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Abstract

DESIGNING AND ASSESSING DENSITY FUNCTIONALS

by

NARBE MARDIROSSIAN

Doctor of Philosophy in Chemistry

University of California, Berkeley

Professor Martin P. Head-Gordon, Chair

This thesis is concerned with the development of minimally-parameterized and highly-
transferable density functionals. A methodology for searching a given functional
space is developed and used to parameterize three novel functionals: ωB97X-V –
a 10-parameter, range-separated hybrid, generalized gradient approximation density
functional with VV10 nonlocal correlation, B97M-V – a 12-parameter, local meta-
generalized gradient approximation density funcitonal with VV10 nonlocal corre-
lation, and ωB97M-V – a 12-parameter, range-separated hybrid, meta-generalized
gradient approximation density functional with VV10 nonlocal correlation. These
three functionals are validated by comparisons to the best existing density function-
als in their class, and their proper usage (with respect to basis sets and integration
grids) is documented to facilitate use in chemical applications.
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Chapter 1

Introduction

1.1 The Schrödinger Equation

The Schrödinger equation, established in the mid-1920s, describes all aspects
of the microscopic world, governing the behavior of electrons and nuclei in atoms,
molecules, solids, liquids, and gases. However, its complexity allows exact treatment
only for the simplest of systems, and approximations, which diminish its universality
and accuracy, must be made for practical applications. Nevertheless, to determine
the ground state energy (or an excited state energy) of a system of electrons and
nuclei, it is necessary to solve the time-independent Schrödinger equation, given in
Equation 1.1 in the form of an eigenvalue problem.

Ĥ |Ψi〉 = Ei |Ψi〉 (1.1)

The concept of an eigenvalue problem can be understood by considering Equation
1.2. In this simplified case, the operator, Ô (y) = d2

dy2
, is the second derivative, and

the function, f (y) = sin (y), is the trigonometric sine function. The effect of the
operator acting on the function is to return the original function unchanged, save for
a multiplicative constant. Thus, sin (y) is an eigenfunction of the operator, d2

dy2
, with

an eigenvalue of -1.

d2

dy2
sin (y) = − sin (y) (1.2)

Similarly, in Equation 1.1, |Ψi〉 is an eigenfunction of the Hamiltonian operator, Ĥ,
with an eigenvalue, Ei, that is the energy of the state characterized by the wave
function, |Ψi〉. The eigenfunctions and eigenvalues in Equation 1.1 are labeled by
the index, i, because there are an infinite number of exact solutions to the time-
independent Schrödinger equation, with E0 ≤ E1 ≤ E2 ≤ E3 ≤ · · · ≤ Ei ≤ · · · .
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The lowest-energy solution, E0 = 〈Ψ0| Ĥ |Ψ0〉, is called the ground state energy, and
corresponds to the ground state wave function, |Ψ0〉.

The Hamiltonian operator can be written as a sum of five terms,

Ĥ =

[
−

n∑
i=1

1

2
∇2
i

]
+

[
−

M∑
A=1

1

2mA
∇2
A

]
+ n∑

i=1

n∑
j>i

1

|ri − rj |

+

[
−

n∑
i=1

M∑
A=1

ZA
|ri −RA|

]
+

[
M∑
A=1

M∑
B>A

ZAZB
|RA −RB |

]
,

(1.3)

where i and ri represent the indices and coordinates of the n electrons, A and rA
represent the indices and coordinates of the M nuclei, Z is the atomic number of
a given nucleus, and m is the ratio of the mass of a given nucleus to the mass
of an electron. The first term in Equation 1.3, T̂e (or simply, T̂ ), represents the
kinetic energy associated with the movement of the electrons, the second term, T̂n,
represents the kinetic energy associated with the movement of the nuclei, the third
term, V̂ee, represents the potential energy associated with the repulsion between the
electrons, the fourth term, V̂en, represents the potential energy associated with the
attraction between the electrons and the nuclei, and the fifth term, V̂nn, represents
the potential energy associated with the repulsion between the nuclei. Since Ĥ and
|Ψi〉 depend on the coordinates of both the electrons and the nuclei, solving the time-
independent Schrödinger equation involves solving a partial differential equation in
3n+ 3M dimensions.

In order to reduce the dimensionality of the problem at hand, it is necessary
to invoke the Born–Oppenheimer approximation. Since the protons and neutrons
that comprise the nuclei are at least 1800 times heavier than an electron, the Born–
Oppenheimer approximation makes the assumption that the electrons are moving in
a field of fixed nuclei. This simplification gives rise to the electronic Hamiltonian
(Equation 1.4). Since the nuclei are “clamped”, the second term from Equation 1.3
vanishes, and the fifth term becomes an additive constant to the electronic energy.

Ĥe = T̂ + V̂ee + V̂en =

[
−

n∑
i=1

1

2
∇2
i

]
+

 n∑
i=1

n∑
j>i

1

|ri − rj |

+

[
−

n∑
i=1

M∑
A=1

ZA
|ri −RA|

]
(1.4)

The new eigenvalue problem associated with the electronic Hamiltonian, which in-
volves an electronic wave function that depends explicitly on the coordinates of the
electrons and parametrically on the coordinates of the nuclei, is given in Equation
1.5, and the ground state energy of a system within the Born–Oppenheimer approx-
imation is given in Equation 1.6.
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Ĥe |Ψe,i〉 = Ee,i |Ψe,i〉 (1.5)

Etot,0 = Ee,0 +

M∑
A=1

M∑
B>A

ZAZB
|RA −RB |

(1.6)

Despite these simplifications, Equation 1.5 is still incredibly difficult to solve, as
it is a 3n-dimensional partial differential equation. In order to make useful approxi-
mations to |Ψe,i〉, it is essential to incorporate the statistical properties of electrons
into the electronic wave function (henceforth referred to without the “electronic” de-
scriptor). The permutation operator, P̂12, which swaps the coordinates of electrons
1 and 2, is relevant in this respect. Because P̂12 and Ĥe commute, the wave function
is also an eigenfunction of the permutation operator, with an eigenvalue of λ. Since
swapping the coordinates of electrons 1 and 2 twice should have no effect, the value
of λ can either be 1 or -1,

P̂12P̂12 |Ψe,i〉 = λ2 |Ψe,i〉 = |Ψe,i〉 . (1.7)

A value of λ = 1 is associated with bosons (e.g. photons), while a value of λ = −1 is
associated with fermions (e.g. electrons). Thus, even the most basic approximation
to |Ψe,i〉 must be antisymmetric with respect to the exchange of the spatial and spin
coordinates of any two electrons.

The most naive approximation to an n-electron wave function is a product of n
spin orbitals (Equation 1.8), each depending on the spatial and spin coordinates of
a single electron.

|Ψe,i (x1,x2, · · · ,xn)〉 ≈ |ΦH (x1,x2, · · · ,xn)〉 =

n∏
i=1

|φi (xi)〉 (1.8)

However, as demonstrated in Equation 1.9 for the case of two electrons, this Hartree
product wave function does not satisfy the antisymmetry property.

P̂12 |ΦH (x1,x2)〉 = P̂12 (|φ1 (x1)〉 |φ2 (x2)〉) = |φ1 (x2)〉 |φ2 (x1)〉 6= − |φ1 (x1)〉 |φ2 (x2)〉 (1.9)

On the other hand, the Slater determinant wave function given in Equation 1.10 is a
valid antisymmetric wave function, since P̂12 |ΦS (x1,x2)〉 = − |ΦS (x1,x2)〉. Accord-
ingly, |Ψe,i〉 can be approximated as a determinant of spin orbitals.

|ΦS (x1,x2)〉 =
1√
2

∣∣∣∣ |φ1 (x1)〉 |φ2 (x1)〉
|φ1 (x2)〉 |φ2 (x2)〉

∣∣∣∣ =
1√
2

[|φ1 (x1)〉 |φ2 (x2)〉 − |φ2 (x1)〉 |φ1 (x2)〉] (1.10)

A normalized Slater determinant with n spin orbitals is shown in Equation 1.11.



CHAPTER 1. INTRODUCTION 4

|ΦS (x1,x2, · · · ,xn)〉 = (n!)
−1/2

∣∣∣∣∣∣∣∣∣
|φ1 (x1)〉 |φ2 (x1)〉 · · · |φn (x1)〉
|φ1 (x2)〉 |φ2 (x2)〉 · · · |φn (x2)〉

...
...

. . .
...

|φ1 (xn)〉 |φ2 (xn)〉 · · · |φn (xn)〉

∣∣∣∣∣∣∣∣∣ (1.11)

Since electrons are spin-1
2

particles, the spin orbitals, |φ (x)〉, that are chosen to
represent them have both a spatial component, |ψ (r)〉, and a spin component, which
can either be spin up, |α (s)〉, or spin down, |β (s)〉. Therefore, two spin orbitals can
be formed from a single spatial orbital, as shown in Equations 1.12 and 1.13.

|φ1 (x1)〉 = |ψ1 (r1)〉 |α (s1)〉 (1.12)

|φ2 (x2)〉 = |ψ1 (r2)〉 |β (s2)〉 (1.13)

In practice, the spatial orbitals are expanded (Equation 1.14) in a finite basis set of
K atomic orbitals, |ω (r)〉. For closed-shell systems, a basis set of K atomic orbitals
gives n/2 occupied spatial orbitals and K − n/2 unoccupied (or virtual) spatial
orbitals (and equivalently, n occupied spin orbitals and 2K−n virtual spin orbitals).

|ψi (r)〉 =

K∑
µ=1

|ωµ (r)〉 cµi (1.14)

Approximating the wave function as a single Slater determinant of spin orbitals,
|Ψe,i〉 ≈ |ΦS〉, and finding the Slater determinant that satisfies the variational prin-
ciple shown in Equation 1.15, is known as the Hartree–Fock (HF) approximation.
The Slater determinant that minimizes the expectation value, 〈ΦS| Ĥe |ΦS〉, is the
Hartree–Fock wave function, |ΦHF〉.

EHF
e [ΦHF] = min

ΦS

{
〈ΦS| Ĥe |ΦS〉

}
(1.15)

The Hartree–Fock approximation treats the interactions between electrons in a
mean-field manner, meaning that the interaction of each electron with the rest of
the electrons is handled as a single averaged interaction. In order to improve upon
the Hartree–Fock wave function, a linear combination of singly- through n-tuply-
excited determinants generated from the Hartree–Fock reference can be utilized, in
addition to the Hartree–Fock wave function. This is known as the full configuration
interaction (FCI) wave function (Equation 1.16), and can be truncated at all singly-
and doubly-excited determinants to give the CISD wave function, all singly-, doubly-,
and triply-excited determinants to give the CISDT wave function, and so on. Despite
appearing as a straightforward path to the exact answer, the FCI method scales
factorially with the number of spin orbitals, making it prohibitively expensive for
systems with more than a few electrons.
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For a system with n electrons and 2K spin orbitals, the total number of determi-
nants in the FCI wave function is the binomial coefficient, T =

(
2K
n

)
= (2K)!

(2K−n)!n!
. This

can be broken down into a sum over the number of determinants of each excitation
type (zero, single, double,..., n-tuple):

(
2K
n

)
=
∑n

i=0

(
n
i

)(
2K−n
i

)
. As an example, the

FCI wave function for methane (n = 10) in a moderately-sized atomic orbital basis
set (K = 42) contains 2,761,025,887,620 determinants!

|ΦFCI〉 =

T∑
i=1

|ΦFCI,i〉 = c0 |ΦHF〉+

n∑
i=1

2K−n∑
a=1

cai |Φai 〉+

n∑
i=1

n∑
j>i

2K−n∑
a=1

2K−n∑
b>a

cabij |Φabij 〉+ · · · (1.16)

At the complete basis set (CBS) limit (i.e. K = ∞), the FCI wave function
is a linear combination of an infinite number of determinants (or wave functions),
much like the exact electronic wave function, |Ψe〉 =

∑∞
i=0 |Ψe,i〉 (Equation 1.5). The

basis formed by the determinants in the FCI wave function at the CBS limit is an
example of a basis in which the electronic Schrödinger equation can be solved exactly.
Unfortunately, it is an infinite basis and T must be finite in practice. Truncating
the size of the FCI wave function can be achieved either by decreasing the size of
the atomic orbital basis set (K) or by only considering certain types of excitations
(CISD, CISDT, etc.). Solving the electronic Schrödinger equation with a truncated
FCI wave function is accomplished (most primitively) by diagonalizing a matrix that
corresponds to the representation of the electronic Hamiltonian in the basis of the
T
′

selected determinants. Thus, to solve for the ground state and excited state
energies of the aforementioned methane molecule, it would be necessary to not only
diagonalize a 2,761,025,887,620 x 2,761,025,887,620 matrix, but to first determine
the non-vanishing values of its roughly 1024 matrix elements.

Solving Equation 1.5 with the full FCI wave function gives the exact electronic
ground state energy, EFCI

e,0 , within a given atomic orbital basis set (as well as T − 1
exact electronic excited state energies). At the CBS limit, EFCI

e,0 is equal to the exact
electronic ground state energy, Ee,0 = EFCI

e,0 . The difference between this energy and
the electronic Hartree–Fock energy (at the CBS limit) is called the correlation energy,
Ecorr = EFCI

e,0 − EHF
e . A brief derivation of the Hartree–Fock equations as well as an

introduction to the procedure used to solve for the Hartree–Fock energy and wave
function will be given in Section 1.2. In order to account for the correlation energy
that is missing from the Hartree–Fock approximation by definition, an alternate
method known as density functional theory will be introduced in Section 1.3.
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1.2 Hartree–Fock

The first step in deriving the Hartree–Fock equations is to determine an expression
for ES

e [ΦS] = 〈ΦS| Ĥe |ΦS〉 as a function of the spin orbitals. Since the electronic
Hamiltonian is composed of a pair of one-electron operators (T̂ and V̂en) and a two-
electron operator (V̂ee), it can be rewritten in terms of the two distinct types of
operators described in Equations 1.17 and 1.18, as Ĥe = Ô1 + Ô2.

Ô1 =

n∑
i=1

ĥ (ri) ĥ (ri) = t̂ (ri) + v̂ (ri) = −1

2
∇2
i −

M∑
A=1

ZA
|ri −RA|

(1.17)

Ô2 =

n∑
i=1

n∑
j>i

ĝ (ri, rj) ĝ (ri, rj) =
1

|ri − rj |
=

1

r12
(1.18)

A set of guidelines known as the Slater–Condon rules can be used to work out the
expression for ES

e [{φi}], which is given in Equation 1.19.

ES
e [{φi}] =

n∑
i=1

〈φi| ĥ |φi〉+
1

2

n∑
i=1

n∑
j=1

[〈φiφj |φiφj〉 − 〈φiφj |φjφi〉] (1.19)

Before continuing, it is necessary to explain the notation that has been used in
Equation 1.19. This notation (known as “bra-ket” notation) is generally used in
quantum mechanics and was introduced by Paul Dirac in the late 1930s. For the
purposes of this introduction, the term in the first summation represents a single
integral over one variable, while the terms in the second summation represent double
integrals over two variables. The notation is further explained in Equations 1.20-1.22.

〈φi|φi〉 =

∫
[φ∗i (x1)φi (x1)] dx1 (1.20)

〈φi| ĥ |φi〉 =

∫ [
φ∗i (x1) ĥ (r1)φi (x1)

]
dx1 (1.21)

〈φiφj |φiφj〉 =

∫ ∫ [
φ∗i (x1)φ∗j (x2)

1

r12
φi (x1)φj (x2)

]
dx1dx2 (1.22)

The task at hand is to minimize the expression given in Equation 1.19 with respect
to the spin orbitals, under the constraint that the spin orbitals remain orthogonal,
〈φi|φj〉 = δij. The method of Lagrange multipliers can be used to this effect, where
the first variation in the Lagrangian given in Equation 1.23 is set to zero, δL = 0.

L [{φi}] = ES
e [{φi}]−

n∑
i=1

n∑
j=1

εij [〈φi|φj〉 − δij ] (1.23)
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Eventually, the stationary condition leads to, f̂ |φi〉 =
∑n

j=1 εij |φj〉, which can be
further simplified by choosing a special set of (canonical) spin orbitals that zero the
off-diagonal Lagrange multipliers to give the eigenvalue equation, f̂ |φi〉 = εi |φi〉.
Since the Fock operator, f̂ (x1) = ĥ (r1) +

∑n
i=1

∫ [
φ∗i (x2) 1

r12

[
1− P̂12

]
φi (x2)

]
dx2,

depends on the spin orbitals, an iterative method must be used to solve the Hartree–
Fock equations. The spin-dependence of the Fock operator can be integrated out to
give Equation 1.24, which is written in terms of spatial orbitals.

f̂ (r1) = ĥ (r1) +

n/2∑
i=1

∫ [
ψ∗i (r2)

1

r12

[
2− P̂12

]
ψi (r2)

]
dr2 f̂ |ψi〉 = εi |ψi〉 (1.24)

By expanding the spatial orbitals in the eigenvalue equation above in an atomic
orbital basis set, |ψi〉 =

∑K
ν=1 |ων〉 cνi, and left-projecting with 〈ωµ|, a generalized

eigenvalue problem,
∑K

ν=1 Fµνcνi =
∑K

ν=1 Sµνcνiεi, emerges. This can be written in
matrix form as FC = SCε. While the elements of the overlap matrix, Sµν = 〈ωµ|ων〉,
are straightforward to compute, the elements of the Fock matrix, Fµν = Hcore

µν +Gµν

are given in Equations 1.26 and 1.27, where Pµν = 2
∑n/2

i=1 cµic
∗
νi is the one-particle

density matrix and the Hartree–Fock electron density is given in Equation 1.25.

ρHF (r) = 2

n/2∑
i=1

|ψi (r)|2 =

K∑
µ=1

K∑
ν=1

Pµνωµ (r)ω∗ν (r) (1.25)

Hcore
µν represents the elements of the core Hamiltonian matrix and corresponds to

one-electron contributions, while Gµν corresponds to two-electron contributions and
involves the computation of the expensive four-center, two-electron repulsion inte-
grals (ERI), 〈ωµωσ|ωνωλ〉. As shown in Equation 1.27, Gµν can be further separated
into two terms: Jµν and Kµν . The first term represents the elements of the Coulomb
matrix and corresponds to classical electron-electron repulsions, while the second
term represents the elements of the exchange matrix and corresponds to non-classical
exchange effects between same-spin electrons that arise from antisymmetrization.

Hcore
µν = Tµν + Vµν = 〈ωµ| t̂ |ων〉+ 〈ωµ| v̂ |ων〉 (1.26)

Gµν = Jµν +Kµν =

K∑
λ=1

K∑
σ=1

Pλσ 〈ωµωσ|ωνωλ〉 −
1

2

K∑
λ=1

K∑
σ=1

Pλσ 〈ωµωσ|ωλων〉 (1.27)

The total Hartree–Fock energy (Equation 1.28) can be expressed in terms of the
elements of the density matrix, the core Hamiltonian matrix, and the Fock matrix.

EHFtot =
1

2

K∑
µ=1

K∑
ν=1

Pνµ
[
Hcore
µν + Fµν

]
+

M∑
A=1

M∑
B>A

ZAZB
|RA −RB |

(1.28)
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The Self-Consistent Field Method 

SCF ITERATION BEGINS 
 

Calculate G using the ERIs and P 
 

Calculate F using H and G 
 

Calculate the total energy 
 

Form F’ 
 

Obtain C’ by diagonalizing F’ 
 

Transform C’ to C 
 

Determine the new density matrix, P 
 

SCF ITERATION ENDS 

IF
  N

O
T 

 C
O

N
V

ER
G

ED
 

 1  Calculate S, T, V, X=S-1/2 (K x K) and ERIs (K x K x K x K) 

 2  Guess P and calculate H: 

3 

Figure 1.1: A graphical representation of the self-consistent field (SCF) method. K
is the number of atomic orbital basis functions.

In order to solve the generalized eigenvalue problem, FC = SCε, it is necessary
to define a transformation matrix, X = S−1/2, such that X†SX = 1, and define a
matrix C

′
, such that C = XC

′
. With the help of this scheme (called symmetric

orthogonalization), it is possible to convert the generalized eigenvalue problem into
an ordinary eigenvalue problem, F

′
C
′
= C

′
ε, by following the steps in Equation 1.29.

FC = SCε

FXC
′

= SXC
′
ε

X†FXC
′

= X†SXC
′
ε

F
′

= X†FX

F
′
C
′

= C
′
ε

(1.29)

Since the Fock matrix depends on its eigenvectors, the minimization of the total
Hartree–Fock energy uses an iterative procedure known as the self-consistent field
(SCF) method. A graphical representation of the SCF method is given in Figure 1.1.
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1.3 Density Functional Theory

1.3.1 Theoretical Aspects

In the Hartree–Fock approximation, the electronic ground state energy is de-
termined by minimizing the expectation value, 〈ΦS| Ĥe |ΦS〉. In general, the exact
electronic ground state energy is governed by the variational principle,

Ee,0 [Ψe,0] = min
Ψe,i

{
〈Ψe,i| Ĥe |Ψe,i〉

}
. (1.30)

Evidently, the electronic Hamiltonian contains all of the information necessary to
resolve the electronic ground state properties of the associated system. Since the
form of the electronic Hamiltonian is determined by the number of electrons, n, and
the external potential, v̂ (r) = −

∑M
A=1

ZA
|r−RA|

, n and v̂ (r) completely fix Ĥe and

determine the electronic ground state properties of a system (energy, wave function,
etc.). The premise for this section is the notion that the (ground state electron)
density, ρ (r), given in Equation 1.31, can alternatively be used to determine n and
v̂ (r) and, consequently, the electronic ground state properties of a system. While
the proofs that follow are extendable to degenerate ground states, their presentation
in this section is limited solely non-degenerate ground states.

ρ (r) = n

∫ ∫
· · ·
∫

Ψe,0 (r, s,x2, · · · ,xn) Ψ∗e,0 (r, s,x2, · · · ,xn) dsdx2 · · · dxn (1.31)

Demonstrating that ρ (r) determines the number of electrons is straightforward,
since

∫
ρ (r) dr = n. On the other hand, demonstrating that the density uniquely

defines the external potential is less trivial. It is certainly plausible that the density
contains enough information to elucidate v̂ (r), since ρ (r) has sharp peaks at the
coordinates of the nuclei, with a slope that is proportional to the corresponding
atomic number. Unfortunately, this intuitive interpretation is not sufficient to prove
that a 1:1 mapping between the density and the external potential exists (i.e. two
external potentials that differ by more than a constant cannot correspond to the
same density).

Fortunately, in 1964, Pierre Hohenberg and Walter Kohn (HK) proved two fun-
damental theorems[1] that established the existence of a formally exact theory that
utilizes the density as the basic variable for determining the electronic ground state
properties of a system: density functional theory (DFT). The first theorem, HKI,
demonstrates a 1:1 mapping between the density and the external potential via
contradiction. Suppose there exist two Hamiltonians (Ĥe = T̂ + V̂ee + V̂en and
Ĥ
′
e = T̂ + V̂ee + V̂

′
en), corresponding to two ground state wave functions (|Ψe,0〉 and
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|Ψ′e,0〉) that integrate to the same density, ρ (r). The proof (Equation 1.32) proceeds
by demonstrating that two expressions of the variational principle produce contra-
dictory results, indicating that two different external potentials cannot give rise to
the same density.

〈Ψ′e,0| Ĥe |Ψ
′

e,0〉 > 〈Ψe,0| Ĥe |Ψe,0〉 〈Ψe,0| Ĥ
′

e |Ψe,0〉 > 〈Ψ
′

e,0| Ĥ
′

e |Ψ
′

e,0〉

〈Ψ′e,0| T̂ + V̂ee |Ψ
′

e,0〉+

∫
v̂ (r) ρ (r) dr > 〈Ψe,0| T̂ + V̂ee |Ψe,0〉+

∫
v̂
′
(r) ρ (r) dr >

〈Ψe,0| T̂ + V̂ee |Ψe,0〉+

∫
v̂ (r) ρ (r) dr 〈Ψ′e,0| T̂ + V̂ee |Ψ

′

e,0〉+

∫
v̂
′
(r) ρ (r) dr

〈Ψ′e,0| T̂ + V̂ee |Ψ
′

e,0〉 > 〈Ψe,0| T̂ + V̂ee |Ψe,0〉 〈Ψe,0| T̂ + V̂ee |Ψe,0〉 > 〈Ψ
′

e,0| T̂ + V̂ee |Ψ
′

e,0〉

(1.32)

HKI proves that the electronic ground state energy of a system can be written as
a functional of the density, Ee,0 [ρ (r)] = 〈Ψe,0| Ĥe |Ψe,0〉. This expression can be
partitioned into a universal functional that is independent of the external potential,
FHK [ρ (r)] = 〈Ψe,0| T̂ + V̂ee |Ψe,0〉, and a system-specific functional that corresponds

to the external potential,
∫
v̂ (r) ρ (r) dr = 〈Ψe,0| V̂en |Ψe,0〉, to give the expression,

Ee,0 [ρ (r)] = FHK [ρ (r)] +

∫
v̂ (r) ρ (r) dr. (1.33)

Although Ee,0 [ρ (r)] has been separated into two components above, it is impor-
tant not to lose sight of the fact that ρ (r) corresponds to |Ψe,0〉, which corresponds to
v̂ (r). Thus, FHK [ρ (r)] is only valid for densities that come from an antisymmetric
ground state wave function that corresponds to a valid external potential (a con-
dition called v-representability). In general, Equation 1.33 can take any valid trial
density, ρ̃ (r), as its input: Ee,v [ρ̃ (r)] = FHK [ρ̃ (r)] +

∫
v̂ (r) ρ̃ (r) dr. However, it is

necessary to prove that Ee,v [ρ̃ (r)] returns the true electronic ground state energy
when its input is the true ground state density. The second theorem, HKII, estab-
lishes a variational principle for Ee,v [ρ (r)] by alluding to the variational principle
mentioned earlier in Equation 1.30. The proof for HKII is reproduced in Equation
1.34 and establishes that Ee,v [ρ̃ (r)] > Ee,v [ρ (r)] = Ee,0 [ρ (r)]. Ψ̃e,0 represents a
ground state wave function that corresponds to a different external potential, ˜̂v (r),
and integrates to give ρ̃ (r). It is important to stress, once again, that this variational
principle depends on the fact that ρ̃ (r) is associated with an antisymmetric ground
state wave function that corresponds to a valid external potential (i.e. it must be
v-representable).
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〈Ψ̃e,0| Ĥe |Ψ̃e,0〉 > 〈Ψe,0| Ĥe |Ψe,0〉

〈Ψ̃e,0| T̂ + V̂ee |Ψ̃e,0〉+ 〈Ψ̃e,0| V̂en |Ψ̃e,0〉 > 〈Ψe,0| T̂ + V̂ee |Ψe,0〉+ 〈Ψe,0| V̂en |Ψe,0〉

FHK [ρ̃ (r)] +

∫
v̂ (r) ρ̃ (r) dr > FHK [ρ (r)] +

∫
v̂ (r) ρ (r) dr

Ee,v [ρ̃ (r)] > Ee,v [ρ (r)] = Ee,0 [ρ (r)]

(1.34)

HKII indicates that determining the electronic ground state energy of a system
requires the minimization of Ee,v [ρ̃ (r)]. In other words, searching through all valid
trial densities, ρ̃ (r), the one that returns the lowest value for Ee,v [ρ̃ (r)] is the true
ground state density. Unfortunately, both the universal functional, FHK [ρ (r)], and
HKII require that the trial densities be v-representable. However, the criteria for
demonstrating that a trial density is v-representable are unknown. The inability to
check a trial density for v-representability presents a problem for practical implemen-
tations, since it is possible (during a variational search) to land on a density that is
not v-representable, at which point the variational principle provided by HKII is no
longer valid.

Fortunately, the v-representability dilemma was circumvented by Mel Levy in the
late 1970s. Levy proposed a constrained search[2] that replaced the v-representability
requirement with the looser n-representability requirement, namely, that the density
must integrate to give the number of electrons, must be positive, must be continuous,
and must come from an antisymmetric wave function. The idea behind Levy’s con-
strained search can be understood by considering an n-representable density, ρ̄ (r).
In principle, there are an infinite number of (ground or excited state) antisymmetric
wave functions that can give ρ̄ (r) through integration (Equation 1.31). In order to
distinguish the true ground state wave function, |Ψρ̄

e,0〉, from the rest, |Ψρ̄
e,i〉, it is

necessary to invoke the variational principle, as shown in Equation 1.35.

〈Ψρ̄
e,i| Ĥe |Ψρ̄

e,i〉 > 〈Ψ
ρ̄
e,0| Ĥe |Ψρ̄

e,0〉

〈Ψρ̄
e,i| T̂ + V̂ee |Ψρ̄

e,i〉+

∫
v̂ (r) ρ̄ (r) dr > 〈Ψρ̄

e,0| T̂ + V̂ee |Ψρ̄
e,0〉+

∫
v̂ (r) ρ̄ (r) dr

〈Ψρ̄
e,i| T̂ + V̂ee |Ψρ̄

e,i〉 > 〈Ψ
ρ̄
e,0| T̂ + V̂ee |Ψρ̄

e,0〉

(1.35)

Accordingly, the true ground state wave function that integrates to ρ̄ (r) minimizes
the sum of the kinetic and electron-electron repulsion energies,

F [ρ̄ (r)] = min
Ψρ̄e,i→ρ̄

〈Ψρ̄
e,i| T̂ + V̂ee |Ψρ̄

e,i〉 . (1.36)
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If ρ̄ (r) is replaced with ρ (r) in Equation 1.36, then the expression is equivalent to
the HK universal functional, FHK [ρ (r)] = min

Ψe,i→ρ
〈Ψe,i| T̂ + V̂ee |Ψe,i〉. Thus, the HK

universal functional can be reformulated as a constrained search over n-representable
densities. With the v-representability constraint relaxed, the energy density func-
tional can be written in terms of F [ρ̄ (r)],

Ee [ρ̄ (r)] = F [ρ̄ (r)] +

∫
v̂ (r) ρ̄ (r) dr. (1.37)

The ground state energy is given by,

Ee,0 [ρ (r)] = min
ρ̄
Ee [ρ̄ (r)] = min

ρ̄

{
F [ρ̄ (r)] +

∫
v̂ (r) ρ̄ (r) dr

}
. (1.38)

Thus, the Levy constrained search works by partitioning the Hilbert space (i.e. the
wave function space) into sections that correspond to different n-representable den-
sities. All of the wave functions that integrate to a given density are confined to a
separate section. F [ρ (r)] identifies the ground state wave function within each of
these sections, while the minimization in Equation 1.38 takes place over all of these
sections.

Ultimately, the electronic energy can be written as a functional of the density,
Ee [ρ (r)] = F [ρ (r)]+Ven [ρ (r)], where F [ρ (r)] = T [ρ (r)]+Vee [ρ (r)]. The task that
remains is to find an accurate approximation to F [ρ (r)]. Vee [ρ (r)] can be separated
into two components, J [ρ (r)], which corresponds to the classical electron-electron
repulsion energy, and Q [ρ (r)], which corresponds to the non-classical (quantum)
electron-electron interaction energy. This gives the energy density functional,

Ee [ρ (r)] = T [ρ (r)] + Ven [ρ (r)] + J [ρ (r)] +Q [ρ (r)] . (1.39)

The second and third terms in Equation 1.39 are known and can be computed ac-
cording to Equations 1.40 and 1.41, respectively.

Ven [ρ (r)] =

∫
v̂ (r) ρ (r) dr (1.40)

J [ρ (r)] =
1

2

∫ ∫
ρ (r1) ρ (r2)

r12
dr1dr2 (1.41)

Thus, it is only necessary to find accurate approximations to T [ρ (r)] and Q [ρ (r)].
Since the kinetic energy contribution is the largest unknown term, the corresponding
kinetic energy functional must be approximated very accurately. The simplest ap-
proximation for T [ρ (r)] is the Thomas-Fermi model (Equation 1.42), which is exact
for the uniform electron gas (UEG) and has been available since the 1930s. Although
it is possible to make slight improvements to this form by introducing gradient cor-
rections and nonlocality, the best existing approximations are only applicable to
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systems with nearly-uniform densities (such as certain alloys and semiconductors)
and cannot properly describe chemical bonds in molecules. Accordingly, designing
accurate kinetic energy functionals for orbital-free DFT is a very difficult task and
has yet to be accomplished.

T [ρ (r)] =
3

10

(
3π2
)2/3 ∫

ρ (r)
5/3

dr (1.42)

Fortunately, this obstacle was circumvented by Kohn and Sham (KS) in 1965
with the realization[3] that the kinetic energy could be accurately approximated by
introducing a single Slater determinant of spin orbitals that describes a fictitious
system of non-interacting electrons but integrates (via Equation 1.31) to the same
density as that of the exact electronic wave function. In principle, KS-DFT is an
exact theory. Since the non-interacting kinetic energy, Ts [{φi}], is not equal to the
exact kinetic energy, T [ρ (r)], the difference between these two terms is combined
with Q [ρ (r)] to define the exchange-correlation functional,

Exc [ρ (r)] = T [ρ (r)]− Ts [{φi}] +Q [ρ (r)] = Ex [ρ (r)] + Ec [ρ (r)] (1.43)

The only unknown term in KS-DFT is the form of the exchange-correlation func-
tional, Exc [ρ (r)], which can be further partitioned into an exchange functional,
Ex [ρ (r)], and a correlation functional, Ec [ρ (r)]. Since KS-DFT involves spin or-
bitals (like Hartree–Fock), a minor modification to the SCF method shown in Fig-
ure 1.1 enables the calculation of KS-DFT energies. First, the elements in Gµν

that correspond to the exchange matrix must be replaced with the elements of
the exchange-correlation matrix, FXC

µν , which corresponds to the potential of the
exchange-correlation functional. Second, the exchange-correlation energy must be
appended to the total energy. In the next section, practical aspects of KS-DFT
will be discussed. The goal of this thesis is to design better approximations to the
exchange-correlation functional.

1.3.2 Practical Aspects

Although Kohn and Sham published their landmark paper in 1965, it took nearly
30 years for KS-DFT (henceforth synonymous with DFT) to gain traction and achieve
the popularity it enjoys today. In the past 30 years, hundreds of ab initio and
semi-empirical density functionals have been developed by hundreds of chemists and
physicists – so many, in fact, that it would be impractical to cover them all in this
brief introduction. Nevertheless, it would be near blasphemy not to acknowledge
John Perdew’s continued efforts in the area of ab initio density functional develop-
ment and Axel Becke’s impactful contributions to the development of semi-empirical
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density functionals. Nearly all of the popular density functionals currently in use
can be traced back to their groundbreaking ideas. This section will begin with an
introduction to the components of local exchange-correlation functionals. A brief
review of three major hurdles that these functionals face will follow, along with a
summary of several existing methods that can ameliorate some of these difficulties.
Finally, practical computational considerations (such as the choice of basis set and
grid) will be addressed, and the current status of the accuracy of DFT for thermo-
chemistry, non-covalent interactions, isomerization energies, and barrier heights will
be discussed.

All exchange functionals that will be discussed can be described by Equation 1.44
(or simplifications thereof) and all correlation functionals that will be discussed can
be described by Equation 1.45 (or simplifications thereof). In the exchange functional
expression, ex is the exchange energy density per unit volume, while in the correlation
functional expression, εc, is the correlation energy density per electron.

Ex

[
ρα, ρβ , |∇ρα|2 , |∇ρβ |2 , τα, τβ

]
=

α,β∑
σ

∫
ex,σ

(
ρσ, |∇ρσ|2 , τσ

)
dr (1.44)

Ec

[
ρα, ρβ , |∇ρα|2 , |∇ρβ |2 ,∇ρα · ∇ρβ , τα, τβ

]
=∫

(ρα + ρβ) εc

(
ρα, ρβ , |∇ρα|2 , |∇ρβ |2 ,∇ρα · ∇ρβ , τα, τβ

)
dr

(1.45)

The simplest exchange-correlation functionals depend only on the density and
define a class (or rung[4]) known as the local spin-density approximation (LSDA).
These functionals are exact for the uniform electron gas (UEG), but are highly
inaccurate for molecular properties, since most realistic systems have inhomogeneous
density distributions. The LSDA exchange functional has an exact analytic form and
dates back to days of Slater and Dirac (Equation 1.46). On the other hand, there
is no exact analytic form for the LSDA correlation functional, and the three most
popular parameterizations[5–7] (PZ81, VWN5, and PW92) resort to fits to accurate
Monte-Carlo data[8] from the late 1970s. Henceforth, any mention of the LSDA
exchange-correlation functional (SPW92) will refer to the combination of the Slater-
Dirac exchange functional (abbreviated as S) and the PW92 correlation functional.

ESx [ρα, ρβ ] = −3

2

(
3

4π

)1/3 α,β∑
σ

∫
ρ4/3
σ dr (1.46)

In order to improve upon the systematic overbinding inherent to the LSDA, it is
necessary to introduce an ingredient into the exchange-correlation functional that can
account for inhomogeneities in the density: the density gradient, ∇ρσ. These gener-
alized gradient approximation (GGA) functionals tend to improve significantly upon
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the LSDA. Popular GGA exchange functionals[9–12] include B86, B88, PW91, and
PBE, while popular GGA correlation functionals[11–14] include P86, LYP, PW91,
and PBE. These components can be combined to define GGA exchange-correlation
functionals, and the PBE exchange-correlation functional (PBE exchange + PBE
correlation) is perhaps the most popular ab initio GGA functional, while BLYP
(B88 exchange + LYP correlation) is perhaps the most popular semi-empirical GGA
functional. As an example of the improvements offered by GGAs over the LSDA,
the mean signed error (MSE) for SPW92 across 124 atomization energies is -58.11
kcal/mol, while PBE affords an MSE of -12.17 kcal/mol. The same trend can be seen
for non-bonded interactions as well, with SPW92 having an MSE of -30.74 kcal/mol
for the binding energies of 38 water clusters, while PBE has an MSE of only -1.26
kcal/mol. In general, GGAs improve upon the LSDA by reducing the overestimation
of interaction energies.

Two additional ingredients that can be used to further improve the exchange-
correlation functional are either the Laplacian of the density, ∇2ρσ, or the kinetic

energy density, τσ =
nσ∑
i

|∇ψi,σ|2. Since these two ingredients are related, only

one or the other tends to appear in a given functional form (although there are
exceptions[15]). The kinetic energy density is by far the more popular ingredient
and has been used in many modern functionals to add flexibility to the functional
form with respect to both constraint satisfaction (ab initio) and least-squares fitting
(semi-empirical). Popular non-empirical meta-GGA exchange-correlation function-
als are almost exclusively from Perdew and coworkers, and include[16–18] PKZB,
TPSS, and revTPSS, as well as the newer (and slightly empirical) MGGA MS0,
MGGA MS1, MGGA MS2, MGGA MVS, and SCAN functionals[19–22]. Empirical
meta-GGA functionals are much more abundant, mainly due to the endless param-
eterizations provided by the Truhlar group, and include functionals[23–26] such as
M06-L, M11-L, MN12-L, and most recently, and most disastrously, MN15-L. How-
ever, some earlier notable attempts at semi-empirical meta-GGAs include efforts
by Scuseria[27] (VSXC) and Handy[28] (τ -HCTH). In general, meta-GGAs tend to
perform better than GGAs, and the semi-empirical ones can even incorporate some
“medium-range” dispersion (e.g. M06-L binds the sandwich benzene dimer, while
both PBE and TPSS predict entirely unbound potential energy curves (PEC)). For
the set of 124 atomization energies, TPSS, with an MSE of -2.72 kcal/mol, signifi-
cantly improves upon the overbinding of PBE, but manages to underbind the water
clusters with an MSE of 3.21 kcal/mol.

Despite the “systematic” improvement offered by additional physically-meaningful
ingredients, there are three major limitations to the local exchange-correlation func-
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tionals described above: 1). sensitivity to self-interaction error (SIE), 2). inability to
describe long-range correlation (dispersion), and 3). failures for strong correlation.

The simplest way to demonstrate self-interaction (i.e. electrons interacting with
themselves) is to consider the Hartree–Fock description of the hydrogen atom. Since
the hydrogen atom contains only one electron, the contribution from V̂ee = Ĵ + K̂
should be exactly zero. At the CBS limit, the Hartree–Fock energy for the hydrogen
atom is -0.5 Hartrees (Eh), which comes from summing the contributions from T̂
(0.5 Eh), V̂ne (-1.0 Eh), Ĵ (0.3125 Eh), and K̂ (-0.3125 Eh). Thus, the classical
and non-classical electron-electron contributions cancel each other exactly, making
Hartree–Fock one-electron SIE-free. In KS-DFT, since K̂ is replaced by the exchange-
correlation functional, most functionals are not one-electron SIE-free (i.e. J [ρ (r)] +
Exc [ρ (r)] 6= 0 for the hydrogen atom).

A possible workaround for this issue is to replace the local exchange functional
with the exact exchange functional (Hartree–Fock), while keeping the local correla-
tion functional. Early attempts at combining exact exchange with local correlation
were unsuccessful, and the idea was abandoned until the early 1990s, when Becke
introduced the idea of mixing a global fraction of exact exchange with the exchange-
correlation functional. Most primitively (i.e. for the LSDA), these global hybrid
(GH) functionals take the form given in Equation 1.47 and can be theoretically
justified with the adiabatic connection[29–32]. A more empirical way to motivate
global hybrid functionals is to consider the mean signed error (MSE) of Hartree–
Fock and SPW92 for the aforementioned 124 atomization energies. While the former
underbinds the atomization energies with an MSE of 112.79 kcal/mol, the latter
overbinds them with an MSE of -58.11 kcal/mol. Although an equal mixing of the
two (cx = 0.50) would still potentially lead to underbinding, a value of cx = 0.34 will
lead to these MSEs adding to zero.

Exc = cxE
HF
x + (1− cx)ESx + EPW92

c (1.47)

The first global hybrid functional[33], B3PW91, was developed by Becke in 1993
by fitting three linear parameters to 56 atomization energies. B3PW91 is a global
hybrid GGA density functional that takes the form given in Equation 1.48, where
cx = 0.20, ax = 0.72, and ac = 0.81. Most GH GGA density functionals have an
exact exchange mixing parameter between 20% and 25%, including the most popular
density functional, B3LYP (20%). The most popular ab initio[34] GH GGA is PBE0
(25%), while the most popular semi-empirical GH GGA is Becke’s B97, which is
the first systematically-parameterized density functional[35]. For semi-empirical GH
GGAs, the value of cx can change significantly depending on the type of systems in
the training set. For example, the B97-K and SOGGA11-X density functionals[36,
37] have 42% and 40.15% exact exchange, respectively, because barrier heights were
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heavily emphasized in their training sets. In general, the inclusion of exact exchange
helps counter the overbinding of GGA and even meta-GGA functionals. PBE0 erad-
icates the overbinding of PBE for atomization energies, with an MSE of only 1.12
kcal/mol (compared to -12.17 kcal/mol), and further improves the performance of
its local counterpart for the water clusters, with an MSE of 0.20 kcal/mol (compared
to -1.26 kcal/mol).

Exc = cxE
HF
x + (1− cx − ax)ESx + axE

B88
x + (1− ac)EPW92

c + acE
PW91
c (1.48)

Naturally, the formula in Equation 1.48 can be extended to meta-GGAs to give
GH meta-GGA density functionals. From the ab initio side, TPSSh, revTPSSh,
and MGGA MS2h have about 10% exact exchange[20, 38, 39], while the latest
MGGA MVSh functional[21] has an uncharacteristically large value of cx = 0.25.
Since 2004, Truhlar has published at least 12 global hybrid meta-GGA density func-
tionals[40–46], including MPW1B95, MPWB1K, PW6B95, PWB6K, M05, M05-2X,
M06, M06-2X, M06-HF, M08-HX, M08-SO, and MN15. The fraction of exact ex-
change across these functionals varies from 27% (M06) all the way to 100% (M06-HF).

While global hybrid functionals significantly improve upon their local counter-
parts for bonded interactions and kinetics, they only partially address the self-
interaction issue. A more rigorous approach to this problem is through range-
separation[47], where the exact exchange contribution is split into a short-range
component (EHF

x,sr) and a long-range component (EHF
x,lr ). The Coulomb operator of the

short-range component is attenuated by the complementary error function, erfc (r12),
while the Coulomb operator of the long-range component is attenuated by the er-
ror function, erf (r12). EHF

x,sr can be optionally scaled to give a non-zero fraction of
short-range exact exchange, while the scaling coefficient of EHF

x,lr is usually set to one
to ensure that the exchange functional is one-electron SIE-free in the long range.
The corresponding local exchange functional should also be partitioned in the same
way, but the short range component is scaled by 1 − cx and the long-range compo-
nent is discarded. The functional form for a typical range-separated hybrid (RSH)
functional is shown in Equation 1.49.

Exc = cxE
HF
x,sr + EHFx,lr + (1− cx)EDFTx,sr + EDFTc (1.49)

Notable range-separated hybrid GGA functionals include the semi-empirical ωB97
and ωB97X functionals from Chai and Head-Gordon[48], which have 0% and 15.77%
short-range exact exchange, respectively, and tend to 100% exact exchange in the
long-range. The functionals have empirical values for ω as well, with the former
having a value of ω = 0.4 and the latter, a value of ω = 0.3. The CAM-B3LYP
RSH GGA functional[49] by Handy and coworkers is also noteworthy. While it has
19% short-range exact exchange, its long-range coefficient is not 1, but rather, 0.65.
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Finally, it is possible to entirely remove EHF
x,lr to form long-range screened functionals,

such as HSE06 and N12-SX, that are suitable for molecular, as well as solid-state,
calculations[50, 51]. RSH meta-GGA functionals are the least common of the func-
tional types mentioned thus far, with M11 and MN12-SX by Truhlar serving as two
examples[51, 52].

The second weakness of local exchange-correlation functionals is their inability
to properly account for long-range correlation. The most straightforward way to
demonstrate this concept is to consider the potential energy curve of a dispersion-
bound system, such as the sandwich benzene dimer. For this system, LSDA, GGA,
and meta-GGA functionals exhibit an exponential long-range decay, instead of the
proper r−6

12 decay. Fortunately, the past decade has seen a vast amount of work
dedicated to improving the description of non-covalent interactions within KS-DFT.
The two most popular methods are the DFT-D tail by Grimme[53–56] and the VV10
nonlocal correlation functional by Vydrov and Van Voorhis[57].

Grimme’s DFT-D method is a damped, atom-atom empirical potential that can
be trained onto any of the aforementioned functionals. Three generations of DFT-D
tails have been developed by Grimme thus far: DFT-D1, DFT-D2, and DFT-D3.
The latter can be used either with the original damping function, DFT-D3(0), or the
newer Becke-Johnson damping function, DFT-D3(BJ). While it is trivial to train a
dispersion correction onto an existing ab initio or semi-empirical functional, simul-
taneously training a semi-empirical functional with a dispersion correction is more
involved. The first successful attempt was Grimme’s B97-D functional[54], a local
GGA functional utilizing the DFT-D2 tail. Recently, both the DFT-D3(0) and DFT-
D3(BJ) tails have been refit to the existing local exchange-correlation functional of
B97-D to give B97-D3(0) and B97-D3(BJ), with the latter being one of the best
dispersion-corrected local GGA functionals available. Other examples include the
ωB97X-D (GGA) and ωM05-D (meta-GGA) RSH functionals by Chai and cowork-
ers[58, 59], which use a slightly modified version of the DFT-D2 tail. Finally, the
most recent functionals by Chai and coworkers, ωB97X-D3 (GGA) and ωM06-D3
(meta-GGA), are range-separated hybrids[60] that utilize the DFT-D3(0) tail. In
general, dispersion corrections such as DFT-D should be used with functionals that
tend to underbind non-covalent interactions (both strong and weak). However, fit-
ting a dispersion correction to a functional like PBE is tricky, since PBE is already
overbound for the binding energies of the 38 water clusters mentioned earlier. Con-
sequently, PBE-D3(BJ) increases the MSE of PBE by a factor of almost 5 for these
clusters (-5.86 vs. -1.26 kcal/mol). On the other hand, PBE-D3(BJ) drastically
improves upon PBE for dispersion-bound systems.

The popular nonlocal correlation functional by Vydrov and Van Voorhis, VV10, is
far less empirical than the DFT-D approach and only contains two empirical param-
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eters. VV10 can also be either trained onto an existing functional, or simultaneously
trained onto a semi-empirical functional. The functional that will be discussed in
Chapter 3, ωB97X-V, is a range-separated hybrid, GGA density functional that has
been simultaneously trained with the VV10 nonlocal correlation functional. In Chap-
ter 4, the same concept will be applied to develop a local meta-GGA functional with
nonlocal correlation, B97M-V, while in the last chapter, the ideas from the Chapters
3 and 4 will be combined to develop an RSH meta-GGA density functional with
nonlocal correlation (ωB97M-V).

Finally, all of the aforementioned density functionals fail to some extent at de-
scribing multireference systems that exhibit strong correlation. The reason for this
is simple: HF and KS-DFT are both methods that make use of a single determinant.
In order to accurately describe a multireference system, it is necessary to include
multiple determinants. Addressing the issue of strong correlation within KS-DFT is
the least solved problem of the three presented thus far, and requires much further
exploration. However, local functionals tend to outperform hybrids for these types
of systems.

The two most important practical considerations that pertain to KS-DFT cal-
culations are the choice of the atomic orbital basis set and the integration grid.
Non-empirical density functionals should perform best at the basis set limit, while
most semi-empirical density functionals are trained either at the basis set limit (or
close to the basis set limit). Since local functionals are easier to converge to the basis
set limit, their basis set requirements are not as strict as for hybrids. For bonded
interactions, quadruple-zeta basis sets are preferred in general, but triple-zeta basis
sets can act as substitutes for larger systems. For non-covalent interactions, reaching
the basis set limit is easier due to the Boys-Bernardi counterpoise correction scheme.
With the use of counterpoise corrections, a triple-zeta basis set is the CBS limit
for most systems, and even some double-zeta basis sets will suffice (particularly for
local functionals). On the other hand, if counterpoise corrections are unavailable,
it is preferable to use a quadruple-zeta basis set, and minimally, a triple-zeta basis
set. It is worth mentioning, however, that certain semi-empirical density functionals,
primarily from the Truhlar group, are not compatible with counterpoise corrections
and should be utilized without corrections for basis set superposition error (BSSE).

As far as the integration grid is concerned, LSDA and GGA functionals tend
to require similar integration grids and are much less sensitive to the choice than
meta-GGA functionals. For bonded interactions, LSDA and GGA functionals can
be used with grids such as the (50,194) grid that has 50 radial shells per atom, with
194 points per shell. For non-bonded interactions, it is advisable to use the (75,302)
grid for LSDA and GGA functionals. On the other hand, meta-GGA functionals,
particularly empirical ones, require at least the (75,302) for bonded interactions. For
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non-bonded interactions use of the (99,590) grid is advised (although some meta-
GGA functionals will require even finer grids for very weak interactions).

The types of interactions considered in this thesis can be divided into four main
categories: thermochemistry (TC), non-covalent interactions (NC), isomerization en-
ergies (I), and barrier heights (BH). The TC category can be further partitioned into
two subcategories: TCE (easy) and TCD (difficult). TCE covers single-reference sys-
tems and includes atomization energies, bond dissociation energies, electron affinities,
ionization potentials, isodesmic reactions, reaction energies, heavy-atom transfer en-
ergies, and nucleophilic substitution energies. For TCE, the best-performing density
functionals tend to be hybrid meta-GGA functionals. The TCD category is mostly
composed of atomization energies, bond dissociation energies, and heavy-atom trans-
fer energies that are notoriously multi-reference in nature. For these systems, either
local functionals or hybrid functionals with small fractions of exact exchange (30%
or less) tend to perform best.

The NC category can be divided into three subcategories: NCED (easy dimers),
NCEC (easy clusters), NCD (difficult dimers). The first subcategory, NCED, con-
tains dimer binding energies that are not prone to self-interaction error. Typical
systems include the methane dimer, the benzene dimer, the water dimer, almost 100
potential energy curves of hydrogen-bonded and dispersion-bound systems, as well as
a handful of charged interactions. The NCEC subcategory contains binding energies
of large clusters, including water clusters from 3-mers to 20-mers, ammonia clusters,
hydrogen fluoride clusters, sulfate-water clusters, and water clusters with anions in
the center (either fluoride or chloride). For the NCED and NCEC subcategories, the
most important factor is the inclusion of a dispersion correction. Both local func-
tionals and hybrid functionals with dispersion corrections perform very well, most
notably the three functionals that will be presented later in this thesis: ωB97X-V,
B97M-V, and ωB97M-V. On the other hand, the NCD subcategory contains non-
covalent interactions that are very sensitive to self-interaction error, such as dimers
involving radicals, as well as halogen-bonded systems. For these interactions, exact
exchange is absolutely vital, and the best functionals contain at least 40% exact
exchange.

The I category can be divided into two subcategories: IE (easy) and ID (diffi-
cult). IE contains easy isomerization energies that are not sensitive to delocalization
error, such as the isomerization energies of alkanes, organic molecules, sulfate-water
clusters, amino acids, and large water clusters. As with NCED and NCEC, disper-
sion corrections tend to be vital. However, certain functionals with large fractions
of exact exchange (namely M05-2X and M06-2X) tend to perform well. The ID sub-
category, much like the NCD subcategory, involves relative energies of isomers that
are sensitive to SIE. This includes isomerization energies of enecarbonyles, styrene,
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conjugated dienes, as well as a notoriously difficult case, fullerenes. For this subcat-
egory, exact exchange is very important, although too much exact exchange tends to
be detrimental.

Finally, the BH category contains barrier heights of pericyclic reactions, cyclore-
version reactions, proton exchange reactions, in addition to hydrogen transfer and
non-hydrogen transfer barrier heights. Interestingly, a few of the datasets in the
category tend to prefer local functionals, but most of the data points are better
described by hybrid functionals. The best-performing functionals overall are either
global hybrids with large fractions of exact exchange, or range-separated hybrids.

In order to demonstrate the current state of the performance of density functionals
for a wide variety of systems, RMSDs for a total of 4399 data points partitioned
across the 8 datatypes mentioned thus far (NCED, NCEC, NCD, IE, ID, TCE,
TCD, and BH) are summarized in Figure 1.2. The results are calculated with the
def2-QZVPPD basis set and use the (99,590) grid (for the local exchange-correlation
functional) and the SG-1 grid[61] (for the VV10 nonlocal correlation functional).
The first two functionals that are included are Hartree–Fock and SPW92, and are
chosen because they represent the most basic versions of the two theories contained
in Sections 1.2 and 1.3. The remaining 16 functionals can be separated into those
that do not contain a dispersion correction, and those that are corrected by either
the DFT-D or VV10 approaches. Within each of these realms, two local GGA, two
local meta-GGA, two hybrid GGA, and two hybrid meta-GGA functionals are tested.
The two functionals within each category are specifically chosen such that one is ab
initio and the other is semi-empirical. This results in a total of 18 methods.

The results in Figure 1.2 clearly indicate that most density functionals signifi-
cantly improve upon HF and SPW92. In most cases, semi-empirical functionals tend
to outperform the ab initio functionals. For example, M06-L is better than TPSS for
6 of the 8 datatypes, M06-2X is better than TPSSh for all 8 datatypes, B97-D3(BJ) is
equal to or better than PBE-D3(BJ) for 7 of the 8 datatypes, B97M-V is better than
TPSS-D3(BJ) for all 8 datatypes, ωB97X-V outperforms PBE0-D3(BJ) across all 8
datatypes, and ωB97M-V outperforms TPSSh-D3(BJ) across all 8 datatypes. In two
cases, however, the ab initio functional outperforms the semi-empirical functional
overall: PBE vs. BLYP and PBE0 vs. B3LYP. In general, the dispersion-corrected
funtionals shown at the bottom of the figure tend to perform better than the func-
tionals that are lacking dispersion correction, especially for the NCED, NCEC, and
IE datatypes. A much more thorough assessment of these types of functionals will
be conducted in the upcoming chapters.
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kcal/mol Hybridization Ingredients Dispersion # cx NCED NCEC NCD IE ID TCE TCD BH
HF GH None None 0 1 3.79 24.37 4.90 2.33 12.95 80.89 110.73 16.60

SPW92 L LSDA None 0 0 2.14 37.77 7.60 2.22 6.76 42.23 65.35 19.55
PBE L GGA None 0 0 1.96 4.08 3.26 1.15 6.53 9.22 15.58 9.17
BLYP L GGA None 1 0 3.51 14.52 2.69 1.77 14.71 8.62 17.01 9.88
TPSS L meta�GGA None 0 0 2.58 8.90 2.63 1.39 8.44 5.94 10.45 8.03
M06�L L meta�GGA None 34 0 0.55 2.20 1.87 0.71 10.16 5.44 12.97 6.85
PBE0 GH GGA None 0 0.25 1.90 3.60 1.96 1.09 4.10 4.85 7.87 4.11
B3LYP GH GGA None 3 0.2 2.86 8.91 1.77 1.49 11.10 5.24 11.97 5.96
TPSSh GH meta�GGA None 0 0.1 2.50 8.51 2.13 1.35 7.05 5.78 8.49 6.03
M06�2X GH meta�GGA None 29 0.54 0.43 2.52 0.99 0.50 5.56 3.29 7.23 2.57

PBE�D3(BJ) L GGA D3(BJ) 0 0 0.46 5.78 3.67 0.71 5.19 9.67 17.20 9.99
B97�D3(BJ) L GGA D3(BJ) 9 0 0.47 4.82 2.52 0.78 9.15 4.66 7.92 8.32
TPSS�D3(BJ) L meta�GGA D3(BJ) 0 0 0.38 2.28 3.06 0.69 6.47 5.88 8.86 8.72
B97M�V L meta�GGA VV10 12 0 0.24 0.95 2.01 0.27 6.48 3.57 4.82 4.35

PBE0�D3(BJ) GH GGA D3(BJ) 0 0.25 0.44 4.45 2.28 0.58 3.47 4.76 8.72 4.91
�B97X�V RSH GGA VV10 10 0.167 0.24 0.64 1.23 0.27 2.72 3.41 5.01 2.44

TPSSh�D3(BJ) GH meta�GGA D3(BJ) 0 0.1 0.36 1.73 2.49 0.62 5.29 5.55 5.92 6.63
�B97M�V RSH meta�GGA VV10 12 0.15 0.18 0.48 1.13 0.28 2.05 2.48 4.30 1.68

Figure 1.2: The performance of a selection of density functionals for 8 different
datatypes. NCED stands for non-covalent dimers (easy), NCEC stands for non-
covalent clusters (easy), NCD stands for non-covalent dimers (difficult), IE stands
for isomerization energies (easy), ID stands for isomerization energies (difficult), TCE
stands for thermochemistry (easy), TCD stands for thermochemistry (difficult), and
BH stands for barrier heights. The partitioning of the 4399 data points contained
in this figure into the 8 datatypes is: 1744, 243, 91, 755, 155, 947, 258, and 206.
The values in the last 8 columns are RMSDs in kcal/mol. L stands for local, GH
stands for global hybrid, and RSH stands for range-separated hybrid. The column
labeled “#” contains the total number of parameters optimized on a training set for
the corresponding functional. For the functionals with the DFT-D correction, the
number of empirical parameters in the tail is not counted. cx lists the fraction of
exact exchange.



CHAPTER 1. INTRODUCTION 23

1.4 Outline

The goal of this work is to develop accurate exchange-correlation functionals
that are minimally-parameterized and maximally-transferable. In order to achieve
this goal, the combinatorial space of GGA density functionals is fully searched in
the second chapter, with a total of nine types of functionals: local, global hybrid, or
range-separated hybrids utilizing either no dispersion corrections, the DFT-D2 dis-
persion correction, or the VV10 nonlocal correlation functional. The results of this
search indicate that of the nine types, the range-separated hybrid functional that uti-
lizes the VV10 nonlocal correlation functional is the most accurate and transferable
functional. In the third chapter, the functional that resulted from the search in Chap-
ter 2 is introduced and thoroughly tested. This functional is called ωB97X-V. The
fourth chapter deals with a much more difficult problem: searching the meta-GGA
functional space. The scale of this search is on the order of 1040 possibilities and is
thus impossible to complete without approximations. Nevertheless, using appropri-
ate truncations, a local meta-GGA density functional, called B97M-V, is developed
and thoroughly tested for transferability and other properties. In the final chapter,
the best ingredients (range-separation and meta-GGA) are combined to create the
best available Rung 1-4 density functional to date: ωB97M-V.

