale group studies, where voxel-based or ROI studies are still popular. Once we segmented the 
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fornix for each subject, in order to facilitate large-scale statistical analysis, we implemented a 

novel point-wise matching scheme to match fiber points across the population. To test the 

robustness of our algorithm, we applied it to a population study of a large cohort, of 210 

participants. We studied the complete 3-D sub-voxel profile of the fornix in the population, at 

sub-voxel resolution. Our goal was to compare a variety of DTI-derived measures across among 

different groups in the cohort to demonstrate the utility of the algorithm for clinical research, and 

to define tract-based measures that are sensitive to disease progression. 

 

5.2. Subjects and Data Acquisition 

   The diffusion weighted imaging (DWI) data of our subjects were downloaded from the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (http://adni.loni.usc.edu). We 

performed an analysis of baseline DWI data from 210 participants (Age: 55-90; mean: 72.2+/-7.4 

SD; 124 males / 96 females). 52 of them were normal elderly people, 113 had mild cognitive 

impairment (MCI) who were at an increased risk of progressing to AD, and 45 were AD patients. 

Each subject underwent cognitive evaluations and was given the Mini-Mental State Examination 

(MMSE) and the Clinical Dementia Rating  - Sum of Boxes (CDR-SOB) tests. 

 

   DWI scans were acquired with 3-Tesla GE Medical Systems scanners at 14 sites across North 

America. Each 3-D volume consisted of 59 axial slices with isotropic voxel size 2.7 mm with 

256 x 256 acquisition matrix. 46 image volumes were acquired per subject: 5 with T2-weighted 

b0 images and 41 diffusion-weighted volumes (b = 1000 s/mm
2
). 

http://adni.loni.usc.edu/
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5.3. Probabilistic Tractography 

   Raw DWI data were corrected for eddy-current induced distortions with FSL 

(http://www.fmrib.ox.ac.uk/fsl/). We performed whole-brain tractography with Camino 

(http://cmic.cs.ucl.ac.uk/camino/). The diffusion tensor was fit to the data. We used the 

Probabilistic Index of Connectivity method (PICo) (Parker et al., 2003b) to generate probabilistic 

tractography. Seed points were chosen at those voxels whose FA values were greater than 0.3. 

Monte Carlo simulation was used to generate fibers proceeding from the seed points throughout 

the entire brain with 4th-order Runge-Kutta interpolation. The maximum fiber turning angle was 

set to 40°/voxel, and tracing stopped at any voxel whose FA was less than 0.2. 

 

5.4. Fornix Atlas Construction 

   We manually constructed five fornix atlases from the healthy twins’ data set as in Section 4.2. 

A single-subject template in the ICBM-152 space called the “Type II Eve Atlas” (a 32-year old 

healthy female) (Oishi et al., 2009) was registered to the FA images of each atlas with Advanced 

Normalization Tools (ANTs) (http://picsl.upenn.edu/software/ants/). The “Eve” fornix ROI was 

re-assigned to the five atlases with the resulting deformation fields by ANTs. Fibers that 

traversed the ROI were extracted and manually edited to form our fornix atlases. We opted to use 

data from healthy adults (twins) instead of elderly individuals from ADNI because their fornix 

tracts are intact and can be more completely extracted. The templates are also more likely to be 

reusable for different types of data sets, including data from younger adults. 

 

http://www.fmrib.ox.ac.uk/fsl/
http://cmic.cs.ucl.ac.uk/camino/
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5.5. Fiber Clustering 

   For each subject in our data set, the same registration registered the subject’s FA image to each 

of the five fornix atlases’ FA images and the “Eve” FA image, respectively. Each fornix atlas 

and the Eve’s fornix ROI were then warped to the subject space with the corresponding 

deformation fields. Fiber alignment is known to be improved significantly with that type of 

registration (Chapter 2 or Jin et al., 2011a). 

