
UCLA
UCLA Electronic Theses and Dissertations

Title
Towards a higher dimensional construction of stable/unstable Lagrangian laminations

Permalink
https://escholarship.org/uc/item/95q4165w

Author
Lee, Sangjin

Publication Date
2019
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/95q4165w
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA

Los Angeles

Towards a higher dimensional construction of

stable/unstable Lagrangian laminations

A dissertation thesis presented for the degree of

Doctor of Philosophy

in Mathematics

by

Sangjin Lee

2019



c© Copyright by

Sangjin Lee

2019



ABSTRACT OF THE DISSERTATION

A higher dimensional construction of

stable/unstable Lagrangian laminations

by

Sangjin Lee

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2019

Professor Ko Honda, Chair

We generalize some properties of surface automorphisms of pseudo-Anosov type.

First, we generalize the Penner construction of a pseudo-Anosov homeomorphism

and show that a symplectic automorphism which is constructed by our generalized

Penner construction has an invariant Lagrangian branched submanifold and an in-

variant Lagrangian lamination, which are higher-dimensional generalizations of a

train track and a geodesic lamination in the surface case. Moreover, if a pair consist-

ing of a symplectic automorphism ψ and a Lagrangian branched surface Bψ satis-

fies some assumptions, we prove that there is an invariant Lagrangian lamination L

which is a higher-dimensional generalization of a geodesic lamination.
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1. Introduction

By the Nielsen-Thurston classification of surface diffeomorphisms, an automor-

phism ψ : S
∼→ S of a compact oriented surface S is of one of three types: periodic,

reducible or pseudo-Anosov [1], [10]. A generic element of the mapping class group

of S is of pseudo-Anosov type.

Let us assume that ψ is of pseudo-Anosov type. For any closed curve C ⊂ S, it is

known that there is a sequence {Lm}m∈N of closed geodesics such that Lm is isotopic

to ψm(C) for all m ∈ N, and {Lm}m∈N, as a sequence of closed subsets, converges

to a closed subset L. Moreover, L is a geodesic lamination. The definitions of a

lamination, a geodesic lamination and a Lagrangian lamination are the following:

Definition 1.1.

(1) A k-dimensional lamination on an n-dimensional manifold M is a decomposi-

tion of a closed subset of M into k-dimensional submanifolds called leaves so

thatM is covered by charts of the form Ik×In−k where a leaf passing through

a chart is a slice of the form Ik × {pt}.

(2) A 1-dimensional lamination L on a Riemannian 2-manifold (S, g) is a geodesic

lamination if every leaf of L is geodesic.

(3) A n-dimensional lamination L on a symplectic manifold (M2n, ω) is a La-

grangian lamination if every leaf of L is a Lagrangian submanifold.

For more details, we refer the reader to [3, Chapter 15].

In [2], Dimitrov, Haiden, Katzarkov, and Kontsevich defined the notion of a pseudo-

Anosov functor of a category. A pseudo-Anosov map ψ on a compact oriented sur-

face S induces a functor, also called ψ, on the derived Fukaya categoryDπFuk(S, ω),

where ω is an area form of S. In [2], the authors showed that ψ is a pseudo-Anosov

functor.
1



In [2, Section 4], the authors listed a number of open questions. One of them is to

find a symplectic automorphism ψ on a symplectic manifoldM of dimension greater

than 2 which has invariant transversal stable/unstable Lagrangian measured folia-

tions. A slightly weaker version of the question is to define a symplectic automor-

phism ψ with invariant stable/unstable Lagrangian laminations.

The goal of the present paper is to prove Theorems 1.2–1.5, which answer the latter

question.

Theorem 1.2. Let M be a symplectic manifold and let ψ : M
∼→ M be a symplectic auto-

morphism of generalized Penner type. Then, there exists a Lagrangian branched submanifold

Bψ such that if L is a Lagrangian submanifold which is carried (resp. weakly carried) by Bψ,

then ψm(L) is carried (resp. weakly carried) by Bψ for all m ∈ N.

In Sections 2 and 3, we will explain the terminology that appears in the statement

of Theorem 1.2, i.e., a symplectic automorphism of generalized Penner type, a La-

grangian branched submanifold, and the notion of “carried by”.

We would like to remark that Theorem 1.2 is for ψ of generalized Penner type.

However, there would be a generalized version of Theorem 1.2, which we do not

prove in the current paper.

Theorem 1.3. Let M be a symplectic manifold and let ψ : M
∼→ M be a symplectic auto-

morphism of generalized Penner type. Then, there is a Lagrangian lamination L such that

if L is a Lagrangian submanifold of M which is carried by Bψ, then there is a Lagrangian

submanifold Lm for all m ∈ N, which is Hamiltonian isotopic to ψm(L) and converges to L

as closed sets as m→∞.

We will also prove the following generalization of Theorem 1.3

Theorem 1.4. Let ψ : M
∼→ M be a symplectic automorphism and let Bψ be a Lagrangian

branched submanifold such that ψ(Bψ) is carried by Bψ. Moreover, if the associated branched
2



manifold Bψ admits a decomposition into singular and regular disks, then there is a La-

grangian lamination L such that if L is a Lagrangian submanifold of M which is carried

by Bψ, then there is a Lagrangian submanifold Lm for all m ∈ N, which is Hamiltonian

isotopic to ψm(L) and converges to L as closed sets as m→∞.

The associated branched manifold and singular/regular disks will be defined in

Sections 3 and 4.

Theorem 1.5. Let M be a plumbing space of Penner type and let η : M
∼→ M be the

involution associated to M . Let assume that a transversal pair L1, L2 ⊂ M of Lagrangian

submanifolds satisfies the following:

(1) η(Li) = Li for i = 0, 1.

(2) Let L̃i = Li ∩Mi. Then, L̃i is a Lagrangian submanifold of M̃ such that L̃0 and L̃1

are not isotopic to each other.

(3) L0 ∩ L1 = L̃0 ∩ L̃1.

Then,

dimHF 0(L1, L2) + dimHF 1(L1, L2) = i(L̃1, L̃2),

where HF k(L1, L2) denotes Z/2–graded Lagrangian Floer homology over the Novikov ring

of characteristic 2 and i(L̃1, L̃2) denotes the geometric intersection number of L̃1 and L̃2 in

the fixed surface M̃ .

In Section 5, we will explain the terminology that appears in the statement of The-

orem 1.5, i.e., a plumbing space M of Penner type, the involution η associated to M ,

and the fixed surface M̃ of M .

This paper consists of 5 sections. In Section 2, we review plumbing spaces and

generalized Dehn twists. We will prove Theorem 1.2 in Section 3 and Theorems 1.3

and 1.4 in Section 4. In Section 5, we will prove Theorem 1.5.
3



2. Preliminaries

In this section, we will review plumbings of cotangent bundles and generalized

Dehn twists, partly to establish notation.

2.1. Plumbing spaces. Let α and β be oriented spheres Sn. We describe how to

plumb T ∗α and T ∗β at p ∈ α and q ∈ β. Let U ⊂ α and V ⊂ β be small disk

neighborhoods of p and q. Then, we identify T ∗U and T ∗V so that the base U (resp.

V ) of T ∗U (resp. T ∗V ) is identified with a fiber of T ∗V (resp. T ∗U ).

To do this rigorously, we fix coordinate charts ψ1 : U → Rn and ψ2 : V → Rn.

Then, we obtain a compositions of symplectomorphisms

T ∗U
(ψ∗1)−1

−−−−→ T ∗Rn ' R2n f−→ R2n ' T ∗Rn ψ∗2−→ T ∗V,

where f(x1, · · · , xn, y1, · · · , yn) = (y1, · · · , yn,−x1, · · · ,−xn).

A plumbing space P (α, β) of T ∗α and T ∗β is defined by T ∗αt T ∗β/ ∼, where x ∼

(ψ∗2 ◦f ◦ψ∗−1
1 )(x) for all x ∈ T ∗U . Since ψ∗2 ◦f ◦ψ∗−1

1 is a symplectomorphism, P (α, β)

has a natural symplectic structure induced by the standard symplectic structures of

cotangent bundles.

Since the plumbing procedure is a local procedure, we can plumb a finite collection

of cotangent bundles of the same dimension at finitely many points. For convenience,

we plumb cotangent bundles of oriented manifolds.

Note that we can replace f by

g(x1, · · · , xn, y1, · · · , yn) = (−y1, y2, · · · , yn, x1,−x2, · · · ,−xn).

If we plumb T ∗α and T ∗β at one point using g, this plumbing space is symplectomor-

phic to the previous plumbing space P (α, β), which is plumbed using f . However,

if we plumb at more than one point, then by replacing f with g at a plumbing point,

the plumbing space will change.

4



Definition 2.1. Let α1, · · · , αm be oriented manifolds of dimension n.

(1) A plumbing data is a collection of pairs of non-negative integers (ai,j, bi,j) for

all 1 ≤ i ≤ j ≤ m and collections of distinct points

{pi,jk ∈ αi | 1 ≤ i ≤ j ≤ m, 1 ≤ k ≤ ai,j + bi,j} and

{qi,jk ∈ αj | 1 ≤ i ≤ j ≤ m, 1 ≤ k ≤ ai,j + bi,j}.

(2) A plumbing space P (α1, · · · , αm), with the given plumbing data, is given by

P (α1, · · · , αm) = T ∗α1 t · · · t T ∗αm/ ∼,

where the equivalence relation ∼ is defined as follows: First, choose small

disk neighborhoods U i,j
k ⊂ αi of pi,jk and V i,j

k ⊂ αj of qi,jk and orientation-

preserving coordinate charts ψi,jk : U i,j
k

∼→ Rn and φi,jk : V i,j
k

∼→ Rn. Then for

all x ∈ T ∗U i,j
k ,

x ∼ (φi,j∗k ◦ f ◦ (ψi,j∗k )−1)(x) if 1 ≤ k ≤ ai,j,

x ∼ (φi,j∗k ◦ g ◦ (ψi,j∗k )−1)(x) if ai,j + 1 ≤ k ≤ ai,j + bi,j.

(3) A plumbing point is an identified point pi,jk ∼ qi,jk ∈ P (α1, · · · , αm).

Figure 1 is examples of plumbing spaces.

If αi is of dimension n ≥ 2, then specific choices of plumbing points do not change

the symplectic topology of P (α1, · · · , αm).

2.2. Generalized Dehn twist. Let

T ∗Sn = {(u; v) ∈ Rn+1 × Rn+1 | ‖u‖ = 1, 〈u, v〉 = 0},

Sn = {(u; 0) ∈ T ∗Sn},

5



β β

α α

α α

Figure 1. Example of plumbing spaces.
P (α ' S1, β ' S1) with plumbing data (2, 0) (left) and (1, 1) (right).

where (u; v) ∈ Rn+1 × Rn+1 and < u, v > is the standard inner product of u and v in

Rn+1. Moreover, let 0k be the origin in Rk.

We fix a Hamiltonian function µ(u; v) = ‖v‖ on T ∗Sn \Sn. Then, µ induces a circle

action on T ∗Sn \ Sn given by

σ(eit)(u; v) =
(

cos(t)u+ sin(t)
v

‖v‖
; cos(t)v − sin(t)‖v‖u

)
.

Let r : [0,∞) → R be a smooth decreasing function such that r(0) = π and r(t) = 0

for all t ≥ ε for a small positive number ε. If ω0 is the standard symplectic form of

T ∗Sn, we define a symplectic automorphism τ : (T ∗Sn, ω0)
∼→ (T ∗Sn, ω0) as follows

τ(u; v) =

σ(eir(µ(u;v)))(u; v) if v 6= 0n+1,

(−u; 0n+1) if v = 0n+1.
(2.1)

Let (M2n, ω) be a symplectic manifold and letL ' Sn be a Lagrangian sphere inM .

By the Lagrangian neighborhood theorem [12], there is a neighborhood N(L) ⊃ L

and a symplectomorphism φ : T ∗Sn
∼→ N(L). We define a generalized Dehn twist

6



τL along L as follows:

τL(x) =

(φ ◦ τ ◦ φ−1)(x) if x ∈ N(L),

x if x /∈ N(L).
(2.2)

Note that the support of τL is contained in N(L). From now on, a generalized Dehn

twist will just be called a Dehn twist.

Remark 2.2. In this paper, we will use two specific Dehn twists τ, τ̃ : T ∗Sn
∼→ T ∗Sn

which are defined by Equation (2.1) and two functions r, r̃ : [0,∞)→ R. The function

r (resp. r̃) defining τ (resp. τ̃ ) satisfies the above conditions in addition to r(t) = π

for all t ≤ ε
2

(resp. r̃′(0) < 0). Two Dehn twists τ and τ̃ are equivalent in the sense

that τ ◦ τ̃−1 is a Hamiltonian isotopy.

Dehn twists have been studied extensively by Seidel. For example, Seidel [9] proved

the following theorem.

Theorem 2.3. Let α be a Lagrangian sphere and β be a Lagrangian submanifold of a sym-

plectic manifold M . If α and β intersect transversally at only one point, α#β is Lagrangian

isotopic to τα(β) where α#β is a Lagrangian surgery of α and β.

We prove Theorem 2.3 in the special case that β is also a sphere and M = P (α, β),

as an illustration of the “spinning” procedure. To define “spinning”, we use the

following notation. Let y ∈ Sn−1 ⊂ Rn. Then,

ψy : T ∗S1 ' S1 × R→ T ∗Sn,

(θ, t) 7→ (cos θ(0n, 1) + sin θ(y, 0); t cos θ(y, 0)− t sin θ(0n, 1))

is a symplectic embedding. Let Wy be the embedded symplectic surface ψy(T ∗S1).

Definition 2.4. Given a curve C in T ∗S1, its spun image S(C) is ∪y∈Sn−1ψy(C).
7



Proof of Theorem 2.3. We use T ∗α and T ∗β to indicate neighborhoods ofα and β inside

M = P (α, β). Let p be the intersection point of α and β. Then, T ∗pα = β ∩ T ∗α. The

closure of T ∗pα is denoted by D−p ; we use D to indicate that this is a disk and the

subscript pmeans that p is the center ofD−p . The meaning of the negative sign inD−p
will be explained in the next section. Since τα is supported on T ∗α,

τα(β) = τα(β ∩ T ∗α) ∪ τα(β \ T ∗α) = τα(D−p ) ∪ (β \ T ∗α).

There exists φ : T ∗Sn
∼→ T ∗α such that τα = φ ◦ τ ◦ φ−1. Without loss of generality,

φ(0n, 1; 0n+1) = p and

D−p = φ({(0n, 1; ty, 0) | t ∈ R, y ∈ Sn−1 ⊂ Rn}).

Then,

(φ ◦ τα ◦ φ−1)(D−p ) = (φ ◦ τ)({(0n, 1; ty, 0) | t ∈ R, y ∈ Sn−1 ⊂ Rn})

= ∪y∈Sn−1φ({τ(0n, 1; ty, 0) | t ∈ R}).

Thus, τα(D+
p ) is given by spinning with respect to p and φ. Similarly, we can construct

a Lagrangian isotopy connecting τα(β) and α#β by spinning. This completes the

proof. �

3. Lagrangian branched submanifolds

In Section 3.1, we will define Lagrangian branched submanifolds. In Section 3.2,

we will introduce a construction of a fibered neighborhood of a Lagrangian branched

submanifolds. In Section 3.3, we will defined the notion of “carried by” by using

a fibered neighborhood. In Section 3.4, we will introduce the generalized Penner

construction. Finally, we will give a proof of Theorem 1.2 in Section 3.5.
8



3.1. Lagrangian branched submanifolds. Thurston [11] used train tracks, which

are 1-dimensional branched submanifolds of surfaces, and defined the notion of

“carried by a train track”. In this subsection, we generalize train tracks.

The generalization of a train track is an n-dimensional branched submanifold of

a 2n-dimensional manifold. We define the n-dimensional branched submanifolds

with local models, as Floyd and Oertel defined a branched surface in a 3-dimensional

manifold in [4], [6]. For our definition, we need a smooth function s : R → R such

that s(t) = 0 if t ≤ 0 and s(t) > 0 if t > 0.