1.4.1 Chapter 2

The limit of accuracy for semi-empirical generalized gradient approximation (GGA)
density functionals is explored by parameterizing a variety of local, global hybrid
(GH), and range-separated hybrid (RSH) functionals. The training methodology
employed differs from conventional approaches in 2 main ways: 1). Instead of uni-
formly truncating the exchange, same-spin correlation, and opposite-spin correlation
functional inhomogeneity correction factors, all possible fits up to fourth order are
considered, and 2). Instead of selecting the optimal functionals based solely on
their training set performance, the fits are validated on an independent test set and
ranked based on their overall performance on the training and test sets. The 3
different methods of accounting for exchange are trained both with and without dis-
persion corrections (DFT-D2 and VV10), resulting in a total of 491508 candidate
functionals. For each of the 9 functional classes considered, the results illustrate the
trade-off between improved training set performance and diminished transferability.
Since all 491508 functionals are uniformly trained and tested, this methodology al-
lows the relative strengths of each type of functional to be consistently compared
and contrasted. The range-separated hybrid GGA functional paired with the VV10
nonlocal correlation functional emerges as the most accurate form for the present
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training and test sets, which span thermochemical energy differences, reaction bar-
riers, and intermolecular interactions involving lighter main group elements. This
work[62] has been published in The Journal of Chemical Physics in the SPECIAL
TOPIC: ADVANCES IN DENSITY FUNCTIONAL THEORY issue.

1.4.2 Chapter 3

A 10-parameter, range-separated hybrid (RSH), generalized gradient approxi-
mation (GGA) density functional with nonlocal correlation (VV10) is presented.
Instead of truncating the B97-type power series inhomogeneity correction factors
(ICF) for the exchange, same-spin correlation, and opposite-spin correlation func-
tionals uniformly, all 16383 combinations of the linear parameters up to fourth order
(m = 4) are considered. These functionals are individually fit to a training set and
the resulting parameters are validated on a primary test set in order to identify the 3
optimal ICF expansions. Through this procedure, it is discovered that the functional
that performs best on the training and primary test sets has 7 linear parameters,
with 3 additional nonlinear parameters from range-separation and nonlocal correla-
tion. The resulting density functional, ωB97X-V, is further assessed on a secondary
test set, the parallel-displaced coronene dimer, as well as several geometry datasets.
Furthermore, the basis set dependence and integration grid sensitivity of ωB97X-V
are analyzed and documented in order to facilitate the use of the functional. This
work[63] has been published in Physical Chemistry Chemical Physics in the PCCP’s
15th anniversary issue.

1.4.3 Chapter 4

A meta-generalized gradient approximation (meta-GGA) density functional paired
with the VV10 nonlocal correlation functional is presented. The functional form is
selected from more than 10 billion choices carved out of a functional space of al-
most 1040 possibilities. Raw data comes from training a vast number of candidate
functional forms on a comprehensive training set of 1095 data points and testing the
resulting fits on a comprehensive primary test set of 1153 data points. Functional
forms are ranked based on their ability to reproduce the data in both the train-
ing and primary test sets with minimum empiricism, and filtered based on a set of
physical constraints and an often-overlooked condition of satisfactory numerical pre-
cision with medium-sized integration grids. The resulting optimal functional form
has 4 linear exchange parameters, 4 linear same-spin correlation parameters, and 4
linear opposite-spin correlation parameters, for a total of 12 fitted parameters. The
final density functional, B97M-V, is further assessed on a secondary test set of 212
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data points, applied to several large systems including the coronene dimer and wa-
ter clusters, tested for the accurate prediction of intramolecular and intermolecular
geometries, verified to have a readily attainable basis set limit, and checked for grid
sensitivity. Compared to existing density functionals, B97M-V is remarkably accu-
rate for non-bonded interactions and very satisfactory for thermochemical quantities
such as atomization energies, but inherits the demonstrable limitations of existing
local density functionals for barrier heights. This work[64] has been published in The
Journal of Chemical Physics.

1.4.4 Chapter 5

A combinatorially-optimized, range-separated hybrid, meta-GGA density func-
tional with VV10 nonlocal correlation is presented. The final 12-parameter functional
form is selected from approximately 10 billion candidate fits that are trained on a
training set of 870 data points and tested on a primary test set of 2965 data points.
The resulting density functional, ωB97M-V, is further tested for transferability on a
secondary test set of 1152 data points. For comparison, ωB97M-V is benchmarked
against 10 leading density functionals including M06-2X, ωB97X-D, M08-HX, M11,
ωM05-D, and ωB97X-V. Encouragingly, the overall performance of ωB97M-V on
nearly 5000 data points clearly surpasses all of the tested density functionals. In
order to facilitate the use of ωB97M-V, its basis set dependence and integration grid
sensitivity are thoroughly assessed, and recommendations that take into account
both efficiency and accuracy are provided. This work has been submitted to The
Journal of Chemical Physics.
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Chapter 2

Exploring the GGA functional
space

2.1 Introduction

While empirical parameters have been used in density functionals since the 1950s,
the first systematic optimization of a density functional was performed by Axel Becke
in 1997[35]. However, this breakthrough would not have been possible without several
significant developments that took place in the preceding decades. Firstly, Frank
Herman’s extension[65] of John Slater’s Xα method[66] (Equations 2.1 and 2.2) to the

Xαβ method (Equation 2.3) introduced a gradient-based correction, sσ = |∇ρσ |
ρ
4/3
σ

, to

the Xα exchange energy density based on dimensional arguments. A major drawback
of the semi-empirical Xαβ method was the asymptotic divergence of its exchange
potential. A solution to this was proposed by Becke in 1986, when he modified
the inhomogeneity correction factor introduced by Herman in order to produce the
divergence free Xαβγ (B86) exchange functional[9] (Equation 2.4).

Exα = −
↑,↓∑
σ

∫
Cxαρ

4/3
σ dr (2.1)

Cxα =
9

4
α

(
3

4π

)1/3

(2.2)

Exαβ = −
↑,↓∑
σ

∫
Cxαρ

4/3
σ

[
1 +

β

Cxα
s2
σ

]
dr (2.3)

Exαβγ = −
↑,↓∑
σ

∫
Cxαρ

4/3
σ

[
1 +

β

Cxαγx

γxs
2
σ

1 + γxs2
σ

]
dr (2.4)
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11 years later[35], Becke generalized the inhomogeneity correction factor of the B86
exchange functional with an mth order power series in the dimensionless variable,

ux,σ = γxs2σ
1+γxs2σ

:

EB97
x = −

↑,↓∑
σ

∫
Cxαρ

4/3
σ

[
m∑
i=0

cx,iu
i
x,σ

]
dr (2.5)

This scheme was applied to both the exchange functional and the spin-decomposed
same-spin and opposite-spin correlation functionals to produce the B97 density func-
tional (Section 2.3). The original B97 functional truncated the expansions at m = 2,
and included a fraction of exact exchange, leaving 10 undetermined linear parameters
for fitting to thermochemical data.

As an approach to GGA density functionals, B97 has unparalleled flexibility. As
a result, it is not surprising that at least 15 B97-based density functionals have been
parameterized since 1997. These include local functionals[54, 67–69] (HCTH/93,
HCTH/120, HCTH/147, HCTH/407, B97-D), global hybrid functionals[35, 67, 70,
71] (B97, B97-1, B97-2, B97-3), range-separated hybrid functionals[48, 58, 60, 63]
(ωB97, ωB97X, ωB97X-D, ωB97X-D3, ωB97X-V), and even double hybrid function-
als[72] (ωB97X-2).

The purpose of this work is to use the flexibility of the B97 form to attempt
to systematically explore the accuracy attainable with different possible GGA func-
tionals that build upon the basic B97 framework with different augmentations to
exchange and correlation. Table 2.1 lists a variety of ingredients that can be incor-
porated into a B97-based density functional. To adhere to the functional form of the
local component of B97, it is necessary to restrict the local exchange and correlation
functionals to depend solely on the density and its gradient. However, the options for
nonlocal exchange range from global hybrid exchange to range-separated exchange
to no nonlocal exchange at all. These 3 options can be seamlessly integrated into
the B97 functional form. From the perspective of dispersion corrections, options[54,
55, 57, 73–75] such as DFT-D2, DFT-D3, vdW-DF-04, vdW-DF-10, VV09, VV10,
MP2, RPA, and beyond, exist. All of these methods can be easily appended to the
B97 functional form as well.

B97-based semi-empirical density functionals have typically been optimized us-
ing uniformly truncated inhomogeneity correction factors (ICF) for the exchange,
same-spin correlation, and opposite-spin correlation functionals. One method of
approaching the limit of accuracy for GGA-based functionals is to try uniform ex-
pansions between m = 0 and a large m-value in order to select the optimal m-value
based on a “goodness-of-fit” index[76] that is related to the training set performance.
This approach can differentiate between uniformly truncated ICFs, and whether by
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Exchange Correlation

Local Nonlocal Local Nonlocal

1). ρ 1). None 1). ρ 1). None
2). ∇ρ 2). GH 2). ∇ρ 2). DFT-D2
3). τ 3). RSH 3). τ 3). VV10

Table 2.1: Ingredients that can be incorporated into a density functional. GH stands
for global hybrid and RSH stands for range-separated hybrid. DFT-D2 refers to
Grimme’s dispersion tail and VV10 refers to the VV10 nonlocal correlation (NLC)
functional. The underlined ingredients were not varied, while the ingredients in
bold were varied, resulting in a total of 9 candidate functional forms. While the
kinetic energy density, τ , is a valid candidate for inclusion in the local parts of both
the exchange and correlation functionals, this chapter focuses exclusively on GGA
functionals.

this approach, or by careful inspection, B97-based ICFs are usually truncated at
either m = 2, m = 3, or m = 4. One functional that is not based on uniform trun-
cation is ωB97X-V[63], which was developed based on a variation of the following
methodology.

In contrast to uniform truncation, the most general approach is to perform all
possible optimizations up to a certain power of m, including even those that skip
powers (equivalent to setting the skipped coefficient to zero). This approach leads
to thousands of competing fits (i.e. thousands of competing functional forms). It is
difficult to differentiate between so many possible functionals using any inspection of
training set results, including the “goodness-of-fit” index. Yet, it will be essential to
face this complexity since it is likely that the simplest functional capable of yielding
good accuracy on the training set data will perform best in applications.

While the goal of fitting to a training set is to minimize the training set root-mean-
square-deviation (RMSD), it is even more desirable for a parameterized functional
to be transferable. In order to differentiate between the thousands of resulting func-
tionals and assure transferability, it is essential to take into account the performance
of a given fit on both the training set and an independent test set. The test set
is not used to determine any parameters, but will instead guide the choice of how
many (and which) coefficients should be included in the least-squares fit. Taking
the conventional approach of solely considering training set performance, it is guar-
anteed that the fit with the most linear parameters will have the smallest training
set RMSD. Thus, if the training set RMSD is plotted with respect to the number of
linear parameters, the resulting figure resembles the plots contained in Figure 2.1.
However, if both the training set performance and the test set performance are taken



CHAPTER 2. EXPLORING THE GGA FUNCTIONAL SPACE 29

into account, the plots begin to resemble parabolas (Figure 2.3). Thus, it is much
easier to pick out an “optimal” functional with this methodology.

In this work, we parameterize 9 flavors of B97-based density functionals by vary-
ing the nonlocal exchange and dispersion correction (nonlocal correlation) compo-
nents in bold in Table 2.1. While 14 of the 15 aforementioned B97-based density
functionals have uniformly truncated inhomogeneity correction factors, all possible
combinations of the exchange, same-spin correlation, and opposite-spin correlation
expansion coefficients up to fourth order are tested. Using this methodology, an opti-
mal functional from each category is selected, and the 9 resulting optimal functionals
are compared to determine the optimal pairing of nonlocal exchange and dispersion.

2.2 Computational Details

An integration grid of 99 radial points and 590 angular points, (99,590), was
used to evaluate local exchange-correlation (xc) functionals, while the SG-1 grid[61]
was used for the VV10 nonlocal correlation (NLC) functional[57]. For the rare-gas
dimers and the absolute atomic energies, a (500,974) integration grid was used to
evaluate local xc functionals, along with a (99,590) grid for the VV10 NLC func-
tional. The aug-cc-pVQZ [aQZ] basis set[77, 78] was used for all thermochemistry
(TC) datapoints except the second-row absolute atomic energies (aug-cc-pCVQZ)[77,
78], while the aug-cc-pVTZ [aTZ] basis set[77, 78] was used for all noncovalent in-
teractions (NC) datapoints except the rare-gas dimers (aug-cc-pVQZ). Furthermore,
the noncovalent interactions were computed without counterpoise corrections. For
B97-D2, Grimme’s DFT-D2 dispersion tail was used with an s6 coefficient[79] of 0.75.
Grimme’s B97-D functional[54] uses the DFT-D2 dispersion tail as well, with an s6

coefficient of 1.25. All of the calculations were performed with a development version
of Q-Chem 4.0[80].

2.3 Theory

The complete functional form for all of the trained functionals is given by Equa-
tions 2.6-2.8. The components of the exchange functional and correlation functional
are described in Sections 2.3.1 and 2.3.2, respectively. The acronyms used in Equa-
tions 2.6-2.8 (and henceforth) are: exchange-correlation (xc), exchange (x), corre-
lation (c), short-range (sr), long-range (lr), same-spin (ss), opposite-spin (os), and
dispersion (disp).

Exc = Ex + Ec (2.6)
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Ex = EB97
x + cxE

exact
x,sr + dxE

exact
x,lr (2.7)

Ec = EB97
c,ss + EB97

c,os + Edisp (2.8)

For local (exchange) functionals, cx = dx = 0, while for global hybrid functionals,
cx = dx, where cx is the (global) fraction of exact exchange. For range-separated
hybrid functionals, dx = 1, EB97

x = EB97
x,sr (Section 2.3.1), and cx is the fraction of

short-range exact exchange.

2.3.1 Exchange Functional Form

The local exchange component of the B97 functional form is given by Equations
2.9 and 2.10:

EB97
x =

α,β∑
σ

∫
eUEGx,σ (ρσ)gx (ux,σ) dr (2.9)

gx (ux,σ) =

mx∑
i=0

cx,iu
i
x,σ =

mx∑
i=0

cx,i

[
γxs

2
σ

1 + γxs2
σ

]i
(2.10)

where the dimensionless variable, ux,σ ∈ [0, 1], is a finite domain transformation of

the reduced spin-density gradient, sσ = |∇ρσ |
ρ
4/3
σ

∈ [0,∞). In Equation 2.9, eUEGx,σ (ρσ)

is the exchange energy density per unit volume of a uniform electron gas (UEG)
and gx (ux,σ) is the exchange functional inhomogeneity correction factor (ICF). The
linear local exchange parameters, cx,i, will be determined by least-squares fitting to a
training set in Section 2.5, while γx = 0.004 is a nonlinear local exchange parameter
that was fit to the Hartree–Fock exchange energies of 20 atoms in 1986 by Becke[9].
For range-separated hybrid functionals, the conventional Coulomb operator in the
local exchange component is attenuated by the complementary error function (erfc),
resulting in an additional multiplicative factor, F (aσ), in the integrand of Equation
2.9:

F (aσ) = 1− 2

3
aσ

[
2
√
πerf

(
1

aσ

)
− 3aσ+

a3
σ +

[
2aσ − a3

σ

]
exp

(
− 1

a2
σ

)] (2.11)

where aσ = ω
kFσ

, ω is the nonlinear range-separation parameter that controls the
transition from local exchange to nonlocal exact exchange with respect to interelec-

tronic distance, and kFσ = [6π2ρσ]
1/3

is the spin-polarized Fermi wave vector. The
inclusion of F (aσ) in the integrand of Equation 2.9 gives EB97

x,sr .
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When considering both global hybrid and range-separated hybrid functionals, the
most general way to deal with nonlocal exchange is to split the Coulomb operator in
the conventional expression for exact exchange into a short-range component (Eexact

x,sr )
and a long-range component (Eexact

x,lr ) with the erfc and erf Coulomb functions, re-
spectively:

Eexactx,sr = −1

2

α,β∑
σ

occ.∑
i,j

∫ ∫
ψ∗iσ (r1)ψ∗jσ (r2)

erfc (ωr12)

r12

× ψjσ (r1)ψiσ (r2) dr1dr2

(2.12)

Eexactx,lr = −1

2

α,β∑
σ

occ.∑
i,j

∫ ∫
ψ∗iσ (r1)ψ∗jσ (r2)

erf (ωr12)

r12

× ψjσ (r1)ψiσ (r2) dr1dr2

(2.13)

where ψiσ and ψjσ are the occupied Kohn–Sham spatial orbitals. Since erfc(ωr12)
r12

+
erf(ωr12)

r12
= 1

r12
, Eexact

x = Eexact
x,sr + Eexact

x,lr for global hybrids, where cx = dx is the frac-
tion of (global) exact exchange. For range-separated hybrids, instead of setting the
percentage of exact-exchange at r = 0 to zero, an (optional) optimizable parameter,
cx, controls the amount of short-range exact exchange. Additionally, the value of ω
is fixed at 0.3 for all of the range-separated hybrid functionals.

2.3.2 Correlation Functional Form

The local correlation component of the B97 functional form is given by Equations
2.14-2.17:

EB97
c,ss =

α,β∑
σ

∫
ePW92
c,σσ gc,ss (uc,σσ) dr (2.14)

gc,ss (uc,σσ) =

mcss∑
i=0

ccss,iu
i
c,σσ =

mcss∑
i=0

ccss,i

[
γcsss

2
σ

1 + γcsss2
σ

]i
(2.15)

EB97
c,os =

∫
ePW92
c,αβ gc,os (uc,αβ) dr (2.16)

gc,os (uc,αβ) =

mcos∑
i=0

ccos,iu
i
c,αβ =

mcos∑
i=0

ccos,i

[
γcoss

2
αβ

1 + γcoss2
αβ

]i
(2.17)

where s2
αβ = 1

2

(
s2
α + s2

β

)
, and ePW92

c,σσ and ePW92
c,αβ are the PW92[7] same-spin and

opposite-spin correlation energy densities per unit volume[81]. The linear local cor-
relation parameters, ccss,i and ccos,i, will be determined by least-squares fitting to
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a training set in Section 2.5, while γcss = 0.2 and γcos = 0.006 are nonlinear local
correlation parameters that were fit to the correlation energies of helium and neon
in 1997 by Becke[35].

Since functionals are trained both with and without dispersion corrections, the
Edisp term requires further elaboration. When dispersion corrections are not used,
Edisp = 0. Two different dispersion correction methods are used in combination
with the local, GH, and RSH functionals: one dispersion tail (DT) and one nonlocal
correlation (NLC) functional.

The dispersion tail (DFT-D2) has the following form:

EDFT−D2
disp = −s6

Nat−1∑
i=1

Nat∑
j=i+1

Cij6
R6
ij

fDFT−D2
damp (Rij) (2.18)

fDFT−D2
damp (Rij) =

1

1 + e−d(Rij/Rr,ij−1)
(2.19)

In the damping function, Rr,ij = R0,i + R0,j is the sum of the van der Waals (vdW)

radii of a pair of atoms, Cij
6 =

√
Ci

6C
j
6 is the dispersion coefficient of a pair of atoms,

and d = 20. In training the DFT-D2 dispersion tail onto the density functionals, the
linear s6 coefficient is optimized and counted as a linear parameter. The empirical
C6 parameters and vdW Radii, R0, can be found in Table 1 of Reference 54.

The nonlocal correlation functional that is considered is VV10[57]:

EV V 10
disp =

∫
ρ (r)

[
1

32

[
3

b2

]3/4

+
1

2

∫
ρ (r′) Φ (r, r′, {b, C}) dr′

]
dr (2.20)

where Φ (r, r′, {b, C}) is the nonlocal correlation kernel defined in Reference 57. The
VV10 NLC functional introduces 2 nonlinear parameters: b, which controls the short-
range damping of the 1/r6 asymptote, and C, which controls the accuracy of the
asymptotic C6 coefficients. Since it is much more difficult to train the nonlinear
parameters of the VV10 NLC functional, the parameters that were optimized for
ωB97X-V (b = 6 and C = 0.01) are used here without further optimization.

2.4 Datasets

In total, the training and test sets used for the parameterization and validation
of the candidate functionals contain 2301 datapoints, requiring 1961 single-point
calculations. Of the 2301 datapoints, 1108 belong to the training set and 1193 belong
to the test set. Furthermore, the training and test sets contain both thermochemistry
(TC) data as well as noncovalent interactions (NC) data. The training set contains
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787 TC datapoints and 321 NC datapoints, while the test set contains 146 TC
datapoints and 1047 NC datapoints (for an overall total of 933 TC datapoints and
1368 NC datapoints). The partitioning of the training and test sets was carried out
with the quality of the reference values in mind, such that the training set contains
the highest confidence data. Table 2.2 lists the 36 datasets that form the training
and test sets. The references for the datasets are given in the rightmost column of
Table 2.2, while additional details can be found in Reference 63. In addition to the
general division into TC and NC data for the training and test sets, we will report
the results for the 3 rare-gas (RG) potential energy curves (PEC) separately, as a
delicate diagnostic of the balance between Pauli repulsion and attractive dispersion
interactions.

2.5 Training Methodology

In order to train and test the candidate functionals, single-point calculations are
carried out with the unoptimized functionals (gx = gc,ss = gc,os = 1) for the 1961
geometries that correspond to the 2301 datapoints in the training and test sets. In
order to gather all of the data that will be used for the upcoming analysis, 4 sets of
calculations must be carried out: 1). LSDA without VV10, 2). LSDA with VV10,
3). SR-LSDA without VV10, and 4). SR-LSDA with VV10. The VV10 calculations
must be carried out separately because the VV10 NLC functional is implemented
within the SCF procedure. Conveniently, however, running the LSDA (local spin
density approximation) functional is sufficient for gathering data for both the local
and global hybrid variants, since a global hybrid functional with an initial guess of
cx = 0 is a local functional. Following the single-point calculations, the resulting 4
sets of densities are saved to disk and used to calculate the values that the expansion
coefficients in the power series (cx,i, ccss,i, and ccos,i) multiply, up to fourth order
(i ∈ [0, 4]). In addition to these 15 contributions, the value of Eexact

x is required for
GH functionals and the value of Eexact

x,sr is required for RSH functionals.
The calculated values are used to form a (# of Datapoints) x (# of Linear Param-

eters) matrix, A, that contains the appropriate contributions for a given datapoint.
In addition to the A matrix, a column of values corresponding to the errors in the
unoptimized functional (y = EREF−EDFT ) is computed. Since weights are used dur-
ing training, a diagonal (# of Datapoints) x (# of Datapoints) training set weight
matrix (WTrain) is required as well. The diagonal elements corresponding to the
training set data contain the appropriate weights, while the remaining diagonal el-
ements corresponding to the test set data are set to zero. The change in the linear
parameters, ∆b, is found by a weighted least-squares fit:



CHAPTER 2. EXPLORING THE GGA FUNCTIONAL SPACE 34

Name # Description Ref.

HAT707 505 Heavy-atom transfer reaction energies 82
BDE99 83 Bond dissociation reaction energies 82

TAE nonMR124 124 Total atomization energies 82
SN13 13 Nucleophilic substitution reaction energies 82

ISOMER20 18 Isomerization reaction energies 82
DBH24 24 Diverse barrier heights 83,84

EA6 6 Electron affinities of atoms 85
IP6 6 Ionization potentials of atoms 85
AE8 8 Absolute atomic energies 86

SW49Rel345 28 SO4
2−(H2O)n (n = 3− 5) relative energies 87

SW49Bind345 30 SO4
2−(H2O)n (n = 3− 5) binding energies 87

NBC10A2 37 Methane dimer and benzene-methane dimer PECs 88,89
HBC6A 118 Formic acid, formamide acid, and formamidine acid dimer PECs 90,89

BzDC215 108 Benzene and first- and second-row hydride PECs 91

EA7 7 Electron affinities of small molecules 85
IP7 7 Ionization potentials of small molecules 85

Gill12 12 Neutral, radical, anionic, and cationic isodesmic reaction energies 92
AlkAtom19 19 n = 1− 8 alkane atomization energies 93
AlkIsomer11 11 n = 4− 8 alkane isomerization energies 93
AlkIsod14 14 n = 3− 8 alkane isodesmic reaction energies 93
HTBH38 38 Hydrogen transfer barrier heights 94

NHTBH38 38 Non-hydrogen transfer barrier heights 95

SW49Rel6 17 SO4
2−(H2O)n (n = 6) relative energies 87

SW49Bind6 18 SO4
2−(H2O)n (n = 6) binding energies 87

NNTT41 41 Neon-neon PEC 96
AATT41 41 Argon-argon PEC 96
NATT41 41 Neon-argon PEC 96

NBC10A1 53 Parallel-displaced (3.4 Å), sandwich, and T-shaped benzene dimer PECs 88,89
NBC10A3 39 S2 and T3 configuration pyridine dimer PECs 97,89
WATER27 23 Neutral and charged water interactions 98,99

HW30 30 Hydrocarbon and water dimers 100
NCCE31 18 Noncovalent complexation energies 101

S22x5 110 Hydrogen-bonded and dispersion-bonded complex PECs 102
S66x8 528 Biomolecular structure complex PECs 103
S22 22 Equilibrium geometries from S22x5 104,89
S66 66 Equilibrium geometries from S66x8 103,105

Table 2.2: Summary of the datasets found in the training and test sets. The datasets
above the thick black line are in the training set and the datasets below the thick
black line are in the test set. Within the training and test sets, datasets above the
thin black line contain thermochemistry datapoints, while datasets below the thin
black line contain noncovalent interactions datapoints. PEC stands for potential
energy curve.
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∆b = (ATWTrainA)−1(ATWTrainy) (2.21)

and the training set RMSD is calculated by:

RMSDTrain =

√
diag (WTrain) · (y −A∆b)

2

#Train
(2.22)

Additional statistical measures are calculated using Equation 2.22 with the appro-
priate weight matrix and #.

In total, 10 quantities will be used to gauge the performance of the resulting
functionals: the training set RMSD (RMSDTrain), the test set RMSD (RMSDTest),
the RMSD for the 3 rare-gas dimer PECs (RMSDRG), the total RMSD (RMSDTotal),
the thermochemistry (TC) RMSD (RMSDTC), the noncovalent interactions (NC)
RMSD (RMSDNC), the training set TC RMSD (RMSDTC,Train), the test set TC
RMSD (RMSDTC,Test), the training set NC RMSD (RMSDNC,Train), and the test set
NC RMSD (RMSDNC,Test).

Since contributions are computed up to fourth order for the exchange, same-spin
correlation, and opposite-spin correlation functionals, as many as 15 linear GGA
parameters are available for optimization. The optional short-range exchange pa-
rameter that is unique to range-separated hybrid functionals adds a 16th parameter
for the RSHs. The uniform electron gas (UEG) constraint for the same-spin and
opposite-spin correlation functionals can be incorporated by making ccss,0 and ccos,0
optional parameters, but the same cannot be done with the UEG constraint for
exchange (except for local functionals). Thus, fits that violate the UEG limit for
exchange are optimized separately from fits that do incorporate the UEG limit for
exchange. As an example of the number of fits that result from this methodology,
local functionals that are constructed to satisfy the UEG constraint for exchange

have 14 optional parameters, giving a total of
14∑
i=1

(
14

i

)
= 214 − 1 = 16383 possible

fits. Table 2.3 lists the total number of fits for local, GH, and RSH functionals with
and without the UEG limit for exchange in place.

In order to refer to the thousands of resulting functionals with clarity, we will use a
nomenclature that is fully specified in Table 2.4. As examples, “GN-012.012.012.Xn”
would describe Becke’s 10-parameter B97 functional, “LD-012.012.012.0n” would
describe Grimme’s 10-parameter B97-D functional, “RN-1234.1234.1234.Xy” would
describe the 13-parameter ωB97X functional, and “RV-12.01.01.Xy” would describe
the 7-parameter ωB97X-V functional. As can be seen with the descriptor for ωB97X-
V, since the UEG limit for exchange was used as a constraint, “0” does not appear
in the label for the exchange functional ICF (even though cx,0 6= 1), because the
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# cx,0 + cx = 1 cx,0 + cx 6= 1

Local 214 − 1 = 16383 215 − 214 = 16384
GH 214 − 1 = 16383 215 − 1 = 32767
RSH 215 − 1 = 32767 216 − 214 = 49152

Table 2.3: Total number of least-squares fits (#) that can be performed when con-
sidering parameters up to fourth order in the power series inhomogeneity correction
factors. While the type of dispersion correction used has no bearing on the total
number of possible fits, whether or not the UEG constraint for exchange is enforced
is important and is addressed in the second and third columns, respectively.

Symbol Meaning Allowed Values Meaning

L local
i exchange G global hybrid

R range-separated hybrid

N none
j dispersion correction D DFT-D2 dispersion tail

V VV10 nonlocal correlation functional

{px} linear exchange parameters any subset of 01234 each included integer, m, is a single parameter multiplying umx
{pcss} linear same-spin correlation parameters any subset of 01234 each included integer, m, is a single parameter multiplying umc,σσ
{pcos} linear opposite-spin correlation parameters any subset of 01234 each included integer, m, is a single parameter multiplying umc,αβ

k (short-range) exact exchange 0 no (short-range) exact exchange included
X (short-range) exact exchange included

l UEG for exchange y UEG limit for exchange is enforced
n UEG limit for exchange is not enforced

Table 2.4: Explanation of the nomenclature for the descriptors that refer to the
thousands of optimized functionals. A given descriptor takes on the following form:
“ij-{px}.{pcss}.{pcos}.kl”. If none of the coefficients of a given ICF are optimized, ∅ is
used as a placeholder. As an example, “GN-012.012.012.Xn” would describe Becke’s
10-parameter B97 functional.

4th label, “Xy”, implies that cx,0 = 1 − cx. In addition, nonlinear parameters are
not counted when considering the number of parameters corresponding to a given
fit , since the nonlinear parameters were not varied in this work. Henceforth, any
mention of the number of parameters implicitly refers to the number of linear pa-
rameters. As a more complicated example, if a Local+DFT-D2 functional requires
the optimization of {cx,1, cx,3, cx,4, ccos,0, ccos,2}, “LD-134.∅.02.0y” will be used as its
descriptor. Henceforth, quotations will not be used for the descriptors.

As far as weights are concerned, thermochemistry datapoints in the training and
test sets are given weights of 1 and 2.5 respectively (except for datapoints in EA6 and
IP6 which are weighted by 5), noncovalent interactions datapoints in the training and
test sets are given weights of 10 and 25, respectively, and datapoints corresponding
to the 3 rare-gas dimer PECs in the test set are given weights of 2500. Even though
the 3 rare-gas dimer PECs are technically in the test set, they are not included
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in the calculation of RMSDTest. However, they are included in the calculation of
RMSDTotal. The 3 rare-gas dimer PECs are included in the NC and test set NC
RMSDs because their unweighted contributions are very small and do not contribute
significantly. Of the 10 RMSDs, only the first 4 are weighted, while the latter 6 are
unweighted.

2.6 Training Results

It is important to point out that the selection procedure utilized to identify the
optimal functionals is not (and cannot be) unique. However, as we shall see, it
recovers the self-consistently optimized ωB97X-V functional, even though a slightly
different selection procedure was used in Reference 63. In addition, the resulting
optimal functionals are usually significantly better than existing functionals of the
same type, as will be discussed in Section 2.7.

While a variety of selection procedures were initially explored, the one that was
finally chosen is quite simple. First, the total (weighted) RMSDs are computed and
plotted. Next, a screening process rejects fits that predict rare-gas dimer equilibrium
bond lengths that are too long or too short by more than 0.1 Å. Since the plots are still
overflowing with data points, all of the points for a fixed number of linear parameters
are removed, except for the point that corresponds to the lowest total RMSD with
and without the UEG constraint for exchange. The resulting plots (Figure 2.3) are
much simpler to analyze and contain filled circles (satisfy the UEG constraint for
exchange) and unfilled circles (do not satisfy the UEG constraint for exchange).

Starting at the fewest number of linear parameters, an additional empirical pa-
rameter is accepted if the improvement in the total RMSD is more than 0.05 kcal/mol.
This final stage does not take into account whether or not the UEG constraint for
exchange is enforced. The 9 optimal functionals are chosen in this manner and will
be discussed and compared to existing functionals in Section 2.7. Since the optimal
functionals are chosen based on their total RMSDs, the corresponding training and
test set RMSDs of the optimal functionals are shown in red in Figures 2.1 and 2.2.
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Figure 2.1: Plots showing the lowest training set RMSD (in kcal/mol) for a fixed
number of linear parameters for all 9 candidate functional forms considered. Filled
circles correspond to fits which satisfy the UEG limit for exchange and unfilled circles
indicate that the UEG limit for exchange was allowed to relax. The red box indicates
the training set RMSD of the optimal functional, which is usually not the best for
the training set data alone.
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Figure 2.2: Plots showing the lowest test set RMSD (in kcal/mol) for a fixed number
of linear parameters for all 9 candidate functional forms considered. Filled circles
correspond to fits which satisfy the UEG limit for exchange and unfilled circles
indicate that the UEG limit for exchange was allowed to relax. The red box indicates
the test set RMSD of the optimal functional.
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Figure 2.3: Plots showing the lowest total RMSD (in kcal/mol) for a fixed number
of linear parameters for all 9 candidate functional forms considered. Filled circles
correspond to fits which satisfy the UEG limit for exchange and unfilled circles
indicate that the UEG limit for exchange was allowed to relax. The red box indicates
the total RMSD of the optimal functional. Due to the screening process described
in Section 2.6, points that correspond to fits that predict rare-gas dimer equilibrium
bond lengths that are too long or too short by more than 0.1 Å have been removed.
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All of the RMSDs considered in this section are generated using Equation 2.22
(with the appropriate weight matrix and #) and are least-squares fit RMSDs. While
none of the functionals are self-consistently optimized, the recent self-consistent op-
timization of ωB97X-V indicated that the least-squares fit RMSDs generally differ
from the actual RMSDs of the self-consistently optimized functional by 0.05 kcal/mol
on average. While it would be impractical to self-consistently optimize thousands of
functionals, we firmly believe that this procedure is effective in predicting the quality
of a functional based on least-squares fit RMSDs.

Since the parameters that are obtained from all of these fits are not self-consistently
optimized, it is not immediately obvious how much they will differ from the final set
of parameters. Thus, it is difficult to comment on the usefulness of the parameters
of the 9 resulting optimal functionals. However, the parameters for Becke’s B97
functional were optimized in the same post-LSDA manner as all of the functionals
considered in this chapter, and comparing the parameters of B97 and B97-1, or alter-
natively considering Table 3 from Reference 63, indicates that the self-consistently
optimized parameters do not differ drastically from those from the end of the first
optimization cycle. While it is best to self-consistently optimize the parameters of a
semi-empirical density functional, the parameters for the 9 optimal functionals are
provided in Table 2.5.

Tables 2.6, 2.7, and 2.8 contain data for range-separated hybrid, global hybrid,
and local functionals, respectively. Each method of accounting for exchange was
trained both with dispersion corrections (DFT-D2 and VV10) and without dispersion
corrections (None). For each pairing, the columns labeled “Minimum” contain the
best possible value for a given RMSD category, while the columns labeled “Optimal”
contain the results for the functionals that were selected from Figure 2.3. For the
remainder of this section, the least-squares fit RMSDs will simply be referred to as
RMSDs.

We begin the analysis with the RSH+VV10 category, since our newest density
functional, ωB97X-V, belongs to this class. Generally speaking, the interesting com-
parisons in Table 2.6 are between the best possible result in a given row for any
candidate RSH+VV10 functional (i.e. the Minimum VV10 column) and the corre-
sponding result obtained with the optimal functional (i.e. the Optimal VV10 col-
umn). The optimal RSH+VV10 functional coincides with the ωB97X-V functional,
and, as summarized in Table 2.5, has 7 linear parameters. Compared to the smallest
training set RMSD possible (3.14 kcal/mol), a value of 3.36 kcal/mol is certainly
reasonable for a functional with 9 fewer linear parameters. Similarly, most other
comparisons show that the functional chosen by our selection method yields results
for the other reported RMSDs that are competitive with the best values attainable.
The largest difference is for the RMSDRG, where it is possible to do nearly twice as
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None DFT-D2 VV10

LN-012.∅.0134.0n (7) LD-012.0.0123.0n (9) LV-012.0.0123.0n (8)
Local {1.07, -0.94, 5.04, 0.45, 8.83, -65.31, 39.84} {1.09, -0.89, 4.96, 0.25, 0.43, 12.06, -27.85, -1.57} {1.09, -0.79, 4.74, 0.43, 0.41, 11.90, -27.19, -1.52}

N/A s6=0.71 N/A

GN-24.1234.13.Xy (9) GD-0234.0.04.Xn (9) GV-02.0.0234.Xn (8)
GH {1.95, 2.70, -6.54, 33.21, -49.17, 22.23, 3.33, -24.59} {0.79, 2.46, -3.89, 4.73, 0.33, 1.10, -13.90} {0.81, 2.00, 0.51, 1.05, 9.19, -39.37, 22.86}

cx=0.23 cx=0.24; s6=0.64 cx=0.22

RN-14.34.012.Xn (8) RD-02.12.01.Xn (8) RV-12.01.01.Xy (7)
RSH {0.58, 11.25, -9.17, 9.08, 1.09, 2.67, -10.32} {0.87, 2.24, -3.62, 3.30, 1.35, -2.36} {0.61, 1.18, 0.58, -0.27, 1.22, -1.87}

cx=0.02 cx=0.18; s6=0.71 cx=0.16

Table 2.5: Characteristics of the 9 optimal functionals. Within a cell, the first row
lists the descriptor (Table 2.4 with the number of associated linear parameters in
parentheses, the second row lists the non-self-consistently optimized GGA parame-
ters, and the third row (when applicable) lists the values for the (short-range) exact
exchange parameter, cx, and the linear DFT-D2 dispersion coefficient, s6.

RSH Minimum Optimal

kcal/mol None DFT-D2 VV10 None DFT-D2 VV10

Train 3.14 3.14 3.14 3.73 3.55 3.36
Test 3.68 2.28 1.53 4.18 2.50 1.92
RG 0.88 0.80 0.51 1.97 2.50 0.95

Total 3.87 3.03 2.66 3.87 3.05 2.68

TC 3.49 3.47 3.44 4.09 3.80 3.62
NC 0.58 0.36 0.24 0.71 0.43 0.32

TC,Train 3.55 3.56 3.56 4.28 4.02 3.86
TC,Test 2.19 1.76 1.66 2.85 2.26 1.81
NC,Train 0.25 0.26 0.23 0.42 0.42 0.31
NC,Test 0.62 0.33 0.23 0.77 0.43 0.32

Table 2.6: RMSDs in kcal/mol for range-separated hybrid functionals. The data in
the training and test sets consists of thermochemical (TC) and noncovalent (NC)
energy differences. The 3 rare-gas (RG) dimer PEC RMSDs are reported separately.
The “Minimum” columns contain the smallest possible RMSD value for the particular
entry from all trained functionals of that class. Hence, each entry within a column
generally corresponds to a different functional. The “Optimal” columns contain the
RMSD value for the best overall functional selected from that class. Hence, each
entry within a column corresponds to the same functional. Details regarding the
optimal functional are provided in Table 2.5.
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GH Minimum Optimal

kcal/mol None DFT-D2 VV10 None DFT-D2 VV10

Train 2.97 2.90 2.89 3.49 3.22 3.25
Test 5.44 2.86 2.51 5.90 3.17 3.03
RG 0.76 0.67 0.31 2.01 1.82 0.65

Total 4.72 3.11 3.06 4.72 3.14 3.06

TC 3.45 3.31 3.31 3.87 3.48 3.61
NC 0.91 0.42 0.38 0.97 0.54 0.48

TC,Train 3.24 3.21 3.18 3.78 3.62 3.70
TC,Test 3.13 2.60 2.59 4.28 2.60 3.06
NC,Train 0.41 0.37 0.35 0.48 0.48 0.42
NC,Test 1.01 0.40 0.38 1.08 0.56 0.50

Table 2.7: RMSDs in kcal/mol for global hybrid functionals. The format is explained
in the caption of Table 2.6.

Local Minimum Optimal

kcal/mol None DFT-D2 VV10 None DFT-D2 VV10

Train 4.03 3.89 3.91 4.91 4.48 4.44
Test 6.46 4.13 4.49 7.00 4.50 4.88
RG 0.97 1.34 0.72 2.09 3.15 2.57

Total 5.84 4.43 4.57 5.89 4.43 4.57

TC 5.03 4.69 4.85 5.72 5.23 5.27
NC 0.95 0.51 0.54 1.08 0.61 0.65

TC,Train 4.41 4.30 4.32 5.55 5.13 5.11
TC,Test 5.83 4.87 5.50 6.57 5.71 6.06
NC,Train 0.59 0.56 0.53 0.65 0.62 0.55
NC,Test 1.03 0.48 0.54 1.18 0.61 0.68

Table 2.8: RMSDs in kcal/mol for local functionals. The format is explained in the
caption of Table 2.6.
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kcal/mol Train Test RG Total TC NC TC,Train TC,Test NC,Train NC,Test

RV-12.01.01.Xy 3.36 1.92 0.95 2.68 3.62 0.32 3.86 1.81 0.31 0.32

RV-1.1.1.Xy 3.84 3.86 1.34 3.76 4.64 0.39 4.42 5.68 0.36 0.40
RV-12.12.12.Xy 3.60 2.25 1.82 2.96 3.92 0.37 4.17 2.09 0.31 0.38

RV-123.123.123.Xy 3.50 2.78 7.28 3.51 3.77 0.49 4.01 2.04 0.41 0.51
RV-1234.1234.1234.Xy 3.34 1.94 7.91 3.24 3.63 0.31 3.84 2.15 0.32 0.30

RV-01.01.01.Xn 3.59 2.72 1.87 3.13 3.83 0.48 4.09 1.86 0.40 0.50
RV-012.012.012.Xn 3.34 2.17 1.62 2.78 3.61 0.36 3.83 1.99 0.31 0.37

RV-0123.0123.0123.Xn 3.30 2.37 1.28 2.82 3.56 0.38 3.76 2.22 0.31 0.40
RV-01234.01234.01234.Xn 3.14 2.36 14.00 4.22 3.47 0.33 3.57 2.91 0.28 0.34

Table 2.9: RMSDs for the optimal RSH+VV10 functional, as well as functionals
that would be considered if the present methodology was not being utilized. While
the nomenclature is explained in Section 2.5, the first functional corresponds to the
optimal RSH+VV10 fit (which coincides with the functional form of ωB97X-V), the
next 4 functionals are uniformly truncated m = 1 through m = 4 fits with all of the
UEG constraints enforced, while the last 4 are uniformly truncated m = 1 through
m = 4 fits with none of the UEG constraints enforced. The fraction of short-range
exact exchange is optimized for all of the fits in this table.

well (of course at the expense of TC results) as our chosen functional. Nonetheless,
the performance of the chosen functional for the 3 rare-gas dimer PECs is actually
much better than virtually all existing functionals, as will be seen in Section 2.7.

For the RSH+VV10 category only, we include additional data in Table 2.9 for
functionals that would be considered if the present methodology was not being uti-
lized, to demonstrate that our procedure for selecting the optimal functional is ef-
fective. Since the 16-parameter RV-01234.01234.01234.Xn functional has the lowest
training set RMSD (3.14 kcal/mol), it is useful to compare the test set RMSD of this
functional (2.36 kcal/mol) with that of the optimal 7-parameter RSH+VV10 func-
tional (1.92 kcal/mol). While the training set RMSD of the optimal RSH+VV10
functional is 0.22 kcal/mol larger than that of the RV-01234.01234.01234.Xn func-
tional, its test set RMSD is smaller by more than 0.40 kcal/mol. The optimal func-
tional’s performance on the TC data in the test set is more than 1.5 times better
than RV-01234.01234.01234.Xn, and its RMSDRG is smaller by a factor of 15. These
results demonstrate the improved transferability of the optimal 7-parameter func-
tional against a 16-parameter alternative, which comes at the necessary expense of
slightly poorer training set performance.

Considering the 4 functionals in Table 2.9 that satisfy the UEG limits for ex-
change and correlation, the lowest total RMSD is attained by the RV-12.12.12.Xy
functional (7 linear parameters). Since this functional is equivalent to the optimal
RSH+VV10 functional with respect to the number of linear parameters, comparing
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the two highlights the advantages of the present scheme. The optimal RSH+VV10
functional beats the RV-12.12.12.Xy functional in all 10 RMSD categories, and by
considerable margins for most. Applying the same analysis to the functionals that
do not satisfy the UEG limits, the RV-012.012.012.Xn functional with 10 linear pa-
rameters emerges as the one with the lowest total RMSD. However, the optimal
RSH+VV10 functional still beats this functional with respect to 7 of the 10 RMSDs.
Thus, it is clear that this training, testing, and selection procedure allows us to pick
a “best of both worlds” functional that fits well to the training set data, yet is highly
transferable.

Of the 8 conventional functionals considered in Table 2.9, the RV-012.012.012.Xn
functional has the lowest total RMSD. Another cross-check to consider is training an
RV-012.012.012.Xn functional by fitting it to everything in both the training and test
sets. The resulting RV-012.012.012.Xn∗ functional has a TC RMSD of 3.61 kcal/mol
and an NC RMSD of 0.30 kcal/mol. However, we have no guarantee that it is trans-
ferable. In comparison, the optimal RSH+VV10 functional, has a TC RMSD of 3.62
kcal/mol and an NC RMSD of 0.32 kcal/mol. For the optimal RSH+VV10 func-
tional, the resulting parameters, {cx,1, cx,2, ccss,0, ccss,1, ccos,0, ccos,1, cx}, are
{0.61, 1.18, 0.58,−0.27, 1.22,−1.87, 0.16}. An interesting test is to compare these
parameters with the ones that result from training the optimal RSH+VV10 func-
tional on both the training and test sets. The resulting parameters from such a fit
are {0.60, 1.29, 0.58,−0.32, 1.24,−1.94, 0.16}. Since the parameters do not change
significantly, this suggests that the training set on its own is sufficiently large for
properly determining the parameters.

The inhomogeneity correction factor (ICF) plots associated with the 9 function-
als from Table 2.9 are shown in Figure 2.4. The optimal RSH+VV10 functional
is indicated by the gray lines, which are smooth and well-behaved in all 3 cases.
The uniformly truncated m = 1 to m = 4 functionals (with a non-zero fraction of
short-range exact exchange) are indicated by blue, orange, green, and black lines,
respectively. Solid lines indicate satisfaction of all 3 UEG constraints, while dashed
lines indicate that none of the UEG constraints are satisfied. Since it is preferable to
have well-behaved ICFs for transferability, Figure 2.4 serves as another motivation
for the functional selection procedure that is being used. Starting with the exchange
functional ICF plots, the optimal RSH+VV10 functional and m = 2 plots are quite
similar (both are quadratic), while the m = 4 plots are similar to the rest between
ux,σ = 0 and ux,σ = 0.5, but shoot up sharply at ux,σ = 0.5. While it has been
shown[63] that most of the chemically relevant grid points lie between ux,σ = 0 and
ux,σ = 0.5, it is still preferable to have a curve that looks like the gray one than either
of the black ones. Moving on to the same-spin correlation functional ICFs, the quar-
tic m = 4 ICFs are oscillatory and seem unphysical, particularly the black dashed
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curve that does not preserve the UEG limit. The remaining same-spin correlation
ICFs are generally well-behaved. The functionals which relax the UEG limit reduce
the amount of LSDA same-spin correlation at uc,σσ = 0 by as much as a factor of 2.
For the opposite-spin correlation functional ICFs, the cubic m = 3 and quartic m = 4
functionals are the outliers, while the remaining functionals behave similarly. Most
of the non-UEG functionals increase the amount of LSDA opposite-spin correlation
at uc,αβ = 0 by a factor of 1.2.

There are certainly alternatives to the procedure that is used to find the optimal
functional for a given exchange/dispersion pairing. For example, if one considers the
top 2 functionals with 7 linear parameters from the RSH+VV10 optimization, they
are virtually indistinguishable as far as their 10 RMSDs are concerned, and differ
only with respect to the same-spin correlation component. Thus, while the best
RSH+VV10 functional with 7 linear parameters is of the RV-12.01.01.Xy form, the
second best is of the RV-12.02.01.Xy form. Therefore, we note that the functionals
presented here as optimal could be slightly different if a different selection procedure
was used. However, after experimenting with various possible options, we can claim
that the optimal functional either remains the same or is only very slightly different
and that the RMSDs of the optimal functionals are representative of the level of
accuracy achievable by the given functional form. In reality, if one were to choose
to self-consistently optimize a functional from a certain category, it would certainly
be beneficial to consider the top 10 or 20 functionals from a variety of selection
procedures in order to assure that the absolute best functional has been chosen.

Before moving on to the remaining 8 categories, it is interesting to consider
whether the relaxation of the UEG constraint for exchange is beneficial for the
RSH+VV10 category. According to Figure 2.3, it is clear that for a majority of
the points, the relaxation of this constraint leads to no improvements. In fact, the
best RSH+VV10 functional that results with the constraint in place is the RV-
12.01.01.Xy functional with a value of cx = 0.163, while the best RSH+VV10 func-
tional that results without the constraint is an 8-parameter RV-012.01.01.Xn func-
tional with values of cx,0 = 0.845 and cx = 0.161, resulting in cx,0 + cx = 1.006.
Thus, there is absolutely no reason to select the RV-012.01.01.Xn functional over the
RV-12.01.01.Xy functional, especially since the total RMSD of the RV-12.01.01.Xy
functional is slightly lower than that of the RV-012.01.01.Xn functional.

Moving on to the RSH+DFT-D2 category (Table 2.6), it is clear that the DFT-D2
dispersion tail is inferior to the VV10 NLC functional when coupled with RSH ex-
change. The optimal RSH+DFT-D2 functional is an 8-parameter functional with a
total RMSD of 3.05 kcal/mol (compared to 2.68 kcal/mol for the optimal RSH+VV10
functional). In comparison to the optimal RSH+VV10 functional, the optimal
RSH+DFT-D2 functional is worse with respect to all 10 RMSD categories. Compar-
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Figure 2.4: Exchange, same-spin correlation, and opposite-spin correlation inho-
mogeneity correction factors for 9 functionals from the RSH+VV10 category. The
optimal functional from the RSH+VV10 category is shown in gray. The remaining 8
lines belong to uniformly truncated m = 1 through m = 4 functionals (blue, orange,
green, black), with the solid lines indicating satisfaction of all 3 UEG constraints
and the dashed lines indicating that none of the UEG constraints are satisfied. The
fraction of short-range exact exchange is optimized for all of the fits that are plotted.
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kcal/mol None DFT-D2 VV10

Local 5.89 4.43 4.57
GH 4.72 3.14 3.06
RSH 3.87 3.05 2.68

Table 2.10: Total RMSDs in kcal/mol for the optimal functionals from all 9 cate-
gories.

ing the minimum RMSDs possible by the 2 types of functionals, they are equivalent
only with respect to the training set RMSD and the training set TC RMSD, while
the RSH+VV10 functional form outperforms the RSH+DFT-D2 functional form on
the remaining 8 RMSDs. In addition, the RMSDRG of the optimal RSH+DFT-
D2 functional is more than 2.5 times larger than that of the optimal RSH+VV10
functional.

While the functionals in both the RSH+DFT-D2 and RSH+VV10 categories are
able to account for dispersion, it is interesting to compare them to the RSH+None
category without dispersion corrections. From this category, the optimal functional
that emerges is an 8-parameter functional that maintains cx,0 = 1 but violates the
UEG limit ever so slightly for exchange by optimizing cx = 0.02. As expected,
the total RMSD of the optimal RSH functional is larger than that of the optimal
RSH+DFT-D2 functional, and even larger than that of the optimal RSH+VV10
functional.

Instead of performing similar comparisons for the 6 remaining local and GH func-
tionals, it is easiest to compare the total RMSDs of all 9 optimal functionals with the
help of Table 2.10. This table confirms that the best overall performance is achieved
by the optimal RSH+VV10 functional. Keeping the dispersion component constant,
the RSH functionals outperform the GH functionals, while the GH functionals out-
perform the local functionals. As far as dispersion corrections are concerned, it is
obvious that the functionals without dispersion corrections (None) perform worse
than those with either DFT-D2 or VV10. However, it is less obvious which of the
dispersion corrections is better. For the local exchange category, the optimal func-
tional with the DFT-D2 dispersion tail slightly outperforms the one with the VV10
NLC functional, while the reverse is true for the GH exchange category. Ultimately,
it is clear that as far as performance is concerned, the RSH+VV10 functional form
is the best from the 9 variants considered.

While Figure 2.3 in its present form has already been stripped of thousands of
datapoints for clarity, it still contains a great deal of information. It is very interest-
ing that from the 9 categories, 7 of the optimal functionals do not satisfy the UEG
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constraint for exchange, while only the GH+None and RSH+VV10 optimal function-
als satisfy this limit. In certain cases, as in the Local+DFT-D2 case, the difference
between the total RMSDs of the optimal 9-parameter functional (4.43 kcal/mol)
and the best possible 9-parameter functional that satisfies the UEG constraint for
exchange (4.76 kcal/mol) is more than 0.30 kcal/mol. For other cases, like for the
RSH+VV10 category, the difference is very small.

To convey an idea of what the plots in Figure 2.3 would look like if points had not
been removed, Figure 2.5 shows all of the points corresponding to the RSH+VV10
fits for values of RMSDTotal between 2.65 and 3.00 kcal/mol. The filled red cir-
cles correspond to fits that do not skip orders in any of the dimensionless variables
and satisfy the UEG constraint for exchange, while the unfilled red circles belong
to similar non-skipping fits that do not satisfy the UEG constraint for exchange.
Considering only the filled red circles, it is clear that going from 5 to 6 to 7 linear
parameters results in large decreases in the total RMSD, at a rate of 0.15 kcal/mol
per parameter. As the 7-parameter point is reached, the total RMSDs completely
flatten out, and the quality of the fits begins to deteriorate after 9 linear parame-
ters. The lowest 7-parameter filled red circle corresponds to the optimal RSH+VV10
functional that has been selected from considering Figure 2.3.

Once fits that skip orders in u are introduced (black dots), it is possible to
slightly reduce the total RMSD of the optimal 7-parameter fit by going to the best
9-parameter fit, but by our selection criteria, the additional 0.02 kcal/mol improve-
ment is not worth the 2 additional parameters. Finally, 2 special points on this plot
corresponding to conventional uniform truncations are indicated by filled cyan tri-
angles. The upright triangle corresponds to the 7-parameter m = 2 functional from
the fourth row of Table 2.9 that satisfies all 3 UEG constraints (RV-12.12.12.Xy),
while the downright triangle is the related 10-parameter RV-012.012.012.Xn func-
tional that violates all 3 UEG constraints (the GGA portion is identical to that of
Becke’s B97 functional). Comparing these 2 functionals to the optimal 7-parameter
functional again shows the ability of our selection procedure to reveal the best func-
tional possible for the least number of empirical parameters. In fact, Figure 2.5
indicates that it is possible to considerably outperform the m = 2 functional that
does not satisfy any of the UEG constraints with 3 less empirical parameters.

2.7 Comparisons

All of the 9 types of functionals considered thus far have existing non-empirical
and semi-empirical counterparts. We compare the 9 resulting optimal functionals to
the following: PBE[12], B97-D[54], VV10[57], B97[35], B97-D2[79], B3LYP-NL[106],



CHAPTER 2. EXPLORING THE GGA FUNCTIONAL SPACE 50

ææ æ æ
æ

æ

æ

æ æ æ

æ
æ

æ

æ

æ
æ

æ æ æ

ææ æ
æ
æ

æ

æ
æ

æ
æ

æ
æ

æ

æ

æ æ
æ

æ

æ

æ
ææ

æ æ
æ

æ
æ

ææ æ

ææ ææ æ
æ æ

æ æ æ
æ æææ

æ

ææ
æ

æ

æ æ

æ

ç

çç

ç

ç
ç

ç ç çç ç
ç

ç

ç
ç

ç
ç

çç
ç

ç
ç

ç

ç

ç
ç ç

ç
ç

ç

ç

ç

ç çç

ç

ç

ç ç

çç

ççç

çç ç
ç

ç

ç

çç

ç
çç ç

ççç
ç

ç

ç çç ç

çç
ç ç

ç ç
ç

ç

òò

ôô

4 6 8 10 12 14
2.65

2.70

2.75

2.80

2.85

2.90

2.95

3.00

Number of Linear Parameters

R
M

SD
T

ot
al

@k
ca

l�m
ol

D

Figure 2.5: Total RMSDs plotted against the number of linear parameters for all
81919 possible RSH+VV10 fits. The filled red circles correspond to fits that do not
skip orders in any of the dimensionless variables and satisfy the UEG constraint for
exchange, while the unfilled red circles belong to similar non-skipping fits that do
not satisfy the UEG constraint for exchange. The remaining points correspond to
fits that skip orders in one or more of the ICFs. The filled upright cyan triangle
corresponds to the total RMSD of the RSH+VV10 m = 2 functional that satisfies
all 3 UEG constraints, while the filled downright cyan triangle corresponds to the
total RMSD of the RSH+VV10 m = 2 functional that does not satisfy any of the
UEG constraints. The optimal functional from the RSH+VV10 category is indicated
by the lowest point on the vertical line that corresponds to 7 linear parameters.
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Category Local+None Local+DFT-D2 Local+VV10 GH+None GH+DFT-D2 GH+VV10 RSH+None RSH+DFT-D2 RSH+VV10

kcal/mol PBE B97-D VV10 B97 B97-D2 B3LYP-NL ωB97X ωB97X-D LC-VV10

Train 8.85 (4.91) 4.78 (4.48) 9.10 (4.44) 4.36 (3.49) 3.36 (3.22) 4.19 (3.25) 3.67 (3.73) 3.42 (3.55) 6.01 (3.36)
Test 12.67 (7.00) 5.21 (4.50) 8.11 (4.88) 15.41 (5.90) 3.84 (3.17) 6.62 (3.03) 5.08 (4.18) 2.83 (2.50) 5.22 (1.92)
RG 3.76 (2.09) 5.55 (3.15) 1.61 (2.57) 5.82 (2.01) 2.65 (1.82) 1.73 (0.65) 1.82 (1.97) 8.79 (2.50) 2.36 (0.95)

Total 10.64 (5.89) 5.03 (4.43) 8.40 (4.57) 11.02 (4.72) 3.56 (3.14) 5.38 (3.06) 4.32 (3.87) 3.68 (3.05) 5.51 (2.68)

TC 10.19 (5.72) 5.67 (5.23) 10.09 (5.27) 4.85 (3.87) 4.04 (3.48) 4.99 (3.61) 3.89 (4.09) 3.64 (3.80) 6.93 (3.62)
NC 2.05 (1.08) 0.70 (0.61) 1.29 (0.65) 2.71 (0.97) 0.49 (0.54) 1.02 (0.48) 0.92 (0.71) 0.53 (0.43) 0.68 (0.32)

TC,Train 10.27 (5.55) 5.43 (5.13) 10.44 (5.11) 3.89 (3.78) 3.83 (3.62) 4.47 (3.70) 4.10 (4.28) 3.82 (4.02) 6.86 (3.86)
TC,Test 9.76 (6.57) 6.79 (5.71) 7.87 (6.06) 8.28 (4.28) 5.00 (2.60) 7.18 (3.06) 2.45 (2.85) 2.42 (2.26) 7.32 (1.81)
NC,Train 0.89 (0.65) 0.76 (0.62) 1.09 (0.55) 1.66 (0.48) 0.44 (0.48) 0.97 (0.42) 0.66 (0.42) 0.61 (0.42) 0.86 (0.31)
NC,Test 2.29 (1.18) 0.68 (0.61) 1.35 (0.68) 2.96 (1.08) 0.50 (0.56) 1.04 (0.50) 0.98 (0.77) 0.50 (0.43) 0.61 (0.32)

Table 2.11: RMSDs in kcal/mol for a variety of existing density functionals for
comparison to the RMSDs of the 9 optimal functionals (shown in parentheses).

ωB97X[48], ωB97X-D[58], and LC-VV10[57]. A summary of how the optimal func-
tionals obtained here compare with these selected existing functionals is given in
Table 2.11.

2.7.1 Local Functionals

Beginning with the Local+None category, we can compare the resulting optimal
functional to the non-empirical PBE functional. In general, the addition of 7 em-
pirical parameters reduces the RMSDs by a factor of 2. The TC RMSD of PBE is
reduced from 10.19 kcal/mol to 5.72 kcal/mol, while the NC RMSD of PBE is re-
duced from 2.05 kcal/mol to 1.08 kcal/mol. However, since both of these statistical
measures contain datapoints from the training set, it is imperative to compare the
performance of the 2 functionals on the test set. The RMSDTC,Test of the optimal
Local+None functional is more than 3 kcal/mol lower than that of PBE, while its
RMSDNC,Test is smaller by a factor of 2.