 

   We first chose the fibers that traversed the warped Eve fornix ROI. This quickly reduced the 

number of fibers from millions to only a few hundreds. To further refine the result, we defined a 

fiber distance metric to select the fibers whose distances were close to one of the warped atlas 

fibers, based on a validated empirical threshold (15 mm) in Section 3.6.2. For any pair of fibers 

 i and  j, the symmetric Hausdorff distance is defined in Section 3.4.3 (Equation (3.2) and 

Equation (3.3)). The Hausdorff distance is conservative and keeps only the fibers whose shapes 

and locations are similar to the atlases. This is intended to facilitate large population studies. 
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5.6. Label Fusion 

   Due to the variability of individual atlases, different atlases may nominate different candidates. 

We implemented a label fusion scheme to combine the results from individual atlases. A mean 

fiber distance was defined to rank the fibers nominated by individual atlases:       

∑    ∑                         

 
, where    is the Hausdorff distance between an unlabeled subject’s 

fiber and the i-th atlas,         is the empirical cutoff threshold chosen in Section 5.5,      is the 

upper bound Hausdorff distance within which a subject fiber can be possibly considered a 

candidate for a given tract, and   is the number of atlases. We ranked all the candidate fibers 

from different atlases based on their      ’s. The smaller its      , the higher its rank. A fusion 

percentage was defined to include fibers whose      ’s were among the top specified 

percentage. Here we set the fusion percentage to be 95% because no other confounding fibers are 

adjacent to the fornix and the number of false positive fibers is relatively low. 

 

5.7. Fiber Matching 

   To perform group studies, we need to establish the correspondence between fibers of the 

segmented fornix tracts across the population. First, we chose a representative sample fornix 

tract from our ADNI population. Each point on that representative tract was mapped to the rest 

of the population. The point on each fornix tract in the population with the closest Euclidean 

distance to that sample point was considered the corresponding point. More specifically, the 

point on the representative tract (the representative point) was warped to each subject’s space. It 

was then projected onto the fibers that intersect with the neighborhood of the representative 
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point. The projection point with the shortest distance to the representative point was taken as the 

corresponding point for that subject. If there were no fibers crossing the neighborhood (a sphere 

with the 10 mm radius), the warped representative point location is used as the correspondence 

point. Figure 5-1 illustrates our fiber matching method. 

 

Figure 5-1. An illustration of fiber matching scheme. 

 

5.8. Statistical Analysis 

   Statistical analysis was performed comparing groups with a variety of metrics based on the 

extracted tracts, such as the number of detected fibers, the mean FA or the mean diffusivity 

(MD) of the volume that those fibers cross, and the 3-D FA/MD profile, to demonstrate the 

utility of the technique. 
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5.9. Results 

5.9.1. Fiber Count 

   Figure 5-2 shows a box plot of the number of detected fibers for the four groups. The five 

horizontal lines in each group represent the minimum, lower quartile, median, upper quartile, and 

the maximum. Outliers are marked with a +. Notches offer a rough guide to significance of the 

difference in medians. As hypothesized, the median of each group decreases from the normal to 

the MCIs and to the AD group. The group-wise Cohen’s d’s (effect sizes) and p-values of the t-

tests show that the group differences are all significant. 

  



69 

 

 
Figure 5-2. A box plot shows the number of fibers detected in the fornix for normal controls (in 

green), MCI patients (in blue), and AD patients (in red). The group-wise Cohen’s d’s and p-

values of the t-tests are listed. 
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5.9.2. Mean FA and MD 

 

 
Figure 5-3. A box plot shows the mean FA values of the fornix for normal controls (in green), 

MCI patients (in blue), and AD patients (in red). The group-wise Cohen’s d’s and p-values of the 

t-tests are listed. 

  



71 

 

 

Figure 5-4. A box plot shows the mean MD values of the fornix for normal controls (in green), 

MCI patients (in blue), and AD patients (in red). The associated group-wise Cohen’s d’s and p-

values of the t-tests are listed. 

 

   Figure 5-3 and 5-4 show box plots of the mean FA and MD values of the entire fornix for the 

three diagnostic groups and the Cohen’s d’s and the p-values of the t-tests comparing groups. 
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Clearly, these tests could be covariated for age and sex, but the intent here is simply to show that 

statistical modeling is feasible and detects group differences. The mean FA or MD value for each 

subject was calculated by averaging the FA or MD values of all the voxels the labeled fornix 

tract traversed and the voxels which the corresponding fiber points were in (in case tractography 

was poor in some subjects). We used 10
-2

 mm
2
/s as the unit for MD to make its values 

comparable to the range of FA values (which are dimensionless). The median of mean FA also 

decreases in the same trend as Figure 5-2, while the median of mean MD increases as expected. 

