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Abstract

Geometry and Conservation Laws for a Class of Second-Order Parabolic Equations

by

Benjamin Blake McMillan

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Robert Bryant, Chair

I study the geometry and the conservation laws of second-order partial differential equations of
parabolic type. The general strategy is to replace the differential equation with an exterior differ-
ential system—a smooth manifold with extra geometric structure that keeps track of the solutions—
and then use geometric methods.

I use Cartan’s method of equivalence to determine the essential geometric curvatures of parabolic
equations. I then explain the geometric significance of these curvatures, including some normal
form results. The study of these curvatures also leads me naturally to a nice class of equations, the
parabolic Monge-Ampère equations.

In the second half, I study the relationship between the geometry and the conservation laws of
parabolic equations. In particular, I prove that for a specific class of parabolic equations, the gen-
erating function of any conservation law depends on at most second derivatives of solutions. This
is in contrast to examples such as the KdV equation, which have conservation laws of arbitrarily
high order.
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Introduction

The goal of this thesis is to study the geometry and the conservation laws of differential equations
of parabolic type. I define parabolic systems in arbitrarily many variables and make progress on
their equivalence problem. In general, Cartan’s method of equivalence is a strategy for determining
the local invariants of geometric structures: if one is handed a specific class of geometric structure
on smooth manifolds (eg. Riemannian, almost complex, CR, etc.), one can in principal ‘turn the
crank’ and find the local curvatures (eg. Riemannian curvature, the Nijenhuis tensor, the Levi form,
respectively), which distinguish non-isomorphic structures .

The reader may not be familiar with what I mean by ‘geometry of differential equations.’
In short, any differential equation has an associated exterior differential system—a manifold M
equipped with an ideal I in the ring of forms—for which certain compatible submanifolds cor-
respond to the solutions of the differential equation. There are a few advantages to taking this
perspective. Not least, an exterior differential system is independent of a choice of coordinates, so
questions of guage are more easily answered. Another advantage is that one can now ask (and an-
swer) questions about the geometry of differential equations. From the perspective of the method
of equivalence, the ideal I is simply additional geometric structure on M , much the same as (for
example) a metric or a contact form. In fact, contact manifolds provide an example of an exterior
differential system, albeit with no local geometry. Bryant, Griffiths and Hsu give a good gen-
eral overview of this philosophy in the monograph Toward a Geometry of Differential Equations,
[BGH95c].

A large portion of this paper is devoted to the geometry of parabolic systems, which correspond
to parabolic, second-order differential equations. In studying the geometry of the EDS (M, I)
associated to a second-order differential equation, the first invariant one finds is the geometric
principal symbol, a symmetric matrix valued function onM . The signature of this symbol controls
the behaviour of solutions, which is one explanation for why second-order equations are typically
divided into classes: elliptic, hyperbolic, parabolic.

A second-order equation is parabolic if it satisfies the (closed) condition that its symbol is ev-
erywhere positive semi-definite, i.e., the symbol has a 1-dimensional kernel at each point. These
kernels are closely associated to the characteristic directions of the equation. Intuitively, a parabolic
system has at every point a direction for which the second derivates involving this direction don’t
enter the differential equation. For example, the characteristic direction of the heat equation

ut = ∆u
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is the vector ∂
∂t

at each point. More generally, any equation of the form

ut = F

(
xi, u,

∂u

∂xi
,
∂2u

∂xi∂xj

)
,

where F is elliptic, has ∂
∂t

as characteristic direction. Such evolutionary equations are what might
classically be called parabolic equations.

I also study a more general class of equations, which have geometric symbol of parabolic type
yet cannot be written as an evolution equation in any choice of coordinates. For these general
parabolic systems, the intuition of a characteristic direction is not precise. Instead, one should con-
sider the characteristic co-vector. This co-vector defines hyperplane distributions on (the graphs
of) solutions, the characteristic distributions. Evolutionary equations are characterized by the
property that these distributions be Frobenius on all solutions, which I show in Theorem 2.

Restricted to parabolic systems, the equivalence problem provides 2 new families of invariants:
the Monge-Ampère invariants and the co(n)-valued Goursat invariant. A major element of my
thesis is the provision of a geometric interpretation for these.

I introduce the linear-type Monge-Ampère systems, which correspond to a particularly simple,
and geometrically natural, class of Monge-Ampère equations. Within these, I provide a geometric
characterization of parabolic Monge-Ampère systems. If all of the Monge-Ampère invariants of
a parabolic system vanish identically, then it has a de-prolongation to a parabolic Monge-Ampère
equation. This should be thought of as a condition on the ‘curvatures’ of parabolic systems. If the
‘first half’ of the Monge-Ampère invariants vanish, then there is a partial de-prolongation, which
puts the differential equation in a normal form.

Given a parabolic equation in generic coordinates, it may not be obvious whether or not there
is a change of variables that puts it into evolutionary form. The Goursat invariant helps to answer
this question. The Goursat invariant is a section of a co(n)-fiber bundle, and naturally splits into
its trace component aδij and anti-symmetric component Gij . If the Goursat invariant is a non-zero
multiple of the identity matrix everywhere, then Theorem 2 provides a choice of coordinates that
puts the equation into evolutionary form. Conversely, if it is not a multiple of the identity matrix
somewhere, then the equation is not evolutionary in any choice of coordinates.

Geometrically, the trace component of the Goursat invariant detects the sub-principal symbol,
and can be used to determine whether a parabolic system deserves to be called parabolic. Indeed,
if it vanishes identically, then there is a choice of coordinates so that the differential equation is of
the form

F

(
t, xi, u,

∂u

∂xi
,
∂2u

∂xi∂xj

)
= 0,

with no dependence on the derivatives of t. On the other hand, if the trace component does not
vanish, then the parabolic system has a well defined ‘positive time’ direction. This is useful, for
example, for initial value problems, so that one can be sure to look for solutions in the correct
direction.

The anti-symmetric component of the Goursat invariant measures the integrability of the char-
acteristic distributions. Indeed, Theorem 2 also states that Gij vanishes if and only if the charac-
teristic foliation is integrable on any solution. Even better, one can in this case construct a global
‘time’ foliation, which puts the equation in evolutionary form.
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Both the Monge-Ampère and the Goursat invariants have precedents, of the same name, in
work done on low dimensional parabolic systems. The trace component of the Goursat invariant
was introduced by Goursat in his study of parabolic equations in 1+1 variables. It also features
in work on parabolic system by Bryant & Griffiths [BG95b] and the thesis of Clelland [NC97],
where she generalizes it to 2+1 variables. The anti-symmetric component is new. Bryant and Grif-
fiths also introduced the Monge-Ampère invariants for parabolics in 1+1 variables, while Clelland
generalized them to 2+1 dimensions. My work here generalizes the previously studied cases in
two directions: I study parabolic systems in more than 3 variables and I study non-evolutionary
equations.

In the second part of this thesis, I focus on the conservation laws of parabolic systems. The
systematic study of conservation laws has a long history, but an important modern development was
the introduction by Vinogradov et al. (e.g. [Vin99]) of the variational bi-complex. This allowed the
study of conservation laws by homological methods. In the 90’s, Bryant and Griffiths generalized
the theory in [BG95a], introducing the characteristic cohomology of exterior differential systems.
My thesis is heavily indebted to this paper (and its sequel [BG95b], part II)—most of the ideas
appear there already. My contribution is applying, and in some cases extending, the tools to the
case at hand, parabolic equations. By using the EDS version of the space of conservation laws, I
am able to apply the results developed in the first half of this thesis.

Bryant and Griffiths took a similar approach in part II, using their general theory to study
parabolic equations in two variables. Their approach cut both ways: Studying conservation laws
informed their solution to the equivalence problem, and understanding the local invariants allowed
them to classify equations in terms of conservation laws. One important step in this classification
was the proof that, for parabolic systems in 1+1 variables, all conservation laws depend on at most
second derivatives of solutions. They also showed that if an equation has a non-trivial conservation
law then it must be of a special form, a Monge-Ampère equation. Using this reduction, they were
able to determine the invariants obstructing conservation laws and to prove that a non-linearizable
parabolic equation has at most 3 conservation laws.

In her thesis ([NC97]), Clelland generalized these results to parabolic equations in 2 + 1 vari-
ables with integrable characteristics. In this case again, all conservation laws depend on at most
second derivatives, and the existence of a non trivial conservation law leads to a reduction to a
Monge-Ampère equation. With this reduction, she was able to find examples of non-linearizable
parabolic equations that nonetheless have infinitely many conservation laws.

Both Clelland’s and Bryant and Griffiths’ results suggest the conjecture that for parabolic equa-
tions the calculation of conservation laws reduces to a finite dimensional problem. I prove this in
Theorem 5 for parabolic systems with integrable characteristics. An interesting phenomenon in its
own right, this means that the problem of classifying conservation laws is far more tractable than
for general PDE. Contrast this situation with that of the KdV equation, which has conservation
laws that depend on arbitrarily many derivatives of solutions.

For intuition on conservation laws, consider the EDS (M, I) associated to a determined differ-
ential equation F for functions in n variable—approximately, F is determined when a compatible
(n−1)-dimensional manifold in M uniquely specifies the graph of a solution to F , but an (n−2)-
dimensional manifold does not. On such a system, a conservation law is a differential form Φ on
M whose restriction to the graph of any solution of F is closed. A closed form Φ certainly meets
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this criterion, providing an example of a trivial conservation law. Suppose that Φ is not closed on
M . By Stokes’ Theorem, its integral over the boundary of a solution in M is zero. In particular, Φ
provides a necessary condition for an (n−1)-dimensional manifold in M to extend to the graph of
a solution to F .

To take a simple, but critical, example, the energy of physical systems fall into this discussion.
Consider an ordinary differential equation that describes a particle in a conservative force field, and
let M be the phase space of the particle. (I omit the description of I in this case, but there is one.)
Solution manifolds are curves, 1-dimensinal submanifolds of M . The energy E is a non-constant
function on phase space, but is constant along solutions. This is equivalent to the statement that
dE is zero when restricted to a solution.

In order to discuss conservation laws of arbitrary order, I establish some technical results, which
extend a given parabolic system to its infinite prolongation, which is essentially an infinite phase
space for solutions to live in. The principal structure equations, which I descibe in Proposition 1,
are useful for determining the leading order part of conservation laws, the part that only depends on
the principal symbol of an equation. The principal structure equations allow me to filter the space
of differential forms by principal weight, which is closely related to the number of derivatives of
solutions that a form depends on.

The behavior of parabolic equations, and their conservation laws, depends on the sub-principal
symbol. Since the principal weight filtration does not detect the sub-principal symbol, it is nec-
essary to find a refinenent. For parabolic systems with integrable characteristics, I calculute finer
structure equation in Theorem 3 . These refined structure equations allow me to define a refined
filtration of the differential forms, which is critical to the proof of Theorem 5. In effect, this filtra-
tion is ‘transverse’ to the the principal filtration, so by playing them off of each other I can split
equations into quite manageable pieces.

The weight filtrations, and the horizontal and vertical derivatives, tools which are crucial to
the calculations done here, are introduced in [BG95a]. One contribution that I make is to extend
the definition of these derivatives to a more coframe-equivariant setting. This allows me to do
calculations without fixing a specific choice of coframing. The philosophy here is in line with the
dictum in linear algebra that a gentlemathematician never fixes a basis.

It is not clear yet whether a parabolic system in more than three variables that has a non-trivial
conservation law is required to be Monge-Ampère, as happens in fewer variables. However, I
demonstrate that at the very least, there are strong restrictions on the Monge-Ampère invariants.

Theorem 5 says that for parabolic systems with integrable characteristics, the generating func-
tions of any conservation laws cannot depend on more than second derivatives of solutions. I re-
mark that this result likely extends to porabolic systems with non-integrable characteristics, which
are more generic and so are even more constrained in having conservation laws. The main diffi-
culty in extending the proof of Theorem 5 is calculating the refined structure equations for general
parabolic systems.
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I hold the following conventions and notations throughout:

• n + 1 is the number of independent variables in a parabolic system. One can, in special
cases (that is, for evolutionary equations), split these into one ‘time’ variable and n ‘space’
variables. Parabolic systems with n = 1 and n = 2 are fairly well understood (except for the
non-evolutionary case), and I generally consider parabolic systems with n ≥ 3.

• Indices i, j, k, l,m always range from 1 to n, while indices a, b, c always range from 0 to n.
I typically abuse the Einstein summation notation on repeated indices in two related ways:
Repeated spatial indices mean a sum over only the spatial indices and I apply this convention
to tensors aab in Rn+1⊗Rn+1. Precisely, I let

aii =
n∑
i=1

aii.

This will be justified by the existence of a partial trace operator, which is invariant under
allowed changes of basis. This is not so different from the typical Einstein convention,
where the trace of elements in Rn+1⊗(Rn+1)∨ is justified by the fact that the identity is
preserved by the conjugation action of GL(Rn+1).

• Many calculations in this paper can be done by fixing a coframing on a manifold. However, it
is often advantageous to instead lift the calculation to the bundle of coframes of the manifold,
where the calculations can be performed without making a choice of coframing. I typically
underline objects on the base manifold and do not underline their analogues on the coframe
bundle.

• There is a collection of n + 1 independent 1-forms ωa, which I define below. I use ω to
denote the exterior product of all of them:

ω = ω0 ∧ . . . ∧ωn,

the hat denoting omission. I use the omitted index notation, so that

ω(a) = (−1)aω0 ∧ω1 ∧ . . . ∧ ω̂a ∧ . . . ∧ωn.

Observe that the sign is chosen so that

ωa ∧ω(a) = ω.

For pairs of indices, I define
ω(ab) = ±

∏
c6=a,b

ωc,

with the sign uniquely specified by the conditions

ω(ab) = −ω(ba)
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and
ωa ∧ω(ab) = ω(b).

These two properties are useful to note when following calculations.

More generally, for an anti-symmetric multi-index I in {0, . . . , n}, I define

ω(I) = ±
∏
a6∈I

ωa,

with signs specified recursively by the condition that

ωa ∧ω(aI) = ω(I)

whenever a is not already in the multi-index I , and the condition that

ω(σ(I)) = sign(σ)ω(I),

where σ is a permutation of the set I .

• I and J are subsets of {1, . . . , n} when discussing Monge-Ampère systems. Otherwise, I
is a symmetric multi-index (i1 . . . is) so that the (possibly repeating) indices i1, . . . , is are
between 1 and n. The index I is of size s, denoted |I|. The context will keep these separate
uses of I clear.

• F is the principal weight filtration, defined by the principal weight function pwt.

• F the sub-principal weight filtration, defined by the sub-principal weight function wt.

• Various reductions of structure groups are defined throughout. The notions are defined be-
low, but I collect the most relevant facts here:
The G0-structure B0 is the bundle of 0-adapted coframes of a parabolic system. Matrices in
G0 are first defined in equation (1.8).

If (most of) the primary Monge-Ampère invariants vanish identically, then B0 reduces to the
G1-structure B1, where G1 consists of matrices in G0 so that Sa0 = 0.

If all of the Monge-Ampère invariants vanish, then B0 reduces to BMA, with structure group
GMA, matrices so that S = 0.

If all of the primary Monge-Ampère invariants vanish, then there is a reduction to a G2-
structure, on which the primary Goursat invariant is well defined. The non-degeneracy con-
dition of any parabolic system then guarantees a further reduction to B3, where the trace-
Goursat invariant is normalized to −1/n.

If the anti-symmetric component of the Goursat invariant vanishes, then there is a reduction
to B4 so that the component (ai) of the Goursat invariant vanishes identically.

• C∞ (M) is the set of smooth functions on a manifold M .
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Chapter 1

Background

1.1 Exterior Differential Systems
Definitions and motivation

Definition 1. On a smooth manifold M , a graded ideal I in the ring of forms Ω∗(M) is differen-
tially closed if d I ⊂ I. Throughout, ideal means differentially closed ideal, although I sometimes
use differential ideal for emphasis and algebraic ideal for ideals not assumed to be differentially
closed.

An exterior differential system (M, I) is a smooth manifold M and a graded, differentially
closed ideal I on M .

A submanifold ι : N ↪→ M is an integral manifold of (M, I) if the pullback ι∗ I is identically
zero, or equivalently, if φ|TxN = 0 for all φ ∈ I and x ∈ N .

An integral element at a point x ∈M is a subspace E ⊂ TxM for which φ|E = 0 for all φ ∈ I.

As I will describe shortly, every sufficiently non-degenerate system of partial differential equa-
tions corresponds to an exterior differential system. Under this correspondence, solutions to a PDE
are equivalent to integral submanifolds of the associated EDS.

Integral elements can be thought of as potential tangent spaces of integral manifolds. The
Cartan-Kähler theory gives a sufficient condition for an integral element to have an integral mani-
fold tangent to it.

The ideal I determines differential conditions on the tangent planes of integral manifolds. This
is one reason why integral manifolds should be thought of as (the graphs of) solutions to a PDE.
The following examples provide a more direct explanation.