Moving on to the Local+DFT-D2 functionals, we can compare the resulting op-
timal functional to Grimme’s B97-D functional, since the optimal functional is a
reoptimization of this functional on a different training set (with a different set of
ICF expansions). The 10-15% improvement in performance is not as drastic as in
the Local+None category, confirming that the B97-D functional is near the limit of
accuracy achievable by a Local+DFT-D2 GGA functional.

Finally, it is interesting to compare the performance of the existing VV10 exchange-
correlation (xc) functional (rPW86 exchange[107] + PBE correlation + VV10 NLC)
with the optimal Local+VV10 functional. As in the Local+None case, the opti-
mal functional generally improves upon the performance of the VV10 xc functional
by a factor of 2. However, it is interesting to point out that the performance of
the VV10 xc functional is better for the 3 rare-gas dimer PECs, indicating that the
weight of 2500 may be insufficient. For the optimization of the ωB97X-V functional,
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a weight of 25000 provided PECs that matched or improved upon those of the VV10
xc functional.

2.7.2 GH Functionals

Moving on to the GH+None category, we can compare against Becke’s B97 func-
tional. The largest improvements come from the noncovalent interactions, since
B97 was only fit to TC data. Thus, there is a threefold improvement in both
RMSDNC,Train and RMSDNC,Test, while the thermochemistry improvements are less
dramatic. However, the RMSDTC,Test value for the optimal functional is smaller by
a factor of 2, primarily due to its improved performance on the AlkAtom19 dataset.

While B97 was optimized only on thermochemistry, B97-D2 improves upon the
NC RMSD of B97 by a factor of more than 5, with the help of only one additional
linear parameter. While the optimal GH+DFT-D2 functional is 10-15% better for
thermochemistry in general, it is 5-10% worse for noncovalent interactions. However,
the performance of B97-D2 for the 3 rare-gas dimer PECs is worse by a factor of 1.5.
Overall, it appears as though the B97-D2 functional is near the limit of accuracy
achievable by a GH+DFT-D2 GGA functional.

Finally, the optimal GH+VV10 functional can be compared to Grimme’s recent
parameterization of the B3LYP-NL functional. The B3LYP-NL functional was de-
veloped by appending the VV10 NLC functional to the existing B3LYP functional
and optimizing only the b parameter (b = 4.8). Compared to B3LYP-NL, the perfor-
mance of the optimal GH+VV10 functional is generally better by a factor of 1.5-2.
As yet another indication of transferability, while the RMSDTC,Train of the optimal
functional is only 20% better than that of B3LYP-NL, its RMSDTC,Test value is
smaller by a factor of 2.

2.7.3 RSH Functionals

Considering the RSH functionals, the first valid comparison is between the opti-
mal RSH+None functional and ωB97X. Since ωB97X was trained primarily on ther-
mochemistry, it is not surprising that it is 5-10% better than the optimal RSH+None
functional for thermochemistry. Conversely, the performance of the optimal RSH+None
functional is 15-20% better for noncovalent interactions. In addition, the performance
of both functionals for the 3 rare-gas dimer PECs is almost identical. It appears that
ωB97X is moderately close to the RSH+None performance limit, but employs sig-
nificantly more parameters than our methodology establishes is necessary (13 vs.
8).
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Moving on to the RSH+DFT-D2 category, the optimal functional is compared
to ωB97X-D. As a reminder, the damping function that was used for ωB97X-D is
slightly different from the one used in DFT-D2 and requires the optimization of a
nonlinear parameter instead of a linear s6 parameter. Nevertheless, ωB97X-D has
TC, NC, and RG RMSDs of 3.64, 0.53, and 8.79 kcal/mol, compared to 3.80, 0.43,
and 2.50 kcal/mol for the optimal RSH+DFT-D2 functional. As far as the 3 rare-gas
dimer PECs are concerned, it is clear that the selection strategy has worked, since
the RMSDRG of the optimal functional is 3.5 times smaller than that of ωB97X-
D. Even though the optimal RSH+DFT-D2 functional has 5 less linear parameters
than ωB97X-D, its performance on the noncovalent interactions in the test set is
15% better, as is its performance for the thermochemistry data in the test set.

Finally, we can compare the optimal RSH+VV10 functional to LC-VV10. The
comparison between LC-VV10 and the optimal RSH+VV10 functional is interesting,
because the main difference between the 2 functionals is that the GGA component
of the optimal functional has been parameterized. The TC, NC, and RG RMSDs
of LC-VV10 are 6.93, 0.68, and 2.36 kcal/mol, compared to 3.62, 0.32, and 0.95
kcal/mol for the optimal RSH+VV10 functional. Thus, by simply adding 7 empirical
parameters, all 3 RMSDs are reduced by at least a factor of 2. In addition, Figure
1 from Reference 57 indicates that the VV10 xc functional (and thus the VV10
NLC functional) is very accurate for the argon dimer and krypton dimer PECs, so
it is desirable to maintain this feature as empirical parameters are added. Largely
due to the methodology employed here, the performance of the optimal RSH+VV10
functional is at least 1.5 times better than VV10 and LC-VV10 on the neon dimer,
argon dimer, and neon-argon dimer PECs.

2.8 Conclusions

In developing new semi-empirical density functionals, there are numerous pitfalls
on the road to achieving better performance than existing functionals. In this work,
we have tried to address, within a limited scope, 2 of the principal issues: (a). “How
does one assess the practical benefit of physical augmentation of a functional in a
consistent way, including its transferability?”, and (b). “How can one determine
when an optimal number of empirical parameters have been incorporated into a
given functional form?”

To address the first question with manageable scope, we have compared 3 types
of density functionals that are all built upon standard generalized gradient approxi-
mations of the Becke 97 form[35]: local, global hybrid, and range-separated hybrid.
Each of these 3 basic forms are compared against augmented forms that include
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dispersion corrections via either Grimme’s DFT-D2 dispersion tail or the VV10 non-
local correlation functional. This defines a 3 by 3 grid of functional forms, each of
which can be trained with an enormous variety of parameters.

To address the second question, as well as to complete the evaluation of the
first question, we have developed a protocol for selecting the best functional of each
type. This protocol involves training an enormous number of candidate functionals
containing different numbers of linear parameters on 1108 pieces of training set data.
The best such functional is selected based on an additional 1193 pieces of test set
data, to assess transferability as well as overall performance. It should be noted that
functionals are not trained self-consistently, but the RMSDs obtained are reliable
indicators of self-consistent performance, as we have validated elsewhere for the most
complicated form considered.

The first main outcome is the conclusion that the best functionals of each type
considered contain significantly fewer linear parameters than many existing function-
als in the literature. We believe this is largely because of the emphasis on transferabil-
ity, rather than just training set performance. Typical “optimal” functionals involve
between 7 and 9 linear empirical parameters. Functionals with larger numbers of
linear parameters can train better but exhibit increasingly poor transferability. Of
course there are fine differences between competing best choices in some cases, but
this overall result is robust.

The second main outcome concerns the relative performance of the different
functional forms within this consistent framework. We find that by far the best
possible performance is obtained by the range-separated hybrid functional, coupled
to the VV10 NLC functional. This is accordingly the best single candidate for
self-consistent optimization, a topic that we have addressed elsewhere to define the
ωB97X-V functional[63]. While the self-consistent optimization of a local GGA func-
tional appended with VV10 is an interesting opportunity for a lower cost functional,
it is unclear whether the resulting functional will perform significantly better than
the best existing local GGAs with DFT-D2 corrections, such as B97-D.

The third main outcome concerns how the 9 optimized forms compare with exist-
ing literature functionals that fit within each of those 9 categories. In some cases, very
significant improvements are evident, such as for a local functional (vs. PBE) and
for a range-separated hybrid functional with VV10 (vs. LC-VV10), which are due
largely to comparing against non-empirical (PBE) or relatively non-empirical (LC-
VV10) functionals. In other cases, such as range-separated hybrids with a dispersion
tail, modest improvements are possible while significantly reducing the number of
linear parameters (vs. ωB97X-D), indicating that less semi-empiricism than existing
choices can actually be advantageous.

Finally, there are interesting non-trivial opportunities to extend the present anal-
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ysis beyond the GGA framework we have restricted ourselves to here. It is clearly
very desirable to explore the question of how much additional improvement can be
obtained by semi-empirical functionals that depend on the kinetic energy density.
This will vastly increase the number of possible functionals to approximately 275, so
it is unlikely to be possible to do it up to the m = 4 truncation we have employed
here. However, the encouraging conclusions about the relatively low degree of op-
timal semi-empiricism suggest that this may in fact not be necessary. We hope to
report on this problem in the near future.
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Chapter 3

ωB97X-V: An RSH GGA density
functional

3.1 Introduction

3.1.1 Background

In the early 1950s, John Slater introduced the first semi-empirical exchange-only
density functional: the Xα method[66]. Since then, hundreds of parameterized den-
sity functionals have been developed, expanding upon the simplicity of Slater’s func-
tional. While the Xα method depended solely on the electron density, its successors
have taken into account both the gradient and Laplacian of the electron density, the
kinetic energy density, occupied orbitals through exact exchange, and even virtual
orbitals through post-Hartree–Fock methods such as MP2. However, almost 50 years
after the advent of Kohn–Sham DFT[1, 3], the exact exchange-correlation functional
remains elusive. Whereas Slater’s functional only had 1 optimizable parameter, to-
day’s density functionals can have more than 40 parameters.

While including more parameters in the functional optimization guarantees bet-
ter performance on the training set, the most desirable attribute of a parameterized
density functional is the promise of transferability, and a functional with less pa-
rameters is more likely to be transferable than a functional with more parameters.
Consequently, additional empirical parameters should be included in the functional
form only if they contribute to improving the performance of the functional on both
the training and primary test sets.

The first systematic optimization of a density functional[35] was conducted by
Axel Becke in 1997. The resulting global hybrid (GH) GGA density functional, B97,
had 10 linear parameters that resulted from uniformly truncating the power series
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ICFs for the exchange, same-spin correlation, and opposite-spin correlation func-
tionals at second order (m = 2). Furthermore, Becke demonstrated that including
more parameters into the linear fit negligibly enhanced the training set RMSD and
introduced unphysically oscillatory character into the ICF plots[35].

Becke revolutionized the systematic parameterization of exchange-correlation func-
tionals with B97[35]. Since then, multiple B97-based density functionals have been
developed. In 1998, Handy and coworkers[67] self-consistently optimized the parame-
ters of Becke’s functional (B97-1) and developed a new local GGA density functional
(HCTH/93). With HCTH/93, the ICFs were truncated at m = 4 (for a total of 15
parameters) instead of at m = 2 as in the hybrid B97 and B97-1 functionals (10
parameters each). While Becke’s work had indicated that values of m > 2 resulted
in unphysical functionals, the use of m = 4 in HCTH/93 was justified by using a
larger training set that included nuclear gradients and ZMP exchange-correlation
potentials[108]. The same training procedure was used to develop 2 additional 15-
parameter functionals (HCTH/120 and HCTH/147)[68], with the number following
the slash indicative of the size of the training set. Handy’s development of local
GGA functionals culminated with the HCTH/407 functional[69] (15 parameters).

Additional attempts[70, 71] at developing hybrid B97-based functionals were
made by Tozer and coworkers with B97-2 and B97-3. B97-2 (10 parameters) kept
the same value for m as B97 and B97-1, but included multiplicative potentials in
its training set (following the example set by the HCTH family). Finally, B97-3 was
parameterized with an even larger training set and an m = 4 truncation for the ICFs
(16 parameters).

While the underlying ingredient that captures inhomogeneities in the density in
B97-based density functionals is the gradient of the density, the first systematic opti-
mization of a meta-GGA density functional was conducted almost simultaneously by
Scuseria (VSXC)[27] and Becke (B98)[15]. Both of these functionals were introduced
nearly 10 years after Becke had first motivated the use of the kinetic energy density
(and the Laplacian of the density) with the BR89 exchange functional[109] and the
Bc88 correlation functional[110]. While the 10-parameter B98 functional included a
fraction of exact exchange and depended on the density, the gradient and Laplacian
of the density, as well as the kinetic energy density, the 21-parameter VSXC func-
tional contained no exact-exchange mixing and depended on the density, its gradient,
and the kinetic energy density.

Handy’s entry into the world of meta-GGAs came with the B97- and B98-based τ -
HCTH (16 parameters) and (global) hybrid τ -HCTH (17 parameters) functionals[28].
While the correlation functionals of both τ -HCTH and hybrid τ -HCTH were based on
the B97 functional form, the exchange functionals had a B97-type component and a
B98-type component (with a slightly modified τ -dependent dimensionless parameter
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(wσ) introduced by Becke[111]).
In the spirit of non-empiricism, the meta-GGA counterpart of PBE, TPSS[17],

was developed in 2003, followed by the 17-parameter, global hybrid meta-GGA func-
tional, BMK[36]. The functional form of BMK was virtually identical to that of the
hybrid τ -HCTH functional, but a primary goal of its parameterization was improved
performance for kinetics.

Since 2005, Truhlar has developed 10 highly-parameterized local (M06-L[23],
M11-L[24]), global hybrid (M05[41], M05-2X[43], M06[45], M06-2X[45], M06-HF[44],
M08-HX[46], M08-SO[46]), and range-separated hybrid (M11[52]) meta-GGA den-
sity functionals with 20 to 50 parameters. The underlying parameterizable exchange
functional component for the Minnesota functionals is a power series (in Becke’s wσ
parameter) that multiplies the non-empirical GGA enhancement factor of the PBE
exchange functional. Additional components for select functionals include VSXC-
and RPBE-based[112] exchange functional ICFs and PBE-, B97-, VSXC-, and B98-
based correlation functional ICFs.

While attempts to remedy the self-interaction error (SIE) inherent to most den-
sity functionals date back to the early 1980s[5], the elimination of SIE in the long-
range (for the exchange functional) was facilitated by the development of range-
separation, namely, the splitting of the Coulomb operator into short- and long-range
components controlled by the erfc and erf functions, respectively. While this sepa-
ration was initially used by Savin[113] to combine short-range DFT with long-range
configuration-interaction, Hirao[114] successfully applied this scheme to Becke’s B88
exchange functional[10] and combined it with his one-parameter progressive correla-
tion functional[115, 116] to produce LRC-BOP. In addition to eliminating long-range
self-interaction for the exchange functional, range-separated hybrid functionals come
with further benefits including improved performance for Rydberg and charge trans-
fer excitations within the TD-DFT approach[117].

While Hirao’s approach to range separation involved using the analytic expression
for the LSDA exchange hole[47] along with a modified Fermi wave vector that con-
tained the exchange functional ICF to derive the expression for the range-separated
enhancement factor for the LSDA exchange energy density, an alternate path[118–
120] was pursued by Scuseria whereby a general model for the GGA exchange hole
was developed and used to obtain the range-separated enhancement factor. While
the efforts of Scuseria[118–121] and Herbert[122, 123] were directed towards combin-
ing the long-range-corrected (LRC) approach with existing exchange and correlation
functionals, Chai and Head-Gordon used the flexible B97 functional form as the foun-
dation for a series of semi-empirical, range-separated hybrid functionals, namely,
ωB97[48], ωB97X[48], and ωB97X-D[58]. Although the ICFs of these functionals
were uniformly truncated at m = 4, the uniform electron gas (UEG) limits were
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satisfied, resulting in a total of 13, 14, and 15 optimized parameters, respectively.
Furthermore, these functionals used the LRC scheme of Hirao rather than Scuseria.

Since long-range electron correlations that account for van der Waals (vdW) in-
teractions cannot be properly described by standard density functionals[124, 125],
there has been an increased effort in the past decade to remedy this issue. A com-
prehensive review of various approaches to extending the applicability of DFT to
dispersive interactions can be found in Reference 126.

The simplest and cheapest methods that account for dispersion are Grimme’s
empirical DFT-D methods[53–55]. Grimme’s first attempt at an empirical dispersion
tail was DFT-D1[53], which was only available for 6 elements (H, C, N, O, F, and Ne).
With the atomic C6 parameters and van der Waals Radii predetermined, the single
linear optimizable parameter of the DFT-D1 dispersion tail (s6) was trained onto 3
existing local GGA density functionals (BLYP, BP86, and PBE) and dramatically
improved the ability of the parent functional to describe vdW interactions.

Following the success of DFT-D1, Grimme introduced the DFT-D2 dispersion
tail along with an explicitly parameterized, B97-based, local GGA density func-
tional called B97-D. B97-D maintained Becke’s m = 2 truncation for the ICFs and
had a total of 10 optimized parameters. While the form of the DFT-D2 dispersion
correction term was identical to that of DFT-D1, atomic C6 parameters and van der
Waals Radii were made available for all elements through xenon, and the existing
values from DFT-D1 were improved. Furthermore, s6 parameters were determined
for PBE, BLYP, BP86, TPSS, and B3LYP.

The latest addition to the DFT-D family is the DFT-D3 dispersion tail, which
uses fractional coordination numbers to account for variations in atomic dispersion
coefficients in different chemical environments and contains a 2-body and 3-body
term. In addition, DFT-D3 uses an improved damping function (motivated by the
work of Salahub[127] and Head-Gordon[58]) that has an additional nonlinear parame-
ter in its denominator. Since the 2-body part of DFT-D3 includes both 1/r6 and 1/r8

terms, 2 linear (s6 and s8) and 2 nonlinear parameters (sr,6 and sr,8) are available for
optimization. However, Grimme and coworkers demonstrated that s6 and sr,8 can be
set to unity for non-double-hybrid density functionals, leaving 2 optimizable param-
eters. The DFT-D3 dispersion tail was trained onto more than 10 existing density
functionals and generally improved upon its predecessors for describing dispersive
interactions.

The Becke and Johnson (BJ) exchange-dipole moment (XDM) model[128–134]
takes advantage of the fact that dispersive interactions can be accounted for via the
exchange-hole dipole moments of the interacting species. The prominent term in such
an (attractive) interaction is of the instantaneous dipole-induced dipole nature, and
Becke and Johnson have motivated 2 variants of their method: XDM6, which only
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includes interatomic 1/r6 interactions, and XDM10, which additionally depends on
interatomic 1/r8 and 1/r10 interactions. XDM6 and XDM10 have 1 and 2 optimizable
parameters, respectively, and the methods have been recently implemented in both
a self-consistent-field (SCF) and post-SCF manner[135].

While the DFT-D and XDM approaches rely on predetermined atomic parameters
(C6 coefficients, vdW Radii, atomic polarizabilities, etc.) to compute the dispersion
interaction, several methods that account for dispersion through their dependence
on the electron density have been developed in the past decade, including vdW-DF-
04[73], vdW-DF-10[74], VV09[75], and VV10[57]. These nonlocal correlation (NLC)
functionals rely on a double space integral over the density and a nonlocal correlation
kernel, and are computationally more expensive than the DFT-D and XDM methods.
Langreth, Lundqvist, and coworkers introduced the first NLC scheme (vdW-DF-04)
that could be applied to overlapping densities in 2004. Several years later, Vydrov
and Van Voorhis self-consistently implemented the vdW-DF-04 NLC functional for
use with Gaussian basis sets[136], and proposed modifications (vdW-DF-09) to im-
prove its compatibility with existing exchange functionals[137]. The VV09[75, 138,
139] NLC functional of Vydrov and Van Voorhis adopted a simple analytic form
for the nonlocal correlation kernel, instead of relying on a numerically tabulated
kernel. Based on their experience garnered from VV09, Vydrov and Van Voorhis
proposed an even simpler NLC functional, VV10, that improved upon its predeces-
sor by employing a less elaborate function for the damping of the 1/r6 asymptote.
In 2010, Langreth, Lundqvist, and coworkers proposed an improved NLC functional
(vdW-DF-10) to account for the tendency of vdW-DF-04 to overestimate equilibrium
bond lengths and underestimate the binding energies of hydrogen-bonded complexes.
While the vdW-DF methods have no optimizable parameters, VV09 and VV10 have
1 and 2 optimizable parameters, respectively.

3.1.2 Design Goals and Strategy

Due to the flexibility provided by the B97 functional form, it is the foundation
for the functional introduced in this chapter. 3 significant changes are made to the
original B97 functional form: 1). the new functional is a range-separated hybrid
functional instead of a global hybrid functional, 2). the VV10 NLC functional[57]
is included to provide a sound description of nonlocal electron correlation, and 3).
the ICF truncation orders for the exchange, same-spin correlation, and opposite-spin
correlation functionals are determined individually. The resulting density functional,
ωB97X-V, has 7 linear parameters (2 for local exchange, 4 for local correlation, and
1 for short-range exact exchange) and 3 nonlinear parameters (1 for range-separation
and 2 for nonlocal correlation), for a total of 10 optimized parameters.
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Chemical Accuracy

+ dependence on virtual orbitals
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B3LYP, ωB97X-V

Figure 3.1: Perdew’s “Jacob’s Ladder”.

The ingredients included in the functional form of ωB97X-V place it on the fourth
rung of Perdew’s “Jacob’s Ladder”[4] (Figure 3.1). An alternate view of the in-
gredients that can be incorporated into a density functional is given in Table 3.1.
When choosing the components of a density functional, the first consideration in-
volves selecting the ingredients that will constitute the local exchange-correlation
(xc) functional. While the density and its gradient were chosen for ωB97X-V, it is

worthwhile to note that the kinetic energy density, τσ = 1
2

occ.∑
i

|∇ψi,σ|2, was taken into

consideration. However, studies[140–143] have indicated that functionals containing
this ingredient require very fine integration grids to overcome oscillatory behavior
in the potential energy curves (PEC) of weakly-bound systems. Furthermore, pre-
liminary results from attempting to develop a range-separated hybrid meta-GGA
density functional have indicated that the great freedom associated with parameter-
izing a (∇ρ, τ) surface requires further exploration, and will be addressed in a future
publication.
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Exchange Correlation

Local Nonlocal Local Nonlocal

1). ρ 1). None 1). ρ 1). None
2). ∇ρ 2). GH 2). ∇ρ 2). DFT-D2
3). τ 3). RSH 3). τ 3). DFT-D3

4). ∇2ρ 4). ∇2ρ 4). VV10
5). MP2

Table 3.1: Ingredients that can be incorporated into a density functional. GH stands
for global hybrid and RSH stands for range-separated hybrid. The nonlocal corre-
lation list is certainly not comprehensive, as it excludes functionals such as VV09,
XDM6, XDM10, vDW-DF-04, and vDW-DF-10, as well as higher-scaling post-SCF
methods like RPA, MP3, CCSD, and CCSD(T). The underlined ingredients define
the functional form of ωB97X-V.

After finalizing the local xc functional form, the question of whether to include
exact exchange arises. Since most density functionals that perform well on both
bonded and non-bonded interactions have a fraction of exact exchange, the sub-
sequent question is whether to go with the global hybrid (GH) functional form or
the range-separated hybrid (RSH) functional form. While GH functionals have a
fixed fraction of exact exchange for all interelectronic distances, the fraction of ex-
act exchange varies from 0 (or a positive non-zero fraction) at short-range to 1 at
long-range for RSH functionals, conveniently eliminating self-interaction error in the
long-range for the exchange functional. Since GH and RSH functionals have the
same computational scaling, the RSH functional form was chosen for ωB97X-V.

Finally, it is necessary to decide whether a dispersion correction should be ap-
pended to the functional. Since a range-separated hybrid GGA functional cannot
accurately bind dispersion-bound systems on its own, a dispersion correction is re-
quired. As a result of the poor performance of ωB97X-D on a recent benchmark of
dianionic sulfate-water clusters[87] (a failure that can be attributed to the fact that
dispersion tails cannot differentiate between neutral and charged atoms), the DFT-
D methods were not considered. The NLC functional of Vydrov and Van Voorhis
(VV10) was selected over MP2 because it does not carry the additional weight of
fifth-order computational scaling and is a simple functional of the electron density.
These considerations ultimately led to the functional form containing the underlined
components in Table 3.1.

The transferability of a semi-empirical density functional is an attribute that must
be assured during its development. In order to obtain a maximally-transferable func-
tional, the 2301 datapoints that were initially set aside for training were divided into
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a training set of 1108 datapoints and a primary test set of 1193 datapoints. The
motivation for this partitioning initially came from the decision to determine the
3 ICF expansions individually, instead of truncating them uniformly. During the
optimization of B97, Becke uniformly varied the truncation order (m) from 0 to 8,
and chose to truncate uniformly at m = 2 based on the 9 resulting RMSDs. In this
work, the decision to individually determine the ICF expansions means that there
are 2mx+mcss+mcos+2−1 possible candidate functionals (where mx, mcss, and mcos are
the largest orders included in the exchange, same-spin correlation, and opposite-spin
correlation functional power series ICFs). Since there is no literature on whether
truncating the ICFs individually and/or skipping orders in the ICFs will produce
transferable functionals, it was deemed necessary to train the linear parameters of
the candidate functionals on the training set and check the transferability of the
fits on the primary test set. Ultimately, this survival-of-the-fittest strategy will be
used to answer the following basic questions: 1). “Does having more parameters
necessarily imply better overall performance for a density functional?”, 2). “Is there
a point at which the inclusion of additional parameters becomes detrimental to the
overall performance of a density functional?”, and 3). “Can we achieve better over-
all performance by selectively optimizing certain parameters in the ICFs, or is the
conventional scheme of uniform truncation sufficient?”.

3.2 Computational Details

An integration grid of 99 radial points and 590 angular points, (99,590), was used
to evaluate local xc functionals, while the SG-1 grid[61] was used for the VV10 NLC
functional[57]. For the rare-gas dimers and the absolute atomic energies, a (500,974)
integration grid was used to evaluate local xc functionals, along with a (99,590)
grid for the VV10 NLC functional. For M06-L[23] and M11-L[24], calculations in
the training and primary test set were carried out with the (250,590) grid. All
calculations on the coronene dimer were carried out with a (75,302) grid for local xc
functionals and the SG-1 grid for the VV10 NLC functional. The aug-cc-pVQZ [aQZ]
basis set[77, 78] was used for all thermochemistry datapoints except the second-row
absolute atomic energies (aug-cc-pCVQZ)[77, 78], while the aug-cc-pVTZ [aTZ] basis
set[77, 78] was used for all noncovalent interactions datapoints except the rare-gas
dimers (aug-cc-pVQZ). For the X40 dataset[144] in the secondary test set, the def2-
TZVPPD basis set[145, 146] was used. Furthermore, the noncovalent interactions
were computed without counterpoise corrections unless otherwise noted. For PBE-
D2, B3LYP-D2, and B97-D2, Grimme’s DFT-D2 dispersion tail was used with the
following[54, 79] s6 coefficients: 0.75, 1.05, and 0.75. Grimme’s B97-D functional
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uses the DFT-D2 dispersion tail as well, with an s6 coefficient of 1.25. All of the
calculations were performed with a development version of Q-Chem 4.0[80].

3.3 Theory

The complete functional form for ωB97X-V is given by Equations 3.1-3.3. The
components of the exchange functional and correlation functional are described in
Sections 3.3.1 and 3.3.2, respectively. The acronyms used in Equations 3.1-3.3 (and
henceforth) are: exchange-correlation (xc), exchange (x), correlation (c), short-range
(sr), long-range (lr), same-spin (ss), opposite-spin (os), and nonlocal (nl).

EωB97X−V
xc = EωB97X−V

x + EωB97X−V
c (3.1)

EωB97X−V
x = EB97

x,sr + cxE
exact
x,sr + Eexactx,lr (3.2)

EωB97X−V
c = EB97

c,ss + EB97
c,os + EV V 10

c,nl (3.3)

3.3.1 Exchange Functional Form

The local spin-density approximation (LSDA) for exchange can be expressed in
terms of the first-order spinless reduced density matrix for a uniform electron gas
(UEG):

ELSDAx = −1

2

α,β∑
σ

∫ ∫
1

s
|ρUEGσ (r, s) |2drds (3.4)

ρUEGσ (r, s) = 3ρσ (r)

[
sin (kFσs)− kFσs cos (kFσs)

[kFσs]
3

]
(3.5)

where s = r1 − r2, r = 1
2

[r1 + r2], and kFσ = [6π2ρσ]
1/3

is the spin-polarized Fermi
wave vector. Integration of Equation 3.4 over s gives the well-known expression for
the LSDA exchange energy in terms of the exchange energy density per unit volume
of a uniform electron gas:

ELSDAx =

α,β∑
σ

∫
eUEGx,σ (ρσ)dr (3.6)

eUEGx,σ (ρσ) = −3

2

(
3

4π

)1/3

ρ4/3
σ (3.7)

Transforming ELSDA
x to its short-range counterpart, ELSDA

x,sr , is accomplished by re-

placing 1
s

in Equation 3.4 with erfc(ωs)
s

and carrying out the same integration. The
resulting SR-LSDA exchange functional:
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ELSDAx,sr =

α,β∑
σ

∫
eUEGx,σ (ρσ)F (aσ) dr (3.8)

is conveniently identical to its unattenuated counterpart, with the exception of a
multiplicative attenuation function, F (aσ):

F (aσ) = 1− 2

3
aσ

[
2
√
πerf

(
1

aσ

)
− 3aσ+

a3
σ +

[
2aσ − a3

σ

]
exp

(
− 1

a2
σ

)] (3.9)

where aσ = ω
kFσ

and ω is the nonlinear range-separation parameter that controls the
transition from local DFT exchange to nonlocal exact exchange with respect to the
interelectronic distance.

Accounting for inhomogeneities in the electron density is achieved by multiplying
the integrand of the SR-LSDA exchange functional by the power series inhomogeneity
correction factor[35], gx (ux,σ), resulting in the SR-B97 exchange functional:

EB97
x,sr =

α,β∑
σ

∫
eUEGx,σ (ρσ)F (aσ) gx (ux,σ) dr (3.10)

gx (ux,σ) =

mx∑
i=0

cx,iu
i
x,σ =

mx∑
i=0

cx,i

[
γxs

2
σ

1 + γxs2
σ

]i
(3.11)

where the dimensionless variable, ux,σ ∈ [0, 1], is a finite domain transformation of

the reduced spin-density gradient, sσ = |∇ρσ |
ρ
4/3
σ

∈ [0,∞). The linear DFT exchange

parameters, cx,i, will be determined by least-squares fitting to a training set in Section
3.5, while γx = 0.004 is a nonlinear local exchange parameter that was fit to the
Hartree–Fock exchange energies of 20 atoms in 1986 by Becke[9].

Nonlocal exchange is introduced by splitting the Coulomb operator in the con-
ventional expression for exact exchange into a short-range component (Eexact

x,sr ) and a
long-range component (Eexact

x,lr ) with the erfc and erf Coulomb functions, respectively:

Eexactx,sr = −1

2

α,β∑
σ

occ.∑
i,j

∫ ∫
ψ∗iσ (r1)ψ∗jσ (r2)

erfc (ωr12)

r12

× ψjσ (r1)ψiσ (r2) dr1dr2

(3.12)

Eexactx,lr = −1

2

α,β∑
σ

occ.∑
i,j

∫ ∫
ψ∗iσ (r1)ψ∗jσ (r2)

erf (ωr12)

r12

× ψjσ (r1)ψiσ (r2) dr1dr2

(3.13)
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where ψiσ and ψjσ are the occupied Kohn–Sham spatial orbitals. Instead of setting
the percentage of exact-exchange at r = 0 to zero, an optimizable parameter, cx,
controls the amount of short-range exact exchange.

3.3.2 Correlation Functional Form

Closed-form expressions for the correlation energy density per particle of a uni-
form electron gas, εUEGc (ρ), are only known for the low- and high-density limits of
the paramagnetic and ferromagnetic cases of the uniform electron gas (UEG). Us-
ing the Monte-Carlo data of Ceperley and Alder[8], Perdew and Wang developed
an analytic spin-compensated representation[7], εPW92

c (ρ), for εUEGc (ρ). Combined
with the spin-polarization interpolation formula of Vosko, Wilk, and Nusair[6], the
spin-polarized PW92 correlation energy density per particle, εPW92

c (ρα, ρβ), is the
starting point for the ωB97X-V correlation functional:

ELSDAc =

∫
ρεPW92
c (ρα, ρβ) dr (3.14)

Using the spin decomposition technique of Hermann Stoll and coworkers[81], the
LSDA correlation energy functional above can be separated into same-spin and
opposite-spin components:

ELSDAc,ss =

α,β∑
σ

∫
ePW92
c,σσ dr =

∫
ραε

PW92
c (ρα, 0) dr+∫

ρβε
PW92
c (0, ρβ) dr

(3.15)

ELSDAc,os =

∫
ePW92
c,αβ dr =

∫
ρεPW92
c (ρα, ρβ) dr−∫

ραε
PW92
c (ρα, 0) dr−

∫
ρβε

PW92
c (0, ρβ) dr

(3.16)

where ePW92
c,σσ and ePW92

c,αβ are the PW92 same-spin and opposite-spin correlation en-
ergy densities per unit volume. Extending Equations 3.15 and 3.16 to account for
inhomogeneities in the electron density is straightforward, since the same approach
used for the exchange functional can be applied to the correlation functional:

EB97
c,ss =

α,β∑
σ

∫
ePW92
c,σσ gc,ss (uc,σσ) dr (3.17)

gc,ss (uc,σσ) =

mcss∑
i=0

ccss,iu
i
c,σσ =

mcss∑
i=0

ccss,i

[
γcsss

2
σ

1 + γcsss2
σ

]i
(3.18)
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EB97
c,os =

∫
ePW92
c,αβ gc,os (uc,αβ) dr (3.19)

gc,os (uc,αβ) =

mcos∑
i=0

ccos,iu
i
c,αβ =

mcos∑
i=0

ccos,i

[
γcoss

2
αβ

1 + γcoss2
αβ

]i
(3.20)

where s2
αβ = 1

2

(
s2
α + s2

β

)
. The linear DFT correlation parameters, ccss,i and ccos,i,

will be determined by least-squares fitting to a training set in Section 3.5, while
γcss = 0.2 and γcos = 0.006 are nonlinear local correlation parameters that were fit
to the correlation energies of helium and neon in 1986 by Becke[9].

Nonlocal correlation is taken into account via the VV10 NLC functional[57]:

EV V 10
c,nl =

∫
ρ (r)

[
1

32

[
3

b2

]3/4

+
1

2

∫
ρ (r′) Φ (r, r′, {b, C}) dr′

]
dr (3.21)

where Φ (r, r′, {b, C}) is the nonlocal correlation kernel defined in Reference 57. The
VV10 NLC functional introduces 2 nonlinear parameters: b, which controls the short-
range damping of the 1/r6 asymptote, and C, which controls the accuracy of the
asymptotic C6 coefficients.

3.4 Datasets

In total, the training, primary test, and secondary test sets used for the parame-
terization, validation, and assessment of ωB97X-V contain 2486 datapoints, requiring
2455 single-point calculations. Of the 2486 datapoints, 1108 belong to the training
set, 1193 belong to the primary test set, and 185 belong to the secondary test set.
Furthermore, the training, primary test, and secondary test sets contain both ther-
mochemistry (TC) data as well as noncovalent interactions (NC) data. The training
set contains 787 TC datapoints and 321 NC datapoints, the primary test set contains
146 TC datapoints and 1047 NC datapoints, and the secondary test set contains 69
TC datapoints and 116 NC datapoints (for an overall total of 1002 TC datapoints
and 1484 NC datapoints). Table 3.2 lists the 47 datasets that form the training, pri-
mary test, and secondary test sets. Details regarding the datasets will be discussed
in this section. The references for the datasets are given in the rightmost column of
Table 3.2 and will not be repeated in the text unless specific values from a table are
being referenced.

The first 5 thermochemistry datasets in the training set are from Jan Martin’s
W4-11 dataset. All datapoints that involve multireference systems were removed
from these datasets.
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The reference values for DBH24 were taken from the second column (“TAEe”) of
Table 1 in Reference 84 and the geometries were taken from the online Minnesota
databases.

EA6 and EA7 (as well as IP6 and IP7) are subsets of Truhlar’s EA13 and IP13
datasets. For the atoms in EA6 and IP6 (C, O, Si, P, S, and Cl), the reference
values were recomputed at the CCSD(T)/aug-cc-pwC(Q5)Z[78, 147] level, while for
the remaining molecules in EA7 and IP7, the 14 reference values (as well as the
geometries) were taken from the online Minnesota databases (Column “REF1” in
EA13/03 and IP21).

AE8 contains the absolute energies of the following atoms: H, He, B, C, N, O,
F, and Ne. The energies for the latter 6 atoms were taken from Table XI (rightmost
entry) in Reference 86, while the exact energies of the hydrogen atom (-0.5 hartree)
and the helium atom[148] (-2.90372 hartrees) were used.

Moving on to the NC data in the training set, 3 potential energy curves (PEC)
were removed from Sherrill’s NBC10A dataset (parallel-displaced benzene dimer (3.2
Å and 3.6 Å) and benzene-H2S dimer), and the rest of the PECs were divided into 3
subdatasets (NBC10A1, NBC10A2, and NBC10A3), while all 6 PECs from HBC6A
were used.

From Crittenden’s BzDC215 dataset, the following interactions were included in
the training set: C6H6-{HF, H2O, NH3, CH4, HCl}.

The reference values for AlkAtom19, AlkIsomer11, and AlkIsod14 were taken
from Tables S7, S8, and S9 of the Supporting Information of Reference 93 (along
with the B3LYP/pc-2 optimized geometries).

The geometries and reference values for HTBH38 and NHTBH38 were taken from
the online Minnesota databases (Column “REF1” in HTBH38/08 and NHTBH38/08).

For the rare-gas dimers, the PECs each have 41 points with the following ranges
in increments of 0.1 Å: Ne2 (2.59 to 6.59 Å), Ar2 (3.26 to 7.26 Å), and NeAr (2.98 to
6.98 Å). The reference values were taken from the Tang-Toennies potential model.

From WATER27, the 4 datapoints corresponding to the water 20-mers were ex-
cluded, and the rest of the reference values and geometries were taken from Grimme’s
online GMTKN30 database.

For HW30, the reference values were taken from the fourth column (“E
CCSD(T )/CBS
int ”)

of Table 1 in Reference 100.
For NCCE31, only the 18 interactions from Table 1 of Reference 101 were used,

and the reference values in the last column (“final De”) of this table were used. The
geometries were taken from the online Minnesota databases.

The revised S22B values from Sherrill were used for the S22 dataset, while Hobza’s
revised S66 reference values were used for the S66 dataset.
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The reference values and geometries for G21EA, G21IP, and CYCONF were
taken from Grimme’s online GMTKN30 database. The reference values and geome-
tries for PA8 were taken from the online Minnesota databases (Column “REF1” in
PA8/06). For A24, the reference values were computed by adding the values in the
“CCSD(T)/CBS” and “core correlation” columns in Table 1 of Reference 149.

The MP2/haTZ optimized geometries for the 8 water hexamers (bag, book1,
book2, cage, cyclicboat1, cyclicboat2, cyclicchair (ring), prism) in H2O6Rel and
H2O6Bind were taken from References 150 and 151. The term, haTZ, indicates
that the aug-cc-pVTZ basis set was used for oxygen and the cc-pVTZ basis set was
used for hydrogen. The binding energies in H2O6Bind were taken from the last
column (“CCSD(T)/CBS - relaxation”) of Table S5 in the Supporting Information
of Reference 152, and the relative energies in H2O6Rel were computed using the
binding energies in H2O6Bind (i.e. not the hexamer absolute energies).

The reference values for HW6F and HW6Cl were taken from the third column
(“RI-CCSD(T)/CBS”) of Tables S6 and S7 in the Supporting Information of Refer-
ence 152.

The reference values for DS14 were taken from the third column (“CBS (∆aTZ)”)
of Table 1 in Reference 153.

3.5 Training

With a training set of 1108 datapoints, it is clear that a comprehensive 3-
parameter nonlinear optimization is impractical. As a result, the 3 nonlinear param-
eters were determined from fits to a subset of the training set over a 3-dimensional
set of points. The resulting values for ω, b, and C were 0.3, 6.0, and 0.01, respec-
tively. ω was optimized in increments of 0.1, b was optimized in increments of 0.25,
and C was optimized in increments of 0.0025. In comparison to existing functionals,
the value of ω = 0.3 is identical to the value that was determined for ωB97X[48]
by Chai and Head-Gordon. In addition, Vydrov and Van Voorhis[57] found that
the best b and C values were 5.9 and 0.0093 for rPW86+PBE+VV10 [VV10] and
6.3 and 0.0089 for ωPBE+PBE+VV10 [LC-VV10]. Thus, the nonlinear values that
have been determined are reasonable. Any inaccuracies in these parameters will be
accounted for during the optimization of the linear parameters.

With the nonlinear parameters determined, the 1961 required single-point calcu-
lations (corresponding to the data in the training and primary test sets) were carried
out with the unoptimized ωB97X-V functional (gx = gc,ss = gc,os = 1) in order to
acquire the data necessary to perform least-squares fits to the training set and check
the accuracy of the fits on the primary test set. Contributions to the total energy
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Name Description # Ref.

HAT707 Heavy-atom transfer reaction energies 505 82
BDE99 Bond dissociation reaction energies 83 82

TAE nonMR124 Total atomization energies 124 82
SN13 Nucleophilic substitution reaction energies 13 82

ISOMER20 Isomerization reaction energies 18 82
DBH24 Diverse barrier heights 24 83,84

EA6 Electron affinities of atoms 6 85
IP6 Ionization potentials of atoms 6 85
AE8 Absolute atomic energies 8 86

SW49Rel345 SO4
2−(H2O)n (n = 3− 5) relative energies 28 87

SW49Bind345 SO4
2−(H2O)n (n = 3− 5) binding energies 30 87

NBC10A2 Methane dimer and benzene-methane dimer PECs 37 88,89
HBC6A Formic acid, formamide acid, and formamidine acid dimer PECs 118 90,89

BzDC215 Benzene and first- and second-row hydride PECs 108 91

EA7 Electron affinities of small molecules 7 85
IP7 Ionization potentials of small molecules 7 85

Gill12 Neutral, radical, anionic, and cationic isodesmic reaction energies 12 92
AlkAtom19 n = 1− 8 alkane atomization energies 19 93
AlkIsomer11 n = 4− 8 alkane isomerization energies 11 93
AlkIsod14 n = 3− 8 alkane isodesmic reaction energies 14 93
HTBH38 Hydrogen transfer barrier heights 38 94

NHTBH38 Non-hydrogen transfer barrier heights 38 95

SW49Rel6 SO4
2−(H2O)n (n = 6) relative energies 17 87

SW49Bind6 SO4
2−(H2O)n (n = 6) binding energies 18 87

NNTT41 Neon-neon PEC 41 96
AATT41 Argon-argon PEC 41 96
NATT41 Neon-argon PEC 41 96

NBC10A1 Parallel-displaced (3.4 Å), sandwich, and T-shaped benzene dimer PECs 53 88,89
NBC10A3 S2 and T3 configuration pyridine dimer PECs 39 97,89
WATER27 Neutral and charged water interactions 23 98,99

HW30 Hydrocarbon and water dimers 30 100
NCCE31 Noncovalent complexation energies 18 101

S22x5 Hydrogen-bonded and dispersion-bonded complex PECs 110 102
S66x8 Biomolecular structure complex PECs 528 103
S22 Equilibrium geometries from S22x5 22 104,89
S66 Equilibrium geometries from S66x8 66 103,105

G21EA Adiabatic electron affinities 25 154,99
G21IP Adiabatic ionization potentials 36 154,99
PA8 Adiabatic proton affinities 8 155,156

A24 Small noncovalent complexes 24 149
X40 Noncovalent interactions of halogenated molecules 40 144

H2O6Rel Relative energies of water hexamers 8 152
H2O6Bind Binding energies of water hexamers 8 152

HW6F Binding energies of F−(H2O)n (n = 1− 6) 6 152
HW6Cl Binding energies of Cl−(H2O)n (n = 1− 6) 6 152

CYCONF Relative energies of cysteine conformers 10 157,99
DS14 Binding energies for complexes containing divalent sulfur 14 153

Table 3.2: Summary of the datasets found in the training, primary test, and sec-
ondary test sets. The datasets above the first thick black line are in the training set,
the datasets between the first and second thick black lines are in the primary test
set, while the datasets below the second thick black line are in the secondary test set.
Within the training, primary test, and secondary test sets, datasets above the thin
black line contain thermochemistry datapoints, while datasets below the thin black
line contain noncovalent interactions datapoints. PEC stands for potential energy
curve.
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from cx,i, ccss,i, and ccos,i for i ∈ [0, 4] were saved, along with the contribution from
cx.

The only constraint that was deliberately enforced was the uniform electron gas
limit for exchange (cx,0 +cx = 1), since a review of the parameters of existing density
functionals indicated that relaxing this constraint usually results in cx,0 +cx ≈ 1. For
example, for B97[35], cx,0 + cx = 1.0037, and for B97-1[67], cx,0 + cx = 0.999518. On
the other hand, {ccss,0, ccos,0} for B97 and B97-1 are {0.17, 0.95} and {0.08, 0.96},
respectively. Furthermore, since past experience with ωB97X[48] and ωB97X-D[58]
indicated that cx optimizes to a non-zero value (0.158 and 0.222, respectively), this
parameter was always included in the least-squares fits.

With 4 free parameters from the exchange functional ICF, and 5 free parameters
from each of the correlation functional ICFs, the total number of least-squares fits

amounts to
14∑
i=1

(
14

i

)
= 214 − 1 = 16383.

Thermochemistry datapoints in the training and primary test sets are given
weights of 1 and 2.5 respectively (except for datapoints in EA6 and IP6 which are
weighted by 5), noncovalent interactions datapoints in the training and primary test
sets are given weights of 10 and 25, respectively, and datapoints corresponding to
the rare-gas dimer PECs in the primary test set are given weights of 25000. The
total RMSD is defined as a weighted RMSD of all 1961 datapoints in the training
and primary test sets, with the aforementioned weights.

Using the least-squares fits data, preliminary training set, primary test set, and
total RMSDs were generated for all 16383 possible functional forms. Based on this
data, it was concluded that fits that skip powers in the dimensionless variable, u,
tend to perform comparably or worse than functionals with the same number of
parameters that do not skip powers in u. After disregarding functionals that skip
powers in u, a total of 500 unique functional forms remained.

The training set and primary test set RMSDs for these 500 least-squares fits
plotted with respect to the number of linear parameters are shown in Figure 3.2.
The data contained in Figure 3.2 is crucial for assessing the extent to which our
design goal of a highly-accurate, transferable functional can be accomplished with
minimal empiricism. Considering the figure on the left (which contains the training
set RMSDs), it is evident that the best functional with a given number of linear
parameters improves rapidly with each additional parameter up to 6 or 7 parameters.
Subsequent additional parameters provide only small improvements to the training
set RMSD. Thus, the curve corresponding to the lowest training set RMSD for a
fixed number of linear parameters resembles a hockey stick.

On the right side of Figure 3.2 is the corresponding data for the primary test
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set RMSD. The most important attribute of this plot is that the curve defined by
the lowest primary test set RMSD for a fixed number of linear parameters looks
roughly similar to the plot on the left for up to 7 parameters, but the addition of
more parameters leads to no improvement. In fact, the optimal primary test set
RMSD values for functionals with more than 7 linear parameters gradually worsen,
indicating reduced transferability. This plot depicts a useful guideline for determining
the appropriate “extent of empiricism”.

In order to easily identify the functionals in Figure 3.2, the following nomenclature
will be utilized: 3 numbers (0-4) will indicate at which order the exchange, same-
spin correlation, and opposite-spin correlation functional ICFs are truncated, while
3 letters (y(es) or n(o)) will indicate whether or not the UEG limit is enforced. For
example, 3y0n2n indicates that the exchange functional ICF is truncated at mx = 3,
while the same-spin and opposite-spin correlation functional ICFs are truncated at
mcss = 0 and mcos = 2, respectively. Furthermore, it indicates that the UEG limit for
exchange is satisfied (by construction), while neither of the UEG limits for correlation
are enforced.

The primary test set RMSD plot on the right in Figure 3.2 was used to identify
outstanding functionals. This figure clearly indicates that increasing the number
of linear parameters past 7 is either ineffective or detrimental towards the goal of
minimizing the primary test set RMSD. The 2 7-parameter fits that have virtually
the same primary test set RMSDs are: 2y1n1n (green square, gray check mark,
2.05 kcal/mol) and 2y2y1n (downright orange triangle, magenta check mark, 2.03
kcal/mol). In order to differentiate between the two, it was necessary to consider
their performance on the training set as well. Accordingly, the training set RMSD
plot on the left in Figure 3.2 indicates that the 2y1n1n functional (3.36 kcal/mol)
has a slightly lower training set RMSD than the 2y2y1n functional (3.40 kcal/mol).
To isolate the winner, the total RMSD was plotted in the same manner. Figure 3.3
shows the total RMSD for all 16383 least-squares fits and it is clear that the 2y1n1n
functional is the optimal choice, even when functionals that skip orders in u are
considered. Ultimately, the 2y1n1n functional with 7 linear parameters was selected
for self-consistent optimization.

With a training set RMSD of 3.36 kcal/mol, a primary test set RMSD of 2.05
kcal/mol, and a total RMSD of 2.76 kcal/mol, the 2y1n1n functional compares very
well to the “best” functional from each RMSD category. The functional with the
lowest training set RMSD is the 15-parameter 4y4n4n functional at 3.16 kcal/mol
(with a primary test RMSD of 15.57 kcal/mol and a total RMSD of 11.42 kcal/mol),
while the functional with the lowest primary test set RMSD is the aforementioned
2y2y1n functional at 2.03 kcal/mol (with a total RMSD of 2.78 kcal/mol). Finally,
the functional with the lowest total RMSD is the 8-parameter 2y2n1n functional.
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The 3 RMSDs of this fit match those of the 2y1n1n functional to the second decimal
place, and the additional parameter is therefore unwarranted. Since Figure 3.3 plots
the total RMSD for all 16383 fits, there are functional forms that skip orders in u
that have slightly smaller total RMSDs than the 2y1n1n functional. The lowest total
RMSD of 2.74 kcal/mol is achieved by a 9-parameter 2y4n1n functional that skips the
first order linear parameter in uc,σσ. This fit has a training RMSD of 3.36 kcal/mol
and a primary test set RMSD of 2.01 kcal/mol. However, its negligible improvement
over the 2y1n1n functional form is not worth the 2 additional empirical parameters.
Compared to the existing ωB97X and ωB97X-D functionals (13 linear parameters
each), the new functional has 6 fewer linear parameters.

The training set RMSD of the unoptimized ωB97X-V functional is 25.84 kcal/mol,
while the training set RMSD of the carefully selected 2y1n1n functional is 3.36
kcal/mol. With the data from Cycle 1, it is straightforward to produce a series
of interesting results that will be discussed here. For example, if only the first-order
gradient correction to the exchange functional is optimized (the resulting functional
would be an RSH (cx = 0) B86-type exchange functional with PW92 local correla-
tion and VV10 nonlocal correlation), the resulting coefficient is cx,1 = 0.718. While
it is not an apples-to-apples comparison, the corresponding coefficient that Becke
determined in 1986 for the local B86 exchange-only functional by fitting to atomic
exchange energies was 0.967. This single-parameter fit cuts the training set RMSD
by more than a factor of 3 (7.76 kcal/mol). If only the short-range exact exchange pa-
rameter is allowed to vary (with the UEG limit for exchange enforced), the resulting
value is cx = 0.475, with a training set RMSD of 10.47 kcal/mol. Finally, the training
set RMSD for the 2n2n2n “B97” functional form is 3.34 kcal/mol, with a primary
test set RMSD of 2.62 kcal/mol and a total RMSD of 2.99 kcal/mol. For comparison,
the training set, primary test set, and total RMSDs for Becke’s B97 functional are
4.36, 15.75, and 11.74 kcal/mol, respectively, while appending Grimme’s DFT-D2
dispersion tail to B97 gives the resulting B97-D2 functional corresponding RMSDs
of 3.36, 4.52, and 4.00 kcal/mol, respectively.

Including the initial cycle (Cycle 1) with the unoptimized ωB97X-V functional,
the self-consistent optimization of ωB97X-V required 3 cycles. For the first cycle, the
datapoints in the training and primary test sets were evaluated in order to generate
Figures 3.2 and 3.3 and determine the functional form that would be self-consistently
optimized. For the latter 2 cycles, only the 1108 datapoints in the training set were
required to fine-tune the parameters. The parameters from the beginning of all 3
cycles are listed in Table 3.3.

The RMSDs for the 14 datasets in the training set are shown in Table 3.4. The
columns labeled “Cycle 1” and “Cycle 3” contain the actual RMSDs from the end of
the respective cycle, while the column labeled “Cycle 1P” contains the least-squares
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Figure 3.2: Training and primary test set RMSDs from 500 least-squares fits plot-
ted against the number of linear parameters. Red circles indicate functionals that
satisfy the UEG limits for exchange and correlation, upright cyan triangles indicate
functionals that satisfy the UEG limits for exchange and opposite-spin correlation,
downright orange triangles indicate functionals that satisfy the UEG limits for ex-
change and same-spin correlation, and green squares indicate functionals that satisfy
the UEG limit for exchange only. The 2 checkmarked functionals are: 2y1n1n (gray)
and 2y2y1n (magenta). The nomenclature is explained in Section 3.5.

fit RMSDs from the end of the first cycle. Figures 3.2 and 3.3 were generated with
the same data that is used to produce the values in the “Cycle 1P” column. It is
quite remarkable that the least-squares fit RMSDs from Cycle 1P so closely resemble
the final RMSDs of the ωB97X-V functional from Cycle 3. For all of the datasets
except AE8, the least-squares fit and final RMSDs differ by 0.05 kcal/mol at most,
while for AE8 the difference is 0.20 kcal/mol, due to the large magnitude of the
absolute atomic energies.

3.6 Characteristics of ωB97X-V

The final parameters of ωB97X-V can be found in the fourth column of Ta-
ble 3.3 under the “Cycle 3” heading. While the uniform electron gas (UEG) limit
for exchange was enforced from the beginning, the UEG limits for same-spin cor-
relation and opposite-spin correlation were allowed to relax and are not satisfied.
However, the first-order corrections to same-spin correlation and opposite-spin cor-
relation should be (and are) negative, since the LSDA overestimates the correlation
energies of atoms by a factor of 2. On the other hand, the LSDA underestimates the
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Parameter Cycle 1 Cycle 2 Cycle 3

cx,1 1.000 0.614 0.603
cx,2 0.000 1.181 1.194
ccss,0 1.000 0.575 0.556
ccss,1 0.000 -0.274 -0.257
ccos,0 1.000 1.219 1.219
ccos,1 0.000 -1.867 -1.850
cx 0.000 0.163 0.167

Table 3.3: Linear parameters from the beginning of all 3 cycles of the self-consistent
optimization of ωB97X-V. The corresponding nonlinear parameters are ω = 0.3,
b = 6.0, and C = 0.01. The final parameters are listed under Cycle 3. The value of
cx,0 is not listed because the uniform electron gas limit for exchange was enforced,
requiring cx,0 = 1−cx. The initial guess (“Cycle 1”) corresponding to the unoptimized
ωB97X-V functional was attained by setting all of the linear parameters to zero,
besides cx,0 = ccss,0 = ccos,0 = 1.

Dataset Cycle 1 Cycle 1P Cycle 3

HAT707 8.88 4.26 4.28
BDE99 15.10 3.36 3.38

TAE nonMR124 36.14 3.31 3.34
SN13 11.48 0.97 1.01

ISOMER20 2.98 1.59 1.64
DBH24 7.56 1.77 1.81

EA6 12.42 2.35 2.34
IP6 12.54 3.74 3.76
AE8 247.87 1.57 1.77

SW49Rel345 1.49 0.34 0.33
SW49Bind345 4.22 0.31 0.29

NBC10A2 0.08 0.08 0.09
HBC6A 2.71 0.39 0.39

BzDC215 0.53 0.26 0.27

Table 3.4: RMSDs in kcal/mol for the 14 datasets comprising the training set. The
columns labeled “Cycle 1” and “Cycle 3” contain the actual RMSDs from the end of
the respective cycle, while the column labeled “Cycle 1P” contains the least-squares
fit RMSDs from the end of the first cycle.
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Figure 3.3: Total RMSDs from 16383 least-squares fits plotted against the number
of linear parameters. The boxed point corresponds to the 2y1n1n functional with 7
linear parameters that was picked for self-consistent optimization. The nomenclature
is explained in Section 3.5.

exchange energies of atoms by approximately 10%, and the first-order correction to
exchange should be (and is) positive.

It is important to consider the behavior of the ICFs for large gradients in the
electron density (u ≈ 1). The ωB97X-V exchange functional ICF is well-behaved,
with a value of 2.630 at ux,σ = 1. Even though the Lieb-Oxford bound[158] (LOB)
was not used as a constraint during the optimization of ωB97X-V, the resulting
exchange functional ICF violates the LOB (2.273) by only 0.357. In comparison,
the exchange functional ICFs of ωB97X and ωB97X-D have values of 10.189 and
8.396 at ux,σ = 1, respectively. The ωB97X-V exchange functional ICF exceeds
the LOB at ux,σ = 0.874, which corresponds to sσ = 41.707. According to Perdew
and coworkers[159], only the range corresponding to 0 ≤ sσ ≤ 18.562 is important
for the exchange-correlation energy of atoms. Thus, it is likely that the ωB97X-V
exchange functional ICF violates the Lieb-Oxford bound outside of the realm that
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is considered important for systems of interest. It is important to point out that the
LiebOxford bound is a constraint on the total integrated exchange energy of a density
functional, not the exchange energy corresponding to a given grid point. However, if
the local exchange functional ICF does not violate the LOB, then the local exchange
functional will never violate the LOB. While the same-spin correlation ICF is positive
for all values of uc,σσ, the opposite-spin correlation ICF takes on negative values for
uc,αβ ≥ 0.659. Although this implies that certain grid points will contribute positive
values to the overall correlation energy, Becke witnessed similar behavior for B97 at
uc,αβ = 0.54 and concluded that the effects from this feature were of little importance
because the sign change occurred far out from the region of chemical relevance.

In order to further investigate the implications of the exchange functional ICF
of ωB97X-V violating the LOB at a value of ux,σ = 0.874, a molecule from the
training set was selected and analyzed. The molecule that was chosen was one of
the dianionic sulfate-water cluster isomers with 3 water molecules. With the slightly
coarser (75,302) integration grid, this molecule requires 317,100 grid points for the
integration of the local exchange energy (-60.2615 hartrees). Since there is a value
of ux,σ that corresponds to each of these grid points, the goal of this analysis was
to determine if a significant fraction of these grid points corresponded to values of
ux,σ > 0.874. Figure 3.4 plots the sum of the grid point exchange energies between
ux,σ = 0 and ux,σ < z for z ∈ [0, 1] in increments of 0.01. The data indicates that the
majority of the local exchange energy is recovered by ux,σ = 0.3, and the points that
lie between ux,σ = 0.3 and ux,σ = 1.0 contribute negligibly. In fact, the grid points
between ux,σ = 0 and ux,σ < 0.874 contribute 99.9998% of the total local exchange
energy, while the remaining grid points contribute only an additional -0.076 kcal/mol
to the local exchange energy. Thus, we believe that it is safe to conclude that the
violation of the Lieb-Oxford bound by the ωB97X-V exchange functional ICF has
nearly negligible chemical implications. For the 1961 systems in the training and
primary test sets, the ratio of the total exchange energy of ωB97X-V (local and
nonlocal) to the exchange energy of the LSDA is at least 1.076, at most 1.193, and
1.107 on average.