Definition 3.1. Let M2n be a smooth manifold.

(1) A subset B ⊂ M is an n-dimensional branched submanifold if for every p ∈ B,

there exists a chart φp : Up
∼→ R2n about p such that φp(p) = 0 and φp(B ∩ Up)

is a union of submanifolds L0, L1, · · · , Lk for some k ∈ {0, · · · , n}, where

Li := {(x1, · · · , xn, s(x1), s(x2), · · · , s(xi), 0, · · · , 0) ∈ R2n | xj ∈ R}.

(2) A sector of B is a connected component of the set of all points in B that are

locally modeled by L0, i.e., k = 0.

(3) A branch locus Locus(B) of B is the complement of all the sectors.

(4) Let (M2n, ω) be a symplectic manifold. A subset B ⊂ M is a Lagrangian

branched submanifold if for every p ∈ B, there exists a Darboux chart φp :

(Up, ω|Up)
∼→ (R2n, ω0) about p, satisfying the conditions of an n-dimensional

branched submanifold.

Remark 3.2.

(1) At every point p of a branched submanifold B, the tangent plane TpB is well-

defined. Moreover, if B is Lagrangian, then TpB is a Lagrangian subspace of

TpM .
9



(2) A point on the branch locus is (a smooth version of) an arboreal singularity

in the sense of Nadler [5].

Example 3.3.

(1) Every train track of a surface equipped with an area form is a Lagrangian

branched submanifold.

(2) Let (M,ω) be a symplectic manifold and let L1 and L2 be two Lagrangian

submanifold of M such that

L1 t L2, L1 ∩ L2 = {p}.

The Lagrangian surgery of L1 and L2 at p will be denoted by L1#pL2. Then,

L1#pL2∪L1 and L1#pL2∪L2 are examples of Lagrangian branched subman-

ifold.

In Section 3.3, we will define the notion of “carried by” which appears in Theo-

rems 1.2 - 1.4. In order to define the notion of carried by, we will construct a fibered

neighborhood first in Section 3.2.

3.2. Construction of fibered neighborhoods. Let B be a Lagrangian branched sub-

manifold. A fibered neighborhood N(B) of B is, roughly speaking, a codimension

zero compact submanifold with boundary and corners of M , which is foliated by

Lagrangian closed disks which are called fibers.

Definition 3.4. A fibered neighborhood of B is a union ∪p∈BFp, where {Fp | p ∈ B} is a

family of Lagrangian disks satisfying

(1) for any p ∈ B, Fp t B,

(2) for any p, q ∈ B, either Fp = Fq or Fp ∩ Fq = ∅,

(3) there exists a closed neighborhood U ⊂ B of Locus(B), such that {Fp | p ∈ U}

is a smooth family over each local sheet Li ∩ U ,
10



(4) for each sector S of B, {Fp | p ∈ S \ U} is a smooth family,

(5) if p ∈ S ∩ ∂U where S is a sector of B, then, for any sequence {qn ∈ S \U}n∈N,

lim
n→∞

Fqn is a Lagrangian disk such that lim
n→∞

Fqn ⊂ F̊p = Fp \ ∂Fp.

We will now give a specific construction of a fibered neighborhood N(B).

Remark 3.5. By the Lagrangian neighborhood theorem [12], for any Lagrangian sub-

manifold L of M , there exists a small neighborhoodN (L) of the zero section of T ∗L

such that a symplectic embedding iL : N (L) ↪→M is defined onN (L). Without loss

of generality, we assume thatN (L) is a closed neighborhood. Than,N (L) is foliated

by closed Lagrangian disks N (L) ∩ T ∗pL.

Fibration over L(`). First, we will construct fibers near the branch locus. For each con-

nected component ` ofLocus(B), we choose a small closed Lagrangian neighborhood

L(`) of `. Then, by Remark 3.5, there exists a symplectic embedding

iL(`) : N (L(`)) ↪→M.

Let U(L(`)) = iL(`)(N (L(`))).

By choosing a sufficiently smallL(`), without loss of generality, the following hold:

iL(`)(N (L(`)) ∩ T ∗xL(`)) ∩ B 6= ∅ for all x ∈ L(`),

iL(`)(N (L(`)) ∩ T ∗xL(`)) t B for all x ∈ L(`),

U(`) ∩ U(`′) = ∅ if ` 6= `′.

If p ∈ B is close to the branch locus, in other words, there is a connected com-

ponent ` of Locus(B) such that p ∈ B ∩ U(`), then there exists x ∈ L(`) such that

p ∈ iL(`)(N (L(`)) ∩ T ∗xL(`)). Let Fp := iL(`)(N (L(`)) ∩ T ∗xL(`)). Then, Fp is a closed

Lagrangian disk containing p.
11



If p ∈ `, then,

Fp t B and ∂Fp ∩ B = ∅.(3.3)

Moreover, by choosing a sufficiently small L(`), for every p ∈ B∩U(`), Equation (3.3)

holds.

`

Fp

L(`)

(a) U(`). (b) Fp is not transversal to B.

(c) (Fp \ F̊p) ∩ B 6= ∅. (d) Example of N(S).

Figure 2. Construction of fibered neighborhood.
Black curves are part of a Lagrangian branched submanifold and the black marked points
denote a connected component ` of Locus(B). in (a), L(`) is in red, and the fibers Fp, for
p ∈ B ∩ U(`), are in blue; (b) and (c) are not allowed by Equation (3.3); and in (d), the red

and green boxes are examples of N(S).

After possibly renaming U(`), from now we assume that

U(`) = ∪p∈L(`)Fp.

If p ∈ B ∩ U(`), then there is a unique q ∈ L(`) such that p ∈ Fq. We define Fp :=

Fq. Thus, for p ∈ B which is close to Locus(B), i.e., p ∈ U(`) for some connected

component ` of Locus(B), we can define a fiber Fp at p.
12



Fibration over S \ ∪`U(`). If p ∈ B \ ∪`U(`), then there is a sector S of B containing p.

Since S is Lagrangian, there is an embedding iS : N (S) ↪→ M . We can assume that

N (S) is small enough, so that

Fq ∩ iS
(
N (S)

)
⊂ F̊q = Fq \ ∂Fq for any q ∈ B ∩ U(`),(

iS(N (S)) \ ∪U(`)
)
∩
(
iS′(N (S ′)) \ ∪U(`)

)
= ∅.

Figure 2 (d) represents examples of N (S). We define Bp for all p ∈ S by setting

Bp := iS
(
N (S) ∩ T ∗pS

)
.

For any sector S, let S◦ := S − ∪` IntU(`). Then, S◦ is a Lagrangian submanifold

with boundary. The boundary of S◦ is a union of S(`) := S ∩ ∂
(
U(`)

)
. We fix a

tubular neighborhood of S(`), which is contained in S◦, and identify the tubular

neighborhood with S(`)× [0, 1). For convenience, we will pretend that S(`)× [0, 1] ⊂

S and S(`)× {0} = S(`).

If p ∈ S◦ does not lie in any S(`)× (0, 1), then we set Fp := Bp.

Interpolation on S(`) × [0, 1]. If there is a connected component ` of Locus(B) such

that p = (p0, t0) ∈ S(`)× (0, 1), we will construct Fp=(p0,t0) from F(p0,0) and F(p0,1). To

do this, we need the following facts:

First, by the definition of F(p0,0), F(p0,0)∩ iS
(
N (S)

)
is a Lagrangian disk which con-

tains (p0, 0), and is transversal to B at (p0, 0). Also, B(p0,0) is also a Lagrangian disk

which contains (p0, 0), and is transversal to B.

By the Lagrangian neighborhood theorem [12], we can see F(p0,0) ∩ iS
(
N (S)

)
as a

graph of a closed section in T ∗B(p0,0), i.e.,

F(p0,0) ∩ iS
(
N (S)

)
= iB(p0,0

)

(
the graph of a closed section in T ∗B(p0,0)

)
.

13



Every closed section of T ∗B(p0,0) is an exact section because B(p0,0) is a disk. Thus,

there is a function f(p0,0) : B(p0,0) → R such that

F(p0,0) ∩ iS
(
N (S)

)
= iB(p0,0)

(
the graph of df(p0,0)

)
.

Second, we will fix a Riemannian metric g compatible with ω for convenience.

By restricting g to S, S is equipped with a Riemannian metric g|S . Thus, for any

t0 ∈ [0, 1], there is a parallel transport induced by g|S , between T(p0,t0)S and T(p0,0)S

along γp0(t) = (p0, t) ∈ S. Also, g induces a bijection between T(p0,0)S (resp. T(p0,t0)S)

and T ∗(p0,0)S (resp. T ∗(p0,t0)S). Thus, there is a bijective map betweenB(p0,t0) andB(p0,0).

From those two facts, we define a function f(p0,t) : B(p0,t) → R as follows:

f(p0,t) : B(p0,t)
∼→ B(p0,0)

(1−t)f(p0,0)−−−−−−→ R.

The first arrow comes from the parallel transport induced by g.

There is a map,

h : ∪(p0,t)∈S(`)×[0,1]B(p0,t) →M,

x ∈ B(p0,t) 7→ iB(p0,t)
(dfB(p0,t)

(x)).

It is easy to check that h(p0, t) = (p0, t). Moreover, h is the associated (time 1) flow of

the Hamiltonian vector field of

f(p0,t) : ∪(p0,t)∈S(`)×[0,1]B(p0,t) → R.

Finally, we construct F(p0,t0) by setting

F(p0,t0) := h(B(p0,t0)).

14



(a) U(`).

`

(b) Fp for p /∈ S(`)× (0, 1].

`

(c) Fp for p ∈ S(`)× (0, 1].

`

Figure 3. Fibered neighborhood.
Black curves are part of a Lagrangian branched submanifold and marked points denote `;

in (a), U(`) is shaded blue, the vertical line segments are fibers; (b) fiber Fp for
p /∈ S(`)× (0, 1] is in green; and in (c), fiber Fp for p ∈ S(`)× (0, 1] is in red.

A fibered neighborhood N(B) is given by the union of fibers, i.e., N(B) = ∪p∈BFp.

Note that the construction of N(B) is not unique because the construction depends

on some choices, including the choices of L(`) and a Riemannian metric g.

3.3. Associated branched manifolds and the notion of “carried by”. We constructed

a fibered neighborhoodN(B). From now on, we will define a projection map defined

on N(B), in order to define the notion of “carried by”.

First, we define the associated branched manifold B∗ of B.

Definition 3.6. Let B be a Lagrangian branched submanifold of M and let N(B) be

a fibered neighborhood of B. Then, the associated branched submanifold B∗ is defined

by setting

B∗ := N(B)/ ∼, x ∼ y if ∃Fp such that x, y ∈ Fp.
15



Let π : N(B)→ B∗ denote the quotient map.

Before defining the notion of “carried by”, we note that B∗ is not contained in

M . Moreover, since B∗ is a branched manifold, we can define the branch locus and

sectors of B∗ as follows:

Definition 3.7.

(1) A sector of B∗ is a connected component of

{p ∈ B∗ | p has a neighborhood which is homeomorphic to Rn}.

(2) A branch locus of B∗ is the complement of all the sectors.

N(B)

x

S0

S2

S1

B∗

π ↓

(a) π : N(B)→ B∗. (b) Fx.

π−1(S2) ∩ Fx

π−1(S1) ∩ Fx
Fx

Figure 4. Abstract branched manifold.
(a) represents π : N(B)→ B∗. In N(B), the blue, red, and green represent π−1(S0), π−1(S1),
and π−1(S2), where Si is the corresponding sector of B∗; (b) represents Fx where x is in the

branch locus of B∗ in (a).
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Remark 3.8.

(1) The construction of N(B) depends on the choices of a Riemannian metric, a

closed neighborhood of Locus(B), and so on. Thus, fibered neighborhoods

N(B) of B are not unique. However, B∗ is unique as a branched manifold

since B and B∗ are equivalent as branched manifolds.

In the rest of this paper, when it comes to a Lagrangian branched submani-

foldB, we will consider a triple (B, N(B),B∗) with an arbitrary choice ofN(B).

Moreover, for any triple (B, N(B),B∗), the projection map is denoted by π for

convenience.

(2) A fibered neighborhoodN(B) is a union of fibers, i.e., N(B) = ∪p∈BFp. In

the equation, B is an index set. However, there is a possibility of having two

distinct points p, q ∈ B such that Fp = Fq. From now on, we will use B∗ as an

index set. In other words, we replace Fp by π−1(π(p)). By abuse of notation,

Fx denotes π−1(x) for all x ∈ B∗.

(3) Let x be a branch point of B∗. Then, there are sectors S0, S1, · · · , Sl of B∗ for

some l such that

x ∈ S̄i for every i = 0, 1, · · · , l

Fx ∩ π−1(S0) = Fx and Fx ∩ π−1(Si) ⊂ F̊x = Fx \ ∂Fx for every i = 1, 2, · · · , l.

Figure 4 represents this.

From now on, we define the notion of “carried by”. If a Lagrangian submanifold L

(resp. a Lagrangian branched submanifold L) is contained inN(B), there is a restric-

tion of π toL (resp.L). For convenience, we will simply use π instead of π|L : L→ B∗.

Definition 3.9. LetL be a Lagrangian submanifold (resp.L be a Lagrangian branched

submanifold) of N(B).

(1) x ∈ L (resp. L) is a regular point of π if L t Fπ(x) (resp. L t Fπ(x)) at x.
17



(2) x ∈ L (resp. L) is a singular point of π if x is not regular point of π : L′ → B∗.

Moreover, values of π at singular points are called singular values of π. y ∈ B∗

is a singular value of π if there is a singular point x of π such that π(x) = y.

(3) L is minimally singular with respect to B if π : L→ B∗ has no singular value on

the branch locus of B∗ and |Fx ∩ L| = |Fy ∩ L|, for any non-singular value x

and y which lie in the same sector of B∗, where | · |means the cardinality of a

set.

Definition 3.10.

(1) A Lagrangian submanifold L (resp. a Lagrangian branched submanifold L)

is strongly carried by a Lagrangian branched submanifold B if L (resp. L) is

Hamiltonian isotopic to a Lagrangian submanifold L′ (resp. a Lagrangian

branched submanifold L′) such that L′ (resp. L′) ⊂ N(B) and π : L′ → B∗

has no singular value.

(2) A Lagrangian submanifold L (resp. a Lagrangian branched submanifoldL) is

weakly carried by a Lagrangian branched submanifoldB ifL (resp.L) is Hamil-

tonian isotopic to a Lagrangian submanifold L′ (resp. a Lagrangian branched

submanifold L′) such that L′ (resp. L′) ⊂ N(B), L′ is minimally singular, and

π : L′ → B∗ has countably many singular values.

(3) Two Lagrangian submanifoldsL andL′ that are weakly carried byB are weakly

fiber isotopic if there exists an isotopy for L and L′ through Lagrangians that

are weakly carried by B.

In the rest of this paper, if L is weakly carried by B, then we will assume that

L ⊂ N(B) and L is minimally singular with respect to B.
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Note that the notion of “carried by” used by Thurston in [10] is our notion of

“strongly carried by”. Thurston showed that for a pseudo-Anosov surface automor-

phism ψ : S
∼→ S, there is a 1-dimensional branched submanifold τ which is called

a train track such that ψ(τ) is strongly carried by τ .

Our higher-dimensional generalization is slightly weaker, i.e., for some symplectic

automorphism ψ : (M,ω)
∼→ (M,ω), we construct a Lagrangian branched subman-

ifold Bψ such that ψ(Bψ) is weakly carried by Bψ. In other words, we allow non-

transversality at countably many point p ∈ Bψ. However, we allow only one type of

non-transversality. In the rest of the present subsection, we will describe the unique

type of non-transversality.

Definition 3.11. Let L be weakly carried by B. A singular component V of π : L → B

is a connected component of the set of all singular points of π.