The diffusivity increase may be because myelin breaks down in AD and offers less hindrance to 

water diffusion. The mean MD difference is more marked than that of FA between groups in 

terms of both effect size (Cohen’s d) and the associated p-values. 

 

5.9.3. 3-D FA and MD Profiles 

   Figure 5-5 shows the three individual representative fornix tracts for the three groups and the 

3-D sub-voxel profiles (a point-wise t-test between different diagnostic groups) of the differences 

in FA and MD values between the normal group and the AD group, respectively. Results are 

corrected for multiple comparisons. Again, MD is more sensitive in detecting the changes 

between the two groups, at least in this sample. 
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                           (a) Normal                            (b) MCI                                              (c) AD 

 

                                 (d) Normal vs. AD (FA)                                     (e) Normal vs. AD (MD) 

Figure 5-5. A representative fornix tract is shown for each group and 3-D color maps reveal 

differences in FA and MD values between normal elderly and AD groups, respectively. Redder 

colors show greater group differences in FA or MD values at those points. 

  



74 

5.9.4. Correlations with Clinical Scores 

   We performed a linear regression analysis on the MMSE and CDR-SOB scores for each 

subject versus the mean FA and MD values of their fornix tracts, adjusting for age and sex. The 

statistics are shown in Table 5-1. The mean FA/MD of the fornix explains about 10%/12% (R
2
) 

of the variance in MMSE scores and 10%/11% in CDR-SOB, respectively. The relationships 

between clinical scores and mean FA/MD are both statistically significant. 

 

Table 5-1. Regression statistics relating MMSE and CDR-SOB scores (measures of clinical 

decline) to mean FA and MD of the fornix, after adjusting for age and sex. 

Clinical Score Variable R
2
 p-value Variable R

2
 p-value 

MMSE 

mean FA 

0.10 

1.8x10
-3

 mean MD 

0.12 

1.5x10
-4

 

age 0.02 age 0.10 

sex 0.69 sex 0.56 

CDR-SOB 

mean FA 

0.10 

2x10
-5

 mean MD 

0.11 

7.7x10
-6

 

age 0.59 age 0.97 

sex 0.84 sex 0.76 

 

5.9.5. ROC Curve 

   We used the mean MD as features to classify the normal and the AD groups. The receiver 

operating characteristic (ROC) curve is plotted in Figure 5-6. The cutoff MD value is 0.0019 

mm
2
/s with 71% sensitivity and 71% specificity. The area under the curve (AUC) is 0.78 (AUC 

> 0.75 is clinically useful). This is a new diffusion feature we may be able to use to combine 
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with those classical anatomical features to improve the accuracy of classifying different stages of 

Alzheimer’s disease. 

 

Figure 5-6. The ROC curve is shown for the mean MD for classifying AD patients versus the 

normal group. 
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5.10. Discussion and Conclusion 

   Here we presented an automatic tract labeling technique that uses anatomical information from 

multiple manual atlases. We implemented it to segment the fornix in 210 subjects. We then 

proposed a point-wise fiber matching scheme to illustrate how to establish tract correspondence 

in a population and perform large-scale group studies. 

 

   We studied the fornix in detail by comparing how Alzheimer’s disease affects different DTI-

derived measures as AD progresses. Our results are consistent with prior findings that fornix 

degeneration is associated with cognitive decline (Oishi et al., 2012; Fletcher et al., 2013) and 

MD seems to be a better measure for detecting AD-related differences than FA (Nir et al., 2013). 

 

   The contribution of our work is to present a reliable general workflow for large population 

studies and provide extra information (such as 3-D sub-voxel profiles) for tract analysis. It will 

be extended to group studies of various neurological and psychiatric conditions, as well as for 

research in imaging genetics. 