Figure 3.5 shows the exchange, same-spin correlation, and opposite-spin cor-
relation functional ICF plots for the final ωB97X-V functional, as well as several
B97-based functionals, namely, ωB97X, ωB97X-D, and the original B97 functional
by Becke. Compared to the ICFs of existing functionals, the exchange functional
ICF of ωB97X-V is almost identical to that of B97. While the B97 and ωB97X-
V exchange functional ICFs are quadratic, they are quartic for both ωB97X and
ωB97X-D. The largest difference among the 4 functionals considered is seen in the
same-spin correlation functional ICFs, where ωB97X and ωB97X-D are quartic and
oscillatory, B97 is quadratic, and ωB97X-V is linear. In fact, the same-spin corre-
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Figure 3.4: Sum of the local exchange energy contributions from all grid points (GP)
between 0 and z for a SO4

2−(H2O)3 isomer. The points are evaluated in increments
of 0.01. For example, the sixth point from the left corresponds to the sum of the
local exchange energy contributions from all grid points that fall between ux,σ = 0.0
and ux,σ = 0.05. The last point is equivalent to the total local exchange energy of
the molecule, -60.2615 hartrees. The dashed purple line corresponds to the value
of ux,σ = 0.874 at which the exchange functional ICF of ωB97X-V violates the
Lieb-Oxford bound. The grid points between ux,σ = 0 and ux,σ < 0.874 contribute
99.9998% of the total local exchange energy of the system.
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System PBE B3LYP B97 B97-D VV10 LC-VV10 ωB97X-D ωB97X-V M06-L M06 M06-2X M11-L M11

H- 2.11 -4.40 0.50 -5.36 -1.67 4.11 -2.69 1.05 1.13 2.49 4.07 -21.14 -3.03
He 6.77 -7.22 -3.94 -8.09 -8.01 4.13 -3.73 0.12 -7.46 -5.02 -1.02 -10.66 -3.46
Li 9.97 -9.35 -6.45 -6.20 -15.63 12.24 -8.29 -0.68 -8.05 -6.98 -3.92 -36.67 -6.70
Li- 13.26 -7.10 -3.19 -6.84 -11.51 17.43 -5.68 3.91 -7.42 -4.22 -0.13 -31.37 -6.01
Be 23.47 -3.75 0.14 1.47 -15.21 28.57 0.10 2.73 0.51 2.09 -0.07 -38.91 -2.29
Ne 44.67 -27.21 -2.67 1.79 -110.44 42.42 -11.13 0.58 -16.04 -11.50 -4.01 -17.51 -27.43
Ar 121.70 -17.44 34.72 -38.17 -211.12 129.85 -8.19 40.53 -6.11 2.23 -1.07 -40.45 -7.70

Table 3.5: Difference (in kcal/mol) between the DFT energy and the best available
variational energy for 5 atoms and 2 anions. Entries that are negative correspond
to non-variational values. The UGBS basis set was used with the (500,974) grid for
local xc functionals and the (99,590) grid for the VV10 NLC functional.

lation functional ICF of ωB97X-V looks liked an averaged-out version of its ωB97X
and ωB97X-D counterparts. Finally, the opposite-spin correlation functional ICFs
are similar in the region between uc,αβ = 0 and uc,αβ = 0.5, and differ only for large
values of uc,αβ.

While DFT is a variational method in principle, non-empirical and semi-empirical
exchange-correlation functionals that attempt to approximate the exact exchange-
correlation functional are not guaranteed to provide variational energies. In order
to assess the variational validity of ωB97X-V, the absolute energies of the 6 systems
from Reference 160 (along with the absolute energy of the argon atom from Reference
86) were computed and compared to the best available variational values. Table 3.5
contains the difference (in kcal/mol) between the DFT energy and the best available
variational energy, with negative entries corresponding to non-variational energies
and positive entries corresponding to variational energies. The UGBS basis set[161]
was used with the (500,974) grid for local xc functionals and the (99,590) grid for
the VV10 NLC functional. The only functionals that provide variational energies
for all 7 test systems are PBE and LC-VV10. ωB97X-V provides a non-variational
absolute energy for the lithium atom, but it is lower by only -0.68 kcal/mol. The
rest of the functionals have at least 4 non-variational entries. It is surprising that
while LC-VV10 has variational energies for all 7 cases, its local version, VV10, has
non-variational energies for all 7 cases.

3.7 Results and Discussion

3.7.1 Performance

Thus far, we have completed the training and selection of the ωB97X-V functional
in a manner that is internally consistent, such that the resulting functional emerges
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Figure 3.5: Inhomogeneity correction factors for the exchange, same-spin correlation,
and opposite-spin correlation functionals of B97, ωB97X, ωB97X-D, and ωB97X-V.
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as the fittest of over 16000 candidate functionals. The next step is to compare
against a selection of existing density functionals across the training set, primary
test set, and the hitherto unused secondary test set. The density functionals that
were benchmarked along with ωB97X-V were selected for reasons that will be briefly
described in this section.

PBE is arguably the best unparameterized density functional available, while
B3LYP is certainly the most popular density functional to date. B97 is the forefa-
ther of dozens of parameterized density functionals (including ωB97X-V). Since the
3 functionals mentioned thus far are ill-equipped for describing weak dispersive in-
teractions, dispersion-corrected variants are commonly employed as well. While the
dispersion tails of PBE-D2, B3LYP-D2, and B97-D2 were optimized onto the existing
parent functional, Grimme’s B97-D functional was the first attempt at simultane-
ously parameterizing the linear parameters of a density functional with a dispersion
tail. Since the VV10 nonlocal correlation functional is a vital component of ωB97X-
V, the 2 existing density functionals that incorporate the VV10 NLC functional
(VV10 and LC-VV10) must be benchmarked. With respect to dispersion-corrected
RSH GGA density functionals, the direct predecessor to ωB97X-V is ωB97X-D, and
it is important to confirm that ωB97X-V improves upon its older counterpart. Fi-
nally, from the 10 Minnesota functionals mentioned in Section 3.1, M06-L, M06,
M06-2X, M11-L and M11 were chosen.

Table 3.6 contains the RMSDs for all of the datasets in the training, primary
test, and secondary test sets for ωB97X-V and 15 existing density functionals (PBE,
PBE-D2, B3LYP, B3LYP-D2, B97, B97-D2, B97-D, VV10, LC-VV10, ωB97X-D,
M06-L, M06, M06-2X, M11-L, and M11). Table 3.7 contains information regarding
the benchmarked functionals.

Of the 16 benchmarked density functionals, M06-2X has the best overall perfor-
mance for thermochemistry (3.21 kcal/mol) and ωB97X-V has the best overall per-
formance for noncovalent interactions (0.32 kcal/mol). After M06-2X, the next best
density functionals for thermochemistry are ωB97X-V and ωB97X-D, with RMSDs
of 3.60 and 3.61 kcal/mol, respectively. After ωB97X-V, the next best density func-
tionals for noncovalent interactions are M06-L and B97-D2, with RMSDs of 0.47
and 0.48 kcal/mol, respectively. Before the individual datasets are discussed, the
overall performance of the functionals for thermochemistry (TC) and noncovalent
interactions (NC) will be discussed.

Overall, the performance of ωB97X-V is identical to that of ωB97X-D for ther-
mochemistry, but more than 0.20 kcal/mol better for noncovalent interactions. As a
sanity check, it is important to verify that ωB97X-V drastically improves upon VV10.
ωB97X-V reduces the overall thermochemistry RMSD of its counterpart by a factor
of 2.7. Furthermore, it improves upon the overall NC RMSD of VV10 by a factor
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of 4.3. In addition to outperforming VV10, ωB97X-V should perform much better
than LC-VV10 as well, since its local GGA components have been carefully parame-
terized. As expected, ωB97X-V reduces the overall TC and NC RMSDs of LC-VV10
by a factor of 2. The functional forms of ωB97X-V and M11 are similar, since both
functionals are range-separated hybrids that have exchange-correlation functionals
that depend on the density as well as its gradient. However, the exchange-correlation
functional of M11 additionally depends on the kinetic energy density, while ωB97X-
V includes the VV10 NLC functional instead. Furthermore, M11 has 4 times more
parameters than ωB97X-V. Thus, it is quite surprising that ωB97X-V outperforms
M11 with respect to both overall thermochemistry and overall noncovalent interac-
tions. While M11-L is the newest local meta-GGA Minnesota functional, its older
counterpart, M06-L, outperforms it with respect to both overall thermochemistry
and overall noncovalent interactions. M06-2X is better than M06 by a factor of
1.3 for thermochemistry, while the reverse is true for noncovalent interactions. It
is interesting to compare the performance of the functionals with the DFT-D2 dis-
persion tails to their parent functionals to assess the extent to which the addition
of the tail enhances the performance of the parent functional for noncovalent inter-
actions. Furthermore, it is desirable that the parent functional’s performance for
thermochemistry remains unaltered. The addition of DFT-D2 to B3LYP improves
its overall NC RMSD by a factor of 3, and also slightly improves its performance
for thermochemistry. With Becke’s B97 functional, the improvement for noncovalent
interactions is even more dramatic, as the DFT-D2 tail cuts the overall NC RMSD
of B97 by more than a factor of 5. For PBE, however, the addition of the DFT-D2
tail enhances the description of noncovalent interactions very slightly, and worsens
the TC RMSD.

Since it would be tedious to individually address the performance of the bench-
marked density functionals on the 47 datasets in Table 3.6, only a handful of datasets
will be discussed. The TAE nonMR124 dataset is comprised of the atomization en-
ergies of small molecules computed with the Weizmann-4 (W4) theory. ωB97X-V
has an RMSD of 3.34 kcal/mol on this dataset of 124 datapoints, and is second only
to M06-2X (3.24 kcal/mol). Furthermore, the performance of ωB97X-V is more than
0.30 kcal/mol better than that of ωB97X-D, and more than 1 kcal/mol better than
that of M11. The DBH24 dataset contains 24 forward and reverse barrier heights
computed (at least) with the Weizmann-3.2 (W3.2) theory. M06-2X performs the
best for this dataset (1.12 kcal/mol), followed by M11 (1.48 kcal/mol) and ωB97X-
V (1.81 kcal/mol). The AlkAtom19 dataset contains the atomization energies of
19 alkanes ranging from methane to octane. Since these molecules are much larger
than the ones found in TAE nonMR124, it is important to assess the performance of
ωB97X-V on this dataset to determine if the satisfactory performance for the atom-
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ization energies of smaller molecules is transferable to larger molecules. The RMSD
of ωB97X-V on AlkAtom19 (0.71 kcal/mol) is 7 times smaller than that of M06-2X
(5.27 kcal/mol) and 5 times smaller than that of M11 (3.94 kcal/mol). ωB97X-V
beats ωB97X-D by a factor of 4 on the AlkAtom19 dataset, and is outperformed
only by B3LYP-D2 (0.64 kcal/mol). However, it is clear that the surprisingly small
RMSD of B3LYP-D2 is a fortuitous result, since the dispersion tail contributes only
to the absolute energies of the alkanes (and not the atoms). Thus, while B3LYP
drastically underestimates the atomization energies of the alkanes in AlkAtom19,
the dispersion tail manages to lower the absolute energies of the alkanes to overcome
this underestimation. If one considers PBE (which drastically overestimates the at-
omization energies on its own), the addition of the same dispersion tail makes things
much worse.

In recent years, Hobza’s S22 and S66 datasets have been quite popular for bench-
marking the performance of density functionals on noncovalent interactions. The
RMSD of ωB97X-V on the S22 dataset is 0.23 kcal/mol, which is almost 2 times
smaller than the next best functional, ωB97X-D (0.41 kcal/mol). It is important to
emphasize that the parameters of ωB97X-D were trained on the S22 dataset, while
the parameters of ωB97X-V were validated, but not trained, on the S22 dataset.
From the Minnesota functionals, M06-L has the best performance for S22, with
an RMSD of 0.43 kcal/mol, followed by M06-2X (0.47 kcal/mol) and M11 (0.58
kcal/mol). On the S66 dataset, ωB97X-V has the lowest RMSD at 0.18 kcal/mol,
with the next best functional (M06-2X) having an RMSD of 0.29 kcal/mol. The most
recent dataset by Hobza is A24, which consists of very accurate CCSD(T)/CBS bind-
ing energies for small molecules. ωB97X-V performs the best for this dataset as well,
with an RMSD of only 0.09 kcal/mol. The 5 Minnesota functionals have RMSDs
larger than 0.20 kcal/mol, and the only functionals that comes close to ωB97X-V are
ωB97X-D and LC-VV10, with RMSDs of 0.15 kcal/mol. The last dataset from Hobza
that will be discussed is X40, which is comprised of binding energies of halogenated
molecules. ωB97X-V has the best performance for this dataset, with an RMSD of
0.21 kcal/mol. M06-2X performs satisfactorily on X40 as well, with an RMSD of 0.28
kcal/mol, while its family members, M06-L (0.48 kcal/mol), M06 (0.57 kcal/mol),
M11-L (1.23 kcal/mol), and M11 (0.54 kcal/mol), have RMSDs that are at least
twice as large as that of ωB97X-V.

Herbert and coworkers recently reported[152] that density functionals such as LC-
VV10 and M06-2X perform poorly for halide-water clusters. Specifically, the systems
of interest are F−(H2O)n and Cl−(H2O)n, for n = 1− 6. Using the same geometries
and reference values, the RMSDs for these 2 datasets were computed for the 16 den-
sity functionals in Table 3.6. ωB97X-V has the best performance for the interactions
containing the fluoride anion, with an RMSD of 0.36 kcal/mol. In comparison, the
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Minnesota functionals perform at least 2.5 times worse. The performance of ωB97X-
D is 4 times worse than the performance of its new counterpart, and the only density
functional that comes close to ωB97X-V is B97-D2, with an RMSD of 0.59 kcal/mol.
However, for the interactions that contain the chloride anion, B97-D2 has the best
performance, with an RMSD of only 0.33 kcal/mol. Surprisingly, PBE comes in at
second with an RMSD of 0.59 kcal/mol, while ωB97X-V has the third best RMSD
at 0.67 kcal/mol. While the Minnesota functionals tend to perform slightly bet-
ter on this dataset than on HW6F, their RMSDs are still at least 4.5 times larger
than that of B97-D2. Both the H2O6Rel and CYCONF datasets in the secondary
test set are meant to gauge the performance of density functionals for the rela-
tive energies of conformers. ωB97X-V has the best performance for both datasets,
with RMSDs of 0.07 kcal/mol and 0.11 kcal/mol, respectively. For H2O6Rel, the
next best density functional is ωB97X-D with an RMSD of 0.18 kcal/mol, while
the Minnesota functionals have RMSDs larger than 1 kcal/mol. In addition, the
RMSD of ωB97X-V (0.11 kcal/mol) for CYCONF is 3 times smaller than that of
ωB97X-D (0.41 kcal/mol), but comparable to that of M06 (0.16 kcal/mol). The
last dataset in the secondary training set is DS14, which contains binding energies
for systems that contain divalent sulfur. Since the molecules in this dataset are
small, the reference values were computed at the CCSD(T)/CBS level (with coun-
terpoise corrections), with the following contributions: HF/aQZ + MP2/a(TQ)Z +
(CCSD(T)-MP2)/aTZ. The performance of ωB97X-V on DS14 is near perfect, with
an RMSD of only 0.05 kcal/mol. The next best density functional, LC-VV10, has
an RMSD that is 2 times larger (0.12 kcal/mol). M06-2X has the best performance
on DS14 from the Minnesota functionals, but its RMSD of 0.20 kcal/mol is still 4
times larger than that of ωB97X-V.

In Figure 3.6, the potential energy curves (PEC) for the helium dimer (He2) and
argon dimer (Ar2) are shown. The argon dimer is an important case to consider for
ωB97X-V, since the datapoints corresponding to 3 rare-gas dimers (Ne2, Ar2, and
NeAr) were weighted by 25000 in the calculation of the primary test set RMSD.
While the parameters of ωB97X-V were not explicitly optimized on the argon dimer
PEC, the functional form that was ultimately selected (2y1n1n) was influenced by
its good performance for these 3 dimers. Thus, it is not surprising that the ωB97X-V
PEC for the argon dimer in Figure 3.6 is basically superimposed on the “Reference”
PEC (Tang-Toennies). Furthermore, it is satisfactory that the good performance of
VV10 has been maintained. Besides confirming that the functional selection strategy
worked exactly as intended, Figure 3.6 highlights a disadvantage of functionals that
were trained without checking for transferability in the selected linear parameters.
ωB97X-D predicts an equilibrium bond distance that is 0.5 Å too long and underbinds
the dimer. LC-VV10, M06-L, and M06-2X perform comparably to ωB97X-D, while
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Dataset PBE PBE-D2 B3LYP B3LYP-D2 B97 B97-D2 B97-D VV10 LC-VV10 ωB97X-D ωB97X-V M06-L M06 M06-2X M11-L M11

HAT707 7.81 7.79 4.31 4.28 3.98 3.98 5.62 7.23 6.81 4.14 4.28 5.86 4.83 3.63 5.43 4.28
BDE99 8.89 8.98 4.07 3.88 3.23 3.18 4.58 6.63 5.39 3.03 3.38 6.14 3.72 2.99 4.61 4.10

TAE nonMR124 16.72 16.94 5.43 5.28 4.39 4.06 5.18 12.46 5.30 3.65 3.34 5.54 3.94 3.24 6.62 4.37
SN13 5.74 5.36 2.33 1.74 1.28 0.97 4.20 3.67 2.65 0.96 1.01 1.58 2.03 1.01 3.19 2.19

ISOMER20 4.54 4.53 2.35 2.29 2.34 2.30 3.83 4.34 1.85 1.86 1.64 4.11 2.53 1.47 4.46 1.94
DBH24 10.05 10.37 4.83 5.28 4.05 4.36 7.18 9.86 3.02 2.07 1.81 5.38 2.97 1.12 3.54 1.48

EA6 4.71 4.71 3.49 3.49 1.45 1.45 2.07 5.28 2.10 1.89 2.34 2.39 1.91 1.95 6.17 1.33
IP6 5.07 5.07 6.16 6.16 3.19 3.19 2.68 7.64 5.03 3.01 3.76 2.26 3.23 2.86 3.36 5.79
AE8 30.54 30.54 15.89 15.89 2.25 2.25 6.94 64.43 29.82 4.67 1.77 9.22 5.52 1.28 15.27 9.23

SW49Rel345 0.90 1.55 0.39 1.17 0.30 0.79 1.22 1.26 0.36 1.01 0.33 0.53 0.60 0.35 0.22 0.17
SW49Bind345 1.22 2.59 3.07 1.72 3.44 0.69 1.35 2.47 0.58 0.98 0.29 0.60 0.72 0.95 1.54 0.25

NBC10A2 0.91 0.28 1.51 0.20 1.19 0.08 0.08 0.05 0.12 0.13 0.09 0.15 0.28 0.11 0.54 0.16
HBC6A 0.54 1.45 1.27 0.94 1.37 0.39 0.77 1.13 1.25 0.61 0.39 0.36 0.31 0.59 0.68 0.46

BzDC215 1.07 0.69 1.94 0.57 1.54 0.36 0.39 0.22 0.60 0.41 0.27 0.17 0.25 0.60 0.34 0.65

EA7 2.27 2.28 3.52 3.54 2.54 2.55 3.86 3.57 4.19 2.45 2.28 6.07 2.94 1.97 6.44 1.08
IP7 4.28 4.28 5.22 5.22 3.41 3.41 4.03 4.76 5.30 3.26 2.97 3.11 2.93 3.24 2.89 4.56

Gill12 8.24 6.56 5.71 3.27 5.69 3.84 4.84 6.08 2.58 3.24 2.32 6.71 3.82 1.78 5.60 2.58
AlkAtom19 15.83 26.21 14.63 0.64 19.78 9.28 10.48 5.85 19.04 2.90 0.71 8.11 4.63 5.27 29.35 3.94
AlkIsomer11 2.87 0.40 3.96 0.59 3.78 0.57 0.33 0.84 0.13 1.04 0.67 0.95 0.22 0.15 0.74 0.56
AlkIsod14 4.88 0.42 6.57 0.35 6.44 1.93 0.57 2.01 1.09 2.31 1.80 3.86 1.68 1.65 2.06 2.11
HTBH38 9.97 10.57 4.81 5.49 4.53 5.12 7.63 9.22 1.50 2.57 2.28 4.62 2.21 1.26 1.86 1.68

NHTBH38 10.20 10.53 5.41 5.84 3.83 4.15 7.12 10.79 3.38 1.73 1.64 4.79 2.64 1.69 3.72 1.49

SW49Rel6 1.20 2.16 0.29 1.59 0.16 1.01 1.65 1.72 0.52 1.34 0.37 0.80 0.89 0.42 0.21 0.28
SW49Bind6 2.40 4.51 6.31 2.92 7.18 0.90 2.50 4.56 0.91 0.99 0.36 0.57 0.92 1.61 3.38 0.67

NNTT41 0.02 0.09 0.08 0.05 0.03 0.06 0.07 0.03 0.02 0.15 0.02 0.04 0.12 0.05 0.32 0.02
AATT41 0.13 0.05 0.30 0.08 0.19 0.05 0.16 0.02 0.07 0.21 0.02 0.15 0.23 0.08 0.46 0.17
NATT41 0.02 0.09 0.14 0.02 0.06 0.05 0.08 0.04 0.03 0.15 0.02 0.05 0.13 0.03 0.35 0.04

NBC10A1 3.29 0.19 4.77 0.26 3.98 0.67 0.20 0.27 0.15 0.41 0.23 0.26 0.58 0.43 0.47 0.69
NBC10A3 2.57 0.28 3.77 0.29 3.20 0.54 0.19 0.17 0.06 0.27 0.37 0.47 0.69 0.63 0.83 0.80
WATER27 3.46 7.58 3.63 4.63 4.72 1.42 2.56 7.07 3.35 1.48 1.42 1.34 1.70 3.66 4.60 1.62

HW30 0.52 0.71 1.12 0.53 0.83 0.35 0.40 0.43 0.30 0.35 0.20 0.35 0.33 0.46 0.48 0.38
NCCE31 1.97 2.45 1.00 1.05 0.93 0.84 1.27 2.67 0.53 0.38 0.27 1.23 0.56 0.36 0.75 0.51

S22x5 2.91 0.65 3.99 0.61 3.64 0.71 0.40 0.59 0.48 0.43 0.41 0.42 0.80 0.47 0.94 0.55
S66x8 2.19 0.64 3.17 0.65 2.73 0.35 0.43 0.50 0.34 0.44 0.22 0.31 0.48 0.35 0.83 0.42
S22 3.50 0.70 4.74 0.74 4.25 0.60 0.54 0.63 0.51 0.41 0.23 0.43 0.77 0.47 0.91 0.58
S66 2.59 0.63 3.71 0.62 3.16 0.36 0.52 0.52 0.31 0.52 0.18 0.36 0.53 0.29 0.81 0.41

G21EA 3.97 3.96 3.54 3.54 1.83 1.84 3.00 4.60 3.89 1.98 2.27 4.54 2.46 1.99 6.56 2.40
G21IP 4.81 4.81 4.86 4.86 3.48 3.48 4.47 5.43 5.23 3.82 3.57 5.60 3.78 3.49 4.50 4.64
PA8 1.64 1.71 1.20 1.49 2.41 2.67 3.70 1.77 2.74 2.95 2.20 3.36 2.21 1.98 3.57 1.35

A24 0.46 0.59 1.05 0.39 0.75 0.26 0.32 0.41 0.15 0.15 0.09 0.23 0.25 0.28 0.46 0.27
X40 1.63 0.74 2.48 0.47 2.08 0.43 0.59 0.63 0.41 0.49 0.21 0.48 0.57 0.28 1.23 0.54

H2O6Rel 1.77 0.35 2.31 0.59 2.26 0.20 0.41 0.38 0.22 0.18 0.07 1.75 2.10 1.76 1.01 1.45
H2O6Bind 0.90 5.74 3.76 4.10 5.27 0.33 3.82 5.70 2.68 1.55 0.70 0.97 1.01 2.25 4.00 0.67

HW6F 1.72 3.64 4.64 2.78 5.83 0.59 4.34 3.71 2.55 1.46 0.36 2.47 2.11 4.91 1.04 2.95
HW6Cl 0.59 4.74 5.27 2.05 5.49 0.33 3.25 5.26 2.84 0.78 0.67 1.61 2.10 3.65 2.73 2.25

CYCONF 0.95 0.98 0.53 0.32 0.49 0.37 0.56 0.57 0.78 0.41 0.11 0.39 0.16 0.30 0.57 0.51
DS14 1.10 0.57 1.94 0.28 1.55 0.25 0.37 0.52 0.12 0.18 0.05 0.25 0.34 0.20 0.59 0.30

All TC 9.90 10.35 5.11 4.59 4.74 3.97 5.56 9.81 6.79 3.61 3.60 5.63 4.18 3.21 6.68 3.97
All NC 2.00 1.49 2.96 1.01 2.71 0.48 0.82 1.38 0.73 0.54 0.32 0.47 0.60 0.78 1.07 0.56

Training TC 10.27 10.33 4.71 4.66 3.89 3.83 5.43 10.44 6.86 3.82 3.88 5.75 4.45 3.36 5.64 4.23
Training NC 0.89 1.33 1.74 0.91 1.66 0.44 0.76 1.09 0.86 0.61 0.32 0.34 0.38 0.59 0.68 0.48

Primary Test TC 9.76 12.33 7.17 4.43 8.28 5.00 6.79 7.87 7.32 2.42 1.89 5.25 2.86 2.45 11.05 2.32
Primary Test NC 2.29 1.45 3.28 0.99 2.96 0.50 0.68 1.35 0.61 0.50 0.32 0.42 0.59 0.68 1.11 0.51

Secondary Test TC 4.25 4.26 4.12 4.14 2.86 2.89 3.91 4.84 4.54 3.17 3.01 5.01 3.20 2.87 5.26 3.68
Secondary Test NC 1.27 2.12 2.59 1.39 2.74 0.36 1.65 2.15 1.17 0.65 0.29 0.92 0.99 1.60 1.50 1.02

Table 3.6: RMSDs in kcal/mol for all of the datasets in the training, primary test, and
secondary test sets for ωB97X-V and 15 existing density functionals. The datasets
above the first thick black line are in the training set, the datasets between the
first and second thick black lines are in the primary test set, while the datasets
below the second thick black line are in the secondary test set. Within the training,
primary test, and secondary test sets, datasets above the thin black line contain
thermochemistry (TC) datapoints, while datasets below the thin black line contain
noncovalent interactions (NC) datapoints. The last section of the table contains
overall unweighted statistics. For comparison to B3LYP-D2, the All TC RMSD of
B3LYP-D3 is 4.7 kcal/mol, while the All NC RMSD is 0.8 kcal/mol.
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Property # cx Year Class Rung Ref.

PBE 0 0 1996 GGA 2 12
PBE-D2 1 0 2006 GGA w/ DT 2 54
B3LYP 3 20 1993 GH GGA 4 33

B3LYP-D2 4 20 2006 GH GGA w/ DT 4 54
B97 10 19 1997 GH GGA 4 35

B97-D2 11 19 2011 GH GGA w/ DT 4 79
B97-D 10 0 2006 GGA w/ DT 2 54
VV10 2 0 2010 GGA w/ NLC 2 57

LC-VV10 3 0-100 2010 RSH GGA w/ NLC 4 57
ωB97X-D 15 22.2-100 2008 RSH GGA w/ DT 4 58
ωB97X-V 10 16.7-100 2014 RSH GGA w/ NLC 4

M06-L 34 0 2006 meta-GGA 3 23
M06 33 27 2008 GH meta-GGA 4 45

M06-2X 30 54 2008 GH meta-GGA 4 45
M11-L 44 0 2012 meta-GGA 3 24
M11 40 42.8-100 2011 RSH meta-GGA 4 52

Table 3.7: Details for the density functionals from Table 3.6. GH stands for global
hybrid, RSH stands for range-separated hybrid, DT stands for dispersion tail, and
NLC stands for nonlocal correlation. The column labeled “#” lists the number of
parameters that were optimized on a training set for the specific functional. cx refers
to the percentage of exact exchange.

the biggest surprises are the results produced by the 2 newest Minnesota functionals,
M11-L and M11. M11-L has an artificial inflection point at the correct equilibrium
distance, but binds the dimer at more than 5 Å. On the other hand, M11 binds
the dimer very weakly, with an equilibrium bond length that is too long. Since a
(500,974) grid was used for computing the local xc functionals, it is unlikely that
the strange behavior of the M11-L functional is related to the integration of the xc
functional. Since the argon dimer PEC technically influenced the functional form
of ωB97X-V, the PEC for the helium dimer is shown on the left in Figure 3.6 as a
completely independent test case. The performance of ωB97X-V is superb for this
dimer as well. Neither B3LYP nor B3LYP-D2 bind the helium dimer, while M11
binds the dimer with an equilibrium bond length that is too long. PBE, PBE-D2,
M06, and M06-2X all overbind the dimer, but predict reasonable equilibrium bond
lengths.
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Figure 3.6: Potential energy curves for the helium dimer and the argon dimer. A
(500,974) grid was used for computing local xc functionals and a (99,590) grid was
used for computing the contribution from the VV10 NLC functional. The calcula-
tions were performed with the aug-cc-pVQZ basis set without counterpoise correc-
tions.

3.7.2 Coronene Dimer

The largest intermolecular interactions in the training set for ωB97X-V are the
12 SO4

2−(H2O)5 isomers from the SW49Rel345 and SW49Bind345 datasets. In the
aTZ basis set, these molecules have 694 basis functions. In the primary test set, the
largest intermolecular interactions are the 5 adenine-thymine complexes from the
S22x5 dataset with 1127 basis functions in the aTZ basis set. In order to assure that
ωB97X-V can be successfully applied to even larger interactions, the binding energy
of the parallel-displaced coronene dimer was computed in the aDZ and aTZ basis
sets (1320 and 2760 basis functions for the dimer, respectively). The binding energy
in the aDZ basis set was counterpoise-corrected (CP), while counterpoise corrections
were not used (noCP) in the aTZ basis set. The resulting binding energies for the
functionals from Table 3.6 are shown in Table 3.8.

While there is no definitive reference value for the binding energy of the parallel-
displaced coronene dimer, 2 recent attempts[162, 163] at determining a “CBS” value
resulted in binding energies of -20.0 kcal/mol and -24.4 kcal/mol. Furthermore,
2 methods that have been shown to have good performance for dispersion-bound
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systems (attenuated (aTZ) MP2[164] and MP2.5[165]) give values of -21.3 kcal/mol
and -22.8 kcal/mol, respectively. Thus, it is safe to assume that the binding energy
of the parallel-displaced coronene dimer is between -20.0 and -25.0 kcal/mol.

The noCP aTZ ωB97X-V binding energy of -22.4 kcal/mol is right in the middle
of this range, while the 5 Minnesota functionals underbind the dimer. As expected,
the GGA functionals without dispersion corrections fail to bind the dimer (PBE,
B3LYP, B97), and even though the DFT-D2 dispersion tail adds -22.4, -31.3, and
-22.4 kcal/mol to the binding energy of the parent functionals, respectively, PBE-D2
and B97-D2 still underbind the dimer. However, due to the large s6 parameter of
B3LYP-D2, its noCP aTZ binding energy falls within the aforementioned range. The
binding energies of B97-D, VV10, LC-VV10, and ωB97X-D are quite close to that
of ωB97X-V, and lie between -20.0 and -25.0 kcal/mol for both the CP aDZ and
noCP aTZ calculations. The last column of Table 3.8 lists the difference (kcal/mol)
between the CP aDZ and noCP aTZ binding energies for the 16 functionals. It
is certainly desirable for this difference to be as small as possible, since the noCP
aTZ calculation is at least 10 times more costly than the CP aDZ calculation. For
LC-VV10, ωB97X-D, ωB97X-V, M06-L, and M06, this difference is less than 0.60
kcal/mol, while for M11-L and M11, the difference is larger than 2 kcal/mol.

3.7.3 Geometries

To assess the ability of ωB97X-V to calculate accurate geometries, 4 sets of ge-
ometries were benchmarked. The first set, A21, includes the 21 equilibrium ge-
ometries from the A24 dataset, which were originally optimized (with counterpoise
corrections) at a very high level of theory (HF/aQZ + MP2/a(TQ)Z + (CCSD(T)-
MP2)/aDZ) with the intention of serving as a benchmark. The DFT benchmark
optimizations were performed in the aTZ basis set with a (99,590) grid for local
xc functionals and the SG-1 grid for the VV10 NLC functional. The RMSD be-
tween each initial (A21) geometry and final (optimized) geometry was calculated
with the Kabsch algorithm[166]. Each row in the second column of Table 3.9 con-
tains the RMSD of the 21 RMSDs generated by the Kabsch algorithm. The RMSD of
ωB97X-V for these 21 interactions is an outstanding 0.58 pm. The RMSD of the next
best functional, B97-D2, is 3 times larger than that of ωB97X-V. Furthermore, the
ωB97X-V result is more than 5 times better than that of ωB97X-D, and more than
7 times better than that of the Minnesota functionals. The next dataset includes the
equilibrium bond lengths of 6 rare-gas dimers: He2, HeNe, HeAr, Ne2, NeAr, and
Ar2. The reference values were taken from the Tang-Toennies potential model[96],
and the optimizations were performed in the aTZ basis set with a (500,974) grid for
local xc functionals and a (75,302) grid for the VV10 NLC functional. ωB97X-V has
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Functional CP aDZ noCP aTZ ∆

PBE 5.26 4.63 -0.64
PBE-D2 -17.12 -17.76 -0.64
B3LYP 11.90 10.52 -1.38

B3LYP-D2 -19.43 -20.81 -1.38
B97 8.22 7.33 -0.89

B97-D2 -14.17 -15.06 -0.89
B97-D -21.42 -22.36 -0.94
VV10 -20.95 -22.07 -1.12

LC-VV10 -23.75 -23.27 0.48
ωB97X-D -24.36 -24.36 -0.01
ωB97X-V -21.97 -22.40 -0.43

M06-L -17.10 -17.68 -0.58
M06 -14.72 -14.62 0.11

M06-2X -18.22 -17.47 0.75
M11-L -14.49 -17.64 -3.15
M11 -17.81 -15.71 2.09

Table 3.8: Binding energies in kcal/mol for the parallel-displaced coronene dimer
for the density functionals from Table 3.6. noCP means non-counterpoise-corrected
while CP means counterpoise-corrected. In the aDZ basis set, the dimer has 1320
basis functions, while it has 2760 basis functions in the aTZ basis set. The column
labeled “∆” contains the difference between the CP aDZ and noCP aTZ binding
energies for each functional.

the best performance, with an RMSD of 7.91 pm, while VV10 follows closely be-
hind at 8.07 pm. From the Minnesota functionals, M06-2X and M06-L perform well,
while M11-L has an RMSD of almost 1 Å. From the dispersion-corrected function-
als, B97-D2, B97-D, and PBE-D2 perform decently, while ωB97X-D and B3LYP-D2
perform poorly. The third set of geometries, taken from the work of Tentscher and
Arey[167], contains 18 bond lengths of 18 small radicals. For this set of geometries,
M06-L performs the best, followed by B97-D2 and B3LYP-D2. In general, the bond
length RMSDs are very small, ranging from 0.69 pm to 2.32 pm. ωB97X-V performs
decently, with an RMSD of 1.15 pm. The last set of geometries, taken from Bak et
al.[168], contains 28 bond lengths of 19 small molecules. The reference geometries
were computed at the CCSD(T)/cc-pCVQZ level of theory and validated against
experimental results. For this set of geometries, M06-L, B3LYP-D2, and B97-D2
perform very well, followed by B97-D and ωB97X-V. For the last 2 datasets, the
optimizations were carried out in the aTZ basis set with a (75,302) grid for local xc
functionals and SG-1 for the VV10 NLC functional.
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RMSD [pm] A21 Rare-gas Arey Bak

PBE-D2 8.33 20.94 1.30 1.20
B3LYP-D2 5.95 84.48 0.82 0.61

B97-D2 1.78 15.19 0.81 0.66
B97-D 5.38 18.55 1.10 0.92
VV10 7.38 8.07 1.43 1.39

LC-VV10 2.93 13.05 1.82 1.74
ωB97X-D 3.34 36.34 1.28 1.11
ωB97X-V 0.58 7.91 1.15 0.98

M06-L 7.02 14.06 0.69 0.60
M06 4.22 34.03 1.46 1.27

M06-2X 4.90 12.65 1.67 1.38
M11-L 4.69 96.02 2.32 2.31
M11 5.00 21.10 1.68 1.36

Table 3.9: RMSDs from the 4 geometry datasets discussed in Section 3.7.3. For
the latter 3 datasets, the entries are bond length RMSDs. For the A21 dataset, an
RMSD was calculated for each molecule using the Kabsch algorithm. Each row in
the second column contains the RMSD of the 21 RMSDs generated by the Kabsch
algorithm.

3.8 Using ωB97X-V

Even though ωB97X-V was trained without counterpoise corrections in the aTZ
basis set for noncovalent interactions and without counterpoise corrections in the aQZ
basis set for thermochemistry, it is inevitable that the functional will be used with dif-
ferent basis sets. As a result, this section explains how the functional should be used
and what basis sets are recommended. Ideally, calculations with ωB97X-V should
be run as close as possible to the basis set limit. As an example, the binding energy
of the water dimer (NCCE31 dataset geometry) was computed with and without
counterpoise corrections with the aug-cc-pVXZ (X = D, T, Q, 5) [aXZ] family of ba-
sis sets. The resulting counterpoise-corrected binding energies (CP) in kcal/mol are
{−4.96,−4.98,−5.01,−5.00}, while the resulting non-counterpoise-corrected bind-
ing energies (noCP) in kcal/mol are {−5.18,−5.03,−5.04,−5.01}. Since ωB97X-V
was trained without counterpoise corrections in the aTZ basis set for noncovalent
interactions, the corresponding value of -5.03 kcal/mol is the “best” value. However,
the noCP aQZ and noCP a5Z binding energies differ from the noCP aTZ binding
energy by 0.02 kcal/mol at most. Thus, using basis sets that are larger and contain
higher angular momentum functions than the ones used for training will not degrade
the performance of the functional. Regarding the aDZ basis set, it is clear that this
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basis set should not be used with ωB97X-V without counterpoise corrections, since
the basis set superposition error (BSSE) at the aDZ basis set level is larger than
0.20 kcal/mol for the water dimer. However, since the difference between the noCP
aTZ and CP aDZ binding energies for the water dimer is only 0.06 kcal/mol, the
aDZ basis set can be used with counterpoise corrections if necessary. Furthermore,
Table 3.8 indicates that the difference between the noCP aTZ and CP aDZ binding
energies for the parallel-displaced coronene dimer is less than 0.50 kcal/mol. Thus,
if a noCP aTZ calculation is impractical, a CP aDZ calculation will suffice.

Similar tests were performed on 3 dimers from the NCCE31 dataset (water, hy-
drogen fluoride, and ammonia) with a variety of basis sets from the EMSL basis set
exchange[169, 170], and the results are summarized in Table 3.10. If the MG3S[171]
or LP[172, 173] basis sets are desired, we highly recommend that counterpoise cor-
rections be utilized, since ωB97X-V produced poor results when these basis sets were
employed without counterpoise corrections. For example, the binding energy for the
water dimer in the MG3S basis set is -4.99 kcal/mol with counterpoise corrections
and -5.28 kcal/mol without. Compared to the CCSD(T)/CBS estimate of approxi-
mately -5.00 kcal/mol, it is clear that the CP MG3S value is a much better result
than the noCP MG3S value. Dunning’s augmented basis sets were previously an-
alyzed for the water dimer, and the recommendation still holds: noCP aTZ, noCP
aQZ, and noCP a5Z are highly recommended, while the aDZ basis set should only
be used with counterpoise corrections. If the aug-pc-X (X = 0, 1, 2, 3, 4) [acpX]
basis sets[174–176] are desired, we recommend aug-pc-3 and aug-pc-4 without coun-
terpoise corrections. aug-pc-0 should not be used and if aug-pc-1 and aug-pc-2 are
desired, they should be used with counterpoise corrections. If the def2-X(Z)VP(P)D
(X = S, T, Q) basis sets of Rappoport and Furche[146] are desired, we recommend
using the def2-TZVPPD, def2-QZVPD, and def2-QZVPPD basis sets without coun-
terpoise corrections. If calculations with the def2-TZVPD basis set are required,
counterpoise corrections should be utilized. In addition, the def2-SVPD basis set
should not be used with ωB97X-V. The last family of basis sets that was tested was
Truhlar’s minimally augmented basis set series[177], maug-cc-pVXZ (X = D, T, Q)
[maXZ]. Results with these basis sets indicated that only the maQZ basis set can be
recommended with counterpoise corrections, while the maDZ and maTZ cannot be
recommended for use with ωB97X-V.

Another looming question in the realm of DFT calculations is the proper choice
for the integration grid. While ωB97X-V was trained with the (99,590) grid for the
local exchange-correlation functional and the SG-1 grid for the nonlocal correlation
functional, several tests were performed in order to quantify the extent to which the
binding energies of weakly interacting systems depend on both the local and non-
local integration grids. The tests were performed by combining 5 local grids {SG-
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kcal/mol (H2O)2 (HF)2 (NH3)2

Basis BSSE CP noCP BSSE CP noCP BSSE CP noCP

MG3S 0.40 -5.03 -5.43 0.39 -4.56 -4.95 0.17 -3.18 -3.35
LP 0.29 -4.99 -5.28 0.38 -4.60 -4.98 0.10 -3.10 -3.21

aDZ 0.22 -4.96 -5.18 0.20 -4.54 -4.74 0.39 -3.06 -3.45
aTZ 0.05 -4.98 -5.03 0.07 -4.58 -4.65 0.03 -3.09 -3.12
aQZ 0.03 -5.01 -5.04 0.03 -4.64 -4.67 0.02 -3.10 -3.12
a5Z 0.01 -5.00 -5.01 0.01 -4.64 -4.64 0.00 -3.10 -3.10

apc0 1.48 -7.76 -9.24 0.85 -6.17 -7.02 1.29 -4.71 -5.99
apc1 0.65 -5.08 -5.73 0.63 -4.67 -5.30 0.53 -3.10 -3.63
apc2 0.06 -5.02 -5.08 0.10 -4.64 -4.74 0.05 -3.11 -3.15
apc3 0.00 -5.01 -5.01 0.00 -4.63 -4.64 0.00 -3.10 -3.10
apc4 0.00 -5.01 -5.01 0.00 -4.64 -4.64 0.00 -3.10 -3.10

SVPD 0.41 -5.13 -5.54 0.41 -4.70 -5.10 0.74 -3.07 -3.81
TZVPD 0.07 -5.00 -5.06 0.05 -4.55 -4.60 0.13 -3.11 -3.23

TZVPPD 0.03 -5.00 -5.03 0.03 -4.60 -4.63 0.09 -3.08 -3.17
QZVPD 0.01 -5.00 -5.01 0.01 -4.63 -4.64 0.02 -3.10 -3.11

QZVPPD 0.01 -5.00 -5.01 0.01 -4.63 -4.64 0.02 -3.10 -3.11

maDZ 0.51 -5.28 -5.79 0.37 -4.54 -4.91 0.35 -3.36 -3.71
maTZ 0.16 -5.05 -5.21 0.09 -4.53 -4.62 0.13 -3.19 -3.32
maQZ 0.07 -5.03 -5.11 0.03 -4.62 -4.66 0.06 -3.13 -3.19

Table 3.10: Assessment of the basis set dependence of ωB97X-V for the binding
energies of 3 dimers. Columns labeled BSSE contain the basis set superposition
errors for the molecule/basis set combination indicated, columns labeled noCP con-
tain non-counterpoise-corrected binding energies, while columns labeled CP contain
counterpoise-corrected binding energies.

1, (75,302), (99,590), (250,590), (500,974)} with 3 nonlocal grids {SG-1, (75,302),
(99,590)}, for a total of fifteen distinct local and nonlocal grid combinations. Poten-
tial energy curves (PEC) for 2 families of dimers, as well as the water dimer, were
computed with these fifteen grid combinations. The first family of dimers was the
rare-gas dimers from neon to krypton. The second family of dimers was CH4—X,
where X = F2, Cl2, and Br2 (X40 dataset geometries). The def2-TZVPPD basis set
was used for all of the calculations in this test. The PECs each had a total of 51
points, starting from a distance of 1 Å shorter than the equilibrium bond length,
and continuing to 4 Å longer than the equilibrium bond length in increments of
0.1 Å. Thus, a total of 105 PECs were computed, requiring 5520 single-point cal-
culations. For the first family of PECs, the ωB97X-V equilibrium binding energies
in kcal/mol are {−0.13,−0.32,−0.42}, compared to the Tang-Toennies estimates
of {−0.08,−0.28,−0.40}. For the second family of PECs, the ωB97X-V equilib-
rium binding energies in kcal/mol are {−0.48,−1.07,−1.31}, compared to the X40
estimates of {−0.49,−1.08,−1.30}. All of these interactions were assessed by cal-
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culating the percent error for each point on the fifteen PECs with respect to the
(500,974)/(99,590) value, and computing the RMSDs of the 51 percent errors. Per-
cent error RMSDs of approximately 1% or less were deemed acceptable.

Based on the data from Table 3.11, a minimum grid combination of
(250,590)/(75,302) must be used for the neon and argon dimers. The krypton dimer
calculations appear to be less sensitive to the nonlocal grid, and the (250,590)/SG-1
grid combination gives acceptable results. For the CH4—X interactions, it appears as
if the (99,590)/SG-1 grid combination gives unanimously acceptable results. Finally,
for the water dimer (which binds at about -5.00 kcal/mol at equilibrium), using the
SG-1 grid for both the local and nonlocal components is sufficient. Based on the
results from Table 3.11, the following grids are recommended: (250,590)/(75,302)
for interactions weaker than -0.5 kcal/mol at equilibrium, (99,590)/SG-1 for interac-
tions between -0.5 kcal/mol and -2.5 kcal/mol at equilibrium, and (75,302)/SG-1 for
interactions stronger than -2.5 kcal/mol at equilibrium.

As a reference value for those interested in implementing this new density func-
tional, the absolute energy (in hartrees) of hydrogen fluoride (HF) with a bond length
of 0.9158 Å in the aug-cc-pVTZ basis set with the (75,302)/SG-1 local/nonlocal grid
combination is -100.4512112969.

3.9 Conclusions

The primary goal of the development of the ωB97X-V density functional was
to create a minimally-parameterized and highly-transferable density functional that
could predict accurate energetics for both bonded and non-bonded interactions. With
respect to thermochemistry, the performance of ωB97X-V is equivalent to that of
ωB97X-D, despite the fact that ωB97X-V has 5 less empirical parameters. Fur-
thermore, the performance of ωB97X-V on noncovalent interactions is considerably
better than that of all the functionals tested in this chapter. Table 3.12 ranks the 16
benchmarked density functionals with respect to their overall RMSDs for all of the
bonded (1002) and non-bonded (1484) interactions considered in this chapter.

To summarize the main results of this chapter:
(1). We have optimized a new 10-parameter, semi-empirical density functional,

ωB97X-V, that is a range-separated hybrid functional based on the B97 GGA model
for local exchange and correlation, augmented with nonlocal correlation using the
VV10 NLC functional.

(2). A novel feature of the training procedure is that over 16000 candidate func-
tionals were trained and considered. By assessing their performance on both training
and test set data, it was determined that 7 linear parameters yielded the most trans-
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Ne2 SG-1 (75,302) (99,590) (250,590) (500,974)

SG-1 1539.82 54.43 34.67 18.67 18.46
(75,302) 1555.95 51.85 21.53 0.82 0.73
(99,590) 1556.16 52.14 21.12 0.50 0.00

Ar2 SG-1 (75,302) (99,590) (250,590) (500,974)

SG-1 575.68 18.18 8.16 6.53 6.62
(75,302) 581.11 18.22 4.13 0.20 0.23
(99,590) 581.22 18.22 4.01 0.16 0.00

Kr2 SG-1 (75,302) (99,590) (250,590) (500,974)

SG-1 58.36 10.15 2.90 0.89 0.83
(75,302) 58.75 9.67 2.64 0.33 0.11
(99,590) 58.73 9.70 2.65 0.31 0.00

CH4F2 SG-1 (75,302) (99,590) (250,590) (500,974)

SG-1 2.67 0.27 0.14 0.10 0.10
(75,302) 2.67 0.28 0.09 0.05 0.05
(99,590) 2.69 0.28 0.09 0.01 0.00

CH4Cl2 SG-1 (75,302) (99,590) (250,590) (500,974)

SG-1 11.52 0.36 0.17 0.15 0.15
(75,302) 11.59 0.37 0.10 0.05 0.05
(99,590) 11.60 0.34 0.09 0.01 0.00

CH4Br2 SG-1 (75,302) (99,590) (250,590) (500,974)

SG-1 10.47 1.04 0.18 0.19 0.14
(75,302) 10.54 1.02 0.12 0.13 0.05
(99,590) 10.54 1.01 0.13 0.12 0.00

(H2O)2 SG-1 (75,302) (99,590) (250,590) (500,974)

SG-1 0.15 0.01 0.01 0.01 0.01
(75,302) 0.15 0.01 0.01 0.01 0.00
(99,590) 0.14 0.01 0.01 0.01 0.00

Table 3.11: Assessment of the grid dependence of ωB97X-V for the potential energy
curves of 7 dimers. The numbers shown are RMSDs of 51 percent errors. The percent
errors are calculated by assuming that the (500,974)/(99,590) values are exact.
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Functional All TC Functional All NC

M06-2X 3.21 ωB97X-V 0.32
ωB97X-V 3.60 M06-L 0.47
ωB97X-D 3.61 B97-D2 0.48
B97-D2 3.97 ωB97X-D 0.54

M11 3.97 M11 0.56
M06 4.18 M06 0.60

B3LYP-D2 4.59 LC-VV10 0.73
B97 4.74 M06-2X 0.78

B3LYP 5.11 B97-D 0.82
B97-D 5.56 B3LYP-D2 1.01
M06-L 5.63 M11-L 1.07
M11-L 6.68 VV10 1.38

LC-VV10 6.79 PBE-D2 1.49
VV10 9.81 PBE 2.00
PBE 9.90 B97 2.71

PBE-D2 10.35 B3LYP 2.96

Table 3.12: Density functionals ranked based on their overall unweighted RMSDs
in kcal/mol for all thermochemistry (Columns 1-2) and noncovalent interactions
(Columns 3-4) datapoints considered in this chapter.

ferable functional. Increasing the number of linear parameters past 7 degraded test
set performance and minimally improved training set performance.

(3). Detailed assessment against 15 existing density functionals on main group
thermochemistry and noncovalent interactions suggests that ωB97X-V is the best
functional tested for non-bonded interactions by a significant margin. Its perfor-
mance for thermochemistry is also very good, virtually as good as the best hybrid
meta-GGA tested (M06-2X).

(4). ωB97X-V can be recommended for application to a wide range of molecular
bonded and non-bonded interactions involving the lighter main group elements. It
will be interesting to await further assessment on larger classes of problems in order
to characterize its limitations. Such limitations are likely to arise for problems where
strong correlation effects are in play.

(5). It is desirable to apply the same training approach used here to develop
other semi-empirical density functionals with slightly different physical content (e.g.
meta-GGAs), so that the resulting functionals are likewise optimally transferable.
We intend to report such developments in due course.
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Chapter 4

B97M-V: A meta-GGA density
functional

4.1 Introduction

4.1.1 Perspective

Kohn-Sham density functional theory (KS-DFT)[3, 178] is perhaps the most
tractable approach to describing the electronic structure of molecules and solids in
their ground state. The intractable, exact many-body wave function is replaced by
a single determinant of spin orbitals, {φi}, which describe a reference system of non-
interacting electrons, whose density, ρ(r), is to be the same as that of the interacting
system of electrons under study. The single determinant of Kohn-Sham molecular

orbitals is then used to represent the density, ρ(r) =
∑
i

|φi|2, as well as to evaluate

the non-interacting kinetic energy.
The total energy, Etot, is assembled from terms that can be exactly evaluated,

and a remaining unknown term, Exc, which is (in its simplest form) taken to be a
functional of the electron density:

Etot = −
∑
i

1

2

〈
φi
∣∣∇2
∣∣φi〉+

∫
ρ(r)vext(r)dr

+
1

2

∫ ∫
ρ(r1)ρ(r2)

r12

dr1dr2 + Enuc + Exc

(4.1)

The task of density functional development is to approximate Exc as accurately
as possible, while maintaining the computational tractability that characterizes the
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preceding 4 terms.
Since density functionals are models, there is no guarantee that a complicated

model will be more accurate than a simple one. Nonetheless, if additional, physically-
relevant information is incorporated into a density functional with minimal empiri-
cism, it is certainly possible for the resulting density functional to improve upon a
non-empirical density functional that excludes such information. This is the basis
for systematically exploring semi-empirical density functionals that are increasingly
complex functionals of the electron density. Following Perdew[4], who assigned den-
sity functionals to various rungs of a ladder ascending from simplest to more complex
(with more complex forms offering the possibility of satisfying additional exact con-
ditions), one commonly identifies the following 5 rungs:

1. Local Spin-Density Approximation (LSDA): The LSDA exactly solves the infi-
nite[179] uniform electron gas (UEG) problem and represents a non-empirical
density functional that is the starting point for most of the following refine-
ments. The exchange energy and correlation energies are expressed in terms of
an integral over the energy density per unit volume, ELSDA

x/c =
∫
eUEGx/c (ρ(r))dr.

2. Generalized Gradient Approximation (GGA): Density functionals of this type
enhance the LSDA energy density with an inhomogeneity correction factor
(ICF), g(s(r)), that depends on the reduced spin-density gradient, s(r) =
∇ρ(r)

ρ(r)4/3
, as in EGGA

x/c =
∫
eUEGx/c (ρ(r))gx/c(s(r))dr. Leading GGAs include the non-

empirical PBE density functional[12], as well as the 9-parameter dispersion-
corrected B97-D density functional[54].

3. meta-Generalized Gradient Approximation (meta-GGA): In the early 1970s,
while working on modeling nuclear matter forces, Negele and Vautherin[180]
proposed the density matrix expansion (DME) in order to derive an approxi-
mate expression for the nuclear density matrix in terms of the nuclear density,
its gradient, its Laplacian, and the nuclear kinetic energy density. More than 10
years later, Becke, using a similar approach, derived an approximate expression
for the exchange charge density in terms of the electron density, its gradient,

its Laplacian, as well as the electron kinetic energy density (τ =
occ.∑
i

|∇φi|2).

Since then, the term “meta-GGA” or “mGGA”[16] has come to signify den-
sity functionals that contain exchange or correlation components that depend
on the kinetic energy density. As the central topic of this chapter, existing
meta-GGA density functionals will be reviewed in detail in Section 4.1.2.



CHAPTER 4. B97M-V: A META-GGA DENSITY FUNCTIONAL 98

4. Hybrid density functionals: Originally advocated by Becke[33, 181], hybrid
density functionals evaluate a fraction of the exchange energy using the KS
determinant as a wave function, leading to an explicit dependence upon the oc-
cupied KS orbitals. Such density functionals, beginning with B3PW91[10, 11,
33], significantly improve upon Rung 2 and 3 density functionals for both ther-
mochemical energy differences and reaction barriers, although the cost of eval-
uating exact exchange is a significant computational burden over local GGAs
and meta-GGAs.

5. Double-hybrid density functionals (DHDF): DHDFs include dependence on the
unoccupied KS orbitals in addition to the occupied levels, via either a second-
order perturbation-like expression, or methods based on the random phase ap-
proximation. Such density functionals have demonstrated very high accuracy,
albeit with significant additional computational demands beyond hybrids.

Even at Rung 2, and particularly at Rung 3 and higher, there is no unique way of
designing non-empirical density functionals. Accordingly, semi-empirically-designed
density functionals can compete effectively with those constructed from first prin-
ciples. Recently, the systematic development of semi-empirical density functionals
built upon the ICF of the global hybrid GGA density functional, B97, has been ex-
plored[62]. B97 expresses the ICFs for exchange, same-spin correlation, and opposite-
spin correlation (gx, gcss, and gcos) as power series in a finite-range dimensionless
variable, u, which in turn depends on the semi-infinite-range reduced spin-density
gradient, s. Thus, each of the 3 ICFs can be expressed as:

g(u) =
M∑
j=0

cju
j (4.2)

The aforementioned study first tested the comparative efficacy of different treat-
ments of nonlocal exchange (none vs. global hybrid vs. range-separated hybrid) and
nonlocal correlation (none vs. DFT-D2 vs. the VV10 nonlocal correlation (NLC)
functional). Within the GGA framework, all of the functional forms from each of
the 9 categories were assessed by considering all possible combinations of the approx-
imately 15 parameters. The functional form which trained and tested best across
2301 data points was deemed “optimal” in each category.

The overall winner from the 9 resulting “optimal” functional forms combined
range-separation for nonlocal exchange with the VV10 NLC functional for the treat-
ment of long-range dispersion interactions and was subsequently self-consistently
trained. The result was a density functional with 7 linear parameters and 3 nonlin-
ear parameters called ωB97X-V. For thermochemistry, ωB97X-V performed similarly
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to ωB97X-D, which has 13 linear parameters and 2 nonlinear parameters. However,
it performed significantly more accurately for non-covalent interactions (NC).

The question naturally arises as to whether a similar approach can be applied
to the design of a Rung 3 density functional that uses the kinetic energy density
as an additional variable. The primary goal of this chapter is to answer this ques-
tion. Since meta-GGAs are inherently more flexible than GGAs, the systematic
exploration of the space of possible functional forms is considerably more difficult.
Consequently, the challenge of systematic design is exponentially greater, because
each of the one-dimensional power series expansions of Equation 4.2 must be re-
placed by two-dimensional expansions, where the new variable, w, depends on the
kinetic energy density:

g(w, u) =
M ′∑
i=0

M∑
j=0

cijw
iuj (4.3)

In order to proceed, the values of M and M ′ must be determined. Historically, most
GGAs based on the B97 model have had success with values of M between 2 and 4.
For the purposes of this study, M will be set to 4 and M ′ will be set to 8. With these
choices (M = 4 and M ′ = 2M = 8), the search problem is of an enormous scale.
The number of variables that can be individually included or excluded for each of
the 3 components of the exchange-correlation energy is 44, assuming the UEG limit
is enforced (c00 = 1). Under these conditions, the total number of possible functional
forms is an astounding 23×44 = 2132 ∼ 1040. The dimension of this space (1016 moles)
is so enormous, that it is appropriate to label it the meta-GGA density functional
genome.

An exhaustive search of the entire meta-GGA genome for the functional form
which demonstrates the highest degree of accuracy on training and test data is clearly
impossible. Due to the scale of the problem, this functional search approach has not
been previously extensively tried as a means of constructing a meta-GGA density
functional (though a step in this direction has been recently reported for a meta-GGA
exchange functional[182]). Nonetheless, this approach should be the goal of rational,
semi-empirical density functional design, and an intelligent search of an interesting
subspace can certainly be attempted. After reviewing the large number of existing
meta-GGA density functionals and briefly summarizing dispersion corrections, the
approach to attacking the search problem to design a new local meta-GGA density
functional will be described.
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4.1.2 meta-GGA Density Functionals

The first τ -dependent density functional was a same-spin correlation functional
developed by Becke in 1985[183]. Several years later, Becke developed a more ad-
vanced, 2-parameter correlation functional (Bc88)[110]. Bc88 had a τ -dependent
same-spin correlation component due to a multiplicative factor (later termed the
self-correlation correction (SCC) factor) that gave zero correlation energy for one-
electron systems. Becke’s first τ -dependent exchange functional, BR89, was devel-
oped in conjunction with Roussel[109], and was modeled after the exchange hole of
the hydrogen atom. Inspired by the SCC factor of the Bc88 correlation functional,
Becke proposed a simpler, 2-parameter correlation functional (Bc95)[184] in 1995.
Following the success of B97[35], Becke developed the 10-parameter global hybrid
meta-GGA density functional, B98[15]. Shortly after, Schmider and Becke[76, 185]
parameterized a series of B98-type density functionals on a variety of datasets in
order to assess the sensitivity of the resulting empirical parameters to the training
set. The inhomogeneity variable of B98 was slightly modified in 2000 with the B00
density functional[111] to give the w variable that would later become the backbone
of most of Truhlar’s exchange functionals.

Since the early 1990s, Proynov, Salahub, and coworkers have developed a series
of τ -dependent correlation functionals, starting with LAP1 and LAP2[186], which
were based on the opposite-spin Colle-Salvetti pair-correlation function[187]. Soon
thereafter, the LAP3 correlation functional[188] was developed in order to account
for same-spin correlation. Its 4 parameters were fit in conjunction with an exchange
functional (B88 for BLAP3 and PW86 for PLAP3) to a set of binding energies and
bond lengths. The successor to LAP3, the τ1 correlation functional[189], included
higher-order τ -dependent terms, and its 5 parameters were fit in combination with
a modified B88 exchange functional to give Bmτ1. Pairings of LAP3 and τ1 with
the OPTX exchange functional[190], OLAP3 and Oτ1, were later tested[191], and
Oτ2 was developed by refitting the parameters of both OPTX and τ1. Addition-
ally[192, 193], TPSSτ1 assessed the pairing of TPSS exchange and τ1 correlation,
while TPSSτ3 involved refitting the parameters of τ1 with TPSS exchange.

Koehl, Odom, and Scuseria (KOS) used the DME of Negele and Vautherin
(NV)[180] to construct an exchange functional[194], employing a more general coordi-
nate system than NV. KOS were able to decrease the mean absolute deviation (MAD)
of the exchange energies of 32 molecules more than 100-fold with a 2-parameter ex-
pression, giving the VT exchange functional. Van Voorhis and Scuseria (VS) showed
that the exchange hole of VT diverged in the asymptotic limit and set out to ame-
liorate this problem[195], as well as to add explicit dependence on the gradient of
the density. The resulting 4-parameter GMVT and KMVT exchange functionals
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reduced the MAD of VT by another factor of 3 (to around 0.008 Eh). With 2 ac-
curate exchange functionals, VS set out to develop a density functional[27] based
on the DME. The resulting local meta-GGA density functional, VS98 (also known
as VSXC or GVT4), had a total of 21 empirical parameters that were trained on
atomization energies, ionization potentials, and bond lengths.

