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ABSTRACT 

1 

Algebraic Reconstruction Techniques (ART), introduced in medical radiology, are 

extended in this study to seismic travel time data. The algorithms based on these tech-

niques, developed initially for. use with X-rays, must be modified for acoustic wave 

data. Modifications include slight changes in the algorithms themselves and additional 

weigh ts for specific data types. The convergence properties of these algorithms to an 

adequate solution and the reliability of this solution are also investigated. The algo-

rithms developed are initially tested 011 synthetically derived travel time data. Travel 

time data from simplistic velocity models are used to determine the general behavior of 

the algorithms and to estimate the reliability of the reconstructed velocity field. More 

complex models simulate realistic velocity distributions. Results from these studies pro-

vide critical guidelines for the inversion of real travel time data. The study also investi-

gates the amount of detail that may be determined by this method with realistic struc-

tures. 

Two high quality travel time data sets are inverted using ART. The experiments 

were carried ou t at the Retsof salt mine in New York and at the underground 
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radioactive waste repository study site in Sweden (Stripa). The raypaths in the Stripa 

experiment were short, with the maximum just over 10 meters in length. The Stripa 

data set is unique in that it consists of two suites of travel time measurements; one 

taken while the medium was being heated by a simulated waste canister, and the other 

some months after the heat had been turned off. This tests the use of ART as a moni-

toring technique using seiswic waves. The velocity contrasts detec,ted are small, but the 

anomalous zones are reconstructed quite well. The Retsof data consist of travel times 

for ray paths through a complicated structure with velocity contrasts reaching 50 per­

cent. This study shows that ART performs well even in a complex region. 

ART algorithms can be shown theoretically to converge to the least squares solu­

tion. This convergence is not seen in the application of the method. However, synthetic 

studies show that ART produces a more realistic reconstruction of the original velocity 

model than does least squares. These two methods are combined in an effort to increase 

the effectiveness of the ART algorithms. 

Thomas V. McEvilly 
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CHAPTER 1 

In trod uction 

Methods of imaging are commonly used in many sciences, the most familiar being 

those formed directly by optical or X-ray instrumentation. In many scientific applica­

tions it is necessary to determine the distribution of some physical property within an 

object by indirect measurements. Projections or "strip" integrals of an object formed 

by X-rays or acoustic waves at particular view angles can be used to estimate this dis­

tribu tion inside the object. This basic idea of image reconstruction was form ulated 

mathematically by Radon (1917) and is now known as th Radon transform. Radon 

solved the integral equation relating twO-dimensional objects to their projections for 

various geometries. The method introduced by Radon went virtually unused until Bra­

cewell (1956) applied it in an attempt to track down solar sources of radio emission. By 

then computers had progressed far enough to handle the large amounts of data 

required by the method. 

The method reached the medical field in the 1960s. A large amount of data is 

necessary for medical imaging and this alone was a major factor in the various tech­

niques developed in the medical field. The work in medical applications produced four 

major classes of reconstruction algorithms: the summation methods, the convolution 

methods, the Fourier methods, and the summation expansion methods. Collectively, 

these algorithms are known as tomographic methods. The convolution and Fourier 

methods are quite similar to the method introduced by Bracewell (1956). In the 
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category of summation expansion methods fall the Algebraic Reconstruction Tech­

niques (ART). These algorithms pose the integral equation in a matrix form which is 

solved using relaxation techniques, taking advantage of the sparse nature of the matrix. 

ART algorithms tend to be simple and can be modified easily to different data 

geometries and restricted angular coverage. All methods assume non-refracting, 

straight paths through the medium and require a full range of penetration angles for 

completeness. Many variations on the basic ideas have been developed, most of which 

have advantages in specific problems. 

Many imaging techniques have long been used in seismology, the most familiar 

applications are reflection, refraction and p-T analysis. However, the tomographic 

reconstruction techniques developed in the medical fields remain almost unused in geo­

physical applications. A back-projection method introduced by (Bois et al., 1972) is a 

very simplified form of an algebraic reconstruction, but even this technique ha& rarely 

been applied. There are several reasons why ART remains unused in seismology: data 

acquisition is expensive and in some ways inadequate and the acoustic waves used in 

seismology not only follow curved paths, but also experience diffraction, reflection, 

scattering and various forms of attenuation. Data acquisition methods are now at the 

point where collection of data adequate for reconstruction techniques is becoming feasi­

ble. The behavior of seismic waves remains an obstacle in the applicability of these 

algorithms. 

Tomographic techniques have applications in seismology ranging from ultrasonic 

cross-hole studies of rock properties (Wong et al., 1983) to reflection seismology 

(Fawcett and Clayton, 1984) to deep earth structure (Clayton and Comer, 1984). In 

these applications either the slowness field or the attenuation field is determined. In 

most seismological problems, restrictions on source and receiver locations limit the 

range of penetration angles through the volume of interest, resulting in irregular sam­

pling. Seismological applications thus are often customized for each experiment, 
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depending on the available sampling and the source-receiver geometries. 

Two characteristics of the wave may be measured as data for tomographic recon­

structions: the travel time between the source and receiver and the energy con ten t of 

the resulting waveform. Travel times provide the velocity structure, but the energy 

content contains additional information about the medium. However, it is difficult to 

extract the necessary data from the waveform. A wavelet generally contains energy due 

to different wavefronts arriving simultaneously along with effects of scattering, 

geometry, noise and so on. To eliminate the undesirable effects would take considerable 

computational effort as well as a good a prz"orz" knowledge of the medium. Travel times 

are easier to analyze than full waveforms, although they contain information relating 

primarily to the slowness or velocity of the medium. Velocity information is useful for 

delineating anomalous zones in a medium caused by fractures, temperature distribu­

tion, hydrological features and changes in rock type. 

This thesis deals primarily with Algebraic Reconstruction Techniques applied to 

seismological travel time data. Because of the differences in seismological and medical 

reconstruction problems, a straight-forward application of the algorithms developed in 

the medical field cannot be made to seismology. Thus, the primary motivation of this 

study is to develop algorithms applicable to seismology, based on the algebraic recon­

struction techniques used in medical applications. A thorough experimental study with' 

synthetic data from various velocity models is presented in this thesis. Such a study 

was lacking in the geophysical literature. The algorithms and knowledge gained in 

these initial studies is then used in reconstructions with real data. Complete studies of 

this nature were also lacking in the literature. 

Basic principals and derivations of ART as applied to seismology are given In 

Chapter .2. Mathematical detail has been well documented, mostly in the medical and 

engineering literature and will largely be referenced. A set of synthetic test data is 

derived in Chapters 3 and 4 for several velocity models of differing complexities. Simple 
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models are used initially to determine the general behavior of the varIOUS algorithms 

and to supply a basis for comparison with other algorithms which may be developed in 

the future. The more complex models provide information helpful in predicting the 

behavior of the algorithms using real data. Velocity models from two real data sets are 

reconstructed in Chapter 5. Both experiments use cross-hole type geometry, but differ 

in media and dimensions of the features. The data sets contain very accurate travel 

time and station location measurements and one contains two suites of measurements 

taken for the same raypaths one year apart. This provides a unique opportunity to 

compare changes in travel times due to changes in the media and shows an important 

application of ART. Chapter 6 deals with the use of ART in conjunction with standard 

least square inversion methods. The two techniques are compared and an effort is made 

to combine them to increase the accuracy of the reconstructions. Finally, Chapter 7 is 

the overall conclusion regarding the applicability of ART to cross-hole seismic data. 
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CHAPTER 2 

The Method of ART 

Introd uction 

The problem I address is the determination of the velocity and attenuation fields 

in a region given the travel times and waveforms from distributed seismic sources and 

receivers. The initial step is to generate algorithms from those described in the medical 

literature, specifically, the iterative ART algorithms developed in the field of radiology 

(Gordon, Bender and Herman, 1970; Gilbert, 1972; Gordon, 1974), and to develop 

methods for determining the reliability of these algorithms .. These algorithms are then 

used for the reconstructions performed in subsequent chapters of this thesis. In this 

chapter, the basic algorithms are described, along with several useful modifications 

which may be applied. Also, some mathematical and visual measures of convergence 

and reliability will be in trod uced. 

The ART algorithms are considered superIor to the widely used transform 

methods described in Scudder (1978) for several reasons: 

1) ART is easily adaptable to any source-receiver configuration without interpola­

tions to uniform sampling grids. The source-receiver configuration can be any 

geometry in which the pairs produce ray paths which sample the field of interest. 

2) the geometrically more accurate curved ray paths may be used 
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3) computation time is fast 

4) ART is an iterative method in which the rate of convergence may be altered with 

the use of a damping parameter 

The initial point is critical for many geophysical applications where a symmetrical 

geometry is not feasible. The primary disadvantage of ART relative to the transform 

methods is the absence of criteria to determine at which iteration the best solution 

occurs. The transform methods are not iterative, so such criteria is unnecessary. 

The Algorithms 

Simplistically, ART is based on a back-projection method. The field of interest is 

divided into many pixels of constant physical properties. Source-receiver ray paths pro-

ject across this field as shown in Figure 2.1. As' the wave passes through each of the 

pixels, the properties of the pixel effects its amplitude and velocity. The resultant 

amplitudes and travel times are thus dependent on the pixel properties and it is 

assumed that the contribution of each pixel can be deduced by back-projecting the 

rays. For example, if the data were a single ray the best velocity model would be the 

average velocity of the ray as determined by its mean slowness (travel time divided by 

ray length). For two intersecting rays of different slownesses, the pixels common to 

both rays would have velocities dependent upon some weighted average of both rays. It 

follows that a data set consisting of many rays crossing at all angles may be back-

projected to determine an estimate of the velocities in each pixel needed to produce the 

travel times. The attenuation of each pixel may be determined in a similar manner . 

. The method of processing is based on the relation between propagation velocity 

and the total travel-time, or between attenuation characteristics and received ampli-

tude. For a particular ray path in the u-v plane, the relation for total travel-time is 

t _ ~ ds 
k - Rk ¢(u ,v) 

(2.1) 
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where ¢>( u ,v) is the velocity of the medium and the integration is along the particular 

ray path R le . The amplitude Ale at the receiver is related to the attenuation field, 

0'( U ,v ) through the equation 

(2.2) 

where o'(u ,v) = trf and Q is dependent on (u ,v). A 0 has been corrected for 
¢>( u ,v )Q 

the radiation pattern, geometric spreading, and instrument response. 0'( u ,v), as deter-

mined from this model will be an effect of apparent attenuation, consisting of intrinsic 

dissipation described in equation (2.2) plus elastic scattering. The projection is then 

defined as 

Ale r 
Pie = In- = -JR o'(u ,v )ds 

A 0 • 

(2.3) 

where Ale is the received amplitude and A 0 is the source amplitude. In general, the 

integral equation is written 

(2.4) 

with YIe, k = 1,2, ... ,N representing the measured travel-time or amplitude for N 

paths and x representing the slowness or attenuation operator. After discretizing the 

field, the line integral becomes a finite sum and the problem may be described by a set 

of linear equations 

I 

Yle - ~ .6.alei Xi 
i =1 

k = 1,2, ... ,N (2.5) 

where .6.alei is the length of the ray k which penetrates pixel t, and I IS the total 

number of pixels, and Xi is the property of pixel £ . 

In matrix notation, this is written as y = Ax, wher~ A is an N X I matrix with 

each ray a row of the matrix. Through the use of common inversion techniques, the 

equations may in principle be solved for x, but there are some distinguishing features 
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which set them apart from an ordinary set of linear equations: 

1) The matrix A, or 6. alei , is quite sparse. If the field is divided in to an n X n array 

of pixels then the maximum number of pixels sampled by each ray is 2n -1 and 

the maximum number of zero values for each row i is then n 2 - 2n + 1. For 

n = 30 the matrix is at least 93.44% sparse. 

2) A can be quite large, though not as large as those found in radiology. In practice 

the number of rays as well as the number of pixels could easily exceed 10,000. 

3) The equations can be in various degrees either over- or underdetermined for a 

given data set, because the number of pixels, i.e. the number of columns in matrix 

A, may be changed at will. 

4) In practice the equations are inevitably inconsistent. Even if the equations were 

well-determined and a unique solu tion did exist, it may be as inaccurate as any 

other "solution". This is due to noise corruption in the data resulting from meas-

urement inaccuracy, discretization of the problem and unknown effects of scatter-

ing, diffraction and incomplete data in the form of missing rays or limited angular 

coverage. 

These points eliminate from consideration most of .the classical methods of inver-

sion. Sparse matrices have been well-studied in linear algebra, and the techniques 

developed have been applied to tomography in ART. These techniques are iterative in 

nature, where one equation, i.e., one ray path, is analyzed at a time. The algorithms 

require an initial slowness solution x O usually found by specifying a reasonable model, 

or by performing a simple back-projection of the data: 

° 1 N Yle 
x· =-~-

I N Ie =l L Ie 
(2.6) 

where Lie is the length of the k Ih ray and N is the total number of rays. In subsequent 

iterations an estimate for Yleq is calculated along each ray path, 
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I 

fiT/ = L; 6. aki x/ (2.7) 
i=l 

where x q indicates the estimated slowness after the q th iteration. A single iteration 

includes an analysis of all sets of rays. Most algorithms are based on some minimization 

of the residual error 6.Yk , which is the difference between the observed data Yk and the 

calculated data Yk 

I 

6.yl = (Yk - Yk
q
) = L; 6. aki 6.xk~ 

i=l 
(2.8) 

where 6.xk~ are the set of corrections to the previous slowness values. The determina-

tion of these adjustments is the essence of ART a.lgorithms. The correction is then 

applied to each pixel through which the ray k passes, 

(2.9) 

Alternatively, the corrections may be applied after all N rays have been analyzed by 

averaging the corrections of each pixel 

(2.10) 

where 6.xiq is the total correction for pixel i and Mj is the number of rays passing 

through pixel i . This latter technique should diminish .the effects of noise. 

ART was initially used as a reconstruction algorithm in radiology by Gordon, 

Bender and Herman (1970) and was later found to be similar to algorithms already 

used in mathematics for solving systems of linear equations. In fact, ART algorithms 

were being used in radiology before mathematical foundations establishing their vali-

dity were produced and, even then, the assumptions were usually too strict to justify 

their use. Comparative studies by Herman and Rowland (1973), Herman et at. , (1973), 

Herman (1972) and Gilbert (1972) have shown ART algorithms to be quite effective in 

image reconstruction. Gordon et at. (1970) discovered their algorithm in an attempt to 
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use the projections themselves to solve equation (2.5) without following the transform 

methods already in use. To take advantage of the sparsity of the matrix and thephysi-

cal aspects of how it is formed by projections, they suggested an iterative process ini-

tiated by some density field. This field is modified in each iteration using information 

from one ray at a time. The discrepancy in the real projection data and the calculated 

projection data from the current image is then applied only to those pixels in the field 

which the ray k has sampled as shown by equation (2.9). Their initial algorithm simply 

weighted the residual t::..y,l by N1 ,the number of pixels ray k has sampled. 
kj 

In presenting the various algorithms, the mathematics and proofs will not be dis-

cussed in detail, but referenced. The reasons for this are two-fold; 1) The algorithms 

and the mathematics were derived over a decade ago and several papers have been 

written in various fields presenting the mathematics, and 2) perhaps more importantly, 

when implementing the algorithms, few of the assumptions necessary for mathematical 

convergence are usually valid, so the results of these derivations are not applicable to 

real data. This sobering po in t will be discussed in detail in the section on con vergence 

and reliability. Presen tly, four basic algorithms are reviewed. 

The first algorithm is thoroughly discussed in Herman et al. (1978), Herman 

et al. (1973) and Gaarder and Herman (1972). The algorithm is shown to converge to 

the minimum norm solution of the equations (2.5) and it is the solution with minimum 

variance. The convergence is strictly mathematical and may not be applicable to exper-

imental data with inevitable inconsistencies and noise. 

Algorithm 1. AR T 

f::J.yl 
x/ +1 = Xjq + ).." -[--- ~akj k = 1,2, ... ,N (2.11) 

~t::..akf 
i =1 

The rightmost term IS the correction term f::J.x,,~ of equation (2.9) which may be 
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thought of as the residual AYk being redistributed among the pixels with the lengths of 

the ray through each pixel acting as weights.· A relaxation parameter Ak is also 

included in this term. These are a sequence of numbers which act as a damping to 

allow one to control the rate of convergence (Herman et al. 1978). Usually a single 

value is used for all ray paths. In practical implementation of ART, relaxation parame-

ters become extremely important. The consequences of using the "wrong" relaxation 

parameter can lead to missing the "best" solution by overshooting (under damping) or 

by slow convergence (over damping) so that the solution is never reached. A slightly 

different algorithm using just the ray length in the denominator of the weights is 

shown by Herman et al. (1978) to converge similarly to ART, and it has been used in 

some studies, for example Boyd et al. (1974). 

Algorithm 2. AR T 1 

AYk
q 

Xi
q 

+1 = Xi
q + Ak --=j,...------ Aaki k = 1,2, ... ,N (2.12) 

E I Aaki 
i=1 

The denominator is now just the total length of the ray path, suggesting that shorter 

I rays hold greater weight. This makes physical sense for two reasons; 1) the shorter rays 

sample fewer pixels and therefore average fewer velocities, and 2) the AYkq will usually 

be larger for longer rays, but the correction term should not reflect this purely 

geometrical characteristic. In crosshole geological applications, the shorter rays will 

tend to be the the more horizon talon average, as are the geological features. This 

means greater weight will be given to the horizontal features of the velocity field. Of 

course, this is all dependent on the geometry of the experiment, which should be 

designed with these ideas in mind. The Aaki in the numerator gives more weight to 

the pixel through which the ray segment length is longest. Again, this is intuitively 

justified because the pixel which the ray samples with the longest path makes the 

greatest contribution to the total ray value and, therefore, that ray's value should be 
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weighted relatively more when redistributed to that pixel. Note that the relaxation 

parameter Ak is no longer dimensionless and in fact has dimension (lengtht1. The 

[ 

E I ~aki I 
i =1 choice of Ak - --:[:----- will give equivalent results to ART, but Boyd et al. 

E ~aki 2 
i=1 

give it the more practical value of w -1, where w is the width of a pixel. They observe 

some improvement in the reconstructions with this value. 

Shepp and Logan (1974) and Dines and Lytle (1979) slightly alter the algorithm to 

distribute the correction evenly among the pixels sampled using only the ray length as 

a weight. 

Algorithm 2a. ART 2 

AYk
q 

X/ +1 = xl + Ak --=[---- k = 1,2, ... ,N (2.13) 

E I ~aki 
i=1 

This is just a simple back-projection; the same value is added to each pixel regardless 

of the length of ray segment which intersects the pixel. The advantage of ART2 is that 

the segment lengths ~aki can be ignored, only the ray length and those cells through 

which the ray passes are needed. This reduces the amount of computer storage space 

necessary for the computations. The payment for this is the lack of weighting due to 

greater sampling lengths of pixels, which can produce slightly poorer reconstructions 

than ART1, but still better than ART in most cases. In this algorithm, Ak are again 

dimensionless. 

The problem may be approached in terms of entropy optimization (Censor, 1983).· 

This refers to the mathematical problem of maximizing the functional 

m 

f (x) = - E Xj In Xj 
j=1 

(2.14) 

over varIOUS sets of constraints. In the present case the constraints would be the 
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collected data in the form of equation (2.1) and the a pr£or£ information that slowness 

is positive, Xi > o. Theoretically, entropy optimization techniques should give better 

results in situations of information deficiency such as incomplete angular coverage 

which is common in geophysical applications. As seen from Algorithm 3 below, the 

corrections are multiplied by, rather than added to, the previous slowness field, giving 

rise to the term Multiplicative Algebraic Reconstruction Technique (MART). A form 

of this was originally developed by Gordon et al. , (1970). 

Algor£thm 3. MAR T 

(2.15) 

Here the At are relaxation parameters such that 0< At < 1. Note that they are no 

longer dimensionless and again have the dimension (lengtht1 which becomes very 

important when determining their values. To be mathematically complete, the slowness 

field xO must be initialized as e -1 where e is the base of the natural logarithms. The 

behavior of this algorithm in practical situations with the presence of noise is unknown. 

As an alternative to the ART algorithms, Gilbert (1972) proposed a Simultaneous 

Iterative Reconstruction Technique (SIRT) which he claimed gave a smoother image 

than the somewhat "peppered" reconstructions given by ART. The name is derived 

from the idea of performing the iterative adjustments based on data from all rays 

simultaneously. This differs from ART which uses information obtained one ray at a 

time, but is similar to applying the averaged sum of the corrections (equation 2.10). As 

with equation (2.10) an advantage of SIRT is that it is less susceptible to noise in the 

data. The mathematical properties of SIRT reconstructions were demonstrated by 

Lakshminarayanan and Lent (1975). They show that SIRT may be considered an 

attempt to obtain a least squares reconstruction by identifying it with the Richardson 

least squares algorithm. 
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(2.16) 

where the subscript h denotes those rays k which pass through pixel i. Ylci is the 

observed data, Llc is the length of ray k, Rlci is defined as the sum of the values in 

each pixel that ray k samples and NIc is the number of pixels that ray k samples. 