Example 3.12. Let M∗ be a symplectic manifold T ∗Rn ' R2n equipped with the

canonical symplectic form. The zero section B∗ := Rn × 0 ⊂ R2n is a Lagrangian

branched submanifold. We assume that the fibered neighborhood N(B∗) is M∗, by

setting Fp := T ∗pRn for all p ∈ Rn = B∗. Then, a Lagrangian submanifold

L∗ := {(tx, x) ∈ Rn × Rn | t ∈ R, x ∈ Sn−1 ⊂ Rn}

is weakly carried by B∗ and π∗ has only one singular component

V∗ := {(0, x) | x ∈ Sn−1}.

Definition 3.13. A singular component V of π : L→ B is of real blow-up type if there

exists an open neighborhood U of V and a symplectomorphism φ : U
∼→ M∗ such

that φ(U ∩ B) = B∗, φ(V ) = V∗, and φ−1 ◦ π∗ ◦ φ = π, where M∗,B∗, V∗, and π∗ are

defined in Example 3.12.
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Definition 3.14. A Lagrangian submanifold L (resp. a Lagrangian branched sub-

manifoldL) is carried by a Lagrangian branched submanifoldB ifL (resp.L) is weakly

carried by B and every singular component of π (resp. π) is a singular component of

real blow-up type.

3.4. The generalized Penner construction. In this subsection, we give a higher-dimensional

generalization of Penner construction [7] of pseudo-Anosov surface automorphisms.

The generalization replaces Dehn twists by generalized Dehn twists along Lagrangian

spheres.

Generalized Penner construction : Let M be a symplectic manifold. A symplectic

automorphism ψ : M
∼→ M is of generalized Penner type if there are two collections

A = {α1, · · · , αm} and B = {β1, · · · , βl} of Lagrangian spheres such that

αi ∩ αj = ∅, βi ∩ βj = ∅, for all i 6= j,

αi t βj for all i, j,

so that ψ is a product of positive powers of Dehn twists τi along αi and negative

powers of Dehn twists σj along βj , subject to the condition that every sphere appear

in the product.

A Lagrangian sphere αi (resp. βj) is called a positive (resp. negative) sphere since

only positive powers of τi (resp. negative powers of σj) appear in ψ.

Remark 3.15.

(1) In Theorems 1.2 and 1.3, we can assume that the symplectic manifold M is

a plumbing space. Every τi (resp. σj) is supported on a neighborhood of αi

(resp. βj), which is denoted by T ∗αi (resp. T ∗βj). Thus, ψ is supported on the

union of T ∗αi and T ∗βj . By the transversality condition αi t βj , we can iden-

tify the union with a plumbing space P = P (α1, · · · , αm, β1, · · · , βl). Thus, it
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is suffices to prove Theorems 1.2 and 1.3 on the plumbing space P , which we

take to be connected.

(2) In [7], the Penner construction required thatA andB fill the surface S, i.e., the

complement of A ∪B is a union of disks and annuli, one of whose boundary

components is a component of ∂S. In the current paper, we do not require

the analogue of the filling condition since we only construct an invariant La-

grangian branched submanifold and an invariant Lagrangian lamination, not

an invariant singular foliation on all of M .

In the rest of this subsection, we define a set of Lagrangian branched submanifolds

in a plumbing space P (α1, · · · , αm, β1, · · · , βl). We start from the simplest plumbing

space, having one positive and one negative sphere intersecting at only one point.

Example 3.16. Letα and β ben-dimensional spheres and letM be a plumbingP (α, β)

which is plumbed at only one point p. Let α#pβ be the Lagrangian surgery of α and

β at p such that α#pβ ' τα(β) ' σ−1
β (α). See Figure 5, which represents the case

n = 1. The cross-shape is the plumbing space P (α, β), where α is the horizontal line

and β is the vertical line.

α

β β

α
p p

D+
p D−p

(α#pβ) ∪ α (α#pβ) ∪ β

Figure 5. Example of Lagrangian branched submanifold.
The blue curves represent D+

p in the left hand picture and D−p in the right hand picture, the
red curves represent Np in both.
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The neck Np at p connecting α and β is the closure of (α#pβ) − (α ∪ β). In Figure

5, Np is drawn in red. The positive disk D+
p at p is the closure of α − (α#pβ) and the

negative disk D−p at p is the closure of β − (α#pβ). The disks D±p are drawn in blue

in Figure 5. Then, by attaching D+
p or D−p to α#pβ, we obtain Lagrangian branched

submanifolds (α#pβ) ∪ α and (α#pβ) ∪ β.

On a general plumbing spaceM = P (α1, · · · , αm, β1, · · · , βl) with positive spheres

αi and negative spheres βj , we similarly construct Lagrangian branched subman-

ifolds. More precisely, given a plumbing point p,Np, D
+
p , D

−
p are the closures of

(αi#pβj)− (αi ∪βj), αi− (αi#pβj), βj − (αi#pβj) respectively. LetDp be eitherD+
p or

D−p . Then, we construct a Lagrangian branched submanifold B by setting

B := ∪i(αi − ∪p∈αiD+
p )
⋃
∪j(βj − ∪p∈βjD−p )

⋃
∪pNp

⋃
∪pDp.(3.4)

There are 2N possible choices of B, where N is the number of plumbing points. Let

B be the set of all 2N Lagrangian branched submanifolds constructed above.

3.5. Proof of Theorem 1.2. In this subsection, let M = P (α1, · · · , αm, β1, · · · , βl), let

τi (resp. σj) be a Dehn twist along αi (resp. βj), and let ψ be of generalized Penner

type.

In the rest of the paper, we assume that every Dehn twist τi and σj satisfies the

following:

(1) τi (resp. σj) is supported on a small neighborhood T ∗αi (resp. T ∗βj) ofαi (resp.

βj).

(2) τi (resp. σj) agrees with the antipodal map on αi (resp. βj).

We define the following:

D̄+
p := τi(D

+
p ), D̄−p := σ−1

j (D−p ) if p ∈ αi ∩ βj,(3.5)

α′i := αi − ∪p∈αi(D+
p ∪ D̄+

p ), β′j := βj − ∪p∈βj(D−p ∪ D̄−p ).
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In words, D̄+
p (resp. D̄−p ) is a neighborhood of an antipodal point of p in αi (resp. βj).

We are assuming that D±p and D̄±p are sufficiently small so that they are disjoint to

each other.

Recall that B is the set of Lagrangian branched submanifolds defined in Section

3.2.

Lemma 3.17. For all k, there exists a function Fτk : B → B such that τk(B) is carried by

Fτk(B) for all B ∈ B. Similarly, there is a function Fσ−1
j

: B→ B for all j such that σ−1
j (B)

is carried by Fσ−1
j

(B).

Proof. In this proof, τk is given by Equation (2.2) and τ̃ : T ∗Sn
∼→ T ∗Sn defined in

Section 2.2, i.e., τk = φ ◦ τ̃ ◦ φ−1 in a neighborhood of αk, where φ is an identification

of T ∗Sn and a neighborhood of αk.

Given B ∈ B,B admits the following decomposition:

B = ∪iα′i
⋃
∪jβ′j

⋃
∪pNp

⋃
∪pD̄+

p

⋃
∪pD̄−p

⋃
∪pDp,(3.6)

where Dp is either D+
p or D−p . This follows from Equations (3.4) and (3.5).

We prove the first statement for τk; the proof for σ−1
j is analogous. Our strategy is

to apply τk to α′i, β′j, Np, D̄
±
p , and D±p . We claim the following:

(i) τk(α′i) = α′i, τk(β
′
j) = β′j and they are strongly carried by α′i, β′j .

(ii) If p /∈ αk, then τk(Np) = Np, τk(D
±
p ) = D±p , τk(D̄

±
p ) = D̄±p and they are strongly

carried by Np, D
±
p , D̄

±
p .

(iii) If p ∈ αk, then τk(D
+
p ) = D̄+

p , τk(D̄
+
p ) = D+

p , τk(D̄−p ) = D̄−p and they are

strongly carried by D̄+
p , D

+
p , D̄

−
p .

(iv) If p ∈ αk, then τk(D−p ) and τk(Np) are obtained by spinning with respect to p.

Moreover, τk(D−p ) is strongly carried by Np ∪ (αk −D+
p ) and τk(Np) is carried

by Np ∪ (αk −D+
p ).
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By Equation (3.6) and (i)–(iv), τk(B) is carried by B′ such that

B′ = ∪iα′i
⋃
∪jβ′j

⋃
∪pNp

⋃
∪pD̄+

p

⋃
∪pD̄−p

⋃
∪pD̃p,(3.7)

where D̃p is Dp if p /∈ αk and D+
p if p ∈ αk. Then, Fτk : B→ B is defined by Fτk(B) =

B′.

(i) Since τk agrees with the antipodal map on αk, τk(α′k) = α′k and τk(α′k) is strongly

carried by α′k. Moreover, since τk is supported on T ∗αk, α
′
i does not intersect the

support of τk for all i 6= k. Thus, τk(α′i) agrees with α′i and τk(α
′
i) is strongly carried

by itself. The same proof applies to τk(β′j).

(ii) and (iii) are proved in the same way.

(iv) We compute τk(D−p ) and τk(Np) by spinning with respect to p and φ. We as-

sume φ((1, 0n; 0n+1)) = p without loss of generality. Using the notation from Section

2, D−p and Np are contained in ∪y∈Sn−1φ(Wy). Thus,

τk(D
−
p ) = ∪y∈Sn−1(φ ◦ τ̃ ◦ φ−1)(D−p ∩ φ(Wy))(3.8)

= ∪y∈Sn−1(φ(τ̃ |Wy(φ
−1(D−p ) ∩Wy)))

= ∪y∈Sn−1τk(D
−
p ) ∩ φ(Wy),

τk(Np) = ∪y∈Sn−1(φ ◦ τ̃ ◦ φ−1)(Np ∩ φ(Wy))(3.9)

= ∪y∈Sn−1φ(τ̃ |Wy(φ
−1(Np) ∩Wy))

= ∪y∈Sn−1τk(Np) ∩ φ(Wy).

The restriction τ̃ |Wy is a Dehn twist on Wy ' T ∗S1 along the zero section. Thus,

we obtain Figure 6, which represents intersections φ(Wy)∩D−p , φ(Wy)∩Np, φ(Wy)∩

τk(D
−
p ), and φ(Wy) ∩ τk(Np). Equation (3.9) and Figure 6 imply that τk(Np) is carried

by Np ∪ (αk −D+
p ) and τk(D−p ) is strongly carried by Np ∪ (αk −D+

p ).

Then, (i)–(iv) and Equation (3.6) prove that τk(B) is carried by Fτk(B). �
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τk(p)

Np(red), D−p (blue)

p τk(p)
p p

τk(p)

τk(Np) τk(D
−
p )

Figure 6. τk(Np) and τk(D−p ).
In the left picture, the blue curve represents D−p and the red curve represents Np; in the
middle picture, the red curve represents τk(Np); and in the right picture, the blue curve

represents τk(D−p ).

Lemma 3.18. If L is a Lagrangian submanifold which is carried by (resp. weakly carried by)

B ∈ B, then τk(L) is carried (resp. weakly carried) by Fτk(B). The case of σ−1
j is analogous.

Proof. We can assume that L is contained in an arbitrary small neighborhood of B.

Then, we apply a Dehn twist τk as we did in the proof of Lemma 3.17. The details

are similar to the proof of Lemma 3.17. �

Proof of Theorem 1.2. Let ψ : M
∼→ M be a symplectic automorphism of generalized

Penner type. Then, we can write ψ = δ1◦· · ·◦δl where δk is a Dehn twist τi or σ−1
j . We

then define Fψ = Fδ1 ◦ · · · ◦ Fδl : B → B. By Lemma 3.17, we have specific functions

Fτi and Fσ−1
j

acting on B.

We claim that Fψ is a constant map, i.e., Im(Fψ) is a point Bψ, which we define as

follows: in Equation (3.4), we set Dp = D+
p for p ∈ αi ∩ βj if the last τi in ψ appears

later than the last σ−1
j , and Dp = D−p otherwise. Note that every Dehn twist τi and

σ−1
j appears in ψ, thus Bψ is well-defined. By Equation (3.7), Fψ(B) = Bψ for all

B ∈ B. �

Remark 3.19.

(1) Note that a singular value of π : ψm(L)→ B∗, which is defined in Section 3.1,

can be moved by isotoping ψm(L).

(2) We observe that every singular value ofπ : ψm(Bψ)→ B∗ lies near π(p), π
(
τi(p)

)
,

or π
(
σ−1
j (p)

)
by isotoping, where p is a plumbing point. More precisely, let

S+
p,Bψ (resp. S−p,Bψ ) be the sector of B∗ψ containing π(p) if Dp = D+

p (resp. D−p ),
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whereDp,D+
p andD−p are defined in Section 3.4. Similarly, let S̄±p,Bψ be π(D̄±p ),

where D̄±p is defined in Equation (3.5). Then, by isotoping ψn(Bψ), every sin-

gular value of π : ψn(Bψ) → B∗ lies in the interiors of S±p,Bψ or S̄±p,Bψ for some

plumbing point p.

For convenience, let the centers of S±p , S̄+
p , S̄−p be p, τ(p), σ−1(p) respectively.

Then, the singular values in S±p , S̄±p lie near the centers of them. Moreover,

S±p,Bψ and S̄±p,Bψ will be simply called S±p and S̄±p .

4. Construction of Lagrangian laminations

In this section, we will prove Theorems 1.3 and 1.4..

4.1. Singular and regular disks. In order to prove Theorems 1.3 and 1.4, we would

like to construct a stable Lagrangian lamination L of a symplectic automorphism ψ

from a Lagrangian branched submanifold Bψ. One of the difficulties is that singu-

lar components occur naturally. In order to control the singularities, we introduce

singular and regular disks.

In general, we assume that B∗ψ, the associated branched manifold, can be decom-

posed into the union of a finite number of disks Si ' Dn, which are called singular

disks, and Rj ' Dn, which are called regular disks, i.e.,

B∗ψ =
⋃
i

Si ∪
⋃
j

Rj,(4.10)

such that

(1) each singular disk Si is either a closed disk contained in the interior of a sector

of B∗ψ or a closure of a sector,

(2) Si ∩ Sj = ∅ for any i 6= j,

(3) every singular value of π : ψm(Bψ) → Bψ after weakly fibered isotopy lies in

∪iS̊i for all m ∈ N, where S̊i is the interior of Si,

(4) each regular diskRj is obtained by cutting up a closure of a sector minus∪iS̊i,
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(5) Si and Rj (resp. Ri and Rj for i 6= j) meet only along their boundaries.

Remark 4.1. From now on, for any compact Lagrangian submanifold L which is

carried by Bψ, we will assume that every singular value of π : L → Bψ lies in the

interior of a singular disk by Remark 3.19.

If B∗ admits Equation (4.10), then one obtains a decomposition ofN(B) as follows:

N(B) =
⋃
i

π−1(Si) ∪
⋃
j

π−1(Rj).

In Section 4.2, we will define braids b(L, Si) for a Lagrangian L, which is car-

ried by Bψ, and a singular disk Si. By Theorem 1.2, there exist sequences of braids

b(ψm(L), Si)mıN, and we will construct limits of those braid sequences as m → ∞.

We then extend the limit lamination to a Lagrangian lamination of π−1(Si) in Section

4.3, and a Lagrangian lamination of π−1(Rj) in Section 4.4.

Remark 4.2.

(1) In Section 4.3 (resp. Section 4.4), we will construct a Lagrangian lamination

on π−1(S̊i) ⊂ π−1(Si) (resp. π−1(R̊j) ⊂ π−1(Rj)), the closure of π−1(S̊i). This is

because π−1(Si) (resp. π−1(Rj)) is not a (closed) submanifold of M if Si (resp.

Rj) intersects the branch locus of B∗.

Figure 4 is an example. If S1 in Figure 4 is a singular disk, then π−1(S1) is

the union of the red box in Figure 4 (a) and Fx.