Example 1 (The empty differential equation). Consider J2 = J2(Rn,R), the bundle over Rn of
2-jets for functions in n variables. A choice of coordinates (xi, u) for J0(Rn,R)—the space of
0-jets—induces coordinates xi, u, pi, and pij on J2, where the pi correspond to the first derivatives
of u with respect to xi and pij to the second derivatives. These coordinates may be used to define
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the contact forms1

θ̂∅ = du− pi dxi

θ̂i = dpi − pij dxj,

as well as the canonical contact ideal

C = {θ̂∅, θ̂i} = {θ̂∅, θ̂i, dθ̂∅, dθ̂i}

on J2. The pair (J2, C) is an exterior differential system.
I note that the geometric geometric structure of this EDS is independent of a choice of co-

ordinates on J2, because C can be defined intrinsically. Let Cx ⊂ Tx(J
2) be the subspace

spanned by the tangent planes of all 2-jet graphs which pass through x ∈ J2. This defines the
n + n(n + 1)/2 dimmensional contact distribution C on J2, and C is the differential ideal gener-
ated by C⊥ ⊂ Ω1(M).

The integral submanifolds of J2 that submerse onto Rn are the graphs of 2-jet lifts. A smooth
function u : Rn → R naturally induces its 2-jet lift, the section of J2 given by

(xi) 7−→
(
xi, u(xi),

∂u

∂xi
(xi),

∂2u

∂xi∂xj
(xi)

)
.

On the other hand, a generic section s of J2 is not the 2-jet lift of any function. Indeed, write s as

(xi) 7−→
(
xi, u(xi), pi(x

i), pij(x
i)
)
.

Then s is a 2-jet lift if and only if it agrees with the 2-jet lift of the function u(xi), that is,

pi(x
i) =

∂u

∂xi
(xi)

and

pij(x
i) =

∂2u

∂xi∂xj
(xi)

for all (xi) ∈ Rn. The contact ideal provides a geometric test of these conditions, stated in the
following lemma.

Lemma 1. An n-dimensional submanifold N of J2 is locally the graph of a 2-jet lift if and only if
N is an integral manifold of (J2, C) and dx1∧ . . . ∧ dxn is non-vanishing on N .

Proof. First note that N is locally the graph of a section of J2 if and only if dx1∧ . . . ∧ dxn is non-
vanishing on N . In this case, N may be locally parameterized by functions u(x), pi(x) and pij(x).
It is straightforward to check that the requirement that θ̂∅ and the θ̂i vanish on N is equivalent to
the conditions pi = ∂u

∂xi
and pij = ∂pi

∂xj
= ∂2u

∂xi∂xj
for 1 ≤ i, j ≤ n.

1These are not contact forms in the sense of contact geometry, in which a contact form defines a totally non-
integrable hyperplane distribution. However, the concepts are related. In particular, the form θ̂∅ can be defined on the
space of 1-jets, where it does define a maximally non-integrable distribution.
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Because of this lemma, (J2, C) can be reasonably thought of as the exterior differential system
corresponding to the system of no 2nd order equations for one function of n variables. Of course,
the solutions to such a system are arbitrary functions of n variables.

Example 2 (One second-order equation). Consider now a single 2nd order differential equation for
a function of n variables, given in jet coordinates by

F
(
xi, u, pi, pij

)
= 0.

Let M0 be the zero locus of F . To avoid degeneracy, I will assume that at each point of M0,

dF 6≡ 0
(
mod dxi, du, dpi

)
.

Apart from ensuring that the equation is truly second order, this guarantees that M0 is a codimen-
sion 1 submanifold in J2(Rn,R). Let I0 denote the restriction of C to M0.

We say that (M0, I0) is the exterior differential system associated to the differential equation
F . Its generic integral manifolds are locally in correspondence with solutions to F . Indeed, from
the lemma, if N is an integral manifold of (M0, I0) that submerses onto Rn under the natural
projection, then near every point of N there is a function u(x) whose 2-jet graph agrees with N .
But N lies in M0, the zero locus of F , so u satisfies the differential equation.

Although I will not need it here, this story generalizes to arbitrary PDE satisfying appropriate
non-degeneracy conditions. There is a naturally defined contact ideal on Jr(Rn,Rs), and the EDS
obtained by restricting this ideal to the zero set of

F : Jr(Rn,Rs)→ Rl

is the EDS associated to a system of l different rth order differential equations for s functions of n
variables.

These examples demonstrate a common situation; it is often useful to consider only integral
manifolds satisfying a given transversality condition. The integral manifolds described above, with
non-zero dx1∧ . . . ∧ dxn, are classical solutions. There are of course integral manifolds that don’t
satisfy this condition, the generalized solutions. These have their uses, but it is clearly important
to distinguish the two classes.

The condition that the form dx1∧ . . . ∧ dxn restrict to be non-zero is appropriately generalized in
the following definition. For clarity, assume that (M, I) is an exterior differential system satisfying
the constant rank condition that the degree 1 piece of I,

I1 = I ∩Ω1(M),

has constant rank, say s. This assumption typically holds in examples and does hold for all exam-
ples in this paper.

Definition 2. An independence condition for (M, I) is a free submodule J in Ω1(M) of dimension
n+ s so that (i) I1 ⊂ J and (ii) J has everwhere a local basis

θ1, . . . , θs, ω
1, . . . , ωn

9



for which
ω1 ∧ . . . ∧ωn 6∈ I .

An n-dimensional integral manifold Σ of M satisfies the independence condition if J |Σ is
n-dimensional, or equivalently, if

ω1 ∧ . . . ∧ωn|Σ 6= 0

everywhere. Likewise, an n-dimensional integral element E satisfies the independence condition
if

ω1 ∧ . . . ∧ωn|E 6= 0.

I will typically call integral manifolds that satisfy a given independence condition solution
manifolds.

I also remark that both examples belong to a special class of exterior differential system.

Definition 3. An exterior differential system (M, I) is a Pfaffian system if it has an independence
condition and I is locally generated by 1-forms and their exterior derivatives.

There is a well-developed theory of Pfaffian systems, see for example [BCG+13], chapter IV.
Several of the results there are invaluable in the following.

Morphisms of Exterior Differential Systems

In the category of exterior differential systems, a morphism from (M, I) to (M ′, I ′) is a smooth
map f : M → M ′ that pulls back I ′ to a subset of I. From this perspective, an integral manifold
N of (M, I) is simply an EDS embedding ϕ : (N, {0}) → (M, I). It is occasionally useful to
drop the condition that integral manifolds are embeddings. Then morphisms are characterized by
the condition that they push forward solutions of (M, I) to solutions of (M ′, I ′).

The most important case is when two exterior differential systems are equivalent. The follow-
ing definition gives a class of maps which preserve the structure of integral manifolds.

Definition 4. An equivalence of exterior differential systems (M, I) and (M ′, I ′) is a diffeomor-
phism f : M →M ′ for which f ∗ I ′ = I.

The most classical examples of EDS equivalences are the point transformations—equivalences
induced by changes of coordinates of a PDE. More precicesly, a change of coordinates transforms
an equation F into a new equation F ′ in the standard manner. On the other hand, the change
of coordinates diffeomorphism naturally lifts to a ‘prolonged’ diffeomorphism of Jr(Rn,Rs). It
follows from the definitions that this diffeomorphism defines an equivalance from the EDS induced
by F to the one induced by F ′.

Not all equivalences come from point transformations. For example, consider the map from
J1(Rn,R) ∼= Rn×R×Rn to itself, given in coordinates by

ϕ(xi, u, pi) = (pi, x
ipi − u, xi).

It is straightforward to check that ϕ pulls back the contact ideal {du−pi dxi} to itself. As a
consequence, ϕ induces a morphism from any first order equation to a new one in such a way that
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solutions are taken to solutions. For example, the EDS induced by the equation ∂u
∂xi

∂u
∂xi

= x1 is
taken to the simpler EDS induced by the equation ∂u

∂x1
= xixi. Solutions to the second equation,

which is relatively easier to solve, can be pushed forward by ϕ−1 to give solutions to the first.
Note that this transformation switches position and derivative variables, so it cannot come from
any change of coordinates.

1.2 The method of equivalence for PDEs
Geometry of the empty PDE

I now turn to Cartan’s method of equivalence, applied to the geometry of exterior differential
systems. I begin with the geometry of the empty PDE, because it will help to understand more
interesting equations. The story is analogous to the study of surfaces in Euclidean space, where the
flat Riemannian structure, when restricted to a submanifold, gives the first and second fundamental
forms. Here the empty equation (J, C) plays the same role as Euclidean space. Upon restricting to
a second-order PDE, one recovers the geometric analogue of the symbol, as well deeper invariants.

The first step in any equivalence problem is to restrict attention to coframings that are ‘adapted’
to the geometry of interest. Before getting to this, I recall the definition for the bundle of all
coframes on a manifold.

Definition 5. Given a smooth n-manifold M , a coframe at x ∈M is an isomorphism

u : TxM −→ Rn .

Denote the set of coframes based at x by Fx. The coframe bundle F(M) is then given by

F(M) =
⋃
x∈M

Fx ⊂ Hom(TM,Rn).

The bundle projection π : F(M)→M sending u ∈ Fx to xmakes F(M) into a principal GL(Rn)
bundle. For reasons of convention, I consider F(M) as a right principal bundle, where the action
on each fiber is given by inverse post-composition:

g · u = g−1 ◦ u

for any coframe u and element g ∈ GL(Rn).

Up to choice of basis for Rn, a local section η of F(M) is the same as a local coframing of M .
Indeed, the components of η are a set of n independent 1-forms on M . Conversely, a choice of n
independent 1-forms defines a section of F(M).

By considering subbundles, we can restrict attention to coframings with specific properties.
The most important case arises by considering coframings adapted to some extra geometric struc-
ture on M . It often happens that the adapted coframes for a geometry form a principal G bundle,
where G is a subgroup of GL(Rn). In this case, G is the group of ‘pointwise’ symmetries of the
geometry, and the adapted coframings are given by sections of a G-structure.

11



Definition 6. Let G ⊂ GL(Rn) be a matrix Lie group. A G-structure on M , with structure group
G, is a principal G-subbundle of F(M).

Example 3. Riemannian manifolds are equivalent an O(n)-structures. Given a Riemannian man-
ifold (M, g) and a fixed Euclidean structure g0 on Rn, define B to be the subbundle of coframes
u ∈ F(M) for which

u∗g0 = gπ(u).

Observe that any two coframes in the same fiber differ by an element of O(n), so B is an O(n)-
structure.

Conversely, an O(n)-structure B defines a metric on M : at each point x ∈M , let

gx = u∗(g0)

for any u in the fiber of x. The resulting metric is well defined precisely because B is an O(n)-
structure. Notice that, up to a choice of orthonormal basis for (Rn, g0), an orthonormal coframing
of M is equivalent to a section of B. The local geometry (i.e., the Riemannian curvature) of M is
wrapped up in the question of how curved B is as a subbundle of F(M).

Example 4. In preparation for the definition of parabolic systems, consider the geometry induced
by C on J2, the empty equation in (now) n+ 1 variables.

At any point x of J2, the tangent space TxJ2 is isomorphic to

R⊕Rn+1⊕Rn+1⊕ Sym2 Rn+1 .

For notation, let W = Rn+1 and fix a basis

e∅, ea, fa, eab = ea◦eb (1.1)

of
V = R⊕W ⊕W∨ ⊕ Sym2W,

as well as dual basis
e∅, ea, fa, eab

of V ∨.
I note that the splitting of TxJ2 should be more properly expressed as a partial flag, the one

coming from the various submersions of J2 to lower order jet spaces. In the given basis of V , this
flag is

{e∅} ⊂ {e∅, ea} ⊂ {e∅, ea, fa} (1.2)

and, for example,
W ∼= {e∅, ea}/{e∅}.

It will be useful to also make the identifications

W∨ ∼= {e∅, ea, fa}/{e∅, ea}
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and
Sym2W ∼= V/{e∅, ea, fa},

because they will accord with the geometry and corresponding representation theory.
The vector-valued form

η̂ =
(
θ̂∅, θ̂a, dx

a, dpab

)
∈ Ω1(J2, V )

gives a coframing of J2. However, this coframing is not unique, as its definition depended on a
choice of coordinates. In particular, it is not invariant under EDS equivalences, which are supposed
to be our geometric ‘isometries.’ Still, this coframing has its uses. For example, the geometry of C
is determined by the structure equations

dθ̂∅ =− θ̂a ∧ dxa

dθ̂a =− dpab ∧ dx
b,

along with the condition
C = {θ̂∅, θ̂a}.

Modelled on η̂, we say that a coframing2

η = (θ∅, θa, ω
a, πab) ∈ Ω1(J2, V )

is C-adapted if
C = {θ∅, θa}

and the structure equations

dθ∅ ≡− θa ∧ωa (mod θ∅)

dθa ≡− πab ∧ωb (mod θ∅, θa)

hold. These are the properly normalized coframings that are compatible with the following contact
invariant ideals and equations, which characterize C (see for example [Gar67]):

1. The first derived system C〈1〉 is equal to {θ∅}alg.

2. The degree one piece C1 is equal to {θ∅, θa}alg.

3. dθ∅ ≡ 0 (mod θ∅, θa).

4. The Cartan system of C〈1〉 is equal to {θ∅, θa, ωa}alg.

5. dθa ≡ 0 (mod θ∅, θa, ω
a).

6. The Cartan system of C1 is all of Ω∗(J2).
2Since the form (πab) is valued in Sym2W , it will be convenient to consider πab and πba as the same (R-valued)

1-form. I will do this without comment throughout.
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Note in particular that the filtration

{θ∅}alg ⊂ {θ∅, θa}alg ⊂ {θ∅, θa, ωa}alg

is a contact invariant of C.
The C-adapted coframings are the sections of a GC-structure, defined as follows. The group GC

is the subgroup of GL(V ) that preserves the flag (1.2), the subspace

{e∅ + ea ∧ fa} ⊂ V ⊕ Λ2V/({e∅} ∧ V )

and the subspace

{ea + eab ∧ fb : a = 0, . . . n} ⊂ V ⊕ Λ2V/({e∅, ea} ∧ V ).

Explicitly, in the splitting
V = R⊕W ⊕W∨ ⊕ Sym2W,

one finds that GC consists of matrices of the form
k∅ 0 0 0
∗ B 0 0
∗ tB−1S k∅

tB−1 0
∗ ∗ BT CB/k∅

 , (1.3)

where
k∅ ∈ R×,

B ∈ GL(W ),

S ∈ Sym2W ⊂ Hom(W∨,W ),

the linear map
T : W∨ → Sym2W

satisfies the condition that
T ∈ Sym3W ⊂ Sym2W ⊗W,

and finally, the matrix CB is induced by conjugate transpose action of B on Sym2W , so that

CB(eij) = Bk
i eklB

l
j.

The components labeled with a ∗ are unrestricted.
Define BC to be the GC-principal subbundle of F(J2) generated by the section η̂. By con-

struction, a local coframing η over a neighborhoood U ⊂ J2 is C-adapted if and only if there is a
function g : U → GC so that

η = g · η̂.

This in turn holds if and only if the image of η lies in BC .
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I now recall the tautological 1-form of a G-structure, which can be used to calculate properties
of adapted coframings in a uniform way.

Definition 7. On the coframe bundle π : F(M) → M of an n-manifold M , the tautological form
η ∈ Ω1(F(M),Rn) is defined by

ηu(v) = (π∗u)(v)

for all u ∈ F(M) and v ∈ TuF(M).

The tautological form is uniquely characterized by its reproducing property, the property that3

η∗η = η

for any section η ofF(M). For this reason, the tautological form may be thought of as a ‘universal’
choice of coframing for M . I will typically denote the restriction of η to aG-structure by η as well.
Such a restriction of η is the universal G-coframing.

The components of the tautological form can be used to define Ω∗sb, the semi-basic forms on B.
Fix a basis of Rn and let ηi be the corresponding components of η in this basis. Then Ω∗sb is the
C∞(B)-module generated by the ηi. This agrees with the standard definition of semi-basic forms
for a fiber bundle.

The tautological form also provides a direct way to measure the first variational information of
a G-structure. Cartan’s first structure equation states that on a G-structure B, there is a pseudo-
connection

ϕ ∈ Ω1(B, g)

(for g the Lie algebra of G) and a torsion map

T : B −→ Hom(Λ2 Rn,Rn)

so that
dη = −ϕ ∧ η + T (η ∧ η).

Roughly, ϕmeasures the variation of η in the fiber direction and T measures the first order twisting
between fibers.

Example 5. On the GC-structure BC , the tautological form takes values in V . Denote the compo-
nents of η by

θ∅ = e∅η,

θa = eaη,

ωa = faη,

πab = eabη.