With only 1 empirical parameter, PKZB[16] was Perdew’s first attempt at con-
structing a local meta-GGA density functional. The exchange ICF of PKZB was an
extension of that of the PBE exchange functional, albeit with a more complicated
inhomogeneity variable that included kinetic energy density dependence, allowing for
further constraint satisfaction. The PKZB correlation functional was similar to the
PBE correlation functional, but was modified (with the help of τ) to return zero for
one-electron densities (like Becke’s SCC factor). PKZB was accurate for surface ener-
gies and atomization energies, but less satisfactory for hydrogen-bonded complexes
and equilibrium bond lengths[196]. These problems were eventually attributed to
shortcomings in the PKZB exchange functional, which was modified (along with
minor improvements to the PKZB correlation functional) to yield the well-known,
non-empirical local meta-GGA density functional, TPSS[17]. A 1-parameter global
hybrid version of TPSS (TPSSh[38]) was developed shortly after, with 10% exact
exchange. To improve TPSS atomization energies, modTPSS[197], a 1-parameter
version of TPSS which adjusted a previously fixed parameter in the exchange func-
tional, was proposed. In 2009, a revised TPSS (revTPSS[18]) was introduced to
overcome shortcomings in predicting accurate lattice constants, as well as to im-
prove additional formal properties. The revTPSS exchange functional was altered
to remedy an order of limits problem and paired with a modified PBE correlation
functional to define the regTPSS density functional[198]. In 2012, Sun and cowork-
ers[19] investigated the effect of the kinetic energy density on meta-GGA density
functionals, which (along with the development of regTPSS) inspired the develop-
ment of 4 local and 2 global hybrid meta-GGA density functionals[19–21, 199, 200]:
MGGA MS (MGGA MS0), MGGA MS1, MGGA MS2, MGGA MS2h, MVS, and
MVSh.

Other groups were also active in proposing new meta-GGA density functionals
in the early 2000s. The EDMGGA exchange functional[201] was based on the DME
of the exchange hole and had an ICF that resembled that of B88, while using an
inhomogeneity variable which depended (in part) on the kinetic energy density. A
global hybrid variant[202] which combined EDMGGA with the Colle-Salvetti meta-
GGA correlation functional[14, 187] was also proposed, with 22% exact exchange.
KCIS[203] was a meta-GGA correlation functional which depended on τ through
its SCC term. KCIS was paired with various exchange functionals, including B88,
PBE, and PKZB, and various global hybrid variants were also proposed, such as
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B0KCIS (25% exact exchange) and B1KCIS (23.9% exact exchange). Boese and
Handy[28] based τ -HCTH on Becke’s B97, B98, and B00 density functionals. The
same-spin and opposite-spin correlation ICFs used B97 expansions with m = 3. The
exchange functional had both a “local” exchange component (B97-type with m = 3)
and a “nonlocal” exchange component (Becke’s 3-term B00 ICF[111] multiplying an
m = 3 B97-type GGA ICF). τ -HCTH had 16 fitted parameters, while its global
hybrid counterpart had 17 (with 15% exact exchange). BMK[36] was identical in
form to the hybridized τ -HCTH, but since transition states were included in the
training set (to better describe barrier heights), its percentage of exact exchange was
almost 3 times larger (42%).

Between 2005 and 2011, Truhlar and co-workers have published 10
highly-parameterized local (M06-L[23], M11-L[24]), global hybrid (M05[41], M05-
2X[43], M06[45], M06-2X[45], M06-HF[44], M08-HX[46], M08-SO[46]), and range-
separated hybrid (M11[52]) meta-GGA density functionals. The exchange compo-
nent of M05 used the PBE exchange functional as its foundation, enhanced by a
12-term (m = 11) power series ICF in Becke’s τ -dependent variable[111], w, while
the M05 correlation functional employed a 5-term B97-type expansion with Becke’s
SCC factor multiplying the same-spin component. All 3 UEG limits were satisfied,
and a total of 22 fitted parameters (20 linear and 2 nonlinear) were optimized, includ-
ing 28% exact exchange. The construction of M05-2X was identical to that of M05,
except the exact exchange mixing parameter was doubled and fixed (56%) and the 2
nonlinear correlation parameters were borrowed from M05, for a total of 19 fitted pa-
rameters. The form of M06-L was an unhybridized M05 or M05-2X, with 1 exception:
all 3 components (exchange, same-spin correlation, and opposite spin correlation)
had an additional, 5-term, VS98-type ICF. Since the nonlinear correlation parame-
ters were borrowed from M05, M06-L ended up with a total of 34 fitted parameters.
The global hybrid M06 density functional was identical to a hybridized M06-L, with
1 exception: the fourth-order terms from the VS98-type exchange ICF were dropped
(2 fewer parameters). Accordingly, M06 had a total of 33 fitted parameters, with 27%
exact exchange. M06-2X had double the amount of exact exchange (54%) as M06,
and the entire VS98-type exchange ICF was dropped, resulting in 29 fitted parame-
ters. M06-HF employed 100% exact exchange, and was otherwise identical to M06,
with a total of 32 fitted parameters. M08-HX and M08-SO used exchange functionals
based on the summation of the PBE and RPBE[112] ICFs, each enhanced by 12-term
power series ICFs in w. For correlation, a third 12-term power series ICF in w en-
hanced the PW92 correlation energy density per unit volume and a fourth enhanced
the PBE correlation functional gradient correction term. M08-HX involved 47 fitted
parameters and 52.23% exact exchange, while for M08-SO, 3 additional constraints
led to 44 fitted parameters and 56.79% exact exchange. The M11 density functional
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extended M08-HX and M08-SO with range-separated exact exchange and several mi-
nor changes, leading to 40 fitted parameters, 42.8% short-range exact exchange, and
ω = 0.25. The local meta-GGA density functional, M11-L, used a novel “dual-range”
partitioning of the exchange functional, with a local “long-range” exchange compo-
nent in addition to the short-range exchange component found in range-separated
hybrid exchange functionals. The correlation functional was similar to that of M11,
and all 6 power series (2 from short-range exchange, 2 from long-range exchange,
and 2 from correlation) were reduced to 9 terms. With 54 initial linear parameters,
1 nonlinear parameter (ω = 0.25), and 11 constraints, M11-L had a total of 44 fitted
parameters.

Development of meta-GGAs continues actively to the present day. The meta-
VT{8,4} exchange functional[204] was based on revTPSS, but differed in its inho-
mogeneity variable as well as its ICF, and was paired with the revTPSS correlation
functional. ωM05-D was a dispersion-corrected, range-separated hybrid version[59]
of Truhlar’s M05 density functional with 21 fitted parameters, while ωM06-D3 repre-
sented similar modifications to Truhlar’s M06-2X density functional and had 25 fitted
parameters. These density functionals exhibited the advantages of range-separation
and a correct treatment of long-range dispersion interactions. The BLOC exchange
functional[205] was constructed by converting a constant in the TPSS and revTPSS
exchange functionals to a function of the ratio of the von Weizsäcker kinetic energy
density to the exact kinetic energy density. It was paired with the TPSSloc corre-
lation functional[206] to give the BLOC density functional. Two density functionals
have recently been developed within a Bayesian error estimation functional frame-
work. BEEF-vdW[207] involved developing a 30-parameter GGA exchange func-
tional and pairing it with 40% PBE correlation and 60% PW92 correlation, along
with the vdW-DF-10 NLC functional[74]. This approach was naturally extended[182]
to a 64-parameter meta-GGA exchange functional (mBEEF), which added the ki-
netic energy density as a variable, dropped the nonlocal correlation functional, and
replaced the combination of PBE correlation and PW92 correlation with the PBEsol
correlation functional[208].

4.1.3 van der Waals Interactions

Since long-range electron correlations that account for the asymptotic 1/r6 de-
pendence of van der Waals (vdW) interactions cannot be properly described by
conventional density functionals[124, 125], there has been an increased effort in the
past decade to remedy this shortcoming. While numerous methods that account for
dispersion have been proposed, this brief review is limited to the DFT-D approach
of Grimme[53–55] and the nonlocal correlation functionals of Lundqvist and Van
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Voorhis[57, 73–75, 136–139]. A comprehensive review of various approaches to ex-
tending the applicability of DFT to dispersion interactions can be found in Reference
126.

The simplest and cheapest methods that account for dispersion are Grimme’s em-
pirical DFT-D methods[53–55], which are damped interatomic potentials. Grimme’s
first attempt at an empirical dispersion tail was DFT-D1[53], which was only avail-
able for 6 elements (H, C, N, O, F, and Ne). With the atomic C6 parameters and
van der Waals radii predetermined, a single linear optimizable parameter (s6) was
trained onto 3 existing local GGA density functionals (BLYP, BP86, and PBE) and
led to a considerable improvement in the description of vdW interactions. Grimme
then introduced the DFT-D2 dispersion tail for all elements through Xe, along with
a 9-parameter, B97-based, local GGA density functional called B97-D. In addition,
independent damping parameters were determined for PBE, BLYP, BP86, TPSS,
and B3LYP. This was followed by the DFT-D3 dispersion tail, which used fractional
coordination numbers to account for variations in atomic dispersion coefficients in
different chemical environments and contained a two-body term and an optional
three-body term, as well as an improved damping function. The DFT-D3 disper-
sion tail was trained onto more than 10 existing density functionals and generally
improved upon its predecessors for describing dispersion interactions.

Several density functionals that explicitly account for dispersion have been de-
veloped, including vdW-DF-04[73], vdW-DF-10[74], VV09[75], and VV10[57]. These
nonlocal correlation functionals rely on a double space integral over the density and a
nonlocal correlation kernel, and are computationally more expensive than the DFT-
D methods. Langreth, Lundqvist, and coworkers introduced the first NLC scheme
(vdW-DF-04) that could be applied to overlapping densities in 2004. Several years
later, Vydrov and Van Voorhis implemented the vdW-DF-04 NLC functional for
use with Gaussian basis sets[136], and proposed modifications (vdW-DF-09) to im-
prove its compatibility with existing exchange functionals[137]. The VV09[75, 138,
139] NLC functional of Vydrov and Van Voorhis adopted a simple analytic form for
the nonlocal correlation kernel, instead of relying on a numerically tabulated kernel.
Soon afterwards, Vydrov and Van Voorhis proposed an even simpler NLC functional,
VV10, that improved upon its predecessor by employing a less elaborate function for
the damping of the 1/r6 asymptote. In 2010, vdW-DF-10 was introduced to correct
the tendency of vdW-DF-04 to overestimate equilibrium bond lengths and under-
estimate the binding energies of hydrogen-bonded complexes. While the vdW-DF
methods have no optimizable parameters, VV09 and VV10 have 1 and 2 optimizable
parameters, respectively.
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4.1.4 Outline

This chapter describes the task of designing an accurate and computationally
efficient local meta-GGA density functional by attempting a partial search of the
functional space defined by the inclusion or exclusion of the parameters in Equation
4.3. To ensure computational efficiency, B97M-V will not include exact exchange; i.e.
it is semilocal as far as exchange is concerned. This will impose some limits on the
accuracy of B97M-V for properties such as barrier heights that are sensitive to the
inclusion of exact exchange. To offer the possibility of high accuracy for non-covalent
interactions, particularly in the asymptotic regime, B97M-V will include nonlocal
correlation via the VV10 NLC functional, which has already been demonstrated to
be highly effective for this purpose[57] and is computationally efficient.

The remainder of the chapter is organized as follows. Details of the methodology
used are discussed in Section 4.2, beginning with a full specification of the functional
forms that are being trained and tested, followed by details regarding the choice
of basis sets and grids, and a brief summary of the datasets that will be employed
for training and testing B97M-V. Most importantly, Section 4.2.5 describes the way
in which a partial search of the meta-GGA density functional genome (from which
B97M-V was drawn) was attempted. Since the inclusion of the kinetic energy den-
sity is known to lead to oscillations in potential energy curves (PEC) for weakly
interacting systems (i.e. strong integration grid sensitivity), this aspect was heavily
emphasized in the development of B97M-V.

The functional form of B97M-V emerged as the leading representative of the
“fittest” functional forms encountered in the search. Having selected a functional
form, B97M-V was then self-consistently trained and assessed against a broad range
of existing density functionals in Section 4.3. These assessments begin with the
training and test data from which B97M-V emerged, and then progress to a range
of further tests on data which were not used for developing or selecting B97M-V.

4.2 Approach

4.2.1 Theory

The complete functional form for B97M-V is given by Equation 4.4. The com-
ponents of the exchange functional and correlation functional are described below.
The acronyms used in Equation 4.4 (and henceforth) are: exchange-correlation (xc),
exchange (x), correlation (c), same-spin (ss), and opposite-spin (os).

EB97M−V
xc = EB97M−V

x + EB97M−V
css + EB97M−V

cos + EV V 10
NLC (4.4)
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The local spin-density approximation (LSDA) for exchange can be expressed in
terms of the first-order spinless reduced density matrix for a uniform electron gas
(UEG):

ELSDAx = −1

2

α,β∑
σ

∫ ∫
1

s
|ρUEGσ (r, s)|2drds (4.5)

ρUEGσ (r, s) = 3ρσ(r)

(
sin(kFσs)− kFσs cos(kFσs)

(kFσs)
3

)
(4.6)

where s = r1 − r2, r = 1
2

(r1 + r2), and kFσ = (6π2ρσ)
1/3

is the spin-polarized Fermi
wave vector. Integration of Equation 4.5 over s gives the well-known expression for
the LSDA exchange energy in terms of the exchange energy density per unit volume
of a uniform electron gas:

ELSDAx =

α,β∑
σ

∫
eUEGx,σ (ρσ)dr (4.7)

eUEGx,σ (ρσ) = −3

2

(
3

4π

)1/3

ρ4/3
σ (4.8)

Accounting for inhomogeneities in the electron density is achieved by multiplying
the integrand of the LSDA exchange functional by a power series inhomogeneity
correction factor, gx(wx,σ, ux,σ), resulting in the B97M-V exchange functional:

EB97M−V
x =

α,β∑
σ

∫
eUEGx,σ (ρσ)gx(wx,σ, ux,σ)dr (4.9)

gx(wx,σ, ux,σ) =
∑
i=0

∑
j=0

cx,ijw
i
x,σu

j
x,σ (4.10)

wx,σ =
tσ − 1

tσ + 1
(4.11)

ux,σ =
γxs

2
σ

1 + γxs2
σ

(4.12)

where the dimensionless variable, wx,σ ∈ [−1, 1], is a finite domain transformation
of the ratio of the UEG kinetic energy density to the exact kinetic energy density,

tσ = τUEGσ

τσ
, with τUEGσ = 3

5
(6π2)2/3ρ

5/3
σ , and the dimensionless variable, ux,σ ∈ [0, 1],

is a finite domain transformation of the reduced spin-density gradient, sσ = |∇ρσ |
ρ
4/3
σ

∈
[0,∞). The linear DFT exchange parameters, cx,ij, will be determined by least-
squares fitting to a training set in Section 4.2.5, while γx = 0.004 is a nonlinear DFT
exchange parameter that was fit to the Hartree–Fock exchange energies of 20 atoms
in 1986 by Becke[9].
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Closed-form expressions for the correlation energy density per particle of a uni-
form electron gas, εUEGc (ρ), are only known for the low- and high-density limits of
the paramagnetic and ferromagnetic cases of the UEG. Using the Monte-Carlo data
of Ceperley and Alder[8], Perdew and Wang developed an analytic spin-compensated
representation[7], εPW92

c (ρ), for εUEGc (ρ). Combined with the spin-polarization inter-
polation formula of Vosko, Wilk, and Nusair[6], the spin-polarized PW92 correlation
energy density per particle, εPW92

c (ρα, ρβ), is the starting point for the B97M-V cor-
relation functional:

ELSDAc =

∫
ρεPW92
c (ρα, ρβ)dr (4.13)

Using the spin decomposition technique of Stoll and coworkers[81], the LSDA corre-
lation energy can be separated into same-spin and opposite-spin components:

ELSDAcss =

α,β∑
σ

∫
ePW92
c,σσ dr =

∫
ραε

PW92
c (ρα, 0)dr+∫

ρβε
PW92
c (0, ρβ)dr

(4.14)

ELSDAcos =

∫
ePW92
c,αβ dr =

∫
ρεPW92
c (ρα, ρβ)dr−∫

ραε
PW92
c (ρα, 0)dr−

∫
ρβε

PW92
c (0, ρβ)dr

(4.15)

where ePW92
c,σσ and ePW92

c,αβ are the PW92 same-spin and opposite-spin correlation en-
ergy densities per unit volume. Extending Equations 4.14 and 4.15 to account for
inhomogeneities in the electron density is straightforward, since the same approach
used for the exchange functional can be utilized:

EB97M−V
css =

α,β∑
σ

∫
ePW92
c,σσ gcss(wc,σσ, uc,σσ)dr (4.16)

gcss(wc,σσ, uc,σσ) =
∑
i=0

∑
j=0

ccss,ijw
i
c,σσu

j
c,σσ (4.17)

wc,σσ =
tσ − 1

tσ + 1
(4.18)

uc,σσ =
γcsss

2
σ

1 + γcsss2
σ

(4.19)

EB97M−V
cos =

∫
ePW92
c,αβ gcos(wc,αβ , uc,αβ)dr (4.20)
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gcos(wc,αβ , uc,αβ) =
∑
i=0

∑
j=0

ccos,ijw
i
c,αβu

j
c,αβ (4.21)

wc,αβ =
tαβ − 1

tαβ + 1
(4.22)

uc,αβ =
γcoss

2
αβ

1 + γcoss2
αβ

(4.23)

where tαβ = 1
2
(tα+tβ) and s2

αβ = 1
2
(s2
α+s2

β). The linear DFT correlation parameters,
ccss,ij and ccos,ij, will be determined by least-squares fitting to a training set in Section
4.2.5, while γcss = 0.2 and γcos = 0.006 are nonlinear DFT correlation parameters
that were fit to the correlation energies of neon and helium in 1997 by Becke[35].

Nonlocal correlation is taken into account via the VV10 NLC functional[57]:

EV V 10
NLC =

∫
ρ(r)

(
1

32

(
3

b2

)3/4

+
1

2

∫
ρ(r′)Φ(r, r′, {b, C})dr′

)
dr (4.24)

where Φ(r, r′, {b, C}) is the nonlocal correlation kernel defined in Reference 57. The
VV10 NLC functional introduces 2 nonlinear parameters: b, which controls the short-
range damping of the 1/r6 asymptote, and C, which controls the accuracy of the
asymptotic C6 coefficients.

4.2.2 Datasets

A semi-empirical density functional is only as applicable as the data used to train
and test it. In total, the training, primary test, and secondary test sets contain 2460
data points, requiring 2421 single-point calculations. Of the 2460 data points, 1095
belong to the training set, 1153 belong to the primary test set, and 212 belong to
the secondary test set. Furthermore, the training, primary test, and secondary test
sets contain both thermochemistry (TC) data as well as non-covalent interactions
(NC) data. The training set contains 787 TC data points and 308 NC data points,
the primary test set contains 134 TC data points and 1019 NC data points, and
the secondary test set contains 81 TC data points and 131 NC data points (for an
overall total of 1002 TC data points and 1458 NC data points). Table 4.1 lists the
45 datasets that form the training, primary test, and secondary test sets. Specific
details regarding the datasets can be found in Section 4 of Reference 63, with the only
difference being that updated reference values for HW6F, HW6Cl, and H2O6Bind8
are used in this work[209].
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Name Description # of Data Points References

HAT707 Heavy-atom transfer reaction energies 505 82
BDE99 Bond dissociation reaction energies 83 82

TAE nonMR124 Total atomization energies (nonmultireference) 124 82
SN13 Nucleophilic substitution reaction energies 13 82

ISOMER20 Isomerization reaction energies 18 82
DBH24 Diverse barrier heights 24 83,84

EA6 Electron affinities of atoms 6 171
IP6 Ionization potentials of atoms 6 171
AE8 Absolute atomic energies 8 86

SW49Rel345 SO4
2−(H2O)n (n = 3− 5) relative energies 28 87

SW49Bind345 SO4
2−(H2O)n (n = 3− 5) binding energies 30 87

NBC10-2 Methane dimer and benzene-methane dimer PECs 37 88,89
BzDC215 Benzene and first- and second-row hydride PECs 108 91
NBC10-1 Parallel-displaced (3.4 Å), sandwich, and T-shaped benzene dimer PECs 53 88,89

HW30 Hydrocarbon and water dimers 30 100
S22 Equilibrium geometries from S22x5 22 104,89

EA7 Adiabatic electron affinities of small molecules 7 171
IP7 Adiabatic ionization potentials of small molecules 7 171

AlkAtom19 n = 1− 8 alkane atomization energies 19 93
AlkIsomer11 n = 4− 8 alkane isomerization energies 11 93
AlkIsod14 n = 3− 8 alkane isodesmic reaction energies 14 93
HTBH38 Hydrogen transfer barrier heights 38 94

NHTBH38 Non-hydrogen transfer barrier heights 38 95

SW49Rel6 SO4
2−(H2O)n (n = 6) relative energies 17 87

SW49Bind6 SO4
2−(H2O)n (n = 6) binding energies 18 87

HBC6 Formic acid, formamide acid, and formamidine acid dimer PECs 118 90,89
NBC10-3 S2 and T3 configuration pyridine dimer PECs 39 97,89

S22x5 Hydrogen-bonded and dispersion-bound complex PECs 110 102
S66x8 Biomolecular structure complex PECs 528 103
S66 Equilibrium geometries from S66x8 66 103,105

NNTT41 Neon-neon PEC 41 96
AATT41 Argon-argon PEC 41 96
NATT41 Neon-argon PEC 41 96

G21EA Adiabatic electron affinities of atoms and small molecules 25 154,210
G21IP Adiabatic ionization potentials of atoms and small molecules 36 154,210
PA8 Adiabatic proton affinities of small molecules 8 155,156

Gill12 Neutral, radical, anionic, and cationic isodesmic reaction energies 12 92

A24 Small non-covalent complexes 24 149
X40 Non-covalent interactions of halogenated molecules 40 144

H2O6Bind8 Binding energies of water hexamers 8 152,209
HW6F Binding energies of F−(H2O)n (n = 1− 6) 6 152,209
HW6Cl Binding energies of Cl−(H2O)n (n = 1− 6) 6 152,209

CYCONF Relative energies of cysteine conformers 10 157,210
DS14 Binding energies for complexes containing divalent sulfur 14 153

WATER27 Neutral and charged water interactions 23 98,210

Table 4.1: Summary of the datasets found in the training, primary test, and sec-
ondary test sets. The datasets above the first thick black line are in the training set,
the datasets between the first and second thick black lines are in the primary test
set, while the datasets below the second thick black line are in the secondary test
set. Within the training, primary test, and secondary test sets, datasets above the
thin black line contain thermochemistry data points, while datasets below the thin
black line contain non-covalent interactions data points. PEC stands for potential
energy curve.
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4.2.3 Computational Details

For the training, primary test, and secondary test sets, the (99,590) grid (99
radial shells with 590 Lebedev points each) was used to evaluate local xc functionals,
while the SG-1 grid[61] was used to evaluate the VV10 NLC functional. For the
absolute atomic energies in the training set and the rare-gas dimer PECs in the
primary test set, the (500,974) grid was used to evaluate local xc functionals, while
the (99,590) grid was used to evaluate the VV10 NLC functional. For M06-L and
M11-L, calculations in the training, primary test, and secondary test sets were carried
out with the (250,590) grid instead of the (99,590) grid. For the sake of simplicity,
the following convention will be used henceforth: the grid used to integrate the local
xc functional will be appended with a forward slash, followed by the grid used to
integrate the VV10 NLC functional (if applicable). Therefore, referring to the second
sentence of this paragraph, it will suffice to state that the (500,974)/(99,590) grid
was used for the absolute atomic energies and the rare-gas dimer PECs.

The aug-cc-pVQZ (aQZ) basis set[77, 78] was used for all thermochemistry data
points in the training, primary test, and secondary test sets except the second-
row absolute atomic energies in the training set (aug-cc-pCVQZ)[77, 78], while the
aug-cc-pVTZ (aTZ) basis set[77, 78] was used for all non-covalent interactions data
points in the training, primary test, and secondary test sets except the rare-gas
dimer PECs in the primary test set (aQZ) and the X40 dataset in the secondary test
set (def2-TZVPPD[145, 146]). All non-covalent interactions were computed without
counterpoise corrections (unless otherwise noted).

For B97-D2, Grimme’s DFT-D2 dispersion tail was used with an s6 coefficient
of 0.75, as parameterized by Burns and coworkers[79]. Grimme’s B97-D density
functional[54] uses the DFT-D2 dispersion tail as well, with an s6 coefficient of 1.25.
For B3LYP-D3, Grimme’s DFT-D3 dispersion tail was used with the following set
of parameters: {s6, sr,6, s8, sr,8} = {1, 1.261, 1.703, 1}. For PBE-D3, Grimme’s
DFT-D3 dispersion tail was used with the following set of parameters: {s6, sr,6, s8,
sr,8} = {1, 1.217, 0.722, 1}. For TPSS-D3, Grimme’s DFT-D3 dispersion tail was
used with the following set of parameters: {s6, sr,6, s8, sr,8} = {1, 1.166, 1.105,
1}. The density functionals that utilize the DFT-D3 dispersion tail use its zero-
damping implementation (commonly referred to as DFT-D3(0)). Electronic energies
are exclusively used throughout this chapter and spin-orbit coupling is not taken into
consideration. All of the calculations were performed with a development version of
Q-Chem 4.0[211].
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4.2.4 Least-Squares Procedure

With a total of 2248 data points in the training and primary test sets, it is
clear that a comprehensive 2-parameter nonlinear optimization of the parameters
associated with VV10 is impractical. As a result, the values of b = 6 and C = 0.01
that were optimized for ωB97X-V are taken without further adjustment.

For the least-squares fits associated with the development of B97M-V, 1880
molecules comprise the 2248 data points in the training and primary test sets.
The molecular orbital (MO) coefficients for these 1880 molecules were initially con-
verged with the LSDA+VV10 density functional and saved to disk (equivalent to
gx = gcss = gcos = 1). Using these saved MO coefficients, the values (henceforth
referred to as contributions) that are enhanced by the exchange (cx,ij), same-spin
correlation (ccss,ij), and opposite-spin correlation (ccos,ij) coefficients are computed
up to 8th order in w and up to 4th order in u (including cross terms) for a total of 135
contributions per molecule, to enable the evaluation of Equation 4.3. These values are
computed twice: once with the (99,590)/SG-1 grid and once with the (250,590)/SG-1
grid (the (500,974)/(99,590) grid was always used for AE8, NNTT41, AATT41, and
NATT41 throughout this chapter and never altered).

The contributions are used to form a (# of data points)× (# of linear parameters)
matrix, A. In addition to the A matrix, a column vector, y, of values corresponding
to the errors in the unoptimized density functional (y = EREF −EDFT ) is computed.
Since weights are used during training, a diagonal (# of data points) × (# of data
points) training set weight matrix (WTrain) is required as well. The diagonal elements
corresponding to the training set data contain the appropriate weights, while the
remaining diagonal elements corresponding to the primary test set data are set to
zero. Thermochemistry data points in the training and primary test sets are given
weights of 1 and 2, respectively (except for data points in TAE nonMR124 (5),
EA6 (10), IP6 (10), and DBH24 (25)), non-covalent interactions data points in the
training and primary test sets are given weights of 100 and 200, respectively, and
data points corresponding to the rare-gas dimer PECs in the primary test set are
given a weight of 100,000. The total root-mean-square deviation (RMSD) is defined
as a weighted RMSD of all 2248 data points in the training and primary test sets
with the aforementioned weights, while the training RMSD is defined as a weighted
RMSD of the 1095 data points in the training set with the aforementioned weights.

The change in the linear parameters, ∆b, is found by a weighted least-squares fit:

∆b = (ATWTrainA)−1(ATWTrainy) (4.25)

Unless otherwise noted, ∆b is computed using the data generated with the (250,590)/SG-
1 grid. The training set RMSD is calculated by:
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RMSDTrain =

√
diag(WTrain) · (y −A∆b)2

#Train
(4.26)

while the total RMSD is calculated by:

RMSDTotal =

√
diag(WTotal) · (y −A∆b)2

#Total
(4.27)

With the contributions calculated with 2 different grids, it is straightforward to
analyze the energetic differences between the grids per contribution per data point.
Figure 4.1 plots the difference between the (99,590)/SG-1 data and (250,590)/SG-1
data for each of the 135 contributions for all 2248 data points. As a reminder, grid-
based errors involve the product of these differences and the corresponding coefficient
that appears in the density functional. For instance, the largest grid-based error (-
0.0195 kcal/mol for the parallel-displaced benzene dimer from S22x5 at 0.9·Re) comes
from uc,σσ, and a well-behaved density functional like ωB97X-V has ccss,01 = −0.257,
meaning that the resulting error is only 0.005 kcal/mol. More attention should
be paid to higher-order variables, because while their grid-based errors might seem
small, such terms are more likely to have large coefficients. For example, M06-L
has ccos,02 = −251.325, and the largest error for the associated variable is -0.000622
kcal/mol, which leads to a more significant total error of 0.156 kcal/mol. However,
since grid-based errors might cancel upon integration, fits are not discarded solely
based on the magnitude of the resulting coefficients. The procedure used to ensure
that the final density functional is as grid-insensitive as possible will be discussed in
Section 4.2.5.

4.2.5 Partial Search of the Functional Space

Following the initial setup described above, a subspace of the full parameter space
must be selected to begin the search. The initial parameter space consists of 135
parameters. With the available computing resources (a dedicated 64-core node),
the maximum number of fits that can be performed in a single day is around 2
billion. Therefore 135C5 is the largest 1-day calculation that can be performed with
all 135 parameters, resulting in only up to 5-parameter fits. A prior search of the
much smaller GGA parameter space to design ωB97X-V led to an optimal functional
form with a total of 7 linear parameters, but since τ -dependent variables are being
included in this fit, larger numbers of parameters are almost certainly required. To
reduce the size of the search space, certain higher-order variables are excluded: only
contributions from variables up to combined 6th order (u + w) are included in the
fits. Furthermore, all 3 uniform electron gas limits are satisfied, further reducing
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Figure 4.1: Energetic differences in kcal/mol between the (99,590)/SG-1 data and
the (250,590)/SG-1 data for each of the 135 contributions for all 2248 data points in
the training and primary test sets.

the total number of optional parameters by 3. This truncation reduces the original
parameter space from 135 to 72. With 72 selectable parameters, it is possible to
expand from 135C5 to 72C7, since 72C7 = 1,473,109,704. Clearly, it is still essential
to devise a scheme to allow for the exploration of fits with more than 7 parameters.

From all of the 7-parameter fits resulting from the 72C7 optimization, the top
100,000 (ranked by total RMSD) are analyzed, since the total RMSD is a good
indicator of both training set performance (fitting) and primary test set performance
(transferability). From these 100,000 fits, those with exchange ICFs that go below
zero (resulting in positive exchange energy contributions) are removed on physical
grounds. Since the change in the parameters (∆b) from the least-squares fits can
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be used to predict energies corresponding to all of the data points (via ELSTSQ =
EDFT +A∆b), the (99,590)/SG-1 and (250,590)/SG-1 data is used to compute 2 sets

of energies (E
(99,590)
LSTSQ and E

(250,590)
LSTSQ ) for all of the remaining fits. In order to acquire

these energies, EDFT , A, and ∆b are taken from the respective grid. The 2 sets of
energies are compared and only fits that have an absolute maximum grid-based error
of 0.01 kcal/mol across all 2248 data points are kept. The remaining fits are filtered
once again, such that those with parameters with a magnitude greater than 30 are
removed.

The remaining fits are analyzed in order to determine the coefficient that is most
commonly used. This coefficient is then compulsorily selected in the next set of
least-squares fits in order to allow for the exploration of 8-parameter fits. This
procedure was repeated until a minimum in the total RMSD was found. Since the
minimum was found at 15 parameters, 9 coefficients (cx,10, cx,01, cx,11, cx,02, ccss,10,
ccss,02, ccss,32, ccss,42, ccos,10), which will henceforth be referred to as the “Best 9”,
had to be compulsorily selected in order to reach the 16-parameter mark at which
the total RMSD increased. The progression from the 7-parameter fits to the 16-
parameter fits can be tracked in Table 4.2. In addition, the total RMSDs of the
surviving fits are plotted in Figure 4.2. The 15-parameter fit with the lowest RMSD
was self-consistently optimized in order to finalize the parameters. However, after
a single self-consistent cycle, it became clear that the least-squares fit RMSDs from
the first cycle were inaccurate by more than 0.2 kcal/mol on average, primarily for
the thermochemistry datasets.

In order to overcome the issue of inaccurate least-squares fit RMSDs, the contri-
butions were recalculated in the (99,590)/SG-1 grid and (250,590)/SG-1 grid with
the “Best 9” parameters fixed. With the updated contributions, all 10-parameter
(63C1) through 16-parameter (63C7) fits were recomputed and filtered as before:

min(gx(wx,σ, ux,σ))≥0, max(|E(99,590)
LSTSQ - E

(250,590)
LSTSQ |)≤0.01 kcal/mol, and max(|b|)≤30.

The resulting fits were plotted (on the left in Figure 4.3) in order to identify the
“optimal” fit based on the same methodology that was used in Reference 62. How-
ever, in order to ensure that the resulting density functional would be accurate for
intermolecular geometries as well, the interpolated minima for 19 of the PECs in the
training and primary test sets (7 PECs from NBC10, 5 PECs from BzDC215, 4 PECs
from HBC6, along with the 3 rare-gas dimer PECs) were computed and compared
to reference values in order to determine MADs and maximum absolute deviations
(MAX) for each fit. Based on this data, fits with an MAD greater than 0.03 Å and
an MAX greater than 0.1 Å were discarded in order to produce the plot on the right
in Figure 4.3. The fit that led to the B97M-V density functional is boxed in Figure
4.3.
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Frozen # of Initial Fits # (Fitted) gx Grid |b| Common # of Remaining Fits

— 1,473,109,704 7 87,506 29,521 29,025 cx,01 27,248
cx,01 1,329,890,705 8 83,605 45,474 44,828 cx,10 44,695
cx,10 1,198,774,720 9 55,310 16,572 16,436 cx,02 16,155
cx,02 1,078,897,248 10 40,900 3,398 3,382 cx,11 2,343
cx,11 969,443,904 11 17,684 305 290 ccss,32 224
ccss,32 869,648,208 12 10,192 90 36 ccss,42 33
ccss,42 778,789,440 13 23,664 157 58 ccss,10 43
ccss,10 696,190,560 14 3,126 52 42 ccss,02 41
ccss,02 621,216,192 15 117 19 16 ccos,10 16
ccos,10 553,270,671 16 660 62 36 ccos,01 33

Table 4.2: Progression from the 7-parameter fits to the 16-parameter fits based
on the LSDA+VV10 data. The first column indicates the additional coefficient
that was frozen (compulsorily selected) in order to achieve the associated set of
fits. The second column contains the total number of least-squares fits that were
performed, of which only the top 100,000 (ranked by total RMSD) were analyzed.
The fourth column indicates the number of fits (of 100,000) that remained after
the first filtering criterion (min(gx(wx,σ, ux,σ))≥0) was applied. The fifth column
indicates the number of fits from the previous column that remained after the second
filtering criterion (max(|E(99,590)

LSTSQ - E
(250,590)
LSTSQ |)≤0.01 kcal/mol) was applied. The sixth

column indicates the number of fits from the previous column that remained after
the third filtering criterion (max(|b|)≤30) was applied. Finally, the last 2 columns
indicate the coefficient that was most commonly utilized in the surviving fits (shown
in Column 6) and the number of times that coefficient appeared.

Including the initial cycle (Cycle 1) with the unoptimized B97M-V density func-
tional as well as the “Best 9” cycle, the self-consistent optimization of B97M-V
required 7 cycles. For the first 2 cycles, the data points in the training and primary
test sets were evaluated in order to determine the functional form that would be self-
consistently optimized. For the later cycles, only the 1095 data points in the training
set were required to finalize the parameters. The parameters from the beginning of
all 7 cycles are listed in Table 4.3.

The final parameters of B97M-V can be found in the last column of Table 4.3,
and Figure 4.4 shows the exchange, same-spin correlation, and opposite-spin correla-
tion ICF plots for B97M-V. Compared to recent semi-empirical meta-GGA density
functionals, the resulting coefficients are very well-behaved. The 2 largest coeffi-
cients enhance variables that are fifth and sixth order overall, yet are still around 20
in magnitude. An encouraging but unintended outcome is that all of the exchange
coefficients are positive. The resulting ICFs are well-behaved as well, especially the
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Figure 4.2: Total RMSDs in kcal/mol of the surviving 7-parameter through 16-
parameter fits based on the LSDA+VV10 data. The filtering criteria are described
in Section 4.2.5 and Table 4.2.

exchange ICF.
Since the resulting functional form of B97M-V is unique and employs terms that

are not commonly found in density functionals, it is important to discuss the similar-
ities and differences between B97M-V and existing density functionals. For clarity,
the 3 ICFs of B97M-V are given in Equations 4.28-4.30. The motivation for using
the particular power series expansion shown in Equation 4.3 came from Becke’s B97,
B98, and B00 density functionals[15, 35, 111]. With B97, a systematic optimization
was carried out specifically with the GGA variable, u, for exchange, same-spin cor-
relation, and opposite-spin correlation, while with B98, the same was done with a
meta-GGA variable, w′, closely related to the w used in this work. The switch from
w′ to w occurred with the B00 density functional. For B97M-V, the u-dependent ICF
of B97 and the w-dependent ICF of B00 were multiplied in order to give Equation
4.3.
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(a) (b)

Figure 4.3: Total RMSDs in kcal/mol of the surviving 10-parameter through 16-
parameter fits based on the “Best 9” data. The plot on the left uses the same
filtering criteria as Figure 4.2, while the plot on the right uses 2 additional criteria
based on the accuracy of 19 interpolated potential energy curve minima. The fit that
led to the B97M-V density functional is boxed.

Parameter 1 Best 9 2 3 4 5 6 (Final)

cx,00 1.000 1.000 1.000 1.000 1.000 1.000 1.000
cx,10 0.000 0.384 0.417 0.417 0.416 0.416 0.416
cx,01 0.000 1.344 1.327 1.310 1.309 1.308 1.308
cx,11 0.000 3.073 3.071 3.070 3.070 3.070 3.070
cx,02 0.000 1.780 1.804 1.895 1.900 1.901 1.901
ccss,00 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ccss,10 0.000 -2.543 -5.857 -5.668 -5.670 -5.667 -5.668
ccss,02 0.000 -1.470 -1.879 -1.855 -1.856 -1.855 -1.855
ccss,32 0.000 -20.450 -20.406 -20.477 -20.498 -20.495 -20.497
ccss,42 0.000 -18.847 -19.739 -20.341 -20.361 -20.364 -20.364
ccos,00 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ccos,10 0.000 0.425 2.659 2.516 2.538 2.534 2.535
ccos,01 0.000 0.000 1.475 1.553 1.574 1.573 1.573
ccos,32 0.000 0.000 -6.159 -6.371 -6.427 -6.426 -6.427
ccos,03 0.000 0.000 -5.723 -6.203 -6.295 -6.297 -6.298

Table 4.3: Linear parameters from the beginning of all 7 cycles of the self-consistent
optimization of B97M-V. The “Best 9” column refers to the freezing of 9 commonly
occurring parameters. The nonlinear parameters that were taken from previous
studies[9, 35, 63] are γx = 0.004, γcss = 0.2, γcos = 0.006, b = 6, and C = 0.01.
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Figure 4.4: Exchange, same-spin correlation, and opposite-spin correlation inhomo-
geneity correction factor plots for the B97M-V density functional.
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gx(wx,σ, ux,σ) = 1 + 0.416wx,σ + 1.308ux,σ +

3.07wx,σux,σ + 1.901u2
x,σ

(4.28)

gcss(wc,σσ, uc,σσ) = 1 − 5.668wc,σσ − 1.855u2
c,σσ −

20.497w3
c,σσu

2
c,σσ − 20.364w4

c,σσu
2
c,σσ

(4.29)

gcos(wc,αβ , uc,αβ) = 1 + 2.535wc,αβ + 1.573uc,αβ −
6.427w3

c,αβu
2
c,αβ − 6.298u3

c,αβ

(4.30)

In the context of empirical density functionals, the power series, as written in
Equation 4.3, has never been utilized as the starting point for the systematic pa-
rameterization of an empirical density functional, particularly for the same-spin and
opposite-spin correlation components. The exchange ICFs of the 2005-2011 Min-
nesota density functionals can be considered as limiting cases of Equation 4.3, with
the u-dependent ICF fixed to the ICFs of either PBE or RPBE (or both), and the w-
dependent ICF taking either the B00 form given in Equation 4.3 or the VSXC form
(or both). However, the 2012 meta-nonseparable gradient approximation (meta-
NGA) density functionals[25, 51], MN12-L and MN12-SX, use an exchange ICF
similar in form to Equation 4.3, albeit with an additional third power series that
is a function of a density-dependent inhomogeneity variable. While the functional
forms for the Minnesota density functionals have always been pre-determined (i.e.
the parameters that will be optimized are chosen a priori), B97M-V is unique in
that the only restrictions on the functional form were placed during the truncation
of the parameter space, and the optimization procedure had the freedom to select
the parameters that were most conducive to minimizing the total RMSD as well as
satisfying the filtering criteria.

The B97M-V correlation functional distinguishes itself even more from existing
correlation functionals, because a two-dimensional optimization of a correlation func-
tional has not yet been reported. As far as the Minnesota meta-GGA and meta-NGA
density functionals are concerned, the correlation functionals can be divided into 3
distinct classes. The M05 and M05-2X correlation functionals are practically identi-
cal to that of B97, with the exception of the SCC factor enhancing the same-spin cor-
relation component. The 2006 Minnesota density functionals inherit the correlation
functional of their 2005 counterparts, as well as that of VSXC. Finally, the post-2006
Minnesota meta-GGAs and meta-NGAs no longer partition the correlation energy
into same-spin and opposite-spin components, but instead contain 2 w-dependent
ICFs that enhance the PW92 correlation energy density per unit volume and the
PBE correlation functional gradient correction term.
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Taking a closer look at the B97M-V ICF equations, all of the variables that made
their way into the exchange ICF can be rationalized. The importance of the first-
order terms in w and u is indisputable, and it is thus plausible that the associated
second-order cross-term is also helpful. The appearance of the second-order term
in u is not surprising either, since this variable is the foundation of the OPTX
exchange functional, which was found to be a sound improvement over the B88
exchange functional. The same-spin correlation ICF also contains 2 variables (w and
u2) that seem intuitive, as does the opposite-spin correlation ICF (w and u). In fact,
the variables that seem most out-of-place are the fifth- and sixth-order variables
in the same-spin correlation ICF, and the fifth-order variable in the opposite-spin
correlation ICF, since these variables are not ones that can be intuitively selected
prior to optimization. Ultimately, the optimization procedure must be credited for
shedding light on the importance of these variables.

4.3 Results and Discussion

4.3.1 Training Set, Primary Test Set, and Secondary Test
Set Performance

To assess the performance of B97M-V, 14 existing density functionals were se-
lected for comparison. These 14 density functionals include 3 local GGA density
functionals (PBE-D3, B97-D, VV10), 3 local meta-GGA density functionals (TPSS-
D3, M06-L, M11-L), 2 global hybrid GGA density functionals (B3LYP-D3, B97-D2),
2 global hybrid meta-GGA density functionals (M06, M06-2X), 3 range-separated
hybrid GGA density functionals (LC-VV10, ωB97X-D, ωB97X-V), and 1 range-
separated hybrid meta-GGA density functional (M11). Table 4.4 contains informa-
tion regarding the benchmarked density functionals. Although there is no unique
way to count parameters, each density functional in Table 4.4 is assigned 2 separate
numbers regarding its empirical parameter count. The second column lists the total
number of linearly independent and nonlinear parameters that were optimized specif-
ically for the given density functional during its development, while the third column
lists the total number of linearly independent and nonlinear parameters found in the
density functional. As an example, while 12 linear parameters were optimized for
B97M-V in this work, 5 additional parameters were borrowed from previous work
(γx from B86, γcss and γcos from B97, and b and C from ωB97X-V). Furthermore,
parameters that are decided upon prior to optimization, such as s6 for B97-D and
cx for M06-2X, are only counted in the third column.

Table 4.5 contains the RMSDs for all of the datasets in the training, primary
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Functional # (Fitted) # (Total) cx Year Class Rung References

PBE-D3 2 2 0 2010 L GGA w/ DT 2 12,55
B97-D 9 13 0 2006 L GGA w/ DT 2 54
VV10 2 2 0 2010 L GGA w/ NLC 2 12,107,57

TPSS-D3 2 2 0 2010 L MGGA w/ DT 3 17,55
M06-L 34 39 0 2006 L MGGA 3 23
M11-L 44 44 0 2012 L MGGA 3 24

B97M-V 12 17 0 2015 L MGGA w/ NLC 3 Present Work

B3LYP-D3 5 6 20 2010 GH GGA w/ DT 4 10,14,33,55
B97-D2 13 14 19.4 2011 GH GGA w/ DT 4 35,54,79

M06 33 38 27 2008 GH MGGA 4 45
M06-2X 29 34 54 2008 GH MGGA 4 45

LC-VV10 3 3 0-100 2010 RSH GGA w/ NLC 4 12,120,57
ωB97X-D 15 18 22.2-100 2008 RSH GGA w/ DT 4 58
ωB97X-V 10 13 16.7-100 2014 RSH GGA w/ NLC 4 63

M11 40 40 42.8-100 2011 RSH MGGA 4 52

Table 4.4: Details for the 15 density functionals from Table 4.5. L stands for local,
GH stands for global hybrid, RSH stands for range-separated hybrid, DT stands for
dispersion tail, and NLC stands for nonlocal correlation. The column labeled “#
(Fitted)” lists the number of parameters that were optimized on a training set for
the specified density functional, while the column labeled “# (Total)” lists the total
number of empirical parameters. cx refers to the percentage of exact exchange.

test, and secondary test sets for B97M-V and these 14 existing density function-
als. The principal benchmark for success will be how B97M-V compares with other
local density functionals: PBE-D3, B97-D, VV10, TPSS-D3, M06-L, and M11-L.
However, since hybrid density functionals are usually preferred for higher accuracy
DFT calculations, it will be important to see how B97M-V compares with a range
of successful hybrids as well.

Before the individual datasets are discussed, the overall performance of the den-
sity functionals for TC and NC will be discussed. Of the 15 benchmarked density
functionals, M06-2X has the best overall TC performance (3.21 kcal/mol). The next
best density functionals for TC are ωB97X-V, ωB97X-D, and B97M-V with RMSDs
of 3.6, 3.61, and 3.93 kcal/mol, respectively. It is very encouraging that B97M-V is
distinctly the best local density functional for TC, with its closest rivals being B97-D
(5.56 kcal/mol) and M06-L (5.63 kcal/mol). This considerable improvement over the
best existing local density functionals is a significant gap, and is a validation of the
design strategy used to construct B97M-V.

Turning to non-covalent interactions, it is remarkable that B97M-V has the best
overall performance (0.22 kcal/mol). After B97M-V, the next best density functionals
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kcal/mol Zero PBE-D3 B97-D VV10 TPSS-D3 M06-L M11-L B97M-V B3LYP-D3 B97-D2 M06 M06-2X LC-VV10 ωB97X-D ωB97X-V M11

HAT707 74.79 7.79 5.62 7.23 6.21 5.86 5.43 3.99 4.27 3.98 4.83 3.63 6.81 4.14 4.28 4.28
BDE99 114.98 8.96 4.58 6.63 4.96 6.14 4.61 3.52 3.91 3.18 3.72 2.99 5.39 3.03 3.38 4.10

TAE nonMR124 381.05 16.85 5.18 12.46 5.92 5.54 6.62 3.79 5.23 4.06 3.94 3.24 5.30 3.65 3.34 4.37
SN13 25.67 5.56 4.20 3.67 3.71 1.58 3.19 1.39 1.89 0.97 2.03 1.01 2.65 0.96 1.01 2.19

ISOMER20 46.43 4.53 3.83 4.34 4.38 4.11 4.46 3.00 2.30 2.30 2.53 1.47 1.85 1.86 1.64 1.94
DBH24 28.34 10.27 7.18 9.86 9.57 5.38 3.54 4.99 5.23 4.36 2.97 1.12 3.02 2.07 1.81 1.48

EA6 46.12 4.71 2.07 5.28 2.27 2.39 6.17 3.86 3.49 1.45 1.91 1.95 2.10 1.89 2.34 1.33
IP6 260.50 5.07 2.68 7.64 4.65 2.26 3.36 3.91 6.16 3.19 3.23 2.86 5.03 3.01 3.76 5.79
AE8 42810.90 30.54 6.94 64.43 17.97 9.22 15.27 8.12 15.89 2.25 5.52 1.28 29.82 4.67 1.77 9.23

SW49Rel345 1.55 1.45 1.22 1.26 1.24 0.53 0.22 0.12 0.76 0.79 0.60 0.35 0.36 1.01 0.33 0.17
SW49Bind345 29.30 2.24 1.35 2.47 1.63 0.60 1.54 0.17 1.34 0.69 0.72 0.95 0.58 0.98 0.29 0.25

NBC10-2 0.75 0.20 0.08 0.05 0.16 0.15 0.54 0.11 0.13 0.08 0.28 0.11 0.12 0.13 0.09 0.16
BzDC215 2.25 0.37 0.39 0.22 0.35 0.17 0.34 0.18 0.34 0.36 0.25 0.60 0.60 0.41 0.27 0.65
NBC10-1 1.85 0.30 0.20 0.27 0.21 0.26 0.47 0.22 0.29 0.67 0.58 0.43 0.15 0.41 0.23 0.69

HW30 2.34 0.48 0.40 0.43 0.34 0.35 0.48 0.19 0.35 0.35 0.33 0.46 0.30 0.35 0.20 0.38
S22 9.65 0.60 0.54 0.63 0.45 0.43 0.91 0.23 0.50 0.60 0.77 0.47 0.51 0.41 0.23 0.58

EA7 39.24 2.28 3.86 3.57 2.78 6.07 6.44 3.11 3.56 2.55 2.94 1.97 4.19 2.45 2.28 1.08
IP7 252.70 4.28 4.03 4.76 3.71 3.11 2.89 3.67 5.22 3.41 2.93 3.24 5.30 3.26 2.97 4.56

AlkAtom19 1829.31 20.93 10.48 5.85 9.46 8.11 29.35 1.36 5.50 9.28 4.63 5.27 19.04 2.90 0.71 3.94
AlkIsomer11 1.81 1.44 0.33 0.84 1.50 0.95 0.74 0.19 1.56 0.57 0.22 0.15 0.13 1.04 0.67 0.56
AlkIsod14 10.35 2.54 0.57 2.01 3.74 3.86 2.06 0.48 2.75 1.93 1.68 1.65 1.09 2.31 1.80 2.11
HTBH38 15.97 10.32 7.63 9.22 8.71 4.62 1.86 4.48 5.31 5.12 2.21 1.26 1.50 2.57 2.28 1.68

NHTBH38 33.30 10.42 7.12 10.79 10.31 4.79 3.72 5.16 5.81 4.15 2.64 1.69 3.38 1.73 1.64 1.49

SW49Rel6 1.26 1.91 1.65 1.72 1.68 0.80 0.21 0.07 0.86 1.01 0.89 0.42 0.52 1.34 0.37 0.28
SW49Bind6 62.11 3.72 2.50 4.56 2.35 0.57 3.38 0.35 2.35 0.90 0.92 1.61 0.91 0.99 0.36 0.67

HBC6 12.69 1.12 0.77 1.13 0.89 0.36 0.68 0.26 0.77 0.39 0.31 0.59 1.25 0.61 0.39 0.46
NBC10-3 2.52 0.37 0.19 0.17 0.30 0.47 0.83 0.34 0.35 0.54 0.69 0.63 0.06 0.27 0.37 0.80

S22x5 7.00 0.82 0.40 0.59 0.59 0.42 0.94 0.28 0.65 0.71 0.80 0.47 0.48 0.43 0.41 0.55
S66x8 5.57 0.52 0.43 0.50 0.38 0.31 0.83 0.17 0.43 0.35 0.48 0.35 0.34 0.44 0.22 0.42
S66 6.91 0.46 0.52 0.52 0.32 0.36 0.81 0.18 0.43 0.36 0.53 0.29 0.31 0.52 0.18 0.41

NNTT41 0.05 0.06 0.07 0.03 0.04 0.04 0.32 0.01 0.02 0.06 0.12 0.05 0.02 0.15 0.02 0.02
AATT41 0.14 0.05 0.16 0.02 0.09 0.15 0.46 0.03 0.07 0.05 0.23 0.08 0.07 0.21 0.02 0.17
NATT41 0.07 0.06 0.08 0.04 0.04 0.05 0.35 0.01 0.02 0.05 0.13 0.03 0.03 0.15 0.02 0.04

G21EA 40.86 3.97 3.00 4.60 2.74 4.54 6.56 3.41 3.56 1.84 2.46 1.99 3.89 1.98 2.27 2.40
G21IP 265.35 4.81 4.47 5.43 4.77 5.60 4.54 3.64 4.86 3.48 3.78 3.49 5.23 3.82 3.57 4.64
PA8 166.17 1.62 3.70 1.77 3.14 3.36 3.57 3.03 1.28 2.67 2.21 1.98 2.74 2.95 2.20 1.35

Gill12 28.47 7.35 4.84 6.08 5.13 6.71 5.60 5.07 4.09 3.84 3.82 1.78 2.58 3.24 2.32 2.58

A24 2.65 0.41 0.32 0.41 0.23 0.23 0.46 0.17 0.23 0.26 0.25 0.28 0.15 0.15 0.09 0.27
X40 4.94 0.59 0.59 0.63 0.47 0.48 1.23 0.20 0.34 0.43 0.57 0.28 0.41 0.49 0.21 0.54

H2O6Bind8 46.96 4.54 3.84 5.68 2.35 0.99 4.02 0.41 3.07 0.32 1.02 2.23 2.66 1.53 0.68 0.66
HW6F 81.42 2.30 4.49 3.55 0.95 2.32 1.18 0.45 1.79 0.73 1.96 4.77 2.40 1.30 0.21 2.81
HW6Cl 57.71 3.54 3.43 5.08 1.75 1.45 2.92 0.25 1.44 0.48 1.93 3.49 2.67 0.62 0.49 2.10

CYCONF 2.10 0.99 0.56 0.57 0.99 0.39 0.57 0.24 0.29 0.37 0.16 0.30 0.78 0.41 0.11 0.51
DS14 3.70 0.47 0.37 0.52 0.25 0.25 0.59 0.09 0.23 0.25 0.34 0.20 0.12 0.18 0.05 0.30

WATER27 67.48 6.53 2.56 7.07 4.44 1.34 4.60 0.74 3.68 1.42 1.70 3.66 3.35 1.48 1.42 1.62

TC 3836.93 10.10 5.56 9.81 6.45 5.63 6.68 3.93 4.66 3.97 4.18 3.21 6.79 3.61 3.60 3.97
TC* 299.75 9.76 5.55 7.98 6.28 5.59 6.57 3.87 4.45 3.98 4.17 3.22 6.27 3.60 3.61 3.90
NC 14.95 1.23 0.82 1.36 0.85 0.42 1.08 0.22 0.77 0.48 0.57 0.77 0.72 0.54 0.32 0.55

TC Train 4319.60 10.30 5.43 10.44 6.31 5.75 5.64 3.96 4.65 3.83 4.45 3.36 6.86 3.82 3.88 4.23
TC Primary Test 691.59 11.19 6.94 8.02 8.19 5.09 11.41 3.84 4.99 5.09 2.76 2.50 7.60 2.33 1.85 2.30

TC Secondary Test 186.16 4.84 4.06 5.04 4.16 5.30 5.33 3.77 4.13 3.05 3.30 2.74 4.31 3.18 2.92 3.54

NC Train 9.67 0.89 0.64 0.90 0.69 0.33 0.65 0.18 0.56 0.51 0.47 0.54 0.45 0.55 0.25 0.53
NC Primary Test 10.56 0.82 0.60 0.87 0.60 0.35 0.89 0.20 0.58 0.43 0.52 0.44 0.54 0.48 0.27 0.44

NC Secondary Test 37.43 3.13 1.92 3.57 2.04 0.90 2.39 0.38 1.80 0.69 1.02 2.07 1.76 0.85 0.64 1.09

Table 4.5: RMSDs in kcal/mol for all of the datasets in the training, primary test,
and secondary test sets for B97M-V and 14 existing density functionals. The datasets
above the first thick black line are in the training set, the datasets between the first
and second thick black lines are in the primary test set, while the datasets between
the second and third thick black lines are in the secondary test set. Within the
training, primary test, and secondary test sets, datasets above the thin black line
contain thermochemistry (TC) data points, while datasets below the thin black line
contain non-covalent interactions (NC) data points. The last section of the table
contains overall unweighted statistics for TC and NC. The row labeled TC* is TC
with AE8 removed. The column labeled “Zero” contains the RMSDs of the energies
in each dataset and is meant to give perspective to the magnitudes of the RMSDs in
the following columns.
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for non-covalent interactions are ωB97X-V, M06-L, and B97-D2, with RMSDs of 0.32,
0.42 and 0.48 kcal/mol, respectively. The fact that the 2 best density functionals
both use the VV10 nonlocal correlation functional is a testament to the accuracy
of this approach for treating long-range correlation. Comparing against existing
local density functionals, B97M-V is almost 2 times better than the best alternative,
M06-L. Furthermore, it is a striking indication of the versatility of the meta-GGA
form that B97M-V (0.22 kcal/mol) is more than 30% better than ωB97X-V (0.32
kcal/mol), which was designed by a nearly identical procedure and includes range-
separation, though not τ dependence.

Since it would be tedious to individually address the performance of the 15 bench-
marked density functionals on the 45 datasets in Table 4.5, only a handful of datasets
will be discussed. TAE nonMR124 is comprised of the atomization energies of 124
small molecules computed at the Weizmann-4 (W4) level of theory, and is an indi-
cator of performance for computational thermodynamics. B97M-V has an RMSD of
3.79 kcal/mol on this dataset, performing better than 11 of the benchmarked density
functionals, and worse than M06-2X (3.24 kcal/mol), ωB97X-V (3.34 kcal/mol), and
ωB97X-D (3.65 kcal/mol). After B97M-V, the next best local density functionals for
TAE nonMR124 are B97-D (5.18 kcal/mol) and M06-L (5.54 kcal/mol).

DBH24 is a training dataset that contains 24 forward and reverse barrier heights
computed (at least) at the Weizmann-3.2 (W3.2) level of theory, and is an indicator of
performance for computational kinetics. The performance of B97M-V for this dataset
(4.99 kcal/mol) is poor relative to the best hybrids (M06-2X with an RMSD of 1.12
kcal/mol) due to the absence of exact exchange. Indeed, most of the hybrid density
functionals perform considerably better than B97M-V, and this poor performance is
a weakness of B97M-V and all local density functionals. Compared to the 6 existing
local density functionals considered, B97M-V ranks second (behind M11-L at 3.54
kcal/mol), is comparable to M06-L (5.38 kcal/mol), and is 2 times more accurate than
both PBE-D3 and TPSS-D3. Similar results are seen for the barrier height datasets
in the primary test set (HTBH38 and NHTBH38), indicating transferability of these
conclusions.

Moving on to the non-covalent interactions in the training set, B97M-V has the
best performance for both the relative and binding energies of the SO4

2−(H2O)n
(n = 3 − 5) clusters. Compared to density functionals that utilize dispersion tails
(DFT-D2 or DFT-D3), B97M-V is 10 times more accurate than PBE-D3 and TPSS-
D3 and 5 times more accurate than ωB97X-D for these 2 datasets (SW49Rel345 and
SW49Bind345). It even outperforms the range-separated hybrid meta-GGA density
functional, M11, which was previously the best performer for both datasets. The S22
dataset by Hobza and coworkers is often used to assess the performance of density
functionals for hydrogen-bonded, dispersion-bound, and mixed dimers. The top 2
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performers for this dataset are B97M-V and ωB97X-V, both with RMSDs of 0.23
kcal/mol. The next best density functionals are ωB97X-D and M06-L, with RMSDs
almost twice as large (0.41 and 0.43 kcal/mol, respectively).