A computational advantage to SIRT is that the segments t!.alci need not be calcu-

lated, saving a large amount of storage space and computation time. The price is that 

these segments usually act as weights and improve reconstructions for seismological 

data where the ray lengths are variable. To make use of these segments, SIRT may be 

modified rather heavily to obtain 

Algorithm 4a. SIRT (modified) 

(2.17) 

This turns out to be very similar to ART2 using the average corrections by equation 

(2.10) and in practice the results are indeed similar. This modification has no real 

mathematical basis and the results of Lakshminarayanan and Lent as well as those 

found by Gilbert are probably not applicable to this algorithm. 

Algorithm Modifications' 

An advan tage of ART algorithms is that the basic algorithms, as described in the 

previous section, can be easily modified. These modifications are usually in the form of 

weights and can be applied to individual or groups of rays and pixels. The purpose of 
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these "tricks", as they are sometimes called in the medical literature, is to provide a 

means of de-emphasizing certain less reliable rays, or for constraining certain pixels to 

reasonable values. This is important in seismological applications where some travel 

times are more reliable than others and velocity bounds for the medium can be deter-

mined. 

A. Smootht"ng junctt"on 

In the presence of noise or with a highly oscillatory solu tion a smoothing function 

may be incorporated in the algorithm to inhibit "peppered" reconstructions. A window 

which averages the slownesses of the nine adjacent pixels into the central pixel in some 

manner will greatly improve reconstructions. This can be done by performing the fol-

lowing operation between each iteration: 

i +1 i +1 
E E W.~I xk1 +1 

x.1I. + 1 = _k_=_,_· -_I_I_=--"-i_-_l ___ _ 
'J 9 (2.18) 

where Xi~ +1 is the slowness value in the i Ih row and j Ih column of the slowness grid 

for the q +1 iteration. The nine specified weights, Wkl , are usually determined by the 

relative positions to the central pixel, xii. For example, the central pixel will be given 

the greatest weight while the corner pixels receive the least. The improved reconstruc-

tion produced by smoothing will be at the expense of resolution, but in many cases this 

sacrifice is reasonable, if not necessary. 

B. Veloct"ty constraints 

Another modification used to improve reconstructions constrains the solution to 

reasonable values or to known velocity limits. In radiology it is common to set any 

negative densities to zero. In seismology this is analogous to constraining the slownesses 

to values reasonable for the region of study. Greater constraints may be applied in 
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regions of poor ray coverage or a general constraint model may be applied to the entire 

field. The constraints are applied after every iteration using the following algorithm: 

{ 

U·· if x·· > U·· J) I) J) 

For all xii: xii = Vii if xii < Vii 

xii otherwise 

{2.19} 

where Uii and Vii are respectively the upper and lower velocity limits for pixel £j. 

Care must be faken since over-zealous constraints will tend to render the reconstructed 

values useless. 

C. We£ght£ng 

The algorithms are modified by weighting primarily for two reasons; certain travel 

times are less reliable than others, and the variable path lengths should be taken in to 

account. Weights are incorporated into the algorithm by forming a matrix W of 

weights corresponding to each element of matrix A. These weights are applied as each 

correction..6.xk~ is calcu lated 

{2.20} 

Now each ray k may be weigh ted for travel time reliability by assigning to each W ki a 

value between 0 and 1. Another weighting scheme, based on the ray length, weights 

according to the ratio of the length of ray i path k through pixel £ to the total path 

length 

..6. aki 
Wki - --=[---

~ ..6.aki 
i =1 

{2.21} 

The purpose of these weights is to give the longer ray paths lower weights while giving 

those pixels with longer ray segments grea~er weights. This can help to reduce the 

problem of "smearing" which will be discussed is the next chapter. Virtually any other 

weighting scheme may be used, but this study uses only equation {2.21}. 
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D. Curved raypaths 

The presence of an inhomogeneous velocity field leads to ray paths which violate 

the assumption of straight rays. Depending on the velocity distribution, the Fermat 

path will be curved to a certain degree. The flexibility of the ART algorithms allows 

these curved paths to be easily incorporated through ray tracing (with a substantial 

increase in CPU time). The ray segments ~aki are simply a digitization of the ray 

path. Therefore the ray may be traced through any given velocity model and the 

resulting curved ray path discretized into the ~aki' These ray segments can then be 

used in the algorithms. A detailed description of this process will be given in the fol­

lowing chapter. 

Convergence and Reliability 

The ART algorithms are iterative, so some criteria must be specified to stop the 

process. An added difficulty is introduced because the solution is non-unique, especially 

in the presence of noise, so that the convergence may not be to the actual slowness dis­

tribution. In fact, it has been found that the solution initially converges toward a plau­

sible slowness model then diverges from this model after some number of iterations 

(Herman et al., 1973). This presents a problem in determining the reliability of the 

solution at any given time, which in tt\rn makes the determination of a relaxation 

parameter and estimating the optimal number of iterations very difficult. Optimizing 

these values will improve computation time, and more importantly, will ~elp ensure the 

calculation of the solution closest to the actual slowness field. The question is then; 

How can the reliability of the solution be evaluated and by what criteria is the best 

solution determined? To answer this question some mathematical measures and visual 

inspection criteria are presen ted in this section. These measures are used with syn thetic 

data in the next chapter to determine their behavior and usefulness with real data. 

Most experiments presented in the medical literature are performed on test data so 
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that problems with convergence and reliability have been discussed at length for solu-

tions with known images. With an unknown image the analysis becomes much more 

difficult and no rigid criteria has been developed to test the solution of real data. 

The most commonly used mathematical measures used to measure reliability and 

resolution, and to determine stopping criteria (Gordon, Bender and Herman, 1970) are 

the distance between the measured and calculated projection values (RMS residual) 

the variance 

1 I . 2 
V q = - E (x/ - x) 

Ii =1 

where x is the mean slowness of the field, and the entropy 

(2.22) 

(2.23) 

(2.24) 

If equations (2.5) are complete and consistent, r q will tend to zero while V q will tend 

to decrease and S q to increase with increasing q . The purpose of minimizing variance 

(or maximizing entropy) is to find the "smoothest"possible image, i.e. the one closest 

to the mean, while still satisfying the data. In real applications the starting model is 

often excessively smooth, so that the variance will actually increase (and entropy 

decrease) to satisfy the data. r q , V q and sq measure convergence to a solution, but 

not closeness of the solution to the actual slowness distribution. In fact, these measures 

may continue to "converge" while the solution may be diverging unacceptably from the 

. actual distribution. For synthetic experiments in which the true slowness field is 

known, the closeness of the solution to the actual field may be measured. This "dis-

tance" between the original slownesses and the reconstructed slownesses is 

(2.25) 
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where x Oi is the original slowness model and V q is the variance for the q th iteration 

(Lakshminarayanan and Lent, 1979). The distance is used in the synthetic studies to 

determine the accuracy of the algorithms and to study the behavior of other measures 

as the solution converges to the original model. It is hoped that some consistent 

behavior is exhibited by the other measures so they can be useful in analysis of real 

data. 

To study the characteristics and reliability of the measures themselves, the dis-

tance given by equation (2.25) must be assumed an accurate measure of the goodness 

of fit to the solution. This allows, using synthetic data, th~ study of the behavior of the 

different measures in the vicinity of the solution closest to the actual model using syn-

thetic data. If consistent patterns of the measures are seen in the vicinity of the 

optimal solution, these measures may be used with real data, with the optimal image 

selected as that in which some measure shows similar patterns as it dld with the syn-

thetic data. For example, after looking at many examples, Herman et ai. (1973) 

adopted the following methodology using variance. An estimation of the optim urn 

number of iterations is the smallest number q such that 

I vq +1 - V q I < _1_ V q 

100 
(2.26) 

That is, the process is stopped at that iteration when the change in varIance is less 

than 1% of the variance. While this method may be consistent in radiology, it is found 

in this study the optimum percent value of variance is not constant, depending on 

relaxation, geometry, number of rays and size of pixels, making a standard value 

difficult to obtain. However, the idea remains helpful in determining the optimum 

number of iterations. 

Along with the above mathematical measures, the solution may be inspected visu-

ally for some obvious inconsistencies which may not be readily determined mathemati-

cally. For example, real data will form solutions with a decreasing RMS residual while 
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the image can be visibly oscillating. This signifies a need for a smaller relaxation value; 

more damping. For real data visual inspection is a subjective measure of reliability; one 

assumes he has a good idea of what the image should look like and judges the solutions 

accordingly. A visual evaluation of a solu tion begins with a check for large oscillations 

of velocity in adjacent pixels. This oscillation is caused by overshooting the solution, 

particularly for poorly determined problems, and it may be controlled by decreasing 

the relaxation parameter or the number of iterations. Two-dimensional spatial Fourier 

transforms are used to help measure the nature of the oscillation in the image. The 

velocity variations are expected to be relatively long wavelength, occurring over several 

pixels, while the variations due to improper parameters occur at wavelengths of only 

one or two pixels. Therefore, in wavenumber space (reciprocal wavelength) the 

unwanted oscillations appear as large amplitudes at values of c-I, where C is the pixel 

width. These will be at the high wavenumber end of the spectrum while the physical 

velocity variation will more likely be at the low or intermediate wavenumber. By per- . 

forming a Fourier transform the relative amplitude values may be measured and those 

solutions with a smoother transform, i.e. lower values at high wavenumbers, will gen­

erally be the most reliable. 

After a reconstructed velocity distribu tion is chosen, it can then be inspected for 

significant deviations from plausible models, both in location of the anomalous zones 

and the actual velocity values in the field. Of course the actual velocity distribution is 

unknown, but a systematic procedure may be followed to ensure that a feature of the 

reconstructed distribution is real (Gordon, 1974). The method essentially measures the 

sensitivity of the solution to the starting model Xi 0 by running the program with 

different starting models. There may be some features which are consistent among the 

final solutions, others appear only for a few starting models, and thu~are suspect. 

Another procedure consists of changing the values of anomalous zones in a solution and 

then using this model as the initial slowness field in a new iteration. If the zone does 

I 
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not appear III the new reconstruction its significance is questionable. If it does remain, 

some confidence is gained in its reality, since its presence apparently is required by the 

data. 

. . 
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SOURCES RECEIVERS 

Figure 2.1. The raypaths for a typical crosshole experiment. 
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CHAPTER 3 

Application to Synthetic Models 

Introduction 

The ART algorithms are applied to several velocity models of varying complexity 

to determine the reliability and behavior of the algorithms. Such studies should be 

done in practice to determine the source-receiver configuration needed in an experi­

ment. A modeling study may be performed with existing data to determine resolution 

and the types of anomalies that can be seen (Ivansson, 1985). Valuable insight can be 

gained by studying reconstructions over a suite of parameter values and pixel sizes on 

various velocity models. None of this can be determined mathematically because of the 

number of parameters involved and more importantly because of the lack of a firm 

mathematical base in the presence of noise and other irregularities. Resolution 

matrices can be calculated (Menke, 1984 and Chapter 6, this thesis), but they only 

show expected resolution for specific geometries and not how well the ART methods 

reconstruct an area. 

This chapter makes use of a simple velocity model to study the general reliability 

and behavior of ART with travel time data. Several factors are analyzed individually. 

The velocity .model is initially reconstructed using each one of the algorithms to give 

an idea how they perform. A representative algorithm will then be chosen for the fol­

lowing analyses: 
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1) The relaxation parameter is varied to determine the effect of damping on the con­

vergence rate and the distance b (as defined in equation (2.25)). 

2) Some criteria must be developed to determine when to stop the algorithm if ART 

is to be effective in reconstructing real data. Syn the tic data enables b to be calcu­

lated and behavior of visual and statistical measures around the minimum b can 

be noted and quantified. 

3) One of the common problems with ART methods is the "peppered" reconstruc­

tions often produced. These are results with high velocity oscillations between 

adjacent pixels. The most effective technique available to eliminate peppering is 

the application of the smoothing function of equation (2.18) to invert the travel 

time data. 

4) A common criticism of tomographic inversions is that an assumption of straight 

ray paths ~ usually made in practical applications. Mathematically, straigh trays 

are not necessary in ART, the integral in equation (2.1) is over any curve R k , 

but are used because of practical convenience. Curved ray paths are incorporated 

into the algorithm and used in the inversion of the velocity model. 

5) It is desired that the pixel size used in the inversion be small so that small velo­

city features can be recovered. However, if pixels are too small the results 

deteriorate; a trade-off exists. A sequence of inversions are performed on a suite 

of 11 differen t pixel sizes using the same travel times. The optimal pixel size can 

then be deduced from these results. 

6) Even the best data will have some noise due to measurement errors, diffractions 

and scattering. Therefore, random Gaussian noise is added· to the travel time 

data to study its effect on the reconstructions. 

7) At times the range of projection angles available in a survey will be limited. This 

is true for surface data where noise and the near-surface weathered layer greatly 
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effects the quality of the signals. An example IS given to show how this can 

change the results. 

8) Finally, a slightly more complex model will be reconstructed. 

Comparisons between reconstructions are made throughout this chapter. Factors com­

pared are the distance, 8, to the original model, visual observations of the smoothness 

of the result and how well it represen ts the model. 

Another goal of this chapter is to present a graphic catalog of problems that are 

encountered with ART inversions and the effect of variations in the algorithms on the 

reconstruction. Such a catalog is helpful when problems arise in processing real data. 

In fact, a separate study should be done before any experiment to anticipate problems 

and suggest solutions. 

Generating the Data 

In radiology model studies, a "true" projection is defined as the actual value for 

the projection along a certain ray. A "pseudo" projection is the approximate value cal­

culated by the summation of the pixel densities along each ray (Herman et al., 1973). 

The two projections are in general different. Early studies calculated true projection 

data in units of density by integrating along a ray path through some test pattern 

usually in the form of a photograph (Gordon et al., 1970; Gilbert (1972); Herman 

(1972); Herman and Rowland (1973)). Initially this integration was carried out over the 

same grid used for the inversion, yielding the pseudo projections. Gilbert (1972) 

showed the error in this procedure by integrating analytically along the ray path and 

finding poor quality reconstructions. Integrating analytically along each ray path limits 

the suitable test patterns studied and takes unreasonable time, so most most studies 

simply sum along a much finer pixel grid than that reconstructed (Herman and Row­

land, 1973). 
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A similar situation occurs in seismology where the curved ray paths and scatter­

ing of acoustic waves makes the forward calculation more critical. Most studies have 

used straight rays for both the generation of the synthetic data and the inversion 

(McMechan, 1983) giving far better reconstructions than can be expected in real situa­

tions. Tracing rays through a test model to obtain travel times, while not totally real­

istic, gives errors similar to the noise in real data. A program capable of ray tracing 

through any reasonable two-dimensional velocity model is used for data generation in 

this thesis. Using horizontal layers and velocity gradients between vertical interfaces, 

the program can provide travel times for direct, reflected and refracted rays. A shoot­

ing method is used to find the correct ray path. The required takeoff angle is calcu­

lated based on the difference between the receiver coordinates and the previous ray 

end point. The method uses a fair amount of computation time and, due to shadow 

zones, some rays cannot "hit" the receiver within the error value allotted for conver­

gence. 

The rays can be determined for most reasonable velocity models and source­

receiver configurations. At least three parameters must be evaluated; the type of data 

being considered, the geometry of the model, including the source-receiver locations 

and th'e velocity heterogeneity. The types of data usual in tomographic reconstructions 

with seismic waves are' cross-borehole, borehole-mine, surface wave, reflection profiles, 

refraction surveys or earthquake data at any scale. This chapter tests only borehole­

to-borehole or borehole-to-surface-to-borehole data. The geometry of the borehole data 

will be a rectangular area varying with borehole spacing and depth. Sources will be 

down one borehole and receivers down another, with an option for a surface array. 

The test velocities are homogeneous fields, simple gradients with few layers, and single 

low- or high-velocity anomalies. More realistic models are studied in the next chapter. 

The goal here is a basic understanding of the algorithms and their behavior, which is 

seen more clearly with simple models. 
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Results 

Velocity model A consists of a simple rectangular low velocity zone (5.5 km/s) in 

a constant velocity (6.0 km/s) field (Figure 3.1). Stations are located 0.5 units apart 

down the 100unit boreholes and 0.5 units apart for the surface array, a total of 1081 

rays. The algorithms studied will be: 

ART - Algorithm 1, equation (2.11) 

ARTI - Algorithm 2, equation (2.12) 

ART2 - Algorithm 2a, equ~tion (2.13) 

MART - Algorithm 3, equation (2.15) 

WART - weighting scheme, equation (2.21), applied to ART 

SIRT - Algorithm 4a, equation (2.17) 

For each of these algorithms the image was corrected after each ray was analyzed. 

Equation (2.10) was used to correct the image after each iteration (signified by an 

"A", e.g. ARTA). The same starting model used to initiate the algorithms, calculated 

by a simple back-projection (equation 2.6), is the same throughout the chapter. Also, a 

35x35 pixel grid and straight ray paths are used except where specified. 

A. Algorithm performance 

The performance of each algorithm can be best determined by a visual com­

parison of the velocity model and the reconstruction. The mathematical distance 

between the two given by equation (2.25) is less important. All algorithms take about 

200 seconds of CPU time on the VAX 11/780, VMS, for 30 iterations, so none have a 

computation time advantage. Figure 3.1 shows velocity model A and the shading 

scheme which will be used in all the figures. The convergence rate was altered by 

damping each algorithm so that the solution closest to the model was achieved after 

14 to 22 iterations. This eliminates the effect of convergence rate on the final solution. 

.. 



28 

The best reconstruction of the velocity model for each algorithm are shown in ' 

Figure 3.2. The similarity between results is immediately apparent. The low velocity 

zone is adequately recovered in each case, but with smearing extending from the 

corners of the low-velocity rectangle. This common "smearing" is due to incomplete or 

limited projection angles and the use of straight rays in the inversion. Smearing is 

prevented toward the surface due to the presence of the surface array creating a more 

complete set of rays than found at the bottom of the field. The WART weighting 

scheme (Figure 3.2) does not eliminate this smearing. Figure 3.3 displays the results of 

using averaged corrections applied after each iteration (equation 2.10). SIRT is 

included with these algorithms since it uses all rays simultaneously. Except for SIRT, 

the reconstructions, as expected, are noticeably smoother than in Figure 3.2. This 

result suggests that it is better to use ART with correction procedures than the SIRT 

.algorithm. Although the reconstructions are smoother, improvement over Figure 3.2 is 

minimal and the smearing persists. 

The algorithms are also compared mathematically. Figure 3.4 shows the conver­

gence of each algorithm by plotting the distance found by equation (2.25) versus the 

number of iterations. The iteration at which the smallest distance occurs was used for 

Figures 3.2 and 3.3. Again, the similarity between algorithms is apparent. The dis­

tance initially drops quickly then levels off until tlie minimum at about 16 iterations 

where it begins a slow increase. The value of the minimum point is shown in Table 1. 

This value is dependent on the relaxation parameter as shown in the next section. The 

oscillations shown by the -A algorithms (Figure 3.4B) occurs because such low damp­

ing (high )..) is needed for a minimum distance to occur before 30 iterations. 

From such a simple velocity model only a general comparison between algorithms 

can be made. Visually, the algorithms using averaged corrections give slightly 

smoother reconstructions, while ART2 and ART2A give the closest mathematical dis­

tance to the original model. Based on these findings and numerical studies using other 
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B. Relaxat£on parameter 
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The relaxation parameter, A, is used to damp the convergence rate of the algo­

rithms. A greater A corresponds to lesser damping. Table 1 shows the wide range of 

values necessary for the algorithms to converge at the same rate. The effect of the 

relaxation parameter on convergence rate for ART2 is illustrated in Figure 3.5. The 

number of iterations to the "best" picture, defined as that reconstruction correspond­

ing to the smallest 8, increases with decreasing relaxation. This suggests that the tar­

get relaxation parameter is that one which gives the best reconstruction after a few 

iterations. This is not always true in practice, for several reasons. First, one usually 

wishes to see the reconstruction developing when the distance cannot be measured to 

get a better feel for the optimal result. Also, damping that gives the "best" recon­

struction after 10 iterations will give a better solution than that damping which gives 

the best reconstruction after only two or three iterations (Figure 3.5B). This is 

expected, increased damping by lower relaxation values will change the solution less 

for each iteration and the solution will converge slower with less chance of overshoot­

ing the best solution. Figure 3.6 shows this more clearly. For increased damping, the 

curves reach a lower minimum and also become smoother. The lower damping causes 

oscillations in the curve and shows no true minimum. 

c. Stopping criterion 

Figure 3.6 also illustrates an important convergence characteristic of ART. Note 

that for each relaxation value, 8 begins to increase after passing through a minimum, 

i.e. the solution will ultimately diverge from the original model as the number of itera­

tions continues to increase. One reason for this is that the distance is measured to 

velocity model A, but because the inversion uses straight rays the algorithm will try to 

fit the data, produced using traced rays, to an unknown model. The point is that 
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criteria must be developed to determine when to stop the algorithm when real data 

are being used. Several such criteria are developed in this section through the use of 

modeling. 