3The notation is admittedly awkward in this instance, but note that the underlined η denotes a specific coframing,
a function from M to F(M), whereas η is a form on F(M).
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(I will without comment adopt similar notation for an arbitrary coframing η.) Then Cartan’s struc-
ture equation takes the form

d


θ∅
θa
ωa

πab

 = −


κ∅ 0 0 0
∗ β 0 0
∗ σ κ0 − tβ 0
∗ ∗ τ Cβ − κ0

 ∧


θ∅
θa
ωa

πab

+


Tθ∅
Tθa
Tωa

Tπab

 . (1.4)

Because the psuedo-connection is valued in gC , the 1-form β takes values in gl(W ), while σ takes
values in Sym2W . By differentiating the action of CB, one finds that

Cβ ∧ (πab) = β ∧ (πab)− (πab) ∧
tβ.

The negative sign is counter-intuitive, but it is because the πab are 1-forms. The sign makes
Cβ∧(πab) into a symmetric matrix valued 2-form.

The general strategy of the method of equivalence is to normalize the torsion terms as much
as possible, through absorption into the pseudo-connection, as well as through reductions of the
structure group. As this proceeds, the remaining torsion provides the first order ‘geometric cur-
vatures,’ the local invariants of the geometry. Typically, invariants of a G-structure B are relative
invariants, which are G-equivariant functions on B that determine the torsion. A relative invariant
that is constant on each fiber is an absolute invariant. In this case, the invariant defines a function
on M .

In the next section I will restrict to the submanifold of J2 cut out by a second order equation,
and the resulting invariants will include the geometric symbol, as well as some deeper invariants.

The geometric (principal) symbol of second order PDE

Let F be a single 2nd order differential equation F for functions of n+1 variables, as in example 2,
and (M0, I0) the corresponding exterior differential system. I now begin to describe the geometry
of M0.

The strategy is to restrict the bundle of C-adapted coframings toM0 and then focus on coframes
in BC|M0 that are compatible with M0. This subbundle will determine a G0-structure on M0, which
is almost the central object of study in this thesis, and will be once I express it independently of an
embedding into J .

Consider a C-coframe u ∈ BC|M0 , based at x. There is one relation, dFx = 0, on the restriction
of u to TxM0. To treat this relation uniformly, I pull it up to the coframe bundle, where there is a
Sym2W -valued function (Sab) on BC|M0 so that (omitting the pullback notation)

dF ≡ Sabπab (mod θ∅, θa, ωa) . (1.5)

Because dF does not vary within each fiber, the function (Sab) is GC-equivariant,

(Sab)(g · u) = CB−1(Sab)(u)
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for any u ∈ BC and g as in (1.3). The function (Sab) is a relative invariant—the unadapted symbol
of F .

Recall that the signature of any matrix in Sym2W determines its orbit under the conjugate
transpose action. Consequently, there is a well defined function on M0 whose value at a point x
is given by the signature of (Sab) at any point of the fiber over x. This function is an absolute
invariant of M0—the adapted symbol of F

Now suppose that the signature function takes the constant value (p, q, r) on a neighborhood
U in M0, and let Gs be the subgroup of GC that stabilizes the signature matrix of (p, q, r). The set
of coframes that reduce (Sab) to its signature matrix is a Gs-subbundle of BC|M0 . It is not quite a
Gs-structure on M0, because it is not a subbundle of F(M0). Observe though, that restricted to
this subbundle, equation (1.5) simplifies to

dF ≡
p∑
a=1

πaa −
p+q∑

a=p+1

πaa (mod θ∅, θa, ωa) , (1.6)

so this coframe adaptation certainly simplifies equations.
It is straightforward to see that the symbol is determined by F : using the coframing η̂,

dF ≡ ∂F

∂pab
dpab

(
mod θ̂∅, θ̂a, dxa

)
,

so (Sab) =
(

∂F
∂pab

)
at one point of each fiber.

For a solution u to F , the classical principal symbol is determined by the linearization (i.e.
Frechet derivative) of F around u. Because F is second order, this only depends on the 2-jet of u.
If x ∈M0 is the 2-jet corresponding to u, then the unadapted symbol(

∂F

∂pab

)
x

agrees with the classical symbol at u.
At this point the equivalence problem splits into cases, depending on the symbol. From the

perspective of their conservation laws, the elliptic and hyperolic cases are well studied. Bryant,
Griffiths, and Hsu explored the hyperbolic case in [BGH95a] and [BGH95b]. Bryant and Griffiths
explored the parabolic case in dimension 1 + 1 in [BG95b]. Clelland extended the parabolic case
to 2 + 1 dimensions in her thesis, [NC97]. In this paper I study arbitrary second order PDE’s with
parabolic symbol. The parabolic case is particularly amenable, because conservation laws tend to
be functions in few derivatives of solutions.

1.3 Parabolic Systems
Given a parabolic equation in n + 1 variables, the corresponding system (M0, I0) has geometric
symbol (n, 0, 1) everywhere. In this case, equation (1.6) is

dF ≡
n∑
i=1

πii (mod θ∅, θa, ωa) . (1.7)
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I will establish coframes for M0 that are adapted to this symbol relation.
Let K be the kernel of the map

Sym2W −→ R
xab 7−→

∑n
i=1 xii

and define
V0 = R⊕W ⊕W∨ ⊕K

as a subset of V .
A coframe u0 of M0 at a point x is 0-adapted if there is a C-coframe u ∈ (BC)x so that the

diagram commutes.
TxJ

2 V

TxM0 V0

u
∼=

u0
∼=

The set of 0-adapted coframes over M0 forms a G0-structure, which I denote by B0.
To better understand the structure group G0, consider two 0-adapted coframes u0 and ũ0 over

x, and corresponding C-coframes u and ũ. The latter differ by an element g of GC as in (1.3). On
the other hand, g restricts to preserve V0, or equivalently, to preserve the vector space generated by
the symbol relation,

V ⊥0
∼=

{
n∑
i=1

ei◦ei
}
⊂ V ∨.

It is not difficult to see that CB fixes K if and only if B is an element of(
CO(n) 0
t(Rn) R×

)
⊂ GL(W ).

Furthermore, the linear map T now must have image in K, so may naturally be identified as an
element of

K(1) := (W ⊗K) ∩ Sym3W.

In the language of [BCG+13], K(1) is the first prolongation of the tableaux K associated to the
parabolic symbol.

These calculations demonstrate that G0 consists of the matrices of the form
k∅ 0 0 0
~k B 0 0
∗ tB−1S k∅

tB−1 0
∗ C BT CB/k∅

 (1.8)

with B and T as just described. The components ~k and C are still unconstrained, but, for notation
which will be needed, let

~k = (ki) ∈ W, C = (Ca
bc) ∈ Hom(W,K),
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as well as

S =

(
Sij S0j

S0j S00

)
∈ Sym2W.

and

B =

(
B′ 0
Bi

0 B0
0

)
such that

B′ = Btr(B
j
i ), (Bi

j) ∈ SO(n), Btr ∈ R× .

It is from this point on that it will make sense to apply the ‘partial’ Einstein summation con-
vention. For example, the partial trace operator can now be written as

ei◦ei =
n∑
i=1

ei◦ei.

This operator is G0-invariant by construction.
Another consequence of restricting to G0 is a natural refinement of the flag (1.2). In the basis

(1.1) of V , the flag

{e∅} ⊂ {e∅, ei} ⊂ {e∅, ea} ⊂ {e∅, ea, f0} ⊂ {e∅, ea, fa}
⊂ {e∅, ea, fa, eij} ∩ V0 ⊂ {e∅, ea, fa, eaj} ∩ V0

(1.9)

of V0 is preserved by the action of G0. In particular, the subspace

W ′ = {e∅, ei}/{e∅}

of W is well defined. Note that the component K of V0 is isomorphic to

Sym2
0W

′ ⊕W ′ ⊕ R, (1.10)

which is naturally identified with harmonic polynomials in n variables of degree two or less. Unfor-
tunately, there is not a good choice of basis for K, because any choice would privilege a direction
that has no geometric significance. On the other hand, we have the isomorphism

V ∨0
∼= V/{ei◦ei},

and the dual basis to (1.1) provides a natural spanning set for V ∨0 . The difference will be more
pronounced after Section 3.1, when the prolongations of K will become central. They will be
naturally identified with higher degree harmonic polynomials, which have even less suitable bases.
For this reason, I will often refer to ‘coframings’ which are more properly extended coframings,
spanning sets of 1-forms.

Example 6. Consider the heat equation
p0 = pii
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and the corresponding exterior differential system M0, given by the set {p0 = pii}. The C-
coframing

θ∅ = du− paωa πij = dpij −
1

n
δij( dpii − p0bω

b)

θa = dpa − pabωb π0a = dp0a

ωa = dxa

restricts to a 0-adapted extended coframing of M0. Observe that, when restricted to M0,

dpii − p0bω
b = θ0.

To summarize, if (M0, I0) has everywhere parabolic symbol, then its embedding into J2(Rn+1,R)
induces a G0-structure on M0. These are the motivating examples for the following definition.

Definition 8. A weakly parabolic system in n + 1 variables is a 2n + 2 + (n + 1)(n + 2)/2 di-
mensional4 exterior differential system (M0, I0) such that any point has a neighborhood equipped
with a spanning set of 1-forms

θ∅, θa, ω
a, πab (1.11)

that satisfy:

1. The symbol relations πab = πba and

πii ≡ 0 (mod θ∅, θa, ω
a)

2. The forms θ∅, θa generate I0 as a differential ideal.

3. The structure equations

dθ∅ ≡ −θa ∧ωa (mod θ∅)

dθa ≡ −πab ∧ωb (mod θ∅, θb) .

4. The non-degeneracy condition

d(θi ∧ω(i)) 6≡ 0 (mod θ∅, θi) .

(I draw the reader’s attention to the fact that this is not modulo θ0! I also note that the
notation ω(i) is explained in the introduction)

Any such (extended) coframing of (M0, I0) is called 0-adapted. The 0-adapted coframings are
sections of a G0-structure B0 on M0.

4This is 1 less than the dimension of J2(Rn+1,R).
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The non-degeneracy condition is necessary to exclude equations which should not be called
parabolic. For example, the 2-dimensional Laplace equation with 1 free parameter,(

∂2

∂x 2
1

+
∂2

∂x 2
2

)
u(x0, x1, x2) = 0, (1.12)

behaves like an elliptic equation. However, by modifying the example of the heat equation above,
one can construct coframings that satisfy conditions (1) through (3). These coframings do not
satisfy condition (4). Once defined, the Monge-Ampère and Goursat invariants (Section 2.1 and
2.3 respectively) will provide another test of non-degeneracy.

It follows from the structure equations that any parabolic system has an EDS embedding into
(J2(Rn+1,R), C). For this reason, parabolic systems are locally equivalent to parabolic equations.
It is still worth talking about abstract parabolic systems, for all of the same reasons that abstract
manifolds are useful as compared to embedded ones.

The filtration (1.9) corresponds to the following filtration of ideals, adapted to the geometry of
the parabolic system (M0, I0):

{θ∅} ⊂ {θ∅, θi} ⊂ {θ∅, θa} ⊂ {θ∅, θa, ω0} ⊂ {θ∅, θa, ωa}
⊂ {θ∅, θa, ωa, πij} ⊂ {θ∅, θa, ωa, πaj}.

(1.13)

The structure of this filtration will be critical to the analysis throughout. The algebraic ideal

J = {θ∅, θa, ωa}alg

will be especially important. Note thatJ defines a natural independence condition onM0. Observe
also that the ideal J is the Cartan system of θ∅. In particular, J is Frobenius.

I emphasize that the ideals in (1.13) are contact invariant, in that they don’t depend on the spe-
cific coframing used to define them. It will be convenient to abuse notation and describe invariant
ideals by the corresponding ideals on B0. More generally, any object on B0 that is invariant under
the structure group defines an object onM0, which I will often call by the same name. This will not
cause problems, because any adapted coframing pulls back an invariant object on B0 to a unique
object on M0. For example, the ideal

J = {θ∅, θa, ωa}alg

pulls down by any 0-adapted coframing to J . See 3 for another example.
It will be useful to employ the vector notation

θ∅, Θ =

(
θi
θ0

)
, Ω =

(
ωi

ω0

)
, Π =

(
πij πi0
πi0 π00

)
for the components of the tautological form on B0. With analogous notation for a 0-adapted
coframing, the structure equations can be written more concisely as

dθ∅ ≡ −tΘ ∧Ω (mod θ∅)

dΘ ≡ −Π ∧Ω (mod θ∅, θa) .
(1.14)
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This form of the structure equations is useful for understanding G0.
Per Cartan’s first structure equation, there is a g0-valued psuedo-connection and torsion 2-forms

defined on B0 so that

d


θ∅
Θ
Ω
Π

 = −


κ∅ 0 0 0
~κ β 0 0
∗ σ κ∅ − tβ 0
∗ γ τ Cβ − κ∅

 ∧


θ∅
Θ
Ω
Π

+


Tθ∅
TΘ

TΩ

TΠ

 . (1.15)

The torsion terms Tθ∅ , TΘ, TΩ and TΠ are, as usual, semi-basic. The differences from (1.4) are that
β has components

β =

(
βji 0
βi0 β0

0

)
∈ Ω1

(
B0,

(
co(n) 0
t(Rn) R

))
and

τ ∈ Ω1
(
B0, K

(1)
)
.

Note that
βij = −βji

for i 6= j, and define

βtr =
1

n
βii .

I denote the components of σ by

σ =

(
σij σ0j

σ0j σ00

)
,

the components of ~κ by
~κ = (κi),

and the components of γ by
γ = (γabc).

The reproducing property of the tautological form immediately determines some of the torsion
forms. Because (1.14) holds for any 0-adapted coframing η,

η∗(Tθ∅) ≡ η∗ dθ∅ = dθ∅ ≡ −tΘ ∧Ω (mod θ∅) ,

and thus
Tθ∅ = −tΘ ∧Ω + ξ∅ ∧ θ∅

for a semi-basic 1-form ξ∅. Adding ξ∅ to κ will not affect Cartan’s structure equation, but will
absorb the torsion. Doing so simplifies the first component of (1.15) to

dθ∅ = −κ∅ ∧ θ∅ − tΘ ∧Ω.

It is clear that no other modification of κ∅ can be made to absorb the remaining torsion, and that
κ∅ is uniquely defined up to a multiple of θ∅.
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An analogous calculation shows that there is a matrix of semi-basic 1-forms

ξ =

(
ξji ξ0

i

ξj0 ξ0
0

)
so that

dΘ = −~κ ∧ θ∅ − β ∧Θ− Π ∧Ω− ξ ∧Θ.

From this equation it is clear that semi-basic forms may be added to β in such a way that the torsion
ξ reduces to

ξ =

(
ξji ξ0

i

0 0

)
,

where furthermore
ξij = ξji and ξii = 0.

The torsion forms ξ also control the behavior of the ωa, which is seen as follows. From the
structure equations,

0 = d2θ∅ ≡ d(−κ∅ ∧ θ∅ − tΘ ∧Ω)

≡ tΘ ∧ (−tξ ∧Ω + TΩ) (mod θ∅) .

An application of the generalized Cartan’s lemma shows that

TΩ ≡ H ∧Θ + tξ ∧Ω (mod θ∅) ,

where H is a semi-basic, Sym2W -valued 1-form. Thus

dΩ ≡ −(σ −H) ∧Θ− (κ∅ − tβ) ∧Ω + tξ ∧Ω (mod θ∅) .

By modifying σ accordingly, all of the torsion H may be absorbed.
Finally, I remark without proof that ξ also determines some of the torsion of Π. For example,

by considering d2θi = 0, one finds that

Tπij ≡ −ξai ∧ πaj + πia ∧ ξ
a
j (mod J ) .

To summarize the structure equations so far,

dθ∅ = −κ∅ ∧ θ∅ − θa ∧ωa,
dθi = −κi ∧ θ∅ − βji ∧ θj − πia ∧ωa − ξ0

i ∧ θ0 − ξji ∧ θj,
dθ0 ≡ −βa0 ∧ θa − π0a ∧ω

a (mod θ∅) ,

dω0 ≡ −σ0a ∧ θa − (κ∅ − β0
a) ∧ω

a + ξ0
i ∧ω

i (mod θ∅)

dωi ≡ −σia ∧ θa − (δijκ∅ − tβij) ∧ω
j + βi0 ∧ω

0 + ξij ∧ω
j (mod θ∅)

dπab ≡ −γcab ∧ θc − τabc ∧ωc + κ∅ ∧ πab − βca ∧ πcb + πac ∧
tβcb + Tπab (mod θ∅)
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Chapter 2

Invariants of parabolic systems

After adapting coframes to the symbol of a parabolic system (M0, I0), the next level of (relative)
invariants fall into 2 families: the Monge-Ampère invariants and the Goursat invariants. Within
both families there is a further division into primary and secondary invariants. The primary in-
variants arise from the torsion forms ξ0

i , while the secondary invariants arise from the forms ξji . I
describe these invariants in this section.

2.1 The Monge-Ampère Invariants
Primary Monge-Ampère Invariants

Because the forms ξ0
i are semi-basic, there are functions U jk

i , U
j
i , Ui on B0 so that

ξi ≡ U jk
i πjk + U j

i πj0 + Uiπ00 (mod θ∅, θa, ωa) .