  



77 

Chapter 6 

Voxelwise Spectral Diffusional Connectivity 

6.1 Introduction 

   The human brain is a complex network of structurally connected regions that interact 

functionally. Brain connectivity can be studied from different perspectives. Functional MRI, can 

reveal correlated activity and even causal relationships that underlie the communication of 

distributed brain systems. On the other hand, diffusion weighted MRI (DWI) measures the local 

profile of water diffusion in tissues, yielding information on white matter (WM) integrity and 

connectivity that traditional structural MRI cannot provide. DWI is non-invasive, and is 

increasingly used to study macro-scale anatomical connections linking brain regions through 

fiber pathways. 

 

   Brain networks are commonly described as a mathematical graph, consisting of a collection of 

nodes, representing a parcellation of the brain regions of interest (ROIs), and a set of edges 

between pairs of nodes, describing some property of the connection between that pair of regions. 

The brain exhibits several organization principles, including “small-worldness”, characterized by 

the coexistence of dense local clustering between neighboring nodes and high global efficiency 

(short average path length) due to few long-range connections (Bassett and Bullmore, 2006). 

This property results in a sparse connectivity matrix that can be explored using graph theory. A 

typical way to construct the connectivity matrix is to group adjacent voxels into ROIs 

(anatomically meaningful gray matter regions) or nodes, and count the fibers passing through 
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each pair of nodes. Then standard measures of connectivity including small worldness, 

clustering, path length, and efficiency can be computed to reveal how the brain is affected by 

genetic factors (Jahanshad et al., 2012b) and neurological diseases such as Alzheimer's disease 

(Daianu et al., 2012). 

 

   However, this classical approach has limitations. First, there is lack of validation of WM fibers 

generated by tractography. Based on different reconstruction or tracking models (tensor vs. 

orientation distribution function and deterministic vs. probabilistic), different tractography 

algorithms and variations in their parameters can lead to large differences in the resulting 

network measures (Bastiani et al., 2012). Automatic cortical gray matter segmentation from an 

atlas is also susceptible to registration error. Furthermore, the spatial scale of the parcellation of 

the gray matter into nodes of the connectivity graph may affect connectivity measures by as 

much as 95% (Zalesky et al., 2010). Finally, parameter thresholding in graph analysis also 

influences the interpretation of the results (Dennis et al., 2012). 

 

   To avoid these problems, we propose a novel mathematical formulation to explore brain 

connectivity from a different perspective. Instead of investigating linkages among sub-regions of 

the brain, we use the tensor information from DWI at the voxel level. In this way, we avoid 

making further assumptions on tractography that diffusion images do not intrinsically provide. 

Then we show that the diffusion equation can be characterized by the Laplacian matrix of the 

tensor field. In graph theory, the Laplacian matrix is a matrix representation of a graph. It can be 

used to calculate the number of spanning trees for a given graph. We, therefore, circumvent the 
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nodal parcellation problem by studying voxelwise linkage. Although others have studied voxel 

connectivity in its local neighborhood (Zalesky and Fornito, 2009), our work focuses more on 

studying the brain as a whole entity. Finally, we present two important characteristics of a graph, 

the number of spanning trees (Kirchhoff complexity) and the eigen-spectrum, both of which can 

be computed without any parameter tuning. As there may be well over a million voxels in a 

typical image volume, the Kirchhoff complexity and eigen-spectrum can be challenging to 

compute. We therefore present an algorithm to calculate them efficiently. In the Experimental 

Section, we illustrate how to evaluate these measures in two biomedical applications 

(Alzheimer's disease and intelligence prediction). 

 

6.2 Voxelwise Spectral Diffusional Connectivity 

6.2.1 Diffusion Equation and Tensor 

   DWI yields information on WM fibers by measuring signals sensitive to the directional 

diffusion of water molecules. A diffusion process is usually described by the diffusion equation, 

which is a partial differential equation as follows 

       

  
                                                                  (6.1) 

where        is the density of the diffusing material at time   and at location   (in the 

continuous domain),      is the diffusion tensor at location  , and   represents the spatial 

derivative operator. Here              can be understood as the “flux”, the amount of 

diffusing material moving through a unit surface at location  , and over a unit time interval 

starting at time  .  



80 

 

        fully characterizes the diffusion properties of a field. The diffusion tensor images 

reconstructed from DWI are voxel estimates of the diffusion field     . To make      reflect 

the spatial density of WM fibers, we modulate diffusion tensors with its fractional anisotropy 

(FA). 