The quality of a solution is usually indicated by the extent of oscillation in the 

velocities. High oscillations indicate that the damping is too low or the algorithm was 

not stopped soon enough. A visual assessment of the reconstructions is the simplest 

means of determining the extent of the oscillation. This is not very quantitative, but is 

the quickest means of approximating the iteration at which the algorithm should have 

been terminated. 

Another general rule for stopping the algorithm makes use of the RMS residual 

{equation (2.22)). This value is a measure of the accuracy at which the reconstructed 

velocity distribution fits the travel time data. Therefore, if the value is below the accu­

racy of the travel time measurements the algorithms should be stopped. For example, 

if the travel times are measured to 0.01 second the algorithm is stopped when the 

RMS residual drops below this value. If the algorithm is continued it will be trying to 

find a solution that fits the noise, producing unreliable results. 

A stopping procedure similar to that found by Herman et al. (1973) which was 

discussed in Chapter 2 provides a more quantitative method of stopping the algorithm 

(equation (2.26)). Their stopping criteria of 1% of the variance is not useful, because it 

is variable, dependent on relaxation parameter, geometry, number of rays and size of 

pixels. However, the basic idea remains helpful. Figures 3.7, 3.8 and 3.9 show the 

behavior of the variance (equation (2.23)), entropy (equation (2.24)) and RMS residual 

(equation (2.22)), respectively, versus iteration using the same data and parameters as 

Figure 3.4. The arrow indicates the point where 8 from Figure 3.4 reaches a minimum. 

These curves are characterized by large initial increases or decreases in values and a 

gentle bend developing after a few iterations reducing the slope just before the arrow. 

This graphically illustrates the Herman et al. stopping criterion where they assume 
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the arrow will occur at the same slope for every inversion. Inversion of several velocity 

models shows this not to be the case. However, the optimal iteration always occurs 

after a similar bend in the curves. Thus, a simple plot of these values can give a good 

approximation of the optimal iteration. The exact value for this iteration is not neces­

sary as shown by Figure 3.10. 

D. Smoothing 

One of the problems inherent in the ART methods is oscillation of the velocities 

between adjacen t pixels, causing peppered reconstructions. Smoothing algorithms may . 

be incorporated into ART to eliminate some of this oscillation. Smoothing would also 

help eliminate the "legs" of the low velocity zone or in general, any scattered low or 

high velocity pixels that are not real. A consequence of smoothing is that the resolu­

tion of smaller features is reduced. 

The smoothing algorithm given by (equation (2.18)) was performed on Model A 

after every iteration of ART2. There is obvious visual improvement over the 

unsmoothed reconstruction (Figure 3.11). The distance, 6 is also reduced (Figure 3.12). 

The objective of the smoothing function is realized; the oscillatory behavior in the 

reconstructed velocity distribution is effectively removed. However, a more complex 

model must be used to determine the resolvability of smaller features when smoothing 

is applied. 

E. Ray tracing 

Curved ray paths are incorporated into the algorithm by tracing the rays 

through the velocity reconstruction at every iteration to get the true pixel sublengths 

tJ.aki. There are several reasons why this has not been done. First, it would take a 

prohibitive amount of computing time to set up a velocity model and trace through it 

after every iteration. Another reason is that an anomalous pixel can severely distort a 

ray, so that ray tracing would have to be performed on a smoothed version of the 
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solution. Also, nOise will produce anomalous pixels and ultimately the curved ray 

paths can become more erroneous than straight rays. Careful thought must be given 

to the question of how accurately the ray tracing finds the actual path and the travel 

time. The most practical way of incorporating ray tracing into the algorithms is to 

trace the rays through some general velocity model, and then use these calculated sub­

lengths in the inversion. The general velocity model may be determined by a straight 

ray inversion, or by a priori information on the area, or by a combination of them. 

The model may be updated and traced again after the inversion is completed. 

The ray traced sublengths ~aki are calculated for velocity model A and then used 

with ART2 to obtain Figure 3.13. The comparison with the unraytraced result (Figure 

3.11B) shows no visual improvement. Smearing may be slightly reduced, but velocity 

oscillations increase. A subtle, yet important difference is that the velocities of the 

anomalous zone in the ray traced reconstruction are closer to the original model than 

the unraytraced velocities. This is reflected in the f> values given in Figure 3.14. Figure 

3.1~ also includes the results of the smoothing algorithm applied with the ray traced 

program. The results are visually impressive and the velocity values are almost identi­

cal to the original model. Again, this is reflected in f> (Figure 3.14). The price of the 

ray traced inversion is a 100fold increase in CPU time. 

F. Pixel size 

The size of the pixels used in the inversion effectively determines the limiting size 

of the velocity feature which can be recovered. A trade-off results because the solution 

becomes unstable with decreasing pixel size. Therefore, the optimal pixel size is small 

enough to recover the desired velocity features without resulting in peppered recon­

structions. Of course the design of the experiment plays a large role in the trade-off; 

the pixel size may be reduced with a greater number of rays. The optimal pixel size for 

model A is determined by running ART2 on the velocity model for an increasing 
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number of pixels beginning with a lOxl0 array. Straight ray paths are used. 

The reconstructions for the series from a 10xl0 array to a 60x60 array are shown 

In Figures 3.15. Good reconstructions are obtained throughout the sequence, though 

some deterioration results after the 45x45 array. The reconstructions become rather 

peppered for pixel arrays greater than this. Therefore, the inversion is performed with 

smoothing on the 60x60 array (Figure 3.16). The reconstruction is visually better than 

the 35x35 array (Figure 3.15) used throughout this chapter showing that the pixel size 

may be reduced through the use of the smoothing function. These results indicate that 

a 2 to 1 ratio of station spacing to pixel size is possible without smoothing and a 3 to 

1 ratio is possible with smoothing. These ratios are higher than expected, but a more 

complex velocity model must be studied to determine if these ratios can be achieved 

with real data. 

G. Noise 

Synthetic data does not contain the nOise inherent in real data which should 

affect the results of an inversion. Noise can be modeled by random Gaussian additions 

to the travel times. In this section variable amoun ts of random Gaussian noise are 

added to the model A travel times which are then inverted using ART2 and straight 

rays. 

Initially, Gaussian noise with a mean of 0.0 seconds and a standard deviation of 

5% of the total travel time was added to the travel times (Figure 3.17). Deterioration 

of the reconstructions results in the form of increased velocity oscillations and 

increased smearing. The oscillations are of high amplitude, 0.25 to 0.50 km/s between 

adjacent pixels, and are scattered randomly about the image. Smearing becomes more 

dominant in the presence of noise. The effect is to decrease the size of the low velocity 

zone by smearing it toward the lower corners. When 10% Gaussian noise is added 

(Figure 3.1 i) the oscillations and smearing increase. The smoothing algorithm was 
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applied to ART2 to diminish these effects of noise on the reconstructions (Figure 3.18). 

Smoothing has the anticipated effect of eliminating virtually all of the scattered oscil­

lations produced by the 5% noise and most of those produced by the 10% noise. 

Smearing has not been eliminated, but its extension had been limited. However, the 

effect of low velocity "leaking" into the legs is more dramatic with the oscillations 

removed. 

H. Limited coverage 

ART2 has been applied to a simple velocity model with good station coverage. In 

real situations the am bien t seismic noise and the presence of a weathered layer will 

reduce the quality of surface data. This will cause a reduction in the effective distance 

between source and receiver at which onset times can be read accurately. To model 

this, the surface array of model A is eliminated and the effect on the reconstructions 

studied. This reduces the number of travel times to 400. The angular coverage is also 

diminished which effectively reduces horizontal resolution (Menke, 1984), i.e. horizontal 

extension of the low velocity zone should result. 

The result does show extension of the low velocity zone toward the boreholes 

(Figure 3.19). The reconstructions also suffer from oscillating velocities in this area and 

higher velocity values in the low velocity rectangle. It is possible that this behavior is 

partially due to the number of pixels being too large for the reduced number of rays. 

Therefore, the grid is reduced to a 20x20 array. This has the obvious effect of smooth­

ing the oscillations, bu t generally gives poor reconstructions. The oscillations can be 

removed more effectively by smoothing on a 45x45 pixel array. The smearing and hor­

izon tal extension of the low velocity rectangle remain unaffected by this smoothing. 

I. Velocity Model B 

Velocity model A provides a simplistic velocity distribution convenient for study­

lIlg the behavior of ART2. The next chapter provides results for a more complex 
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model. In this section velocity model B (Figure 3.20) is constructed to give an indica­

tion of how ART2 will perform with a more complicated structure. Model B consists of 

a linear velocity gradient from 5.5 km/s to 6.5 km/s with an anomalous rectangular 

low velocity zone (5.5 km/s) similar to that of model A (Figure 3.20). Stations are 

located 0.5 units apart down the 20-unit boreholes spaced 10 units apart, and 0.5 units· 

apart for the surface array, giving a total of 3003 rays. The 2:1 ratio of well depth to 

distance between wells increases the angular coverage of model A. ART2 is used to 

reconstruct the model B velocities using straight rays on a 30x60 pixel grid. 

A visual assessment of the resulting inversion (Figure 3.20) shows that model B is 

reconstructed quite well; the horizontal layering is clear and the bounds of the low 

velocity rectangle are accurate. Smearing toward the bottom of the velocity field pro­

vides the biggest source of error. This simple test indicates that more complex struc­

tures may be adequately reconstructed with smearing providing some problems. 

Discussion and Summary 

The reconstruction of a simple velocity model was analyzed USlllg ART algo­

rithms. The simple model was used so that the general behavior of the algorithms 

could be studied. A result of such a simplistic model is that all algorithms reconstruct 

the velocity model quite well, making comparisons between them difficult, while mak­

ing the study of weighting, smoothing, pixel size, noise and stopping criteria much 

easier. Outstanding features of the reconstructions include the accuracy of the bounds 

of the low velocity zone, the overall velocity values, velocity oscillations and the effects 

of smearing. 

The biggest problem with ART algorithms is that it is difficult to determine 

when to stop the iterative procedure. It is found that the procedure initially converges 

to the original model, but ultimately it will drift from it. It is not critical to obtain 

exactly the optimal iteration, but the general point where this drifting begins must be 
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found for reliable reconstructions. Several criteria were developed in this chapter and 

it seems all of them should be used in the analysis of real data to find a reasonably 

accurate optimum iteration. 

Problems with real data can emerge from noise or from limited station coverage. 

The effects of limited station coverage depend on the extent· of this limitation; a few 

missing source-receiver pairs will have virtually no effect on the reconstruction. A sur­

face array will usually provide the least precise travel time data, and in noisy environ­

ments data acquisition will not even be attempted at the surface. This decreases the 

horizontal resolution for the reconstruction of velocity model A. Smearing and oscillat­

ing velocities dominate the area between the low velocity zone and boreholes. This is 

an important result because angular coverage is commonly limited even in boreholes 

due to the longer paths traveled by the steep-angled rays. Noise was also modeled 

using random Gaussian additions to the travel times. The result was an increase in the 

oscillations and smearing effects. The basic velocity model may be retrieved from the 

reconstructions, but it is evident from this study that more complex velocity distribu­

tions can not be recovered reliably in the presence of even 5% random Gaussian nOIse 

unless a smoothing function is employed. 

The effects of smearing and velocity oscillations may be reduced by smoothing 

the reconstructions between each iteration. This will also tend to increase the overall 

quality of the picture. Smoothing is also helpful, if not necessary, in the presence of 

noise or limited station coverage. Using the true curved ray path also reduces the 

smearing, but perhaps not enough to justify the lO-fold increase in CPU time. Further 

studies with more complex velocity distributions are necessary to determine how 

smoothing affects smaller velocity features and whether ray tracing can produce greater 

improvement in the reconstructions in the presence of larger velocity contrasts. 

Finally, the study showed that smaller pixels may be used if the smoothing algo­

rithm is incorporated. Smaller pixel sizes mean that smaller velocity features may be 
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recovered, because each pixel assumes a constant velocity area. In real situations the 

pixel size should be as small as possible without resulting in unstable solutions. 

In general, the results from the study are encouraging. Model A was reliably 

reconstructed using ART algorithms and the results of model B indicate that recon­

structions of more complex velocity distributions will have similar success. The pres­

ence of noise and limited station coverage diminished the accuracy of the results, but 

these obstacles were overcome through the use of the smoothing function. The results 

of this chapter lead to a continuation of the study using a more complex velocity 

model, in the following sections. 
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Algorithm Iter Minimum 
to Min Distance (k~/s) 

ART 0.14 14 0.7419217 

ART1 0.50 14 0.7418688 

ART2 0.10 14 0.7283480 

WART 4.50 16 0.7352613 

lvIART 0.50 14 0.7369022 

ARTA 2.20 23 0.7408047 

ART1A 8.50 23 0.7409949 

ART2A 2.00 20 0.7278879 

WARTA 58.00 23 0.7454458 

MARTA 8.00 23 0.7367257 

SIRT 0.60 12 0.7427554 

Table 3.1. The relaxation parameters, A, required to produce minimum distance, 8, 
at 12 to 22 iterations. The number of iterations to the minimum and the value of 
that minimum are also given. 



MODEL A 

5.92 -

5.83 - 5.92 

5.75 - 5.83 

5.67 - 5.75 

5.58 - 5.67 

- 5.58 

Figure 3.1. Velocity model A and the shading scheme used in the following plots; 
velocities are in units of kilometers per second. 
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ART ARTl 

ART2 WART 
Figure 3.2. The best reconstructions of the velocity model for each algorithm. 
Refer to Chapter 2 for a discussion of the algorithms. The inversion was per­
formed using straight. rays and a damping parameter that gave the minimulIl dis­
tanee b to model A at about iteration 11. The algorithms tend to produce similar 
results. 
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MART 

Figure 3.2 (continued). 
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ARTA ARTIA 

ART2A WARTA 

Figure 3.3. Same as Figure 3.2, but for the "-A" algorithms. Smoother reCOIl­
structions result from these algorithms. 
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MARTA 

smT 

Figure 3.3 (conLinued). 
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Figure 3.5. The effect of the relaxation parameter on the convergence rate for 
Alrr2. A) The number of iterations required to reach the minimum distance for 
various da.mping values. As damping increases the number of iterations decreases. 
13) The distance to the original model at the optimal iteration. As the number of 
iterations to minimum increases, the minimum distance decreases. 
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Figure 3.6. Effect of damping on convergence rate for ART2. This'shows the 
actual convergence curves for various relaxation parameters, A; the greater A, the 
smaller the damping. The "X's" refer to the minimum c5; the closest point to 
model A. 
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Figure 3.7. V:triances from equation 2.23 plotted with iterations for each of the 
algorithms in Figure 3.2 and Figure 3.3. Note the sharp rise in values giving way 
to gcnLle slope after a few iterations. This behavior can be used 1,0 deterllline the 
optimal iteration to stop the algorithm in the absence of 6. The arrows refer 1,0 
the poinL where the minimum 6 value occurs. 
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12 ITERATIONS 

.. 

16 ITERATIONS 

Figure 3.10. Recollstructions at different iterations of ART2 for model A show­
ing that it is not critical to obtain the exact optimal iteration. The minimuIIl {) 
occurred at iteration 11. 
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SMOOTHED 

UNSMOOTHED 

Figure 3.11. The smoothing fundionof equation (2.18) is applied after every 
iteration in ART2 resulting in this reconstruction. This is compared to the 
unsllloothed result from Figure 3.2. 
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I I . . . I I .'.t't: •. 
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Figure 3.12. Smoothing also reduces 0, as shown here. Note that the values for 
smoothed ART2 never begin to increase in the latter iterations. 
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RAYTRACED 

RAYTRACED-SMOOTHED 

Figure 3.13. Instead of using straight rays in the ART2 inversion, the paths may 
be traced through the velocity model. This is shown to have liWe efTed on the 
reeoJlstruclioll of model A. The results are visually impressive when combined 
with the smoothing function. 
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Figure 3.14. The high quality results from Figure 3.13 are reflected in the dis­
tance fJ shown here. 
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10 x 10 15 x 15 

20 x 20 25 x 25 

Figure 3.15. A sequence of array sizes are used in the ART2 inversion with 
straight rays. Good reconstructions are obtained throughout the series, though 
some deterioration occurs after the 45x45 array. 
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30 x 30 35 x 35 

40 x 40 45 x 45 

Figure 3.15 (coIlLillllCd). 
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50 x 50 55 x 55 

60 x 60 

Figure 3.15 (eonLinucd). 
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60 x 60 SMOOTHED 

Figure 3.16. The smoothed version of ART2 performed with :t oOxoO :trrny 
showing that the pixel size can be reduced through the use of the smoothing fune-
lion. 
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5% NOISE 

10% NOISE 

Figure 3.17. The results of adding 5% and 10% noise t.o the t.ravel times and 
ill ver Li ng wi th 1\H.'I'2. Vi rLlIally [10 vcloci ty structure can be recovered /'rom these 
reco nsLrucLio liS. 
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5% NOISE SMOOTHED 

10% NOISE SMOOTHED 

Figure 3.18. Application of the smoothing function provides visual improvement 
to the results, but the smearing persists. 
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35 x 35 20 x 20 

45 x 45 SMOOTHED 

Figure 3.19. Model A is reconstructed by ART2 without the use of the surface 
array which decreases the horizontal resolution. This results in a strong smearing 
cll'ceL and velocity oscillations between the low velocity zone ano the boreholes. 
Smoothing eliminates the oscillations, but the smearing persists. 
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VELOCITY MODEL B 

Figure 3.20. Velocity model B is reconstructed using ART2 with straight rays on 
a 30x60 array. The model is slightly more complex than model A, but is well 
reconstructed. 
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CHAPTER 4 

The Application of ART to a Complex Velocity Model 

Introduction 

The general behavior of the ART algorithms and the effect of various parameters 

and modifications were described in the preceding chapter. The study used a simple 

velocity model so that the effects of individual factors could be easily seen. This 

proved effective for the goals of that chapter, but it was concluded that a complex 

model should be used for a realistic study. Therefore, a complex velocity distribution is 

developed in this chapter to study the behavior of ART under more realistic cor di­

tions than those used in Chapter 3. 

Velocity model 4A simulates a flat-layered structure between two wells, as might 

be found in an oilfield. Stations are located 10 units apart down the 1000-unit wells 

which are 100 units apart, giving 10,000 ray paths. In this geometry no surface array 

is necessary and the ray lengths will vary from 100 units to about 1000 units. The 

velocity profile consists of 14 layers with velocity values ranging from 1.35 km/s to 

2.44 km/s. Table 4.1 gives the layer velocities and "depths. Ray tracing through this 

model would result in some critically refracted first arrivals, but the synthetic travel 

time data will only consist of direct arrival times; refracted arrivals and head waves 

are ignored. Due to the high velocity contrasts between layers and resulting shadow 

zones some source-receiver paths cannot be traced successfully for travel times, so the 

number of rays will be less than 10,000. 
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The purpose of this velocity model is to investigate the possibility that small 

low-velocity zones corresponding to steam floods in oil-producing layers can be 

identified and monitoring in secondary oil recovery operations. Steam injected into an 

oil sand will lower the velocity of seismic waves in the rock and a cross-well survey can 

be performed before injection and at various times afterward. If the resolution is 

sufficient the advance of steam fronts may be monitored. 

The results of Chapter 3 showed smoothing functions to be beneficial in eliminat­

ing velocity oscillations and, for the simple model used, that ray tracing provided little 

improvement to the solution. The complexity of model 4A will allow further study of 

differences in the algorithms, of smoothing effects on resolvability of small features, 

and of ray tracing in a more heterogeneous velocity field. Pixel size, survey geometry 

and noise are also studied. Small, high-contrast, low-velocity zones in some layers of 

model 4A, simulating the steam floods, are inverted to study the possibility of observ­

ing such zones in real situations. 

Results 

The algorithms studied in this chapter are: 

ART - Algorithm 1, equation (2.11) 

ARTI - Algorithm 2, equation (2.12) 

ART2 -. Algorithm 2a, equation (2.13) 

WART - weighting scheme, equation (2.2I), applied to ART 

WARTI - weighting scheme, equation (2.21), applied to ARTI 

SIRT - Algorithm 4a, equation (2.17) 

For each of these algorithms the image is corrected after each ray was analyzed. The 

starting model, calculated by a simple back-projection (equation 2.6), is the same 

throughout the chapter. Also, a lOxl00 pixel grid and straight ray paths are used 
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except where specified. The reconstructions are represented by constant velocity pixels 

according to the shading scheme in Figure 4.1. 