(2) We note that (π−1(S̊i), ω) (resp. (π−1(R̊j), ω)) and (DT ∗D, ω0) are symplecto-

morphic to each other, where D is a closed disk, DT ∗D is a disk cotangent

bundle of D, and ω0 is the standard symplectic form of the cotangent bundle.

In order to construct a symplectomorphism, we will consider the following:

Let D be a largest Lagrangian disk such that

D ⊂ π−1(Si) ∩ B (resp. π−1(Rj) ∩ B) and π(D) = Si (resp. Rj).
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By Remark 3.5, there exists a symplectic embedding iD : N (D) ↪→ M . It

is easy to construct a vector field on iD(N (D)), whose (time 1) flow moves

iD(N (D) ∩ T ∗pD) to Fπ(p) for any p ∈ Int(D). Moreover, the vector field is a

symplectic vector field, i.e., the flow is a symplectomorphism, and

∪p∈Int(D)iD(N (D) ∩ T ∗pD) ' ∪p∈Int(D)Fπ(p) = π−1(S̊i)(resp. π−1(R̊j)).

By taking the closures, iD(N (D)) ' π−1(S̊i) (resp. π−1(R̊j)). Moreover,

N (D) is symplectomorphic toDT ∗D. Thus,DT ∗D and π−1(S̊i) (resp. π−1(R̊j))

are symplectomorphic.

From now on, we assume that a symplectic automorphism ψ is of generalized

Penner type until the end of Section 4.3.

Decomposition of B∗ψ for ψ of generalized Penner type. We will now explain how to de-

compose B∗, the associated branched manifold of B ∈ B, into the union of specific

singular and regular disks. Note that B is defined in Section 3.4.

By Remark 3.19, after weakly fiber isotoping, every singular value of π : ψm(B)→

B∗ lies in the interior of Sp or S̄±p , where Sp = S+
P ifDp = D+

P and Sp = S−p ifDp = D−p .

Let Sp and S̄±p be the specific singular disks of B∗.

We will divide the complement of singular disks from B∗, i.e.,

B∗ \
(
∪p Sp t ∪pS̄+

p t ∪pS̄−p
)
,(4.11)

into regular disks. In order to do this, we use a symplectic submanifold W 2n−2 ⊂

M2n, which is defined as follows: For each αi (resp. βj), there is an equator Cαi (resp.

Cβj ) ' Sn−1 such that

(1) for any plumbing point p ∈ αi (resp. βj), p lies on Cαi (resp. Cβj ),

(2) if p ∈ αi ∩ βj , then T ∗Cαi ≡ T ∗Cβj near p.
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Note that the equators on a Lagrangian sphereαi (resp. βj) are defined using an iden-

tification φαi : αi
∼→ Sn (resp. φβj : βj

∼→ Sn). Thus, by choosing proper identification

φαi and φβj , we can assume the existence of Cαi and Cβj . Then,

W := ∪iT ∗Cαi
⋃
∪jT ∗Cβj

is a (2n− 2)-dimensional symplectic submanifold of M .

We cut (4.11) along π(W ). These are the regular disks Rk. Each Rk is a manifold

with corners, where the corners are at Rk ∩ π(W ) ∩ Sl.

4.2. Braids. Consider the decomposition of B∗ψ into specific singular and regular

disks as in the previous subsection. In this subsection, for a given compact La-

grangian submanifold L which is carried by Bψ, we define a sequence of braids

b(ψm(L), Si) corresponding to ψm(L) over the boundary of each singular disk Si of

B∗ψ. Lemma 4.4 gives an inductive description of the sequences b(ψm(L), Si). We will

end this subsection by constructing limits of b(ψm(L), Si) as m→∞.

For a singular disk S, π−1(∂S) = ∪p∈∂SFp is a Dn-bundle over ∂S ' Sn−1. Note that

we use Dn to indicate a closed disk, and we will use D̊n to indicate an open disk. Let

ϕ : π−1(∂S)
∼→ Sn−1 × Dn be a bundle map. If L is a Lagrangian submanifold which

is carried by Bψ, then, for all p ∈ ∂S, ϕ(L∩ Fp) is a finite collection of isolated points

in Dn; recall that π : L→ B∗ has no singular value on ∂S. Thus, ϕ(L ∩ π−1(∂S)) can

be identified with a map from ∂S ' Sn−1 to the configuration space Conf l(Dn) of l

points on Dn where l = l(L, S), i.e., a braid.

We explained that L ∩ π−1(∂S) could be identified with a braid. Since L is a

Lagrangian submanifold of M , the braid corresponding to L ∩ π−1(∂S) satisfies a

symplectic property. The symplectic property is the following: For the bundle map

ϕ : π−1(∂S)
∼→ Sn−1 × Dn, (ϕ−1)∗(ω) is a 2-form on Sn−1 × Dn such that (ϕ−1)∗(ω) is

zero on ϕ
(
L ∩ π−1(∂S)

)
.
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From now on, we will define the braids on the boundary of a singular disk S. Let

f : Sn−1 → Conf l(Dn) for some l. In other words, there are maps

f1, · · · , fl : Sn−1 → Dn,

such that f(p) = {f1(p), · · · , fl(p)} as fi(p) 6= fj(p) for all i 6= j. We define

B(f) := {(p,fi(p)) ∈ Sn−1 × Dn | i ∈ {1, · · · , `}},

B̃r∂S := {ϕ−1
(
B(f)

)
| f : Sn−1 → Conf l(Dn) for some l such that,

(ϕ−1)∗(ω) is a zero on B(f)}.

Note that B̃r∂S is a set of closed subsets of π−1(∂S) and independent of ϕ.

We define an equivalence relation on B̃r∂S as follows: b0 ∼ b1 for bi ∈ B̃r∂S if there

exists a smooth 1-parameter family bt ∈ B̃r∂S connecting b0 and b1. Let Br∂S :=

B̃r∂S/ ∼.

Definition 4.3. Let B ∈ B and let S be a singular disk of B. If L is a Lagrangian

submanifold which is carried byB, then the braid b(L, S) ofL on S is the braid isotopy

class of Br∂S which is given by

b(L, S) =
[
L ∩ π−1(∂S)

]
∈ Br∂S.

Recall that B is a set of Lagrangian branched submanifold defined in Section 3.4

and for any B ∈ B, we decompose B into the union of specific singular disks and

regular disks, introduced in Section 4.1.

Lemma 4.4. Let L be a Lagrangian submanifold of M which is carried by B. For a given

singular disk S of Fτi(B) (resp. Fσ−1
j

(B)), there exist maps fk from B̃rSik to B̃rS , where Sik
is a singular disk of B, and there exist closed sets b̊ik ∈ B̃rSik , such that b(τi(L), S) (resp.

b(σ−1
j (L), S)) is

[⊔
k fk (̊bik)

]
∈ Br∂S .
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Recall the functions Fτi and Fσ−1
j

in Lemma 4.4 are defined in Lemma 3.17.

Proof of Lemma 4.4. In Steps 1–3, we prove Lemma 4.4 for a particular example; this is

just for notational simplicity. In Step 4, we briefly describe how to prove the general

case.

The example we consider is the Lagrangian branched submanifold Bψ in M =

P (α, β1, β2), where α and βj are spheres such that α ∩ β1 = {p} and α ∩ β2 = {q}, τ0

and σj are Dehn twists along α and βj , and ψ = τ0 ◦ σ−1
1 ◦ σ−1

2 . Then, Bψ is given by

Theorem 1.2.

Step 1 (Notation). First, we will choose ϕ : π−1(∂S)
∼→ Sn−1 × Dn for S = S±p , S

±
q , S̄

±
p ,

and S̄±q . We will use ϕ in the next steps.

In order to construct ϕ : π−1(∂S+
p )

∼→ Sn−1 × Dn, we observe that

π−1(S+
p ) ∩ B ⊂ D+

p ,

by Remark 4.2. Moreover, we can assume that π−1(S+
p ) ⊂ iD+

p

(
N (D+

p )
)
. Note that iD+

p

and N (D+
p ) are defined in Remark 3.5. Thus, by choosing coordinate charts for D+

p ,

one obtains ϕ : π−1(S+
p )

∼→ Dn × Dn. By abuse of notation, the restriction ϕ|π−1(∂S+
p ) :

π−1(∂S+
p )

∼→ Sn−1 × Dn is simply called ϕ again. Similarly, it is enough to choose

coordinate charts for D−p , D±q , D̄±p , D̄±q , in order to fix ϕ : π−1(∂S)
∼→ Sn−1 × Dn for

S = S−p , S
±
q , S̄

±
p , S̄

±
q .

In order to choose specific coordinate charts for D±p , D±q , D̄±p , and D̄±q , we use the

(2n− 2)-dimensional submanifold W ⊂ M defined in Section 4.1. For convenience,

we consider the lowest nontrivial dimension, i.e., n = 2. For higher n, we can fix

coordinate charts similarly.

Let (x1, x2) be a coordinate chart on D+
p ⊂ α such that the x1-axis agrees with

W ∩ D+
p . There are two choices for the positive x1-direction corresponding to the

two orientations ofW ∩D+
p , or equivalently orientations of Cα. We can choose either
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of them. Then, let (y1, y2) be an oriented chart onD−p such that the y1-axis agrees with

W ∩ β1 and ω(∂x1 , ∂y1) > 0. The positive y1-direction determines an orientation of

Cβ1 . On D̄+
p , there exists an oriented chart (x1, x2) such that the positive x1-direction

agrees with the orientation of Cα. For the other singular disks, we obtain oriented

coordinate charts from the orientations of Cα, Cβi , α and βi in the same way.

Let b1 = b(L, S+
p ), b2 = b(L, S̄+

p ), b3 = b(L, S̄−p ), b4 = b(L, S+
q ), b5 = b(L, S̄+

q ), and

b6 = b(L, S̄−q ), and let b̊i be a representative of bi.

The boundaries of S+
p is a component of the branch locus of B∗ψ. By Remark 3.8

(3), one can decompose b̊1. More precisely, in this case, Remark 3.8 says that for any

x ∈ ∂S+
p , there are three sectors S0, S1, S2 such that

x ∈ Si for all i = 0, 1, 2,

Fx ∩ π−1(S̊0) = Fx and Fx ∩ π−1(S̊i) ⊂ F̊x for i = 1, 2.

Moreover, it is easy to check that S+
p is either S1 or S2. Without loss of generality, let

us label S1 = S+
p .

If L is carried by B, we assume that L ⊂ N(B). Then, one obtains

L ∩ Fx ⊂
(
Fx ∩ π−1(S̊1)

)
∪
(
Fx ∩ π−1(S̊2)

)
We decompose b̊1 into b̊1 = b̃1t b̄1, where b̃1 = b̊1∩π−1(S̊1) and b̄1 = b̊1∩π−1(S̊2). The

decomposition b̊4 = b̄4 t b̃4 is similar.

We will explain the effects of σ−1
2 on Bψ in Step 2 and τ0 on Bψ in Step 3. The effect

of σ−1
1 is similar to that of σ−1

2 .

Step 2 (Effect of σ−1
2 on Bψ). In the rest of this paper, we make specific choices of τ0

and σj which are given by Equation (2.2), and τ : T ∗S2 ∼→ T ∗S2, which is defined

in Remark 2.2. In other words, τ0 = φα ◦ τ ◦ φ−1
α and σj = φβj ◦ τ ◦ φ−1

βj
, where φα
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(resp. φβj ) is a symplectomorphism from T ∗S2 to a neighborhood of α (resp. βj). The

neighborhood of α (resp. βj) will be denoted by T ∗α (resp. T ∗βj).

Remark 4.5. Recall that τ is a Dehn twist on T ∗Sn which agrees with the antipodal

map

T ∗Sn
∼→ T ∗Sn, (u; v) 7→ (−u;−v),

on a neighborhood of the zero section Sn.

By Lemma 3.18, σ−1
2 (L) is carried by B′ = Fσ−1

2
(Bψ). We label

b′1 = b(σ−1
2 (L), S+

p ), b′2 = b(σ−1
2 (L), S̄+

p ), b′3 = b(σ−1
2 (L), S̄−p ),

b′4 = b(σ−1
2 (L), S−q ), b′5 = b(σ−1

2 (L), S̄+
q ), b′6 = b(σ−1

2 (L), S̄−q ).

Note that the singular disk for b4 is S+
q and the singular disk for b′4 is S−q , i.e., two sin-

gular disks have the same center but different sign. However, for i 6= 4, the singular

disks for bi and b′i have the same center and the same sign.

For convenience, the singular disk of Bψ (resp. Fσ−1
2

(Bψ)) will be called Si (resp.

S ′i), so that bi (resp. b′i) is a braid on π−1(∂Si) (resp. π−1(∂S ′i)). Also, let ϕi : π−1(S̊i)
∼→

D2 × D̊2 (resp. ϕ′i : π−1(S̊ ′i)
∼→ D2 × D̊2) be the identification which is fixed in Step 1.

Since σ−1
2 is supported on T ∗β2, a small neighborhood of β2, bi and b′i are the same

braid in Br∂Si for i = 1, 2, 3, and 5. We will explain how b′6 is constructed.

We can obtain σ−1
2 (Bψ) by spinning with respect to q in T ∗β2, i.e., σ−1

2 (Bψ) is the

union of curves in 2-dimensional submanifold φβ2(Wy) over y ∈ S1. Recall that the

spinning and Wy are defined in Section 2.2.

Figure 7 represents Bψ ∩ φβ2(Wy) and σ−1
2 (Bψ) ∩ φβ2(Wy) on φβ2(Wy). We obtain

Figure 7 because we choose specific σ2.

By spinning blue, red, and green points in Figure 7, we obtain σ−1
2 (Bψ)∩π−1(∂S ′6).

Let B,R, and G be the circles obtained by spinning blue, red, and green points re-

spectively.
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D−q
σ2(q)

q
D+
q

Bψ σ−1
2 (Bψ)

σ−1
2−−→

q

Figure 7. σ−1
2 (Bψ) ∩ φβ2(Wy).

The left picture represents Bψ ∩ φβ2(Wy) and the right picture represents
σ−1

2 (Bψ) ∩ φβ2(Wy).

SinceN(Bψ) ⊃ Bψ, σ−1
2

(
N(Bψ)

)
∩π−1(∂S ′6) is a neighborhood of σ−1

2 (Bψ)∩π−1(∂S ′6).

By assuming that N(Bψ) is a sufficiently small neighborhood of Bψ, σ−1
2

(
N(Bψ)

)
∩

π−1(∂S ′6) consists of three connected components, which are neighborhoods ofB,R,

and G. Each connected component will be called N(B), N(R), and N(G).

By definition, b′6 =
[
σ−1

2 (L)∩π−1(∂S ′6)
]
. Without loss of generality, we assume that

L ⊂ N(Bψ). Then,

σ−1
2 (L) ∩ π−1(∂S ′6) ⊂ σ−1

2

(
N(Bψ)

)
∩ π−1(∂S ′6) = N(B) tN(R) tN(G).

Thus, strands of σ−1
2 (L)∩π−1(∂S ′6), or equivalently b′6, are divided into three groups,

which are contained in N(B), N(R), and N(G) respectively. We argue the group

which is contained in N(B) first.

The group of strands in N(B) is given by σ−1
2 (L) ∩ N(B). Thus, we will consider

σ2

(
σ−1

2 (L)∩N(B)
)

= L∩ σ2

(
N(B)

)
. One of the main difficulties is that the action of

σ−1
2 on σ2

(
N(B)

)
is not simple. To make it simpler, we will construct a Hamiltonian
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isotopy Φt, so that there is a disk DB ⊂ S+
q such that

(Φ1 ◦ σ−1
2 )
(
π−1(∂DB)

)
⊂ π−1(∂S ′6).

Then, (Φ1 ◦ σ−1
2 )
(
π−1(∂DB) ∩ L

)
corresponds to the group of strands in N(B).