 

6.2.2. Laplacian Matrix and Graph 

   To study      numerically, the spatially and temporally continuous process defined by 

Equation (6.1) should be discretized. As we are interested in T(x) itself, not the diffusion process 

      , we discretize it only spatially with the finite difference method. Then the discretized 

version of Equation (6.1) becomes 
       

  
    , where   is a square matrix of size  , where   

is the number of voxels of interest.   should satisfy the following criteria: (1) It is self-adjoint 

because the diffusivity between two voxels should be independent of the direction of the flux 

that crosses them. (2) The sum of each row or each column needs to be zero because the total 

volume of the diffusion material should be preserved. (3) Its off-diagonal elements are non-

positive because the molecules diffuse from high concentration to low concentration. Matrices 

that satisfy all the three properties are called Laplacian matrices. 

 

   Laplacian matrices and graphs have a one-to-one mapping relationship. Given the adjacency 

matrix of an undirected and weighted graph   whose elements       indicate the edge weight 

between two adjacent vertices   and  , its Laplacian matrix         is defined as 
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    {
            

∑             
   

                                                   (6.2) 

We can see that how the Laplacian matrix is constructed also implies that a graph can be 

inversely constructed from its Laplacian matrix. It is worth noting that the Laplacian matrix   of 

a connected graph is positive semi-definite. There is one and only one zero eigenvalue and the 

rest of the eigenvalues are all positive. 

 

   With this one-to-one correspondence relationship, we claim that a diffusion field can be 

studied via its Laplacian matrix or its corresponding graph. For example, we can study its 

connectivity complexity, as addressed in Section 6.2.3, its eigen-spectrum, as addressed in 

Section 6.2.4, or its vertex centrality in future work. 

 

6.2.3. Spanning Trees and Kirchhoff Complexity 

   A spanning tree of a connected graph   is a sub-graph connecting all the vertices in  , which 

does not contain any circular path. Adding one edge to a spanning tree creates a circle and 

deleting one edge from a spanning tree partitions the tree into two disjoint sets. Spanning trees 

play important roles in graph theory. It is also related to fundamental circles and fundamental cut 

sets of a graph. One measurement of the complexity of a graph is the number of its spanning 

trees, which is called the Kirchhoff complexity (Tutte, 2001). The extended Kirchhoff 

complexity for weighted graphs is defined as 

     ∑                 ∏                                                 (6.3) 
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where      is the set of spanning trees of an undirected weighted graph        ,   is a 

spanning tree, and      is the weight associated with   by multiplying all the weights of its 

edges. 

 

   We choose      to indicate the complexity of a connectivity network because it enumerates 

all the possible ways to connect all the vertices in a graph without circles and it also considers 

the effectiveness of the connection by weighting with its edge weights. 

 

   Although      is defined by enumeration, its calculation does not require enumeration. It can 

be solved with the Kirchhoff Matrix-Tree theorem (Chaiken, 1982) as follows. 

Kirchhoff's Matrix-Tree Theorem: Given a connected undirected weighted graph  , its 

Kirchhoff complexity is 

     
 

 
                                                                   (6.4) 

where                are the non-zero eigenvalues of the Laplacian matrix of  ,     is the matrix 

derived by removing the  th row and the  th column from the Laplacian matrix, and   is the 

number of vertices of  . Interestingly, no matter what value   takes, the result is the same. 

 

   Equation (6.4) requires the calculation of the matrix determinant, but direct and exact 

calculation of the determinant of large matrices is not currently feasible, as it may lead to 

numerical overflow. Fortunately, we can calculate the logarithm of the determinant very 



83 

efficiently with matrix factorization. Given a symmetric    , we first decompose it as     

     by the LDL decomposition where   is a square lower uni-triangular matrix and   is a 

diagonal matrix with rank    . Now we have two properties: 

(1)                                      

(2)         ∏    
   
    

where     is the  th diagonal element of  . Then we can calculate the logarithm of Kirchhoff 

complexity as 

               ∑      
   
                                                 (6.5) 

 

6.2.4. Estimation of Eigenvalue Spectrum 

   The eigenvalues of a Laplacian matrix   not only decide the complexity of a graph (see 