A. Algor£thm performance 

The reconstructions of model 4A (Figure 4.2) show greater difference among the . 
algorithms than was observed in the previous chapter (compare to Figures 3.2). 

Several characteristics of ART reconstructions described in the previous chapter are 

seen in these results. The general attributes of model 4A are recovered, but the recon-

structions show extensive smearing and peppering. SIRT and ART tend to reduce the 

peppering, but increase smearing. 

Greater distinction between algorithms is also observed in the distance, 8 (Figure 

4.3). The curves show the characteristic behavior described in Chapter 3; an initial 

decline followed by a leveling and slight Increase. Note that SIRT gives the highest 

values while ART2 again produces small distances to the original model. This con-

sistency of ART2 is important for use in general applications. For this reason and to 

be consistent with Chapter 3, ART2 will be used for the inversions performed in the 

remainder of this chapter. 

B. Smooth£ng 

Chapter 3 showed that the application of the smoothing function (equation ~.18) 

enhances picture aesthetics, virtually eliminating velocity oscillations. Velocity model 

4A enables the effect of smoothing on the resolvability of small velocity features to be 

studied. The reconstruction produced by the smoothing function and ART2 (Figure 

4.4) shows the oscillations are eliminated and the 8 values are reduced (Figure 4.5). 

Smoothing does have some effect on the resolvability of the layers. Instead of the 

sharp bounds seen in the unsmoothed result, there exists an intermediate pixel layer at 
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the interface with an averaged velocity value of the two layers. Note, however, that 

this intermediate layer occurs even at some interfaces of the unsmoothed reconstruc­

tion. 

C. Curved raypaths 

To incorporate curved ray paths into the algorithms, the exact ray paths used in 

the generation of the travel time data from model 4A are used to calculate the pixel 

sublengths D.aki. These sublengths are then used in the ART2 inversion. Since the 

same ray paths are used for the forward and inverse problems, the effect of ray tracing 

on the reconstructions should be eliminated. Figure 4.6 shows the ray traced inversion 

produces little improvement over the unraytraced result. The small improvements con­

sist of a slightly smoother reconstruction and a tendency toward more constant layer 

velocity values. These improvements are slight and generally would not warrant the 

use of the ray tracing algorithm. The reason for such a small impact by ray tracing on 

the results may be due to the geometry of the experiment. Most of the rays are hor­

izontal (Figure 4.7), with short paths that do not deviate much from the straight line. 

The longer rays have almost vertical incidence, and again do not deviate much from 

the straight line. Another consequence of the near-horizontal ray paths and high con­

trast velocity layers is that shadow zones are formed in areas critical to the recon­

struction of the original velocity model. This lack of complete ray coverage provides 

an explanation for the "bleeding" outward of the high velocity layers. 

D. Pixel size 

An effort should be made to determine a pixel size small enough to recover the 

velocity features at the optimal resolution of the problem, i.e., without resulting in 

peppered reconstructions. A series of array configurations from 8x80 to 15x150 are 

used in the ART2 inversions to determine the optimal pixel size. Smaller arrays 
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average out the thin layers and a larger 15x150 array produces visual deterioration of 

the image. Larger arrays exceed the storage capacity of the VAX 11/780. 

The general velocity distribution is recovered for all arrays (Figure 4.8). The 8x80 

array results in a reconstruction that smooths the velocities, while the 15x150 array 

shows signs of deterioration, such as velocity oscillations and extensive smearing along 

the diagonals from the top of one borehole to the bottom of another. The 10xl00 and 

12x120 array reconstructions are similar and both give acceptable results. The smooth­

ing function (Figure 4.9) increases the quality of the reconstructions for all pixel sizes. 

E. Doubling the number of stations 

The most obvious way to improve the reconstructions is to reduce the distance 

between stations, producing more rays and higher resolution. In the next exercise, the 

distance between stations is halved to 5 units, effectively doubling the number of 

receiving stations to 200 down each borehole. This quadruples the number of rays to 

40,000. Unfortunately, this large amount of data limits the availability of memory on 

the VAX 11/780, so that the number of pixels may not be increased for the entire 

data set. 

The expanded number of rays were traced through model 4A. The inversion 

results in improvement to the reconstructions (Figure 4.10); the velocities are more 

constant throughout each layer and less oscillations are seen. The number of rays may 

be increased in a specified region of interest, for example, in a steam flood zone. In 

such cases the station spacing may be reduced in the neighborhood of interest to 

improve resolution, while the remaining stations are kept to maintain the angular cov­

erage and to give the general velocities in the surrounding areas. The process fine­

tunes the data to the specified region without large increases in data acquisition and 

processing time. Reconstructions of an example of a specified region of interest in 

model A are shown in Figure 4.11. Results of inverting a 20x200 pixel array produces a 
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F. Noise 
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In Chapter 3 a simple velocity distribution was used to show that noise increased 

smearing and velocity oscillations between pixels in the reconstructions. This suggested 

that the effect on a more complex model could prove intolerable. Random Gaussian 

noise was added to the travel time data of model 4A and inverted using ART2. The 

inversion results in very little change in the reconstructions for 5% or 10% noise (Fig­

ure 4.12). This surprising result may be due to the highly overdetermined problem 

here, as opposed to the underdetermined problem of the last chapter. For the model 

4A inversion there are 10,000 knowns and 1000 unknowns which helps with the stabil­

ity of the solution. These results are very encouraging for reconstructions of real data 

con taining measu remen terrors. 

G. Variations on the model 

Two velocity models based on model 4A were analyzed to study velocity 

anomalies that can be anticipated in real situations. Model 4B incorporates a low velo­

city zone (1.50 km/s) into one of the high velocity layers (layer 13, 2.26 km/s) to 

simulate a steamed zone (Figure 4.13). Model 4C (Figure 4.14) is similar to model 4B, 

but has a slightly higher velocity zone (1.50 km/s) in a low velocity layer (layer 9, 1.35 

km/s), giving a lower velocity contrast than in model 4B. The zone is in the form of a 

gradient from the center of the layer outward, with the higher velocities toward the 

center. The inversion of each of these models uses the same parameters and starting 

model as used for model 4A. 

The inversion of model 4B reveals a similar reconstruction as for model 4A with a 

region of oscillating velocity values (Figure 4.13). A comparison with the model 4A 

result shows an anomalous low velocity zone exists in model 4B, but the exten t of this 

zone cannot be determined. This is an unsatisfactory result for a monitoring process. 
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The purpose of a monitoring study is to determine the velocity differences between 

two successive surveys. Therefore, the reconstructions of model 4A and model 4B are 

subtracted to prod uce this difference. The proper form of the low-velocity zone, now in 

the dark shades, is easily distinguishable from the background. Heavy smearing 

extends from the edges of the zone, but it is obviously an artifact and can be elim­

inated visually. 

The results of model 4C are similar to those of model 4B (Figure 4.14). Not much 

difference can be seen between the model 4A and model 4C inversions, mainly because 

of the low velocity contrast produced by the anomaly in model 4C. When taking the 

difference between the two, the anomaly shows up quite well. The peppering is pri­

marily due to the low velocity contrast making the difference in shading values small. 

This can be partially eliminated by inverting with the smoothing function (Figure 

4.15), resulting in a clear high velocity zone running vertically through the layer and 

grading linearly outward toward the boreholes . 

. . 

Discussion and Summary 

The use of a complex velocity distribution results in a greater differences among 

the reconstructions produced by the different algorithms. The SIRT and ART algo­

rithms produce smooth reconstructions with strong smearing effects. The other algo­

rithms produce reconstruction that are more peppered, but less smeared. ART2 and 

WART give the lowest 8 values and good visual results. WART does much better on 

model 4A than it did on model A because of the flat-layered velocity distribution and 

the high (10:1) borehole distance to depth ratio. The algorithm gives greater weight to 

the shorter rays, which are the most important in a fiat-layered model with such close 

boreholes. ART2 is recommended for general applications and initial analysis; it gives 

consisten tly. good results, and when applied with the smoothing function, gives better 

results than SIRT and ART and provides an option for smoothing. It is not as 
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dependent on the geometry as are the weighted algorithms. 

The smoothing function has proved a useful modification to the algorithms by 

eliminating velocity oscillations in the reconstructions due to noise or unstable inver­

sions. Model 4A, with thin layers, provides a means to test the effect of the smoothing 

function on the resolvability of small velocity features. The results show that these 

small layers are resolved, but with a lack of sharp boundary definition. However, velo­

city features encountered in real applications generally will not exhibit such sharp 

in terf aces. 

For models tested here, incorporating ray tracing into the algorithm offers little 

improvemen t to the reconstructions. The reason may be due to the model geometry, 

velocity distribution, and the exclusion of critical rays due to the existence of shadow 

zones, so a final evaluation of ray tracing cannot be made based on this study. Also, in 

real applications the first arrivals may include refractions and head wave arrivals, in 

which case ray tracing may prove more valuable. 

The geometry of the experiment plays a large role in the resolution and optimal 

size for the pixels. A suggested pixel size based on this study is one station per pixel 

down the borehole. The number of pixels per station may change for different 

geometries, but this is a good rule of thumb. Increasing the number of stations to 

obtain higher resolution can be done in a specified area where greater detail is needed, 

e.g., at a steam flood zone. 

The use of ART2 for monitoring the advance of a steam front requires that the 

changes in the velocity distribution of two successive surveys be distinguishable. The 

inversions of models 4B and 4C show that relative velocity changes can be determined 

by differencing the successive reconstructions. This suggests an important technique 

for use with real data and in field studies. 
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The study of model 4A provided many answers to questions resulting from the 

analysis of model A. The results offer further encouragement to the application of the 

technique to real data sets, as will be done in the following chapter. 
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VELOCITY MODEL 4A 

LAYER DEPTH(M) VELOCITY (KM/S) 
to boundary above boundary 

1 250.00 1.45 
2 290.00 1.97 
3 340.00 1.60 
4 360.00 1.91 
5 400.00 1.52 
6 420.00 1.42 
7 450.00 1.74 
8 500.00 1.42 
9 570.00 1.35 

10 650.00 1.74 
11 670.00 2.26 
12 700.00 1.69 
13 760.00 2.26 
14 800.00 1.69 
15 1000.00 2.24 

Table 4.1. Velocity model 4A used throughout this chapter. 
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Figure 4.2. The best reconstructions of the original velocity model 4A for each algorithm. 
Straight rays and a pi..xel array of 10 x 100 are used in the inversions. The boreholes are 100 
units apart and 1000 units deep with station spacings of 10 units in each borehole. The general 
attributes of the. model are recovered. Note that SrnT and ART tend to reduce the peppering, 
but increase smearing. XBB 850-8280 
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Figure 4.4. Smoothed inversion of velocity model 4A using ART2. For some layers the 
smoothing results in less distinct some boundary layers. XBB 850-8288 
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-Figure 4.10. The number of stations is doubled by decreasing the station spacing from 10 
units to 5 units. This quadruples the number of rays with the normal station spacing. The 
ART2 inversions of model 4A with the different station spacings are compared. The velocities 
are more constant throughout each rayer and less oscillations are seen. XBB 850-8285 
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Figure 4.11. Focusing on a region or interest. ART2 is used on a region or velocity model 4A. 
This illustrates the effect or increasing the number of stations in a particular region of interest 
to save acquisition and computation costs. The 20x200 array reconstructions are smoother and 
show sharper boundary definition than the lOxlOO array results. . XBB 850-8284 
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Figure 4.13. Reconstruction of velocity model 4B using ART2. reconstruction is similar to 
that of model 4A with a zone of anomalous low-velocity values. The bounds on this zone can 
not be distinguished unless the difference is taken . The darker shades of the difference plot 
correspond to higher positive values. XBB 850-8293 
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CHAPTER 5 

Applications of ART to Crosshole Seismic Data 

Introduction 

The previous chapters have shown that Algebraic Reconstruction Techniques per­

form well on synthetically derived data, even with the inclusion of noise. The critical 

test lies in the analysis of a real data set. For this test, two data sets (Stripa and Ret­

sof) with crosshole source-receiver geometry were available. In both cases the data con­

sist of high quality travel-times obtained from reasonably dense networks. 

The data are inverted using algorithms introduced in Chapter 2. The stoppinJ 

criteria described in Chapter 3 must be used to stop the iterative process since the dis­

tance, 6, is not available. These criteria include a visual evaluation of the reconstruc­

tions and the change in slope of the RMS residual and variance curves. The relaxation 

parameter is chosen with the same criteria. The pixel size is selected to correspond to 

the distance between stations, as suggested in the last chapter. The smoothing func­

tion is not applicable to the Strip a data because of the small (9 x 9) grid used, but it 

should prove helpful in reconstructing the Retsof data, which has variable sampling 

and limited angular coverage. 

The emphasis of this chapter is placed equally on the apparent reliability of the 

ART reconstructions and the physical interpretation of the results. Reliability is based 

on the degree to which the reconstructed velocity distribution, the velocity values and 

bounds of anomalous zones, is consistent with what is known about the media. The 
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interpretation will address the primary purpose of these two experiments: a search for 

the effects of heating granitic rocks, and an attempt to outline an· anomalous low­

velocity zone expected to be caused by dissolution of overlying carbonate rocks by 

ground water flow into a mineshaft. 

Data 

Two appropriate data sets are available from crosshole-type experiments. The 

experiments were carried out at the underground radioactive waste study site at the 

Stripa mine facility in Sweden and at the Retsof salt mine in New York, where the 

anticipated anomalous velocities are due to heating in the former case and to solution 

processes in the latter. 

The Stripa experiment investigated the behavior of a granitic rock mass heated 

by an electrical heater simulating a radioactive waste cannister, emplaced in a large 

diameter borehole in the floor of an underground drift. The seismic dat·a set consists of 

p- and S-wave travel-times and amplitudes measured along 162 ray paths between two 

boreholes. Eighteen sources were located at 0.5 meter intervals in a 10 meter borehole 

and nine geophones at 1.0 meter intervals located in a parallel borehole approximately.· 

4 meters away, as shown in Figure 5.1. This study uses two suites of measurements, 

the first taken after the heater had been turned on for several weeks (Data Set 1) and 

the second several days after the heater had been turned off (Data Set 2). The objec­

tive was to determine the degree to which the reconstructions could detect slowness or 

attenuation changes due to changes in stresse5 and fractures caused by the heating. 

The geometry of the experiment is conventi<?nal crosshole so that the range of angles 

through the area of interest is limited, though reasonable (-66° to 66° at the heater 

location), and the sampling was at regular intervals. Source and receiver locations were 

measured to 1.0 mm and travel-times were read to 1.0 Jlsec. 
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The Retsof mme data set consists of some 400 P-wave travel-times measured 

along intersecting ray paths between three sets of explosion sources and geophones; on 

a 400m long surface line, in a borehole to a depth of 260m and in the mine at a depth 

of 320m. The resulting array of ray paths is shown in Figure 5.5. The area of interest 

is almost entirely encircled by this geometry, but the field is not regularly sampled. 

The paths do not lie within a plane, since the mine is offset approximately 25m from 

the plane of the boreholes and surface arrays. This sampled region cont~ins a collapse 

zone apparently due to dissolution of overlying carbonate rocks by groundwater flow 

into a shaft at a location of a previous explosion. It was hoped that the reconstruction 

would define zones of major dissolution and provide guidance on possible remedial 

engineering steps. The number of rays is such that the field may be discretized into 

25m square cells. 

The symmetrical ray paths and highly accurate measurements make the Stripa 

problem quite stable. The two data sets can serve as a check of consistency, since pre­

existing anomalous zones should show up in both inversions. The inversion of the Ret­

sof data is difficult, because the unsymmetrical station configuration results in varying 

ray lengths and sampling. The sampling of pixels will be highly variable and the angu­

lar coverage will differ between regions of the field. 

Results 

Seven different algorithms were used to analyze the two data sets. These include: 

ART - Algorithm 1, equation (2.11) 

ARTI - Algorithm 2, equation (2.12) 

ART2 - Algorithm 2a, equation (2.13) 

:MART - Algorithm 3, equation (2.15) 



WART - weighting scheme, equation (2.21), applied to ART 

WART1 - weighting scheme, equation (2.21), applied to ART1 

SIRT - Algorithm 4a, equation (2.17) 
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For each of these algorithms the image was corrected after each ray was analyzed. For 

these same algorithms the image was also corrected using equation (2.10) (specified by 

an "A", e.g. ARTA). In general, determining the proper relaxation parameter and 

stopping criteria, for reasonable solutions required considerable manipulation. 

I. Stripa 

In the Stripa experiment dimensions were small and the ray lengths are similar. 

Preliminary studies indicate that the velocity con trasts are small, with only 0.3 - 0.5 

km/s separating the highest and lowest values (Paulsson, 1983). The region was 

divided into a 9 X 9 field of recta:ngular pixels giving 81 1.0XO.5m pixels (Figure 5.1). 

The one-meter separation between receiver locations limits the minimum cell dimen­

sion. A finer vertical division will decrease the number of rays per cell, giving many 

unsampled pixels near the edges. The coverage is vertically symmetric about the 

center line with the ray density greatest toward the center of the region where the 

angular range of sampling is as much as 130°. 

A similar solution is obtained from all methods applied to a common starting 

model. Good detail is recovered, and consistent solutions are obtained even if as many 

as half the rays are ignored. Figure 5.2 shows plots of the velocity fields at full heating 

and after heater deactivation. Solutions from the various algorithms are all quite simi­

lar. While the heater was on, a constant velocity field of about 5.95 km/s was main­

tained, though slightly lower velocities occur toward the upper left corner of the field. 

After the 'heat source was removed, a low velocity zone of 5.6 - 5.7 km/s developed in 

the location of the heat source and extending to the upper right and to the upper left 
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of the section, where the low velocity from Data Set 1 existed. The co-existence of this 

zone between the data sets suggests the existence of some pre-heating fracturing in 

this area, possibly due to drilling. Some smearing of the central zone seems to take 

place, especially on a diagonal extending from the lower left corner toward the upper 

right. There is some suggestion of low velocity zones toward the lower left and upper 

right corners of the field, which would tend to accentuate the smearing along that 

diagonal. Synthetic models of this data set (Figure 5.3) have shown that the smearing 

also has the effect of reconstructing slightly higher velocities in the low velocity zones 

than actually exist. The model shows slight smearing only in the horizontal direction, 

which is expected due to the source-receiver configuration. The weighted algorithms, 

designed to reduce the smearing effect, fail to do much toward this end. In fact, all 

algorithms give remarkably similar results. An encouraging observation is the existence 

of the low v,elocity zone where it is expected to be. Due to the smearing, the horizon tal 

extension of the zone is not resolvable. 

Relaxation parameters and stopping criterion were determined from visual assess­

ment of variance, entropy and RMS residual which are plotted verses the number of 

iterations in Figures 5.4. The purpose of these plots is to determine of the relaxation 

parameters for which the curves have the form found in the previous chapters where 

the best solution was found to exist at about 10 iterations. The form is usually a rapid 

increase or decrease in value and then leveling off. The best reconstruction is usually 

found where this leveling off begins. The resulting relaxation parameters and other 

values are given in Table 5.1. 

Figure 5.4 and Table 5.1 also show the consistency of the algorithms. Only small 

differences are seen between the different statistical values. It also shows that Data Set 

1 (Table 5.1A) gives much smaller residuals than Data Set 2. This is due to the 

absence of any large velocity con trasts in Data Set 1 in contrast to those found in 

Data Set 2. 



94 

II. Retsof 

The Retsof data set is an example of noisy data; the sources and receivers do not 

lie in a plane, the dimensions are fairly large (hundreds of meters), the travel-times 

must be corrected for topography, the range of projection angles through each cell is 

limited, the ray lengths are highly variable, and the velocity contrasts can be large, 

causmg problems with curved rays. The ray path configuration and the number of 

rays through each box are depicted in Figure 5.5. The drawbacks to the geometry can 

be easily seen in this figure; there are areas of very low and very high density cover­

age, with poor angular coverage in some areas and many almost redundant rays. A 

swath of reasonable coverage with rays penetrating from many directions runs from 

the mine toward the borehole-surface intersection (lower right to upper left in the 

figure). The least resolvable area will be toward the right where the ray coverage is 

poor and the angular coverage is limited. 

The area of interest is initially divided into an 18 X 14 field of pixels (I = 252) 

giving a pixel dimensioll of abou t 25m on a side. The pixel size was chosen to 

correspond to the station spacmg, as suggested in the last chapter. Despite the 

apparent limitations in the data, the reconstruction was successful. Figure 5.6 shows 

the velocity field determined by each of the variations on the algorithms. The various 

solutions differ only slightly in detail, and two general features are consistent in all of 

the reconstructions: there is a very low velocity zone (about 2.75 km/s) at the base of 

the field below a V-shaped zone of intermediate velocities (4.00 km/s). This low­

velocity field is bounded by two zones where velocity increases with depth. These 

features, which show velocity contrasts as high as 40%, are consistent with expected 

solution patterns. 