We construct Φt as follow: Let Ht : R4 → R4 be a Hamiltonian isotopy given by

Ht =


cos t 0 − sin t 0

0 cos t 0 − sin t

sin t 0 cos t 0

0 sin t 0 cos t


,

and let δ : [0,∞) → R be a smooth decreasing function such that δ(x) = π
2

for all

x < 1 and δ(x) = 0 for all x > 2. We choose a neighborhood U ⊂ β2 of σ−1
2 (q) and

a Darboux chart φq : T ∗U
∼→ R4 such that φq(σ−1

2 (q)) is the origin. We remark that

T ∗β2 denotes a neighborhood of β2 inM , which is symplectomorphic to the cotangent

bundle of β2. Thus, for a subset U of β2, one can assume that T ∗U is a subset of M .

For convenience, let φq(x) = (x1;x2) where xi ∈ R2. Then, there is a Hamiltonian

isotopy

Φt(x) =

(φ−1
q ◦Htδ(c1‖x1‖+c2‖x2‖) ◦ φq)(x) if x ∈ T ∗U,

x if x /∈ T ∗U,
(4.12)

where ci is a positive constant and ‖ · ‖ is the standard norm on R2.

To visualize, we use D+
q and D̄−q instead of S4 and S ′6 in Figure 8. Figure 8 repre-

sents φβ2(Wy) ∩ D+
q , φβ2(Wy) ∩ σ−1

2 (D+
q ) and φβ2(Wy) ∩ Φ1(σ−2 (D+

q )) in the left, mid-

dle, and right pictures respectively. By choosing proper ci, we obtain a small disk

DB ⊂ S+
q such that (Φ1 ◦ σ−1

2 )
(
π−1(∂DB)

)
⊂ π−1(∂S ′6). More precisely, we obtain a

disk D̃ ⊂ D+
q which is in blue in the left of Figure 8. Blue curves in the middle and
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σ−1
2 (q)

Bψ σ−1
2 (Bψ) Φ1(σ−1

2 (Bψ))

σ−1
2−−→ Φ1−→

σ−1
2 (D̃B)

Φ1(σ−1
2 (D̃B))

D̄−q

D̃B

D+
q

q q q

Figure 8. Φ1(σ−1
2 (Bψ)) ∩ φβ2(Wy).

The blue curves represent D̃B ∩ φβ2(Wy) in the left picture, σ−1
2 (D̃B) ∩ φβ2(Wy) in the

middle picture, and Φ1(σ−1
2 (D̃B)) ∩ φβ2(Wy) in the right picture.

right of Figure 8 represent (π ◦ σ−1
2 )
(
D̃B

)
and (Φ1 ◦ σ−1

2 )
(
π(D̃B)

)
. Then, DB is given

by DB := π(D̃B).

On a small neighborhood ofDB, σ
−1
2 agrees with the antipodal map of φβ2(T ∗β2) '

T ∗S2, as we mentioned in Remark 4.5. Then, we obtain a map

f1 : S1 × D̊2
ϕ̃−1
4' π−1(∂DB)

Φ1◦σ−1
2−−−−→ π−1(∂S ′6)

ϕ′6' S1 × D2,

(θ, x, y) 7→ (θ + π,−r1x,−r1y).

The first identification ϕ̃4 is the restriction of ϕ4 : π−1(S4)
∼→ D2 × D2.

Remark 4.6.

(1) Note that ϕ′6
(

Im(f1)
)

= (Φ1 ◦ σ−1
2 )
(
π−1(∂DB)

)
∩ π−1(∂S ′6). Similarly, for the

groups of strands in N(R) and N(G), one can obtain two functions f2 and f3

on S1 × D2 in the same way. Then, the images Im(f2) and Im(f3) correspond
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to

(Φ1 ◦ σ−1
2 )
(
π−1(π(Nq))

)
∩ π−1(∂S ′6) ⊂ π−1(∂S ′6)

ϕ′6' S1 × D2.

Thus, f1 explains the contribution of b̃4, and f2 and f3 explain the contribution

of b̄4 on the construction of b′6.

(2) The constant r1 is determined by specific choices of an identification φβ2 :

T ∗S2 ∼→ T ∗β2, the fixed Dehn twist τ in Remark 2.2, and so on. However, r1

has to be smaller than 1. This is because Im(f1), Im(f2), and Im(f3) are mutu-

ally disjoint, since they corresponds to N(B), N(R), and N(G) respectively.

The strands of b′6 which are contained in N(B) correspond to

ϕ′−1
6 (f1(ϕ̃4(L ∩ π−1(∂DB)))).

We will prove that L ∩ π−1(∂DB) represents the same braid with b̃4. We can assume

that there is no singular value of π on S4 \ DB. Then, ϕ4(b̃4) and ϕ̃4(L ∩ π−1(∂DB))

represent the same braid in S1 ×D2 because of non-singularity on S4 \DB. Thus, in

S1×D2, f1(ϕ4(b̃4)) and f1(ϕ̃4(L∩π−1(∂DB))) represent the same braid. It proves that

ϕ′−1
6 (f1(ϕ4(b̃4))) and the group of strands inN(B) represent the same braid in Br∂S′6 .

Remark 4.7. For convenience, we simply use f1(b̃4), instead of ϕ′−1
6 (f1(ϕ4(b̃4))). In

the rest of this paper, we will abuse notation in the same way.
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For the groups of strands inN(R) andN(G), we obtain the following maps f2 and

f3 in the same way,

f2 : S1 × D2 → S1 × D2,

(θ, x, y) 7→ (θ + π, r0 cos θ + r2x, r0 sin θ + r2y),

f3 : S1 × D2 → S1 × D2,

(θ, x, y) 7→ (θ + π,−r0 cos θ + r2(x cos 2θ − y sin 2θ),

−r0 sin θ + r2(x sin 2θ + y cos 2θ)),

where r0 and r2 are positive constants which are smaller than 1.

Remark 4.8.

(1) To obtain f1, we used a Hamiltonian isotopy Φt. Similarly, to obtain f2 and

f3, we need a Hamiltonian isotopy. We construct a Hamiltonian isotopy by

extending a Lagrangian isotopy connecting σ−1
2 (Nq) ∩ π−1(S ′6) and

ϕ′−1
6 ({(s cos(θ + π), s sin(θ + π), r0 cos θ, r0 sin θ) | s ∈ [−1, 1], θ ∈ S1}),

in π−1(S̊ ′6)
ϕ′6' D2 × D2.

(2) Note that r0 and r2 are positive constants which are determined by specific

choices. However, r0 and r2 have to satisfy r1 + r2 < r0 since Im(f1), Im(f2)

and Im(f3) are mutually disjoint.

In the same way that we proved that f1(b̃4) and the group of strands in N(B) rep-

resent the same braid in Br∂S′6 , we can prove that f2(b̄4) (resp. f3(b̄4)) and the group

of strand in N(R) (resp. N(G)) represent the same braid in Br∂S′6 . Then, b′6 is repre-

sented by f1(b̃4) t f2(b̄4) t f3(b̄4). Note that we are abusing notation for convenience

as we mentioned in Remark 4.7.
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The situation for b′4 is analogous. We obtain three maps g1, g2 and g3 in the same

way. At the end, b′4 is represented by g1(b̄4) t g2(b̄4) t g3(b6). This proves Lemma 4.4

for the case of σ−1
2 .

Note that maps fi and gj are given by specific maps acting on S1 × D2, but we

would like to consider them as maps on B̃r∂Sk for some k. Then, we summarize the

effect of σ−1
2 as a matrix

Σ2,Bψ =



id 0 0 0 0 0

0 id 0 0 0 0

0 0 id 0 0 0

0 0 0 g1 + g2 0 g3

0 0 0 0 id 0

0 0 0 f1 + f2 + f3 0 0


.

Thus, if b̊i is a representative of a braid bi for L, then b̊′i is a representative of b′i where

b̊′1

b̊′2

b̊′3

b̊′4

b̊′5

b̊′6


= Σ2,Bψ



b̊1

b̊2

b̊3

b̊4

b̊5

b̊6


=



b̊1

b̊2

b̊3

g1(b̄4) t g2(b̄4) t g3(̊b6)

b̊5

f1(b̃4) t f2(b̄4) t f3(b̄4)


.

Remark 4.9. We remark that in surface theory, we can do linear algebra on weights,

but in a higher-dimensional case, we cannot do linear algebra with the matrix Σ2,Bψ ,

because there is no module structure on B̃r∂Si .
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Step 3 (Effects of τ0 on Bψ). We use the same notation, i.e., b1, · · · , b6 denote the braids

on singular disks S − i of B∗ψ, and

b′1 = b(τ0(L), S+
p ), · · · , b′6 = b(τ0(L), S̄−q ),

so that the singular disk corresponding to b′i has the same center as the singular disk

corresponding to bi. We also use b̊i and b̊′i, Si and S ′i, ϕi and ϕ′i to indicate represen-

tatives of braids, singular disks in Bψ and Fτ0(Bψ), identifications induced by fixed

coordinate charts.

The situation for τ0 is similar to that for σ−1
2 . For example, by observing how τ0

acts on π−1(S̊1), we obtain

h1 : S1 × D2 → S1 × D2,

explaining the contribution of b̃1 on the construction of b′3. Then, h1 is given by a

translation on S1 and a scaling on D2, as f1 is. Similarly, we obtain h2 and h3, which

explain the contributions of b̄1 on the construction of b′3. The map h2 (resp. h3) is of

the same types with f2 (resp. f3), i.e.,

h2(θ, x, y) =
(
θ or θ + π,±r1 cos θ + r2x,±r1 sin θ + r2y

)
,

h3(θ, x, y) =
(
θ or θ + π,±r1 cos θ + r2(x cos 2θ − y sin 2θ),

±r1 sin θ + r2(x sin 2θ + y cos 2θ)
)
,

where r1 and r2 are constants.

If a map is of the same type to f1, in other words, if the map is given by a translation

on S1 and a scaling on D2, let the map be of scaling type. This is because the formula

defining the map is given by a scaling on fibers. The maps of scaling type explain

how braids b(L, S±p ) or b(L, S̄±p ) contribute on the construction of braids b(δ(L), S±δ(p))

or b(δ(L), S̄±δ(p)) through δ
(
π−1(S±p )

)
, where δ is a Dehn twist.
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If a map is of the same type to f2 (resp. f3), let the map be of the first (resp. second) sin-

gular type. This is because they are related to a creation of new singular component.

The maps of the first and second singular types explain how the braid b(L, δ(Sp))

contributes on the construction of braid b(δ(L), S̄±δ(p)).

To summarize, if bi contributes the construction of b′j and if the center of a singular

disk corresponding to bi is either the same point or the antipodal point of the cen-

ter of the singular disk corresponding to b′j , maps of these three types explain the

contribution of bi on the construction of b′j . Note that the center of a singular disk is

defined in Remark 3.19.

The maps of these three types explain the effects of σ−1
2 on B. However, to explain

the effects of τ0 on Bψ, we need maps of one more type.

This is because α has two plumbing points, unlike βi has only one plumbing point.

Thus, when we apply τ0, bi can contribute on b′j even if the centers of singular disks

corresponding to bi and b′j are neither the same nor antipodals of each other. For

example, L ∩ π−1
(
π(Np)

)
is stretched by τ0. The stretched part τ0

(
L ∩ π−1(π(Np))

)
has intersection with π−1(S4) and π−1(S5). Thus, b′4 has some strands corresponding

to τ0(L∩ π−1(π(Np)))∩ π−1(∂S4) These strands are the contribution of b̄1 on the con-

struction of b′4. Similarly, b̄1 contributes on the construction of b′5, and b̄4 contributes

on the constructions of b′1 and b′2.

To describe the contribution of b̄1 on b′4, without loss of generality, we assume that

there is no singular value for

τ0(L ∩ π−1(π(Np))) ∩ π−1(S̊4)
π→ S4,

by Remark 3.19. Thus, τ0(L∩π−1(π(Np)))∩π−1(S̊4) is a union of disjoint Lagrangian

disks on π−1(S̊4) and b̄1 contributes on b′4 by adding strands near τ0(Np) ∩ π−1(∂S4)

which are not braided to each other. The number of the added strands is the same
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as the number of strands of b̄1. In the same way, b̄1 contributes on the construction

of b′5.

To describe the contribution of b̄1 on b′4 as a map acting on S1 × D2, we define

b̄◦1 ⊂ π−1(∂S1) such that

ϕ1(b̄◦1) := {(θ, x0, y0) | φ−1
1 (0, x0, y0) ∈ b̄1} ⊂ S1 × D2 ϕ1' π−1(∂S1),

which represents a trivial braid having the same number of strands with b̄1. This is

because we only need the number of the strands in b̄1, not the way b̄1 is braided.

We construct a Hamiltonian isotopy Φt by extending a Lagrangian isotopy con-

necting τ0(Np) ∩ π−1(∂S4) and

ϕ′−1
4 ({(s cos θ, s sin θ, c1, c2) | s ∈ [−1, 1], θ ∈ S1, ci is constants}) ⊂ π−1(S4),

as we did in Remark 4.8. Then, one obtains

ht : S1 × D2 ϕ1' π−1(∂S1)
Φ1◦τ0−−−→ π−1(∂S4)

ϕ′4' S1 × D2,

(θ, x, y) 7→ (θ, r0x+ c1, r0y + c2),

where r0 is a positive constant number less than 1. Then, ht(b̄◦1) represents the same

braid to the strands in b′4, which correspond to τ0(L∩ π−1(π(Np))). We recall that we

are abusing notation as mentioned in Remark 4.7.

Similarly, if bi contributes the construction of b′j and if the center of a singular disk

corresponding to bi is neither the same point nor the antipodal point of the center

of the singular disk corresponding to b′j , then the contribution of bi on b′j can be de-

scribed by a map like ht. If a map is of the same type with ht, let the map be of trivial

type, because a map of trivial type adds strands which are not braided with each

other.
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Then, we can describe the effect of τ0 on Bψ as a matrix

T0,Bψ =



0 i 0 ht 0 0

h1 + h2 + h3 0 0 it 0 0

0 0 id 0 0 0

ht 0 0 0 i 0

it 0 0 h1 + h2 + h3 0 0

0 0 0 0 0 id


.

Among the entries, h1, i, and id are of scaling type, h2 and h3 are of the first and

second singular types, and ht and it are of trivial type.

Step 4 (General case). A ψ of generalized Penner type is a product of Dehn twists. In

the general case, when we apply ψ, each Dehn twist is followed by a Hamiltonian

isotopy as σ−1
2 is followed by Φt in step 2. Let ψH = (Φ1,1 ◦ δ1) ◦ · · · ◦ (Φl,1 ◦ δl), where

ψ = δ1 ◦ · · · ◦ δl, δi is a Dehn twist, and Φi,t is a Hamiltonian isotopy which follows δi.

After applying the Hamiltonian isotopy, the effect of a Dehn twist τi (resp. σ−1
j )

on B ∈ B is described by a matrix Ti,B (resp. Σj,B), whose entries are sums of maps

of four types. As we mentioned in Step 3, the maps of scaling type explain how

braids b(L, S±p ) or b(L, S̄±p ) contribute on the construction of braids b(δ(L), S±δ(p)) or

b(δ(L), S̄±δ(p)), where δ is a Dehn twist. Similarly, the maps of the first and second

singular types explain how braids b(L, δ(Sp)) contribute on the construction of braid

to b(δ(L), S̄±δ(p)). Finally, the maps of trivial type explain the other cases.

This completes the proof of Lemma 4.4. �

Taking the limit of a braid sequence. We have obtained braid sequences {b(ψm(L), Si)}m∈N,

where L is carried by Bψ, and Si is a singular disk of B∗ψ. In the rest of this subsection,

we construct a limit of {b(ψm(L), Si)}m∈N as m→∞.
43



We argue with the above example, i.e.,

M = P (α, β1, β2), ψ = τ0 ◦ σ−1
1 ◦ σ−1

2 .

For convenience, let

B := Bψ, B′ := Fσ−1
2

(B), B′′ := Fσ−1
1

(B′),

and let singular disks S+
p , S̄

+
p , S̄

−
p , S

+
q , S̄

+
q , and S̄−q of B be S1, · · · , S6. Using notation

from the proof of Lemma 4.4, we have matrices T0,B′′ ,Σ1,B′ , and Σ2,B. Then, we obtain

Ψ = T0,B′′ ·Σ1,B′ ·Σ2,B by defining a multiplication of maps as a composition of them.