A dataset in the thermochemistry section of the primary test set that is chal-
lenging for local and hybrid density functionals alike is AlkAtom19, which contains
the atomization energies of 19 alkanes ranging from methane to octane. Surpris-
ingly, B97M-V performs second best (1.36 kcal/mol) out of all 15 density functionals,
coming second to ωB97X-V (0.71 kcal/mol). For comparison, M06-2X, which has
the best overall thermochemistry performance, has an RMSD of 5.27 kcal/mol for
AlkAtom19, while the other Rung 3 density functionals have RMSDs ranging from
8.11 (M06-L) to 29.35 (M11-L) kcal/mol. The performance of B97M-V is also very
impressive for 2 datasets derived from the molecules in AlkAtom19: AlkIsomer11
and AlkIsod14. For the isomerization energies, B97M-V (0.19 kcal/mol) performs
almost as well as the 2 best density functionals: LC-VV10 (0.13 kcal/mol) and M06-
2X (0.15 kcal/mol). In comparison, the RMSD of ωB97X-D is more than 5 times
larger, as are the RMSDs of PBE-D3, TPSS-D3, M06-L, and B3LYP-D3. B97M-
V has the best performance for the isodesmic reaction energies, with a very small
RMSD of 0.48 kcal/mol. The next best density functional is B97-D with an RMSD
of 0.57 kcal/mol, followed by LC-VV10 (1.09 kcal/mol). To put the performance
of B97M-V in perspective, the range of RMSDs for AlkIsod14 is rather large: 0.48
kcal/mol (B97M-V) to 3.86 kcal/mol (M06-L).

Moving on to the non-covalent interactions in the primary test set, the transfer-
ability of the parameters of B97M-V can be checked by considering the relative and
binding energies of the n = 6 sulfate-water clusters. As intended, B97M-V performs
superbly for SW49Rel6 and SW49Bind6, outperforming all of the benchmarked den-
sity functionals. Its RMSD for SW49Rel6 (0.07 kcal/mol) is 3 times smaller than
that of the next best density functional (M11-L), while its RMSD for SW49Bind6
(0.35 kcal/mol) is on par with ωB97X-V and 3 times smaller than that of ωB97X-D.
The S66 dataset was created by Hobza and coworkers to extend the scope of the S22
dataset to non-covalent interactions that are common in biomolecules. As with S22,
the top 2 performers for this dataset are B97M-V and ωB97X-V, both with RMSDs
of 0.18 kcal/mol. B97M-V has an RMSD that is 40% less than the value of the next
best local meta-GGA density functional, which is TPSS-D3.

The A24 dataset consists of very accurate binding energies for small molecules
and is a valuable transferability test for B97M-V, since only a few of the interactions
that are in A24 were in the training set. Since the binding energies associated with
the interactions in A24 are very small, the resulting RMSDs are generally small
as well, ranging from 0.09 kcal/mol (ωB97X-V) to 0.46 kcal/mol (M11-L). After
ωB97X-V, the next best density functionals are LC-VV10 (0.15 kcal/mol), ωB97X-
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D (0.15 kcal/mol), and B97M-V (0.17 kcal/mol). Herbert and coworkers recently
reported[152] that density functionals such as LC-VV10 and M06-2X perform poorly
for halide-water clusters. Specifically, the systems of interest are F−(H2O)n and
Cl−(H2O)n, for n = 1 − 6. ωB97X-V has the best performance for the interactions
containing the fluorine anion (0.21 kcal/mol), followed closely by B97M-V (0.45
kcal/mol). Since these binding energies are large, it is important to consider the
RMSD range (0.21 kcal/mol for ωB97X-V to 4.77 kcal/mol for M06-2X) in order
to comprehend the superb performance of both ωB97X-V and B97M-V. For HW6F,
the next best density functionals are B97-D2 (0.73 kcal/mol) and TPSS-D3 (0.95
kcal/mol). On the other hand, for the interactions that contain the chlorine anion,
B97M-V has the best performance, with an RMSD of only 0.25 kcal/mol (the largest
is VV10 at 5.08 kcal/mol). B97M-V is followed by B97-D2 (0.48 kcal/mol) and
ωB97X-V (0.49 kcal/mol), while the best Minnesota density functional is M06-L,
with an RMSD of 1.45 kcal/mol.

Finally, the performance of B97M-V and its fellow density functionals can be
assessed for water clusters via the H2O6Bind8 (8 binding energies of water hex-
amers) and WATER27 (23 binding energies of neutral and charged water clusters
from dimers to octamers) datasets. B97M-V has the second smallest RMSD for
H2O6Bind8 (0.41 kcal/mol) and the smallest RMSD for WATER27 (0.74 kcal/mol),
even though the only water cluster in the entire training set was the water dimer
in S22. The performance of B97M-V for WATER27 is almost 2 times better than
that of the next best density functional, M06-L (1.34 kcal/mol), and almost 10 times
better than that of VV10 (7.07 kcal/mol).

4.3.2 Benzene Dimer and Coronene Dimer

The parallel-displaced benzene dimer is a textbook example of π-π stacking and
its binding energy has been recently determined to an extremely high level of accuracy
(-2.65 ± 0.02 kcal/mol) by Xantheas and coworkers[212]. Using their CCSD(T)/aug-
cc-pVTZ optimized dimer geometry and the (99,590)/SG-1 grid, binding energies
were computed for all 15 benchmarked density functionals in the aTZ and aQZ
basis sets. In addition, aug-cc-pV5Z (a5Z) binding energies were computed for the
Rung 2 and 3 density functionals. With these results, summarized in Table 4.6, the
density functionals can be assessed with respect to accuracy, as well as their basis
set convergence.

Considering the basis set limit (BSL) values, 8 of the 15 density functionals
(PBE-D3, B97-D, VV10, TPSS-D3, B97M-V, B3LYP-D3, LC-VV10, and ωB97X-V)
predict the binding energy to within 0.20 kcal/mol of the -2.65 kcal/mol target. All
5 Minnesota density functionals underbind the dimer by between 0.3 kcal/mol (M06-
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kcal/mol aTZ aQZ a5Z ∆

PBE-D3 -2.70 -2.62 -2.55 -0.16
B97-D -2.71 -2.59 -2.54 -0.17
VV10 -3.08 -2.90 -2.85 -0.23

TPSS-D3 -2.72 -2.62 -2.59 -0.13
M06-L -2.71 -2.11 -2.23 -0.49
M11-L -2.91 -1.78 -1.95 -0.96

B97M-V -2.80 -2.73 -2.73 -0.07
B3LYP-D3 -2.60 -2.48 - -0.11

B97-D2 -1.90 -1.83 - -0.08
M06 -2.32 -1.87 - -0.45

M06-2X -2.53 -2.37 - -0.16
LC-VV10 -2.83 -2.69 - -0.14
ωB97X-D -3.29 -3.12 - -0.17
ωB97X-V -2.80 -2.69 - -0.12

M11 -2.08 -1.39 - -0.68

Table 4.6: Equilibrium binding energies in kcal/mol for the parallel-displaced ben-
zene dimer in 3 different basis sets: aug-cc-pVTZ (aTZ), aug-cc-pVQZ (aQZ), and
aug-cc-pV5Z (a5Z). Binding energies in the a5Z basis set were only computed for
density functionals without exact exchange. The last column contains the difference
in binding energy between the aTZ basis set value and the largest basis set value (a5Z
for Rungs 2 and 3; aQZ for Rung 4). The (99,590)/SG-1 grid was used for all density
functionals. The CCSD(T)/CBS binding energy for the parallel-displaced benzene
dimer is -2.65 ± 0.02 kcal/mol, as determined by Xantheas and coworkers[212].

2X) and 1.3 kcal/mol (M11), while ωB97X-D overbinds by almost 0.5 kcal/mol. The
basis set convergence of B97M-V is very satisfactory, as the aQZ result is equivalent
to the a5Z result, and both differ from the aTZ value by only 0.07 kcal/mol. These
results suggest that for weak intermolecular interactions, B97M-V is almost fully
converged at the aTZ basis set level, and is fully converged at the aQZ basis set
level. Most of the other density functionals also converge satisfactorily with basis
set, although consistent with trends reported recently[213], all of the Minnesota
density functionals except M06-2X have unusually large differences between the aTZ
basis set value and the largest basis set value (reported as ∆ values in Table 4.6).

In order to explore whether B97M-V can be successfully applied to larger inter-
actions, the binding energy of the parallel-displaced coronene dimer (Table 4.6)[162,
163, 214], a dispersion-bound system that is nearly 4 times larger than the benzene
dimer, was examined. The calculations were performed in the aTZ basis set with the
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(99,590)/SG-1 grid. While there is no definitive reference value for the binding energy
of the parallel-displaced coronene dimer, 2 recent attempts[162, 163] at determining
a complete basis set (CBS) value resulted in counterpoise-corrected binding energies
of ECBS

bind,1 = -19.98 kcal/mol and ECBS
bind,2 = -24.36 kcal/mol. The first reference value

was arrived at via the following equation:

ECBSbind,1 = EaDZ
∗

QCISD(T ) + ([EaTZ
∗

MP2 ]− [EaDZ
∗

MP2 ]) (4.31)

ECBSbind,1 = −17.674 + ([−34.610]− [−32.303]) = −19.981 (4.32)

with the asterisk indicating that the cc-pVNZ basis was used for hydrogen and the
cc-pVNZ and aug-cc-pVNZ basis sets were alternated for the carbon atoms. The
second reference value was arrived at via the following equation:

ECBSbind,2 = ECBS
∗

MP2 + ([EaDZ
∗

QCISD(T )]− [EaDZ
∗

MP2 ]) (4.33)

ECBSbind,2 = −38.984 + ([−17.674]− [−32.303]) = −24.355 (4.34)

where ECBS∗
MP2 = 1.02(E

(DT )Z
MP2 ) and (DT)Z indicates a two-point extrapolation in the

cc-pVDZ and cc-pVTZ basis sets (different extrapolations were used for the Hartree-
Fock (HF) energy and the MP2 correlation energy). Since it is straightforward to

calculate a more accurate estimate of ECBS
MP2 via ECBS

MP2 = EaQZ
HF + E

a(TQ)Z
MP2 , a better

MP2 CBS value, ECBS
MP2 = -38.08 kcal/mol, can be acquired. Using this updated,

counterpoise-corrected MP2 CBS value with the QCISD(T) correction yields an up-
dated reference value of ECBS

bind,3 = -23.45 kcal/mol:

ECBSbind,3 = ECBSMP2 + ([EaDZ
∗

QCISD(T )]− [EaDZ
∗

MP2 ]) (4.35)

ECBSbind,3 = −38.075 + ([−17.674]− [−32.303]) = −23.446 (4.36)

Simply averaging the 3 CBS estimates results in ECBS
bind,avg = -22.59 kcal/mol.

Thus, it is safe to assume that the binding energy of the parallel-displaced coronene
dimer is in the vicinity of -22.59 kcal/mol. The binding energy of B97M-V is -22.46
kcal/mol, which is strikingly close to the ωB97X-V value of -22.4 kcal/mol. All
5 of the Minnesota density functionals underbind the dimer, along with B97-D2,
PBE-D3, and to a lesser extent, TPSS-D3 and B3LYP-D3. Along with B97M-V and
ωB97X-V, the binding energies of B97-D, VV10, and LC-VV10 lie within 1 kcal/mol
of ECBS

bind,avg, while ωB97X-D is the only density functional that overbinds the dimer.
As a note, the binding energies of the hybrid density functionals were computed
with the PARI-K algorithm of Manzer and Head-Gordon[215]. In order to test the
accuracy of the approximation, B3LYP-D3 binding energies were computed with and
without the approximation, and the error due to the approximation was found to be
around 0.05 kcal/mol.
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kcal/mol (C24H12)2

PBE-D3 -17.33
B97-D -22.49
VV10 -22.23

TPSS-D3 -19.23
M06-L -18.04
M11-L -17.90

B97M-V -22.46
B3LYP-D3 -20.16

B97-D2 -15.08
M06 -14.62

M06-2X -17.58
LC-VV10 -23.29
ωB97X-D -24.35
ωB97X-V -22.40

M11 -15.75

Table 4.7: Binding energies in kcal/mol for the parallel-displaced coronene dimer.
The binding energies were computed in the aug-cc-pVTZ basis set (2760 basis func-
tions for the dimer) with the (99,590)/SG-1 grid.

4.3.3 (H2O)20 Binding Energies and (H2O)16 Relative
Energies

While the WATER27 dataset in Grimme’s GMTKN30[99, 210, 216] database con-
tains 27 data points, the 4 isomers of (H2O)20 were removed from the secondary test
set due to their size. Recently, Anacker and Friedrich[217] have updated the reference
values[98, 218] for these 4 clusters: dodecahedron (-198.6 kcal/mol), edge sharing (-
209.7 kcal/mol), fused cubes (-208 kcal/mol), and face sharing (-208 kcal/mol). As a
reminder, with the exception of the water dimer in the S22, S22x5, S66, S66x8, A24,
and DS14 datasets, water clusters have appeared only in the secondary test set via
the H2O6Bind8 and WATER27 datasets, with the largest cluster containing 8 water
molecules (WATER27).

The binding energies for the 4 isomers were computed in the aTZ basis set with
the (99,590)/SG-1 grid and are shown in Table 4.8. B97M-V performs remarkably
well with respect to the reference binding energies of the water 20-mers, with an
RMSD of 0.77 kcal/mol for 4 interactions that have an average binding energy of
more than 200 kcal/mol. The next best density functional (B97-D2) is more than
3 times worse, with an RMSD of 2.51 kcal/mol. After B97M-V, the next best local
density functional is M06-L, with an RMSD that is more than 5 times larger than
that of B97M-V. The 45-fold improvement of B97M-V over VV10 is surprisingly
large, as is its 5-fold improvement over ωB97X-V. Interestingly, while most of the
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kcal/mol dod es fc fs RMSD

Reference -198.60 -209.70 -208.00 -208.00 0.00
PBE-D3 -229.70 -238.86 -235.53 -236.61 29.13
B97-D -189.80 -197.51 -194.71 -195.18 11.91
VV10 -233.93 -244.95 -242.23 -242.69 34.88

TPSS-D3 -218.93 -227.31 -223.54 -224.87 17.67
M06-L -191.35 -207.63 -210.01 -206.55 3.97
M11-L -169.20 -185.68 -187.07 -184.76 24.59

B97M-V -198.46 -210.10 -209.32 -208.66 0.77
B3LYP-D3 -216.15 -227.70 -225.93 -226.08 17.89

B97-D2 -202.88 -211.53 -209.02 -209.61 2.51
M06 -188.27 -206.69 -211.90 -205.54 5.85

M06-2X -202.47 -216.59 -218.36 -215.74 7.58
LC-VV10 -208.81 -219.07 -216.49 -217.01 9.29
ωB97X-D -204.23 -215.63 -214.03 -213.60 5.80
ωB97X-V -203.39 -214.08 -212.10 -212.37 4.42

M11 -193.59 -206.29 -207.43 -205.01 3.39

Table 4.8: Binding energies and RMSDs in kcal/mol for 4 isomers of (H2O)20. The
binding energies were computed in the aug-cc-pVTZ basis set (1840 basis functions)
with the (99,590)/SG-1 grid. The 4 isomers are dodecahedron (dod), edge sharing
(es), fused cubes (fc), and face sharing (fs).

density functionals tend to overbind the isomers, the large errors of B97-D and M11-L
are actually due to severe underbinding.

Thus far, B97M-V and the 14 existing density functionals have been thoroughly
tested for the accurate prediction of the binding energies of large water clusters. In
order to test the performance of these density functionals on the relative energetics
of water clusters, the relative energies of 5 isomers of (H2O)16 will be evaluated in the
aTZ basis set with the (99,590)/SG-1 grid against reference values[219] computed at
the CCSD(T)/aTZ level of theory.

In Table 4.9, the relative energies in the second through sixth columns are com-
puted with respect to the minimum as predicted by the associated method. However,
the RMSDs reported in the last column are taken over the relative energies between
all 10 unique pairs that can be constructed from the 5 isomers. The RMSD range
for the 15 benchmarked density functionals is very large, with values as low as 0.14
kcal/mol (ωB97X-D) and values as high as 4.51 kcal/mol (M06). In perspective,
the performance of B97M-V (0.42 kcal/mol) is promising, as it is the best local



CHAPTER 4. B97M-V: A META-GGA DENSITY FUNCTIONAL 130

kcal/mol 4444-a 4444-b antiboat boat-a boat-b RMSD

Reference 0.00 0.54 0.51 0.25 0.42 0.00
PBE-D3 1.50 1.85 0.49 0.00 0.25 1.21
B97-D 1.45 1.87 0.77 0.00 0.21 1.17
VV10 0.73 1.07 0.58 0.00 0.24 0.61

TPSS-D3 1.89 2.22 0.36 0.00 0.23 1.54
M06-L 0.00 0.37 3.89 3.52 3.60 2.61
M11-L 0.00 0.49 2.19 2.06 2.17 1.37

B97M-V 0.00 0.58 1.16 0.77 0.90 0.42
B3LYP-D3 0.00 0.51 0.24 0.06 0.26 0.16

B97-D2 1.03 1.55 0.55 0.00 0.18 0.92
M06 0.00 0.31 6.37 5.92 5.97 4.51

M06-2X 0.00 0.25 3.71 2.99 3.11 2.36
LC-VV10 0.60 0.86 0.44 0.00 0.17 0.53
ωB97X-D 0.00 0.35 0.54 0.30 0.45 0.14
ωB97X-V 0.22 0.75 0.33 0.00 0.16 0.35

M11 0.00 0.33 3.13 2.55 2.66 1.94

Table 4.9: Relative energies and RMSDs in kcal/mol for 5 isomers of (H2O)16. The
relative energies were computed in the aug-cc-pVTZ basis set (1472 basis functions)
with the (99,590)/SG-1 grid and are taken with respect to the minimum as predicted
by the associated method. The RMSDs are taken over the relative energies between
all 10 unique pairs that can be constructed from the 5 isomers.

density functional. While VV10 drastically overestimated the (H2O)20 binding ener-
gies, it performs comparatively well for these relative energies, with an RMSD (0.61
kcal/mol) only slightly worse than that of B97M-V. Other local density functionals,
particularly M06-L (RMSD of 2.61 kcal/mol), are significantly worse.

4.3.4 Additional Energetic Tests

Four sets of additional energetic tests were conducted in order to further as-
sess the transferability of the B97M-V density functional: the HB15, HSG, NC15,
and Shields38 datasets (Table 4.10). In addition, the potential energy curve of the
benzene-argon dimer (a system from the BzDC215 dataset that was not included
in the training set) was computed in order to assure that B97M-V maintains the
accuracy of VV10 and LC-VV10 in the asymptotic regime. The HB15, HSG, NC15,
and Shields38 were carried out in the aTZ basis set with the (99,590)/SG-1 grid.
However, due to the delicate nature of the benzene-argon dimer interaction, the
(250,590)/SG-1 grid was used instead.
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The HB15 dataset[220] is comprised of the equilibrium structures of 15 hydrogen-
bonded dimers featuring ionic groups common in biomolecules (acetate, methylam-
monium, guanidinium, and imidazolium) interacting with neutral donors and ac-
ceptors (methanol, water, methylamine, and formaldehyde). The RMSDs of the 15
benchmarked density functionals for this dataset range from 0.23 kcal/mol (B97M-
V) to 1.17 kcal/mol (PBE-D3). After B97M-V, the next best performer is ωB97X-V
(0.31 kcal/mol), followed by all of the Minnesota density functionals (with RMSDs
between 0.41 and 0.54 kcal/mol) besides M11-L (1.03 kcal/mol). The excellent per-
formance of B97M-V further indicates that it can be applied to interactions that
were not necessarily included in the training and test sets.

The HSG dataset[221] was developed in order to assess the accuracy with which
density functionals and force fields predict the binding affinities of small ligands to
protein receptors. A model protein-ligand complex was selected and decomposed into
21 interacting fragment pairs, and the associated binding energies were evaluated at
a high level of theory (and later improved by Sherrill and coworkers[89]). Based
on these updated (HSG-A) reference values, the density functional with the best
performance is B97M-V, with an RMSD of only 0.14 kcal/mol, followed closely by
ωB97X-V, with an RMSD of 0.16 kcal/mol. The best Minnesota density functional is
M06-L, with an RMSD that is 3 times larger than that of B97M-V, while the density
functional with the worst performance, M11-L, has and RMSD that is 7 times larger
than that of B97M-V.

The NC15 dataset[222] comes from a recent study on the basis set convergence of
the post-CCSD(T) contribution to weakly-interacting systems. The original study
included 21 small dimers, but the LiH dimer has been dropped for this assessment,
along with the 5 duplicates from A24. The reference values that are used are the
CCSD(T)/CBS ones from Table SI in the Supporting Information of Reference 222.
Since the systems in NC15 are very small, the RMSDs for the benchmarked density
functionals are correspondingly small, ranging from 0.06 kcal/mol (LC-VV10) to
0.47 kcal/mol (M11-L). B97M-V performs very comparably to LC-VV10, with an
RMSD of 0.08 kcal/mol, while the next best local density functional is TPSS-D3
with an RMSD more than twice that of B97M-V. The poor performance of B97-D is
surprising and mostly due to its severe overbinding of the He-LiH dimer. The same
overbinding issue affects B97-D2, indicating that the culprit might be the DFT-D2
dispersion tail.

The Shields38 dataset[223] includes the binding energies of 38 water clusters
ranging from dimers to 10-mers. Since the WATER27 dataset in the secondary test
set only contains 10 neutral (H2O)n n = 2 − 8 water clusters and the H2O6Bind8
dataset in the secondary test set only contains 8 (H2O)6 clusters, it was deemed
necessary to further assess B97M-V on medium- to large-sized water clusters, due to
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kcal/mol HB15 HSG NC15 Shields38

PBE-D3 1.17 0.44 0.29 7.36
B97-D 1.10 0.68 0.35 3.00
VV10 0.99 0.50 0.22 8.75

TPSS-D3 0.87 0.28 0.18 4.52
M06-L 0.43 0.43 0.20 0.78
M11-L 1.03 0.98 0.47 5.69

B97M-V 0.23 0.14 0.08 0.35
B3LYP-D3 0.81 0.33 0.16 4.47

B97-D2 0.64 0.36 0.33 0.90
M06 0.54 0.49 0.19 0.89

M06-2X 0.41 0.43 0.15 2.80
LC-VV10 0.80 0.22 0.06 2.95
ωB97X-D 0.56 0.37 0.13 1.84
ωB97X-V 0.31 0.16 0.07 1.26

M11 0.41 0.69 0.13 0.72

Table 4.10: RMSDs in kcal/mol for 4 datasets. HB15 contains 15 complexes with
strong hydrogen bonds, HSG contains 21 interacting fragment pairs from a protein-
ligand complex, NC15 contains 15 small non-covalent complexes, and Shields38 con-
tains 38 water clusters with up to 10 water molecules. The binding energies were
computed in the aug-cc-pVTZ basis set with the (99,590)/SG-1 grid.

the unimpressive performance of ωB97X-V for the water 20-mers in Section 4.3.3.
Consistently, the performance of B97M-V is the best observed for the Shields38
dataset as well, further confirming that it is well-suited for applications involving
large water clusters. The RMSD of B97M-V (0.35 kcal/mol) is more than 2 times
better than that of the next best density functional, which is M11 (0.72 kcal/mol).
VV10 massively overbinds once again, with an RMSD 25 times larger than that of
B97M-V, while ωB97X-V is only sixth best. While the best local meta-GGA density
functional is B97M-V, the best local GGA density functional (B97-D) has an RMSD
that is more than 8.5 times larger than that of B97M-V.

Finally, the performance of 11 of the 15 density functionals is assessed on the
benzene-argon dimer PEC. Figure 4.5 contains the 11 PECs along with the reference
PEC and is divided into 3 separate plots: DFT-D containing density functionals
(top), Minnesota density functionals (middle), and VV10-containing density func-
tionals (bottom). Considering the 3 DFT-D density functionals, all of them predict
bond lengths that are about 0.1 Å too long. Furthermore, TPSS-D3 overbinds the
dimer by about 10%, ωB97X-D underbinds it by about 5%, while B97-D underbinds
it by about 10%.

Moving on to the Minnesota density functionals, only M06 comes close to pre-
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dicting an accurate bond length. M06-L predicts a bond length that is about 0.1 Å
too long, while the rest predict bond lengths that are about 0.1 Å too short. With
respect to equilibrium binding energies, M06 underbinds the dimer by about 30%,
while M06-2X, M11-L, and M11 overbind by 10-30%. Only M06-L gives an equi-
librium binding energy that is close to the reference value. A feature of the M11-L
PEC that is very hard to miss is its strange long-range behavior. From 4.4 to 5 Å,
it predicts repulsive binding energies for the dimer. An exaggeration of this feature
of M11-L can be seen for the methane dimer in Figure 4.6.

The 3 VV10-containing density functionals have almost perfect bond lengths, but
only B97M-V gets the equilibrium binding energy just right. LC-VV10 overbinds by
about 10%, while ωB97X-V overbinds by about 20%. In terms of consistency, the
VV10-containing density functionals are clearly superior for this system. Their long-
range behavior is also noticeably better than the rest of the density functionals.

4.3.5 Geometries

While the energetics of B97M-V have been thoroughly tested (especially for non-
covalent interactions), it is time to move on to tests of intramolecular and intermolec-
ular geometries. The first test is basically free to conduct, since it is based on the
interpolated minima of 78 PECs from the training and primary test sets, as well as 10
rare-gas dimer PECs that were additionally computed. In the training set, 3 of the
datasets (NBC10-2, BzDC215, and NBC10-1) contain potential energy curves, while
in the primary test set, 7 of the datasets (HBC6, NBC10-3, S22x5, S66x8, NNTT41,
AATT41, and NATT41) contain potential energy curves. Five of these 10 datasets
were used to generate equilibrium bond length (and binding energy) statistics based
on interpolated PEC minima. The PECs in S22x5 did not have enough points near
their minima in order to compute reliable values, while the provided points for several
of the HBC6 PECs were all post-equilibrium for some density functionals. NBC10-1,
NBC10-2, and NBC10-3 have 3, 2, and 2 PECs, respectively, and were combined to
give the NBC10 dataset. For the S66x8 PECs, only the first 5 points (0.9, 0.95, 1,
1.05, and 1.1) were used in the interpolation. Additionally, for each PEC in S66x8,
the interpolated minimum was scaled by the closest intermolecular distance of the
equilibrium, counterpoise-corrected MP2/cc-pVTZ optimized structure in order to
generate the RMSDs in Table 4.11. Finally, instead of using data from NNTT41,
AATT41, and NATT41 in the primary test set, PECs (1.5 to 15 Å in increments of
0.05 Å) for all 10 rare-gas dimers containing helium, neon, argon, and krypton were
computed in the aQZ basis set with the (250,590)/(75,302) grid.

The resulting equilibrium bond length RMSDs are presented in Table 4.11. The
second-to-last column contains the total RMSD for all 88 PECs, while the last column
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Figure 4.5: Potential energy curves for the benzene-argon dimer from the BzDC215
dataset computed in the aug-cc-pVTZ basis set with the (250,590)/SG-1 grid.
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contains the total RMSD for all of the PECs except the rare-gas dimer PECs, for
a total of 78. This column was necessary because the rare-gas dimer bond lengths
for all of the Minnesota density functionals and ωB97X-D were extremely long and
therefore grossly affected the overall RMSD. As a complement to Table 4.11, Table
4.12 contains the same statistics for the associated equilibrium binding energies.

The NBC10 dataset contains weakly-bound dimers such as the methane dimer,
the benzene-methane dimer, 3 orientations of the benzene dimer, and 2 orientations
of the pyridine dimer. The VV10 density functional predicts incredibly accurate
bond lengths for these systems, with an RMSD of 0.012 Å. The next best density
functional is B97M-V, with an RMSD (0.03 Å) that is still impressive. On the other
hand, Table 4.12 indicates that the equilibrium binding energies of VV10 are 2 times
less accurate than those of B97M-V for NBC10. Additional noteworthy performances
for the NBC10 bond lengths include B3LYP-D3, LC-VV10, and ωB97X-V, all of
which have RMSDs under 0.05 Å. These 3 density functionals have binding energy
RMSDs under 0.15 kcal/mol as well, along with B97-D and B97M-V.

The BzDC215 dataset (which is a subset of the true BzDC215 dataset) contains
the following PECs: benzene-HF dimer, benzene-water dimer, benzene-ammonia
dimer, benzene-methane dimer, and benzene-HCl dimer. For this dataset, the density
functionals with the best bond lengths are M06, ωB97X-V, B97M-V, and TPSS-D3,
all of which have RMSDs under 0.03 Å. Of these 4 density functionals, B97M-V has
the best equilibrium binding energy RMSD (0.21 kcal/mol). The smallest binding
energy RMSD is achieved by M06-L (0.17 kcal/mol), but its bond length RMSD of
0.072 Å is 3 times larger than that of B97M-V.

The S66x8 dataset is a diverse collection of 66 dimers, containing electrostatics-
dominated interactions, as well as dispersion-dominated interactions. B97M-V gives
the most accurate bond lengths for this dataset, with an RMSD of only 0.02 Å,
followed by B3LYP-D3 (0.025 Å), VV10 (0.029 Å), and LC-VV10 (0.03 Å). Most
of the other density functionals perform reliably, with the exception of B97-D, M11,
and M06-2X, all of which have bond length RMSDs in excess of 0.07 Å. With respect
to binding energies, the data further confirms that B97M-V and ωB97X-V give the
most accurate equilibrium binding energies, with RMSDs of 0.19 and 0.21 kcal/mol,
respectively.

As far as the rare-gas dimers are concerned, B97M-V has the smallest bond length
RMSD across all 10 dimers, followed by ωB97X-V, VV10, and B3LYP-D3. These
4 density functionals are the only ones with RMSDs smaller than 0.1 Å. Five of
the remaining density functionals have RMSDs between 0.1 and 0.2 Å, with the re-
maining 6 having RMSDs in excess of 0.2 Å: M06-L, M06-2X, ωB97X-D, M06, M11,
and M11-L. Given this data, it is straightforward to conclude that systematically-
optimized density functionals that are not tested for transferability during fitting
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(such as ωB97X-D and the Minnesota density functionals) are more likely to per-
form poorly for the rare-gas dimers. Besides B97M-V and ωB97X-V (both of which
were almost guaranteed to perform well for the rare-gas dimers via the transferabil-
ity tests), only 2 systematically-optimized density functionals (B97-D and B97-D2)
perform reasonably well for the rare-gas dimers, most likely due to the conservative
m = 2 truncation that was employed for their ICFs.

The overall statistics can identify the best density functionals for these types of
interactions. Considering the second-to-last column of both Tables 4.11 and 4.12, it
is clear that B97M-V has the most accurate bond lengths overall, with an RMSD of
0.028 Å. The next best density functional, VV10, has an RMSD that is 0.01 Å larger,
followed by ωB97X-V (0.04 Å) and B3LYP-D3 (0.04 Å). These 4 are the only density
functionals that have overall bond length RMSDs under 0.05 Å. With respect to the
overall equilibrium binding energies, B97M-V and ωB97X-V are the clear winners,
with RMSDs of 0.17 and 0.2 kcal/mol, respectively. The next best density functional
(M06-L) has an RMSD of 0.31 kcal/mol, and has an overall bond length RMSD of
0.09 Å (more than 3 times worse than that of B97M-V).

To assess the ability of B97M-V to optimize accurate geometries, 3 sets of geome-
tries were benchmarked in the aug-cc-pVTZ basis set and the results are shown in
Table 4.13. The first set, taken from the work of Tentscher and Arey[167], contains
18 bond lengths of 18 small radicals. The ab Initio Best Estimate bond lengths from
the second-to-last column of Table 1 in Reference 167 are taken as the reference in
order to generate the MADs shown in Table 4.13. For this set of geometries, B97M-
V and M06-L perform indistinguishably, with bond length MADs of 0.55 pm. The
next best density functionals are B3LYP-D3 and B97-D2, with MADs of 0.69 pm,
while the worst performers are M11 and M11-L, with MADs of 1.33 and 1.87 pm,
respectively. The next set of geometries, taken from Bak et al.[168], contains 28 bond
lengths of 19 small molecules. The CCSD(T)/cc-pCVQZ bond lengths from the last
column of Table II in Reference 168 are taken as the reference in order to generate
the MADs shown in Table 4.13. For this set of geometries, M06-L and B3LYP-D2
(MADs under 0.5 pm) perform very well, followed by B97-D2 and B97M-V (MADs
under 0.6 pm). The (99,590)/SG-1 grid was used for both the Arey and Bak datasets.

Moving on to intermolecular geometry optimizations, the A19 dataset includes
19 of the 21 equilibrium geometries from A24. Two dimers (water-methane and
methane-ethene) were removed because several density functionals optimized these
systems to a different orientation than that of the reference structure. The opti-
mizations for the A19 dataset were carried out with the (150,770)/SG-1 grid and the
symmetry of the reference structure was preserved. The metric used to assess the
performance of the density functionals is the MAD of 19 RMSDs generated by the
Kabsch algorithm[166] (calculated by comparing the reference and final geometries).
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Å NBC10 BzDC215 S66x8 Rare-gas All All*

# of Data Points 7 5 66 10 88 78

PBE-D3 0.094 0.035 0.064 0.163 0.083 0.066
B97-D 0.063 0.073 0.070 0.168 0.086 0.069
VV10 0.012 0.032 0.029 0.084 0.038 0.028

TPSS-D3 0.071 0.028 0.057 0.165 0.077 0.057
M06-L 0.072 0.072 0.040 0.233 0.090 0.046
M11-L 0.817 0.042 0.035 1.532 0.566 0.247

B97M-V 0.030 0.024 0.020 0.058 0.028 0.021
B3LYP-D3 0.039 0.043 0.025 0.089 0.040 0.028

B97-D2 0.094 0.047 0.043 0.140 0.067 0.050
M06 0.258 0.020 0.041 0.500 0.187 0.086

M06-2X 0.105 0.116 0.074 0.243 0.112 0.081
LC-VV10 0.040 0.089 0.030 0.152 0.062 0.037
ωB97X-D 0.051 0.042 0.039 0.399 0.140 0.040
ωB97X-V 0.042 0.022 0.036 0.065 0.040 0.036

M11 0.062 0.123 0.071 0.614 0.219 0.075

Table 4.11: Equilibrium bond length RMSDs in Å for interpolated potential energy
curve (PEC) minima from 5 of the datasets in the training and primary test sets, as
well as an additional dataset containing PECs for all 10 rare-gas dimers (computed
in the aug-cc-pVQZ basis set with the (250,590)/(75,302) grid) containing helium,
neon, argon, and krypton. NBC10 is a combination of the NBC10-1, NBC10-2, and
NBC10-3 datasets from the training and primary test sets. The column labeled
“All” contains RMSDs for all 4 datasets, while the column labeled “All*” excludes
the rare-gas dimer data.

Of the benchmarked density functionals, ωB97X-V is clearly the best performer,
with an MAD of only 1.4 pm, while B97M-V comes in second, with an MAD of 2.35
pm. Following B97M-V, 3 density functionals, B97-D2, B3LYP-D3, and LC-VV10,
have MADs between 2.5 pm and 3 pm. The next best local density functional after
B97M-V is B97-D, with an MAD (4.92 pm) that is more than twice as large as that
of B97M-V. Overall, the performance of B97M-V for both intramolecular and inter-
molecular geometry optimizations is impressive, since these are features that are not
necessarily guaranteed from fitting to energetics.
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kcal/mol NBC10 BzDC215 S66x8 Rare-gas All All*

# of Data Points 7 5 66 10 88 78

PBE-D3 0.24 0.49 0.54 0.11 0.49 0.52
B97-D 0.12 0.55 0.52 0.06 0.47 0.50
VV10 0.25 0.30 0.63 0.04 0.55 0.59

TPSS-D3 0.18 0.44 0.40 0.08 0.37 0.39
M06-L 0.38 0.17 0.33 0.13 0.31 0.33
M11-L 0.46 0.19 0.73 0.19 0.65 0.69

B97M-V 0.12 0.21 0.19 0.03 0.17 0.18
B3LYP-D3 0.13 0.49 0.52 0.05 0.47 0.50

B97-D2 0.42 0.51 0.36 0.09 0.36 0.38
M06 0.60 0.28 0.52 0.12 0.48 0.51

M06-2X 0.52 0.78 0.31 0.11 0.36 0.38
LC-VV10 0.11 0.64 0.40 0.07 0.38 0.41
ωB97X-D 0.38 0.57 0.59 0.08 0.54 0.57
ωB97X-V 0.11 0.36 0.21 0.03 0.20 0.21

M11 0.75 0.80 0.39 0.16 0.45 0.47

Table 4.12: Equilibrium binding energy RMSDs in kcal/mol for interpolated poten-
tial energy curve (PEC) minima from 5 of the datasets in the training and primary
test sets, as well as an additional dataset containing PECs for all 10 rare-gas dimers
(computed in the aug-cc-pVQZ basis set with the (250,590)/(75,302) grid) contain-
ing helium, neon, argon, and krypton. NBC10 is a combination of the NBC10-1,
NBC10-2, and NBC10-3 datasets from the training and primary test sets. The col-
umn labeled “All” contains RMSDs for all 4 datasets, while the column labeled
“All*” excludes the rare-gas dimer data.

4.4 Using B97M-V

4.4.1 Basis Sets

Even though B97M-V was trained in the aQZ basis set for thermochemistry and
the aTZ basis set (without counterpoise corrections) for non-covalent interactions, it
is inevitable that it will be used with different basis sets. As a result, this section
explains how B97M-V should be used and what basis sets are recommended.

In order to assess the basis set dependence of thermochemical quantities, the
data points in the W4-11 dataset were computed in a variety of basis sets with the
(99,590)/SG-1 grid: cc-pVDZ (DZ), cc-pVTZ (TZ), cc-pVQZ (QZ), 6-311++G(3df,3pd)
(LP), pc-1 (pc1), pc-2 (pc2), pc-3 (pc3), def2-SVP (SVP), def2-TZVP (TZVP), def2-
QZVP (QZVP), and aug-cc-pVQZ (aQZ). The goal was to identify basis sets sub-
stantially smaller than aQZ that can provide results similar in quality to the aQZ
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pm Arey Bak A19

# of Data Points 18 28 19

PBE-D3 1.13 1.01 5.57
B97-D 0.90 0.75 4.92
VV10 1.21 1.06 5.87
M06-L 0.55 0.42 5.58
M11-L 1.87 1.78 5.08

B97M-V 0.55 0.57 2.35
B3LYP-D3 0.69 0.48 2.64

B97-D2 0.69 0.52 2.62
M06 1.10 0.87 5.93

M06-2X 1.20 0.87 5.23
LC-VV10 1.31 1.08 2.93
ωB97X-D 0.90 0.71 3.80
ωB97X-V 0.91 0.69 1.40

M11 1.33 0.96 4.25

Table 4.13: MADs in picometers (pm) for the 3 geometry datasets discussed in Sec-
tion 4.3.5. For the Arey and Bak datasets, the entries are bond length MADs and the
optimizations were carried out in the aug-cc-pVTZ basis set with the (99,590)/SG-1
grid. For the A19 dataset, the optimizations were carried out with the (150,770)/SG-
1 grid in the aug-cc-pVTZ basis set and the errors are calculated by using the Kabsch
algorithm. The A19 column contains MADs of 19 RMSDs calculated by the Kabsch
algorithm.

results. The corresponding data is shown in Table 4.14. The values in the second
row correspond to the number of basis functions (BF) the given basis set has for
propane, while the values in the following row are the total atomization energies
(TAE) of propane computed with the given basis set. The W4-11 reference value for
the TAE of propane is -1007.91 kcal/mol, while the B97M-V aQZ value is -1007.28
kcal/mol. Considering just the values from the third row of Table 4.14, it is clear that
the DZ, pc1, SVP, and TZVP basis sets are insufficient for the calculation of ther-
mochemical quantities. However, in order to arrive at a more solid conclusion, the
RMSDs for the 5 subdatasets in the W4-11 dataset are shown in the fourth through
eighth rows of Table 4.14. In addition, the last 6 rows contain overall statistics for
all of W4-11 with respect to both the aQZ values as well as the reference values.

Considering both performance with respect to the aQZ basis set as well as the
reference, the following basis sets can be potentially recommended as alternatives to
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kcal/mol DZ TZ QZ LP pc1 pc2 pc3 SVP TZVP QZVP aQZ

BF (C3H8) 82 202 405 261 82 202 464 82 141 411 608
TAE (C3H8) -1004.83 -1008.49 -1007.78 -1007.82 -1000.09 -1008.61 -1008.09 -1020.79 -1005.43 -1007.73 -1007.28

HAT707 8.75 4.73 4.08 4.08 7.28 4.19 3.85 8.08 4.19 3.94 3.99
BDE99 5.74 3.76 3.57 3.64 5.29 3.56 3.64 5.70 3.70 3.59 3.52

TAE nonMR124 11.72 4.17 3.74 3.92 10.84 3.42 3.85 7.78 4.11 3.88 3.79
SN13 4.65 1.66 1.47 1.35 3.51 1.41 1.37 3.16 1.56 1.41 1.39

ISOMER20 3.87 3.10 3.07 3.01 3.80 3.07 3.01 4.06 3.26 3.03 3.00

RMSD vs. aQZ 6.86 1.36 0.45 0.80 5.98 0.92 1.07 5.47 1.07 0.96 0.00
RMSD vs. Reference 8.91 4.47 3.92 3.95 7.70 3.94 3.78 7.66 4.07 3.84 3.85

MAD vs. aQZ 4.51 0.98 0.34 0.58 4.26 0.69 0.55 3.87 0.72 0.52 0.00
MAD vs. Reference 6.25 3.38 2.95 2.96 5.77 2.94 2.84 5.72 3.12 2.89 2.90

MSE vs. aQZ 1.33 -0.04 -0.13 -0.32 1.02 -0.27 -0.27 -0.91 -0.05 -0.20 0.00
MSE vs. Reference 0.30 -1.07 -1.16 -1.34 -0.01 -1.30 -1.30 -1.94 -1.08 -1.23 -1.03

Table 4.14: RMSDs in kcal/mol computed with the (99,590)/SG-1 grid for the 5
subdatasets comprising the W4-11 dataset in a variety of basis sets: cc-pVDZ (DZ),
cc-pVTZ (TZ), cc-pVQZ (QZ), 6-311++G(3df,3pd) (LP), pc-1 (pc1), pc-2 (pc2),
pc-3 (pc3), def2-SVP (SVP), def2-TZVP (TZVP), def2-QZVP (QZVP), and aug-cc-
pVQZ (aQZ). The last 6 rows contain statistics for the entire W4-11 dataset with
respect to both the basis set limit values (aQZ) as well as the reference values. The
second row indicates the number of basis functions (BF) the given basis set has for
propane, while the third row contains the total atomization energy (TAE) of propane
in kcal/mol. The W4-11 reference value for the TAE of propane is -1007.91 kcal/mol.

the aQZ basis set for thermochemistry (pending further tests): QZ, LP, pc2, pc3,
and QZVP. From these recommended basis sets, the smallest one is pc2, which only
has 202 basis functions for propane, while aQZ has 608. Thus, even though B97M-V
was trained in the aQZ basis set for thermochemistry, it might be sufficient to use a
basis set that is 3 times smaller to arrive at results that are of aQZ quality.

Since the molecules in the W4-11 dataset are relatively small, the 5 promising ba-
sis sets from the W4-11 study were applied to larger interactions via the AlkAtom19,
AlkIsomer11, and AlkIsod14 datasets. The results (computed with the (75,302)/SG-
0 grid) are shown in Table 4.15. The second row of Table 4.15 lists the number of
basis functions the given basis set has for octane, while the third row contains the
TAE of octane (the reference is -2482.64 kcal/mol and the B97M-V aQZ result is
-2480.94 kcal/mol). At first glance, all of the basis sets appear to predict a reason-
able value for the TAE of octane, with the largest deviation being the aQZ result
itself (0.07% error). In fact, in the aQZ basis set, B97M-V slightly underestimates
the atomization energies of the larger alkanes in AlkAtom19, with an RMSD of 1.35
kcal/mol and an MSE (mean signed error) of 0.73 kcal/mol. Decreasing the size of
the basis set increases the effect of basis set superposition error (BSSE) and leads to
slightly more binding, resulting in a 7-fold improvement in the AlkAtom19 RMSD
with the pc3 basis set. The isomerization energies are relatively insensitive to the
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kcal/mol QZ LP pc2 pc3 QZVP aQZ

BF (C8H18) 980 636 492 1124 996 1468
TAE (C8H18) -2481.93 -2481.88 -2483.40 -2482.73 -2481.37 -2480.94

AlkAtom19 0.60 0.61 0.67 0.19 0.99 1.35
AlkIsomer11 0.21 0.20 0.11 0.30 0.27 0.21
AlkIsod14 0.54 0.43 0.39 0.64 0.62 0.51

RMSD vs. aQZ 0.50 0.50 1.31 0.86 0.28 0.00
RMSD vs. Reference 0.51 0.48 0.49 0.41 0.75 0.94

MAD vs. aQZ 0.33 0.35 0.88 0.60 0.22 0.00
MAD vs. Reference 0.42 0.38 0.42 0.30 0.60 0.73

MSE vs. aQZ -0.31 -0.35 -0.88 -0.48 -0.13 0.00
MSE vs. Reference 0.42 0.38 -0.16 0.25 0.60 0.73

Table 4.15: RMSDs in kcal/mol computed with the (75,302)/SG-0 grid for 3
datasets from the primary test set in a variety of basis sets: cc-pVQZ (QZ), 6-
311++G(3df,3pd) (LP), pc-2 (pc2), pc-3 (pc3), def2-QZVP (QZVP), and aug-cc-
pVQZ (aQZ). The last 6 rows contain statistics for the 3 combined datasets with
respect to both the basis set limit values (aQZ) as well as the reference values. The
second row indicates the number of basis functions (BF) the given basis set has
for octane, while the third row contains the total atomization energy (TAE) of oc-
tane in kcal/mol. The AlkAtom19 reference value for the TAE of octane is -2482.64
kcal/mol.

basis set, as are the isodesmic reaction energies. Based on these results, the
cc-pVQZ, 6-311++G(3df,3pd), pc-2, pc-3, and def2-QZVP basis sets can
be recommended as alternatives to the aug-cc-pVQZ basis set for ther-
mochemistry.

Moving on to non-covalent interactions, the A24 dataset was used as an initial
test of the basis set convergence of small molecules. The calculations were performed
with the (99,590)/SG-1 grid and a total of 25 basis sets were assessed: cc-pVNZ for
N={D,T,Q,5} (NZ), aug-cc-pVNZ for N={D,T,Q,5} (aNZ), pc-N for N={0,1,2,3,4}
(pcN), aug-pc-N for N={0,1,2,3,4} (apcN), def2-NVP for N={S,TZ,QZ} (NVP),
def2-NVPD for N={S,TZ,QZ} (NVPD), and 6-311++G(3df,3pd) (LP). The results
are summarized in Table 4.16. For each basis set, 2 types of statistics with respect to
the reference values are reported: RMSDs and MSEs. Furthermore, the results are
presented both with counterpoise corrections (CP), without counterpoise corrections
(noCP), as well as their average (AVG=(CP+noCP)/2). Since B97M-V was trained
at the noCP aTZ basis set level, the corresponding RMSD of 0.17 kcal/mol is a
useful guide for assessing the performance of B97M-V in the remaining 24 basis
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sets. Immediately, it is clear that the pc0 and apc0 basis sets are incompatible
with B97M-V, both with and without counterpoise corrections. In addition, the DZ,
pc1, and SVP basis sets have RMSDs greater than 0.25 kcal/mol with counterpoise
corrections, and are unacceptable without counterpoise corrections. Basis sets that
perform well both with and without counterpoise corrections include 5Z, aTZ, aQZ,
a5Z, pc3, pc4, apc2, apc3, apc4, TZVPD, QZVP, QZVPD, and LP, while basis sets
that perform well only with counterpoise corrections include TZ, QZ, aDZ, pc2, apc1,
SVPD, and TZVP.

For comparison to B97M-V, the last row of Table 4.16 contains data correspond-
ing to the M06-L density functional computed in the aTZ basis set. While the RMSD
of B97M-V improves very slightly from 0.17 kcal/mol to 0.15 kcal/mol when going
from noCP aTZ to CP aTZ, the reverse happens for M06-L: the RMSD increases
from 0.23 kcal/mol to 0.41 kcal/mol. The fact that the CP and noCP a5Z RMSDs
of B97M-V closely match the CP and noCP aTZ RMSDs indicates that for inter-
molecular interactions involving small molecules, the aTZ basis set can be considered
close to the basis set limit for B97M-V. However, since the largest dimer in the A24
dataset is the ethene dimer (the number of basis functions for each basis set is listed
in the second column of Table 4.16), the promising basis sets that were smaller than
or equivalent to aTZ were applied to larger intermolecular interactions via the S22
and S66 datasets.

The S22 data (Table 4.17) looks significantly different from the A24 data. As a
reminder, the S22 dataset was included in the training set of B97M-V with a weight of
100. The noCP aTZ RMSD of 0.23 kcal/mol is the smallest RMSD possible, while the
pc2, TZVPD, and aQZ basis sets look promising without counterpoise corrections,
presenting a degradation of 20% at most compared with the noCP aTZ RMSD.
However, the CP aTZ RMSD of 0.33 kcal/mol presents a degradation of 0.1 kcal/mol
(40%) from the noCP aTZ result. Considering the aQZ basis set results, it is clear
that the noCP and CP results have not converged, indicating that it is much more
difficult to converge the binding energies of larger interactions. Additionally, since the
interactions in S22 were heavily emphasized in training the parameters of B97M-V, it
is possible that going to a larger basis set is leading to underbinding. Considering the
CP MSE and noCP MSE values for aTZ and aQZ provides confirmation of this effect.
Based on the S22 data, only the TZVPD basis set (to be used without counterpoise
corrections) can be recommended as an alternative to noCP aTZ for non-covalent
interactions.

For comparison to B97M-V, the last row of Table 4.17 contains data correspond-
ing to the M06-L density functional computed in the aTZ basis set. While the RMSD
of B97M-V degrades by 40% when going from noCP aTZ to CP aTZ, the RMSD of
M06-L worsens by more than a factor of 2.5.
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kcal/mol BF CP RMSD noCP RMSD AVG RMSD CP MSE noCP MSE AVG MSE

DZ 96 0.29 1.27 0.63 0.16 -0.86 -0.35
TZ 232 0.19 0.65 0.36 0.03 -0.42 -0.19
QZ 460 0.17 0.34 0.22 0.02 -0.20 -0.09
5Z 804 0.15 0.17 0.16 0.01 -0.04 -0.02

aDZ 164 0.16 0.29 0.19 0.03 -0.21 -0.09
aTZ 368 0.15 0.17 0.16 -0.01 -0.05 -0.03
aQZ 688 0.15 0.15 0.15 0.00 -0.03 -0.01
a5Z 1148 0.15 0.15 0.15 0.00 -0.01 0.00

pc0 52 0.95 3.75 2.30 -0.32 -2.45 -1.38
pc1 96 0.25 0.87 0.51 0.00 -0.56 -0.28
pc2 232 0.17 0.28 0.22 0.00 -0.13 -0.06
pc3 528 0.15 0.15 0.15 0.00 -0.01 0.00
pc4 940 0.15 0.15 0.15 0.01 0.00 0.00

apc0 76 1.00 1.96 1.44 -0.43 -1.39 -0.91
apc1 164 0.17 0.49 0.26 0.06 -0.41 -0.18
apc2 368 0.15 0.18 0.16 0.00 -0.09 -0.04
apc3 756 0.15 0.15 0.15 0.00 -0.02 -0.01
apc4 1284 0.15 0.15 0.15 0.00 0.00 0.00

SVP 96 0.26 1.26 0.67 0.10 -0.90 -0.40
TZVP 172 0.21 0.41 0.30 -0.03 -0.22 -0.13
QZVP 468 0.15 0.18 0.16 0.01 -0.05 -0.02
SVPD 144 0.16 0.52 0.28 0.02 -0.47 -0.23

TZVPD 220 0.15 0.15 0.15 0.00 -0.06 -0.03
QZVPD 516 0.15 0.15 0.15 0.00 -0.01 0.00

LP 300 0.15 0.24 0.19 0.01 -0.11 -0.05

aTZ* 368 0.41 0.23 0.31 0.37 0.15 0.26

Table 4.16: RMSDs and MSEs in kcal/mol for the A24 dataset computed in 25
basis sets. The abbreviations are explained in Section 4.4.1. The second column
contains the number of basis functions (BF) for the largest interaction in A24: the
ethene dimer. The interactions were computed with the (99,590)/SG-1 grid with
counterpoise corrections (CP), without counterpoise corrections (noCP), as well as
their average (AVG). The last row contains data for the M06-L density functional in
the aTZ basis set for comparison to the B97M-V results.
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kcal/mol BF CP RMSD noCP RMSD AVG RMSD CP MSE noCP MSE AVG MSE

DZ 321 0.75 1.91 0.67 0.64 -1.45 -0.41
TZ 724 0.40 0.75 0.34 0.30 -0.54 -0.12
aDZ 536 0.44 0.55 0.31 0.34 -0.35 -0.01
aTZ 1127 0.33 0.23 0.26 0.24 0.04 0.14
pc1 321 0.53 1.81 0.95 0.15 -1.46 -0.66
pc2 724 0.36 0.27 0.25 0.27 -0.05 0.11
apc1 536 0.55 2.15 0.95 0.43 -1.68 -0.62
apc2 1127 0.34 0.40 0.25 0.25 -0.18 0.04
SVP 321 0.53 2.05 0.89 0.44 -1.56 -0.56

SVPD 474 0.34 1.57 0.70 0.26 -1.21 -0.48
TZVP 655 0.37 0.41 0.29 0.24 -0.21 0.01

TZVPD 808 0.35 0.25 0.28 0.28 0.07 0.17
LP 939 0.38 0.35 0.29 0.28 -0.09 0.09

aQZ 2026 0.34 0.27 0.30 0.25 0.15 0.20
QZVPD 1566 0.34 0.31 0.32 0.26 0.20 0.23

aTZ* 1127 1.08 0.43 0.73 0.96 0.30 0.63

Table 4.17: RMSDs and MSEs in kcal/mol for the S22 dataset computed in 15 basis
sets. The abbreviations are explained in Section 4.4.1. The second column contains
the number of basis functions (BF) for the largest interaction in S22: the adenine-
thymine complex. The interactions were computed with the (75,302)/SG-0 grid with
counterpoise corrections (CP), without counterpoise corrections (noCP), as well as
their average (AVG). The last row contains data for the M06-L density functional in
the aTZ basis set for comparison to the B97M-V results.

Since the S22 dataset was in the training set, it is important to test a dataset of
larger interactions from one of the test sets in order to assure that the effect seen with
the S22 data is less pronounced for datasets that were not included in the training
set. Accordingly, the results for the S66 dataset are provided in Table 4.18. The S66
data is much more reasonable, as the CP and noCP RMSDs for the aTZ basis set
differ by no more than 0.02 kcal/mol. While the noCP aTZ RMSD is 0.19 kcal/mol,
the lowest possible RMSD is achieved in the TZVPD basis set without counterpoise
corrections (0.18 kcal/mol). According to the S66 data, 2 basis sets that are substan-
tially smaller than aTZ can be employed without counterpoise corrections to match
the quality of the noCP aTZ result: pc2 and TZVPD. In addition, it appears that a
variety of basis sets can be employed with counterpoise corrections: pc2, apc2, SVPD,
and TZVPD. Based on the results from the A24, S22, and S66 datasets, the
def2-SVPD basis set (to be used with counterpoise corrections) and the
def2-TZVPD basis set (to be used without counterpoise corrections) can
be recommended as alternatives to the non-counterpoise-corrected aug-
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kcal/mol BF CP RMSD noCP RMSD AVG RMSD CP MSE noCP MSE AVG MSE

DZ 260 0.67 1.69 0.66 0.52 -1.39 -0.43
TZ 636 0.32 0.73 0.31 0.21 -0.60 -0.19
aDZ 446 0.28 0.54 0.28 0.19 -0.43 -0.12
aTZ 1012 0.21 0.19 0.17 0.13 -0.04 0.05
pc1 260 0.37 1.34 0.66 0.10 -1.21 -0.56
pc2 636 0.22 0.21 0.15 0.15 -0.13 0.01
apc1 446 0.35 1.58 0.69 0.28 -1.35 -0.54
apc2 1012 0.21 0.32 0.19 0.13 -0.20 -0.03
SVP 260 0.49 1.75 0.78 0.36 -1.46 -0.55

SVPD 392 0.21 1.21 0.55 0.14 -1.10 -0.48
TZVP 454 0.24 0.39 0.22 0.13 -0.28 -0.08

TZVPD 586 0.22 0.18 0.18 0.16 -0.02 0.07
LP 822 0.24 0.25 0.18 0.15 -0.14 0.00

aQZ 1904 0.22 0.18 0.19 0.14 0.05 0.09
QZVPD 1422 0.22 0.20 0.21 0.14 0.10 0.12

aTZ* 1012 0.81 0.36 0.55 0.74 0.17 0.46

Table 4.18: RMSDs and MSEs in kcal/mol for the S66 dataset computed in 15
basis sets. The abbreviations are explained in Section 4.4.1. The second column
contains the number of basis functions (BF) for the largest interaction in S66: the
pentane dimer. The interactions were computed with the (75,302)/SG-0 grid with
counterpoise corrections (CP), without counterpoise corrections (noCP), as well as
their average (AVG). The last row contains data for the M06-L density functional in
the aTZ basis set for comparison to the B97M-V results.

cc-pVTZ basis set for non-covalent interactions. Furthermore, for systems
where the use of diffuse functions may lead to issues with linear depen-
dence, the pc-2 basis set is recommended for use without counterpoise
corrections.

4.4.2 Grids

Different density functionals converge to their “infinite grid” limit at different
rates. To ensure that B97M-V does not converge too slowly, it was mentioned in
Section 4.2.5 that the billions of fits were filtered such that the least-squares fit ener-
gies generated in the (99,590)/SG-1 and (250,590)/SG-1 grids differed by a maximum
of 0.01 kcal/mol. The effectiveness of this decision is tested by analyzing the grid sen-
sitivity of B97M-V relative to other density functionals on the methane dimer PEC
from NBC10-2, calculated in the aTZ basis set. The results are shown in Figure
4.6, with the associated maximum absolute deviations (with respect to the (250,590)
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grid) in cal/mol in Table 4.19. For the VV10 NLC functional, the SG-1 grid is used
and not varied.

The B97M-V PEC looks nearly acceptable in the SG-1 grid, and is fully converged
in the (75,302) grid. The same can be said for all of the density functionals, except
M06-L, M06, and M11. The density functional with the smallest MAX in the SG-1
grid (11.36 cal/mol) is ωB97X-V, while B97M-V and the non-empirical PBE density
functional have maximum absolute deviations of approximately 27 cal/mol. For
comparison, the least grid-sensitive Minnesota density functional (M06-2X) has a
MAX of around 45 cal/mol in the SG-1 grid, with M11, M06-L, and M06 having
deviations between 146 and 190 cal/mol. In the (75,302) grid, the MAX for most of
the density functionals drops below 10 cal/mol. The outliers include M06-L, M06,
and M11, and this result is repeated in the (99,590) grid. In fact, the M06 potential
energy curve computed with the finest grid does not exhibit a proper well shape,
indicating that it is not at its “infinite grid” limit even with the (250,590) grid.
Furthermore, the strange behavior that was seen for M11-L with the benzene-argon
dimer is much more pronounced in the case of the methane dimer, and it is clear
that the feature cannot be eliminated by using a finer grid.

B97M-V is the only semi-empirical meta-GGA density functional out of those
considered that is as grid-insensitive as its GGA counterparts. In fact, in the (75,302)
grid, its MAX (4.57 cal/mol) is considerably smaller than that of 3 of the tested GGA
density functionals: B97-D (10.79 cal/mol), B97-D2 (6.77 cal/mol), and ωB97X-D
(6.81 cal/mol). Furthermore, out of the 7 meta-GGA density functionals considered,
B97M-V is the least grid-sensitive density functional (even when compared to the
non-empirical TPSS density functional).

Based on the data from Figure 4.6 and Table 4.19, it appears as if the (75,302)/SG-
1 grid can be recommended for B97M-V. However, the methane dimer test only covers
a very small fraction of the types of interactions that B97M-V can be applied to. In
order to be absolutely certain of this recommendation, all of the data points in the
training, primary test, and secondary test sets (with the exception of the absolute
atomic energies and the rare-gas dimer PECs) were computed with the following
grids: SG-1/SG-1, (75,302)/SG-1, (99,590)/SG-1, and (250,590)/SG-1.