Roughly, these functions comprise the primary Monge-Ampère invariants. Instead of treating them
all at once, I will filter ξ into simpler pieces using the flag (1.13). In particular, I will show that the
functions U∗∗i split into three levels, and that each level defines relative invariants if the previous
levels vanish identically.

To see when the U∗∗i are relative invariants, I must determine how they vary in each fiber.
The method of equivalence often employs a standard trick to determine how such torsion func-
tions vary: consider the exterior derivative of Cartan’s structure equation. In particular, d2θi = 0
determines all of the variation of U∗∗i .

In indices,

dθi ≡ −βji ∧ θj − ξ
j
i ∧ θj − ξ0

i ∧ θ0 − πij ∧ωj − πi0 ∧ω0 (mod θ∅) .

Taking the exterior derivative,

0 ≡
(
βji ∧ ξ

0
j + d(ξ0

i ) + ξi ∧ β
0
0 + πij ∧σ

j0 + πi0 ∧σ
00
)
∧ θ0

(
mod θ∅, θi, ωa,Ω3

sb

)
,
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which in turn proves that

0 ≡ d(ξ0
i ) + βji ∧ ξ

0
j + πij ∧σ

j0 + πi0 ∧σ
00 + ξi ∧ β

0
0

(
mod J ,Ω2

sb

)
. (2.1)

This is the equation which I filter using (1.13).
At the ‘highest weight,’ after plugging in for ξ0

i , equation (2.1) simplifies to

0 ≡ ( dUi + βjiUj − 3β0
0Ui + κ∅Ui) ∧ π00

(
mod J , πij, πi0,Ω2

sb

)
.

By an application of Cartan’s lemma,

dUi ≡ −βjiUj + (3β0
0 − κ∅)Ui

(
mod Ω1

sb

)
.

Integrating this, one finds that the vector-valued function (Ui) on B0 is G0-equivariant1. Indeed,
for a 0-coframe u and a matrix g as in (1.8),

(Ui(g · u)) =
(B0

0)3

k∅
(B′)−1(Ui(u)).

In other words, (Ui) is a relative invariant. It is the highest weight primary Monge-Ampère invari-
ant.

If the function (Ui) is non-zero, then the function (U j
i ) will not define a relative invariant.

However, suppose that (Ui) vanishes identically on B0. Then (2.1) reduces to

0 ≡ (d(U j
i ) + βki U

j
k − U

k
i β

j
k + U j

i (κ∅ − 2β0
0)− δjiσ00) ∧ πj0

(
mod J , πij,Ω2

sb

)
.

This implies that

d(U j
i ) ≡ −βki U

j
k + Uk

i β
j
k − U

j
i (κ∅ − 2β0

0) + δjiσ
00

(
mod Ω1

sb

)
for all i and j. Integrating, the function (U j

i ) varies by the rule

(
U j
i (g · u)

)
=

(B0
0)2

k∅
(B′)−1

(
U j
i (u)

)
B′ + S00δji .

Clearly (U j
i ) is notG0-equivarant due to the last term. However, this term also means that that there

are choices of coframe for which U j
i is traceless. The subbundle of such coframes has structure

group consisting of matrices as in (1.8) for which S00 = 0. When restricted to this reduced G-
structure, the remaining component of (U j

i ) is a relative invariant, the next level of the primary
Monge-Ampère invariant. Note that the pseudo-connection form σ00 becomes semi-basic when
restricted to B0.

1To be precise, this argument only works for the identity component of G0. However, one can check the variation
of (Ui) for one element in each component of G0 to see that it really is a relative invariant.
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Finally, suppose that (Ui) and (U j
i ) vanish identically and the frame reduction has been carried

out. Then (2.1) simplifies to

0 ≡
(
dU jk

i + βliU
jk
l − β

j
l U

lk
i + βlkU

jl
i + (κ∅ − β0

0)U jk
i −

1

2
δijσ

0k − 1

2
δikσ

0j

)
∧ πjk(

mod J ,Ω2
sb

)
,

so that

dU jk
i ≡ −βliU

jk
l + βjl U

lk
i + U jl

i β
k
l + (β0

0 − κ0)U jk
i +

1

2
δjiσ

0k +
1

2
δki σ

0j
(
mod Ω1

sb

)
.

Integrating, (U jk
i ) transforms as(

U jk
i (g · u)

)
=
B0

0

k∅
B′ ·

(
U jk
i (u)

)
− 1

2
δjiS

0k − 1

2
δki S

0j

in each fiber, where B′ acts by the tensor product representation on (W ′)∨⊗ Sym2
0W

′. A coframe
adaptation may be made to absorb the trace components of this representation, so that

U ik
i = 0

for each k. Such coframes are called 1-adapted. After this coframe adaptation, the remaining
components of (U jk

i ) are relative invariants, the lowest weight piece of the primary Monge-Ampère
invariant.

The subbundle of 1-adapted coframes B1 has structure group G1, which consists of matrices as
in (1.8) so that

S00 = S0i = 0.

The torsion on B1 is similar to the torsion of B0, except that the psuedo-connection forms σ0a are
semi-basic when restricted to B1. They now contribute non-absorbable torsion terms.

The most important case for this paper is when all of the primary Monge-Ampère invariants
vanish. Note this holds if and only if there are coframings so that

ξ0
i ≡ 0 (mod J ) .

This second condition can be used to quickly show that the exterior derivative of dθi reduces to

0 ≡ (σ0j ∧ πij + σ00 ∧ πi0) ∧ θ0 (mod θ∅, θi, ωa) .

When n ≥ 3, multiple applications of Cartan’s lemma show that

σ0j ≡ σ00 ≡ 0 (mod J ) .

When n = 2, there are functions h1 and h2 on B1 so that(
σ01

σ02

)
≡
(
h1 h2

h2 −h1

)(
π11

π12

)
(mod J ) .
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Secondary Monge-Ampère Invariants

There are functions V j
i , V

jk
i , V jkl

i on B1 so that

ξji ≡ V j
i π00 + V jk

i πk0 + V jkl
i πkl (mod θ∅, θa, ωa) .

If the primary Monge-Ampère invariants vanish identically, the non-absorbable components of
these functions are the secondary Monge-Ampère invariants. More precisely, if the primary Monge-
Ampère invariants vanish, then the functions V ∗∗∗i filter into three levels, each of which defines
relative invariants when the previous ones vanish.

The assumption that the primary Monge-Ampère invariants vanish means that

dθi ≡ −ξji ∧ θj − β
j
i ∧ θj − πij ∧ωj − πi0 ∧ω0

(
mod θ∅,Λ2J

)
,

and thus

0 ≡
(
d(ξji ) + ξki ∧ β

j
k + βki ∧ ξ

j
k + πik ∧σ

kj + dβji + βki ∧ β
j
k

)
∧ θj

(
mod θ∅, ωa,Λ2J ,Ω3

sb

)
By an application of Cartan’s lemma,

0 ≡ d(ξji ) + ξki ∧ β
j
k + βki ∧ ξ

j
k + πik ∧σ

kj + dβji + βki ∧ β
j
k

(
mod J ,Ω2

sb

)
(2.2)

One would have to prolong the G1-structure to properly understand the dβ′ + β′∧β′ term, but
that won’t be necessary here. Instead, consider just the component of (2.2) that is symmetric and
traceless in i and j,

0 ≡ d(ξji ) + ξki ∧ β
j
k + βki ∧ ξ

j
k + πik ∧σ

kj
(
mod J ,Ω2

sb

)
.

This equation determines the variation of the secondary Monge-Ampère invariants in each fiber.
Because the argument is very similar to the one used for the primary Monge-Ampère invariants,

I simply state the result: Let u be a coframe in B1 and g ∈ G1. The highest weight secondary
Monge-Ampère invariants vary by the rule

(
V j
i (g · u)

)
=

(B0
0)2

k∅
(B′)−1

(
V j
i (u)

)
B′.

If (V j
i ) vanishes identically, then at the next level(

V jk
i (g · u)

)
=
B0

0

k∅
B′ ·

(
V jk
i (u)

)
.

Here B′ acts by the tensor product representation on (W ′)∨⊗W ′⊗W ′. Finally, if (V jk
i ) vanishes,

then (
V jkl
i (g · u)

)
=

1

k∅
B′ ·

(
V jkl
i (u)

)
+

1

2
δki Slj +

1

2
δliSkj.
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Here B′ now acts by the tensor product representation on (W ′)∨ ⊗W ′ ⊗ Sym2
0W

′.
There is a reduction of coframes so that

V jik
i = 0

for all j and k. This results in a GMA-structure BMA, where GMA is the subgroup of matrices as
in (1.8) for which

S = 0.

The pseudo-connection forms σij are semi-basic when restricted to BMA.
Now consider a parabolic system M0, all of whose Monge-Ampère invariants vanish. When

restricted to BMA, the torsion form ξ satisfies

ξi ≡ ξji ≡ 0 (mod J ) ,

and, when n ≥ 3, the new torsion σ satisfies

σ00 ≡ σi0 ≡ σij ≡ 0 (mod J ) .

The latter equation holds because

dθi ≡ −βji ∧ θj − πij ∧ωj − πi0 ∧ω0
(
mod θ∅,Λ2J

)
,

and thus
0 ≡ πij ∧σ

jk ∧ θk
(
mod θ∅,Ω,Λ2J

)
.

Several applications of Cartan’s lemma show that

σij ≡ 0 (mod J ) .

2.2 Monge-Ampère Systems
Parabolic systems whose Monge-Ampère systems vanish are closely related to a special class
of non-linear differential equations. A second order differential equation for one function of n
variables is Monge-Ampère if it can be written in the form

F (xi, u, pi, pij) =
∑
|I|=|J |

AI,J(xi, u, pi)HI,J = 0, (2.3)

where the I, J range over subsets of {1, . . . , n} andHI,J stands for the minor of the hessian matrix

H = (pij)

with rows I and columns J deleted. Because the Hessian is symmetric, its minors satisfy the
relation

HI,J = HJ,I .
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For this reason, I will assume without loss of generality that

AI,J = AJ,I .

Monge-Ampère equations arise frequently in differential geometry. One famous example is the
equation used by Calabi and Yau to prove the Calabi conjecture,

det

(
gij̄ +

∂2ϕ

∂zi∂z̄j

)
= A0.

In this example the coefficient functions AI,J are functions of the metric gij̄ alone.
Unlike general second order equations, there is a simpler exterior differential system that mod-

els equations of Monge-Ampère type.

Definition 9. A Monge-Ampère system in n variables is a 2n+ 1 dimensional exterior differential
system (M, I) such that I is locally generated by a 1-form θ∅ and an n-form Υ satisfying

1. θ∅ is contact, in the usual sense of maximal non-integrability:

θ∅ ∧ ( dθ∅)n 6= 0.

2. Υ is not in the (contact) ideal generated by θ∅.

Equivalently, such systems are defined by local coframings

θ∅, ω
i, πi

so that
dθ∅ ≡ ωi ∧ πi (mod θ∅)

and
Υ =

∑
|I|=|J |

AI,J πI ∧ω(J) 6≡ 0 (mod θ∅, dθ∅) (2.4)

for functions AI,J on M .
I remark that the notation, used here for consistency, suggests that there might be a distinc-

tion between the ωi’s and the πi’s. In fact, for general Monge-Ampère systems, neither the
ideal {θ0, ω

i} nor the ideal {θ0, πi} need be preserved by EDS equivalences. However, parabolic
Monge-Ampère systems, defined below, have an invariant independence condition, of the form
{θ0, ω

i}.
I describe a useful normalization condition. As an element of I, the n-form Υ is only defined

up to scaling and addition of multiples of θ∅ and dθ∅. However, by the pointwise Lefschetz
decomposition of symplectic linear algebra2, there is a unique multiple γ∧ dθ∅ so that Υ + γ∧ dθ∅
is primitive,

(Υ + γ ∧ dθ∅) ∧ dθ∅ ≡ 0 (mod θ∅) .

2See, for example, [BGG03], Proposition 1.1.
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Thus I will henceforth assume that

Υ ∧ dθ∅ ≡ 0 (mod θ∅)

without loss of generality. With this assumption, the representative Υ in I is uniquely defined up
to scaling and multiples of θ∅. Furthermore, the primitivity condition guarantees that AI,J = AJ,I
in equation (2.4).

The Lefshetz decomposition also shows that for k > n, the degree k homogenous component
of I contains all k-forms, that is,

Ik = Ωk(M), k > n.

Monge-Ampère systems model the solutions of Monge-Ampère equations, as follows. Let
M−1 = J1(Rn,R) and fix the coframing

θ∅ = du− pi dxi, ωi = dxi, πi = dpi.

Corresponding to equation (2.3), define the n-form

Υ =
∑
|I|=|J |

AI,J(xi, u, pi) πI ∧ω(J).

The Monge-Ampère system (M−1, {θ∅,Υ}) has a natural independence condition, defined by the
forms ωi. Any solution manifold is locally the 1-jet graph of a function u(xi), and the condition
that Υ vanish forces u to be a solution to (2.3).

Conversely, any Monge-Ampère system (M−1, {θ∅,Υ}) is locally modelled by Monge-Ampère
differential equations: By the Pfaff Normal Form Theorem, there are local coordinates xi, u, pi, and
a nonzero function λ on M−1 so that

θ∅ = λ( du− pi dxi).

The dxi’s determine an independence condition, albeit not contact invariantly. A solution manifold
Σ is in particular a solution to the contact system {θ∅}. This and the fact that

dx1 ∧ . . . ∧ dxn|Σ 6= 0

imply that Σ is locally the graph of functions u(xi) and pi(xi) so that

pi =
∂u

∂xi

and thus

dpi =
∂2u

∂xi∂xj
dxj.

Fixing the local coframing

θ∅ = du− pi dxi, ωi = dxi, πi = dpi,
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let AI,J be functions so that

Υ =
∑
|I|=|J |

AI,J(xi, u, pi) πI ∧ω(J).

Then the condition that Υ vanishes when restricted to Σ is the same as the condition that u(xi)
solves the equation ∑

|I|=|J |

AI,JHI,J = 0.

The class of Monge-Ampère systems is manifestly preserved by EDS equivalences, so we
can now see that the class of Monge-Ampère equations is preserved under changes of variables.
(This was certainly not obvious from the initial definition.) By way of comparison, the class of
linear differential equations is not preserved by changes of variables. Indeed, a generic change of
coordinates takes a linear equation to a non-linear equation.

I have defined two systems that model the solutions of a Monge-Ampère equation: the Monge-
Ampère system (M−1, I−1) and the second order system (M0, I0). One should expect that there
is a relation between the two, and there is: M0 is the first prolongation of M−1. In particular, the
projection

J2(Rn,R) −→ J1(Rn,R)

restricts to a submersive EDS map

π(0) : M0 −→M−1,

and furthermore, solutions to the two systems are identified under π(0).
I now want to define the class of parabolic Monge-Ampère systems. First though, note that

generic Monge-Ampère equations do not have constant symbol on M0. For example, the equation

F =
∑
i 6=j

(piipjj − p 2
ij ) = 0

is Monge-Ampère, but
dF =

∑
i 6=j

(pii dpjj + pjj dpii − 2pij dpij).

Consequently, F has any possible symbol, depending on a suitable choice of (xi, u, pi, pij) ∈ M0.
This means that it does not always make sense to ask what the symbol is at a point x of M−1,
because the answer can depend on the choice of a point in the fiber (M0)x.

I define a class of Monge-Ampère systems that do have a well defined notion of symbol.

Definition 10. Let (M−1, I−1) be a Monge-Ampère system in n + 1 variables, locally generated
by a contact form θ∅ and an n-form Υ. I say that M−1 is of linear type if it has an independence
condition J locally spanned by θ∅ and 1-forms ω0, . . . , ωn so that

1. J is Lagrangian with respect to dθ∅,

dθ∅ ≡ 0 (mod J) .
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2. For any 1-form α ∈ J ,

α ∧Υ ≡ 0
(
mod θ∅, ω

0 ∧ . . . ∧ωn
)
.

The ideal J is a compatible independence condition for (M−1, I−1).

Note well that linear-type Monge-Ampère systems do not typically arise from linear differ-
ential equations. The nomenclature is in line with linear Pfaffian systems, where ‘linear’ refers
to linearity in the complement of the independence condition. Indeed, by condition 2, there are
1-forms η

a
so that

Υ ≡ η
a
∧ω(a) (mod θ∅) . (2.5)

By condition 1, the forms θ∅ and ωa can be completed to a coframing of M−1 by forms πa so
that

dθ∅ ≡ −πa ∧ωa (mod θ∅) .

Combined with equation (2.5) and the assumed primitivity of Υ, this shows that

dθ∅ ∧Υ ≡ (η
a
∧ πa) ∧ω

0 ∧ . . . ∧ωn ≡ 0 (mod θ∅) .