Note that a product of two arbitrary matrices is not defined. For example, an input

of Σ2,B and an output of T0,B′′ are tuples of braids on singular disks of B∗. Thus,

Σ2,B · T0,B′′ is defined. However, TB′′ · Σ2,B is not defined since an input of T0,B′′ is a

tuple of braids on singular disks of B∗, but an output of Σ2,B is a tuple of braids on

singular disks of B′∗.

Let b̊i be a representative of bi = b(L, Si). If

b̊1,m

b̊2,m

b̊3,m

b̊4,m

b̊5,m

b̊6,m


:= Ψm



b̊1

b̊2

b̊3

b̊4

b̊5

b̊6


,

then b̊i,m is a representative of bi,m. Thus, in order to keep track of braid sequences

{bi,m}m∈N, it is enough to keep track of Ψm.

Every entry of Ψm is a sum of compositions of 3m-maps. The image of a compo-

sition of 3m-maps is a solid torus. By Remarks 4.6 and 4.8, the radius of each solid

torus appearing in Ψm decreases exponentially and converges to zero as m→∞.
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From another view points, we consider ψH . Note that ψH is defined in step 4 of

the proof of Lemma 4.4. The proof of Lemma 4.4 implies that

b̊i,m ⊂ ψmH (N(Bψ)) ∩ π−1(∂Si) for all m ∈ N and for all i = 1, · · · , 6.

Let

Bi,m := ψmH (N(Bψ)) ∩ π−1(∂Si).

Then, Bi,m is the disjoint union of solid tori. More precisely, each solid torus in Bi,m

is the image of a composition of 3m-maps, appearing in Ψm. Conversely, for each

composition of 3m-maps appearing in Ψm, the image is a solid torus contained in

Bi,m. The radii of solid tori in Bi,m are decreasing exponentially and are converging

to zero as m→∞.

Since b̊i,m ⊂ Bi,m and Bi+1,m ⊂ Bi,m for all m ∈ N, there is a limit

Bi,∞ := lim
m→∞

Bi,m = ∩m∈NBi,m.

Thus, Bi,∞ is the union of infinite strands as a subset of π−1(∂Si) and

lim
m→∞

b̊i,m = Bi,∞,

as a sequence of closed sets in π−1(∂Si).

Remark 4.10.

(1) We have constructed a sequence of specific representatives {̊bi,m}m∈N such

that

lim
m→∞

b̊i,m = Bi,∞.

For the purposes of extending the lamination to the singular and regular disks

in Sections 4.3 and 4.4, we assume that the limitBi,∞ is a specific closed subset

in π−1(∂Si).
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(2) Each strand of Bi,∞ corresponds to an infinite sequence {fm}m∈N such that

f1 ◦ · · · ◦ f3m appears in Φm for all m ∈ N.

4.3. Lagrangian lamination on a singular disk. Let ψ be of generalized Penner type

and letL be a Lagrangian submanifold which is carried byBψ. In Section 4.2, on each

singular disk Si, we gave an inductive description of a sequence {b(ψm(L), Si)}m∈N.

There is a limitBi,∞ of the sequence. Moreover, the limitBi,∞ depends only on ψ and

Bi,∞ is independent to L. In this present subsection, we will construct a Lagrangian

lamination Li ⊂ π−1(Si) from Bi,∞.

Remark 4.11. If ∂Si is contained in the branch locus of B∗ψ, Bi,∞ can be divided into

two groups, as a braid bwas divided into b̄ and b̃ in the Step 1 of the proof of Lemma

4.4. We will construct Li from Bi,∞ ∩ π−1(S̊i), which is one of two groups of Bi,∞.

If ∂Si is not contained in the branch locus of B∗ψ, then Bi,∞ ⊂ π−1(S̊i). In this case,

we will construct a Lagrangian lamination fromBi,∞ = Bi,∞∩π−1(S̊i). Thus, we will

simply say that the Lagrangian lamination is constructed from Bi,∞ ∩ π−1(S̊i).

Lemma 4.12. Let ψ be of generalized Penner type. For each singular disk Si of Bψ, there is

a Lagrangian lamination Li ⊂ π−1(S̊i), such that

(1) Li ∩ π−1(∂Si) is the same braid with Bi,∞ ∩ π−1(S̊i), where Bi,∞ is the limit of a

braid sequence, which depends only on ψ.

(2) If L is a Lagrangian submanifold ofM which is carried by Bψ, then for everym ∈ N,

there is a Lagrangian submanifold Lm which is Hamiltonian isotopic to ψm(L) and

Lm ∩ π−1(S̊i) converges to Li as a sequence of closed subsets.

Proof. Letψ be of generalized Penner type, i.e.,ψ = δ1◦· · ·◦δl, where δk is a Dehn twist

τi or σ−1
j . We will use similar notation with the previous subsection, for example, Si

denotes a singular disk ofBψ, Ψ denotes a matrix corresponding toψ,ϕi : π−1(∂Si)
∼→

Sn−1 × Dn denotes the identification induced from the fixed coordinate chart on Si,

and so on.
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In this proof, first, we will construct Li ⊂ π−1(S̊i) satisfying the first condition, i.e.,

Li∩π−1(∂Si) = Bi,∞∩π(S̊i). Then, we will show that the constructed Li satisfies the

second condition.

Construction of Li. As we mentioned in Remark 4.10, a strand of Bi,∞ ∩ π(S̊i) is iden-

tified with an infinite sequence {fm}m∈N such that f1 ◦ · · · ◦ flk appears in Ψk for all

k ∈ N. Note that we are assuming that ψ = δ1◦· · ·◦δl for some positive number l. For

each strand {fm}m∈N of Bi,∞ ∩ π−1(S̊i), we will construct a Lagrangian submanifold

of π−1(S̊i) whose boundary agrees with the strand {fm}m∈N.

First, for a given strand {fm}m∈N, let us assume that f1 is of trivial type. Then, the

strand is identified with a straight curve

{(θ, x1, · · · , xn) | θ ∈ Sn−1} ⊂ Sn−1 × Dn ϕi' π−1(∂Si),

where xi is a constant. A subsequence {fm}m≥2 determines constants xi. Let

D := {(p, x1, · · · , xn) | p ∈ Si} ⊂ Dn × Dn ϕi' π−1(S̊i).

Then, ϕi(D) is a Lagrangian disk in π−1(S̊i), whose boundary agrees with the strands

{fm}m∈N.

Second, let us assume that f1 is not of trivial type, but there existsm ∈ N such that

fm is of trivial type. Let k > 1 be the smallest number such that fk is of trivial type

appearing in {fm}m∈N. Then, ψ̃ = δk0 ◦ · · · ◦ δl ◦ δ1 ◦ · · · ◦ δk0−1, where k0
∼= k(mod l),

is of generalized Penner type such that Bψ̃ has a singular disk S̃j , so that B̃j,∞, the

limit of the braid sequence corresponding to ψ̃ and S̃j , has a strand identified with

{fm}m≥k. Thus, there is a Lagrangian disk in π−1(S̃j) whose boundary agrees with

{fm}m≥k. Let D denote the Lagrangian disk in π−1(S̃j). Then, there is a connected

component of (
(Φ1,1 ◦ δ1) ◦ · · · ◦ (Φk0,1 ◦ δk)

)
(D) ∩ π−1(S̊i),
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whose boundary is {fm}m∈N, where Φi,t is a Hamiltonian isotopy mentioned men-

tioned in Section 4.1.

To summarize, if there is at least one map of trivial type in {fm}m∈N, then we have

a Lagrangian submanifold in π−1(S̊i), whose boundary agrees with {fm}m∈N. Let

Li,∞ be the union of those Lagrangian submanifolds.

Finally, let us assume that for allm ∈ N, fm is not of trivial type. Then, for all k ∈ N,

we will construct a sequence {fkm}m∈N for each k ∈ N, satisfying

(1) {fkm}m∈N is a strand of Bi,∞,

(2) if m ≤ kl, then fkm = fm,

(3) there exists a constant Nk ∈ N such that fkkl+Nk is of trivial type.

If there is a sphere having 2 or more plumbing points, there exists a sequence

{fkm}m∈N for all k ∈ N. This is because of the following:

We note that the finite sequence {ft}1≤t≤kl explains a contribution of the braid on

a singular disk Si0 on the construction of the braid on a singular disk Sj0 when one

applies ψk. In other words, from the view point of Remark 4.6, there is a connected

component of ψk(π−1(S̊i))∩π−1(Sj0) or ψk(π−1(π(Np)))∩π−1(Sj0), where p is the cen-

ter of Si0 andNp is the neck at p, such that the boundary of the connected component

is the image of f1 ◦ · · · ◦ fkl.

If there exists a sphere having 2 or more plumbing points, the Dehn twist along

the sphere appears in ψ, because of our assumption that every Dehn twist appears

in ψ. Let δi be the Dehn twist. For any plumbing points p and q of the sphere,

δi(π
−1(π(Np))) intersects π−1(S+

q ), if the sphere is positive, or π−1(S−q ), otherwise.

Thus, there is a map of trivial type in ∆i, the matrix corresponding to δi.

For a sufficiently largeN , (ψN ◦δ1 ◦ · · ·◦δi)(π−1(π(Np))) intersects π−1(Sj0). We can

prove this by observing that (ψN ◦ δ1 ◦ · · · ◦ δi−1)(π−1(S±q )) ∩ π−1(Sj0) 6= ∅ for some

sufficiently large N . Thus, there is a finite sequence of functions {gj}1≤j≤Nl+i such

that gj is an entry of ∆j′ , the matrix corresponding to δj′ , where j′ ∼= j(mod l), and
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the image of g1 ◦ · · · ◦gNl+i is identified to the boundary of a connected component of

(ψN ◦ δ1 ◦ · · · δi)(π−1(π(Np)))∩π−1(Sj0). Moreover, we can extend the finite sequence

{gj}1≤j≤Nl+i to an infinite sequence {gj}j∈N such that {gj}j∈N appears in Bi,∞. Then,

by setting fkkl+j = gj , we prove the existence of {fkm}m∈N.

We obtain a strand {fkm}k∈N for each k ∈ N. These strands converge to {fm}m∈N

as k → ∞. Moreover, by definition of Li,∞, the boundary of Li,∞ contains strands

{fkm}m∈N for all k ∈ N. Thus, the strand {fm}m∈N is contained in the boundary of Li,

where Li = Li,∞, the closure of Li,∞, i.e., the closure of Li,∞.

If there is no sphere with 2 or more plumbing points, then there is only one positive

and one negative sphere intersecting at only one point because we are working on a

connected plumbing space. For the case, we can construct a Lagrangian lamination

L on M by spinning. Then, Li := L ∩ π−1(Si) is a Lagrangian lamination which we

want to construct.

Remark 4.13. We note that, if there is no sphere with 2 or more plumbing points,

then we can construct Lwithout using singular and regular disks.

Convergence to Li. Let Lm := ψmH (L). We defined ψH in Step 4 of the proof of Lemma

4.4. We will prove that Lm ∩ π−1(S̊i) converges to Li.

First, we will show that

lim
m→∞

Lm ∩ π−1(S̊i) = lim
m→∞

(ψmH (N(Bψ)) ∩ π−1(S̊i)).(4.13)

Since ψH(N(Bψ)) ⊂ N(Bψ),

ψm+1
H (N(Bψ)) ∩ π−1(S̊i) ⊂ ψmH (N(Bψ)) ∩ π−1(S̊i).

Thus, there exists the limit

lim
m→∞

(ψmH (N(Bψ)) ∩ π−1(S̊i)) = ∩m(ψmH (N(Bψ)) ∩ π−1(S̊i)).
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If we equip a Riemannian metric g on M , then dH(ψmH (Bψ), ψmH (N(Bψ))), where dH

is the Hausdorff metric induced from g, converges to zero as m→∞ because of the

same reason that Bi,m := ψmH (N(Bψ)) ∩ π−1(∂Si) converges to an infinite braid Bi,∞

in the last part of Section 4.2.

Since for a largeN0, LN0 intersects π−1(Sj) for any singular disk Sj , Lm+N0∩π−1(S̊i)

intersects every connected component of ψmH (N(Bψ)) ∩ π−1(S̊i). Thus,

0 ≤ lim
m→∞

dH(Lm+N0 ∩ π−1(S̊i), ψ
m
H (N(Bψ)) ≤ lim

m→∞
2dH(ψmH (Bψ), ψmH (Bψ)) = 0.

This proves Equation (4.13). Let Li be the limit in Equation (4.13).

Second, we show that Li is Li. By the construction of Li, we know that

Li ⊂ ψmH (N(Bψ)) ∩ π−1(S̊i) for every m ∈ N.

It implies that Li ⊂ Li. Moreover,

Li ∩ π−1(∂Si) = Li = Bi,∞ ∩ π−1(S̊i).

Because every connected component of Li has a boundary on ∂Si, this shows Li =

Li. �

4.4. Lagrangian lamination on a regular disk. In the previous subsection, we con-

structed Lagrangian laminations on singular disks, when boundary data for singular

disks are given. In the present subsection, first, we will define boundary data for a

regular disk. Then, second, we will construct Lagrangian laminations on regular

disks from the given data. Finally, we will prove Theorem 1.3 as a corollary of Lem-

mas 4.12 and 4.15.

Before defining the boundary data, we remark that, by Remark 4.2, π−1(R̊i) is sym-

plectomorphic to DT ∗D, where D is a disk.
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We define a data cj,m on the boundary of a regular disk Rj for ψm(L), by setting

cj,m := Lm ∩ π−1(∂Rj).

We defined Lm in the proof of Lemma 4.12. Note that cj,m is a closed subset, not a

class of a closed subset.

To obtain a limit of cj,m, we consider

Cj,m := ψmH (N(Bψ)) ∩ π−1(∂Rj),

as we did in Section 4.2. Since ψ(
HN(Bψ)) ⊂ N(Bψ), Cj,m+1 ⊂ Cj,m. Moreover, Cj,m

is the union of solid tori (resp. Sn−1 × Dn) in π−1(∂Rj) for the case n = 2 (resp.

of general n). If a symplectic manifold M is equipped with a Riemannian metric

g, we can measure the radii of solid tori in Cj,m. The radii decrease exponentially

and converge to zero as m → ∞, because of the same reason that radii of solid tori

comprising Bi,m decrease exponentially and converge to zero as m → ∞ in Section

4.2. Then, the limit of cj,m is given by

Cj,∞ = lim
m→∞

Cj,m = ∩mCj,m.

The next step is to smooth Rj . A regular disk Rj has corners. We will replace Rj

with a smooth disk R′j . This is because, at the end, a Lagrangian lamination will be

given as graphs of closed sections. By smoothingRj , it will be easier to handle closed

sections.

To smooth Rj , we subtract a tubular neighborhood N(∂Rj) ⊂ Rj from Rj . Let

R′j := Rj \ N(∂Rj). Then, R′j is a smooth disk. We replace Rj with R′j . To finish

smoothing, we need to determine boundary data for R′j from cj,m.

Each connected component of cj,m can be identified wit a section of a bundle π−1(∂Rj)

over ∂Rj . We can extend this section to a closed section of a bundle π−1(N(∂Rj)) over
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N(∂Rj) by computations. Then, the graph of the extended section is a Lagrangian

submanifold of π−1(N(∂Rj)). The boundary of the Lagrangian submanifold on ∂R′j
makes up the boundary data for R′j .

From now, we assume that a regular disk Rj is a smoothed disk. Lemma 4.14

claims that for a given data cj,m on a smoothed regular disk Rj , we can construct a

Lagrangian submanifold Nj,m ⊂ π−1(R̊i) such that ∂Nj,m = cj,m ∩ π−1(R̊i).