Oscillation in the solution may be measured by its 2-D spatial Fourier transform. 

In wavenumber space, the oscillations appear as large amplitudes at values of k = 

C-1, where C is the pixel width. Generally, the smoother the Fourier transform, the 
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less oscillation is present in the reconstruction. In Figure 5.7, sample k-k plots are 

shown for reconstructions with the Retsof data using ART2. 2-D spatial Fourier 

transform for ~=0.01 and 0.05 are shown. The plots indicate that most of the velocity 

variation seen is in the low-wavenumber region (upper left hand corner) and virtually 

no short wavelength oscillation (high kz ) in the horizon tal direction, which indicates a 

smooth reconstruction. Note that for the 0.05 damping value short wavelength oscilla­

tions in the vertical direction (large kz ) develop, as seen in the lower left portion of 

the plot. Most oscillations occur in areas of low ray density or low angular coverage 

toward the upper right and lower left of the velocity field in Figures 5.6. 

The stopping criteria were determined as for Stripa. Relaxation parameters were 

used to control the rate of convergence. The convergence of some of the weighted algo­

rithms was very slow, so a high damping was necessary (Table 5.2). This occurred 

almost exclusively for algorithms in which the relaxation value had units of length, e.g. 

WART. The convergence criteria and residuals given in Table 5.2 and Figure 5.8 show 

small differences among the various algorithms. Therefore, one algorithm can ~ot be 

deemed better than another on the basis of these values. In general, the RMS residual, 

r q , initially decreased very quickly, leveling off after several iterations. The variance, 

V q 
, gradually increased without ever leveling off. This behavior would usually indi­

cate that a larger relaxation parameter should be used, but in this case a higher value 

leads to oscillatory results. Figure 5.9 shows the reconstruction using ART2 with 

~ = 0.05, somewhat higher than the value of 0.01 used for the results in Figure 5.2. 

This solution is more oscillatory than Figure 5.6. 

The size of the pixels used in the inversion effectively determines the limiting size 

of the velocity feature which can be recovered. The ART2 inversion is performed with 

a 26x21 pixel array (Figure 5.10), increasing the station spacing to pixel size ratio to 

3:2. The results show improvement over the 18x14 array used in Figure 5.6. A 

smoother velocity gradient is reconstructed near the collapsed zone and the zone itself 
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is better defined due to the smaller pixels. The pixel size may be further reduced if the 

smoothing function is used in the inversion. An array of 40x32 pixels with ART2 (Fig­

ure 5.11) results in further improvement over any other Retsof reconstruction. The 

resolution is improved with more continuity in the velocity gradients and anomalous 

zones. It is also more aesthetically pleasing. Retsof is a good example of a data set 

which seems to need smoothing in the inversion. 

Discussion 

The two data sets were analyzed to compare various ART algorithms in process­

mg real geophysical data sets for good and average quality. The reconstructions of 

both data sets are quite consistent with the known structures and expected velocity 

fields. In the Stripa experimen t fairly uniform velocities were seen during heating (Fig­

ures 5.2), apparently due to the closure of fractures by thermal expansion (Paulsson et 

ai., 1985; King and Paulsson, 1981). Velocities decreased upon heater removal, due to 

fracture opening, giving a maximum velocity contrast of about 8%. Some permanent 

damage (thermal fracturing) was seen in the central r~gion where the heat was 

greatest and where previous calcite fracturing was evident. This zone is also near the 

area of maximum ray coverage which can bias the results, but the feature is off-center 

enough to distinguish itself from such bias. Horizontal extension of the central low 

velocity zone to the sides of the figure is evident, as expected, based on the studies in 

Chapters 2 and 3 (see Figure 5.3). The diagonal line of low velocity extending from the 

bottom left to upper right is due possibly to numerical smearing of actual low veloci­

ties created by minimal calcite fracturing at its upper right terminus and by drilling 

damage at the bottom of the left borehole. Strong evidence is suggested for these con­

ditions from fracture mapping. Note that the smearing takes place primarily toward 

the surface. This illustrates the importance of using the proper geometry for experi­

ments. Due to the lack of surface sources or receivers, the number of ray paths 
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between the heater and the surface boreholes were not sufficient to eliminate this 

smearing. There are enough rays below the heater to eliminate most of the. smearing. 

The single diagonal may be due to existing fracture zones. Some problems of ART are 

encountered in these inversions, but a reasonably accurate picture of the change in 

velocity field is achieved. The reconstructions are good enough that reliable velocity 

values may be determined and the existence of anomalous zones resolved with reason­

able bounds on their locations. 

The important features revealed in the Retsof mine experiment are the V-shaped 

low-velocity zone through the center of the picture, the extremely low velocities at the 

collapsed end of the mine, and the general increase in velocity with depth, from about 

4.00 km/s to 5.5 km/s, probably equivalent to the velocity field before the collapse 

and alteration. A velocity contrast of 40% is indicated. The large low-velocity zone is 

interpreted as being due to ground water fiow and resulting alteration and dissolution 

of the carbonate rocks. This low-velocity zone intersects the mine where major altera­

tion and collapse of material into the mine is occurring. The reconstruction shows this 

structure in detail. Possible artifacts in the reconstruction include smearing to the 

lower left of the picture and a probably anomalous high velocity zone at the upper 

right both of which may be due to poor coverage and resulting oscillations in the data. 

Despite the apparent limitations in the data, the reconstruction gives a usable picture 

of the structure. 

In general, all the algorithms give consistent, apparently reliable reconstructions 

of the Retsof and Stripa velocity fields. The low velocity zones at both Stripa and Ret­

sof are determined to the size of the pixels in the analysis. The largest expected prob­

lem with the inversions is distortion due to the straight-ray assumption. While some 

image distortion inevitably occurs, it does not seem a substantial problem. The 

anomalous zones at Stripa are so small and the path lengths so short that the curved 

ray paths do I).ot significantly devia!e from the straight line. The problem with the 
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Retsof data is that the geometry of the velocity and station distributions and the posi­

tioning of the low velocities of the collapsed zone tend to severely bend several impor­

tan t rays just before they hit the receivers so that they never can be traced accu­

rately, so the curved-ray algorithm was not performed. Since this occurs just at the 

end of the rays which enter the failed zones near the mine, it will have little effect on 

the results. This is not to say that a curved ray algorithm should not be used; if the 

collapsed zone were located near the middle of the field, the distortion due to the use 

of straight rays would be greater. 

Most of the image distortion in the Stripa and Retsof reconstructions appears to 

be due to incomplete data in the form of low ray density and, more importantly, 

incomplete angular coverage. These problems could have been reduced by optimizing 

the experiments· in terms of source and receiver locations. The increased resolution 

resulting from the "filling in" of a few essential rays would have justified the added 

effort involved in acquiring the data. Large improvement in the Retsof geometry would 

come from the addition of sources or receivers down a borehole or shaft at the right of 

the picture to obtain the low-angle rays from the surface and across the field to the 

other boreholes. The Stripa experiment used the more classic cross-hole situation of 

parallel boreholes. Greater resolution, especially toward the top of the region could 

have been achieved with a line of surface receivers and a greater borehole depth to 

increase the angular coverage and better determine the horizon tal extent of the low 

velocity zone. Of course, increasing the number of source/receiver pairs is suggested, 

until more pairs give less improvement than economically justified. The Stripa experi­

ment had 18 sources, but just 9 receivers. An increase to 18 receivers would have 

allowed a 9x18 configuration to be inverted, and an 18x18 array could be possible with 

surface sources. 
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STRIPA - DATA SET 1 

Algorithm Variance RMS residual Optimal ). 

(s2/km2) (sec) Iter 

ART 3.560XlO-6 4.224XlO-3 10 0.04 

ARTI 3.100XlO-6 4.394X 10-3 10 0.06 

ART2 3.713 X 10-6 4.211 X 10-3 10 0.04 

WART 3.660XlO-6 4.255X 10-3 10 0040 

WART 1 30415 X 10-6 4.384XlO-3 10 0040 

MART 2.709XI0-6 4.636X 10-3 10 0.05 

ARTA 2.878XlO-6 4.883XlO-3 10 0.50 

ARTIA 2.542 X 10-6 4.961X 10-3 10 0.80 

ART2A 4A19XI0-6 4.032XI0-3 10 0.80 

WARTA 3.398XlO-6 4.658XlO-3 10 6.00 

WARTIA 3.198 X 10-6 4.804XlO-3 10 6.00 

MARTA 3.092 X 10-6 4.556Xl0-3 10 1.00 

SIRT 3.257XlO-6 4.503XlO-3 10 0.50 

Table S.IA. The values for variance and RMS residual for Stripa Data Set 1 recon­
structions shown in Figure 5.2.· The damping is varied to produce the "best" itera­
tion at about 10 iterations. 
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STRIPA - DATA SET 2 

Algorithm Variance RMS residual Optimal ).. 

(s2/km2) (sec) Iter 

ART 1.503 X 10-5 0.968XlO-2 10 0.04 

ART 1 1.393XlO-5 0.978XlO-2 10 0.06 

ART2 1.531 X 10-5 1.022 X 10-2 10 0.04 

WART 1.536 X 10-5 0.972X10-2 10 0040 

WART 1 1.430 X 10-5 1.007 X 10-2 10 0040 

MART 1.243 X 10-5 1.023 X 10-2 10 0.05 

ARTA 1.288 X 10-5 1.096 X 10-2 10 0.50 

ART1A 1.209 X 10-5 1.090 X 10-2 10 0.80 

ART2A 4.419X10-5 1.014 X 10-2 10 0.80 

WARTA 1.444X10-5 1.060 X 10-2 10 6.00 

WART1A 1.368 X 10-5 1.091 X 10-2 10 6.00 

MARTA 1.382X 10-5 1.031 X 10-2 10 1.00 

SmT 1.436 X 10-5 1.022 X 10-2 10 0.50 

Table S.lB. The values for variance and RMS residual for Stripa Data Set 2 recon­
structions shown in Figure 5.2. 
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RETSOFF DATA 

Algorithm Variance RMS residual Optimal A 
(s2jkm2) (sec) Iter 

ART 0.418XlO--,'3 7.850XlO--,'3 10 0.01 

ARTI 0.443 X 10--,'3 7.723X 10-3 10 0.50 

ART2 0.491 X 10--,'3 7.559XlO-3 10 0.01 

WART 0.611XlO--,'3 7.519XI0-3 10 0.25 

WART 1 0.605X 10--,'3 7.493 X 10-3 10 0.25 

MART 0.446 X 10--,'3 7.742XlO-3 10 0.50 

ARTA 0.618XI0--,'3 7.756 X 10-3 10 0.50 

ARTlA 0.658XI0--,'3 7.613 X 10--,'3 10 25.00 

ART2A 0.630XI0--,'3 7.903XI0--,'3 10 0.40 

WARTA 0.752X 10--,'3 7.850XI0-3 10 10.00 

WARTIA 0.763XI0--,'3 7.828XI0-3 10 10.00 

MARTA O.678XI0--,'3 7.61OXlO-3 10 25.00 

SIRT 0.629XI0--,'3 7.868 X 10--,'3 10 0.40 

Table 5.2. The values for variance and RMS residual for the Retsoff data recon­
structions shown in Figure 5.2. Again, the damping is varied to produce the" best" 
iteration at abou t 10 iterations. 



SOURCES RECEIVERS 

CI) 
0= 
1&.1 

ti 
~ 

If) . 
CD 

4.2 METERS 

NO. OF RAYS 

1- 6 

9-15 

16-23 

24-30 

31-36 

39-45 

Figure 5.1. The raypaths and the ray density for the Stripa data; This geometry provides high sym­
metry in the sampling. ..... 

o 
l-:l 



ART 

DATASET 1 DATASET 2 
I I 

DIFFERENCE 
Figure 5.2. Compressional velocity field reconstructions for the Stripa data for the geometry shown in Figure 5.1 using straight ray paths. The 
data sets correspond to the velocity field during heating (Data Set 1) and the velocity field after cooling (Data Set 2). The difference between these 
two data sets is also shown. The darker shades correspond to higher velocities and larger velocity differences. The velocity range is from 5.6 km/s 
to 6.0 km/s for Data Set 1 and 2 and 0.0 to 0.3 km/s for the differences. 

~ 

o 
"" 



ART! 

DATASET 1 DATASET 2 

Figure 3.2 (continued). 

DIFFERENCE -o 
~ 



ART2 

DATASET 1 DATASET 2 

Figure 3.2 (continued). 

DIFFERENCE . -o 
01 



DATA SET 1 

Figure 3.2 (continued). 

WART 

DATASET 2 DIFFERENCE 

o 
0:> 



;, 

DATASET 1 

Figure 3.2 (continued). 

WARTl 

DATASET 2 DIFFERENCE 

o 
-:r 



DATA SET 1 

Figure 3.2 (continued). 

MART 

DATASET 2 DIFFERENCE 
I-' 
o 
00 



DATASET 1 
Figure 3.2 (continued). 

ARTA 

DATASET 2 DIFFERENCE' -o 
<:0 



DATA SET 1 

Figure 3.2 (continued). 

ARTIA 

DATASET 2 DIFFERENCE 

~ 
~ 

o 



DATASET 1 
Figure 3.2 (continued). 

ART2A 

DATASET 2 
I 

DIFFERENCE: 
~ 
~ 

~ 



DATASET 1 
Figure 3.2 (continued). 

WARTA 

DATASET 2 DIFFERENCE --t-:) 



DATASET 1 
Figure 3.2 (continued). 

WARTIA 

! 

DATASET 2' DIFFERENCE 

~ 
~ 

~ 



) 

DATASET 1 
Figure 3.2 (continued). 

MARTA 

DATASET 2 DIFFERENCE 
.­.­..... 



DATA SET 1 
-

Figure 3.2 (continued). 

SliT 

DATASET 2 
.... .... 
c:n 



MODEL ART2 RECONSTRUCTION 

Figure 5.3. Results of a synthetic study done on a simplistic model of Stripa. The input model 
consists of a background velocity of 6.0 km/s (dark) and an anomalous zone of 5.5 km/s (light). 
The reconstruction uses ART2 and A = 0.05 with straight ray paths. The smearing in the result 
is similar to that seen in the real Stripa data. 
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ITERATIONS 
Figure 504. Variance (equation 2.21), entropy (equation 2.22) and RMS residual 
(equation 2.20) versus number of iterations for the algorithms of Figure 5.2 with 
Data set 1 and Data set 2. The curves are similar to those found in the synthetic 
models. The optimal iteration is taken at about iteration 10, jus!' after the bend 
in the RMS residual plots. 
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ART 

ART2 WART 

Figure 5.6. Compressional velocity field reconstructions for the Retsoff data 
using the geometry of Figure 5.5. The darker shades correspond to higher veloci­
ties with the velocities ranging from 3.0 km/s to 5.0 km/s. The reconstructions 
are dominated by a central V-shaped low-velocity region terminating at the col­
lapsed portion of the mine. 
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Figure 3.6 (continued). 
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Figure 5.8. Variance (equation 2.21), entropy (equation 2.22) and RMS residuals 
(equation 2.20) versus iterations for algorithms shown in fl'igure 5.Ci. The curves 
are similar to those for the Stripa data and the synthetic data sets. 
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18 X 14 PIXEL ARRAY 

Figure 5.9. The ART2 reconstruction using an 18x14 array and A = 0.05. The result is more 
oscillatory than the A = 0.01 reconstruction shown in Figure 5.6. 
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26 X 21 PIXEL ARRAY 

Figure 5.10. The ART2 reconstruction of a 26x21 array of pixels. The result is smoother and 
show better definition of the gradient around the collapsed zone than the 18x14 array in Fig­
ure 5.6 
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SMOOTHED ART2 RECONSTRUCTION 

Figure 5.11. The pixel array can be increased to a 40x32 grid with the incor­
poration of smoothing in the ART2 algorithm. The reconstruction shows better 
definition than the 26x21 array shown in Figure 5.lD. 
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CHAPTER 6 

AR T and the Least Squares Inversion 

Introd uction 

In the development of the ART procedure (Chapter 2) the problem was shown to 

be described by a set of linear equations (equation 2.3). At this point it was deter­

mined that the resulting matrix would, in general, be very large and sparse and there­

fore difficult to invert. Now, ART will be formulated from this point in least squares 

terminology emphasizing the basis for ART in the least squares method. This formula­

tion helps in identifying a resolution matrix for ART and facilitates a comparison with 

true least squares inversion. 

For small problems the matrix in equation (2.3) can be inverted quite easily using 

singular-value decomposition (SVD) and the problem may be solved directly in this 

manner. For larger problems the inverse may still be calculated by using advanced 

machine-language programming procedures and much CPU time. This may be 

worthwhile if the direct least squares method produces better results than ART. Here, 

the two methods are compared using a simple velocity model and the Stripa and Ret­

sof data. Typical ART reconstructions contain artifacts and it is assumed that the 

SVD inversions will be similar. A combination of the two methods is also attempted 

on the assumption that improvemen t to both methods may occur if the positive quali­

ties of the reconstructions can be combined. 

A general knowledge of generalized inverse theory will be assumed throughout 

this chapter. The matrix will be inverted using SVD, but the details of matrix 
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decomposition will not be discussed thoroughly. 

AR T as a Generalized Inverse 

In Chapter 2 it was shown that the line integral relating travel times to 

slownesses could be discretized and described by a set of linear equations 

[ 

Ylc - ~ .6.alci Xi 
i=l 

k = 1,2, ... ,N (2.3) 

where Ylc are the travel times, Xi is the slowness of pixel £ , .6.alci is the length of ray 

k which penetrates pixel £, and I is the total number of pixels. In matrix notation, 

this is written 

y=Ax 

w here A is an N X I matrix with each ray a row of the matrix. 

Therefore, ART may be thought of as a generalized inverse technique with the 

perturbations in travel time inverted for the perturbations in the slowness field. The 

slowness field is corrected with the addition of these values and the resulting travel 

time perturbations can again be inverted for new slowness corrections. This process 

may continue until some stopping criteria is met. For ART, equation (2.9) may be 

written as follows to invert for the slowness corrections: 

.6.aki 
--=[--- .6.yl k = 1,2, ... ,N (6.1 ) 

~ .6.alcp 
i =1 

In matrix form this is 

(6.2) 

where 

.6. alci 
H = Ak ---:-[-- (6.3) 

~ .6.ak[. 
i =1 
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is the generalized Inverse matrix. Similar values of H are determined from the other 

ART algorithms. 

The purpose of relating ART to the generalized inverse in for the most part illus­

trative, but also has some practicality with the determination of H. The knowledge of 

this matrix may be used to determine the resolution matrix 

R=HA (6.4) 

for each iteration of ART. The matrix A as well as its generalized inverse H have ele­

ments with units of distance. These elements will not change with each iteration, 

therefore R will be constant for all iterations. The diagonal elements of the resolution 

matrix are the most important values of the matrix and are easily determined in this 

way. 

Inverting the Matrix Using Singular-Value Decomposition 

The eigenvalue analysis used in SVD was originally developed by Lanczos(1961). 

The results of his work show that any m X n matrix A can be written 

(6.5) 

where U is an n X n rotation matrix with 

(6.6) 

Y is an m X m rotation matrix with 

yTY=VVT=I (6.7) 

and A is a n X m matrix of eigenvalues that is zero except for nonnegative elements 

on the diagonal. A will have at most min (m ,n) positive values. Equation 2.3 can 

now be written 

(6.8) 



Using the above properties of U and V the generalized inverse becomes 

x = VA-1UTy = Hy 

with the covariance matrix 

The resolution matrix becomes 

R=HA=VVT 
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(6.9) 

(6.10) 

(6.11) 

The calculation of the generalized inverse H is done by the routine LSVDF of the 

IMSL library. The routine inputs the matrix A and outputs the matrices V and U T as 

well as a vector containing the ordered singular values of A. From this output the 

solution vector, the covariance matrix and the resolution matrix may then be easily 

determined. 

The inversion is initially performed on a syn the tic data set derived from the velo­

city model shown in Figure 6.1. The dimensions of the model simulate the geometry of 

the Stripa experiment with a simple low velocity zone of 5.5 km/s encompassed by a 

background velocity of 6.0 km/s. Travel times are generated by the ray tracing method 

described in Chapter 3. The image resulting from the SVD inversion shows the near 

perfect reconstruction of the original model (Figure 6.2), while the image produced by 

ART gives an averaged value of the low velocity zones with loose bounds. The value 

of the low velocity zone in the ART inversion is a bit higher than the model and the 

background velocities vary to about 0.1 km/s, the latter being negligible in the shad­

ing scheme. The SVD inversion can be improved through the elimination of some 

small eigenvalues. While this is not necessary in the present case it is of interest to 

show the results, since this technique will be used later. The eigenvalues range from 

about 0 to 8. Figure 6.3 shows the results of eliminating eigenvalues less than 0.1, 0.3, 

0.5, and 0.7. In this case the reconstructions become progressively worse as more 
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. eigenvalues are eliminated. 