Equation (6.4)) but also convey important information on the temporal responses of the 

differential equation 
       

  
    . However, calculating the eigenvalues of a large sparse 

matrix demands cumbersome computation and can be impractical. For example, at the 128 x 128 

x 128 image volume size, the Laplacian matrix derived from the diffusion tensor images has 

approximately 2 x 10
6
 rows and columns. For such a large matrix, direct and exact calculation of 

their eigenvalues is practically impossible. As we are only interested in the distribution of the 

eigenvalues instead of their exact values, we can estimate the cumulative distribution function 

(CDF) of the eigenvalues with Sylvester's Law of Inertia. 
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   Sylvester's Law of Inertia: Given a symmetric and real-valued matrix  , its transformation 

       where   is an invertible square matrix, has the same number of positive/negative 

eigenvalues as   does. 

 

   Let      be the number of  's eigenvalues which are equal or smaller than  , that is,      

         where   's are the eigenvalues of  . To calculate     , we first factorize         

as         by the LDL decomposition, where   is the identity matrix, and   and   are 

denoted as in Section 6.2.3. Now we have three properties: (1) if   is an eigenvalue of  , then 

    is an eigenvalue of   ; (2)   has the same number of positive/negative eigenvalues as    

does; (3) The eigenvalues of   are its diagonal elements. These properties implies that      

equals the number of the diagonal elements of   which are less than or equal to 0, even though 

the diagonal elements of   are not necessarily the eigenvalues of   . The detailed eigen-

spectrum computation algorithm is summarized in Algorithm 1. 

 

Algorithm 1 Estimation of Eigen-Spectrum with   Bins 

1. Calculate the largest eigenvalue      of   with the power iteration method. 

2. Set bin positions     
 

 
              for estimating      . 

3. For each   : 

(a) Decompose       as     . 

(b)                 where    ’s are diagonal elements of  . 
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6.3 Experiments 

   In this section, we show how to apply the theory we derived in Section 6.2 to two real 

biomedical problems. 

6.3.1. Graph Construction and Connectivity Computation 

   The raw diffusion images were corrected for eddy-current induced distortions with FMRIB 

Software Library (FSL) and then skull-stripped using the FSL tool, BET. The FA modulated 

tensor field was reconstructed using our own C++ diffusion tool package developed with 

Segmentation & Registration Toolkit (ITK). Negative eigenvalues of the reconstructed tensors 

were rectified to their absolute values. Next, the FA image of each subject was linearly aligned to 

a single-subject FA atlas (“Eve” atlas) from Johns Hopkins University (Oishi et al., 2009) (the 

atlas was downsampled to the 2 x 2 x 2 mm
3
 resolution to facilitate the computation). The 

purpose of registration was to reduce the possible bias in graph construction introduced by 

individual volumetric differences. Tensors were linearly interpolated and re-oriented with the 

preservation-of-principal-direction method (Alexander et al., 2001) when the affine 

transformation was applied. The discretized Laplacian matrix of the transformed tensor field was 

constructed. Finally, the logarithm of Kirchhoff complexity was computed as described in 

Section 6.2.3 and the logarithmic eigen-spectrum was estimated according to Algorithm 1 in 

Section 6.2.4. The Laplacian matrices were sparse and it took about 5 minutes to perform one 

LDL routine for a square matrix of size 2x10
6
 with a 2.8 GHz Xeon CPU. 
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6.3.2. Alzheimer’s Disease 

   AD is an irreversible, progressive brain disease that destroys memory and cognition, and is the 

most common cause of dementia in older people. All of our subjects were recruited as part of 

phase 2 of the Alzheimer's Disease Neuroimaging Initiative (ADNI2) - an ongoing, longitudinal, 

multi-center study designed to find biomarkers for the early detection of AD. 155 subjects were 

categorized into four groups: normal (sex/average age: 22 male (M)/22 female (F)/72.7 years), 

early mild cognitive impairment (eMCI) (38M/24F/74.0), late mild cognitive impairment (lMCI) 

(15M/11F/73.0), and AD (15M/8F/75.8). MCI is an intermediate stage between normal aging 

and AD. 46 DWI volumes were acquired per subject: 5 T2-weighted b0 image volumes and 41 

diffusion-weighted volumes (b = 1000 s/mm
2
). Each volume dimension was 256 x 256 x 59 and 

the voxel size was 1.37 x 1.37 x 2.7 mm
3
. 