Lemma 4.14. Let Q be a closed subset of ∂T ∗Dn such that there exists a Lagrangian sub-

manifold L ⊂ T ∗Dn so that L∩∂T ∗Dn = Q and L is a union of Lagrangian disks transverse

to fibers. Then, we can construct a Lagrangian submanifold L uniquely up to Hamiltonian

isotopy through Lagrangians transverse to the fibers.

To prove Lemma 4.14, we will use the following: in Lemma 4.14, if an identification

ϕ : ∂T ∗Dn ∼→ Sn−1 × D̊n is induced from a coordinate chart on Dn, ϕ(Q) represent

the trivial braid because L is a union of Lagrangian disks.

Proof of Lemma 4.14. The proof of Lemma 4.14 consists of two parts, the construction

of L and the uniqueness of L.

Construction. We start the proof with the simplest case, i.e., when Q is connected. In

other words, Q represents the braid with only one strand.

By fixing coordinate charts on Dn, we can write down Q as a section of a disk

bundle ∂T ∗Dn over ∂Dn, i.e.,

Q := {f1(x1, · · · , xn)dx1 + · · ·+ fn(x1, · · · , xn)dxn | x2
1 + · · ·+ x2

n = 1}.

Then, the simplest case is proved by determining a function φ : Dn → R such that

dφ = f1dx1 + · · ·+fndxn on ∂Dn. The graph of dφ is a Lagrangian submanifold which

we would like to find. Note that there are infinitely many φ satisfying the conditions,
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but the Hamiltonian isotopy class of the graph of dφ is unique through Lagrangians

transverse to the fibers.

If Q has 2 or more connected components li, then we can write li as a section over

∂Dn. For each i, we need to determine functions φi : Dn → R such that dφi agrees

with li on ∂Dn. Moreover, to avoid self-intersection, we need dφi 6= dφj for all i 6= j

everywhere. Then, the union of graphs of dφi on T ∗Dn is a Lagrangian submanifold

L which we want to construct.

We discuss with the simplest non-trivial case, i.e., Q has two connected compo-

nents l0 and l1, and the dimension 2n = 4. Without loss of generality, we assume

that l0 is the zero section. Then, we can assume that φ0 ≡ 0. We only need to deter-

mine φ1 such that dφ1 does not vanish everywhere.

We assume that there exists φ1 satisfying the conditions. Then, we will collect

combinatorial data from φ1, and we will construct a function φ̃1 satisfying conditions,

from the combinatorial data. Through this, we will see what combinatorial data we

need. We will end the construction part by obtaining the combinatorial data from

the given Q.

For convenience, we will use the polar coordinates instead of the (x, y)-coordinate

onD2. Let r0 be a small positive number. We restrict the function φ1 on [r0, 1]×S1. On

{1}× S1 = ∂D2 agrees with l1. On {r0}× S1, dφ1 is approximately a constant section

adx+bdy = a(cos θdr−r0 sin θdθ)+b(sin θdr+r0 cos θdθ), where dφ1(0, 0) = adx+bdy

and (x, y) are the standard coordinate charts of D2. We remark that on {r0} × S1,

the pair of graphs of dφi|{r0}×S1 represents the trivial braid under the identification

induced from the (x, y)-coordinates. Then, the pair (dφ0 ≡ 0, dφ1) implies an isotopy

between two representatives of the trivial braid on [r0, 1]× S1.

For every r∗ ∈ [r0, 1], we can find all local maxima and minima of a function

θ 7→ φ1(r∗, θ).
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We mark (r∗, θ∗) as a red (resp. blue) point if the above function has a local maxima

(resp. minima) at θ∗. If r∗ = 1, there are same number of red/blue marked points on

{1}×S1, and there are only one red/blue marked point on {r0}×S1. On [r0, 1]×S1, we

have a collection C of curves shaded red and blue. If a curve in C is not a circle, then

the curve has two end points on the boundary of [r0, 1] × S1. There are exactly two

curves connecting both boundary components of [r0, 1] × S1, and those two curves

have end points of the same color.

If we write dφ1 = fdθ + gdr, then f is zero on curves in C. Since dφ1 does not

vanish, g cannot be zero on the curves. Thus, we can assign the sign of g for each

curve. Figure 9 is an example of a collection C.

r0

m∗ n∗

1 m1 m2 m4 m3n2 n1 n3 n4

+

+

−

−

−

Figure 9. Example of a collection C on [r0, 1]× S1.

Conversely, if we have a collection C of curves such that each curve is shaded red

and blue and is equipped with a sign, then we can draw a graph of φ̃1 roughly. This

is because, the collection C determines the sign of horizontal directional derivative

of φ̃1, i.e., dφ̃1(∂θ) on every point of [r0, 1]× S1, and vertical directional derivative of

φ̃1, i.e., dφ̃1(∂r) on the curves. From these, one obtains a (rough) graph of φ̃1. Thus,

in order to determine a function φ1, it is enough to determine a collection C of curves

in [r0, 1]× S1 from the given Q.

For the givenQ, we assume that a connected component l0 ofQ is the zero section

without loss of generality. For the other connected component l1, one has f1, g1 :
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S1 → R such that l1 is the graph of f1dθ + g1dr on {1} × S1 = ∂D2. We know that

Q represents the trivial braid with respect to the standard (x, y)-coordinate of D2.

Thus, there is an isotopy Γ : [r0, 1]× S1 → D2 such that

Γ(1, θ) = (f(θ), g(θ)), Γ(r0, θ) = (Ar0 cos θ, A sin θ)

Γ(t, θ) 6= (0, 0) for all (t, θ) ∈ [r0, 1]× S1,

where A is a constant.

For every r ∈ [r0, 1], let γr(θ) = Γ(r, θ). Then, γr is a closed curve in D2, for all r.

Moreover, Γ is a path connecting γ1 and γr0 in the loop space of D̊2 without touching

the origin.

We mark (r, θ) on [r0, 1] × S1 as a red (resp. blue) point if γr(θ) intersects dr-axis

from right to left (resp. from left to right). These marked points comprise curves in

[r0, 1]×S1, and we have a collection C of curves, shaded red and blue, in [r0, 1]×S1. We

know that γ1 has an even number of intersection points. When r decreases, there is a

series of creations/removes of intersection points, which are given by finger moves

along dr-axis. Each finger move does not touch the origin. Thus, for a curve in C,

every intersection point composing the curve lies on either the positive dr-axis or the

negative dr-axis. Then, we can assign a sign for each curve in C.

Figure 10 is an example of Γ, corresponding to the case described by Figure 9.

The upper left of Figure 10 is γ1 and the upper right is γr0 . Through the first arrow,

we observe a finger move removing two intersection points. Those two intersection

points correspond to m2, a local maxima shaded red, and n2, a local minima shaded

blue. Thus, we obtain a curve connecting m2 and n2 in Figure 9. Moreover, the

intersection points lie in the negative part of the dr-axis. Thus, we assign a negative

sign to the curve. Similarly, we observe there are finger moves removing intersection

points. We obtain curves connecting mi and ni for i = 1, 2, and 3 in Figure 9. After
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dr dr

dr dr

dθ dθ

dθ dθ

γ1(n2)

γ1(m2)

γr0(m∗)

γr0(n∗)

↓

−→

↑

Figure 10. Creation of a collection C.

the finger moves, there are only two intersection points corresponding tom∗ and n∗,

and we obtain curves connecting m4(resp. n4) and m∗(resp. n∗).

We have constructed a collection C of curves on [r0, 1]×S1 from an isotopy Γ. Thus,

we can obtain a function φ1 : [r0, 1] × S1 → R. In order to complete the proof, we

need to extend φ1 into a small disk with radius r0. We have

φ1(x, y) = Ar sin θ = Ay

on the small disk.
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The situation for the general case is analogous. If Q has more connected compo-

nents li for i = 0, · · · , k, then we have to determine φi : D2 → R such that dφi = li

on ∂D2, and dφi 6= dφj for all i 6= j. We fix an isotopy Γ, and obtain a collection C of

curves on [r0, 1] × S1 from Γ. Each curve in C encodes restrictions on dφi − dφj for

some i and j. More precisely, (φi−φj) has a local maxima (resp. minima) in the hori-

zontal direction, only at a point of a curve shaded red (resp. blue), and (dφi−dφj)(∂r)

has the sign assigned on the curve. For the case of general dimension 2n, we obtain

combinatorial data fromQ, i.e., a collection of curves on [r0, 1]×Sn−1 assigned a sign,

and construct functions on Dn from the combinatorial data.

Uniqueness. Recall that the construction consists of three steps. First, we choose an

isotopy Γ connecting Q and the trivial representative of the trivial braid. Then, we

obtained a collection C of curves from Γ, such that each curve encodes restrictions

on dφi − dφj . The last step is to construct a set of functions {φi : Dn → R}.

The construction depends on choices in the first and last steps. More precisely, for

the first step, the choice of isotopy Γ is not unique. If we choose an isotopy Γ, then

there is a unique collection C. However, a set {φi} of functions, which is constructed

from the collection C, is not unique. We will show that the Hamiltonian isotopy class

of L, through Lagrangians transverse to the fibers, is independent to those choices.

First, we discuss the choice in the third step. Let us assume that we have a collec-

tion C of curves in [r0, 1] × Sn−1 and two sets of functions {φi}i and {ζi}i satisfying

the restrictions encoded by C. Then, by setting ηi,t := (1− t)φi + tζi, we obtain a fam-

ily of sets of functions such that every member of the family satisfies the restrictions

encoded by C.

Let Lt be the Lagrangian submanifold corresponding to {ηi,t} for a fixed t. Then,

Lt is a Lagrangian isotopy connectingL0, corresponding to {φi}, andL1, correspond-

ing to {ζi}. Since Lt is a disjoint union of Lagrangian disks in T ∗Dn, L0 and L1 are
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Hamiltonian isotopic. Thus, the Hamiltonian class of L through Lagrangians trans-

verse to the fibers is independent of the choice of functions for the third step of the

construction.

Before discussing the choice of the first step, note that a continuous change on a

collection C does not make a change on the Hamiltonian isotopy class. More pre-

cisely, let C0 = {γ1, · · · , γN} be a collection of curves and let {φi} be a set of functions

corresponding to C0. If {γk,t} is a continuous family of curves with respect to t such

that γk,0 = γk for all k, then we can obtain a continuous family {φ1,t, · · · , φN,t} such

that φi,0 = φi and {φ1,t, · · · , φN,t} corresponds to Ct := {γ1,t, · · · , γN,t}. Then, it is easy

to check that the Hamiltonian isotopy class of the union of graphs of dφi,t in T ∗Dn,

through Lagrangians transverse to the fibers, is independent to t.

Finally, we will discuss the choice of Γ. Let Γ0 and Γ1 be two isotopies obtained

from the givenQ in the first step. Then, we can understand Γ0 and Γ1 as paths on the

loop space of the configuration space of D̊n. Since the loop space is simply connected,

there is a continuous family {Γt}t∈[0,1] connecting γ0 and γ1.

Let Ct be the collection of curves obtained from Γt and let {φi} be a set of functions

constructed from C0. There is {φi,t} corresponding to Ct such that φi,0 = φi. Then, if

Lt is the union of graphs of dφi,t, then the Hamiltonian class of Lt is independent to

t. This shows the uniqueness of L, up to Hamiltonian isotopy, through Lagrangians

transverse to the fibers. �

For a smoothed regular disk Rj , there is a sequence of data cj,m for each m ∈ N.

Then, we can construct a sequence of Lagrangian submanifoldsNj,m ⊂ π−1(R̊j) such

that Nj,m ∩ ∂π−1(R̊j) = cj,m. The following lemma, Lemma 4.15, claims that we can

construct Nj,m wisely, so that Nj,m converges to a Lagrangian lamination Nj as m

goes to∞.
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Lemma 4.15. It is possible to constructNj,m ⊂ π−1(R̊j) so that the sequenceNj,m converges

to a Lagrangian lamination Nj ⊂ π−1(R̊j) as m→∞.

Proof. Let the boundary condition cj,m be the set {l1,m, · · · , lNm,m}, where li,m is a

connected component of cj,m, or equivalently, li,m is a strand of the braid represented

by cj,m. We defined Cj,m as a disjoint union of solid tori in π−1(∂Rj) at the beginning

of the present subsection. Then, we can divide cj,m into a partition, so that li,m and

lj,m are in the same subset if and only if li,m and lj,m are in the same solid torus (resp.

Sn−1 × Dn for a higher dimensional case) in Cj,m. After that, we randomly choose a

connected component ls,m from each subset of the partition.

By Lemma 4.14, there is φs,m : Rj → R such that dφs,m = ls,m on ∂Rj . Then,

the graph of dφs,m is a Lagrangian disk in π−1(R̊i). We can choose a neighborhood

N(φs,m) of the graph of dφs,m in π−1(R̊i), such that N(φs,m) ' T ∗Dn and N(φs,m) ∩

π−1(∂Rj) is the torus in Cj,m containing ls,m. Moreover, we can assume that

dH(N(φs,m), the graph of dφs,m) < 2rm,

where dH is the Hausdorff metric induced by a fixed Riemannian metric.

We apply Lemma 4.14 to {lt,m+1 ∈ cj,m+1 | lt,m+1 ⊂ N(φs,m)} in N(φs,m) ' T ∗Dn.

Then, we can construct φt,m+1 : Rj → R such that dφi,m+1 = lt,m+1 on ∂Rj and the

graph of dφt,m+1 is contained in N(φs,m+1). We repeat this procedure inductively on

m ∈ N.

Let l be a strand of Cj,∞. Then, there is a sequence lim,m ∈ cj,m such that lim,m

converges to l. If we construct φi,m by repeating the above procedure, we know that

dH(dφim,m, dφin,n) < 4rmax(m,n).

Thus, dφim,m converges. Moreover, by assuming that φi,m(p) = 0 for every i and

m, where p is a center of Rj , φim,m converges to a function φ. The graph of dφ is a
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Lagrangian disk in π−1(R̊j) such that whose boundary is l, the stand of Cj,∞. The

union of graphs of dφ is the Lagrangian laminationNj which Nj,m converges to. �

Proof of Theorem 1.3. By Lemma 4.12, there is a Lagrangian lamination Li in π−1(S̊i)

and by Lemma 4.15, there is a Lagrangian laminationNj in π−1(R̊j). Moreover, every

Lagrangian lamination agrees with each other along boundaries, thus we can glue

them. Then we obtain a Lagrangian lamination L in M . �

4.5. A generalization. In the previous sections, we assumed that ψ is of general-

ized Penner type. In the present subsection, we discuss a symplectic automorphism

ψ : (M,ω) → (M,ω), not necessarily to be of generalized Penner type, with some

assumptions.

First, we assume that there is a Lagrangian branched submanifold Bψ such that

ψ(Bψ) is (weakly) carried by Bψ. The proof of Lemma 3.17 carries over with no

change. Thus, if a Lagrangian submanifold L is (weakly) carried by Bψ, then ψ(L) is

carried by Bψ.

As mentioned in Section 4.1, we assume that B∗ψ admits a decomposition into a

union of finite number of singular disks Si ' Dn and regular disks Rj ' Dn.

Proof of Theorem 1.4. First, we define data on the boundary of each singular and reg-

ular disk, in the same way we did for the case of ψ of generalized Penner type. Then,

on a regular disk Rj , the proofs of Lemma 4.14 and Lemma 4.15 carry over with no

change. Thus, we can construct a Lagrangian lamination on π−1(Rj).

On a singular disk Si, we define the boundary data in the same way. In other

words, the boundary data is defined by the isotopy class ofψm(L)∩π−1(∂Si). We also

can obtain a matrix Ψ, which explains how the sequences of braids are constructed

inductively. However, the rest of the proof of Lemma 4.12 does not carry over. This

is because in the proof of Lemma 4.12, functions of trivial type have a key role. To

use the same proof, we need to show that there are enough functions of trivial type.
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However, the assumptions cannot imply the existence of enough functions of trivial

type.

For a singular disk Si, let {fm}m∈N be a strand of the limit braid on Si. We note that

each strand can be identified to an infinite sequence of functions. We forget specific

functions fm, but remember their types. Then, we obtain a sequence of types. The

sequence of types determines the “shape” of strand, for example, how many times

the strand is rotated.