By an application of Cartan’s lemma, there is a symmetric-matrix valued function (hab) so that

η
a
≡ habπa (mod θ∅, ω

a) ,

and thus,
Υ ≡ hab πa ∧ω(b) (mod θ∅) .

The function (hab) is the unadapted symbol of the linear-type Monge-Ampère system.
In a story analogous to that described for parabolic systems, one can define a G-structure of

coframes adapted to the ideal I−1, where the structure group consists of matrices of the form k∅ 0 0
∗ B 0
∗ tB−1S tB−1


for k∅ ∈ R×, B ∈ GL(W ), and S ∈ Sym2W . In general, there are compatible choices of
coframes that diagonalize hab, reducing the G-structure.

If the unadapted symbol hab is positive semi-definite everywhere on a linear-type Monge-
Ampère system M−1, then it has coframings

θ∅, ω
a, πa (2.6)

so that
dθ∅ ≡ −πa ∧ωa (mod θ∅)

and
Υ ≡ πi ∧ω(i) (mod θ∅) .

32



I call this a 0-adapted coframing of a parabolic Monge-Ampère system, although I show below
that sucha coframing pulls back to give Monge-Ampère-adapted coframing of a parabolic system.
Observe that, for 0-adapted coframings, ω0 is uniquely specified (up to scaling and addition of
multiples of θ∅) by the condition that

ω0 ∧Υ ≡ 0 (mod θ∅) .

In fact, the ideal {θ∅, ω0} defines the characteristic hyper-plane distribution when restricted to
solution manifolds. This provides a useful characterization of parabolic Monge-Ampère systems.

Definition 11. A Monge-Ampère system of linear type is parabolic if its compatible independence
condition contains a 1-form ω0 so that θ∅∧ω

0 is non-vanishing and so that

ω0 ∧Υ ≡ 0 (mod θ0) .

Then ω0 is called a characteristic co-vector.

As one might hope, a Monge-Ampère system of parabolic type has a G-structure that reflects
much of the G0-structure of parabolic systems. To see this, fix two adapted coframings of the form
(2.6). There is a non-zero function k∅, a function B taking values in(

CO(n) 0
t(Rn) R×

)
and a function T taking values in K

K ∼= Sym2
0W

′ ⊕W ′ ⊕ R

(this is the same K as defined in (1.10)), so that

(ω̃a) ≡ k∅
tB−1(ωa) (mod θ∅)

(π̃a) ≡ T (ωa) +B(πa) (mod θ∅) .
(2.7)

I now describe the first prolongation (M (0), I(0)) of a parabolic system (M−1, I−1). For the
sake of explicitness, I only define the open prolongation along the independence condition.

As a manifold, M (0) is the subset of the Grasmannian bundle Grn+1(TM−1) given by the inte-
gral elements that satisfy the independence condition. The projection of the Grassmanian bundle
restricts to a submersion

π(0) : M (0) →M−1,

which makes M (0) an affine-space fiber bundle with fiber K. The independence condition guaran-
tees that elements E in the fiber M (0)

x are parameterized by numbers pab so that

E = {θ∅, πa − pabωb}⊥x .

Then the fact that E is an integral element of I−1 ensures that

pab = pba, pii = 0.
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As written, it is tempting to consider M (0) as a vector-space bundle over M−1, but this would be
incorrect. Indeed, consider a change of coframe (2.7) with B = 1. In this change of coframe E
will be parameterized by new numbers p̃ab, related to the old ones by the translation T . In effect, a
choice of origin in each fiber would force a reduction of coframing.

Define the forms3

θa ≡ πa − pabωb (mod θ∅)

on M (0). The prolonged ideal of I−1 is defined to be the differential ideal

I(0) = {θ∅, θa}.

It is not difficult to see that π(0) is an EDS morphism. Furthermore, because M (0) is an in-
volutive prolongation, its solution manifolds are in bijection with the solution manifolds of M−1.
Observe also that the local (extended) coframing

θ∅, θa, ω
a, dpab (2.8)

exhibits M (0) as a parabolic system.
As promised, given a parabolic Monge-Ampère equation, its corresponding parabolic system

M0 is essentially the same as the prolongation of its Monge-Ampère system. More precisely, there
is an EDS equivalence f from M0 to M (0), defined as follows. At each point x ∈M0, consider the
plane

Ẽx = {θ∅, θa}⊥x ⊂ TxM0.

It is not difficult to see that its projection to M−1, given by

Ex = dπ(0)(Ẽx),

is an n+ 1 dimensional integral element of I satisfying the independence condition. In particular,
Ex is an element of M (0), so we may define f by the rule

x 7−→ Ex.

It follows from the structure equations of M0 both that f is a diffeomorphism and that f is an EDS
equivalence.

Given a 2nd order system, an obvious question to ask is whether it has a Monge-Ampère depro-
longation like the one just described. In the parabolic case, the Monge-Ampère invariants answer
this question completely:

Theorem 1. A parabolic system (M0, I0) has a parabolic Monge-Ampère deprolongation if and
only if its Monge-Ampère invariants vanish identically.

3Some readers might object that this depends on a choice of the πa. Or, they might object that the pab are only
defined up to an affine structure. However, these effects cancel exactly, and the θa are well defined independently of
any choice of coframing.
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Proof. This has been proved for systems in n + 1 = 2 and n + 1 = 3 variables by Bryant &
Griffiths [BG95b] and Clelland [NC97] respectively, so I will assume that n ≥ 3.

If M0 has a Monge-Ampère deprolongation, then the coframing (2.8) provides a Monge-
Ampère-adapted coframing of M0, proving the forward implication.

To see the reverse implication, recall that the Cartan system of θ∅,

J = {θ∅, θa, ωa},

is Frobenius. Consider a small enough neighborhood in M0 so that the space of leaves M−1 is a
manifold and let

π(0) : M0 →M−1

denote the submersion of M0 onto its leaf space. The manifold M−1 will be the space of the
deprolongation.

Consider the (n+ 1)-form
Υ0 = θi ∧ω(i),

which is defined on B0. The ideal

Ĩ = {θ∅, Υ0, Λn+2J }

will define the ideal I−1 that makes M−1 into a parabolic Monge-Ampère system.
If the Monge-Ampère invariants vanish, and the corresponding reductions of coframe have

been carried out, the structure equations

dΘ ≡ −β ∧Θ− Π ∧Ω
(
mod θ∅,Λ2J

)
dΩ ≡ −(κ0 − tβ) ∧Ω

(
mod θ∅,Λ2J

) (2.9)

hold. (This is where the assumption that n ≥ 3 is used, so that the torsion σ ∈ J .) In this case,
with a little work, one finds that

d(θi ∧ω(i)) ≡ (2βtr − nκ0 + β0
0) ∧ θi ∧ω(i)

(
mod θ∅,Λn+2J

)
. (2.10)

It follows from (2.9) and (2.10) that Ĩ is invariant4 in each fiber of BMA, so it is the pullback of an
ideal on M0, which I also denote by Ĩ.

Even better, it follows from (2.10) that the Cartan system of Ĩ is J . By the general theory of
Cartan systems, there is a 1-form θ and an (n+ 1)-form Υ−1 on M−1 so that the ideal

I−1 = {θ,Υ−1}

pulls back5 by π(0) to Ĩ.

4The Lie derivative of any element of Ĩ in any fiber direction is again in Ĩ. This follows from Cartan’s formula
for the Lie derivative.

5To be totally precise, it pulls back to a set which generates Ĩ as an ideal.
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The structure equations of M0 can be used to prove that the pair (M−1, I−1) is a parabolic type
Monge-Ampère system. For example, to see that θ is a contact form, note that there is a non-zero
function λ on M0 so that

(π(0))∗θ = λθ∅.

Thus, if θ were a degenerate contact form, so that θ∧( dθ)n+1 vanished somewhere, then its pull-
back to M0 would also vanish. This in turn would contradict the structure equations of θ∅ for a
parabolic system.

To see that M−1 is of linear parabolic type, observe that (2.9) can also be used to show that the
Cartan system of the ideal

J̃ = {θ∅, ω0, ωi}

is J . Consequently, J̃ pushes down to an ideal J on M−1 so that (π(0))∗J = J̃ . This ideal is
necessarily generated locally by n + 2 independent 1-forms, including θ, so it defines an inde-
pendence condition. The fact that it is a compatible independence condition for M−1 also follows
from the structure equations of M0. For example, if J were not lagrangian for dθ, then J̃ would
not Lagrangian be for dθ∅, contradicting the structure equations of M0.

Finally, the ideal
{θ∅, ω0}

also has Cartan system J , and the corresponding ideal on M−1 provides the characteristic form
for (M−1, I−1).

The map f defined prior to the proposition gives an EDS equivalence between M0 and the first
prolongation of M−1, so the theorem is proved.

2.3 The Goursat Invariant

I now turn to the primary Goursat invariants, which are defined on a parabolic systemM0 whose
primary Monge-Ampère invariants vanish. Note that M0 is not here required to be Monge-Ampère
and could well have non-vanishing secondary Monge-Ampère invariants.

Assuming that the primary Monge-Ampère invariants of M0 vanish, there are functions aij and
ai on B1 so that

ξ0
i ≡ aijω

j + aiω
0 (mod θ∅, θa) .

In this case, the exterior derivative of

dθi = −κi ∧ θ∅ − βji ∧ θj − πij ∧ωj − πi0 ∧ω0 − ξ0
i ∧ θ0 − ξji ∧ θj.

gives, after an application of Cartan’s lemma,

dξ0
i ≡ β0

0 ∧ ξ
0
i − β

j
i ∧ ξ

0
j − γ0

ij ∧ω
j
(
mod θ∅, θa, ω0,Ω2

sb

)
.

Plugging in ξ0
i , one finds that

daij ≡ (β0
0 + κ0)aij − βki akj − aikβkj − γ0

ij

(
mod Ω1

sb

)
.
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Integrating, one finds that the functions aij vary in the fiber of B1 by the rule

(aij(g · u)) = B0
0k∅(B′)−1(aij(u))(tB′)−1 − C0

ij, (2.11)

for all u ∈ B1 and g ∈ G1. Since C0
ij is symmetric and traceless, there are coframes absorbing the

traceless symmetric part of aij . These adapted coframes form a G2-structure6 B2 on M0, where G2

consists of matrices as in (1.8) for which

S0a = 0 and C0
ij = 0.

Restricted to B2, the remaining non-absorbable components of (aij) define a relative invariant,
which I define to be the primary Goursat invariant. It splits into two components,

aij = Gij + aδij,

for a real valued function a and anti-symmetric Gij . Geometrically, the trace component a is the
higher dimensional analogue of the Goursat invariant studied by Bryant & Griffiths and Clelland.
The anti-symmetric component is new. It measures how far the characteristic distribution is from
being Frobenius.

Restricted to B2, the structure equation for θi is

dθi ≡ −πij ∧ωj − πi0 ∧ω0 − aijωj ∧ θ0 − aiω0 ∧ θ0 (mod θ∅, θi) .

In this case, the non-degeneracy condition for parabolic systems simplifies to

( dθi) ∧ω(i) ≡ naθ0 ∧ω 6≡ 0 (mod θ∅, θi) .

Consequently, the trace component a of the Goursat invariant never vanishes. Then it follows
from equation (2.11) that coframes may be chosen so that a = −1/n everywhere. (The sign is
for consistency with coframing of the heat equation given in example 6.) This reduces B2 to a
G3-structure B3, where G3 is the subgroup of G1 consisting of matrices in (1.8) for which

S0a = 0,

C0
ij = 0

and
B0

0 = B2
tr/k∅.

Now, suppose that Gij is identically zero. In this case, one can check that (ai) varies by the rule

(ai(g · u)) = k∅(B′)−1(ai(u)) + ki −Bi
0 − C0

i0.

The reduction of coframes (so that (ai) is identically zero) is straighforward and the resulting
structure group G4 is given by matrices in G3 for which

C0
i0 = Bi

0 − ki.
6This group is unrelated to the exceptional simple group G2.
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On the G4-structure B4, the structure equation for θi is

dθi ≡ −πij ∧ωj − πi0 ∧ω0 − 1

n
θ0 ∧ω

i (mod θ∅, θi) .

More generally, equation (2.11) shows that the anti-symmetric matrix Gij may be diagonalized,
even if it is nonzero. However, the corresponding reduction of coframes generally does not result
in a G-structure. Indeed, if the eigenvalues are not constant, then the reduced structure group—the
stabilizers of the diagonalized Gij—will vary as well. Some kind of constant rank assumption must
be made to guarantee a G-structure. Instead, it will be better for now to make no more reductions.
Even with suitable constant rank assumptions, the equivalence problem splits into cases depending
on Gij .

I remark that there is always a reduction of coframes absorbing the functions ai, but this also
does not generally result in a G-structure.

The Goursat Invariant for general parabolic systems.

Something very similar to the Goursat invariants can be defined for a parabolic system whose
primary Monge-Ampère invariants don’t all vanish. However, it is only well defined on the first
prolongation of M0.

Using the independence conditionJ , the process of prolongation results in an EDS (M (1), I(1))
equipped with an EDS submersion

π(1) : M (1) →M0.

As usual, the underlying manifold M (1) is defined to be the space of integral elements that satisfy
the independence condition J .

The map π(1) gives M (1) the structure of a fiber bundle, with fiber the affine space modelled
on K(1). Indeed, fixing an adapted coframing of M0, the integral elements E in each fiber are
parameterized by numbers pabc so that

E = {θ∅, θi, θ0, πab − pabcωc}⊥ ⊂ TxM0.

This simply follows from the fact that each E satisfies the independence condition. The condition
that E be integral then requires that the numbers pabc be symmetric in all 3 indices and that the
‘traces’ piia vanish for each index a.

Now we can define the forms

θab ≡πab − pabcωc (mod I0)

at each point of M (1). These define the prolonged ideal of I0 by the equation

I(1) = {θ∅, θa, θab},

where the obvious pullbacks have been omitted from the notation.
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It is now simple to define the Goursat invariant: there are functions aij, ai, akij, a
j
i0 on the

adapted coframe bundle of M (1) so that

dθi ≡ −θia ∧ωa − (aijω
j + aiω

0) ∧ θ0 − (ajikω
k + aji0) ∧ θj

(
mod θ∅,Λ2 I(1)

)
.

It is possible to absorb some components of thes functions. However, the story is not as simple as
before, and any reductions of coframing are necessarily defined on the coframe bundle over M (1).

I remark that even though the Goursat invariants are functions on the coframe bundle of M (1),
they are so in a very controlled way. For example, there are functions on B0 so that

ξji ≡ ãjikω
k + V jlm

i πlm + V jl
i πl0 + V j

i π00

(
mod θ∅, θa, ω0

)
,

and pulled back to the coframe bundle of M (1) one finds that

ξji ≡ (ãjik + V jlm
i pklm + V jl

i pkl0 + V j
i pk00)ωk

(
mod θ∅, θa, ω0, θab

)
.

This shows that ajik is linear in the fiber coordinates of M (1), and in particular that

dajik ≡ V jlm
i dpklm + V jl

i dpkl0 + V j
i dpk00 (mod J , θab) (2.12)

Interpreting the Goursat Invariant

The value of the Goursat invariant allows one to draw interesting geometric conclusions about a
parabolic system. Intuitively, the trace component detects the sub-principal symbol of a parabolic
equation. The anti-symmetric component measures the integrability of the characteristic co-vector.
I proceed to make these statements precise.

The general theory of characteristics for linear Pfaffian systems (see [BCG+13], Chapter IV)
guarantees that a parabolic system has a well defined characteristic ideal. For a parabolic system
M0, the characteristic ideal is given in a coframing by

{θ∅, θa, ω0}.

The forms θ∅ and θa vanish on Σ, so the restriction of this ideal to a solution manifold Σ ⊂ M0

defines a hyperplane distribution on Σ, the characteristic (hyperplane) distribution.
A generic parabolic system will have non-integrable characteristic distributions on solution

manifolds. Contrast this with the parabolic system M0 corresponding to an evolutionary equation,
written in appropriate coordinates as

p0 = F (xa, u, pi, pij). (2.13)

In this case, the level sets of the coordinate x0 define a natural foliation of M0 into ‘time’ slices.
This restricts to a foliation on any solution manifold. It follows from equation (2.13) and the def-
inition of 0-adapted coframes that the tangent planes of this foliation agree with the characteristic
distribution. Thus, by explicit construction, the characteristic distribution of an evolution equations
is Frobenius on all solution manifolds.

The following theorem proves the converse of this and makes a connection with the invariants
just developed.

39



Theorem 2. For a real analytic parabolic system (M0, I0) in n + 1 > 3 variables, the following
conditions are equivalent:

1. The primary Monge-Ampère invariants and the Goursat invariant Gij vanish identically.

2. M0 has a 0-adapted coframing so that

dω0 ≡ 0
(
mod θ∅, θa, ω0

)
.