Table 4.20 summarizes the results of this comprehensive test, which are catego-
rized with respect to 3 metrics: absolute percent error (APE), absolute error (AE),
as well as their product (APE·AE). With the assumption that the (250,590)/SG-1
results are fully converged with respect to the grid, Table 4.20 was populated with
data from the aforementioned 2329 data points from the training, primary test, and
secondary test sets. Starting with the (99,590)/SG-1 grid, it is clear that the filtering
applied during the training stage has completely transferred to the final functional
form, since all 2329 data points have absolute errors less than 0.01 kcal/mol. The SG-
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Figure 4.6: Methane dimer potential energy curves for 15 density functionals with 4
different local exchange-correlation grids (SG-1, (75,302), (99,590), and (250,590)),
calculated in the aug-cc-pVTZ basis set without counterpoise corrections. The x-
axis shows bond length in Å and the y-axis shows binding energy in kcal/mol. The
color scheme is as follows: SG-1 (Red with Large Dashes), (75,302) (Cyan; Medium
Dashes), (99,590) (Green; Small Dashes), (250,590) (Black; No Dashes). For the
VV10 NLC functional, the SG-1 grid is used and not varied.
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cal/mol SG-1 (75,302) (99,590)

PBE-D3 27.06 4.39 0.34
B97-D 22.62 10.79 1.97
VV10 27.94 4.44 0.68

TPSS-D3 34.77 7.91 2.12
M06-L 165.54 56.24 23.32
M11-L 54.86 8.82 5.66

B97M-V 27.79 4.57 1.52
B3LYP-D3 19.61 3.75 0.40

B97-D2 18.90 6.77 1.10
M06 189.29 68.93 29.78

M06-2X 44.84 11.49 4.87
LC-VV10 20.17 3.25 1.01
ωB97X-D 18.89 6.81 2.11
ωB97X-V 11.36 1.91 0.57

M11 146.59 24.55 10.61

Table 4.19: Maximum absolute deviations in cal/mol for the 18 points on the methane
dimer potential energy curve from NBC10-2. The deviations are taken with respect
to the (250,590) grid results. For the VV10 NLC functional, the SG-1 grid is used
and not varied.

1/SG-1 results are clearly unacceptable, with 9 data points having APEs larger than
100% and 507 data points having an AE of more than 0.1 kcal/mol. The (75,302)/SG-
1 grid strikes a reasonable balance between the SG-1/SG-1 and (99,590)/SG-1 grids,
and the largest absolute errors are no greater than 0.1 kcal/mol. However, an outlier
appears that has an APE of more than 50%. This specific data point is in the S22x5
dataset and corresponds to the parallel-displaced benzene dimer at a separation of
2.0·Re. This data point was investigated further in order to identify grids that can
reduce this outlying APE.

Table 4.21 contains the APEs for this investigation in a variety of radial (columns)
and angular (rows) grids. The APEs are calculated with respect to the (500,974)/SG-
1 grid and it is clear that the accuracy for this specific data point relies entirely on the
number of angular grid points. Accordingly, the coarsest grid that can substantially
reduce the 55.6% error of the (75,302)/SG-1 grid is the (75,590)/SG-1 grid, which
reduces the APE to less than 3%. As a consequence of this test, the (75,590)/SG-1
grid was added to Table 4.20 in order to assess its performance for the remaining
2328 data points. As predicted, the (75,590)/SG-1 grid substantially improves upon
the coarser (75,302)/SG-1 grid, with a maximum APE of only 5.5% for all 2329 data
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APE (%) [0,1) [1,2) [2,5) [5,10) [10,50) [50,100) [100,∞)

SG-1/SG-1 1699 233 213 67 82 26 9
(75,302)/SG-0 2184 87 40 9 8 1 0
(75,302)/SG-1 2213 72 25 12 6 1 0
(75,590)/SG-1 2298 22 7 2 0 0 0
(99,590)/SG-1 2328 1 0 0 0 0 0

AE (kcal/mol) [0,0.01) [0.01,0.02) [0.02,0.05) [0.05,0.10) [0.1,0.5) [0.5,1) [1,∞)

SG-1/SG-1 623 320 517 362 441 52 14
(75,302)/SG-0 1950 246 119 14 0 0 0
(75,302)/SG-1 1996 238 87 8 0 0 0
(75,590)/SG-1 2270 47 12 0 0 0 0
(99,590)/SG-1 2329 0 0 0 0 0 0

APE·AE (%·kcal/mol) [0,0.1) [0.1,0.2) [0.2,0.5) [0.5,1) [1,5) [5,10) [10,∞)

SG-1/SG-1 1900 98 109 66 96 16 44
(75,302)/SG-0 2303 13 7 4 2 0 0
(75,302)/SG-1 2309 9 7 3 1 0 0
(75,590)/SG-1 2327 2 0 0 0 0 0
(99,590)/SG-1 2329 0 0 0 0 0 0

Table 4.20: Error ranges for 2329 data points from the training, primary test, and
secondary tests sets. From the original 2460 data points, the 8 data points from
AE8 as well as the 123 data points corresponding to the rare-gas dimer PECs were
dropped. The errors are taken with respect to the (250,590)/SG-1 grid. The grids
are assessed with respect to 3 metrics: absolute percent error (APE), absolute error
(AE), as well as their product (APE·AE).

points.
Finally, in order to test the sensitivity of the VV10 NLC functional to the in-

tegration grid, the SG-0 grid was used for the nonlocal integration, along with the
(75,302) grid for the integration of the local component of B97M-V. A comparison of
the (75,302)/SG-0 and (75,302)/SG-1 grids in Table 4.20 indicates that the integra-
tion of the VV10 NLC functional is not very sensitive to the grid, and the SG-0 grid
can be applied if necessary. Based on these results, the (75,302)/SG-0 and
(75,302)/SG-1 grids are recommended as the bare minimum for use with
B97M-V (particularly for quick calculations), while the (99,590)/SG-1
grid is recommended if results near the “infinite grid” limit are required.
Finally, the (75,590)/SG-1 grid can serve as a compromise between these
2 limits.
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APE (%) 75 87 99 150 250 500

302 55.6 56.2 52.7 53.9 54.0 54.0
350 19.7 19.8 20.3 19.3 19.3 19.3
434 20.1 20.6 16.9 20.0 19.9 19.9
590 2.9 3.3 3.4 3.2 3.2 3.2
770 1.0 0.4 1.0 1.1 1.0 1.0
974 0.2 0.2 0.1 0.0 0.0 0.0

Table 4.21: Absolute percent errors (APE) for the S22x5 parallel-displaced benzene
dimer at a separation of 2.0·Re for a variety of radial (columns) and angular (rows)
grids. The APE is calculated with respect to the binding energy in the (500,974)
grid. The SG-1 grid is used throughout for integrating the VV10 NLC functional.
For reference, the APE for the SG-1 grid is 243.9%.

4.4.3 Timings

Since B97M-V does not contain any exact exchange, it has the potential of be-
ing much faster than its hybrid counterparts. However, the VV10 NLC functional
requires additional grid point evaluations and as a result, B97M-V will be slightly
slower than a local meta-GGA density functional like M06-L (for a single Fock build).
In order to quantify the additional time required to evaluate the VV10 NLC func-
tional, as a well as to compare the effect of using different grids, timings for a single
Fock build were carried out with B97-D, B97M-V, M06-L, and M06-2X. For B97M-
V, 3 different grids were used ((75,302)/SG-0, (75,302)/SG-1, and (99,590)/SG-1),
while the rest of the density functionals employed the (75,302) grid. The resulting
timings, shown in Figure 4.7, are taken as a ratio to the B97-D result, which is the
cheapest density functional of the 4 tested. The molecules considered were (H2O)n
for n = {2, 4, 8, 16} in 2 basis sets: LP and aTZ. The results indicate that the addi-
tional cost of evaluating the VV10 NLC functional is negligible, when either the SG-0
or SG-1 grids are used in conjunction with the (75,302) grid for the local component.
Using the (99,590) grid for the local component of B97M-V is very costly and mostly
unnecessary according to the results from the previous section.

As a reference value for those interested in implementing this new density func-
tional, the absolute energy (in hartrees) of hydrogen fluoride with a bond length of
0.9158 Å in the aug-cc-pVTZ basis set with the (75,302)/SG-1 grid is -100.4472797104.

4.5 Conclusions

The primary goal of the development of the B97M-V density functional was to
create a minimally-parameterized and highly-transferable local meta-GGA density
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Figure 4.7: Single Fock build timings for B97-D, B97M-V, M06-L, and M06-2X for
water clusters of varying size in 2 different basis sets: 6-311++G(3df,3pd) and aug-
cc-pVTZ. The timings are displayed as a ratio to the B97-D value. For B97-D,
M06-2X, and M06-L, the (75,302) grid was used, while for B97M-V, timings for 3
different grid combinations are shown. The number of basis functions (BF) for the
largest water cluster within each basis set is shown in the title of the associated plot.



CHAPTER 4. B97M-V: A META-GGA DENSITY FUNCTIONAL 152

Functional TC RMSD Functional NC RMSD

M06-2X 3.21 B97M-V 0.22
ωB97X-V 3.60 ωB97X-V 0.32
ωB97X-D 3.61 M06-L 0.42
B97M-V 3.93 B97-D2 0.48
B97-D2 3.97 ωB97X-D 0.54

M11 3.97 M11 0.55
M06 4.18 M06 0.57

B3LYP-D3 4.66 LC-VV10 0.72
B97-D 5.56 M06-2X 0.77
M06-L 5.63 B3LYP-D3 0.77

TPSS-D3 6.45 B97-D 0.82
M11-L 6.68 TPSS-D3 0.85

LC-VV10 6.79 M11-L 1.08
VV10 9.81 PBE-D3 1.23

PBE-D3 10.10 VV10 1.36

Table 4.22: Density functionals ranked based on their overall unweighted RMSDs
in kcal/mol for all thermochemistry (Columns 1-2) and non-covalent interactions
(Columns 3-4) data points from the training, primary test, and secondary test sets.

functional that could predict accurate energetics for both bonded and non-bonded
interactions. The most important aspects of the development process, and the re-
sulting density functional, may be summarized as follows:

1. Unlike the development of most meta-GGA density functionals, where only
one or a small number of functional forms are considered, a combinatorial
screening approach was applied to the density functional design problem. Out
of a space of almost 1040 possible functional forms, over 10 billion were screened
for optimal accuracy, transferability, numerical stability, and desired physical
properties. The results are necessarily sensitive to the data used for training
and testing (as well as the associated weights), which include a wide range of
main group thermochemistry and non-covalent interactions, but no transition
metal systems or strong correlation cases.

2. From the partial search of the space of possible meta-GGA density functionals,
many strong candidates emerged, and the best one (as measured by the defined
criteria) has been self-consistently optimized. The resulting semi-empirical den-
sity functional, B97M-V, is a 12-parameter local meta-GGA density functional
based on the B97 GGA and B00 meta-GGA models for local exchange and
correlation, augmented with nonlocal correlation using the VV10 nonlocal cor-
relation functional. Since it does not contain exact exchange, B97M-V comple-
ments the range-separated hybrid GGA ωB97X-V density functional that was
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recently developed from a complete search of a much smaller GGA functional
space.

3. Detailed assessment against 14 existing density functionals on main group ther-
mochemistry and non-covalent interactions suggests that B97M-V is the best
density functional tested for non-bonded interactions by a very significant mar-
gin, even outperforming ωB97X-V. The RMSD of B97M-V for non-covalent
interactions is almost 2 times smaller than that of the next best local density
functional. Its performance for thermochemistry is also very good, 30% better
than the next best local density functional tested. Table 4.22 ranks the 15
benchmarked density functionals with respect to their overall RMSDs for all
of the bonded and non-bonded interactions in the training, primary test, and
secondary test sets. These results suggest that B97M-V should be a useful im-
provement over existing local meta-GGA density functionals for a wide range
of chemical applications, a conclusion which is supported by a large variety of
additional tests conducted in this work.

4. As a semi-empirical density functional developed using a computationally ef-
ficient but physically inexact form, B97M-V also necessarily has significant
weaknesses in some applications, despite the successes discussed above. The
main weakness arises in predicting reaction barrier heights, where due to the
lack of exact exchange, the RMSDs of B97M-V are 3 to 4 times larger than the
best hybrid density functionals (though comparable to those of existing local
meta-GGAs). It is also likely that B97M-V will perform poorly for relative en-
ergies that are sensitive to self-interaction (delocalization) error or for systems
that exhibit strong correlations.

5. B97M-V was trained in the aug-cc-pVQZ basis set for thermochemistry and
the aug-cc-pVTZ basis set (without counterpoise corrections) for non-covalent
interactions. Its basis set dependence has been thoroughly tested in order to
identify smaller basis sets that can provide results similar in quality to those
acquired with the basis sets used for training the parameters. For thermochem-
istry, the cc-pVQZ, 6-311++G(3df,3pd), pc-2, pc-3, and def2-QZVP basis sets
can be recommended as smaller alternatives to the aug-cc-pVQZ basis set. For
non-covalent interactions, the def2-SVPD basis set used with counterpoise cor-
rections and the def2-TZVPD basis set used without counterpoise corrections
can be recommended as smaller alternatives to the non-counterpoise-corrected
aug-cc-pVTZ basis set. Furthermore, for systems where the use of diffuse
functions may lead to issues with linear dependence, the pc-2 basis set is rec-
ommended for use without counterpoise corrections. It is important to note
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that while B97M-V was trained very close to the basis set limit for thermo-
chemistry, it was not necessarily trained at the basis set limit for non-covalent
interactions.

6. Since existing semi-empirical meta-GGA density functionals are very sensi-
tive to the integration grid, B97M-V was trained with the goal of making the
(99,590)/SG-1 grid the “infinite grid” limit. The (75,302)/SG-0 and (75,302)/SG-
1 grids are recommended as the bare minimum for use with B97M-V (partic-
ularly for quick calculations), while the (99,590)/SG-1 grid is recommended if
results near the “infinite grid” limit are required. Finally, the (75,590)/SG-1
grid can serve as a compromise between these 2 limits.

7. It is desirable to apply the same training approach used here to develop other
semi-empirical density functionals with improved physical content, so that the
resulting density functionals are likewise minimally parameterized and opti-
mally transferable. Perhaps the most obvious candidate is a meta-GGA that
includes nonlocal exchange through range-separation. We hope to report such
a development in due course.
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Chapter 5

ωB97M-V: An RSH meta-GGA
density functional

5.1 Introduction

Density functional theory (DFT) is built on exact foundations[3], but the exact
functional, even if it were accessible, would likely be so complicated that it would
give little practical advantage relative to the best wave function theories. The great
achievement of functional development to date is the fact that very approximate
functionals can provide useful levels of accuracy for many electronic structure prob-
lems in chemistry and condensed matter physics. The quest to obtain improved
functionals that are computationally tractable continues in many research groups
today, and this chapter describes a promising effort in that direction.

The parameterization of empirical density functionals via linear least-squares
fitting is perhaps the most widely-used method for functional development in the
quantum chemistry community. Introduced by Axel Becke with the B97 density
functional[35], it relies on expanding inhomogeneity variables based on physically-
relevant ingredients, such as the spin-density (ρσ), its gradient (|∇ρσ|), or the kinetic

energy density (τσ =
nσ∑
i

|∇ψiσ|2), in one or more power series, whose coefficients are

determined with the use of a training set of high-quality reference values.
Since 1997, at least 40 semi-empirical density functionals have been developed

based on the concept introduced by B97. These functionals range from generalized
gradient approximation (GGA) and nonseparable gradient approximation (NGA)
functionals to meta-GGA and meta-NGA functionals. GGAs, representing Rung 2
of Perdew’s Jacob’s Ladder[4], usually depend on a single inhomogeneity variable
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that is a function of both ρσ and |∇ρσ|, while NGAs additionally depend on an
inhomogeneity variable that is solely a function of ρσ. Meta-GGAs (Rung 3) expand
upon GGAs by including an additional dependence on an inhomogeneity variable
that depends on ρσ and τσ, while meta-NGAs expand upon meta-GGAs in the same
way that NGAs expand upon GGAs.

The inclusion of exact exchange, popularized in 1993 with the B3PW91 density
functional[33], has conventionally been of the global variety, meaning that the frac-
tion of exact exchange is uniform for all interelectronic distances. More recently, these
global hybrids have been replaced by range-separated hybrid (RSH) functionals[47],
which have a fraction of short-range exact exchange that typically either smoothly in-
creases to 1 (long-range-corrected) or smoothly decreases to 0 (long-range-screened).

Finally, since density functionals are unable to properly account for long-range
correlation, most modern parameterizations simultaneously train a dispersion cor-
rection onto the exchange-correlation functional. The simplest form for a dispersion
correction is a damped, atom-atom potential (DFT-D) such as Grimme’s DFT-D2 or
DFT-D3 models[54–56]. A more rigorous treatment of dispersion is provided by non-
local correlation (NLC) functionals such as VV10[57] and vdW-DF-2[74]. However,
the most elaborate and computationally demanding choice for a dispersion correc-
tion is a post-Hartree–Fock correlation (post-HFC) method such as MP2, RPA, or
CCSD.

In light of the above considerations, Figure 5.1 presents an alternate view of el-
ements that can be combined to define most existing density functionals. The first
element (Local Exchange-Correlation) pertains to the ingredients that consti-
tute the local exchange-correlation functional, with the available choices mimicking
the first three rungs of Jacob’s Ladder. The second element (Exact Exchange)
pertains to the optional use of exact exchange contributions to define hybrid func-
tionals. Finally, the third element (Dispersion Correction) generally accounts
for the optional treatment of long-range correlation by one of the aforementioned
approaches.

A selection of semi-empirical density functionals based on the B97 concept is
listed below (dispersion-corrected functionals are underlined):

• GGA Functionals

– Local: HCTH/93, HCTH/120, HCTH/147, HCTH/407, B97-D, SOGGA11[54,
67–69, 224]

– Global Hybrid: B97-1, B97-2, B97-K, B97-3, SOGGA11-X[36, 37, 67, 70,
71]
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Figure 5.1: An alternate view of elements that can be combined to define most
existing density functionals.

– Range-Separated Hybrid: ωB97, ωB97X, ωB97X-D, ωB97X-D3, ωB97X-V[48,
58, 60, 63]

• NGA Functionals

– Local: N12, GAM[225, 226]

– Range-Separated Hybrid: N12-SX[51]

• meta-GGA Functionals

– Local: τ -HCTH, M06-L, M11-L, B97M-V[23, 24, 28, 64]

– Global Hybrid: τ -HCTHh, BMK, M05, M05-2X, M06, M06-2X, M06-HF,
M08-HX, M08-SO[28, 36, 41, 43–46]

– Range-Separated Hybrid: M11, ωM05-D, ωM06-D3[52, 59, 60]

• meta-NGA Functionals

– Local: MN12-L, MN15-L[25, 26]
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– Global Hybrid: MN15[227]

– Range-Separated Hybrid: MN12-SX[51]

The simplest form for the power series utilized in GGA functionals is

f (y) =
N∑
j=0

cjy
j, (5.1)

with y representing an inhomogeneity variable based on one of the aforementioned
physically-relevant ingredients, and N representing the maximum truncation order
for the summation. Conventionally, the value of N has either been chosen a pri-
ori or determined based on a “goodness-of-fit” to the training set. Smaller values
of N can yield smoother and perhaps more transferable inhomogeneity correction
factors, while larger values necessarily provide better fits to training data, whose
transferability must subsequently be assessed.

The most general approach, however, is to choose a value for N and consider all
possible combinations of the N + 1 coefficients. This approach was explored several
years ago[62], resulting in the development of the ωB97X-V functional[63]. Using this
combinatorial approach leads to a total of 2N+1 − 1 fits, instead of just a handful.
With a large number of candidate fits, the transferability of the fits can be assessed
on a test set, allowing them to be ranked based on both their training set and test
set performance. Furthermore, fits can be discarded based on undesirable physical
characteristics or other relevant criteria.

In contrast to the one-dimensional power series that characterizes a GGA density
functional, the most general power series that can accommodate a meta-GGA density
functional is two-dimensional,

f (x, y) =
N ′∑
i=0

N∑
j=0

cijx
iyj. (5.2)

In the spirit of the original B97 density functional, three components of the local
exchange-correlation functional require parameterization: exchange, same-spin cor-
relation, and opposite-spin correlation. With each component contributing (N ′ +
1)(N + 1) coefficients, the total number of possible fits is 23(N ′+1)(N+1) − 1. Setting
N ′, the meta-GGA maximum truncation order, to 8, and N , the GGA maximum
truncation order, to 4, brings the total number of possible combinations to an as-
tounding 2135 − 1 ≈ 1041, a “functional genome” whose rank is approaching the
square of Avogadro’s number.
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The development of the B97M-V density functional[64] was a first attempt at a
partial search of the meta-GGA functional genome within the combinatorial opti-
mization approach. Apart from the difficult issue of choosing appropriate weights for
different sets of training and testing data, the main compromise made in the design
of B97M-V was the choice to exclude exact exchange.

The goal of this chapter is to improve upon B97M-V by revisiting the meta-GGA
combinatorial search problem with the inclusion of exact exchange. The objective
is to combinatorially design a range-separated hybrid, meta-GGA density functional
which includes VV10 nonlocal correlation. It must be stressed that the combinatorial
search performed to define B97M-V should not and will not be used in any direct way
for this purpose. The addition of exact exchange means that different coefficients
in Equation 5.2 will emerge as significant, perhaps apart from the few lowest-order
terms. Unfortunately, the whole reason for adopting a combinatorial design approach
is that it is impossible to anticipate which other terms will emerge as significant.
Accordingly, it is a brand new search problem.

After describing the search process and its outcome, the functional which emerges
as most transferable (ωB97M-V) can then be compared to existing functionals.
ωB97M-V will be compared against two functionals that were designed in a similar
fashion (ωB97X-V and B97M-V), as well as some of the best alternative function-
als from other groups, particularly those that include similar functional ingredients.
However, no other existing functional yet combines precisely the same components
as ωB97M-V.

A few of the issues that will be particularly interesting to examine are the fol-
lowing:

1. Comparing ωB97M-V against ωB97X-V will demonstrate the value of adding
kinetic energy density dependence to a range-separated hybrid GGA functional
containing VV10 nonlocal correlation.

2. Comparing ωB97M-V against B97M-V will demonstrate the value of adding
exact exchange to a local meta-GGA functional containing VV10 nonlocal cor-
relation.

3. Comparing ωB97M-V against the best available semi-empirical hybrid meta-
GGAs including M06-2X, M08-HX, M11, ωM05-D, and MN15 will test the
value of the combinatorial optimization strategy.

The hope is that within the limits of the functional form that has been chosen
for optimization, the combinatorial design approach will permit the discovery of the
most broadly accurate Rung 1-4 density functional to date.
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5.2 Outline

This chapter describes the task of designing, self-consistently training, and ex-
tensively testing an accurate, transferable, and well-behaved range-separated hybrid
meta-GGA density functional with VV10 nonlocal correlation. The use of highly ac-
curate datasets is integral to the functional development process, and the 84 datasets
utilized in this work are described in Section 5.4 and Table 5.1. This is followed by
a description of the equations that characterize the chosen functional form (Sec-
tion 5.5). The design process, described in detail in Section 5.6, involves searching
through over 10 billion potential fits (Table 5.2 and Figure 5.2), whose parameters
are individually trained on a training set and tested for transferability on a primary
test set. The fit with the best performance across the training and primary test sets
is self-consistently parameterized (Table 5.3 and Figure 5.3) and named ωB97M-V.
In Section 5.7, the new functional is compared to the 11 existing functionals shown
in Table 5.4, across the training set (Figure 5.5), the primary test set (Figure 5.6),
and a secondary test set (Figure 5.7). Since the test set performance is the most
significant measure of the merit of a semi-empirical density functional, Figure 5.4
shows the performance of all 12 functionals for the 8 datatypes defined in Section 5.4
across 3547 test data points. The interpolated equilibrium bond lengths and equilib-
rium binding energies of 90 potential energy curves are analyzed for all 12 functionals
in Figure 5.8, and the benzene-argon potential energy curve is displayed in Figure
5.9 as an example of the performance of these functionals for weak interactions. In
Section 5.8, the basis set dependence of ωB97M-V is thoroughly assessed by applying
21 basis sets to 4 datasets, and the results are summarized in Figure 5.10. In Sec-
tion 5.9, the integration grid sensitivity of ωB97M-V is thoroughly assessed (Table
5.5) by calculating 3247 of the 3834 data points in the training and primary test
sets with a variety of integration grids. Finally, the chapter is concluded in Section
5.10 with a summary (Figure 5.11) of the performance of all 12 functionals for the 8
aforementioned datatypes across 4399 data points.

5.3 Computational Details

Since several of the density functionals that appear in this chapter contain both
a local exchange-correlation functional and a nonlocal correlation functional, the
integration grids used to evaluate these two components will be reported together,
separated by a forward slash (local/nonlocal). Regarding the integration grid, the
notation (x,y) indicates x radial shells with y angular grid points per shell.

The (99,590)/SG-1 grid was used for all of the datasets in the training, primary
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test, and secondary test sets, except AE18 and RG10. The (500,974)/(75,302) grid
was used for both of these datasets. The def2-QZVPPD basis set was used for
all of the datasets in the training, primary test, and secondary test sets, without
counterpoise corrections.

For the basis set limit tests, the (99,590)/SG-1 grid was used, while 21 basis sets
from 4 different families were tested: the cc-pVXZ and aug-cc-pVXZ (X=D,T,Q)
Dunning basis sets[77, 78, 147], the pc-X and aug-pc-X (X=0,1,2,3) Jensen ba-
sis sets[174–176], the def2-SVP, def2-SVPD, and def2-XZVPP and def2-XZVPPD
(X=T,Q) Karlsruhe basis sets[146, 228–231], and the 6-311++G(3df,3pd) Pople ba-
sis set. For the integration grid limit tests, the def2-QZVPPD basis set was used,
while seven different grid combinations were tested: (250,974)/SG-1, (99,590)/SG-
1, (99,302)/SG-1, (75,590)/SG-1, (75,302)/SG-1, (75,302)/SG-0, and SG-1/SG-0[61,
232].

All of the calculations were performed with a development version of Q-Chem
4.0[211].

5.4 Datasets

A total of 84 existing datasets are employed in this work, containing 4986 data
points (and requiring 5931 single-point calculations). 82 of these 84 datasets (AE18
and RG10 are excluded) are classified according to 8 categories (or datatypes):
NCED (non-covalent dimers (easy)), NCEC (non-covalent clusters (easy)), NCD
(non-covalent dimers (difficult)), IE (isomerization energies (easy)), ID (isomeriza-
tion energies (difficult)), TCE (thermochemistry (easy)), TCD (thermochemistry
(difficult)), and BH (barrier heights). The number of data points (and datasets)
that are classified according to NCED, NCEC, NCD, IE, ID, TCE, TCD, and BH
are 1744 (18), 243 (12), 91 (5), 755 (12), 155 (5), 947 (15), 258 (7), and 206 (8),
respectively.

For the purposes of functional development and testing, the datasets are divided
into three categories. A training set is used to fit the parameters of each candidate
functional in the combinatorial search, and then again to self-consistently train the
best candidate. A primary test set is used in conjunction with the training set to
perform the combinatorial search, and identify the best candidate (details of this
procedure are given in Section 5.6). Finally, a secondary test set is used to assess
the final optimized functional. Detailed information about the training, primary
test, and secondary test sets can be found in Table 5.1. The training set contains
870 data points overall, the primary test set contains 2964 data points overall, and
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the secondary test set contains 1152 data points overall. Thus, the training set
constitutes only 17.5% of the entire database used to develop and assess ωB97M-V.

5.5 Theory

The complete functional form for ωB97M-V is given by Equations 5.3-5.5. The
acronyms used in this section are: exchange-correlation (xc), exchange (x), corre-
lation (c), short-range (sr), long-range (lr), meta-GGA (mGGA), same-spin (ss),
opposite-spin (os), and nonlocal (nl).

EωB97M−V
xc = EωB97M−V

x + EωB97M−V
c (5.3)

EωB97M−V
x = EmGGAx,sr + cxE

exact
x,sr + Eexactx,lr (5.4)

EωB97M−V
c = EmGGAc,ss + EmGGAc,os + EV V 10

c,nl (5.5)

The local spin-density approximation (LSDA) for exchange can be expressed in terms
of the first-order spinless reduced density matrix for an infinite uniform electron gas
(UEG),

ELSDAx = −1

2

α,β∑
σ

∫ ∫
1

s

∣∣ρUEGσ

∣∣2 drds, (5.6)

ρUEGσ = 3ρσ

(
sin (kFσs)− kFσs cos (kFσs)

(kFσs)
3

)
, (5.7)

where s = r1 − r2, r = 1
2

(r1 + r2), and kFσ = (6π2ρσ)
1/3

is the spin-polarized Fermi
wave vector. Integration of Equation 5.6 over s gives the well-known expression for
the LSDA exchange energy in terms of the exchange energy density per unit volume,

ELSDAx =

α,β∑
σ

∫
eUEGx,σ dr, (5.8)

eUEGx,σ = −3

2

(
3

4π

)1/3

ρ4/3
σ , (5.9)

Transforming ELSDA
x to its short-range counterpart, ELSDA

x,sr , is accomplished by re-

placing 1
s

in Equation 5.6 with erfc(ωs)
s

and carrying out the same integration. The
resulting SR-LSDA exchange functional,

ELSDAx,sr =

α,β∑
σ

∫
eUEGx,σ Fx,σdr, (5.10)
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Name Set Datatype # Description ∆E (kcal/mol) Ref.

A24 Train NCED 24 Binding energies of small non-covalent complexes 2.65 149
DS14 Train NCED 14 Binding energies of complexes containing divalent sulfur 3.70 153
HB15 Train NCED 15 Binding energies of hydrogen-bonded dimers featuring ionic groups common in biomolecules 19.91 220
HSG Train NCED 21 Binding energies of small ligands interacting with protein receptors 6.63 221,89

NBC10 Train NCED 184 PECs for BzBz (5), BzMe (1), MeMe (1), BzH2S (1), and PyPy (2) 1.91 97,88,233,89
S22 Train NCED 22 Binding energies of hydrogen-bonded and dispersion-bound non-covalent complexes 9.65 104,89
X40 Train NCED 31 Binding energies of non-covalent interactions involving halogenated molecules 5.26 144

A21x12 PriTest NCED 252 PECs for the 21 equilibrium complexes from A24 1.43 234
BzDC215 PriTest NCED 215 PECs for benzene interacting with two rare-gas atoms and eight first- and second-row hydrides 1.81 91

HW30 PriTest NCED 30 Binding energies of hydrocarbon-water dimers 2.34 100
NC15 PriTest NCED 15 Binding energies of very small non-covalent complexes 0.95 222
S66 PriTest NCED 66 Binding energies of non-covalent interactions found in organic molecules and biomolecules 6.88 103,105

S66x8 PriTest NCED 528 PECs for the 66 complexes from S66x8 5.57 103
3B-69-DIM SecTest NCED 207 Binding energies of all relevant pairs of monomers from 3B-69-TRIM 5.87 235
AlkBind12 SecTest NCED 12 Binding energies of saturated and unsaturated hydrocarbon dimers 3.14 236

CO2Nitrogen16 SecTest NCED 16 Binding energies of CO2 to molecular models of pyridinic N-doped graphene 3.84 237
HB49 SecTest NCED 49 Binding energies of small- and medium-sized hydrogen-bonded systems 14.12 238,239,240

Ionic43 SecTest NCED 43 Binding energies of anion-neutral, cation-neutral, and anion-cation dimers 69.94 241

H2O6Bind8 Train NCEC 8 Binding energies of isomers of (H2O)6 46.96 152,209
HW6Cl Train NCEC 6 Binding energies of Cl−(H2O)n (n = 1− 6) 57.71 152,209
HW6F Train NCEC 6 Binding energies of F−(H2O)n (n = 1− 6) 81.42 152,209

FmH2O10 PriTest NCEC 10 Binding energies of isomers of F−(H2O)10 168.50 152,209
Shields38 PriTest NCEC 38 Binding energies of (H2O)n (n = 2− 10) 51.54 223

SW49Bind345 PriTest NCEC 31 Binding energies of isomers of SO4
2−(H2O)n (n = 3− 5) 28.83 87

SW49Bind6 PriTest NCEC 18 Binding energies of isomers of SO4
2−(H2O)6 62.11 87

WATER27 PriTest NCEC 23 Binding energies of neutral and charged water clusters 67.48 98,216
3B-69-TRIM SecTest NCEC 69 Binding energies of trimers, with three different orientations of 23 distinct molecular crystals 14.36 235

CE20 SecTest NCEC 20 Binding energies of water, ammonia, and hydrogen fluoride clusters 30.21 242,243
H2O20Bind10 SecTest NCEC 10 Binding energies of isomers of (H2O)20 (low-energy structures) 198.16 209
H2O20Bind4 SecTest NCEC 4 Binding energies of isomers of (H2O)20 (dod, fc, fs, and es) 206.12 218,98,216,217

TA13 Train NCD 13 Binding energies of dimers involving radicals 22.00 244
XB18 Train NCD 8 Binding energies of small halogen-bonded dimers 5.23 245

Bauza30 PriTest NCD 30 Binding energies of halogen-, chalcogen-, and pnicogen-bonded dimers 23.65 246,247
CT20 PriTest NCD 20 Binding energies of charge-transfer complexes 1.07 248
XB51 PriTest NCD 20 Binding energies of large halogen-bonded dimers 6.06 245

AlkIsomer11 Train IE 11 Isomerization energies of n = 4− 8 alkanes 1.81 93
Butanediol65 Train IE 65 Isomerization energies of butane-1,4-diol 2.89 249

ACONF PriTest IE 15 Isomerization energies of alkane conformers 2.23 250,216
CYCONF PriTest IE 11 Isomerization energies of cysteine conformers 2.00 157,216
Pentane14 PriTest IE 14 Isomerization energies of stationary points on the n-pentane torsional surface 6.53 251

SW49Rel345 PriTest IE 31 Isomerization energies of SO4
2−(H2O)n (n = 3− 5) 1.47 87

SW49Rel6 PriTest IE 18 Isomerization energies of SO4
2−(H2O)6 1.22 87

H2O16Rel5 SecTest IE 5 Isomerization energies of (H2O)16 (boat and fused cube structures) 0.40 219
H2O20Rel10 SecTest IE 10 Isomerization energies of (H2O)20 (low-energy structures) 2.62 209
H2O20Rel4 SecTest IE 4 Isomerization energies of (H2O)20 (dod, fc, fs, and es) 5.68 218,98,216,217
Melatonin52 SecTest IE 52 Isomerization energies of melatonin 5.54 252
YMPJ519 SecTest IE 519 Isomerization energies of the proteinogenic amino acids 8.33 253

EIE22 Train ID 22 Isomerization energies of enecarbonyls 4.97 254
Styrene45 Train ID 45 Isomerization energies of C8H8 68.69 255

DIE60 PriTest ID 60 Isomerization energies of reactions involving double-bond migration in conjugated dienes 5.06 256
ISOMERIZATION20 PriTest ID 20 Isomerization energies 44.05 82

C20C24 SecTest ID 8 Isomerization energies of the ground state structures of C20 and C24 36.12 257

AlkAtom19 Train TCE 19 n = 1− 8 alkane atomization energies 1829.31 93
BDE99nonMR Train TCE 83 Bond dissociation energies (SR) 114.98 82

G21EA Train TCE 25 Adiabatic electron affinities of atoms and small molecules 40.86 154,216
G21IP Train TCE 36 Adiabatic ionization potentials of atoms and small molecules 265.35 154,216

TAE140nonMR Train TCE 124 Total atomization energies (SR) 381.05 82
AlkIsod14 PriTest TCE 14 n = 3− 8 alkane isodesmic reaction energies 10.35 93
BH76RC PriTest TCE 30 Reaction energies from HTBH38 and NHTBH38 30.44 95,94,216

EA13 PriTest TCE 13 Adiabatic electron affinities 42.51 171
HAT707nonMR PriTest TCE 505 Heavy-atom transfer energies (SR) 74.79 82

IP13 PriTest TCE 13 Adiabatic ionization potentials 256.24 171
NBPRC PriTest TCE 12 Reactions involving NH3/BH3 and PH3/BH3 30.52 216,258,210

SN13 PriTest TCE 13 Nucleophilic substitution energies 25.67 82
BSR36 SecTest TCE 36 Hydrocarbon bond separation reaction energies 20.06 259,210

HNBrBDE18 SecTest TCE 18 Homolytic N–Br bond dissociation energies 56.95 260
WCPT6 SecTest TCE 6 Tautomerization energies for water-catalyzed proton-transfer reactions 7.53 261

BDE99MR PriTest TCD 16 Bond dissociation energies (MR) 54.51 82
HAT707MR PriTest TCD 202 Heavy-atom transfer energies (MR) 83.41 82
TAE140MR PriTest TCD 16 Total atomization energies (MR) 147.20 82
PlatonicHD6 SecTest TCD 6 Homodesmotic reactions involving platonic hydrocarbon cages, CnHn (n = 4, 6, 8, 10, 12, 20) 136.71 262
PlatonicID6 SecTest TCD 6 Isodesmic reactions involving platonic hydrocarbon cages, CnHn (n = 4, 6, 8, 10, 12, 20) 96.19 262
PlatonicIG6 SecTest TCD 6 Isogyric reactions involving platonic hydrocarbon cages, CnHn (n = 4, 6, 8, 10, 12, 20) 356.33 262

PlatonicTAE6 SecTest TCD 6 Total atomization energies of platonic hydrocarbon cages, CnHn (n = 4, 6, 8, 10, 12, 20) 2539.27 262

BHPERI26 Train BH 26 Barrier heights of pericyclic reactions 23.15 216,263
CRBH20 Train BH 20 Barrier heights for cycloreversion of heterocyclic rings 46.40 264
DBH24 Train BH 24 Diverse barrier heights 28.34 83,84
CR20 PriTest BH 20 Cycloreversion reaction energies 22.31 265

HTBH38 PriTest BH 38 Hydrogen transfer barrier heights 16.05 94
NHTBH38 PriTest BH 38 Non-hydrogen transfer barrier heights 33.48 95

PX13 SecTest BH 13 Barrier heights for proton exchange in water, ammonia, and hydrogen fluoride clusters 28.83 242,243
WCPT27 SecTest BH 27 Barrier heights of water-catalyzed proton-transfer reactions 38.73 261

AE18 Train – 18 Absolute atomic energies of hydrogen through argon 148,739.00 86
RG10 PriTest – 569 PECs for the 10 rare-gas dimers involving helium through krypton 1.21 96

Table 5.1: Summary of the 84 datasets that comprise the training, primary test, and
secondary test sets. The datatypes are explained in Section 5.4. The sixth column
contains the root-mean-squares of the dataset reaction energies. PEC stands for
potential energy curve, SR stands for single-reference, MR stands for multi-reference,
Bz stands for benzene, Me stands for methane, and Py stands for pyridine.
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is conveniently identical to its unattenuated counterpart, with the exception of a
multiplicative factor,

Fx,σ = 1− 2

3
aσ

(
2
√
πerf

(
1

aσ

)
− 3aσ+

a3
σ +

(
2aσ − a3

σ

)
exp

(
− 1

a2
σ

))
,

(5.11)

where aσ = ω
kFσ

and ω is a nonlinear parameter that controls the transition from local
DFT exchange to nonlocal exact exchange with respect to interelectronic distance.

Accounting for inhomogeneities in the electron density is achieved by multiplying
the integrand of the SR-LSDA exchange functional (Equation 5.10) by a power se-
ries inhomogeneity correction factor (ICF), gx, resulting in the SR-mGGA exchange
functional,

EmGGAx,sr =

α,β∑
σ

∫
eUEGx,σ Fx,σgxdr, (5.12)

gx =

N ′∑
i

N∑
j

cx,ijw
i
x,σu

j
x,σ, (5.13)

wx,σ =
tσ − 1

tσ + 1
, (5.14)

ux,σ =
γxs

2
σ

1 + γxs2
σ

, (5.15)

where the variable, wx,σ ∈ [−1, 1], is a finite domain transformation of the dimen-
sionless ratio of the UEG kinetic energy density to the exact kinetic energy density,

tσ = τUEGσ

τσ
, with τUEGσ = 3

5
(6π2)

2/3
ρ

5/3
σ , and the variable, ux,σ ∈ [0, 1], is a finite

domain transformation of the dimensionless spin-density gradient, sσ = |∇ρσ |
ρ
4/3
σ

. The

linear DFT exchange parameters, cx,ij, will be determined via least-squares fitting
to a training set in Section 5.6, while γx = 0.004 is a fixed nonlinear DFT exchange
parameter that was fit to the Hartree–Fock exchange energies of 20 atoms in 1986
by Becke[9].

Nonlocal exact exchange is introduced by splitting the conventional 1
r

Coulomb
operator into a short-range component (Eexact

x,sr ) and a long-range component (Eexact
x,lr )

with the erfc(ωr)
r

and erf(ωr)
r

Coulomb functions, respectively,

Eexactx,sr = −1

2

α,β∑
σ

nσ∑
i,j

∫ ∫
ψ∗iσ (r1)ψ∗jσ (r2)

erfc (ωr)

r

ψjσ (r1)ψiσ (r2) dr1dr2,

(5.16)
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Eexactx,lr = −1

2

α,β∑
σ

nσ∑
i,j

∫ ∫
ψ∗iσ (r1)ψ∗jσ (r2)

erf (ωr)

r

ψjσ (r1)ψiσ (r2) dr1dr2,

(5.17)

where ψiσ and ψjσ are occupied Kohn–Sham spatial orbitals and r = |r1 − r2|. In-
stead of setting the percentage of exact-exchange at r = 0 to zero, an optimizable
parameter, cx, controls the amount of short-range exact exchange.

Closed-form expressions for the correlation energy density per particle of an infi-
nite uniform electron gas, εUEGc , are only known for the low- and high-density limits of
the paramagnetic and ferromagnetic cases. Using the Monte-Carlo data of Ceperley
and Alder[8], Perdew and Wang developed an analytic spin-compensated represen-
tation[7] for εUEGc . Combined with the spin-polarization interpolation formula of
Vosko, Wilk, and Nusair[6], the spin-polarized PW92 correlation energy density per
electron, εPW92

c , is the starting point for the correlation functional,

ELSDAc =

∫
ρεPW92
c dr. (5.18)

Using the spin decomposition technique of Stoll and coworkers[81], the LSDA corre-
lation energy is separated into same-spin and opposite-spin components,

ELSDAc,ss =

α,β∑
σ

∫
ePW92
c,σσ dr =

∫
ραε

PW92
c (ρα, 0) dr+∫

ρβε
PW92
c (0, ρβ) dr,

(5.19)

ELSDAc,os =

∫
ePW92
c,αβ dr =

∫
ρεPW92
c dr−∫

ραε
PW92
c (ρα, 0) dr−

∫
ρβε

PW92
c (0, ρβ) dr,

(5.20)

where ePW92
c,σσ and ePW92

c,αβ are the PW92 same-spin and opposite-spin correlation energy
densities per unit volume, respectively. Extending Equations 5.19 and 5.20 to account
for inhomogeneities in the electron density is straightforward, since the approach used
for the exchange functional can be utilized,

EmGGAc,ss =

α,β∑
σ

∫
ePW92
c,σσ gc,ssdr, (5.21)

gc,ss =

N ′∑
i

N∑
j

ccss,ijw
i
c,σσu

j
c,σσ, (5.22)
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wc,σσ =
tσ − 1

tσ + 1
, (5.23)

uc,σσ =
γc,sss

2
σ

1 + γc,sss2
σ

, (5.24)

EmGGAc,os =

∫
ePW92
c,αβ gc,osdr, (5.25)

gc,os =

N ′∑
i

N∑
j

ccos,ijw
i
c,αβu

j
c,αβ , (5.26)

wc,αβ =
tαβ − 1

tαβ + 1
, (5.27)

uc,αβ =
γc,oss

2
αβ

1 + γc,oss2
αβ

, (5.28)

where tαβ = 1
2

(tα + tβ) and s2
αβ = 1

2

(
s2
α + s2

β

)
. The linear DFT correlation param-

eters, ccss,ij and ccos,ij, will be determined via least-squares fitting to a training set
in Section 5.6, while γc,ss = 0.2 and γc,os = 0.006 are nonlinear DFT correlation
parameters that were fit to the correlation energies of neon and helium in 1997 by
Becke[35].

Nonlocal correlation is taken into account via the VV10 NLC functional[57],

EV V 10
c,nl =

∫
ρ (r1)

[
1

32

[
3

b2

]3/4
+

1

2

∫
ρ (r2) Φ (r1, r2; {b, C}) dr2

]
dr1, (5.29)

where Φ (r1, r2; {b, C}) is the nonlocal correlation kernel defined in Reference 57.
The VV10 NLC functional contains two nonlinear parameters: b, which controls the
short-range damping of the 1/r6 asymptote, and C, which controls the accuracy of
the asymptotic C6 coefficients.

5.6 Training

With a total of 3834 data points in the training and primary test sets, a three-
dimensional nonlinear optimization of the parameters associated with range-separation
(ω) and VV10 (b and C) is impractical. As a result, the values of ω = 0.3, b = 6, and
C = 0.01 that were optimized for ωB97X-V are taken without further investigation.
Any inaccuracies in these parameters will be accounted for during the optimization
of the linear parameters.

In order to generate the data that is needed to carry out the least-squares fits,
it is necessary to choose an initial guess for the linear coefficients. As explained in
Section 5.1, the value of N ′ (the maximum truncation order for w in Equations 5.13,
5.22, and 5.26) is set to 8 and the value of N (the maximum truncation order for u
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in Equations 5.13, 5.22, and 5.26) is set to 4. This results in 135 coefficients that
arise from the local exchange-correlation functional. Additionally, the fraction of
short-range exact exchange (cx) from Equation 5.4 is the 136th coefficient.

For the 135 coefficients that arise due to the three power series ICFs, the most
flexible initial guess is that of the SR-LSDA, where cx,00 = ccss,00 = ccos,00 = 1,
and the remaining 132 coefficients are zero. For cx, the most straightforward initial
guess is zero. However, since the contribution from exact exchange is bound to
constitute a large fraction of the total exchange-correlation energy, it is beneficial to
pick a value for cx that is as close to the final value as possible, in order to minimize
discrepancies between the root-mean-square deviations that are generated using the
initial guess, and those of the final, self-consistently optimized functional. With the
value of cx = 0.167 from ωB97X-V serving as a guide, the initial guess for the fraction
of short-range exact exchange is set to cx = 0.15. Finally, the only constraint that is
explicitly enforced is the UEG limit for exchange (cx,00 + cx = 1).

The fundamental equations that will be used throughout the least-squares fitting
procedure are

W
1/2
Tr A∆x = W

1/2
Tr b (5.30)

and

∆x =
(
ATWTrA

)−1 (
ATWTrb

)
, (5.31)

where ∆x = xi+1 − xi is the change in the linear coefficients (length: 136), WTr is
a diagonal matrix of training weights (dimensions: 3834 x 3834), b = Eref − Ei is
the difference between the reference and initial guess energies (length: 3834), and
A = A (xi) is the matrix of ICF contributions (dimensions: 3834 x 136). While the
first three quantities are conceptually straightforward, it is worthwhile to further
explain how to generate the A matrix.

A is most generally a (# of data points) × (# of linear parameters) matrix. As an
example, the element A7,23 corresponds to the contribution to the 7th data point from
the 23rd linear parameter (cx,42). Assuming that the seventh data point corresponds
to the binding energy of the water dimer from the S22 dataset, computing A7,23

requires calculating the following quantity,

α,β∑
σ

∫
eUEGx,σ Fx,σw

4
x,σu

2
x,σdr, (5.32)

for the water dimer and both of its monomers, and computing the associated contri-
bution to the binding energy. In this work, the Amatrix is computed twice: once with
the (99,590)/SG-1 grid and once with the (250,974)/SG-1 grid (the (500,974)/(75,302)
grid is always used for AE18 and RG10). The rationale for computing A in two
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different grids will be explained when the filtering procedure is discussed. Unless
otherwise specified, terms from Equations 5.30 and 5.31 that appear henceforth are
computed with the (250,974)/SG-1 grid. To refer to a quantity, Z, computed in the
(99,590)/SG-1 grid, the following notation will be used: Z ′.

Since the optimization procedure involves both a training set (for determining the
values of the coefficients) and a primary test set (for assessing the transferability of
the resulting coefficients), a measure of the overall performance of the fits is necessary
for ranking them. For this purpose, the total weighted root-mean-square-deviation
(WRMSD),

WRMSDTotal =

√
diag (W ) · (A∆x− b)2

#Total
, (5.33)

is used, where W is a diagonal matrix of training and primary test set weights
(dimensions: 3834 x 3834). The diagonals of W and WTr are identical for the
elements that belong to the training set, while WTr contains zeros for the elements
that belong to the primary test set.

The weighting scheme used for ωB97M-V is considerably different than that used
for B97M-V. Initially, each data point is given a weight that corresponds to the
inverse of the product of the number of data points in the associated dataset and
the root-mean-square of the reaction energies in the associated dataset. These values
can be found in the fourth and sixth columns of Table 5.1, respectively. Within each
of the datatypes, the weights are normalized by dividing by the smallest weight,
and then exponentiated such that they lie between 1 and 2. For the determination
of the weights only, the NCED and NCEC datatypes are consolidated into a single
datatype, NCE, giving a total of seven datatypes. Furthermore, AE18 is included in
the TCE datatype in order to receive a weight. Finally, the seven datatypes get a
multiplicative weight based on intuition: 0.1 for TCD, 1 for TCE, 10 for NCD, ID,
and BH, and 100 for NCE and IE. As RG10 does not belong to a datatype, it gets a
weight of 10000. At this point, all of the data points (besides those in RG10) have a
weight between 0.1 and 200. In order to promote transferability, the datasets in the
primary test set get another multiplicative weight of 2.

Following the initial setup described above, the search for the optimal least-
squares fit can proceed. Applying the single UEG constraint to the initial parameter
space of 136 brings the total number of linearly independent parameters to 135. With
the available computing resources (a 64-core node), the maximum number of fits that
can be performed in a single day is around two billion. Therefore 135C5=346,700,277,
which returns only 5-parameter fits, is the largest calculation that can be performed
in a single day using all 135 parameters (since 135C6=7,511,839,335). In order to
explore fits with more parameters, it is necessary to either consider different trunca-
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tions of the parameter space or compulsorily-select commonly-occurring parameters.
The first option reduces the value of n (from nCk), allowing for larger values of k.
For example, the binomial coefficients 135C5 and 82C6 are both similar in value,
yet the latter allows the exploration of 6-parameter fits. The second option requires
F commonly-occurring parameters to be compulsorily-selected (or frozen), allowing
for the exploration of (n-F)Ck (k+F)-parameter fits. For example, if the results
from 135C5 indicate that cx,01 is the most important parameter, a possible next step
would be to freeze cx,01 (not its value but simply its inclusion in all successive fits)
and explore the results of 134C5 with cx,01 frozen, giving 6-parameter fits.

For the optimization of the functional at hand, a combination of these two options
is utilized. While the meta-GGA parameter space described thus far contains 135
linearly independent parameters, its GGA subset contains only 15, which amounts to
215−1 = 32767 total possible fits. The GGA parameter space is fully searchable and
the recent ωB97X-V density functional was developed within this subspace. Since
ωB97X-V has seven linear parameters, it is plausible to assume that the minimum
number of linear parameters necessary to parameterize a functional within the meta-
GGA parameter space is seven. Thus, the initial parameter space of 135 should be
truncated such that 7-parameter fits are possible without freezing. After considering
a multitude of different truncations, a parameter space designated as 2I6I6I was
selected. This includes variables up to second order individually in w and u for
exchange and up to sixth order individually in w and u for same-spin and opposite-
spin correlation. With 9 coefficients from exchange, 35 coefficients from same-spin
correlation, 35 coefficients from opposite-spin correlation, an additional coefficient
from short-range exact exchange, and a single constraint, the 2I6I6I designation
reduces the parameter space from 135 to 79.

Although the 2I6I6I designation reduces the parameter space substantially, the
largest calculation that is possible is still only 79C7=2,898,753,715. Thus, only up
to 7-parameter fits can be explored. In order to advance past seven, it is necessary
to compulsorily-select commonly-occurring parameters. The process of selecting the
parameter that will be frozen involves a series of steps. First, from all of the 7-
parameter fits resulting from the 79C7 optimization, the top 100,000 (ranked by
total WRMSD) are saved and filtered twice. The first set of filters deals with the
physical characteristics of the fits:

• |xi+1| ≤ 25

• 0 ≤ gx ≤ 2.273

• −10 ≤ gc,ss ≤ 10
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• −10 ≤ gc,os ≤ 10

• |Ei − E ′i + (A− A′) ∆x| ≤ 0.015 kcal/mol

Of the conditions listed above, the first ensures that the coefficients are small,
the second ensures that the exchange functional obeys the local Lieb-Oxford bound
and that all contributions to exchange are negative, the third and fourth ensure that
the correlation functionals are well-behaved, and the last ensures that the absolute
interaction energy errors attributed to the integration grid are no larger than 0.015
kcal/mol.

Following the first set of filters, at most 1000 of the remaining fits are passed
through a second filter, which deals with the accuracy of the fits for predicting equi-
librium bond lengths for non-covalent interactions. The BzDC215, NBC10, RG10,
and S66x8 datasets are utilized to this effect. In total, these four datasets contain
96 potential energy curves (PEC), with BzDC215, NBC10, and RG10 each having
10, and S66x8 having 66. However, the benzene-neon dimer PEC from BzDC215
is removed because of severe integration grid issues. The remaining 95 PECs are
interpolated and the equilibrium bond lengths are evaluated for all of the fits that
pass through the first filter. Only fits that have an RMSD of less than 0.03 Å across
the 95 PECs are allowed through the second filter.

Finally, the surviving fits are analyzed in order to determine the coefficient that
is most commonly used. This coefficient is then compulsorily-selected in the next set
of least-squares fits in order to allow for the exploration of 8-parameter fits. This
procedure was repeated until a total of eight parameters were frozen (cx,01, cx,10,
ccss,10, ccss,20, ccos,20, ccss,00, ccos,10, ccos,21). The progression from the 7-parameter fits
to the 15-parameter fits can be tracked in Table 5.2.

Due to the nonlinear nature of the self-consistent field method, the A matrix
changes with every update to the parameters (since A = A (xi)), and it is very likely
that the A matrix that is constructed from the initial guess will be vastly different
from the last A matrix that will be used to finalize the parameters. Furthermore, the
larger the difference between the starting point and the ending point, the higher the
chance that the initial RMSDs will differ significantly from the RMSDs of the final
functional. In fact, this phenomenon was first encountered during the development
of the B97M-V density functional and was bypassed by updating the initial guess
with a better guess formed by the first nine parameters that were frozen. Since this
methodology worked well during the development of B97M-V, it is utilized in the
present work. Thus, the eight parameters shown in the first column of Table 5.2
(“Best 8”) are used to update the SR-LSDA+VV10 initial guess.
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Frozen # of Initial Fits # (Fitted) Filter 1 Filter 2 Common

– 2,898,753,715 7 3342 413 cx,01

cx,01 2,641,902,120 8 1476 454 cx,10

cx,10 2,404,808,340 9 2806 623 ccss,10

ccss,10 2,186,189,400 10 7144 764 ccss,20

ccss,20 1,984,829,850 11 18021 591 ccos,20

ccos,20 1,799,579,064 12 6531 469 ccss,00

ccss,00 1,629,348,612 13 2985 696 ccos,10

ccos,10 1,473,109,704 14 1868 726 ccos,21

ccos,21 1,329,890,705 15 120 101 ccos,60

Table 5.2: Progression from the 7-parameter fits to the 15-parameter fits based on the
SR-LSDA+VV10 initial guess. The first column indicates the additional coefficient
that is frozen (compulsorily-selected) in order to achieve the associated set of fits.
The second column contains the total number of least-squares fits that are performed,
of which only the top 100,000 (ranked by total WRMSD) are analyzed. The fourth
column indicates the number of fits (of 100,000) that remain after the first filter
is applied. The fifth column indicates the number of fits (of at most 1000) from
the previous column that remain after the second filter is applied. Finally, the last
column indicates the coefficient that is most commonly utilized in the surviving fits
(shown in Column 5).

With the updated guess, the A matrix is computed with both the (99,590)/SG-1
and (250,974)/SG-1 grids and the same procedure outlined above is followed. How-
ever, no additional parameters need to be frozen, since with eight parameters already
frozen, it is trivial to explore 9- through 15-parameter fits (71C1 through 71C7).
However, both sets of filters are still applied. Beginning with the 9-parameter fits,
an additional parameter is accepted only if it improves the total WRMSD by more
than 0.05 kcal/mol (a protocol which was successfully utilized during the explo-
ration of the GGA subspace[62]). Consequently, a 12-parameter fit emerges as the
optimal fit and is self-consistently optimized. The progression of the minimum total
WRMSDs from the 9- to 15-parameters fits is: {–, 5.04, 3.52, 3.46, 3.44, 3.42, 3.39}.
The WRMSDs corresponding to the least-squares fits from the SR-LSDA+VV10
initial guess and the “Best 8” updated guess are shown in Figure 5.2 in red and
blue, respectively. The smallest WRMSD for a given number of linear parameters
is displayed only for the “Best 8” data. The WRMSD of the least-squares fit that
corresponds to ωB97M-V is boxed.

Including the initial cycle (Cycle 1) with the unoptimized ωB97M-V density func-
tional as well as the “Best 8” cycle, the self-consistent optimization of ωB97M-V
required six cycles. The final parameters of ωB97M-V can be found in the last col-
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Figure 5.2: WRMSDs corresponding to the least-squares fits from the SR-
LSDA+VV10 initial guess (red) and the “Best 8” updated guess (blue). The smallest
WRMSD for a given number of linear parameters is displayed only for the “Best 8”
data. The WRMSD of the least-squares fit that corresponds to ωB97M-V is boxed.

umn of Table 5.3, and Figure 5.3 shows the exchange, same-spin correlation, and
opposite-spin correlation ICF plots for ωB97M-V (bottom). In addition, it displays
the ICFs for the SR-LSDA+VV10 initial guess (top) and the “Best 8” updated guess
(middle). The final ICFs of ωB97M-V are smooth and well-behaved, with the max-
imum value of the exchange ICF (2.116) lying well under the Lieb-Oxford bound
(2.273). The lower and upper bounds of all three ICFs are:

• 0.591 ≤ gx ≤ 2.116

• -7.482 ≤ gc,ss ≤ 4.429

• -1.957 ≤ gc,os ≤ 4.222

The four parameters that are chosen in addition to the “Best 8” are ccss,43, ccss,04,
ccos,60, and ccos,61. Interestingly, the chosen fit does not optimize the value of short-
range exact exchange away from cx = 0.15.
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Figure 5.3: Exchange, same-spin correlation, and opposite-spin correlation inhomo-
geneity correction factor plots for the ωB97M-V density functional (bottom). In
addition, the inhomogeneity correction factor plots for the SR-LSDA+VV10 initial
guess (top) and the “Best 8” updated guess (middle) are included for comparison.
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Parameter 1 2 (Best 8) 3 4 5 6 (Final)

cx,00 0.85 0.85 0.85 0.85 0.85 0.85
cx,10 0 -0.097 0.265 0.259 0.259 0.259
cx,01 0 0.789 1.014 1.007 1.007 1.007

ccss,00 1 0.216 0.457 0.443 0.443 0.443
ccss,10 0 -2.496 -4.868 -4.55 -4.536 -4.535
ccss,20 0 -0.816 -3.401 -3.391 -3.39 -3.39
ccss,43 0 0 4.107 4.267 4.278 4.278
ccss,04 0 0 -1.533 -1.438 -1.437 -1.437

ccos,00 1 1 1 1 1 1
ccos,10 0 3.13 1.573 1.372 1.359 1.358
ccos,20 0 1.736 3.002 2.931 2.925 2.924
ccos,60 0 0 -1.736 -1.419 -1.392 -1.39
ccos,21 0 -1.591 -8.241 -8.776 -8.81 -8.812
ccos,61 0 0 8.582 9.113 9.141 9.142

cx 0.15 0.15 0.15 0.15 0.15 0.15

Table 5.3: Linear parameters from the beginning of all six cycles of the self-consistent
optimization of ωB97M-V. The “Best 8” column refers to the freezing of eight
commonly-occurring parameters. The nonlinear parameters that are taken from
previous studies[9, 35, 63] are γx=0.004, γc,ss=0.2, γc,os=0.006, ω=0.3, b=6, and
C=0.01.