The present study would seem to indicate that the SVD inversion gives results 

far superior to any ART reconstruction and warrants the added expense for the calcu­

lations. Unfortunately, the inversion is not very stable. A very small amount of ran­

dom Gaussian noise (1% of the total travel time) is added to the travel time data as 

was done in Chapter 3. Even this small amount of noise causes a great deal of oscilla­

tion of velocity values in the SVD reconstruction (Figure 6.4), while the effect is very 

small on the ART reconstruction. The SVD image can be improved by the elimination 

of eigenvalues (Figure 6.5), but the final result remains quite unsatisfactory. The SVD 

inversion does give near perfect reconstructions for near perfect data, but the instabil­

ity shown by this addition of 1% noise diminishes its effectiveness for use in realistic 

situations. 

The resolution matrix for both tec~niques is calculated for this test data; the 

ART matrix calculated using equations 6.3 and 6.4. The diagonals of the matrix show 

the resolvability of each pixel and are printed out in shaded form (Figure 6.6), The 

darker pixels corresponding to higher values. The resulting values are similar and seem 

reasonable. The values for ART reveal a pattern similar to that found by the ray den­

sity map (see Figure 5.1). They show greater resolvability toward the center where 

there is high ray density and low values at the top and bottom where only a few rays 

sample. The values are similar for the SVD inversion, but show greater resolution 

along the boreholes. The resolution matrix for the Retsof data is calculated by both 

methods for completeness (Figure 6.7). The two plots have greater differences than for 

the Stripa geometry due to the complexities of the Retsof data, but the general 

features are consistent. The resolution matrices for both data sets show low resolvabil­

ity in areas corresponding to high velocity oscillation and other features that indicate 

instabilities. This is important in that these matrices can be used to give the resolu­

tion of a given experiment before the data is even collected. The resolution matrix 
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calculated from the SVD inversion is the most accurate, because it uses the true gen­

eralized inverse matrix H and should be used when possible; the ART-derived matrix 

is a good estimate. 

Despite the stability problems the Stripa data set will be inverted using SVD. 

The proced ure and geometry is the same as for the test model above. The Stripa data 

set is fairly clean, but the noise is still about 1% of the travel time, suggesting rather 

uns~tisfactory results. This is borne out in the reconstructions (Figures 6.8, 6.9 and 

6.10). The reconstruction of Stripa Data Set 1 (Figure 6.8) shows substantial zones of 

low velocity and high oscillatory behavior of the velocities. The picture improves as 

the lower eigenvalues are removed, but the reconstruction remains poor. There is 

always some amount of doubt to the accuracy of any reconstructions when the true 

velocity field is unknown, but knowledge from previous trials can be used to determine 

the reliability of images. 

Comparisons of the best SVD inversions with the ART reconstructions show sub­

stantial differences. The best SVD inversions, those with eigenvalues below 0.3 elim­

inated, are plotted with the ART reconstructions in Figure 6.11. For Stripa Data Set 1 

the SVD inversion produces a fairly smooth image with a slight low velocity zone 

toward the upper center near the heater location. This would be a reasonable result by 

itself, but there are anomalous zones to the lower right and upper left corners of the 

reconstruction. The same anomalies occur for Data Set 2 suggesting that they may be 

artifacts of the geometry. Despite these unrealistic anomalous zones, the Data Set 2 

reconstruction shows many of the same characteristics found in the ART image, the 

low velocity zone near the heater location and the smearing from there to the lower 

left corner. However, the highly oscillatory values, the unrealistic velocity anomalies, 

and the results of the synthetic analysis signify the unreliability of the SVD inversions. 

The results of this analysis show that the ART reconstructions are superior to 

the SVD inversions, at least for this data. The SVD inversions do have some 
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advantageous characteristics, the most important being the lack of smearing. It would 

therefore be productive to combine the two methods in some way to get the advan­

tages from both techniques. The best way may be to use the reconstruction from one 

method as a priori information for the other. 

The Use of A priori Information in ART and SVD Inversions 

A priori information can easily be incorporated into both the ART and SVD 

inversion methods. For ART, the a priori information is simply contained in the 

starting model. Normally, a starting model is generated automatically in the program 

by a simple back-projection of the travel times (equation 2.6). This usually gives a 

smooth field and the corrections are applied to this model. If a general velocity field is 

already known, it can be substituted as the starting model and the corrections applied 

to it. Therefore, an initial model can be generated by an SVD inversion and then 

correCted by ART. 

It may be desired to reverse this process and generate an initial model using ART 

and then use this as a priori information to an SVD inversion. One way to do this is 

to use the initial model to produce travel time residuals and invert the residuals as 

perturbations of this model. This is a very practical method, but one which does not 

let the contribution of the prior data be altered. 

Unfortunately, these methods will not work 10 the strict sense. The slownesses 

produced by the ART, or SVD, inversion will give minimum travel time residuals 8t. 

The result is already at a local minimum so that any correction based on bt will be 

negligible. Therefore, the only way this process will work is if an averaged model based 

on the SVD, or ART, result is used as the prior data. In this way, a substantial correc­

tion term can be produced arid the solution will be a small perturbation upon this 

model. 
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There is a method of using an averaged ART model as a priori data for SVD 

which allows one to alter the contribution of the prior data. It requires are-derivation 

of the inversion method. Beginning with equation (6.8), 

y =Ax = UAVTx 

premultiply by U T and use the orthogonality of U 

UTy = UTUAVTx 

Now make the substitutions 

(6.12) 

(6.13) 

(6.14) 

The primed quantities are the projections of the unprimed vectors onto the eigenvec­

tors of U and V respectively. The transformations are uniquely invertible because U 

and V are orthonormal. The result is 

y' = Ax' (6.15) 

This looks much like the original problem with matrix A replaced by the qUasl­

diagonal eigenvalue matrix A which can be easily inverted 

x' = A-1y' (6.16) 

Previously, the equation was returned to the unprimed system (equation (6.9)) at this 

point. Now the solution will be written to incorporate a priori data as follows: 

x' = My' + Nx~ (6.17) 

where Xo contains the prIor information in the· form of an initial guess. The new 

matrices M and N are quasi-dimensional eigenvalue matrices dependent on the solu­

tion method. These matrices are used to determine the contribution of the prior data 

to the solution. One method is to set the values 
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Ai 
Jli -

Al + A02 
(6.18) 

A02 
vi -

Ai2 + A02 
(6.19) 

where Jli, Vi and Ai are the elements of M, N and A respectively and Ao is the eigen-

value cutoff criterion. The idea of these values is if the prior data is noisy or unreliable 

Ao can be made very small. Conversely, if the a priori information is strong and only 

slight adjustments to this model are needed, then Ao can be made large. Therefore, the 

eigenvalue cutoff Ao is the critical factor in determining the amount of prior data to be 

used. Previously, the values below this number were simply eliminated, now this 

vacancy is filled with a priori data, 

Putting this solution back into unprimed coordinates use equations (6.14) and 

(6.17), 

x -'::'Vx' 

=VMy' + VNxo' 

(6.20) 

This may seem a drawn out process, but actually requires only minor adjustments to 

the SVD inversion program. The synthetically derived data above will be used to ini-

tially test this new algorithm. 

The travel times are derived from ray tracing through the model shown in Figure 

6.1 with 1% random Gaussian noise added. The initial reconstructions for ART and 

the SVp inversion are shown in Figures 6.4 and 6.5. The best result for SVD occurs 

with the elimination of eigenvalues less than 0.3, or Ao = 0.3 in equations (6.18) and 

(6.19). This amounts to throwing out just less than a quarter of the values. For the a 

priori data the true velocity values were used to illustrate the effect on the solution. 

The velocities obtained by equation (6.20) (Figure 6.12) show a great improvement 
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even with a relatively small contribution from prior information. The fact that this 

prior data is known to be perfect probably has some effect on the amount of improve­

ment. 

A more realistic situation can be simulated by obtaining an initial model from 

ART to use as the prior data. It is hoped that the inversion will extract the positive 

contributions from each method, that is the SVD inversion will try to narrow the 

bounds of the low velocity zone in the ART reconstruction, while eliminating its own 

"scattering" of low velocities. The results of the inversion continue to show some 

trade-off between the two results (Figure 6.13). At ~o = 0.7 the low velocity zone is 

sufficiently narrowed, but much scattering remains. Whether this is an improvement 

or not isjudgemental, but for more complicated velocity structures the scattering will 

increase. For values of ~o greater than this the result begins to appear much like the 

ART reconstruction and therefore makes the use of the SVD inversion unnecessary. 

These finding do very little to encourage the use of an SVD inversion in any manner. 

The Stripa data can be inverted using SVD with a prior£ information provided 

by ART. In inverting the Stripa data, it is desired that the SVD inversion of the ART 

result will eliminate some of the smearing which occurs, especially in the reconstruc­

tion of Stripa Data Set 2. For Strip a Data Set 1 the only room for improvement is to 

find anomalous zones undetected by ART. The results do show such zones (Figure 

6.14), but the reliability of these values is unknown due to the oscillatory nature of 

the SVD inversions that have been seen. The possibility of low velocity zones to the 

upper left and lower right of the section is good from the fracture maps, but their 

appearance does not distinguish them from similar zones in this section. Therefore, 

they can not be determined real unless every feature is, which is very unlikely. Again, 

the true image is unknown and the variances and RMS residuals are all comparable, so 

any comparison of results must be visual and objective as possible. 
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The results for Data Set 2 are similar (Figure 6.14). In fact, though the central 

low velocity zone may have tighter bounds, the smearing seems to have increased. 

There are still the low velocity zones seen in Data Set 1 which supports their 

existence, but the strong streak seen in the ART reconstruction only becomes stronger 

in SVD inversions. This probably signifies that the low velocity areas causing this are 

lower in velocity than the ART reconstructions show. This is very likely since ART 

has an averaging effect which tends to raise the velocity values in low velocity zones 

(see Figure 6.2). The results in general indicate little, if any, improvement in the 

reconstructions. 

Discussion 

The ART algorithm is supposed to converge mathematically to the least squares 

solution (Herman et al., 1978; Lakshminarayanan and Lent, 1975; and Chapter 2), 

but with inconsistencies in the data, primarily due to measurement errors, this conver­

gence may not be realistic. Therefore, it is prudent to compare the two results for a 

simple model to see if the' reconstructions are similar. There are many similarities in 

the reconstructions produced by the two methods using the. test data as well as the 

Stripa data. However, in the presence of any noise the ART images are generally 

smoother than the corresponding SVD inversions. On the other hand, the SVD 

inverted images give a truer representation of the boundaries and values of the 

anomalous zones, but tend to obscure these zones with oscillatory behavior and other 

unrealistic features. It was hoped that these two methods could be combined to form' 

an image with positive contributions from each technique. The only realistic method of 

doing this is to use the ART result as a priori information to the SVD inversion. The 

results showed modest improvement, but perhaps not enough to justify the expense 

required to produce such an inversion. 
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The pnce for an SVD inversion is high. It takes 2 minutes of CPU time on a 

VAX 11/780 to invert the 162 X 81 matrix needed for the Stripa data. Thirty itera­

tions of ART take about 20 seconds. It becomes worse for larger problems. It takes 

about 30 minutes of CPU time to invert the 391 X 252 matrix needed for the Retsof 

data compared to about 30 seconds for ART. Obviously, the CPU time will continue 

to increase as the matrix becomes larger. There exist libraries of rou tines for the sparse 

matrices found in this study, but the amount of CPU time remains high for any large 

inversions. There may be some faster routines and it is possible to write machine­

dependen t code to run very quickly, bu t this study shows that the inversion itself 

must be improved in some way for this extra effort to become worthwhile. 



147 

VELOCITY MODEL 

Figure 6.1. Velocity model for the 'synthetic studies. The dimensions are the 
same as for the Stripa experiment. The dark shade corresponds to 6.0 km/s and 
the lighter to ~.5 km/s. ' 



SVD RECONSTRUCTION ART2 RECONSTRUCTION 

Figure 6.2. The results of inverting the travel time data derived from the velo­
city model in Figure 6.1 with no noise added for singular-value decomposition 
(8VD) and ART2. The 8VD inversion produces a near perfect reconstruction of 
the model, while ART2 produces a smoothed image. 
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DAMPED LEAST SQUARES 

Ao = 0.1 Ao = 0.3 

Ao = 0.5 AO = 0.7 
Figure 6.3. The results or using a damped least squares inversion or the travel 
time daLa of Figure 6.2. The cutoff eigenvalues are .An = 0.1, .An = O.:~, .An = 0.5 
alld .An = 0.7. The reconstructions become progressively worse as more eigen­
values are removed. 
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Figure 6.4. H.alldolJl Gaussian noise with a standard deviation of 1 % of Lhe 
LoLal travel Lillie is added Lo Lhe Lravel Limes. This produces a great deal of os(~il­
laLions in the SVD inversion, while the ART2 reconsl;rueLion is reiatively 
IIlIaffeeLed. 
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DAMPED LEAST SQUARES 

Ao = 0.1 Ao = 0.3 

Ao = 0.5 An = 0.7 
Figure 6.5. B.esults using the damped least sqU:1rf'-S inversion for the noise-added 
travel time data. The cutolf eigenvalues are Ao = 0.1, Ao = ().;~, Ao = 0.1) and Ao = 
0.7, wi Lit Ao = O. I) prod uci IIg tlte greatest i III provelllCII t. 



RESOLUTION MATRICES FOR STRIPA 

ART2 SVD 
Figure 6.6. The diagonals of the resolution matrices for the Stripa geometry . 

. The darker areas are better resolved. The better resolved areas correspond to 
those of higher ray density (Figure 5.1). 
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RESOLUTION MATRIOES FOR RETSOFF 

SVD 

Figure 6.7. The diagonals of the~Jtfon matrix for the l~etsoH geometry. The 
d:~.rkcr areas arc beLter resolved. The betLer resolved areas again eorrespolld to 
those area.s of higher ray density (Figure 5.5). 



STRIPA DATA SET 1 

ART2 SVD AO = 0.1 
Figure 6.S. Reconstructed images of Stripa Data Set 1 for ART2, SVD, ana 
damped SVD with cutoff eigenvalues Ao = 0.1, Ao = 0.3, Ao = 0.5 and Ao = 0.7. 
Velocities range from 6.0 km/s (dark) to 5.6 km/s (light). 
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RESOLUTION MATRIOES FOR RETSOFF 

SVD 

Figure 6.7. The diagonals of the ~Jtfon matrix for the I {et;soII' geometry. The 
d:~rker areas arc better resolved. The better resolved areas again correspolld to 
those areas or higher ray density (Figure 5.5). 



STRIPADATASET 1 

ART2 SVD AO = 0.1 
Figure 6.8. Reconstructed images of Stripa Data Set 1 for ART2, SVD, ana 
damped SVD with cutoff eigenvalues >"0 = 0.1, >"0 = 0.3, >"0 = 0.5 and >"0 = 0.7. 
Velocities range from 6.0 km/s (dark) to 5.6 km/s (light). 
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· STRIPA DATA SET 2 

ART2 SVD AD = 0.1 
Figure 6.9. Reconstructed images of Stripa Data Set 2 for ART2, SVD, and 
damped SVD with cutoff eigenvalues Ao = 0.1, Ao = 0.3, Ao = 0.5 and Ao = 0.7. 
Velocities range from 6.0 km/s (dark) to 5.6 km/s (light). 
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DIFFERENCES 

ART2 SVD AO = 0.1 
Figure 6.10. The differences are taken between the reconstructions of Data Set 2 
(Figure 6.9) and and Data Set 1 (Figure 6.8). The differences range from 0.3 
km/s (dark) to 0.0 km/s (light). 
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STRIPA DATA SET 1 

Figur~112 A comparison of the ART images with the best SVD~YcPnstruc­
tions (Ao = 0.3) for Data Set 1, Data Set 2 and the difference. There are some 
similarities in the results, but the SVD images remain oscillatory. 
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SVD INVERSION 

WITH A PRIORI DATA WITHOUT A PRIORI DATA 
Figure 6.12. The SVD inversion of the travel times derived from the model in 
Figure 6.1 with the model itself used as a priori data and >"0 = 0.3. The improve­
ment is a direct result of using the original model as the a priori data. 
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Figure 6.13. The damped SVD inver~ionusing ART result as a priori data. The 
cutoff eigenvalues >"0 = 0.3, >"0 = 0.5, >"0 = 0.7 and >"0 = 1.0. The images progress 
toward the ART result as >"0 increases. 
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SVD WITH ART AS PRIOR DATA 

STRIPA DATA SET 1 STRIPA DATA SET 2 
Figure 6.14. The results of the SVD inversion using the ART result as a priori 
data for Stripa data set 1 and Stripa data set 2. The cutoff eigenvalue is 
Ao = 0.3. 
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CHAPTER 7 

Summary, Conclusions and Recommendations 

Summary 

To assess the applicability and reliability of Algebraic Reconstruction Techniques 

(ART) to geophysical problems, algorithms were developed and applied to several real 

and synthetic data sets. The ART algorithms were developed for analysis of travel time 

data to determine the velocity field of a particular medium; such a determination is cru­

cial to the delineation of anomalous zones in media characterized by fractures, non-

uniform temperature distributions, compositional variat:ons, and specific hydrological 

features which may relate to variations in acoustic velocity. 

ART was initially applied to a simple velocity model to study the general behavior 

and reliability of the algorithms themselves. A more complex model was then used to 

study in greater detail the characteristics of the algorithms and modifications, such as. 

the incorporation of weighting and smoothing functions. This latter, more realistic 

model produced a more complete account of the expected difficulties in the inversion of 

real data. Knowledge gained from the studies with synthetics was applied to two high-

quality travel-time data sets. The experiments were carried out at the Retsof salt mine 

in New York and at the underground radioactive waste study site in Sweden (Stripa). 
. . 

The reconstructions of both data sets were consistent with known structures and 

expected velocity fields. 
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The ART algorithms can be shown theoretically to converge to the least squares 

solution. This convergence is not observed in the application of the method. However, 

synthetic studies show that ART produces a more realistic reconstruction of the original 

velocity model than does least squares. Hence, in an effort to optimize the effectiveness 

of the ART algorithms, a combination of these techniques is employed. 

Conclusions 

Algebraic reconstruction techniques can be an effective means of determining the 

two-dimensional velocity distribution of a medium. The velocity structure of several 

models were accurately' recovered by the ART inversions. However, these synthetic stu­

dies also showed adverse characteristics of the reconstructions, primarily described by 

oscillating velocity values in adjacent pixels which can result in peppered reconstruc­

tions, and the smearing of low or high velocity zones into the surrounding medium. 

Such velocity oscillations are a manifestation of a general instability associated with 

improper damping, small pixel size or simply noisy data. The oscillations can be virtu­

ally eliminated with the incorporation of a smoothing function into the algorithm. The 

application of smoothing and ray tracing algorithms also served to diminish the effects of 

smearing, but did not eliminate them. Proper station geometry is essential in reducing 

smearIng. 

Analysis of the syn thetic data also showed that the iterative process does not ulti­

mately converge to the original model. There are several reasons for this behavior . 

. When straight rays are used in the inversion the algorithm is no longer iterating toward 

the original model, but to some non-unique solution which fits the travel-time data. 

This results in the misrepresentation of the distance and RMS residual values which are 

calculated with respect to curved rays through the original model. The limited 

effectiveness of the curved ray algorithm is also related to this ultimate divergence. The 

rays are traced exactly the same for the forward and inverse problems, except the curve 
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is .approximated by straight line segments through the pixels in the inverse problem. 

Therefore, the results effectively show the non-uniqueness of the problem and an accu­

rate conclusion to the curved ray analysis awaits further studies. 

It is necessary to determ,ine the iteration at which the ultimate divergence begins, 

since reconstructions are overly smoothed before this iteration and peppered after it. 

This "optimal iteration" is generally not distinct; reconstructions tend to be similar for 

several iterations before and after. The synthetic travel time data are used to character­

ize the behavior of the reconstructions around the point closest to the original model. 

Results of this analysis lead to the choice of two reasonable criteria upon which to iden­

tify the optimal iteration in real data studies: the reconstructions are more oscillatory 

after the optimal iteration, and the optimal iteration occurs just after a sharp bend in 

the variance and RMS residual curves. The use of these two criteria leads to the deter­

mination of a reasonable stopping point for the process. 