3. M0 is locally equivalent to a parabolic equation in evolutionary form.

4. The characteristic distribution is Frobenius on every solution manifold.

Proof. Conditions 1 and 2 are equivalent by the work of the previous sections. In particular, the
coframing given in condition 2 is necessarily 2-adapted. The discussion immediately prior to this
theorem shows that 3 implies 4.
For 4⇒ 2: Fix a local 0-adapted coframing η near x ∈ M0. For any integral element E, over x
and satisfying the independence condition, let pabc be the numbers so that

E = {θ∅, θa, πab − pabcωc}⊥x .

Since (M0, I0) is involutive, the Cartan-Kähler theorem7 guarantees that there exists an integral
manifold

ι : Σ→M0

for which x ∈ Σ and
TxΣ = E.

At x, the pullback of ω0 to Σ will satisfy

(ι∗ dω0)x ≡ (ηι)∗( dω0)x ≡ (ηι)∗(ξi ∧ω
i)x

(
mod ι∗ω0

)
≡ (ηι)∗((Uipj00 + Uk

i pjk0 + Ukl
i pjkl + Gji)ωj ∧ωi)x

(
mod ι∗ω0

)
.

On the other hand, the characteristic foliation is integrable on Σ, so

(ι∗ dω0)x ≡ 0
(
mod ι∗ω0

)
Combining these, the equation

(Uipj00 + Uk
i pjk0 + Ukl

i pjkl + Gij)ωj ∧ωi = 0

holds at η(ι(x)) ∈ B0. Since the choice of integral element was arbitrary, it is clear that this
equation holds for any choice of pabc that is symmetric and trace-free.

Choosing pjk0 = pjkl = 0 and pj00 6= 0 shows that (Ui) vanishes identically. (Recall that as a
relative invariant, when (Ui) vanishes anywhere in a fiber, it vanishes in the whole fiber.)

7Here is where the assumption of real analyticity is needed. For reference, see [BCG+13] Chapter III.
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By choosing the pjk0 arbitrarily, one finds that the matrix Uk
i must be a multiple of the identity.

For example, taking p120 = 1 and all else zero shows that U1
i = U2

i = 0 for i > 2 and U1
1 = U2

2 .
Thus, I may assume without loss of generality that η is adapted so that U i

j vanishes identically.
Similar reasoning shows that the non-absorbable part of Ukl

i vanishes, so I may assume that η
is adapted to the Goursat invariant. It is now clear that the Gij must also vanish.
For 2⇒ 3: If condition 2 (and thus condition 1) holds, there is a 2-adapted coframing

θ∅, θa, ω
a, πab,

of M0 so that
dω0 ≡ 0

(
mod θ∅, θa, ω0

)
.

There is a matrix valued function (N b
a) and an anti-symmetric matrix valued function (Mab) so

that
dω0 ≡Mabθa ∧ θb +N b

aθb ∧ω
a
(
mod θ∅, ω0

)
.

Taking the exterior derivative,

0 ≡ −N b
aπbc ∧ω

c ∧ωa
(
mod θ∅, θa, ω0

)
.

In order for this congruence to hold, it must be true that

N b
a = Ntrδ

b
a,

whereNtr is a function onM0. Replacing ω0 with ω0 +Ntrθ∅ results in a new 2-adapted coframing
where furthermore

dω0 ≡Mabθa ∧ θb
(
mod θ∅, ω0

)
.

I remark that this is a further adaptation of coframes, and reduces the structure group.
Returning to the exterior derivative of dω0, now

0 ≡ 2Mabπac ∧ θb ∧ω
c
(
mod θ∅, ω0,Λ2 I0

)
,

which only holds if
(Mab) = 0.

Finally, there is a 1-form κ0 so that

dω0 ≡ −κ0 ∧ θ∅
(
mod ω0

)
.

Taking the exterior derivative of this results in

0 ≡ κ0 ∧ θa ∧ω
a
(
mod θ∅, ω0

)
,

which is enough to guarantee that

κ0 ≡ 0
(
mod θ∅, ω0

)
.
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This shows that there are 2-adapted coframes for which

dω0 ≡ 0
(
mod ω0

)
.

Because of this, the Frobenius theorem says that there is locally a function x0 on M0 so that
ω0 is a multiple of dx0. Extend this to any jet coordinates so that ω0 is a multiple of dx0 and
fix a 2-adapted coframing η of M0. Recall that η, as a 0-adapted coframing of M0, extends to
a C-adapted coframing of J2(Rn+1,R) along M0, which I will also denote η. Observe that the
C-adapted coframing

η̂ =
(
θ̂∅, θ̂a, dx

a, dpab

)
differs from η by a function

g : M0 → GC.

By construction, g takes dx0 to a multiple of ω0, so g takes values in matrices (1.3) so that B
preserves the subspace

{e∅, ea, f 0}

of V .
But this means that g also preserves the ideal

{θ̂∅, θ̂a, dxa, dpij}.

As a consequence, this ideal is equal to the ideal

{θ∅, θa, ωa, πij},

which is defined by a 2-adapted coframing. Then, since

dF ≡ 0
(
mod θ∅, θa, ω

a, πij
)
,

one sees that
dF ≡ ∂F

∂p0a

dp0a ≡ 0
(

mod θ̂∅, θ̂a, dxa, dpij
)
,

and thus
F = F (xa, u, pa, pij).

Finally, the non-degeneracy condition for parabolic systems guarantees that

∂F

∂p0

6= 0,

so by the implicit function theorem, F is locally equivalent to an equation in evolutionary form.

In the course of the proof, I showed that a parabolic system satisfying any of the stated condi-
tions has a coframing so that ω0∧ dω0 = 0. So I make the following definition.
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Definition 12. A strongly parabolic system is a parabolic system that furthermore has an adapted
coframing for which

dω0 ≡ 0
(
mod ω0

)
.

Finally, I note an interesting geometric consequence of normalizing the trace component of the
Goursat invariant. For coframings η and η̃ which differ by a function valued inG3, it is not difficult
to compute that

ω̃0 ≡
(
k∅
Btr

)2

ω0 (mod θ∅, θa) .

This means that the characteristic covector ω0 has a well defined sign on B3, and thus that the
characteristic hyperplanes of an integral manifold are co-oriented. This can be interpreted as a sort
of ‘arrow of time’ result, even for non-evolutionary parabolic systems, which necessarily don’t
have a definition of ‘time’. In the case of integrable characteristics this corresponds to an actual
orientation of the characteristic direction x0.
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Chapter 3

Conservation Laws

3.1 Principal Structure Equations

I now turn to the conservation laws of parabolic systems and the connection between conserva-
tion laws and the geometric invariants just developed. In order to consider conservation laws that
depend on derivatives of arbitrarily high order, it will be necessary to work on the infinite prolon-
gation of M0. I summarize the necessary results here; the process of prolongation is described in
more detail in [BG95a] and [BCG+13]. The reader unfamiliar with prolongations of exterior dif-
ferential systems can keep in mind the natural submersion of J2(Rn,R) onto J1(Rn,R) (equipped
with the corresponding contact structures) as the canonical example. The prolongations I describe
here are the EDS analogue of prolongations in classical PDE theory, where one formally adds
higher derivatives as new variables in order to obtain an equivalent system of equations that may
be easier to work with.

Consider an involutive exterior differential system (M (0), I(0)) with an independence condi-
tion. Its first prolongation (M (1), I(1)) is a new EDS, which has the same solutions but ‘sees’ more
of their derivatives. It comes naturally equipped with a submersive EDS morphism

π(1) : M (1) →M (0)

such that any solution in M (0) lifts to a unique solution in M (1). This lifting map gives a local
bijection between solution manifolds. (Implicit in this discusion is the fact that the independence
condition on M (0) pulls back to one on M (1).) It is a theorem1 that the involutivity of M (0) guar-
antees the involutivity of M (1).

The rth prolongation—(M (r), I(r))—of M (0) is defined inductively to be the first prolongation
of M (r−1). This generates a tower of submersive EDS morphisms such that solutions at any level
are in bijection with solutions at any other level.

For example, consider a parabolic systemM0 embedded into J2(Rn+1,R), so that points inM0

are identified with 2-jets. The rth prolongation ofM0 naturally embeds into J2+r(Rn+1,R), the rth-
prolongation of J2(Rn+1,R). Correspondingly, points of M (r)

0 may be considered as (r+2)-jets.
1See [BCG+13], Chapter VI.
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To avoid restricting the number of derivatives I can discuss, I will work on the infinite prolongation
of M0. This is described in more detail in [BG95a], but I recall some details here.

The infinite prolongation (M (∞), I(∞)) of an exterior differential system M (0) is the inverse
limit of its prolongation tower. More precisely, the manifold M (∞) is given by

M (∞) = lim←−M
(r),

the inverse limit of the underlying tower of manifolds. The ideal that makes M (∞) into an EDS is
by definition

I(∞) =
∞⋃
r=0

I(r) .

The manifold M (∞) will generally be infinite dimensional, but will be treated formally, so this
will not require any special machinery. In particular, I will study conservation laws of finite type,
which are certain forms that pull back from a finite prolongation of M0. The reason for working
on the infinite prolongation is to avoid specifying which prolongation in advance.

Accordingly, I will only need to consider finite-type function on M (∞), those that can be ex-
pressed as the pullback of a function on M (r) for some r. The space of finite-type functions is
given by

∞⋃
r=0

C∞
(
M (r)

)
.

In general, I will omit the pullback in my notation and simply refer to functions on M (∞) as if they
were functions on some M (r). I will also consider the finite-type differential forms, setting

Ω∗(M (∞)) =
∞⋃
r=0

Ω∗(M (r)).

From this point on, I will denote the infinite prolongation of a parabolic system (M0, I0) by
(M, I). I will also denote the space of finite-type functions on M by C∞.

The following proposition describes the structure of (M, I). Although the statement is long,
it follows immediately from the general theory of exterior differential systems, and in particular
from the calculation that the involutive tableaux

K = Sym2
0W

′ ⊕W ′ ⊕ R

(in this context, a tableaux is a linear subspace of W ⊗W ) has rth prolongation

K(r) := (K ⊗W⊗r) ∩ (W ⊗ Symr+1W ) ∼=
⊕

s+t=r+2

Syms
0W

′ ⊗ Symt(W/W ′).

Here Syms
0W

′ is the trace-free symmetric power of W ′.
Recall that W comes equipped with a basis ea so that the subspace W ′ has basis ei. Then

SymrW =
⊕
s+t=r

SymsW ′ ⊗ Symt{e0}.
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Fix the component of SymrW indexed by a choice of s and t. For each multi-index I = (i1 . . . is)
in integers 1 through n, let

eI,t = ei1◦ . . . ◦eis◦e0◦ . . . ◦e0,

the symmetric product with t copies of e0. The set of these form a basis for

SymsW ′ ⊗ Symt{e0}.

On this component, the basis eI,t defines linear coordinate functions pI,t . I denote the restriction
of pI,t to the trace-free subspace

Syms
0W

′ ⊗ Symt{e0}

by the same name.
I will use the action of W on Sym∗W , which is essentially just multiplication of polynomials.

In the given basis,

ei · eI,t := eIi,t

e0 · eI,t := eIi,t+1.

I will also use the action of W∨ on Sym∗W , which is essentially a directional derivative. In the
given basis,

ei · eI,t :=
∑
i∈I

eI\i,t

e0 · eI,t := teI,t−1.

These can be used to define a particularly useful operator, the trace on W ′, by

tr = eiei.

These actions induce ones on the linear functions pI,t, as well as their differentials. In Propo-
sition 1 I use the functions pI,t to define extended coframings θI,t of M , and I extend the action of
W to this coframing. In particular, I employ the notation

eiθI,t = θIi,t

eiθI,t =
∑
i∈I

θI\i,t.

For consistency with the coframings of M , I denote the pullbacks of θ∅, θa to M by

θ0,0 = θ∅

θi,0 = θi

θ0,1 = θ0.

46



Proposition 1 (Principal Structure Equations). For each r ≥ 0, the prolongation M (r+1) is an
affine-space bundle over M (r), fitting into the sequence⊕

s+t=r+3

Syms
0W

′ ⊗ Symt{e0} ↪−→M (r+1) π(r+1)

−−−→M (r).

Each fiber has affine functions pI,t for all I and t such that |I| + t = r + 3. These functions are
subject to the trace relations

pIii,t = 0 ∀ I, t s.t. |I|+ t = r + 1.

At each point x ∈M (r+1), this fiber sequence induces the exact sequence

0 −→ T∨π(r+1)(x)M
(r) −→ T∨xM

(r+1) −→
⊕

s+t=r+3

(Syms
0W

′ ⊗ Symt{e0})∨ −→ 0.

In particular, any choice of 1-forms πI,t so that

πI,t ≡ dpI,t

(
mod I(r), ωa

)
completes a coframing of M (r) to an (extended) coframing of M (r+1), subject to the relations

πIii,t ≡ 0
(

mod I(r), ωa
)
∀ I, t s.t. |I|+ t = r + 1.

The ideal I(r+1) is generated by I(r) and the forms

θI,t = πI,t − pIi,tωi − pI,t+1ω
0, ∀ I, t s.t. |I|+ t = r + 2.

By induction, one finds on M (r+1) the structure equations

dθI,t ≡ −πIi,t ∧ωi − πI,t+1 ∧ω
0
(
mod θI′,t′ s.t. |I ′|+ t′ ≤ |I|+ t

)
when |I|+ t = r + 2 and

dθI,t ≡ −θIi,t ∧ωi − θI,t+1 ∧ω
0
(
mod θI′,t′ s.t. |I ′|+ t′ ≤ |I|+ t

)
.

when |I|+ t < r + 2.
On M , all the structure equations are of the form

dθI,t ≡ −θIi,t ∧ωi − θI,t+1 ∧ω
0
(
mod θI′,t′ s.t. |I ′|+ t′ ≤ |I|+ t

)
.

One can see from the structure equations on M that the differential ideal I is formally Frobe-
nius, that is,

I = {θI,t}alg.
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This is true for the infinite prolongation of any exterior differential system. Note also that on the
infinite prolongation there are no “πI,t” forms:

Ω∗(M) = {ωa} ∪ I .

For each r, the G-structure of adapted coframes of M (r) is closely related to B0. Its structure
group is an extension ofG0 by a nilpotent group, which corresponds to the freedom to add multiples
of θI′,t′ to θI,t (or πI,t) if |I ′|+t′ < |I|+twithout altering the structure equations. This phenomenon
can already be seen by comparing the structure group of a Monge-Ampère system to that of its
prolongation.

One can define the full adapted coframe bundle of M by taking the inverse limit of these
bundles, but I will only require a simpler notion. A coframing of M0 already determines the
principal part of a coframing on M—the part of the coframing that is independent of the nilpotent
translations. To do coframe equivariant calculations it will suffice to work on the principal adapted
coframe bundle, which is simply the pullback of B0 to M . Henceforth, I will use B0(M0) to denote
the 0-adapted coframe bundle on M0 and, abusing earlier notation, use B0 to denote the principal
adapted coframe bundle on M . More generally, I will use B0(M (r)) to denote the pullback of
B0(M0) to the rth prolongation of M0.

Likewise, for a parabolic system with reduction to a G1-structure (or G2-structure, etc.), I will
denote the pullback of B1 to M (s) by B1(M (s)) and the pullback to M by B1.

3.2 The C-spectral sequence
For an infinitely prolonged parabolic system (M, I), let Ω

∗
be the chain complex defined by the

exact sequence
0 −→ I∗ −→ Ω∗(M) −→ Ω

∗ −→ 0.

Note that the differential on Ω∗(M) descends to a well defined differential dh on Ω
∗
. Following

Bryant and Griffiths [BG95a], I make the following definition.

Definition 13. The characteristic cohomology H
∗

of an infinitely prolonged parabolic system
(M, I) is the cohomology of the complex Ω

∗
,

H
∗

= H∗(Ω
∗
, dh).

These cohomology groups have various interpretations in terms of the geometry of solutions to
(M, I). The ‘top’ cohomology, H

n+1
, is the space of functionals on maximal integral manifolds:

it consists of the n + 1 forms modulo exact forms and forms in I, both classes which integrate to
zero on any closed integral manifold.

The next cohomology group can be interpreted as the space of conservation laws, which is the
reason for the following definition.

Definition 14. The space of conservation laws for a parabolic system is given by the degree n
characteristic cohomology,

C = H
n
(M).
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This is a reasonable definition: an element Φ ∈ C is an n-form on M whose exterior derivative
is in I. Consequently, the restriction of Φ to any integral manifold is a closed form. By Stokes
Theorem, the integral of Φ over the boundary of any integral manifold is zero. For an evolutionary
equation this means that the integral of Φ over one time slice agrees with its integral over a later
time slice. Or, restricting attention to a region, the integral across its boundary measures the
‘divergence’ of the conserved quantity that Φ represents. This is exactly the behavior that a local
conservation law should have. As with top forms, Φ is defined modulo exact forms and elements
of I, both of which are trivial as conservation laws.