5.7 Results

In order to verify that ωB97M-V is a broadly accurate density functional, it is
necessary to compare it to existing density functionals. Thus, 11 exemplary density
functionals are selected for comparison to ωB97M-V across the nearly 5000 data
points in the training, primary test, and secondary test sets. Furthermore, all 12
functionals are benchmarked on 90 potential energy curves in order to assess equi-
librium binding energies and equilibrium bond lengths. Details for the 11 density
functionals selected for comparison to ωB97M-V are given in Table 5.4.

5.7.1 Overall Test Set Performance

Since the training, primary test, and secondary test sets contain 84 datasets
overall, it is easier to obtain a general idea of the performance of ωB97M-V by first
considering the eight datatypes defined in Section 5.4. However, in order to make
the comparison as unbiased as possible, only the data points from the primary and
secondary test sets (henceforth referred to as the test set) are considered. Further-
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Functional # (Fitted) cx (ω) Class Rung UEG Ref.

B97-D3(BJ) 12 0 L GGA DFT-D3(BJ) 2 No 54,55,56
B97M-V 12 0 L meta-GGA VV10 3 Yes 64
ωB97X-V 10 16.7-100 (0.3) RSH GGA VV10 4 No 63
ωB97M-V 12 15-100 (0.3) RSH meta-GGA VV10 4 No –
ωB97X-D 15 22.2-100 (0.2) RSH GGA CHG 4 Yes 58
ωM05-D 21 37.0-100 (0.2) RSH meta-GGA CHG 4 Yes 59
M06-2X 29 54 GH meta-GGA 4 Yes 45
M08-HX 47 52.23 GH meta-GGA 4 Yes 46

M11 40 42.8-100 (0.25) RSH meta-GGA 4 Yes 52
MN15 59 44 GH meta-NGA 4 No 227
M06-L 34 0 L meta-GGA 3 Yes 23

MN15-L 58 0 L meta-NGA 3 No 26

Table 5.4: Details for the 11 exemplary functionals chosen for comparison to ωB97M-
V. L stands for local, GH stands for global hybrid, and RSH stands for range-
separated hybrid. The second column lists the number of parameters that were
optimized on a training set for the given functional. The third column lists the per-
centage of exact exchange, cx, as well as the value for ω in parentheses, if applicable.
The column labeled UEG indicates whether or not the uniform electron gas limits
were satisfied.

more, since RG10 does not belong to any of the datatypes, it is excluded from this
analysis. The total number of data points and datasets considered in Figure 5.4 are
3547 and 58, respectively. The density functionals are compared using root-mean-
square deviations (RMSD) because this convention provides a better summary of the
distribution of residuals than the mean absolute deviation (MAD)[266].

Beginning with the NCED datatype, the functional with the best performance is
ωB97M-V, with an RMSD of 0.18 kcal/mol. The next best functionals are ωB97X-V
and B97M-V, both with RMSDs of 0.23 kcal/mol. Thus, the test set performance
of ωB97M-V for over 1400 non-covalent dimer binding energies is at least 20% bet-
ter than that of both of its predecessors. Besides the VV10-containing functionals,
ωM05-D and ωB97X-D perform similarly, both with RMSDs of 0.38 kcal/mol, fol-
lowed by M06-2X, B97-D3(BJ), and MN15, which have RMSDs of 0.42, 0.44, and
0.48 kcal/mol, respectively. The remaining functionals (M06-L, M08-HX, M11, and
MN15-L) have RMSDs in excess of 0.5 kcal/mol, with MN15-L having by far the
largest (1.39 kcal/mol).

Moving on to the 223 non-covalent cluster binding energies in the test set with the
NCEC datatype, the best performance is once again reserved for ωB97M-V, which
has an RMSD of 0.50 kcal/mol. The next best functional (ωB97X-V) is about 30%
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worse, with an RMSD of 0.66 kcal/mol. Only two other functionals have RMSDs
under or around 1 kcal/mol: B97M-V and ωB97X-D. The rest of the functionals
have RMSDs that range from 1.73 kcal/mol (M08-HX) to 13.20 kcal/mol (MN15-L).

The NCD datatype contains non-covalent dimer binding energies that are sus-
ceptible to self-interaction error. Thus, local functionals should perform significantly
worse than hybrid functionals, while hybrid functionals with a large fraction of exact
exchange should perform best. Accordingly, the density functionals with the largest
RMSDs across the 70 data points in the test set are the local ones, with RMSDs be-
tween 1.35 and 1.75 kcal/mol. Surprisingly, the best density functional is ωB97M-V,
with an RMSD of 0.49 kcal/mol, followed by MN15, ωB97X-V, and ωM05-D, which
have RMSDs of 0.61, 0.63, and 0.78 kcal/mol, respectively. The rest of the hybrid
functionals have RMSDs around 1 kcal/mol.

The test set contains a total of 679 standard isomerization energies, ranging
from alkane conformers to amino acid conformers. The three functionals with the
best performance for the IE data points in the test set are ωB97X-V, B97M-V, and
ωB97M-V, with RMSDs slightly under 0.30 kcal/mol. The next best functionals are
M06-2X (0.52 kcal/mol) and ωM05-D (0.54 kcal/mol), while six of the remaining
seven functionals (M08-HX, ωB97X-D, MN15, M06-L, M11, and B97-D3(BJ)) have
RMSDs between 0.6 and 0.8 kcal/mol. MN15-L, on the other hand, has an RMSD
(1.57 kcal/mol) that is more than 2 times larger than that of M06-L.

The ID datatype contains isomerization energies that are sensitive to self-interaction
error. As with the NCD category, the local functionals exhibit the worst performance
across the 88 data points in the test set, with RMSDs larger than 7.9 kcal/mol. From
the hybrid functionals, ωB97X-V and ωB97M-V perform almost indistinguishably,
with RMSDs of around 2.3 kcal/mol, while the next best functional, ωB97X-D, per-
forms about 65% worse, with an RMSD of 3.84 kcal/mol. The other hybrids have
RMSDs that are 2 to 3 times larger than that of ωB97M-V.

The 660 TCE data points in the test set include heavy-atom transfer energies,
homolytic bond dissociation energies, as well as isodesmic reaction energies. ωB97M-
V is the best-performing functional by a comfortable margin, with an RMSD of 2.45
kcal/mol. The next best functionals, M06-2X, MN15, and ωM05-D perform more
than 30% worse, with RMSDs of 3.17, 3.19, and 3.28 kcal/mol, respectively. The
remaining four hybrids (M08-HX, M11, ωB97X-V, and ωB97X-D) perform compa-
rably and have RMSDs around 3.6 kcal/mol. The best local functionals are B97M-V
(3.59 kcal/mol) and MN15-L (3.95 kcal/mol), both performing significantly better
than M06-L (5.26 kcal/mol).

Of the 258 TCD data points in the test set, 234 are multi-reference atomization
energies, bond dissociation energies, and heavy-atom transfer energies from the W4-
11 database, while 24 are atomization energies and homodesmotic, isodesmic, and
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isogyric reactions from the Platonic24 dataset. While the first grouping should be a
major challenge for hybrid functionals, the second grouping should present difficulties
for local functionals. The best-performing density functional is a hybrid (ωB97M-
V with an RMSD of 4.30 kcal/mol), followed by a local functional (B97M-V with
an RMSD of 4.82 kcal/mol). While ωB97X-V comes in third with an RMSD of
5.01 kcal/mol, the next best functionals are ωB97X-D and ωM05-D, with RMSDs
of 5.79 and 5.87 kcal/mol, respectively. MN15 and M06-2X perform about 50% and
65% worse than ωB97M-V, respectively, while M08-HX and M11 perform about 2
times worse. The second-best local functional is B97-D3(BJ), with an RMSD (7.92
kcal/mol) that is significantly smaller than that of M06-L (12.97 kcal/mol).

Finally, the BH datatype contains five test datasets (136 data points), two of
which (HTBH38 and NHTBH38) are found in the Minnesota density functional
training sets. Nevertheless, ωB97M-V, with an RMSD of 1.80 kcal/mol, has the
smallest RMSD out of the 12 benchmarked functionals, followed by M08-HX, which
performs only slightly worse, and MN15, which performs approximately 20% worse.
Surprisingly, M06-2X is only sixth best, with an RMSD of 2.97 kcal/mol, followed
closely by M11 (3.18 kcal/mol) and distantly by ωM05-D (4.11 kcal/mol). From
the local functionals, B97M-V performs the best, with an RMSD of 3.95 kcal/mol,
followed by MN15-L, which has an RMSD of 4.93 kcal/mol. M06-L performs about
25% worse than MN15-L, while the worst functional overall is B97-D3(BJ), with an
RMSD of 7.85 kcal/mol.

Overall, the performance of ωB97M-V across 3547 test data points is very encour-
aging. Across the eight datatypes, ωB97M-V performs significantly better than the
next best functional for five of the datatypes (NCED, NCEC, NCD, TCE, and TCD),
is indistinguishable from the next best functional for one of the datatypes (BH), and
is indistinguishable from the best functional for the two remaining datatypes (IE and
ID). It is worth noting that the size of the test set (3547 data points) used to validate
ωB97M-V is more than 7 times larger than the entire 2015A Minnesota database used
to train and test the MN15-L functional. Furthermore, of the 4986 total data points
in the training, primary test, and secondary test sets, only 870 data points are used
for training, while the other 82.5% are used for testing. Thus, the transferability of
ωB97M-V is satisfactorily demonstrated with the results documented thus far.

5.7.2 Results for Individual Datasets

Figures 5.5, 5.6, and 5.7 contain RMSDs for datasets in the training, primary
test, and secondary test sets, respectively. Although there are 84 datasets in total,
the AE18 and RG10 datasets from the training and primary test sets are excluded
both because they are not associated with any of the datatypes and because the
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Datatype B97�D3(BJ) B97M�V �B97X�V �B97M�V �B97X�D �M05�D M06�2X M08�HX M11 MN15 M06�L MN15�L
NCED�Test 0.44 0.23 0.23 0.18 0.38 0.38 0.42 0.57 0.61 0.48 0.54 1.39
NCEC�Test 4.91 0.99 0.66 0.50 1.03 1.82 2.48 1.73 2.92 1.84 2.27 13.20
NCD�Test 1.73 1.44 0.63 0.49 1.03 0.78 0.93 0.90 1.09 0.61 1.38 1.44
IE�Test 0.80 0.28 0.28 0.29 0.69 0.54 0.52 0.61 0.77 0.72 0.73 1.57
ID�Test 11.06 7.94 2.25 2.35 3.84 5.41 7.06 5.88 7.03 4.83 12.76 8.56
TCE�Test 4.80 3.59 3.56 2.45 3.61 3.28 3.17 3.53 3.55 3.19 5.26 3.95
TCD�Test 7.92 4.82 5.01 4.30 5.79 5.87 7.23 8.14 9.19 6.44 12.97 8.62
BH�Test 7.85 3.95 2.36 1.80 2.46 4.11 2.97 1.90 3.18 2.14 6.14 4.93

Figure 5.4: RMSDs in kcal/mol for 8 datatypes for 12 density functionals. These
datatype RMSDs include data points from the primary and secondary test sets only.
NCED stands for non-covalent dimers (easy), NCEC stands for non-covalent clusters
(easy), NCD stands for non-covalent dimers (difficult), IE stands for isomerization
energies (easy), ID stands for isomerization energies (difficult), TCE stands for ther-
mochemistry (easy), TCD stands for thermochemistry (difficult), and BH stands for
barrier heights. The partitioning of the 3547 data points contained in this figure into
the 8 datatypes is: 1433, 223, 70, 679, 88, 660, 258, and 136.

corresponding RMSDs are not very meaningful. The performance of ωB97M-V on
the training datasets will be discussed very briefly, since it is bad scientific practice
to compare the performance of a semi-empirical density functional to that of existing
functionals using its own training set.

One training result worth mentioning is that across the 124 atomization energies
in the TAE140nonMR dataset[82], ωB97M-V affords an RMSD of 2.23 kcal/mol,
which significantly improves over ωB97X-V (2.95 kcal/mol) and B97M-V (3.89 kcal/mol).
This shows the improvement that is possible by including exact exchange, local
meta-GGA contributions, as well as nonlocal correlation, since TAE140nonMR was
included in the training set of all three functionals.

Moving away from the relatively unimportant training datasets toward the more
meaningful primary test datasets (Figure 5.6), the performance of ωB97M-V is gen-
erally satisfactory, and the new functional has the smallest RMSD for 14 of the 34
primary test datasets considered. In order to circumvent the laborious process of
documenting the performance of ωB97M-V for all 34 primary test datasets in Figure
5.6, only a handful of the datasets will be analyzed.

The S66 dataset[103, 105] is certainly the most popular of the NCED datasets in
the primary test set, and the performance of ωB97M-V is very satisfactory. Its RMSD
of 0.15 kcal/mol is slightly larger than that of ωB97X-V (0.13 kcal/mol), which is
the best performer. ωB97M-V performs more than 2 times better than M06-2X,
M08-HX, and ωB97X-D, more than 3 times better than ωM05-D, and more than 4
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Dataset Datatype B97�D3(BJ) B97M�V �B97X�V �B97M�V �B97X�D �M05�D M06�2X M08�HX M11 MN15 M06�L MN15�L
A24 NCED 0.28 0.15 0.08 0.09 0.16 0.17 0.26 0.22 0.35 0.31 0.35 0.57
DS14 NCED 0.32 0.12 0.11 0.15 0.24 0.24 0.25 0.18 0.55 0.25 0.43 0.69
HB15 NCED 0.94 0.28 0.28 0.20 0.51 0.43 0.36 0.45 0.54 0.66 0.58 2.32
HSG NCED 0.55 0.12 0.16 0.11 0.35 0.29 0.52 0.68 0.88 0.28 0.63 0.83

NBC10 NCED 0.64 0.31 0.33 0.16 0.25 0.38 0.56 0.69 0.87 0.34 0.61 1.25
S22 NCED 0.49 0.31 0.27 0.28 0.24 0.36 0.54 0.64 0.88 0.84 0.83 2.52
X40 NCED 0.52 0.19 0.24 0.22 0.55 0.53 0.32 0.50 0.74 0.36 0.59 1.18

H2O6Bind8 NCEC 3.32 0.34 0.43 0.29 0.83 0.75 1.60 0.65 0.97 0.45 1.35 10.01
HW6Cl NCEC 1.90 0.21 0.34 0.22 0.39 0.94 2.84 2.31 0.93 2.08 0.90 5.18
HW6F NCEC 5.04 0.59 0.13 0.14 0.67 2.00 4.07 2.02 1.69 2.33 1.23 5.83
TA13 NCD 5.31 4.12 2.88 2.75 2.91 2.57 1.38 1.65 1.82 2.12 3.78 1.77
XB18 NCD 0.38 0.57 0.51 0.42 0.98 1.06 0.58 0.79 1.21 0.28 0.39 0.75

AlkIsomer11 IE 1.14 0.25 0.69 0.19 1.06 0.33 0.18 0.34 0.54 0.78 0.88 1.84
Butanediol65 IE 0.35 0.19 0.04 0.04 0.20 0.18 0.19 0.33 0.37 0.47 0.23 1.18

EIE22 ID 1.98 2.29 0.26 0.24 0.69 0.53 0.37 0.51 0.54 0.86 2.65 2.07
Styrene45 ID 6.87 4.34 3.95 1.92 2.07 2.50 2.98 2.38 3.62 3.28 5.79 4.55
AlkAtom19 TCE 2.04 1.04 1.69 0.91 3.35 6.46 8.02 7.38 5.42 14.67 9.63 17.04

BDE99nonMR TCE 4.07 3.56 3.14 2.50 2.68 2.71 2.77 3.52 3.76 3.23 5.66 3.81
G21EA TCE 3.35 2.57 3.08 2.82 2.45 2.75 2.81 2.77 2.10 1.94 5.15 2.90
G21IP TCE 4.51 3.64 3.56 3.69 3.82 3.57 3.57 4.59 4.85 3.46 5.45 4.25

TAE140nonMR TCE 4.85 3.89 2.95 2.23 3.01 2.77 2.98 2.88 3.74 3.15 5.43 4.30
BHPERI26 BH 4.24 1.43 2.75 1.44 2.40 1.82 1.81 1.97 2.71 1.77 2.18 2.12
CRBH20 BH 14.16 7.56 3.16 1.23 1.66 0.80 1.58 1.31 1.25 1.09 13.73 7.18
DBH24 BH 7.63 4.95 1.75 1.46 2.03 1.91 1.08 1.30 1.42 1.82 5.24 3.22

Figure 5.5: RMSDs in kcal/mol for 24 of the 25 training datasets (AE18 is excluded)
for 12 density functionals. Table 5.1 contains information regarding the datasets,
and the datatypes are explained in Section 5.4.

times better than M11 and MN15. At 0.18 kcal/mol, B97M-V has the third smallest
RMSD, and is the best local functional tested.

The Shields38 dataset[223] contains 38 water clusters, ranging from dimers to
decamers. ωB97M-V performs the best, with an RMSD of 0.48 kcal/mol, followed
by M08-HX (0.51 kcal/mol), MN15 (0.63 kcal/mol), and B97M-V, ωB97X-V, and
ωB97X-D, which have RMSDs around 0.7 kcal/mol. The rest of the functionals have
RMSDs between 1 and 3 kcal/mol, with the exception of MN15-L, which performs
very poorly (10.44 kcal/mol). Binding energies for larger clusters are evaluated later,
with the 14 water 20-mers in the secondary test set.

The CYCONF dataset is taken from the GMTKN30 database[157, 216] and con-
tains the isomerization energies of 10 cysteine conformers. Again, ωB97M-V performs
the best for this dataset, with a small RMSD of 0.07 kcal/mol that is virtually in-
distinguishable from that of ωB97X-V, and nearly 3.5 times better than that of the
next best functional, M06-2X.

The HAT707nonMR dataset from the W4-11 database[82] contains 505 heavy-
atom transfer energies, and is one of the largest datasets in the primary test set.
ωB97M-V affords an impressive RMSD of 2.64 kcal/mol on this dataset, performing
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Dataset Datatype B97�D3(BJ) B97M�V �B97X�V �B97M�V �B97X�D �M05�D M06�2X M08�HX M11 MN15 M06�L MN15�L
A21x12 NCED 0.18 0.09 0.05 0.05 0.10 0.10 0.14 0.18 0.18 0.19 0.22 0.40
BzDC215 NCED 0.35 0.22 0.21 0.19 0.31 0.28 0.34 0.49 0.31 0.53 0.34 0.77
HW30 NCED 0.37 0.13 0.14 0.17 0.31 0.31 0.37 0.34 0.36 0.44 0.51 0.56
NC15 NCED 0.18 0.07 0.06 0.05 0.18 0.16 0.14 0.15 0.22 0.12 0.26 0.09
S66 NCED 0.42 0.18 0.13 0.15 0.41 0.53 0.33 0.38 0.61 0.64 0.61 2.16
S66x8 NCED 0.35 0.19 0.21 0.11 0.34 0.39 0.38 0.58 0.57 0.48 0.52 1.60

FmH2O10 NCEC 10.34 0.17 0.18 0.43 2.88 4.67 8.53 3.01 1.73 3.47 3.33 17.61
Shields38 NCEC 2.75 0.69 0.70 0.48 0.73 1.75 1.77 0.51 1.19 0.63 1.47 10.44

SW49Bind345 NCEC 0.82 0.38 0.31 0.27 0.76 0.70 0.57 0.60 0.88 0.19 0.42 2.15
SW49Bind6 NCEC 1.57 0.81 0.64 0.60 0.70 0.70 0.90 1.15 1.88 0.49 0.44 5.11
WATER27 NCEC 2.66 1.37 0.92 0.51 0.65 2.61 2.73 1.26 1.14 1.19 1.43 8.49
Bauza30 NCD 2.31 2.07 0.81 0.60 1.34 0.88 1.30 1.14 1.10 0.81 1.95 2.07
CT20 NCD 0.43 0.29 0.11 0.11 0.50 0.34 0.23 0.35 0.52 0.19 0.40 0.33
XB51 NCD 1.50 0.87 0.63 0.54 0.89 0.91 0.69 0.85 1.43 0.52 0.89 0.89
ACONF IE 0.10 0.13 0.02 0.07 0.27 0.24 0.29 0.46 0.73 0.59 0.49 0.85
CYCONF IE 0.70 0.27 0.09 0.07 0.40 0.29 0.24 0.33 0.40 0.46 0.40 0.56

Pentane14 IE 0.28 0.31 0.08 0.13 0.16 0.20 0.13 0.29 0.49 0.32 0.38 0.43
SW49Rel345 IE 0.76 0.10 0.23 0.13 0.86 0.68 0.24 0.32 0.31 0.18 0.43 0.66
SW49Rel6 IE 1.08 0.10 0.27 0.18 1.20 0.87 0.33 0.26 0.24 0.33 0.73 0.98
DIE60 ID 1.75 1.93 0.82 0.65 0.79 0.96 0.84 0.96 0.97 0.97 2.63 2.08

ISOMERIZATION20 ID 3.81 2.85 1.59 1.91 1.80 1.23 1.50 1.78 2.24 1.92 3.87 2.93
AlkIsod14 TCE 2.24 0.58 1.84 1.05 2.37 1.48 1.72 1.93 2.14 1.22 3.93 0.83
BH76RC TCE 4.07 2.71 1.89 1.22 1.79 1.37 1.20 1.55 2.10 2.11 4.18 3.26
EA13 TCE 3.73 2.48 2.96 2.21 2.30 2.96 2.51 1.53 0.75 1.90 5.10 3.09

HAT707nonMR TCE 5.07 3.88 3.84 2.64 3.69 3.52 3.27 3.80 3.80 3.46 5.36 4.17
IP13 TCE 3.49 3.81 3.36 3.12 3.17 2.93 3.18 4.10 5.45 3.33 2.71 2.36

NBPRC TCE 3.66 1.93 2.06 1.06 2.15 1.07 1.28 2.13 3.37 2.32 4.72 3.08
SN13 TCE 3.50 1.37 0.98 0.58 0.98 1.02 0.91 0.90 1.83 3.02 1.58 2.64

BDE99MR TCD 6.60 3.04 4.86 4.33 5.22 6.52 7.33 7.62 6.72 4.28 4.27 2.42
HAT707MR TCD 7.11 3.33 4.82 4.18 4.39 5.08 6.25 6.57 6.44 5.42 5.25 3.48
TAE140MR TCD 12.29 5.70 5.45 5.28 6.02 6.17 8.49 9.15 7.73 5.63 6.30 4.48

CR20 BH 9.53 2.15 2.90 0.56 3.68 1.64 2.07 2.56 6.24 1.72 12.70 1.68
HTBH38 BH 8.28 4.60 2.36 1.72 2.69 2.81 1.29 1.25 1.73 1.38 4.66 1.81
NHTBH38 BH 7.58 5.30 1.69 1.98 1.86 1.70 1.67 1.57 1.49 2.55 4.86 3.46

Figure 5.6: RMSDs in kcal/mol for 34 of the 35 primary test datasets (RG10 is
excluded) for 12 density functionals. Table 5.1 contains information regarding the
datasets, and the datatypes are explained in Section 5.4.

nearly 20% better than the next best functional, M06-2X (3.27 kcal/mol), and 30%
better than ωB97X-V (3.84 kcal/mol).

The most interesting datasets contained in this chapter are found in the secondary
test set, as most of them are taken from papers that were very recently published.
Furthermore, the secondary test set is the truest form of transferability testing, as it
was compiled and evaluated after ωB97M-V was fully self-consistently trained. Thus,
the bulk of the remaining discussion in this section will be focused on the datasets
from the secondary test set (Figure 5.7).

3B-69-DIM is a dataset created from the 3B-69 dataset of Beran and cowork-
ers[235], and contains all relevant pairs of monomers that can be constructed from
the 69 trimers. This results in a total of 207 dimer binding energies and serves as
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a stringent test of transferability for the new functional. ωB97M-V performs out-
standingly for this dataset, with an RMSD of 0.16 kcal/mol, followed by ωB97X-V
and B97M-V, with RMSDs of 0.20 and 0.21 kcal/mol, respectively. The next best
functional, ωM05-D, performs nearly 2 times worse than ωB97M-V, while the best
Minnesota functional, MN15, performs 3 times worse.

Since the two NCED datasets discussed thus far (S66 and 3B-69-DIM) contain a
mixture of hydrogen-bonded and dispersion-bound systems, it is useful to consider
a dataset that deals specifically with the latter. For this purpose, the AlkBind12
dataset[236], which contains saturated and unsaturated hydrocarbon dimers, will
be analyzed. The RMS of the 12 reference energies comprising AlkBind12 is only
3.14 kcal/mol, indicating that the systems are fairly weakly bound. The two best
functionals are ωB97X-V and ωB97M-V, with almost identical RMSDs of 0.12 and
0.13 kcal/mol, respectively. Only three other functionals manage RMSDs under
0.3 kcal/mol (an error of roughly 10%): B97M-V, M08-HX, and M06-2X. MN15
overbinds the dimers with an RMSD (1.18 kcal/mol) that is almost 10 times larger
than that of ωB97M-V, while the worst-performing functional is MN15-L, which
completely overbinds the alkanes with an RMSD of 3.49 kcal/mol.

The HB49 dataset[238–240] is a very interesting dataset constructed by Boese,
and contains the binding energies of 49 hydrogen-bonded dimers. In fact, a recent
benchmark of density functionals on the HB49 dataset found that MP2 at the basis
set limit, with an RMSD of approximately 0.3 kcal/mol, performed better than all
of the tested Rung 1-4 density functionals. Therefore, it is of interest to assess the
performance of ωB97M-V on the HB49 dataset. The results are very encouraging:
with a low RMSD of 0.23 kcal/mol, ωB97M-V is the only functional tested which
significantly outperforms MP2. In addition, ωB97X-V performs very comparably to
MP2, with an RMSD of 0.29 kcal/mol. From the local functionals, B97M-V performs
best, with an RMSD of 0.47 kcal/mol.

While the 3B-69 dataset was originally intended as a benchmark for three-body
intermolecular interaction energies, it can also be used as a benchmark for trimer
binding energies (3B-69-TRIM). This is a good transferability test for ωB97M-V,
since very few trimers are found in its training set. ωB97M-V performs very well for
this dataset, with the smallest RMSD of 0.32 kcal/mol. The next best functionals are
ωB97X-V and B97M-V, with RMSDs of 0.39 and 0.47 kcal/mol, respectively. Only
two other functionals manage RMSDs under 1 kcal/mol: ωM05-D and ωB97X-D,
with RMSDs of 0.65 and 0.88 kcal/mol, respectively. The best Minnesota functional,
MN15 (1.11 kcal/mol), performs more than 3 times worse than ωB97M-V.

Having tested the performance of ωB97M-V for small- to medium-sized water
clusters with the Shields38 dataset in the primary test set, it is time to consider the
H2O20Bind10 and H2O20Bind4 datasets in the secondary test set, as they contain
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a total of 14 water 20-mer binding energies. In order to address both datasets simul-
taneously, the geometric mean of the two RMSDs (GMRMSD) will be considered.
ωB97M-V performs best overall, with a GMRMSD of 1.01 kcal/mol, while ωB97X-
D and ωB97X-V perform second and third best, with GMRMSDs of 1.38 and 1.48
kcal/mol. ωM05-D and B97M-V perform very similarly, with GMRMSDs around
2.85 kcal/mol, while M06-2X is the best of the tested Minnesota functionals, with a
GMRMSD of 3.40 kcal/mol. After B97M-V, the next best local functional is M06-L,
with a GMRMSD (7.16 kcal/mol) that is 6 times smaller than that of MN15-L (43.24
kcal/mol).

While the binding energies of small, medium, and large water clusters have been
thoroughly addressed thus far, it is important to assess the performance of ωB97M-
V for the relative energies of water clusters. This is done with the help of three
datasets from the secondary test set: H2O16Rel5, H2O20Rel10, and H2O20Rel4.
Once again, the geometric mean of these three datasets will be considered for brevity.
The GMRMSD of ωB97M-V across these three datasets is remarkably small, at only
0.09 kcal/mol. The next best functionals are ωB97X-D and ωB97X-V, with very
similar GMRMSDs of 0.22 and 0.24 kcal/mol, respectively. B97M-V is the best
local functional, with a GMRMSD of 0.41 kcal/mol, while the two remaining non-
Minnesota functionals (ωM05-D and B97-D3(BJ)) have GMRMSDs of 0.67 and 1.04
kcal/mol, respectively. All of the tested Minnesota functionals perform poorly for
these isomerization energies, with GMRMSDs ranging from 0.98 kcal/mol (M08-HX)
to 4.17 kcal/mol (MN15-L).

A recent benchmark by Karton and coworkers on the YMPJ519 dataset of amino
acid isomerization energies[253] found ωB97X-V to be the best Rung 1-4 density
functional. Thus, it is important to verify that ωB97M-V performs as well as its GGA
counterpart. Accordingly, both ωB97X-V and ωB97M-V have impressive RMSDs of
0.30 and 0.32 kcal/mol, respectively, while the smallest RMSD is surprisingly reserved
for B97M-V, at 0.28 kcal/mol. The rest of the functionals have RMSDs that range
from 0.49 kcal/mol (M06-2X) to 0.77 kcal/mol (MN15) to 1.51 kcal/mol (MN15-L).

Another recent benchmark by Martin and coworkers assessed the performance
of various density functionals for the relative energies of a handful of C20 and C24

structures[257]. The study found that only double hybrid functionals were able
to afford RMSDs under 10 kcal/mol (with the smallest RMSD being around 8.3
kcal/mol). Therefore, it is interesting to assess the performance of ωB97M-V on this
dataset to see if it can break the 10 kcal/mol barrier. Both ωB97X-V and ωB97M-V
manage RMSDs under 7 kcal/mol, with the former slightly outperforming the latter.
By contrast, the best local functional is B97M-V with an RMSD of 25.39 kcal/mol,
followed closely by MN15-L (27.43 kcal/mol). From the remaining hybrid functionals,
ωB97X-D, MN15, ωM05-D, and M08-HX manage RMSDs under 20 kcal/mol, while
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Dataset Datatype B97�D3(BJ) B97M�V �B97X�V �B97M�V �B97X�D �M05�D M06�2X M08�HX M11 MN15 M06�L MN15�L
3B�69�DIM NCED 0.48 0.21 0.20 0.16 0.39 0.29 0.52 0.74 0.87 0.48 0.72 1.27
AlkBind12 NCED 0.38 0.20 0.12 0.13 1.00 1.18 0.30 0.28 0.51 1.18 0.38 3.49

CO2Nitrogen16 NCED 0.58 0.21 0.10 0.09 0.81 0.62 0.36 0.58 0.86 0.36 1.16 0.82
HB49 NCED 0.76 0.47 0.29 0.23 0.37 0.56 0.56 0.48 0.63 0.58 0.72 2.00
Ionic43 NCED 1.33 0.67 0.78 0.70 1.07 0.83 1.16 1.38 1.63 0.73 1.02 2.39

3B�69�TRIM NCEC 1.11 0.47 0.39 0.32 0.88 0.65 1.31 1.90 2.14 1.11 1.71 2.70
CE20 NCEC 1.78 0.82 0.69 0.65 0.42 1.42 1.44 0.45 1.70 1.06 1.34 6.32

H2O20Bind10 NCEC 17.87 2.76 1.18 0.97 1.95 1.36 3.50 3.91 9.86 6.74 6.32 46.44
H2O20Bind4 NCEC 10.62 2.96 1.87 1.06 0.98 5.91 3.30 4.75 9.44 2.24 8.10 40.25
H2O16Rel5 IE 1.40 0.41 0.38 0.04 0.11 0.56 1.91 1.08 1.43 1.14 2.21 5.03
H2O20Rel10 IE 0.45 0.32 0.11 0.12 0.40 0.67 1.44 0.94 1.07 0.91 1.33 2.43
H2O20Rel4 IE 1.78 0.53 0.30 0.14 0.23 0.79 1.92 0.93 1.24 1.13 3.01 5.92
Melatonin52 IE 0.52 0.37 0.11 0.16 0.31 0.35 0.27 0.47 0.74 0.48 0.88 1.55
YMPJ519 IE 0.82 0.28 0.30 0.32 0.71 0.54 0.49 0.64 0.80 0.77 0.65 1.51
C20C24 ID 35.87 25.39 6.66 6.97 12.23 17.65 23.20 19.12 22.90 15.52 41.27 27.43
BSR36 TCE 4.01 0.35 2.87 1.11 5.19 2.62 4.46 3.50 2.46 0.61 7.00 3.63

HNBrBDE18 TCE 4.72 4.21 2.55 2.62 4.29 3.65 3.07 0.95 1.79 2.50 5.21 4.19
WCPT6 TCE 1.19 0.99 1.07 0.36 1.10 0.72 0.87 0.83 1.64 1.36 2.28 0.99

PlatonicHD6 TCD 10.73 5.27 4.89 4.33 4.43 4.88 9.12 6.07 12.91 13.89 25.53 15.80
PlatonicID6 TCD 6.99 5.05 5.01 1.92 10.06 9.74 14.37 11.42 10.14 10.80 16.65 18.37
PlatonicIG6 TCD 6.08 20.93 6.95 6.55 22.00 10.72 11.21 22.84 33.02 11.93 70.12 42.97
PlatonicTAE6 TCD 16.62 5.01 7.55 4.07 4.55 12.73 13.65 18.19 24.46 14.42 17.38 16.90

PX13 BH 6.46 1.60 3.38 2.55 1.62 9.62 6.94 3.02 4.45 2.87 1.66 12.85
WCPT27 BH 6.72 2.15 2.12 1.82 2.05 4.82 3.42 1.79 2.25 2.24 2.24 4.38

Figure 5.7: RMSDs in kcal/mol for the 24 secondary test datasets for 12 density
functionals. Table 5.1 contains information regarding the datasets, and the datatypes
are explained in Section 5.4.

M11 and M06-2X perform more than 3 times worse than ωB97M-V.
A very challenging benchmark set by Martin and coworkers[262] assessed the

performance of density functionals for various reactions (homodesmotic, isodesmic,
and isogyric) involving platonic hydrocarbon cages, in addition to their atomization
energies. While the individual RMSDs for these four datasets are given in Figure 5.7,
the functionals will be assessed based on the geometric mean of the four RMSDs.
Although the original study found ωB97X-V to be the most promising Rung 1-4
functional overall, ωB97M-V manages a GMRMSD of only 3.86 kcal/mol, compared
to ωB97X-V’s GMRMSD of 5.99 kcal/mol. Thus, ωB97M-V improves over ωB97X-V
by over 35%. The next best functional (B97M-V) is surprisingly a local one, and has
a GMRMSD of 7.27 kcal/mol. The performance of B97M-V is certainly noteworthy,
since the two local Minnesota functionals have GMRMSDs larger than 20 kcal/mol.
While M06-2X, MN15, and M08-HX perform at least 3 times worse than ωB97M-V,
M11 performs more than 4.5 times worse than ωB97M-V.
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Dataset B97�D3(BJ) B97M�V �B97X�V �B97M�V �B97X�D �M05�D M06�2X M08�HX M11 MN15 M06�L MN15�L
BzDC215 0.036 0.036 0.039 0.034 0.043 0.034 0.101 0.119 0.095 0.055 0.064 0.049
NBC10 0.037 0.040 0.050 0.024 0.044 0.042 0.091 0.114 0.076 0.081 0.099 0.134
RG10 0.220 0.065 0.062 0.075 0.403 0.722 0.247 0.353 0.673 0.095 0.311 0.095
S66x8 0.047 0.022 0.041 0.007 0.037 0.024 0.071 0.081 0.067 0.033 0.027 0.085
All*�EBL 0.045 0.026 0.042 0.014 0.038 0.027 0.077 0.088 0.071 0.042 0.043 0.088
BzDC215 0.47 0.11 0.23 0.24 0.39 0.39 0.44 0.54 0.35 0.75 0.44 1.14
NBC10 0.67 0.20 0.17 0.15 0.27 0.45 0.46 0.48 0.82 0.39 0.75 1.62
RG10 0.05 0.04 0.03 0.05 0.08 0.16 0.11 0.14 0.17 0.03 0.14 0.02
S66x8 0.38 0.17 0.13 0.13 0.44 0.52 0.30 0.34 0.57 0.60 0.60 2.05
All*�EBE 0.42 0.17 0.15 0.15 0.42 0.50 0.33 0.38 0.58 0.60 0.60 1.94

Figure 5.8: Equilibrium bond length (EBL) RMSDs in Å and equilibrium binding
energy (EBE) RMSDs in kcal/mol for 12 density functionals. The first section con-
tains the EBL RMSDs while the second section contains the EBE RMSDs. The
All* category contains 81 data points and is a combination of BzDC215, NBC10,
and S66x8. More information regarding the datasets and excluded potential energy
curves can be found in Table 5.1 and Section 5.7.3, respectively.

5.7.3 Potential Energy Curves

Within the NCED category, the BzDC215, NBC10, and S66x8 datasets contain
potential energies curves that can be used to assess the accuracy of density functionals
for predicting equilibrium properties of dimers. Furthermore, the RG10 dataset con-
tains all 10 PECs that can be constructed between the rare-gas dimers from helium
to krypton. In total, these four datasets contain 96 PECs, with BzDC215, NBC10,
and RG10 each having 10, and S66x8 having 66. Unfortunately, even with the
(99,590)/SG-1 grid, some of the resulting potential energy curves are too oscillatory
to be accurately interpolated[141–143], primarily for the Minnesota density func-
tionals. Consequently, the benzene-neon dimer and the benzene-argon dimer PECs
from BzDC215 were removed, the sandwich benzene dimer, the methane dimer, and
the sandwich (S2) pyridine dimer PECs from NBC10 were removed, and the helium
dimer PEC from RG10 was removed, leaving a total of 90 potential energy curves.
Figure 5.8 contains the equilibrium bond length (EBL) and equilibrium binding
energy (EBE) RMSDs for these four datasets, along with the corresponding total
RMSDs with RG10 excluded (All*). In order to keep the discussion succinct, only
the RG10 and All* results will be discussed.

For the nine rare-gas dimers, the three VV10-containing functionals predict rea-
sonably accurate equilibrium bond lengths, with RMSDs around 0.07 Å. Only two
other functionals manage an EBL RMSD of under 0.1 Å for the rare-gas dimers:
MN15-L and MN15. However, it is important to mention that both of these func-
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tionals were fit to at least a single point from the PEC of six of the nine rare-gas
dimers considered here. The rest of the Minnesota functionals perform very poorly,
with RMSDs between 0.2 and 0.7 Å. ωB97X-D also performs poorly, with an RMSD
of 0.403, while the worst overall performer is ωM05-D, with an RMSD of 0.722 Å.

Moving on to the 81 PECs in the All* category, the best performance is exhibited
by ωB97M-V, with a very impressive equilibrium bond length RMSD of only 0.014
Å. In fact, ωB97M-V performs almost 2 times better than the next best functional,
B97M-V, and 3 times better than ωB97X-V. The six Minnesota functionals have
RMSDs that range from 0.042 Å (MN15) to 0.088 Å (M08-HX and MN15-L), while
ωM05-D, a range-separated hybrid functional based on the M05 functional form[41],
performs almost as well as B97M-V, with an RMSD of 0.027 Å.

As for the All* equilibrium binding energies, ωB97X-V, ωB97M-V, and B97M-V
perform very well, with RMSDs between 0.15 and 0.17 kcal/mol, while the rest of the
functionals (except MN15-L) have RMSDs that range from 0.33 kcal/mol (M06-2X)
to 0.60 kcal/mol (M06-L and MN15). MN15-L, on the other hand, has an All* EBE
RMSD of nearly 2 kcal/mol, which is more than 3 times larger than that of M06-L.

Although the benzene-argon dimer was removed from the BzDC215 dataset in
order to generate the RMSDs discussed thus far, it is nevertheless an interesting
example of a system bound primarily by dispersion. Furthermore, due to the inherent
weakness of the interaction, it is a case that can be used to assess the sensitivity
of density functionals (especially meta-GGAs) to the integration grid. Figure 5.9
displays the PEC for the benzene-argon dimer as calculated by the 12 benchmarked
density functionals with the (99,590)/SG-1 grid. It is evident that the grid filtering
that was applied in Section 5.6 worked successfully, since the PEC of ωB97M-V is
nearly as smooth as that of ωB97X-V for this system. By contrast, the Minnesota
functionals are far harder to converge with respect to the grid, with M06-2X, M08-
HX, and MN15 appearing to behave better than M06-L, M11, and MN15-L.

Considering the accuracy of the PECs themselves, ωB97M-V, ωB97X-V, and
B97M-V are very accurate, with equilibrium bond length errors of -0.008, -0.01, and
-0.026 Å, respectively. Of the remaining nine functionals, ωM05-D, B97-D3(BJ),
ωB97X-D, and M06-L predict equilibrium bond lengths that are at least 0.1 Å too
long, while MN15, MN15-L, M06-2X, M11, and M08-HX predict equilibrium bond
lengths that are at least 0.1 Å too short. The three VV10-containing functionals
manage to reproduce the equilibrium binding energy rather well, with the largest er-
ror (-0.128 kcal/mol) attributed to ωB97X-V, an error of -0.083 kcal/mol attributed
to ωB97M-V, and the smallest error associated with B97M-V (-0.019 kcal/mol).
Despite predicting a bond length that is more than 0.1 Å too short, M06-2X under-
estimates the EBE of the benzene-argon dimer by only 0.072 kcal/mol. By contrast,
MN15-L overbinds the system by more than 1.15 kcal/mol.
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Figure 5.9: Potential energy curves (computed with the def2-QZVPPD basis set and
the (99,590)/SG-1 grid) for the benzene-argon dimer from BzDC215 as computed
by the 12 benchmarked density functionals. The gray curve represents the DFT
method, while the blue curve represents the reference method. The line immediately
following the functional name contains the equilibrium bond length in Å and the
error (with respect to the reference) in parentheses. The following line contains the
same information for the equilibrium binding energy (in kcal/mol).
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5.8 Reaching the Basis Set Limit

Although ωB97M-V was consistently trained and tested in the def2-QZVPPD
basis set (without counterpoise corrections), it is inevitable that it will be used with
different basis sets. As a result, this section explores the use of ωB97M-V with
21 basis sets from 4 different families, and makes recommendations based on how
closely these basis sets can mimic the results of the training set basis (TSB), def2-
QZVPPD. For this purpose, four datasets are selected and tested: S66 representing
non-covalent interactions, Pentane14 representing isomerization energies, AlkAtom19
representing thermochemistry, and CRBH20 representing barrier heights. For the
S66 dataset, the calculations are performed both with and without counterpoise
corrections (designated CP and noCP, respectively), because it is very unlikely that
a double- or triple-zeta basis set without counterpoise corrections will be able to
reproduce the quadruple-zeta, def2-QZVPPD basis set binding energies. The results,
summarized in Figure 5.10, are analyzed using two sets of RMSDs (the first relative
to the reference values and the second relative to the def2-QZVPPD values) for each
of the five categories of interest: S66 CP, S66 noCP, Pentane14, AlkAtom19, and
CRBH20. In order to facilitate the use of Figure 5.10, the basis sets are sorted based
on the geometric mean (GM) of the S66 CP, Pentane14, AlkAtom19, and CRBH20
RMSDs relative to the TSB. The S66 noCP RMSD is excluded from the GM because
it unfairly disadvantages triple-zeta basis sets. Furthermore, the RMSDs within each
dataset are color-coded, with green indicating that the use of the corresponding
basis set with the type of interaction represented by the corresponding dataset is
recommended, yellow indicating that the pairing should be used with caution, and
red indicating that the pairing should not be used. Finally, the number of basis
functions that each basis set contains for octane is shown in the last column of
Figure 5.10.

From the outset, it is clear that a handful of basis sets are entirely incompati-
ble with ωB97M-V, namely def2-SVP, def2-SVPD, pc-0, aug-pc-0, pc-1, aug-pc-1,
and cc-pVDZ. This result is expected, since the functional is trained as close to the
basis set limit as possible. On the other hand, it is clear that certain basis sets
are very compatible with ωB97M-V, namely pc-3, aug-pc-3, aug-cc-pVQZ, and of
course, def2-QZVPPD. These basis sets work superbly well for isomerization ener-
gies, thermochemistry, and barrier heights, and provide accurate binding energies
for non-covalent interactions with and even without counterpoise corrections. With
counterpoise corrections, aug-pc-2 and def2-QZVPP additionally provide satisfac-
tory results for all four types of interactions. While the smallest basis set that can
successfully handle all four categories is aug-pc-2 with 782 basis functions for oc-
tane, two smaller basis sets, pc-2 and def2-TZVPPD, are almost always satisfactory,
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Dataset GM BF
Comparison vs.�Ref vs.�TSB vs.�Ref vs.�TSB vs.�Ref vs.�TSB vs.�Ref vs.�TSB vs.�Ref vs.�TSB vs.�TSB C8H18

def2�QZVPPD 0.15 0.00 0.14 0.00 0.13 0.00 0.91 0.00 1.23 0.00 0.00 1098
def2�QZVPP 0.18 0.13 0.14 0.02 0.13 0.00 0.85 0.05 1.20 0.03 0.02 996
aug�cc�pVQZ 0.15 0.03 0.14 0.01 0.13 0.00 0.66 0.25 1.20 0.11 0.03 1468
aug�pc�3 0.15 0.02 0.14 0.01 0.12 0.01 0.21 0.76 1.14 0.12 0.05 1612
pc�3 0.14 0.03 0.14 0.01 0.12 0.01 0.22 0.74 1.13 0.14 0.05 1124

aug�pc�2 0.18 0.08 0.13 0.04 0.12 0.02 0.82 0.09 1.29 0.14 0.06 782
def2�TZVPPD 0.19 0.10 0.13 0.02 0.12 0.01 1.86 2.75 1.20 0.06 0.08 602

pc�2 0.26 0.27 0.13 0.11 0.14 0.02 1.11 0.21 1.18 0.19 0.09 492
cc�pVQZ 0.41 0.41 0.16 0.07 0.13 0.00 1.06 1.95 1.24 0.17 0.10 980

aug�cc�pVTZ 0.27 0.19 0.15 0.04 0.17 0.04 2.62 1.72 1.27 0.27 0.16 782
def2�TZVPP 0.43 0.42 0.15 0.08 0.15 0.03 1.68 2.58 1.13 0.13 0.17 500

LP 0.58 0.51 0.19 0.12 0.16 0.06 0.24 0.98 1.26 0.16 0.18 636
cc�pVTZ 0.96 0.97 0.21 0.15 0.15 0.03 0.80 1.69 1.28 0.45 0.25 492
aug�pc�1 1.93 1.87 0.24 0.18 0.21 0.11 13.80 12.90 1.66 0.81 0.68 346

aug�cc�pVDZ 0.90 0.85 0.20 0.13 0.36 0.25 14.85 13.95 0.71 1.17 0.85 346
cc�pVDZ 2.34 2.35 0.49 0.47 0.09 0.18 6.00 5.09 1.28 1.32 0.86 202
pc�1 2.05 2.05 0.58 0.58 0.10 0.14 13.88 12.99 4.37 3.41 1.39 202

def2�SVP 2.46 2.47 0.41 0.42 0.21 0.24 27.50 28.40 2.10 3.04 1.71 202
def2�SVPD 1.69 1.65 0.27 0.23 0.54 0.43 34.47 35.37 1.79 2.68 1.75 304
aug�pc�0 4.98 4.96 1.51 1.58 0.68 0.59 31.27 30.38 5.37 6.06 3.62 158
pc�0 7.16 7.18 1.51 1.57 0.77 0.68 40.43 41.32 11.04 11.96 4.79 108

S66�noCP S66�CP Pentane14 AlkAtom19 CRBH20

Figure 5.10: RMSDs in kcal/mol for 4 datasets computed with 21 different basis
sets. S66 represents non-covalent interactions, Pentane14 represents isomerization
energies, AlkAtom19 represents thermochemistry, and CRBH20 represents barrier
heights. The S66 dataset is computed both with and without counterpoise corrections
(designated CP and noCP, respectively). The RMSDs are taken with respect to both
the reference values (vs. Ref) as well as the training set basis (vs. TSB), which is
def2-QZVPPD. The basis sets are sorted based on the geometric mean (GM) of the
S66 CP, Pentane14, AlkAtom19, and CRBH20 RMSDs relative to the TSB. The S66
noCP RMSD is excluded from the GM because it unfairly disadvantages triple-zeta
basis sets. The number of basis functions (BF) that each basis set contains for octane
is shown in the last column.
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with the former being considerably smaller than aug-pc-2. In fact, the only result
that makes pc-2 not fully satisfactory is the S66 CP RMSD relative to the TSB
(0.11 kcal/mol). However, the RMSD relative to the reference values is actually very
impressive (0.13 kcal/mol). Thus, pc-2, with only 492 basis functions for octane,
is the most economical option that can be recommended for use with ωB97M-V.
def2-TZVPPD, on the other hand, has an RMSD of 2.75 kcal/mol for AlkAtom19,
relative to the TSB. However, the RMSD of 1.86 kcal/mol relative to the reference
values is still acceptable, making def2-TZVPPD, with only 602 basis functions for
octane, another economical basis set choice. The rest of the basis sets that have not
been mentioned explicitly must be used very cautiously.

5.9 Reaching the Integration Grid Limit

Different density functionals converge to the integration grid limit at different
rates. During the training process of ωB97M-V, the billions of candidate functionals
were filtered such that the least-squares fit energies generated in the (99,590)/SG-1
and (250,974)/SG-1 grids differed by an absolute maximum of 0.015 kcal/mol. The
effectiveness of this decision is tested by analyzing the grid sensitivity of ωB97M-V
on all of the data points in the training and primary test sets (with the exception of
those in AE18 and RG10) with the following grids: (250,974)/SG-1, (99,590)/SG-1,
(99,302)/SG-1, (75,590)/SG-1, (75,302)/SG-1, (75,302)/SG-0, and SG-1/SG-0.

Table 5.5 summarizes the results of this comprehensive test involving 3247 data
points, which are binned with respect to the absolute error (AE) in kcal/mol. The
table is populated with the assumption that the (250,974)/SG-1 results are fully
converged with respect to the grid. Starting with the (99,590)/SG-1 grid, it is clear
that the filtering applied during the training stage has completely transferred to
the final functional form, since all 3247 data points have absolute errors less than
0.015 kcal/mol. Furthermore, changing the number of radial shells from 99 to 75
(while keeping the number of angular grid points constant) seems to have a negligible
effect on the results, yet accelerates the integration of the local exchange-correlation
functional by 25%. On the other hand, changing the number of angular grid points
from 590 to 302 (while keeping the number of radial shells constant) seems to have
a much more profound effect. Based on the negligible effect of transitioning from
(99,590)/SG-1 to (75,590)/SG-1, it is reasonable to assume that transitioning from
(99,302)/SG-1 to (75,302)/SG-1 should have a negligible effect on the (99,302)/SG-1
results. The (75,302)/SG-1 results indicate that this is indeed true.

The goal of this grid analysis is to recommend three tiers of integration grids for
use with ωB97M-V: fine, medium, and coarse. So far, it is clear that the (99,590)/SG-
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AE (kcal/mol) [0,0.015) [0.015,0.03) [0.03,0.045) [0.045,0.06) [0.06,0.075) [0.075,0.09) [0.09,∞)

(99,590)/SG-1 3247 0 0 0 0 0 0
(75,590)/SG-1 3244 3 0 0 0 0 0
(99,302)/SG-1 3200 39 3 3 2 0 0
(75,302)/SG-1 3189 50 3 3 2 0 0
(75,302)/SG-0 3122 107 11 5 2 0 0

SG-1/SG-0 1851 587 303 160 101 83 162

Table 5.5: Grid error ranges for 3247 data points from the training and primary test
sets. From the original 3834 data points, the 18 data points from AE18 and the
569 data points from RG10 are excluded. The errors are taken with respect to the
(250,974)/SG-1 grid. The grids are assessed with respect to the absolute error (AE)
in kcal/mol.

1 grid is certainly the finest grid that is necessary to obtain fully converged results.
Thus, the (99,590)/SG-1 grid is deemed to be the “fine” option for ωB97M-V. Fur-
thermore, the only other combination that is computationally more efficient than
the (99,590)/SG-1 grid yet maintains its accuracy is the (75,590)/SG-1 grid, which
receives the “medium” certification. While (75,302)/SG-1 appears to be a viable
“coarse” option, it is useful to see if the nonlocal grid can be reduced without incur-
ring substantial additional errors. Modifying the nonlocal grid from SG-1 to SG-0
(while maintaining the (75,302) local grid) only negligibly affects the results. On
the other hand, modifying the local grid from (75,302) to SG-1 (with SG-0 as the
nonlocal grid) has a devastating effect on the quality of the results and is abso-
lutely not recommended. Therefore, the “coarse” specification is deemed to be the
(75,302)/SG-0 grid.

Based on these results, the following three grids are recommended for use with
ωB97M-V:

• fine: (99,590)/SG-1

• medium: (75,590)/SG-1

• coarse: (75,302)/SG-0

5.10 Conclusions

For semi-empirical density functionals, universality (or transferability) is impos-
sible to fully guarantee, because such functionals are necessarily approximate. In
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other words, for a given system, a new density functional cannot necessarily improve
upon existing ones, even though it may often do so. Nonetheless, within a class of
functionals, transferability can be enhanced by minimizing the number of empirical
parameters (i.e. avoiding overfitting), while increasing the size of the training and
test sets. Even then, the use of a new density functional should only be advocated
if it statistically improves upon a wide variety of existing competitors in and below
its class, across a very diverse set of benchmark systems.

ωB97M-V was developed upon these foundations. A combinatorial, “survival-
of-the-most-transferable” approach was utilized to screen over 10 billion candidate
least-squares fits based on accuracy, transferability, and desired physical properties,
an immense database of nearly 5000 data points was used to train and test the
most promising fit, and the final, self-consistently-optimized density functional was
assessed against 11 well-respected semi-empirical functionals across all 4986 data
points. The results are very encouraging, beginning with a large reduction in the
number of trained parameters versus other meta-GGA functionals from 29 (M06-2X),
40 (M11), 47 (M08-HX), or 59 (MN15), to 12 in ωB97M-V. The use of additional
parameters does not yield significantly better transferability in the screening and grad-
ually leads to potential problems with overfitting.

The combined training, primary test, and secondary test set results (summarized
in Figure 5.11) indicate that ωB97M-V is remarkably accurate for non-covalent in-
teractions, isomerization energies, thermochemistry, and barrier heights across the
main-group elements. For both NCED and NCEC, ωB97M-V is at least 25% more
accurate than the next best tested functional, which is ωB97X-V. ωB97M-V is equiv-
alent to ωB97X-V and B97M-V for IE, but outperforms all tested functionals by at
least 25% for ID. Additionally, ωB97M-V is almost 30% more accurate than ωB97X-
V for TCE, and 25% more accurate than any tested functional. For TCD, ωB97M-V
significantly outperforms the next best functionals, which are B97M-V and ωB97X-
V. Finally, despite only having 15% short-range exact exchange, ωB97M-V is the
best tested density functional for BH.

ωB97M-V was consistently trained and tested in the def2-QZVPPD basis set
(without counterpoise corrections). Thus, it is meant to be used as close as practi-
cally possible to the basis set limit. Its basis set dependence has been thoroughly
tested across four types of interactions (non-covalent interactions, isomerization en-
ergies, thermochemistry, and barrier heights) in order to identify basis sets that can
provide results similar in quality to those acquired with the basis set used for train-
ing the parameters. The def2-QZVPPD, pc-3, aug-pc-3, and aug-cc-pVQZ basis sets
are recommended for use, both with and without counterpoise corrections (when ap-
plicable). Additionally, the def2-QZVPP and aug-pc-2 basis sets are recommended
for use with counterpoise corrections (when applicable). Finally, the pc-2 and def2-
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TZVPPD basis sets (to be used with counterpoise corrections, when applicable)
should serve as economical choices under most circumstances.

Since the evaluation of the kinetic energy density is very sensitive to the integra-
tion grid, ωB97M-V was trained with the intention of making the (99,590)/SG-1 grid
the integration grid limit. This goal was met by filtering fits during the training stage
based on their absolute energetic deviation from the (250,974)/SG-1 grid. Based on
tests spanning 3247 data points, the (75,302)/SG-0 grid is recommended as a viable
coarse option for use with ωB97M-V (particularly for quick calculations), while the
(99,590)/SG-1 grid is recommended as the fine option if results near the integration
grid limit are required. For most applications, the medium-sized (75,590)/SG-1 grid
can serve as a compromise between these two limits.

It is important to discuss the remaining limitations of ωB97M-V. Like most Kohn–
Sham density functionals, it is not appropriate for use when strong correlation effects
are significant (e.g. see the TCD results in Figure 5.11). It contains some self-
interaction error, which causes larger errors in problems involving odd electrons or
holes (e.g. see the NCD results in Figure 5.11). Additionally, it is trained and tested
on main-group elements only, so its performance on transition metal-containing sys-
tems remains to be tested as suitable reference values become available. However,
the minimal empiricism of ωB97M-V gives reason for cautious optimism in cases
such as organometallic systems, where strong correlation is not important.

Finally, it is desirable to apply the same approach used here to develop other semi-
empirical density functionals with improved physical content, so that the resulting
density functionals are likewise minimally parameterized and optimally transferable.
Perhaps the most obvious next step is a range-separated hybrid, meta-GGA density
functional that includes nonlocal correlation through virtual orbitals. A functional
of this type should have significantly lower errors due to self-interaction. We hope
to report such a development in due course.
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Datatype B97�D3(BJ) B97M�V �B97X�V �B97M�V �B97X�D �M05�D M06�2X M08�HX M11 MN15 M06�L MN15�L
NCED 0.47 0.24 0.24 0.18 0.37 0.38 0.43 0.58 0.65 0.47 0.55 1.38
NCEC 4.82 0.95 0.64 0.48 1.01 1.79 2.52 1.73 2.82 1.83 2.20 12.83
NCD 2.52 2.01 1.23 1.13 1.46 1.23 0.99 1.03 1.23 0.96 1.87 1.45
IE 0.78 0.27 0.27 0.28 0.67 0.52 0.50 0.59 0.74 0.71 0.71 1.55
ID 9.15 6.48 2.72 2.05 3.11 4.30 5.56 4.62 5.65 4.06 10.16 6.94
TCE 4.66 3.57 3.41 2.48 3.44 3.27 3.29 3.60 3.67 3.76 5.44 4.62
TCD 7.92 4.82 5.01 4.30 5.79 5.87 7.23 8.14 9.19 6.44 12.97 8.62
BH 8.32 4.35 2.44 1.68 2.34 3.47 2.57 1.80 2.82 1.98 6.85 4.78

Figure 5.11: RMSDs in kcal/mol for 8 datatypes for 12 density functionals. These
datatype RMSDs include data points from the training, primary test, and secondary
test sets. NCED stands for non-covalent dimers (easy), NCEC stands for non-
covalent clusters (easy), NCD stands for non-covalent dimers (difficult), IE stands for
isomerization energies (easy), ID stands for isomerization energies (difficult), TCE
stands for thermochemistry (easy), TCD stands for thermochemistry (difficult), and
BH stands for barrier heights. The partitioning of the 4399 data points contained in
this figure into the 8 datatypes is: 1744, 243, 91, 755, 155, 947, 258, and 206.
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(241) Lao, K. U.; Schäffer, R.; Jansen, G.; Herbert, J. M. Accurate Description
of Intermolecular Interactions Involving Ions Using Symmetry-Adapted Per-
turbation Theory. Journal of Chemical Theory and Computation 2015, 11,
2473–2486.

(242) Karton, A.; O’Reilly, R. J.; Chan, B.; Radom, L. Determination of Bar-
rier Heights for Proton Exchange in Small Water, Ammonia, and Hydrogen
Fluoride Clusters with G4(MP2)-Type, MPn, and SCS-MPn Procedures–A
Caveat. Journal of Chemical Theory and Computation 2012, 8, 3128–3136.

(243) Chan, B.; Gilbert, A. T. B.; Gill, P. M. W.; Radom, L. Performance of Den-
sity Functional Theory Procedures for the Calculation of Proton-Exchange
Barriers: Unusual Behavior of M06-Type Functionals. Journal of Chemical
Theory and Computation 2014, 10, 3777–3783.

(244) Tentscher, P. R.; Arey, J. S. Binding in Radical-Solvent Binary Complexes:
Benchmark Energies and Performance of Approximate Methods. Journal of
Chemical Theory and Computation 2013, 9, 1568–1579.

(245) Kozuch, S.; Martin, J. M. L. Halogen Bonds: Benchmarks and Theoretical
Analysis. Journal of Chemical Theory and Computation 2013, 9, 1918–1931.
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