Two other parameters must be determined for a gIven data set: the relaxation 

parameter and the pixel size. The proper values are identified by the same criteria used 

in the determination of the optimal iteration. The damping should be altered until the 

bend in the variance or RMS residual curve levels between 10 and 20 iterations (the 

analysis of real data showed that the bend IS more apparent for the RMS residual 

curve). Less damping will initiate oscillations in the curves and greater damping 

smooths the bend so that it is no longer easily distinguished. The size of the pixels used 

in the inversion effectively determines the limiting size of the velocity features which 

can be recovered. A tradeoff results because the solution becomes more unstable with 

decreased pixel size. Therefore, the optimal pixel size is that which is small enough to 

recover the desired velocity features without resulting in peppered reconstructions. 

Noise was modeled by adding random Gaussian adjustments to the travel time 

data. The inversion for the simple velocity model was an underdetermined problem and 

the addition of noise resulted in an increase in oscillations and smearing effects. 
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However, the inversion for the complex model was overdetermined and the addition of 

noise resulted in very little change in the reconstructions for 5% and 10% noise. This 

surprising result suggests that the artifacts of noise may be deterministic and can possi­

bly be eliminated with the an increase in ray paths or decrease in number of pixels. 

The application to real data of the criteria obtained from the analysis of synthetic 

travel time data demonstrated the efficacy of the method. In the inversion of the Stripa 

and Retsof data sets, ART-type algorithms were shown to offer a rapid, reliable means 

of reconstructing the slowness fields. Details in the form of low velocity zones in media 

with up to 40% velocity contrast were recovered, their location and values apparently 

determined accurately. The assumption of straigh t . rays caused few problems in the 

apparent reliability of the results, even in high contrast media, although experiments 

requiring increased accuracy usmg a larger number of ray paths and smaller pixels 

would require curved ray algorithms. Differences in algorithms are minimal, with per­

formance dependent on the specific nature of the data set. Proper relaxation con­

straints must be applied and the proper number of iterations taken, otherwise very poor 

reconstructions will result, even though variances and RMS residuals appear acceptable. 

For real data, this can be especially difficult because non-mathematical methods must 

be relied upon, in part, to determine the proper parameters. The various weighting 

schemes and the averaging method of correction (equation 2.10) did not prove useful, 

but the smoothing algorithm produced great improvements in the Retsof reconstruc­

tions, although it proved inappropriate for the Stripa data. 

The anomalous Stripa velocities were affected both by thermal variations and the 

presence of fracture zones, which were accurately reconstructed. These conditions exist 

in many other situations, including those in geothermal areas and steam injection zones. 

The monitoring and mapping of these zones is important in studying the productivity 

of the regions. The Stripa data set shows that both thermal and fracture zones can be 

accurately identified using ART. The anomalous Retsof velocities were caused 
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principally by rock failure, and again the reconstructions proved useful in mapping the 

failure zone. The velocity values of the in-situ rock were as expected, enabling rather 

simple inversions for absolute determination of arbitrary velocity fields. 

Recommendations 

In conducting a tomography survey, it is strongly recommended that a complete 

synthetic study be conducted on prospective velocity models of the area before the data 

is acquired. The proper geometry of the survey is dependent on the expected velocity 

distribution, the estimated location of the primary region of interest, and the required 

resolution and can be more effectively determined by synthetic analysis. A poorly 

designed station distribution can render a survey virtually worthless. The damping 

parameter and pixel size are primarily influenced by the station geometry, so reasonable 

values may be found ·with these velocity models. The synthetic studies can also help in 

data jn terpretation by setting up a catalog of reconstructions for various velocity 

anomalies and by showing the effect of smearing with a given geometry. 

The development of ART in this thesis has focussed on P-wave travel times with a 

cross-borehole geometry. The techniques may also be applied to S-wave, surface wave 

and amplitude data in a variety of geometries without changing the algorithms. 

A. S-waves and surface waves 

Travel time data from S-waves and surface waves are inverted exactly as P-wave 

travel times. The lack of clear onset times may produce greater reading errors than for 

P-waves resulting in noisy reconstructions. Surface wave data are advantageous in that 

both source and receiver are located at the surface and can be distributed completely 

around the region of interest. Surface anomalies are recovered and the results are aver­

aged with depth, dependent on the wavelengths involved. The technique is useful in 

areas where the surface can not be disrupted. 
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S-wave data should be acquired along with the P-wave data when possible. S-wave 

surveys use the same geometry as P-waves and can sometimes use the same source so 

that both data sets may be inverted simultaneously. TheS-wave results give additional 

information about the rock properties and can be combined with P-wave data to pro­

duce a map of the Poissons ratio for the region. 

B. Anz"sotropy 

For certain media it is highly desirable to include anisotropy in the inversion. 

Anisotropy may be incorporated into the algorithms in two ways: one can invert 

directly for the slowness components of anisotropy; alternatively, the anisotropy may be 

extracted as a correction to the travel time data. The first method involves specifying a 

functional relationship between the incident angle of the ray and the slowness of each 

pixel. An elliptical slowness dependence is simplest and requires three components of 

slowness; hence, three values are assigned to each pixel. The second method requires 

that an estimate of the general anisotropy of the medium be calculated and the travel 

times adjusted to remove this anisotropy. The corrected data are then inverted using 

ART to determine the velocity distribution independent of anisotropy. Each of these 

methods has advantages in different situations. For example, the second method is 

optimal for a homogeneous anisotropic medium where the anisotropy is easily estimated. 

C. Amplitude data 

In the determination of the material properties of an elastic medium, its dissipative 

characteristics provide an indispensable complement to the velocity structure. These 

dissipative properties may be understood by analysis of the amplitude of the waveform, 

and may be parameterized by an intrinsic quality factor, Q. In addition, filtered data 

may be studied to determine the frequency dependence of Q. This frequency dependence 

is an important indicator of the actual dissipation mechanisms and serves to further 

illuminate aspects of the material properties of the medium. Some ambiguity will 

remam owing to non-intrinsic effects such as elastic scattering, noise, geometric effects 
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and interference phenomena. The geometric effects for a known source spectrum and 

radiation pattern may be easily accounted for; noise may be expressed in a well­

designed study over a spectral band of interest. The resultant apparent attenuation 

may be further decomposed according to the specific heterogeneous nature of the study 

area. 

D. Reflection and refraction surveys 

ART algorithms can be used with virtually any geometry in which ray paths can 

be traced. In the context of reflection and refraction surveys, the algorithms are set up 

as a secondary processing technique: after prominent interfaces have been defined so 

that the reflected and refracted rays can be traced through the medium. The technique 

should be helpful in areas with large horizontal velocity variation. The principal ambi­

guity is related to the choice of interfaces which thus presupposes a degree of confidence 

in the starting model. Bishop et al. (1985) have developed a technique that solves simul­

taneously for the velocity field and the location of the reflector. Such a technique can 

also be incorporated in the ART algorithms. 

E. Future work 

Extension of this work can take two directions: further studies with real data, and 

improvements to ART. Real data sets need to be studied to determine if the results 

found here have a general application to different geometries and wave types. Such stu­

dies can also better characterize the behavior of ART. Further analysis with curved ray 

paths mus~ be undertaken. The effectiveness of curved rays can be studied by using the 

travel times of ray paths traced through the final solution in the RMS residual. The 

solution must be smoothed before this can be accomplished. The smoothing .can be per­

formed by taking a 2-D spatial Fourier transform with a Nyquist frequency correspond­

ing to the station spacing. An inverse Fourier transform will then result in a reconstruc­

tion with the less resolved velocities eliminated. Improvements to ART can begin with 

the incorporation of a· priori data and least squares, as studied in Chapter 6. 
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APPENDIX 

A general computer program was developed for this thesis to analyze synthetic 

and real data sets using any desired algorithm. The program can be easily modified for 

specific applications or needs. Curved ray paths and smoothing are incorporated by 

making changes at the appropriate lines described below. If ART2 is used exclusively, 

the memory allocation can be greatly reduced, since this algorithm does not require 

that the length of each ray through each pixel be stored. 

0- 104 

105 - 114 

115 - 153 

154 - 170 

171 - 198 

The three input files (parameters, station locations and travel times) are 

setup and the parameters read into the program. 

The pixel size and grid are set up by inputting the maximum coordin-ates 

of the field and the number of columns and rows of pixels desired. 

For syn thetic analysis the true velocity model can be read in to deter­

mine the distance, 6 (equation 2.25) and random Gaussian noise can be 

added to the travel time data. The noise is derived using the machine­

dependent (VAX 11/780) random number generator RANDU, the func­

tion GAUSS and subroutine NOISE. 

The X (row) and Z (column) coordinate of each grid point is defined. 

The station locations and travel times are read in and any corrections 

are applied. The total distance between source and receiver is calculated 

for each ray path. 



199 - 207 

238 - 327 
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The calculation of the ray path through the pixels requires that the ray 

travel from left to right. The stations are reversed if this is not the case. 

In this program listing a straight ray path is assumed and the path 

lengths through each pixel is calculated. The storage of these pixel 

lengths takes a tremendous amount of memory so that steps have been 

taken to reduce the space. Normally, a 3-dimensional array is necessary; 

an IxJ array for the pixel numbers, and an M vector for the number of 

ray paths. This would quickly exceed the storage capacity of a VAX 

11/780 for any reasonably sized data set. The array size can be reduced 

to two dimensions if each pixel had an individual n urn ber. In this algo­

rithm it was more convenient to corn bine the (i ,j) pixel specification by . 

using integers and multiplying j by 100 and adding to i. This results in 

a single integer value which may be accurately decomposed so long- as i 

does not exceed 100. This process also splits the array into two one­

dimensional vectors; an integer vector, LRBOX, containing the pixel 

numbers, and a real vector, LR, containing the path lengths through the 

corresponding pixels. The vectors are compact with each en try filled in 

sequence as the ray is traced through the field and LRBOX acting as a 

pointer to the next pixel in the sequence. The number 222222 is used as 

a marker for the end of each ray. If it is desired, LR may be entirely. 

eliminated by exclusively using ART2, saving valuable computer storage 

space. 

Curved ray paths can be used in place of the straigh t paths used in this 

algorithm. To use the curved paths, replace lines 228 - 337 with a ray­

tracing subroutine that outputs the (X,Z) coordinates at some time step. 

These values are then used to calculate the path length, LR, through 

each pixel, LRBOX. In this thesis, this calculation was perfOI:med 



328 - 344 

345 - 370 

371 - 391 

392 - 424 
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assuming a straigh t path between the (X,Z) coordinates. 

In this algorithm, the started model, BOX, is produced by a simple 

back-projection of the travel times by dividing each by the correspond­

ing path length and assigning each pixel along this path the resulting 

slowness (equation 2.6). For each pixel, the slownesses produced by the 

various rays are averaged. If a different starting model is desired, the 

values are read into BOX at this point. Note that the inverse of BOX, 

i.e. the velocity, is ou tpu t. 

The program now begins to iterate through the specified ART algorithm, 

a single ray at a time. Before each iteration, any slownesses greater or 

less than specified values is set back to these values. 

The travel times are calculated through the updated velocity model and 

these times subtracted from the observed travel times to produce DEL­

TAG 

The specified ART algorithm is applied to the corrections. The velocity 

model can be updated one ray at a time, or the corrections averaged 

according to equation (2.10). 

425 - END The model is updated and the distance (if applicable), variance, entropy, 

and RMS residual are calculated for each iteration. The statistical values 

are output to UNIT 14 and the updated velocity model output to UNIT 

15. A smoothing subroutine can be added before line 435, if desired. 



0001 CC ART ALGORITHMS USED FOR CROSS·HOLE TYPE DATA 
0002 CC MODIFIED FOR USE WITH SYNTHETIC DATA 
0003 CC NOISE CAN BE ADDED TO THE DATA 

C 
C PROGRAM ART 
C 
C VAX 11/780 VMS VERSION 4.3 APRIL 25, 1986 
C 
C by JOHN E. PETERSON, JR. 
C CENTER FOR COMPUTATIONAL SEISMOLOGY 
C LAWRENCE BERKELEY LABORATORY 
C UNIVERSITY OF CALIFORNIA 
C BERKELEY, CA 94704 
C 

0004 C 
0005 C COMMAND FILE SETUP: (ART.DAT) 
0006 C 
0007 C 1 !ART • NUMBER OF ALGORITHM WANTED: 
0008 C 1- ART 
0009 C 2 - ARTI 
0010 C 21- ART2 
0011 C 3 - WART (1 WEIGHTED BY LR/RAYPATH) 
0012 C 4 - WARTI (2 WEIGHTED BY LR/RAYPATH) 
0013 C 5 - WARTA (1 WEIGHTED BY (C/RAYPATH)**4 
0014 C 6 - MART 
0015 C 7 - SIRT (MUST USE lITER = 2) 
0016 C 2 lITER - METHOD OF CHANGING THE PICTURE: 
0017 C 1 - EACH TIME A RAY HAS BEEN ANALYZED 
0018 C 2 - AFTER ALL RAYS HAVE BEEN ANALYZED 
0019 C 3 ITER - NUMBER OF ITERATIONS WANTED 
0020 C 4 RELAX - RELAXATION PARAMETER 
0021 C 5 C D - TOTAL FIELD DIMENSION - WIDTH (SPACE) HEIGHT 
0022 C 6 !MAX JMAX - NUMBER OF COLUMNS (SPACE) ROWS 
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0023 C 7 NUMMIN - MINIMUM # OF PIXEL SAMPLES TO OUPUT VALUES 
0024 C 8 VMAX VMIN • MAXIMUM AND MINIMUM ALLOWABLE VELOCITIES 
0025 C 9 11 12 SIGMA TMAX - SEED VALUE FOR RANDU FOR GAUSSIAN NOISE 
0026 C - TMAX IS THE % OF TOTAL TIME 
0027 C 10 NORY - YES OR NO TO READ IN ACTUAL VELOCITY MODEL 
0028 C 11- BOXT - ACTUAL VELOCITY MODEL 
0029 C 
0030 C GEOMETRY SETUP: 
0031 C 
0032 C THE GEOMETRY IS ASSUMED TO BE A 2-DIMENSIONAL FIELD 
0033 C SOURCE-RECEIVER PAIRS WITH DEPTH (Z) POS DOWNWARD AND 
0034 C THE ORIGIN IN THE UPPER LEFT CORNER (NO NEG VALUES). 
0035 C MOST GEOMETRIES WILL BE OFF-PLANE, A SUGGESTED SET-UP IS: 
0036 C TAKE A BOREHOLE (ASSUMED STRAIGHT) TO THE FAR LEFT AS 
0037 C THE X=O AXIS WITH THE ORIGIN TAKEN ABOVE THIS, WITH 
0038 C Z=O TAKEN AS THE SHALLOWEST DEPTH IN THE FIELD .. 
0039 C THE X-VALUE OF THE LOCATIONS ARE THEN TAKEN AS THE 
0040 C DISTANCE FROM THE X=O AXIS AT THE SAME DEPTH. 
0041 C 
0042 C SO LOC(X,Z) ARE JUST THE 2-D VALUES OF THE STATION 



0043 C 
0044 C 
0045 C 
0046 C 

LOCATIONS. THE DATA FILE IS SET UP AS: (UNFORMATTED) 

(LOCATION #) (TRUE X) (TRUE Y) (TRUE Z) (LOC(X)) (LOC(Z)) 
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0047 
0048 
0049 

C 
C 
C 

WHERE THE TRUE VALUES (XLOC) ARE THE ACTUAL VALUES OF THE 
DATA COLLECTION GEONlETRY USED TO CALCULATE PATHLENGTHS 
AND LOC(X,Z) ARE USED IN THE ART CALCULATIONS. 

0050 C LOCATION #'S ARE JUST IN NUNlERICAL ORDER DOWN THE FILE. 
0051 C 

0052 C DATA FILE SETUP: 
0053 C 
0054 C THE DATA FILE CONTAINS THE STATION NUMBERS AND THE 
0055 C TRAVEL TINlE BETWEEN THE PAIR (UNFORMATTED). THE 
0056 C CORRECTIONS FOR THE PATHLENGTH AND TRAVEL TINlE TO 
0057 C BE SUBTRACTED FROM THE GIVEN VALUES ARE GIVEN (ONLY 
0058 C IF THESE ARE SINGLE NUMBERS FOR THE ENTIRE DAT SET) 
0059 C 
0060 C 1 - (DDELAY) (TDELAY) 
0061 C 2-NRA Y - (SOURCE #) (RECEIVER # ) (TRAVEL TIME) 
0062 C 
0063 C 
0064 C LR(NPTR,Kl): LENGTH OF THE K'TH RAY THROUGH PIXEL (J,I) 
0065 C BOX(JTEMP,ITEMP): SUM OF THE SLOWNESSES THROUGH (J,I) 
0066 C SUMRAY(JTEMP,ITEMP): SUM OF THE LENGTHS THROUGH (J,I) 
0067 
0068 . C UNIT 8 INPUT FILE OF PARAMETERS 
0069 C UNIT 10 INPUT FILE OF LOCATIONS 
0070 C UNIT 11 INPUT FILE OF TRAVEL TIME DATA 
0071 C UNIT 14 OUTPUT FILE FOR STATS:· DIST VAR ENTR RMS RES 
0072 C UNIT 15 OUTPUT FILE FOR RESULTS 
0073 
0074 
0075 
0076 
0077 
0078 
0079 
0080 
0081 
0082 
0083 
0084 
0085 
0086 
0087 
0088 
0089 
0090 
0091 
0092 
0093 
0094 

REAL LZ,LX,LRl, 
& Z(150), 
& X(150), 
& XLOC(I000,3), 
& LOC(1000,2), 
& BOX(150,150), 
& BOXl(150), 
& BOXT(I50,i50), 
& SUMRAY(150,150), 
& SUMBOX(150,150), 
& LR( 660000), 
& TT(lOOOO), 
& SLOW(lOOOO), 
& PATH(10000), 
& LRSQR(10000), 
& NORMl, 
& NORM2, 
& NORM(150,150), 
& YN(500) 

!used in geometry of pixels 
!vertical grid values 
!horizontal grid values 

!field source and receiver locations 
!converted 2-D locations used in ART 
!slowness values for each pixel 

!work space for velocities 
!true velocity field synthetic analysis 

!work space for summing raylengths 
!work space for summing corrections 

!length of K'th ray through pixel 
!travel times 

!calculated average slowness for each ray 
!pathlengths 
!denominator in ART inversion 

!Ll norm SUM(calc - obs) 
!L2 norm SQRT(SUM(calc - obs)**2) 

!Ll norm at each pixel 
!values for calculating Gaussian noise 



0095 
0096 
0097 
0098 
0099 
0100 
0101 
0102 

0103 
0104 

INTEGER NUM(150,150), 
& LRBOX(660000) 

CHARACTER*l NORY 

READ(8,*) !ART 
READ(8,*) lITER 
READ(8,*) ITER 

READ(8,*) RELAX 

!number of rays through each pixel 
!pixel code that makes LR a 1-D array 

!yes or no if inputting true velocity field 

!algorithm number 
!correction scheme 
!number of iterations desired 

!value of relaxation parameter 

0105 C SET UP PIXEL SIZES AND GRID 
0106 
0107 READ(8,*) C,D !maximum field dimensions (horiz) (vert) 
0108 READ(8,*) IMAX,JMAX !number of pixels (column) (row) 
0109 A = CjFLOAT(IMAX) !horizontal dimension of pixel 
0110 B = DjFLOAT(JMAX) !vertical dimension of pixel 
0111 READ(8, *) NUMM]N !min number of rays through pixel to plot 
0112 READ(8,*) VMAX,VMIN !max and min velocities allowed 
0113 READ(8,*) 1l,12,SIGMA,TMAX !noise analysis parameters for synthetics 
0114 
0115 C READ IN TRUE VELOCITY FIELD IF APPLICABLE 
0116 
0117 READ(8,140) NORY 
0118 IF(NORY.EQ. 'Y') THEN 
0119 DO 34 J = 1,JMAX 
0120 READ(8,*) (BOXT(J,I), 1= 1,IMAX) 
0121 DO 35 I = 1,1MAX 
0122 BOXT(J,I) = l.jBOXT(J,I) 
0123 35 "CONTINUE 
0124 34 CONTINUE 
0125 END IF 
0126 
0127 WRITE(15,*) 'ALGORITHM NUMBER ',!ART 
0128 WRITE(15,*) 'CORRECTION METHOD ',lITER 
0129 WRITE(15,*) 'NO. OF ITERATIONS " ITER 
0130 WRITE(15,*) 'RELAXATION PARAMETER " RELAX 
0131 WRITE(15,*) 'FIELD DIMENSIONS (X-Z) ',C,D 
0132 WRITE(15,*) 'NO. OF PIXELS (COL-ROW)',IMAX,JMAX 
0133 WRITE(15,*) 'PIXEL SIZE (X-Z) ',A,B 
0134 WRITE(15,*) 'VELOCITY LIMITS ',VMAX,VMIN 
0135 
0136 WRITE(14,*) 'ALGORITHM NUMBER ',!ART 
0137 WRITE(14,*) 'CORRECTION METHOD ',lITER 
0138 WRITE(14,*) 'NO. OF ITERATIONS " ITER 
0139 WRITE(14,*) 'RELAXATION PARAMETER. " RELAX 
0140 WRITE(14,*) 'FIELD DIMENSIONS (X-Z) " C,D 
0141 WRITE(14,*) 'NO. OF PIXELS (COL-ROW)',IMAX,JMAX 
0142 WRITE(14,*) 'PIXEL SIZE (X-Z) ',A,B 
0143 WRITE(14,*) 'VELOCITY LIMITS ',VMAX,VMIN 
0144 
0145 C CALCULATE A GAUSSIAN CURVE FOR IF APPLICABLE 
0146 
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0147 
0148 
0149 
0150 
0151 
0152 
0153 