For parabolic systems, H
∗

vanishes in the remaining degrees. Any form of degree larger than
n + 1 is automatically in I, so Ω

>n+1
= 0 even before taking homology. For q < n the vanishing

of H
q

follows from results quoted below.
The cohomology of the differential operator dh is difficult to compute directly. However, the

characteristic cohomology fits into a spectral sequence. In turn, the first page of this spectral
sequence can be computed using a second spectral sequence. This second spectral sequence is
quite amenable to calculations. In fact, its first page is determined by the symbol alone, and the
differential linearizes to a function of vector bundles.

Consider the filtration of Ω∗(M) defined recursively by

F0 = Ω∗(M)

Fp+1 = I ∧ Fp .

Define the associated graded spaces to this filtration by

Grp,∗ := Fp /Fp+1 .

Here and in the following, the elements of Grp,q have degree (p + q) as differential forms. The
exterior derivative descends to a well defined operator dh on each complex, which is used to define
the filtration spectral sequence, with page 0 given by

Ep,∗
0 = Grp,∗.

It follows immediately from the definition that

E0,∗
0 = Ω

∗
,

and thus that
E0,∗

1 = H
∗
.

Note that
E∞ ⇒ H∗(M),

so for sufficiently small neighborhoods the spectral sequence converges to zero. Since I am con-
cerned with locally defined conservation laws, I henceforth assume that M is contractible, restrict-
ing attention to a neighborhood if necessary.
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It follows from the two-line theorem of Vinogradov, [Vin99], or the more general theory of
characteristic cohomology, [BG95a], that for parabolic systems, most of the terms in this spectral
sequence vanish at the first page. Specifically,

Ep,q
1 = 0 for q < n,

so the E1 page is

0 H
n+1

E1,n+1
1 E2,n+1

1 . . .

0 H
n

E1,n
1 E2,n

1 . . .

0 0 0 0 . . .

dv dv dv

dv dv dv

One immediate consequence is that the bottom row is exact. In particular, H
n

is isomorphic to the
kernel of dv in E1,n

1 . This motivates the following definition.

Definition 15. The space of differentiated conservation laws is

C = ker
(
E1,n

1
dv−−→ E2,n

1

)
The operator dv provides an isomorphism between C and C , which is useful, because the latter

space may be computed in two steps: First one computes E1,n
1 , and then one computes the kernel

of dv.
The reason for calling the zeroth page differential “dh” and the first page differential “dv” is

explained in section 3.4.

3.3 The weight filtrations

Still following Bryant and Griffiths, I introduce the principal weight filtration, defined on the
associated gradeds Grp,∗ with p > 0. For parabolic systems, the principal weight filtration doesn’t
see ‘lower order’ information, such as the Goursat invariant, which means it doesn’t detect the sub-
principal symbol. So, I also introduce the sub-principal weight filtration, which does detect the
Goursat invariant. Theorem 5 below shows that the existence of conservation laws for parabolic
systems is controlled by the sub-principal symbol, and the proof relies heavily on the sub-principal
weight filtration.

Definition 16. A weight function is a function wt: Ω∗(M) → Z satisfying the following proper-
ties:

1. wt(f) = 0 for f ∈ C∞.
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2. wt(α∧β) = wt(α) + wt(β) for α, β ∈ Ω∗(M).

3. wt(α + β) = max(wt(α),wt(β)).

Weight functions are used to define the weight filtrations, as in the following examples.

Example 7 (The Principal Weight Filtration). Consider the weight function pwt on Ω∗(M), uniquely
specified by

pwt(ωa) = −1

pwt(θI,t) = |I|+ t.

For each integer k, define the subspace

Fp,∗k = {α ∈ Fp : pwt(α) ≤ k}/Fp+1

of Grp,∗, the forms of principal weight less than k. The principal weight filtration on Grp,∗ is
defined by the sequence

. . . ⊂ Fp,∗k ⊂ Fp,∗k+1 ⊂ . . . ⊂ Grp,∗ .

It follows immediately from the principal structure equations that dh restricts to make each Fp,∗k
into a subcomplex.

For each fixed p > 0 there is a spectral sequence associated to this filtration, with E0 page
given by

E
∗,k
0 = Fp,∗k /Fp,∗k−1 .

This spectral sequence converges to Ep,∗
1 .

Any element of E
∗,k
0 can be represented by a linear combination of the forms

θI1,t1 ∧ . . . ∧ θIp,tp ∧ω
a1 ∧ . . . ∧ωaq

of principal weight k. Explicitly, this is the condition that

|I1|+ t1 + . . .+ |Ip|+ tp − q = k.

Note that E
∗,k
0 is the space of sections of a vector bundle E∗,k0 spanned by these forms.

I will abuse notation slightly, also using Fpk to denote

Fpk = {α ∈ Fp : pwt(α) ≤ k} ∪ Fp+1,

as well as the notation
Fp,dk = Fpk ∩Ωd(M)

for the forms in F p
k of degree d. This will allow me to consider an element of E

∗,k
0 as any form

representing it, modulo Fpk−1. Because the distinct usages occur in different contexts, this should
not cause any confusion. Further abusing notation, I will also use Fpk to denote its pullback to the
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principal coframe bundle of M . This will also not be a problem, because Fpk is invariant under
changes of adapted coframing.

The exterior derivative is C∞-linear on E
∗,k
0 , and treats the forms ωa as constants. Indeed, by

R-linearity, it suffices to check that

dh(fθI1,t1 ∧ . . . ∧ θIp,tp ∧ω
a1 ∧ . . . ∧ωaq)

≡ f dh(θI1,t1 ∧ . . . ∧ θIp,tp) ∧ωa1 ∧ . . . ∧ωaq
(
mod Fp,∗k−1

)
.

But this follows from the observation that dh decreases weight for functions and for each ωa:

dhf ≡ faω
a
(
mod F1

)
,

for functions f1, so
pwt(dhf) = −1

(unless it happens that dhf = 0) and

dhω
a ≡Ma

bcω
b ∧ωc

(
mod F1

)
,

for functions Ma
bc, so

pwt(dhω
a) = −2

(likewise).
The C∞-linearity of dh means that it is induced from a morphism of vector bundles. That is,

each map
E
∗,k
0

dh−−→ E
∗,k
0

comes from a vector bundle map
E∗,k0 −−−→ E

∗,k
0 .

This means that to compute the next page, E
∗,k
1 , it suffices to determine the vector bundle map.

Example 8 (The Sub-Principal Weight Filtration). The sub-principal weight function is the unique
weight function such that

wt(ωi) = −1

wt(ω0) = −2

wt(θI,t) = |I|+ 2t.

For each integer k, define the subspace

Fpk = {α ∈ Fp : wt(α) ≤ k}/Fp+1 .

of Grp,∗, the forms of sub-principal weight less than k. The sub-principal weight filtration on Grp,∗

is defined by the sequence
. . . ⊂ Fpk ⊂ F

p
k+1 ⊂ . . . ⊂ Grp,∗ .
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In order for dh to restrict to a differential on the associated graded spaces

Fp,∗k /Fp,∗k−1,

it is necessary that each Fpk be dh-closed. Although no longer a trivial fact, this follows from
Troposition 3, which shows that dh does not increase sub-principal weight. Note also that each
subspace Fpk is coframe equivariant.

The operator dh restricts to a C∞-linear operator on Fp,∗k /Fp,∗k−1. However, if the Goursat
invariant is non-zero, then it no longer treats ω0 as a constant, because

dhω
0 ≡ Gijωi ∧ ωj

(
mod F0

−3

)
.

As with the principal weight filtration, it will be useful to have the notation

Fpk = {α ∈ Fp : wt(α) ≤ k} ∪ Fp+1

and
Fp,dk = Fpk ∩Ωd(M).

3.4 Horizontal and vertical derivatives

The differentials dh and dv in the characteristic spectral sequence have natural geometric inter-
pretations, which I describe here. They are the same operators as defined in [BG95a], but modified
for the situation at hand.

By definition, the operator dh is the restriction of d to the associated graded Grp,∗. It has a
more “down to earth” interpretation: for [α] ∈ Grp,∗ represented by α ∈ Fp, the derivative dh[α] is
represented by dα. For ϕ an element of Fp, I will abuse notation, using dhϕ to denote the exterior
derivative of ϕ modulo Fp+1, so that

dhϕ ≡ dϕ
(
mod Fp+1

)
.

Used this way, dh is no different from d, but implies that a calculation fits into the characteristic
spectral sequence.

The operator dh is horizontal with respect to any solution manifold Σ, in the sense of the
relation

(dhϕ)|Σ = d(ϕ|Σ)

for ϕ ∈ Ω∗(M). Note that this fact is trivial for ϕ ∈ I.
In a given coframing2

ωa, θ∅, θi,0, θ0,1, . . . (3.1)

of M , the relation
dhA ≡ (DaA)ωa (mod I)

2More precisely, only a partial coframing ωa is necessary here.
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defines the operators Da for functions A ∈ C∞. These are total directional derivatives of A in the
sense that

d(A|Σ) = (DaAω
a)|Σ.

The operators Da can be expressed coframe equivariantly: letting A denote the pullback of A
to B0, the operators Da are given by

dhA ≡ (DaA)ωa (mod I) .

These operators will be used to define the differential equation that governs conservation laws of
parabolic systems.

Now consider the vertical derivative dv. Given a form ϕ ∈ Fp so that

dhϕ ≡ 0
(
mod Fp+1

)
,

the element dvϕ of Fp+1 is defined by the equation

dvϕ ≡ dϕ
(
mod Fp+2

)
.

The operator dv on the spectral sequence is only well defined for forms so that dhϕ = 0, but it is
possible to extend dv to general forms, which I describe.

As a warmup, I define the vertical derivative dv in a fixed coframing. The forms ωa in this
coframing are the horizontal forms (for this coframing), because the ideal defined by J = {ωa}
provides a complement to the ideal I. As a consequence of this splitting of Ω∗(M), any element
[ϕ] ∈ Grp,q is represented by a form

ϕ ∈ (ΛqJ) ∧ (Λp I).

Then, even when dhϕ is not zero on the nose, it is true that

dhϕ ∈ (Λq+1J) ∧ (Λp I),

or in other words,
dhϕ ≡ 0

(
mod Λq+1J,Fp

)
.

For this reason, I define dv by the congruence

dvϕ ≡ dϕ
(
mod Λq+1J,Fp+2

)
,

which is represented by an element of

(ΛqJ) ∧ (Λp+1 I).

This operator clearly agrees with the original definition of dv on dh-closed forms. In fact, it
provides a partial complement to dh, in the sense that

dϕ ≡ dhϕ+ dvϕ
(
mod Fp+2

)
.

54



For ϕ ∈ Grp,q, I define the coframe-equivariant vertical derivative dv by the formula

dvϕ ≡ dϕ
(
mod Fp+2,Λq+1J

)
.

Here, to maintain coframe equivariance, it is necessary to replace the horizontal ideal J with J .
As a consequence, the coframe equivariant operator dv misses some information that dv does
not. This may seems disadvantageous, but I argue that it is a benefit. When using the coframe
dependent operator dv, one has to keep track of what is true in general and what is true for the
specific coframing. The equivariant dv keeps track for free.

The operator dv does run into trouble if ϕ is already in Λq+1J . Indeed, Λq+1J is differentially
closed, so in this case

dhϕ ≡ 0
(
mod Λq+1J

)
.

Still, given any coframe-equivariant ideal K for which

dhϕ ≡ 0
(
mod K,Fp+1

)
it makes sense to define

dvϕ ≡ dϕ
(
mod K,Fp+2

)
.

The operator dv defines vertical derivatives for functionsA ∈ C∞. Indeed, fixing the coframing
(3.1), the relation

dvA ≡ dA (mod J )

can be written as
dvA ≡

∑
I,t

(∂I,tA)θI,t (mod J ) ,

defining the differential operators ∂I,t on C∞ for all |I| + t ≥ 2. Just as with the operators Da,
coframe equivariant operators ∂I,t can be defined by pulling A up to B0.

In jet coordinates, each differential operator ∂I,t is given by the partial derivative ∂
∂pI,t

plus par-
tial derivatives in coordinates pI′,t′ of strictly higher weight3. To see this, recall from the principal
structure equations that, for indices I and t such that |I|+ t > 2,

θI,t ≡ dpI,t
(
mod J ,F1

|I|+t−1

)
.

Now consider a function A ∈ C∞
(
M (r)

)
, so that

dvA ≡
∑

|I|+t=r+2

∂A

∂pI,t
dpI,t ≡

∑
|I|+t=r+2

(∂I,tA)θI,t
(
mod J ,F1

r+1

)
.

Comparing coefficients shows that each ∂I,t equals ∂
∂pI,t

for any function that doesn’t depend on
coordinates pI′,t′ of weight higher than r.

3This may be surprising, but it comes down to the nilpotent component of the full adapted structure group, the fact
that adding low weight forms in I to higher weight forms preserves the principal structure equations.
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In particular, this shows that the operator dv gives a test for when a function on M (r) is the
pullback of a function on M (r−1). Indeed, for A ∈ C∞

(
M (r)

)
, if

dvA ≡ 0
(
mod J ,F1

r+1

)
,

then it is constant in each fiber of M (r) over M (r−1).
Finally, while dv can’t be defined for general functions on B0, in special cases it can. To choose

an example that will be relevant, consider the form

Φ = Aθi,0 ∧ω(i)

given in a fixed coframing η. The pullback of Φ to B0 may be written as

Φ = Aθi,0 ∧ω(i),

where A ∈ C∞ agrees with A along the image of η. By a calculation similar to the one used to
show (2.10), one finds that

d
(
θi,0 ∧ω(i)

)
≡
(
2βtr − nκ0 + β0

0

)
∧ θi,0 ∧ω(i)

(
mod θ0,0,Ω

d+2
sb

)
.

Since Φ is basic, the variation of A in each fiber must be given by

dA ≡
(
−2βtr + nκ0 − β0

0

)
A

(
mod Ω1

sb

)
.

Observe though, that θi,0∧ω(i) is defined on M0, so the variational form 2βtr − nκ0 + β0
0 is defined

on B0(M0). Consequently, for any coframing η̃,

η̃∗(2βtr − nκ0 + β0
0) ≡ 0

(
mod F 1

2

)
and thus

dA ≡
∑
I,t

(∂I,tA)θI,t
(
mod J , F 1

2

)
.

I will abuse notation and write

dvA ≡
∑
I,t

(∂I,tA)θI,t
(
mod J , F 1

2

)
when working on B0. This level of generality for the definition of dv is necessary in the proof of
Theorem 5.

Recall that a bi-complex with differentials d1 and d2 so that d = d1 + d2 has the useful
identity

d1 d2 = − d2 d2.

Now, dh and dv don’t quite split d like this, but on sufficiently nice functions they do split it above
a finite weight. Indeed, let A be a function on B0 so that

dvA ≡ dA
(
mod J ,F1

N

)
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is well defined. Then
dA ≡ dhA+ dvA

(
mod F1

N

)
and thus

0 = d2A ≡ dv(DaA ∧ω
a) + dh

 ∑
|I|+s>N

(∂I,sA)θI,s

 (
mod F1

N

)
.

If N > 3, then
dvω

a ≡ 0
(
mod F1

N

)
,

so the previous equation simplifies to

0 ≡ dv(DaA) ∧ωa −
∑
|I|+s>N

(∂I,sA)eaθI,s ∧ω
a
(
mod F1

N

)
and thus

dv(DaA) ≡
∑
|I|+s>N

(∂I,sA)eaθI,s
(
mod J ,F1

N+1

)
.

Finally, I remark that I will without comment use the same notation dh and dv for the respective
restrictions to the weighted complexes.

3.5 The Refined Structure Equations
I now turn to the refined structure equations for strongly parabolic systems. This refinement makes
it possible to take into account the sub-principal symbol when calculating conservation laws.

Theorem 3. Let (M, I) be the infinite prolongation of a strongly parabolic system. There are local
coframings of M as in Proposition 1 for which furthermore

dhθI,t ≡− θIi,t ∧ωi − θI,t+1 ∧ω
0

− c|I|
(
eiθI,t+1 ∧ω

i − C|I|eiejjθI,t+1 ∧ω
i
) (

mod F1
|I|+2t−1

)
.

(3.2)

Here

cs =

{ n
n+2(s−1)

s > 0

0 s = 0

and
Cs =

1

n+ 2s− 4

Corollary 1. The exterior derivative does not increase sub-principal weight. In particular, the
subspace Fps+t ∩F

p
s+2t of Grp,∗ is differentially closed for any s and t.
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Remark 1. The new terms can be predicted from the representation theory of CO(n). Indeed,
one should not expect reductions of the structure group to appear suddenly after a large number of
prolongations. This is true a posteriori. The non-existence of such coframe reductions is equivalent
to the fact that dh is G2-equivariant.