 

   Figure 6-1(a) shows a box plot of the logarithm of Kirchhoff complexity of the four groups. 

The minimum and the maximum of each group are displayed in black, the lower quartile and the 

upper quartile in blue, and the median in red. All outliers are marked with “+”. The median 

logarithm of Kirchhoff complexity decreases from the normal group to both MCI groups and to 

the AD group. In Figure 6-1(b), we show ten normalized logarithmic eigen-spectra of the AD 

group and the normal controls (5 people from each group were randomly selected). The peaks of 

the spectra are shifted towards the right in the AD patients, relative to the normal controls. After 

excluding outliers indicated by the box plot, we also performed a t-test on the logarithm of 

Kirchhoff complexity between each pair of groups, and the t-statistic between AD and normal 

group was -3.24 (p=0.0019). The trend of decreasing global structural network connectivity from 
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the normal group to the AD group is consistent with similar findings in functional (Supekar et 

al., 2008) and anatomical connectivity studies (Daianu et al., 2012). 

 

(a) 

 

(b) 

Figure 6-1. The figure (a) shows the box plot of the logarithm of Kirchhoff complexity of the 

four groups and (b) illustrates 5 representative normalized logarithmic eigen-spectra for AD 

patients (in red) and normal controls (in blue), respectively. 
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6.3.3. Intelligence 

   80 pediatric subjects were included in this study, from 7 to 17 years old with an average age of 

12.2 years. 30-direction DWI data was collected (b = 1000 s/mm
2
). The voxel dimension was 

128 x 128 x 128, with an isotropic voxel size of 2 mm. 

 

   Regression analysis was applied to study the correlation between the subjects' performance 

intelligence quotient (PIQ) and the logarithm of Kirchhoff complexity, in conjunction with their 

age variability. The response variable was PIQ, and the regressors were the logarithm of 

Kirchhoff complexity and age. Scatter plots relating the variables are shown in Figure 6-2. Both 

one-factor and two-factor regressions were performed. Statistics from the regression analysis are 

listed in Table 6-1. PIQ and the logarithm of Kirchhoff complexity show statistically significant 

correlation (  =0.066 or 6.6%) at the 5% significance level. Our result is consistent with Cole et 

al.'s study (2012) with functional MRI in which measures of global brain connectivity were 

found to explain about 5% of the normal variance in intellectual function. 

  



89 

 

 

Figure 6-2. Scatter plots and regression equations of PIQ against the logarithm of Kirchhoff 

complexity and age, respectively. 
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Table 6-1. Regression statistics. The logarithm of Kirchhoff complexity is statistically 

significant as a predictor of PIQ in both one-factor and two-factor linear regression models. 

Regression Model Variable Coefficient (95% CI) r
2
 t-statistic p-value 

One-factor 
ln(K)                 0.066 2.30 0.025 

Age            0.009 -0.84 0.40 

Two-factor 
ln(K)                

0.071 
2.22 0.029 

Age             -0.68 0.50 

 

6.4. Conclusion and Future Work 

   Here we presented a new method to study overall brain connectivity at the voxel level instead 

of defining ROI-based nodes and using fiber guidance from tractography. Laplacian matrix of 

the diffusion tensor field has been proven to have a one-to-one correspondence with its 

connectivity graph. The voxelwise matrix is high dimensional - making a brute force solution 

impossible with normal laboratory computing resources. Instead, our measures, the Kirchhoff 

complexity and eigen-spectrum, can be computed efficiently without an unreasonable 

computational burden. We illustrate how to apply our measures to biological and medical 

questions. In our experiments, our estimates have a reasonable interpretation as indices of brain 

connectivity for disease characterization and intelligence prediction. Future work on voxelwise 

diffusion connectivity shows promise. For example, we can study the betweenness centrality of a 

vertex (voxel) and determine the relative importance of a voxel within the network. Or we can 

perform eigen-embedding to project voxels to higher-dimensional space and invent a new way to 

define ROIs. 
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