0154 
0155 
0156 
0157 
0158 
0159 
0160 
0161 
0162 
0163 
0164 
0165 
0166 
0167 
0168 
0169 
0170 
0171 
0172 
0173 
0174 
0175 
0176 
0177 
0178 
0179 
0180 
0181 
0182 
0183 
0184 
0185 
0186 
0187 
0188 
0189 
0190 
0191 
0192 
0193 
0194 
0195 
0196 
0197 
0198 

IF(SIGMA.NE.O.) THEN 
DO 11 1= 1,151 

XN = FLOAT(I-1)/5. 
YN(I) = AGAUSS(XN,SIGMA) 

11 CONTINUE 
END IF 

C DEFINE GRID COORDINATES 

ZTEMP = o. 
·XTEMP =0. 
DO 10 1= 1,150 

Z(I) = ZTEMP + B 
X(I) = XTEMP + A 
ZTEMP = Z(I) 
XTEMP = X(I) 
DO 20 J = 1,150 

SUMRA Y(I,J) = O. 
SUMBOX(I,J) = O. 
BOX(I,J) = O. 
NUM(I,J)· = 0 

20 CONTINUE 
10 CONTINUE 

C READ IN SOURCE AND RECEIVER LOCATIONS 

READ(11,*) DDELAY,TDELAY 
DO 30 I~.2 = 1,1000 

READ(10,*,END=31) IDUM,xLOC(K2,1),XLOC(K2,2),XLOC(K2,3), . 
* LOC(K2,1),LOC(K2,2) 

XLOC(K2,1) = XLOC(K2,1) - DDELAY 
LOC(K2,1) = LOC(K2,1) - DDELAY 

30 CONTINUE 

C READ IN AND ANALYZE ONE RAYPATH AT A TIME 

31 NRAYS = 0 
NPTR =0 
DMEAN = o. 
DO 2222 K1 = 1,10000 

READ(11,* ,END=l111) M,N,TT(K1) 
PATH(K1) = (XLOC(M,l) - XLOC(N,l))*(XLOC(M,l) - XLOC(N,l)) 
PATH(K1) = (XLOC(M,2) - XLOC(N,2))*(XLOC(M,2) - XLOC(N,2)) + 

* PATH(K1) 
PATH(K1) = (XLOC(M,3) - XLOC(N,3))*(XLOC(M,3) - XLOC(N,3)) + 

* PATH(K1) 
PATH(K1) = SQRT(PATH(K1)) 
TT(K1) = TT(K1) - TDELAY 
IF(SIGMA.NE.O.) CALL XNOISE (TT(K1),TT1,TMAX,YN,Il,I2) 
TT(K1) = TT(K1) + TTl 
NRAYS = NRAYS + 1 !Total number of rays 
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0199 
0200 
0201 
0202 
0203 

--0204 

0205 
0206 
0207 
0208 
0209 
0210 
0211 
0212 
0213 
0214 
0215 
0216 
0217 
0218 
0219 
0220 
0221 
0222 
0223 
0224 
0225 
0226 
0227 

C FIND THE RAYPATH TlffiOUGH THE PIXEL GRID ' 
C ALWAYS PROCEED ALONG RAY FROM LEFT TO RIGHT 

IF(LOC(M,l).GE.LOC(N,l)) THEN 
L=N 
N=M 

M=L 
END IF 

C CALCULATE SLOWNESS AND TAKE-OFF ANGLE OF THE K'TH RAY AND 
C THE MEAN SLOWNESS OF THE TOTAL FIELD 

LRSQR(K1) = o. 
SLOW(K1) = TT(K1)/PATH(K1) 
DMEAN = DMEAN + SLOW(K1) 
THETA = ATAN((LOC(M,2) - LOC(N,2))/(LOC(N,1) - LOC(M,l))) 

C INITIALIZE START AND END POINT VALUES AND CALCULATE INITIAL 
C AND ENDPOINT PIXEL NUIvlBERS 

Xl = LOC(M,l) 
Zl = LOC(M,2) 
1= INT(X1/A) + 1 
J = INT(Zl/B) + 1 
X2 = LOC(N,l) 
Z2 = LOC(N,2) 
IX = INT(X2/A) + 1 
JZ = INT(Z2/B) + 1 .. 
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0228 C START CALCULATIONS OF THE LENGTH OF RAY TlffiOUGH EACH PIXEL 
0229 C DIFFERENT ALGORITHMS FOR POS AND NEG TAKE-OFF ANGLES 
0230 
0231 IF(THETA.GT.O.) THEN 
0232 DO 510 K = 1,150 
0233 IF{I.GT.IMAX) GOTO 500 
0234 NPTR = NPTR + 1 
0235 ITEMP = I 
0236 JTEMP = J 
0237 X4 = X(I) 
0238 Z4 = Z( J) 
0239 IF(J.EQ.JZ.AND.I.EQ.IX) THEN 
0240 Z4 = Z2 
0241 X4 = X2 
0242 END IF 
0243 LZ = Zl - Z4 + B 
0244 LX = X4 - Xl 
0245 ZT = LX*TAN(THETA) 
0246 IF(ZT.GT.LZ) THEN 
0247 LR1 = LZ/SIN(THETA) 
0248 Xl = Xl + LZ/TAN(THETA) 
0249 Zl = Z4 - B 
0250 J = J - 1 



0251 
0252 
0253 
0254 
0255 

0256 
0257 
0258 
0259 
0260 
0261 
0262 
0263 
0264 
0265 
0266 
0267 
0268 
0269 
0270 
0271 
0272 
0273 
0274 
0275 
0276 
0277 
0278 
0279 
0280 
0281 
0282 
0283 
0284 
0285 
0286 
0287 
0288 
0289 
0290 
0291 
0292 
0293 
0294 
0295 
0296 
0297' 
0298 
0299 
0300 
0301 
0302 

* 

* 

510 
500 

ELSE 
LR1 = LXjCOS(THETA) 
Xl =X4 
Zl = Zl- ZT 
I = 1+1 

END IF 

NUM(JTEMP,ITEMP) = NUM(JTEMP,ITEMP) + 1 
LRBOX(NPTR) = JTEMP*100 + ITEMP 
LR(NPTR) = LR1 
BOX(JTEMP,ITEMP) = SLOW(K1)*LR1 + BOX(JTEMP,ITEMP) 
SUMRAY(JTEMP,ITEMP) = SUMRAY(JTEMP,ITEMP) + LR1 
IF(IART.EQ.1.0R.IART.EQ.3.0R.IART.EQ.5) 

LRSQR(K1) = LRSQR(K1) + LR1 *LR1 
IF(IART EQ.2.0R.IART.EQ.21.0R.IART.EQ.4) 

LRSQR(Kl) = LRSQR(Kl) + LRI 
IF(X4.EQ.x2) I = IMAX + 5 

CONTINUE 
CONTINUE 

ELSE 
DO 511 K = 1,150 

IF(J.GT.JMAX) GOTO 501 
NPTR = NPTR + 1 
lTEMP = I 
JTEMP = J 
X4 = X(I) 
Z4 = Z(J) 
IF(J.EQ.JZ.AND.I.EQ.IX) THEN 

Z4 = Z2 
X4=X2 

END IF 
LZ = Z4 - Zl 
LX = X4-Xl 
ZT = LX*TAN(-THETA) 
IF(ZT.GT.LZ) THEN 

IF(THETA.EQ.o.) THEN 
LRI = LX 
Xl =Xl + LX 
ELSE 

LRI = LZjSIN(-THETA) 
Xl = Xl + LZjTAN(-THETA) 

END IF 
Zl = Z4 . 
J = J + 1 
ELSE 

IF(THETA.EQ.O.) THEN 
LRI = LX 
ELSE 

LRI = ZTjSIN(-THETA) 
END IF 
Xl =X4 
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0303 
0304 
0305 
0306 

0307 
0308 
0309 
0310 
0311 
0312 
0313 
0314 
0315 
0316 
0317 

* 

* 

ZI = ZI + ZT 
I = 1+1 

END IF 

NUM( JTEMP ,ITEMP) = NUM( JTEMP ,ITEMP) + 1 
LRBOX(NPTR) = JTEMP*100 + ITEMP 
LR(NPTR) = LRI 
BOX(JTEMP,ITEMP) = SLOW(Kl)*LRI + BOX(JTEMP,ITEMP) 
SUMRAY(JTEMP,ITEMP) = SUMRAY(JTEMP,ITEMP) + LRI 
IF(IART .EQ .1.0R.IART .EQ.3.0R.IART.EQ .5) . 

LRSQR(Kl) = LRSQR(Kl) + LRI *LRI 
IF(IART .EQ .2.0R.IART .EQ.21.0R.IART .EQ.4) 

LRSQR(Kl) = LRSQR(Kl) + LRI 
IF(X4.EQ.x2) J = JMAX + 5 

0318 511 CONTINUE 
0319 501 CONTINUE 
0320 -END IF 
0321 NPTR = NPTR + 1 
0322 LR(NPTR) = 222222. !The number 222222 signifies 
0323 LRBOX(NPTR) = 222222 !the end of a ray 
0324 2222 CONTINUE 
0325 1111 DMEAN = DMEAN/FLOAT(NRAYS) !The mean velocity field 
0326 PRINT *, NPTR 
0327 
0328 C CALCULATE THE INITIAL FIELD BY A SIMPLE BACK-PROJECTION 
0329 
0330 DO 97 J = 1,JMAX 
0331 DO 96 I = 1,IMAX 
0332 BOX1(1) = O. 
0333 IF(SUMRAY(J,I).EQ.O.) GOTO 96 
0334 BOX(J,I) = BOX(J,I)/SUMRAY(J,I) 
0335 BOX1(1) = l./BOX(J,I) 
0336 IF(NUM( J ,I).LE.NUMMIN) BOX1(1) = O. 
0337 96 CONTINUE 
0338 WRITE(15,300) (BOX1(1), I = I,IMAX) 
0339 97 CONTINUE 
0340 
0341 DO 99 J = I,JMAX 
0342 WRITE(15,301) (NUM(J,I), I = 1,IMAX) 
0343 99 CONTINUE 
0344 
0345 C THE ART ALGORITHMS LOOP THROUGH !FLAG ITERATIONS 
0346 
0347 !FLAG = 0 
0348 1110 !FLAG = !FLAG + 1 
0349 
0350 DO -77 J = 1,JMAX 
0351 DO 78 I = 1,IMAX 

. 0352 NORM(J,I) = O. 
0353 78 CONTINUE 
0354 77 CONTINUE 
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0355 NORMI = O. 
0356 NORM2 = O. 
0357 VAR =0. 

0358 NPTR = 0 
0359 
0360 C IF VELOCITIES ARE LESS THAN VMIN OR GREATER THAN VMAX SET 
0361 C EQUAL TO THESE VALUES 
0362 
0363 DO 89 J = 1,JMAX 
0364 DO 88 I = 1,IMAX 
0365 IF{BOX{J,I).EQ.O.) GOTO 88 
0366 IF{BOX{J,I).LT.1./VMAX) BOX{J,I) = 1./VMAX 
0367 IF{BOX{J,I).GT.1.jVMIN) BOX(J,I) = 1./VMIN 
0368 88 CONTINUE 
0369 89 CONTINUE 
0370 
0371 C CALCULATE THE TIME THROUGH THE CALCULATED VELOCITY 
0372 C FIELD AND SUBTRACT FROM THE OBSERVED TRAVEL TIMES 
0373 
0374 DO 80 K1 = 1,NRAYS 
0375 TEMP = O. 
0376 IPTR = NPTR 
0377 DO 83 K = 1,300 
0378 NPTR = NPTR + 1 
0379 IF{LRBOX{NPTR).EQ.222222) GOTO 81 
0380 JTEMP = INT{LRBOX{NPTR)/lOO) 
0381 ITEMP = LRBOX{NPTR) - JTEMP*lOO 
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0382 . TEMP = TEMP + LR{NPTR)*BOX{JTEMP,ITEMP) !Calculated travel times 
0383 83 CONTINUE 
0384 81 CONTINUE 
0385 
0386 IF{IART.LT.6.AND.LRSQR{K1).EQ.0.) PRINT *, K1 
0387 DEL TAG = TT{K1) - TEMP !(obs - calc) travel times 
0388 IF{DELTAG.GT.l.} PRINT *, DEL TAG 
0389 DELTAS = SLOW{K1) - TEMP/PATH{K1) 
0390 NORM1 = NORM 1 + DEL TAG 
0391 NORM2 = NORM2 + DEL TAG*DEL TAG 
0392 
0393 C APPLY THE SPECIFIED ART ALGORITHM 
0394 
0395 
0396 
0397 
0398 
0399 
0400 
0401 
0402 
0403 
0404 
0405 
0406 

DO 84 K = 1,300 
IPTR = IPTR + 1 
IF{LRBOX{IPTR).EQ.222222) GOTO 82 
JTEMP = INT{LRBOX{IPTR)/I00) 
ITEMP = LRBOX{IPTR) - JTEMP*100 
WT= 1. 
IF{IART.EQ.5) WT =" (A/PATH{K1))**2 
IF{IART.EQ.1) DELTAF = RELAX*LR{IPTR)*DELTAG/LRSQR{Kl) 
IF{IART.EQ.2) DELTAF = RELAX*LR{IPTR)*DELTAG/LRSQR{Kl) 
IF{IART.EQ.21)DELTAF = RELAX*DELTAG/LRSQR(Kl) 
IF{IART.EQ.3)DELTAF = RELAX*LR(IPTR)*LR(IPTR)*DELTAS/LRSQR(K1) 
IF{IART.EQ.4) DELTAF = RELAX*LR{IPTR)*DELTAS/LRSQR(K1) 
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0407 IF(IART.EQ.5) DELTAF = RELAX*LR(IPTR)*DEL TAG/LRSQR(Kl) 
0408 IF(IART.EQ.6) 

0409 * DELTAF = ((TT(Kl)/TEMP)**(RELAX*LR(IPTR)))*BOX(JTEMP,ITE:MP) 
0410 IF(IART.EQ.7) DELTAF = RELAX*LR(IPTR)*DELTAS 
0411 
0412 
0413 
0414 
0415 
0416 
0417 
0418 
0419 
0420 
0421 
0422 
0423 
0424 
0425 
0426 
0427 
0428 
0429 
0430 
0431 
0432 
0433 
0434 
0435 
0436 
0437 
0438 
0439 
0440 
0441 
0442 
0443 
0444 
0445 
0446 
0447 
0448 
0449 
0450 
0451 
0452 
0453 
0454 
0455 
0456 
0457 
0458 

C CORRECT ACCORDING TO THE IITER (lOR 2) CORRECTION SCHEME 

IF(IITER.EQ.l.AND.IART.EQ.6) BOX(JTEMP,ITEMP) = WT*DELTAF 

* 

* 

IF(IITER.EQ.1.AND.IART.NE.6) 
BOX(JTEMP,ITEMP) = BOX(JTEMP,ITEMP) + WT*DELTAF 

IF(IITER.EQ.2) 
SUMBOX(JTEMP,ITEMP) = SUMBOX(JTEMP,ITEMP) + WT*DELTAF 

NORM(JTEMP,ITEMP) = NORM(JTEMP,ITEMP) + DEL TAG 
84 CONTINUE 
82 CONTINUE 
80 CONTINUE 

C IF lITER = 2, SUMBOXY(J,I) SUMS ALL THE CORRECTIONS TO BOX(J,I). 
C THESE ARE THEN DNIDED BY THE NUMBER OF RAYS SAMPLING THE BOX 

NNN = ABS(FLOAT(NRAYS-(IMAX*JMAX))) 
NORM2 = SQRT(NORM2/NNN) 
WRITE(15,*) 'NORM1 =',NORM1 
WRITE(15,*) 'NORM2 =',NORM2 
WRITE{15,*) 'THE ERROR MATRIX FOR ITERATION',IFLAG - 1 
DO 74 J = 1,JMAX 

WRITE(15,300) (NORM(J,I), I = 1,IMAX) " 
74 CONTINUE 

ENTR =0. 
VAR1 = O. 
DIST = O. 
DO 87 J = 1,JMAX 

* 

DO 86 I = 1,1MAX 
BOX1(I) = o. 
IF(NUM(J,I).EQ.O) GOTO 86 
IF(IITER.EQ.2.AND.IART.EQ.6) 

BOX(J,I) = SUMBOX(J,I)/FLOAT(NUM(J,I)) 
IF(IITER.EQ.2.AND.IART.NE.6.AND.IART.NE.7) 

BOX(J,I) = BOX(J,I)+SUMBOX(J,I)/FLOAT(NUM(J,I)) 
IF(IART.EQ.7) BOX(J,I) = BOX(J,I) + SUMBOX(J,I)/SUMRAY(J,I) 
BOX1(1) = l./BOX( J,I) 
IF(NUM(J,I).LE.NUMMIN) BOX1(I) = O. 
SUMBOX(J,I) = O. 
DIST = DIST + (BOX(J,I) - BOXT(J,I))*(BOX(J,I) - BOXT(J,I)) 
VAR1 = VAR1 + (BOX(J,I) - DMEAN)*(BOX(J,I) - DMEAN) 
ENTR = ENTR + (BOX(J,I)/DMEAN)*(LOG(BOX(J,I)jDMEAN)) 

86 CONTINUE 
WRITE(15,300) (BOX1(I), 1= 1,IMAX) 

87 CONTINUE 



0459 DIST = SQRT(DIST/(VAR1)) !Distance to true model 

0460 
0461 
0462 
0463 
0464 C 
0465, 
0466 
0467 
0468 
0469 
0470 
0471 
0472 
0473 
0474 
0475 
0476 
0477 

0001 

VAR1 = VAR1/FLOAT(IMAX*JMAX) 
ENTR = - ENTR/LOG(FLOAT(IMAX*JMAX)) 
WRITE(15,*) 'VARIANCE = ',VAR1 
WRITE(14, *) IFLAG,DIST,V AR1,ENTR,NORM2 
PRINT *, IFLAG,DIST,VAR1,ENTR,NORM2 

IF(IFLAG.LT.lTER) GO TO 1110 

PRINT *, CHAR(27),CHAR(7) 

140 FORMAT(A1) 
151 FORMAT(A) 
156 FORMAT(5I3,4F6.2) 
200 FORMAT(lX,I4,4F15.7) 
300 FORMAT(15(F6.3,lX)) 
301 FORMAT(20(I5,1X)) 

STOP 
END 

0002 SUBROUTINE XNOISE (X,TT1,TMAX,YN,Il,I2) 
0003 REAL YN(400),NOISE1 
0004 CALL RANDU(Il,I2,NOISE1) 
0005 CALL RANDU(Il,I2,SIGN) 
0006 DO 202 II = 1,150 

!Variance 
!Entropy 

0007 IF(NOISE1.GT.YN(II).AND.NOISE1.LT.YN(II+1)) 
0008 * TT1=FLOAT(Il)*X*TMAX/150. 
0009 202 CONTINUE 
0010 IF(NOISE1.GT.YN(151)) TTl = X*TMAX/150. 
0011 IF(SIGN.GT.0.5) TTl = -TTl 
0012 RETURN 
0013 END 

0001 
0002 FUNCTION AGAUSS (X,SIGMA) 
0003 REAL Z,Y2,TERM1,SUM1,DENOM 
0004 Z = ABS(X)/SIGMA 
0005 AGAUSS = O. 
0006 IF(Z.EQ.O.) GOTO 5 
0007 TERM1 = 0.7071067812*Z 
0008 SUM1 = TERM1 
0009 Y2 = (Z**2)/2. 
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0010 DENOM = l. 
0011 
0012 1 DENOM = DENOM + 2. 
0013 TERM1 = TERM1 *(Y2*2./DENOM) 
0014. SUMI = SUMI + TERMI 
0015 IF(TERMl/SUMl.GT.l.E-lO) GOTO 1 
0016 AGAUSS = l.128379167*SUMl*EXP(-Y2) 
0017 5 RETURN 
0018 END 
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