We can construct a symplectomorphism φ which is of generalized Penner type

such that Bφ has a singular disk S so that the limit braid assigned on S has a strand

of the same shape. In Section 4.3, we constructed a Lagrangian submanifold L0 ⊂

π−1(S̊) such that ∂L0 is the strand. Since π−1(S̊) ' π−1(S̊i), we assume that L0 is a

Lagrangian submanifold in π−1(S̊i) and ∂L0 has the same shape to the strand which

we choose. By scaling and translating L0 inside π−1(S̊i), we obtain a Lagrangian

submanifold whose boundary agrees with the strand.

The rest of the proof is the same as the proof of Theorem 1.3. �

5. Application on the Lagrangian Floer homology

In this section, we will give an application of the previous sections on Lagrangian

Floer homology. More precisely, we will prove Theorem 1.5.

5.1. Setting. In the present subsection, we will explain terminology in Theorem 1.5.

In Section 5, we assume that our symplectic manifoldM is a plumbing spaceM =

P (α1, · · · , αm, β1, · · · , βl) of Penner type defined as follows:

Definition 5.1. A plumbing space M = P (α1, · · · , αm, β1, · · · , βl) is of Penner type if

αi and βj satisfy

(1) α1, · · · , αm and β1, · · · , βl are n-dimensional spheres,

(2) αi ∩ αj = ∅, and βi ∩ βj = ∅, for all i 6= j.
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Note that P (α1, · · · , αm, β1, · · · , βl) is defined in Section 2.1.

From now on, we will define an involution η : M
∼→M . In Section 5.2, we will use

η to prove Theorem 1.5.

Involution on T ∗Sn : First, we will define an involution η0 on T ∗Sn. Let

Sn = {x ∈ Rn+1 | |x| = 1},

T ∗Sn = {(x, y) ∈ Sn × Rn+1 | x ∈ Sn, < x, y >= 0}.

Then, we define η0 : T ∗Sn
∼→ T ∗Sn as follow:

η0(x1, · · · , xn+1, y1, · · · , yn+1) = (x1, x2,−x3, · · · ,−xn+1, y1, y2,−y3, · · · ,−yn+1).

Let

S = {(cos θ, sin θ, 0, · · · , 0) ∈ Sn | θ ∈ [0, 2π]},

T ∗S = {(cos θ, sin θ, 0, · · · , 0,−r sin θ, r cos θ, 0, · · · , 0) | θ ∈ [0, 2π], r ∈ R} ⊂ T ∗Sn.

Then, it is easy to check that ηfixed0 = T ∗S.

Involution associated to M : First, we will construct an involution ηαi and ηβj on T ∗αi

and T ∗βj for every i and j. For each αi, we will choose an embedded circle Sαi ⊂

αi such that Sαi contains every plumbing point of αi. Then, there is a symplectic

isomorphism φαi : T ∗Sn
∼→ T ∗αi such that φαi(S) = Sαi .

One obtains an involution ηαi : T ∗αi
∼→ T ∗αi by setting

ηαi := φαi ◦ η0 ◦ (φαi)
−1.

Note thatT ∗αi is a subset ofM . Similarly, one obtains an involution ηβj : T ∗βj
∼→ T ∗βj

in the same way.
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Moreover, without loss of generality, one can assume that ηαi(x) = ηβj(x) for every

x ∈ T ∗αi ∩ T ∗βj . Thus, one can define an involution η : M
∼→M as follow:

η(x) :=

ηαi(x) if x ∈ T ∗αi,

ηβj(x) if x ∈ T ∗βj.

Then, we will call η the involution associated to M .

Remark 5.2. Let M̃ be the set of fixed points of η, i.e., M̃ = {x ∈ M | η(x) = x}. We

call M̃ the fixed surface of M .

It is easy to check that M̃ is a 2–dimensional symplectic submanifold of M . More-

over, M̃ is symplectomorphic to a plumbing space P (Sα1 , · · · , Sαm , Sβ1 , · · · , Sβl) of

Penner type. Note that Sαi and Sβj are embedded circles in αi and βj .

5.2. Proof of Theorem 1.5. Let M be a plumbing space of Penner type. Let η be

the associated involution of M . Let L0 and L1 be a transversal pair of Lagrangian

submanifolds such that

(1) η(Li) = Li.

(2) Let L̃i = Li ∩Mi. Then, L̃i is a Lagrangian submanifold of M̃ .

(3) L0 ∩ L1 = L̃0 ∩ L̃1.

(4) L0 and L1 are not isotopic to each other.

We will computeZ/2–graded Lagrangian Floer homologyHF ∗(L0, L1) over the Novikov

field Λ of characteristic 2. To do this, we will compare chain complexes CF ∗(L0, L1)

and CF ∗(L̃0, L̃1). More precisely, we will show that those two chain complexes have

the same generators and the same differential maps.

First, it is easy to show thatCF ∗(L0, L1) andCF ∗(L̃0, L̃1) have the same generators

since L0 and L1 satisfy that L0 ∩ L1 = L̃0 ∩ L̃1. Thus, CF ∗(L0, L1) = CF ∗(L̃0, L̃1) as

vector spaces.
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Second, let ∂ (resp. ∂̃) denote the differential map onCF ∗(L0, L1) (resp.CF ∗(L̃0, L̃1)).

Then,

∂p =
∑

q∈L0∩L1

[u]:ind([u])=1

(#M(p, q; [u], J))T ω([u])q,

where J is an almost complex structure on M , u is a homomorphic strip connecting

p and q, andM(p, q; [u], J) is the moduli space. We skip the foundational details of

the definition of ∂.

Let assume that for a holomorphic strip u, the image of u is not contained in M̃ .

Then, it is easy to check that η◦u is also another holomorphic strip connecting p and q.

Since the Novikov field Λ is of characteristic 2, u and η ◦ u will be canceled together.

Thus, in order to define the differential map ∂ : CF ∗(L0, L1) → CF ∗(L0, L1), it is

enough to count holomorphic strips u such that the image of u is contained in M̃ .

On the other hands, in order to define ∂̃ : CF ∗(L̃0, L̃1) → CF ∗(L̃0, L̃1), one needs

to count the holomorphic strips on M̃ . Thus, ∂(p) = ∂̃(p) for all p ∈ L0∩L1 = L̃0∩L̃1.

Under the assumptions, HF ∗(L0, L1) = HF ∗(L̃0, L̃1). Note that the former is de-

fined on M2n, but the latter is defined on a surface M̃ . Then, Lemma 2.18 of [2]

completes the proof. �

5.3. Example 5.5. In the present subsection, we will prove Lemmas 5.3 and 5.4 in

order to slightly weaken the difficulty of applying Theorem 1.5. More precisely, we

will weaken the conditions in Theorem 1.5, which L0 and L1 should satisfy.

Before giving the statement of Lemmas 5.3 and 5.4, we will establish notation first.

In Section 5,M = P (α1, · · · , αm, β1, · · · , βl) is a plumbing space of Penner type. Then,

as we did in Section 3.4, we can constructed a set B of Lagrangian branched subman-

ifolds of M . To construct B, we need to choose one of two possibilities: one is that

{αi} are positive spheres and {βj} are negative spheres, and the other is that {αi}

are negative spheres and {βj} are positive spheres. More precisely, let assume that
64



αi is positive and βj is negative. Every Lagrangian branched submanifold B ∈ B is a

union of (parts of) αi and βj and Lagrangian connected sums αi and βj . By assuming

that αi is positive and βj is negative, one considers the Lagrangian connected sum

αi#βj , not βj#αi. Similarly, by assuming that αi is negative and βj is positive, one

can construct another set Bop of Lagrangian branched submanifolds.

Lemma 5.3. LetBi ∈ B∪Bop for i = 0, 1. Then, there is a Hamiltonian isotopy Φt : M →M

such that

(1) Φt ◦ η = η ◦ Φt,

(2) B0 t Φ1(B1),

(3) for every q ∈ B0 ∩ Φ1(B1), q is not a plumbing point or the antipodal point of a

plumbing point.

Proof. Since Bi is a union of (parts of) compact cores and their Lagrangian connected

sums, we will construct Hamiltonian isotopies perturbing each compact cores αi and

βj . Then, one obtains a perturbation of B1 as a union of (parts of) perturbations of

αi, βj and their Lagrangian connected sums.

First, we note that there is an identification φαi : T ∗Sn
∼→ T ∗αi which is defined in

Section 5.1. We also note that

T ∗αi
φαi' T ∗Sn = {(x, y) ∈ Rn+1 × Rn+1 | |x| = 1, < x, y >= 0}.

We will use the identification.

We choose a smooth function fi : αi → R with isolated critical points such that

(1) every plumbing point p ∈ αi, fi(p) = fi(−p) = 0, where −p is the antipodal

point of p on αi,

(2) every critical point q of fi lies on Sαi and q 6= p,−p for any plumbing point

p ∈ αi,

(3) |dfi(x)| < ε for all x ∈ αi and for a sufficiently small fixed positive number ε,
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(4) fi ◦ ηαi = fi, where ηαi is the involution on T ∗αi defined in Section 5.1.

Then, we can extend fi to f̃i : T ∗αi → R. We choose a smooth decreasing function

δ : [0,∞)→ R,

such that

δ([0, ε]) = 1, δ([2ε,∞)) = 0.

We set

f̃i : T ∗αi → R, f̃i(x, y) = δ(|y|)fi(x).

Similarly, we can get g̃j : T ∗βj → R in the same way.

These functions f̃i and g̃j define Hamiltonian isotopies on T ∗αi and T ∗βj . More-

over, these Hamiltonian isotopies could be extended on the plumbing spaceM since

the Hamiltonian isotopies have compact supports on T ∗αi and T ∗βj .

Let Φαi,t : M
∼→ M be the (extended) Hamiltonian isotopy associated to f̃i. Then,

it is easy to check that

Φαi,t ◦ η = η ◦ Φαi,t,

Φαi,t(αk) = αk, if k 6= i,

Φαi,t(βj) = βj for all j,

Φαi,1(αi) = Γ(dfi),

where Γ(dfi) is the graph of dfi in T ∗αi ⊂M . Similarly, one can obtain a Hamiltonian

isotopy Φβj ,t : M
∼→M for each βj in the same way.

Let

Φt =
∏
βj

Φβj ,t ◦
∏
αi

Φαi,t.
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Then, it is easy to check that Φt satisfies the first condition of Lemma 5.3. Moreover,

one can assume that Φ1(B1) is constructed from Φ1(αi) and Φ1(βj). Thus, it is easy to

prove thatB0 and Φ1(B1) satisfy the second and the last conditions of Lemma 5.3. �

From now on, we will explain how Lemma 5.3 weakens a difficulty of applying

Theorem 1.5. The difficulty we will consider is the last condition of Theorem 1.5, i.e.,

L0 ∩ L1 = L̃0 ∩ L̃1

Let assume that L0 (resp. L1) is a Lagrangian submanifold which is carried by B0

(resp, B1) ∈ B ∪ Bop. Note that we can assume that Li is contained in a small neigh-

borhood of Bi. Also, note that Φ1(L1) is carried by Φ1(B2), where Φ1 is the Hamilton-

ian isotopy given in Lemma 5.3. Then, we will count the numbers of intersections

L0 ∩ Φ1(L1) and L̃0 ∩ Φ1(L̃1). If these numbers are the same, then L0 ∩ Φ1(L1) =

L̃0 ∩ Φ1(L̃1).

First, we remark that L̃0 (resp. Φ1(L̃1)) is a curve which is carried by a train track

B0 ∩ M̃ (resp. Φ1(B1) ∩ M̃ ). Then, L̃0 (resp. Φ1(L̃1)) has weights on the train track

B0 ∩ M̃ (resp. Φ1(B1) ∩ M̃ ). Moreover, the number of L̃0 ∩ Φ1(L̃1) is the following:

∑
x∈B0∩Φ1(B1)

(the weight of L̃0 at x) · (the weight of Φ1(L̃1) at x).

To count the number of L0∩Φ1(L1), we can assume that L0∩Φ1(L1) is contained in

a small neighborhood ofB0∩Φ1(B1). SinceL0 is carried by, not strongly carried by,B0,

L0 can have singular points. However, the singular points are lying near plumbing

points or the antipodal of plumbing points. Since the intersection points of B0 and

Φ1(B1) are not plumbing points of their antipodals, every p ∈ L0∩Φ1(L1) is a regular

point of L0 (resp. Φ1(L1)). It means that the number |L0 ∩ L1| is also give by

∑
x∈B0∩Φ1(B1)

(the weight of L̃0 at x) · (the weight of Φ1(L̃1) at x).
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Lemma 5.4. Let Li is carried by Bi ∈ B∪Bop. Then, there is a Hamiltonian isotopy Φt such

that

L0 ∩ Φ1(L1) = L̃0 ∩ Φ1(L̃1).

Then, we consider HF ∗(L0,Φ1(L1)) ' HF ∗(L0, L1).

Example 5.5. Let ψi (i = 0, 1) be a symplectomorphism of Penner type, i.e., ψi is a

product of positive (resp. negative) powers of τi and negative (resp. positive) powers

of σj , where τi and σj are Dehn twists along αi and βj respectively. Let assume that

Li is a Lagrangian submanifold ofM , which is generated from one of compact cores

by applying ψi, i.e.,

Li = ψi(αk) or ψi(βj).

Then, η(Li) = Li since

η(αi) = αi for all i, η(βj) = βj for all j,

η ◦ τi = τi ◦ η for all i, η ◦ σj = σj ◦ η for all j.

Similarly, L̃i = ψi(α̃k) or ψi(β̃j). Thus, L̃i is a Lagrangian submanifold of M̃ . Finally,

Li is carried by Bψi .

Thus, if L0 and L1 are not isotopic to each other, then one can apply Theorem 1.5

to HF ∗(L0, L1).

References

[1] A. J. Casson and S. A. Bleiler. Automorphisms of surfaces after Nielsen and Thurston, volume 9 of

London Mathematical Society Student Texts. Cambridge University Press, Cambridge, 1988.

[2] G. Dimitrov, F. Haiden, L. Katzarkov, and M. Kontsevich. Dynamical systems and categories. In

The influence of Solomon Lefschetz in geometry and topology, volume 621 of Contemp. Math., pages

133–170. Amer. Math. Soc., Providence, RI, 2014.

[3] B. Farb and D. Margalit. A primer on mapping class groups, volume 49 of Princeton Mathematical

Series. Princeton University Press, Princeton, NJ, 2012.

68



[4] W. Floyd and U. Oertel. Incompressible surfaces via branched surfaces. Topology, 23(1):117–125,

1984.

[5] D. Nadler. Arboreal singularities. Geom. Topol., 21(2):1231–1274, 2017.

[6] U. Oertel. Incompressible branched surfaces. Invent. Math., 76(3):385–410, 1984.

[7] R. C. Penner. A construction of pseudo-Anosov homeomorphisms. Trans. Amer. Math. Soc.,

310(1):179–197, 1988.

[8] A. F. Ritter. Deformations of symplectic cohomology and exact Lagrangians in ALE spaces. Geom.

Funct. Anal., 20(3):779–816, 2010.

[9] P. Seidel. Lagrangian two-spheres can be symplectically knotted. J. Differential Geom., 52(1):145–

171, 1999.

[10] W. P. Thurston. On the geometry and dynamics of diffeomorphisms of surfaces. Bull. Amer. Math.

Soc. (N.S.), 19(2):417–431, 1988.

[11] W. P. Thurston. Three-dimensional geometry and topology. Vol. 1, volume 35 of Princeton Mathematical

Series. Princeton University Press, Princeton, NJ, 1997. Edited by Silvio Levy.

[12] A. Weinstein. Symplectic manifolds and their Lagrangian submanifolds. Advances in Math.,

6:329–346 (1971), 1971.

[13] W. Wu. Exact Lagrangians in An-surface singularities. Math. Ann., 359(1-2):153–168, 2014.

69