Since dh is G2-equivariant, it induces at each point x ∈M an equivariant map

Syms
0W

′ −→ Syms−1
0 W ′ ⊗W ′,

where the former space is spanned by vectors (θI,t)x with |I| = s and the latter by vectors
(θI,t+1∧ω

i)x with |I| = s− 1. By Schur’s lemma, this map must be a projection to the irreducible
component Syms

0W
′ in Syms−1

0 W ′ ⊗W ′. Explicitly, the map is a multiple of

eI 7−→ej ·
(
eI −

1

2(n+ 2|I| − 4)
eiie

kkeI

)
⊗ ej.

The second term is necessary to ensure that the result is traceless.

Proof. Suppose the Theorem has been proven for all 1-forms in I of principal weight less than N .
Note that this implies that

F1,2
N−2 ∩F

1,2
t

is differentially closed for each t: Any element is a linear combination of terms θI,s∧ωa such that
pwt(θI,s) ≤ N − 1, so equation (3.2) holds.

Now I proceed by a second induction, in sub-principal weight. Assume that (3.2) holds for
1-forms θI,s ∈ I such that pwt(θI,s) = N and wt(θI,s) > 2N − S. The base case S = 0 is

dθ0,N ≡ −θi,N ∧ωi − θ0,N+1 ∧ω
0
(
mod F1

2N−1

)
,

which follows immediately from the principal structure equations, because

F1,2
N−1 ⊂ F

1,2
2N−1 .

Observe that the space
F1,1
N ∩F

1,1
2N−S /F1,1

N ∩F
1,1
2N−S−1

is spanned by the forms θI,N−S with |I| = S. Recall that the principal structure equations for these
forms are

dhθI,N−S ≡ −θIi,N−S ∧ωi − θI,N−S+1 ∧ω
0
(
mod F1

N−1

)
.

Let (αI) be a SymS
0 W

′-valued 2-form so that

dhθI,N−S ≡ −θIi,N−S ∧ωi − θI,N−S+1 ∧ω
0 − αI

(
mod F1

2N−S−1

)
.

By the remark, one expects there to be choices of coframing so that for each I ,

αI ≡ cS
(
eiθI,N−S+1 − CSeiejejθI,N−S+1

)
∧ωi
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for some function cS . This is true, but the calculation that proves it is not illuminating, so I omit it.
The point is that nothing surprising happens.

With this simplification, it is only left to determine cS . Fix a multi-index I such that |I| = S−1.
Then, by the induction hypothesis,

dhθI,N−S ≡ −θIi,N−S ∧ωi − θI,N−S+1 ∧ω
0

− cS−1(eiθI,N−S+1 − CS−1eie
kekθI,N−S+1) ∧ωi

(
mod F1

2N−S−2

)
.

Applying dh,

0 ≡αIi ∧ωi + cS−1eje
iθI,N−S+1 ∧ω

j ∧ωi
(
mod ω0,F1

N−3,F1
2N−S−2

)
≡
(
cSe

jeiθI,N−S+1 − cSCSejekekeiθI,N−S+1 − cS−1eie
jθI,N−S+1

)
∧ωj ∧ωi

≡ (cS + 2cSCS − cS−1) ejeiθI,N−S+1 ∧ω
j ∧ωi

This proves that cS satisfies the recurrence relation

cS =
n+ 2S − 4

n+ 2S − 2
cS−1.

Because c1 = 1, one finds that
cS =

n

n+ 2S − 2
,

as was required.

3.6 Conservation Laws of Parabolic Systems
The first step in calculating the space of conservation laws for a parabolic system is to compute
E1,n

1 . This is done in the following Theorem, which holds for any parabolic system.

Theorem 4. For any Φ ∈ E1,n
1 , there is a function A ∈ C∞ and an n-form ψA so that the I-linear

piece of Φ is given by
Φ1 ≡ AΥ + θ0,0 ∧ψA

(
mod F2

)
,

where
Υ =

(
θi,0 ∧ω(i) + θ0,0 ∧ (ajjω(0) + 2aijjω(i))

)
.

There is a linear first order operator sending A to ψA, defined by

ψA ≡ −(DiA)ω(i) (mod θ0,0) . (3.3)

Furthermore, in any fixed coframing, there is a function L(A,DaA), linear in its arguments
and with coefficients determined by the curvatures of M0, so that the solutions of

F (A) = DiDiA− L(A,DaA)

are in bijection with the elements of E1,n
1 .
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Proof. It suffices to understand the principal weight spectral sequence E
∗,k
∗ (with p = 1), which

converges to E1,∗
1 . By the general theory of characteristic spectral sequences, the zeroth page E0 is

isomorphic to the Spencer complex of the tableaux K. This Spencer complex calculates the mini-
mal free resolution of the symbol module associated to K. See [BG95a], as well as [BCG+13], for
details, but the takeaway is that there are no relations between the symbol relations of a parabolic
systems, which shows that the following diagram contains the only terms that don’t immediately
degenerate. Adopting the notation

Gr∗k = F1,∗
k /F1,∗

k−1,

the relevant part of the E0 page is

Grn+1
−n+1 Grn+1

−n Grn+1
−n−1

Grn−n+1 Grn−n 0

Grn−1
−n+1 0 0

d̄h d̄h

d̄h

Since d̄h is a C∞-linear vector bundle map between these spaces, it suffices to compute pointwise.
Localizing at a point of M results in the following diagram of vector spaces.

R{θij,0∧ω, θi,1∧ω, θ0,2∧ω} R{θi,0∧ω, θ0,1∧ω} R{θ0,0∧ω}

R{θi,0∧ω(b), θ0,1∧ω(b)} R{θ0,0∧ω(a)} 0

R{θ0,0∧ω(ab)} 0 0

d̄h d̄h

d̄h

The E1 page is then computed to be

0 0 C∞{θ0,0∧ω}

C∞{θi,0∧ω(i)} 0 0

0 0 0

Because the differential is no longer guaranteed to be C∞-linear, it is not possible to compute
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pointwise. Still, the E2 page is easily seen to be

0 0 C∞{θ0,0∧ω}

C∞{θi,0∧ω(i)} 0 0

0 0 0

δ

After this page the spectral sequence degenerates, so

E1,n
1 = ker(δ).

The upshot is that any element Φ ∈ E1,d
1 is represented by an element of C∞{θi,0∧ω(i), θ0,0∧ω(a)}

that is anihilated the operators d̄h and δ. Let A and Aa be functions in C∞ so that

Φ ≡ Aθi,0 ∧ω(i) + θ0,0 ∧
(
Aiω(i) + A0ω(0)

) (
mod F2

)
.

The condition that d̄h vanish determines the functions Aa. The calculation is best done on the
coframe bundle of M . Denote the pullbacks of Φ, A,Aa to B0 by Φ, A,Aa respectively, so that

Φ1 ≡ Aθi,0 ∧ω(i) + θ0,0 ∧
(
Aiω(i) + A0ω(0)

) (
mod F2

)
.

The condition d̄hΦ1 = 0 is the same as

0 ≡ (−Ai − D̄iA+ 2aijjA)θi,0 ∧ω + (−A0 + Aaii)θ0,1 ∧ω
(
mod θ0,0,F

2
)
,

which proves (3.3).
The condition that δ vanish on Φ results in a further differential equation on A, which is com-

puted by

dΦ1 ≡ dh(A
(
θi,0 ∧ω(i) + θ0,0 ∧ (ajjω(0) + 2aijjω(i)

)
− (DiA)θ0,0 ∧ω(i)) ≡ 0

(
mod F2

)
The result depends on the details of the curvatures of M0. However, it is not difficult to see that
the horizontal derivative is of the form

F (A)θ0,0 ∧ω
(
mod F2

)
.

In particular, observe that the leading order term DiDiA comes from the horizontal derivative of

(DiA)θ0,0 ∧ω(i).
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Remark 2. Observe that
dhΥ ≡ 0

(
mod θ0,0,F

2
)
.

Also, for strongly parabolic system, the trace ajj is normalized to −1 on B4, so that

Υ =
(
θi,0 ∧ω(i) + θ0,0 ∧ (−ω(0) + 2aijjω(i))

)
.

Remark 3. For a given parabolic system M0, one could determine F explicitly and then try to
find solutions to the auxiliary equation. If additionally dv(AΥ+θ0,0∧ψA) = 0, then these solutions
correspond to conservation laws.

I take a different approach that is simpler for strongly parabolic systems. I use the fact that
the sub-principal weight filtration splits this equation into several algebraic equations. This idea
follows naturally from C-spectral sequence considerations.

Example 9. Recall the coframing of the heat equation in Example 6. This coframing is 4-adapted
and has all of the secondary Goursat invariants absorbed. Consequently, any conservation law has
I-linear part

Φ1 ≡ A(θi ∧ dω(i) − θ∅ ∧ dω(0))− (DiA)θ∅ ∧ dω(i)

(
mod F2

)
.

Taking the horizontal derivative,

0 ≡ (D0A+DiDiA)θ∅ ∧ω
(
mod F2

)
.

One can see from the theorem that for M to have even a single non-trivial conservation law Φ
puts strong constraints on its Monge-Ampère invariants. Indeed, let Φ1 denote the I-linear piece
of Φ, and Φ2 its I-quadratic piece, so that

Φ1 = AΥ + θ0,0 ∧ψA

for some A ∈ C∞ and
Φ ≡ Φ1 + Φ2

(
mod F3

)
.

If necessary, restrict to a neighborhood where A is not zero.
Since Φ is closed and dhΦ1 = 0,

0 ≡ dvΦ1 + dhΦ2

(
mod F3

)
≡ (dvA) ∧Υ + AdvΥ + dhΦ2

(
mod θ0,0, dθ0,0,F

3
)
.

Applying dh and dividing by A,

0 ≡ dhdvΥ
(
mod θ0,0, dθ0,0,Υ,F

3
)
.

On the other hand, by direct calculation, and using the identity

dθ0,0 ∧ω(0i) ≡ θ0,1 ∧ω(i) − θi,0 ∧ω(0) (mod θ0,0) ,
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I find that

dvΥ ≡ −2ξ0
i ∧ θi,0 ∧ω(0) − 2ξji ∧ θj,0 ∧ω(i) − θi,0 ∧ θb ∧σab ∧ω(ai)

(
mod θ0,0, dθ0,0,Υ,F

3
)
.

Taking the horizontal derivative of this shows that

0 ≡ dh(ξ
0
i ∧ θi,0) ∧ω(0) + dh(ξ

j
i ∧ θj,0) ∧ω(i)

(
mod θ0,0, dθ0,0,Υ,F

3
)
. (3.4)

I note that the terms dh(θi,0∧θb∧σab∧ω(ai)) make no contribution to (3.4). Essentially, this fol-
lows from the fact that

Λn+2J ⊂ {θ0,0, dθ0,0},

which in turn follows from the Lefschetz decomposition of Λ∗J for the ‘symplectic’ form dθ0,0.
Fixing any coframing η and functions Sabc so that

η∗(σab) ≡ Sabc ω
c
(
mod F1

)
,

the pullback by η of dh(θi,0∧θb∧σab∧ω(ai)) satisfies

dh
(
Sabc θi,0 ∧ θb ∧ω

c ∧ω(ai)

)
≡ 0

(
mod Λn+2J ,F3

)
.

Since this holds for any coframing, these terms will never contribute to equation (3.4).
At highest sub-principal weight, equation (3.4) simplifies to

0 ≡ dh(Uiθ0,2 ∧ θi,0) ∧ω(0)

(
mod θ0,0, dθ0,0,Υ,F2

−n+4

)
≡ Uiθ0,2 ∧ θi,1 ∧ω

(
mod θ0,0, dθ0,0,Υ,F2

−n+4

)
.

Thus the function (Ui) must vanish identically.
At the next weight, equation (3.4) simplifies to

0 ≡ dh(U
j
i θj,1 ∧ θi,0) ∧ω(0) + dh(V

j
i θ0,2 ∧ θj,0) ∧ω(i)

(
mod θ0,0, dθ0,0,Υ,F2

−n+3

)
≡ (U j

i θj,1 ∧ θi,1 + V j
i θ0,2 ∧ θij,0) ∧ω

(
mod θ0,0, dθ0,0,Υ,F2

−n+3

)
.

This shows that the anti-symmetric component of U j
i vanishes and that the traceless symmetric

component of V j
i vanishes.

Finally, with all of the tools developed here, it is not so hard to prove the following theorem.

Theorem 5. Let (M, I) be a strongly parabolic system. Any non-trivial conservation law Φ has a
representative

Φ ≡ AΥ + θ0,0 ∧ψA
(
mod F2

)
so that A ∈ C∞ (M0).

Proof. Let Φ be conservation law of M . By proposition 4, there is a function A and corresponding
ψA so that the I-linear part of Φ is given by

Φ1 ≡ AΥ + θ0,0 ∧ψA
(
mod F2

)
.
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Let Φ2 be the I-quadratic part of Φ, so that

Φ ≡ AΥ + θ0,0 ∧ψA + Φ2

(
mod F3

)
.

Denote by Φ,Φ1,Φ2, A,Q the respective pullbacks to B2.
Since Φ is closed and dhΦ1 = 0,

0 ≡ dvΦ1 + dhΦ2

(
mod F3

)
.

Applying dh shows that
dhdvΦ1 ≡ 0

(
mod F3

)
.

To prove that A ∈ C∞ (M0) it suffices to show that

dvA ≡ 0
(
mod J ,F1

2

)
.

Using the sub-principal weight filtration, let N be the largest weight so that

dvA 6≡ 0
(
mod J ,F1

2,F1
N−1

)
.

Furthermore, let S be the smallest integer so that

dvA 6≡ 0
(
mod J ,F1

2,F
1
N−S−1,F1

N−1

)
.

There are functions so that

dvA ≡
∑

S≤s≤N/2
|I|=N−2s

AI,sθI,s
(
mod J ,F1

2,F1
N−1

)
.

I will show that each function AI,S vanishes.
Preliminary to this, it is easy to calculate from the structure equations that the following equa-

tions hold in any coframing:
dvθ0,0 ≡ 0

(
mod J ,F2

2

)
,

dvθi,0 ≡ 0
(
mod J ,F2

3

)
,

dvω
a ≡ 0

(
mod Λ2J ,F1

1

)
.

Note that in each case, taking the horizontal derivative raises the principal weight by at most 2.
Furthermore, it immediately follows from equation (2.12) that

dva
j
ij ≡ 0

(
mod J ,F1

3

)
.

Combined, these show that

dv(Υ) ≡ 0
(
mod Λn+2J ,F2

−n+3

)
.
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Furthermore, since

dv(DiA) ≡
∑

S≤s≤N/2
|I|=N−2s

AI,s(θIi,s + c|I|(e
i − C|I|eiejej)θI,s+1)

(
mod J ,F1

3,F1
N

)
,

one finds that

dv(θ0,0 ∧ψA) ≡ θ0,0 ∧ dv(DiA) ∧ω(i)

(
mod Λn+2J ,F2

−n+3,F2
N−n−1

)
≡

∑
S≤s≤N/2
|I|=N−2s

AI,sθ0,0 ∧ (θIi,s + c|I|(e
i − C|I|eiejej)θI,s+1) ∧ω(i).

The upshot of all of this is that

dvΦ1 ≡ (dvA) ∧ (θi,0 ∧ω(i) + θ0,0 ∧ω(0)) + θ0,0 ∧ dv(DiA) ∧ω(i)

(
mod F2

−n+3,F
2
N−S−n−3,F2

N−n−1

)
≡

∑
S≤s≤S+1
|I|=N−2s

AI,s
(
θI,s ∧ (θi,0 ∧ω(i) + θ0,0 ∧ω(0)) + θ0,0 ∧ (θIi,s + c|I|(e

i − C|I|eiejej)θI,s+1)) ∧ω(i)

)
.

Taking the horizontal derivative results in

0 ≡
∑

|I|=N−2S

AI,Sθ0,0 ∧ (−1 + c|I|+1(ei − C|I|+1eie
jej)ei+c|I|ei(e

i − C|I|eiejej))θI,s+1 ∧ω(
mod F2

−n+3,F
2
N−S−n−3,F2

N−n−1

)
(I remark that the fact that this vanishes modulo θ0,0 and weights is true simply because of the
anti-commutativity of dv and dh.) The only thing left to check is that the operator

(−1 + c|I|+1(ei − C|I|+1eie
jej)ei + c|I|ei(e

i − C|I|eiejej)),

which is a multiple of the identity on SymN−2S
0 W ′, is non-zero.

Let t = N − S. Then for θI,S+1 ∈ Symt
0W

′,

eieiθI,S+1 = (n+ t)θI,S+1,

eie
iθI,S+1 = tθI,S+1,

eie
jejeiθI,S+1 = t(n+ t)θI,S+1.

(These calculations may be more familiar if one considers the isomorphism between Symt
0W

′ and
harmonic polynomials of degree t. Then, for example, eiei is the same operator as the divergence
vector field xi ∂

∂xi
.) Taken together, one sees that

−1 + c|I|+1(ei − C|I|+1eie
jej)ei + c|I|ei(e

i − C|I|eiejej)

= −1 +
n

n+ 2t

(
n+ t− t(n+ t)

n+ 2t− 2

)
+

nt

n+ 2t− 2
,

which is never zero.
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