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PREFACE 

VII 

During my graduate study at Berkeley, I focussed on the study of nonlinear phenomena 

occurring in solid state systems. This led me to work on a number of problems, all linked by 

this common theme. The three most significant of these projects have been combined to form 

this thesis. These are given as three parts, each of which is self contained and may be read 

independently of the other parts. Each part has its own introduction, conclusion, and references. 

The first part concerns itself with the dynamics of spin waves excited by microwaves in a 

sphere of yttrium iron garnet. This study yielded a variety of interesting experimental results 

which were then analyzed both analytically and by numerical integration of the equations of 

motion. The second part is a study of the dynamics of a forced magnetic oscillator. The system 

here is a toroidal magnetic core which displays the nonlinear effects of magnetic saturation and 

hysteresis. It is excited by a winding connected to a linear external circuit driven by a signal 

generator. This system was primarily developed to study a number of nonlinear phenomena in 

an experimental system - particularly resonance effects related to the emergence of a second fre-

quency in the dynamics. The third part is concerned with a practical problem - an anomalous 

'noise rise" that was observed to occur in Josephson Junction parametric amplifiers. A theory is 

presented which offers an explanation for this effect. The theory is based on a 'dynamical sys-

tcms" approach to the problem, the results of which may be applied to a broad class of similar 

systems. 

Berkeley 1987 	 Paul Bryant 
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ABSTRACT 

Lx 

This work consists of three parts. These are linked by the common theme of nonlinear 

phenomena in solid state systems, but are otherwise independent and self contained. 

Part 1: In this part an experimental study is made of the interactions between spin wave 

modes excited in a sphere of yttrium iron garnet by pumping the Sithi subsidiary absorption at 

9.2 GHz with the dc field parallel to [1111. The dynamical behavior of the magnetization is 

observed under high resolution by varying two control parameters, dc field (580 < H <2100 Oe) 

and microwave pump power (1 < P < 200 mW). Within this parameter space quite varied 

behavior is found: (i) onset of the Suhl instability by excitation of a single spin wave mode 

with very narrow linewjdth (< 0.5 (3); (ii) when two or more modes are excited, interactions 

lead to auto-oscillations with a systematic dependence of frequency (10 to 106  Hz) on pump 

power, these oscillations displaying period-doubling to chaos; (iii) quasiperiodicity, locking, 

and chaos occur when three or more modes are excited; (iv) abrupt transition to wide band 

power spectra (i.e., turbulence), with hysteresis; (v) irregular relaxation oscillations and 

aperiodic spiking behavior. A theoretical model is developed from first principles, using the 

plane wave approximation and including anisotropy effects, obtaining the lowest order non-

linear interaction terms between the excited modes. Extension of this analysis to the true spher-

ical spin-modes is discussed. Bifurcation behavior is examined, and dynamical behavior is 

numerically computed and compared to the experimental data, explaining a number of features. 

A theory is developed regarding the nature of the experimentally observed relaxation oscilla-

tions and spiking behavior based on the interaction of "weak' and "strong' modes, and this is 

demonstrated in the numerical simulations for two modes. Quasiperiodicity is shown to occur 

in the numerical study when at least 3 modes are excited with appropriate parameter values. A 



x 

possible mechanism for generating microwave subharmonics at half of the pumping frequency 

is discussed. 

Part 2: This is an experimental study of a forced symmetric oscillator containing a satur-

able inductor with magnetic hysteresis. It displays a Hopf bifurcation to quasiperiodicity, 

entrainment horns, and chaos. The bifurcations and hysteresis occurring near points of reso-

nance (particularly "strong resonance') are studied in detail and it is shown how the observed 

behavior can be understood using Arnold's theory. Much of the behavior relating to the 

entrainment horns is explored: period doubling and symmetry breaking bifUrcations; homoc-

linic bifurcations; and crises and other bifurcations taking place at the horn boundaries. Impor-

tant features of the behavior related to symmetry properties of the oscillator are studied and 

explained through the concept of a half-cycle map. The system is shown to exhibit a Hopf 

bifurcation from a phase-locked state to periodic "islands," similar to those found in Hamil-

tonian systems. An initialization technique is used to observe the manifolds of saddle orbits 

and other hidden structure. An unusual differential equation model is developed which is 

irreversible and generates a noninvertible Poincare map of the plane. Noninvertibility of this 

planar map has important effects on the behavior observed. The Poincare map may also be 

approximated through experimental measurements, resulting in a planar map with parameter 

dependence. This model gives good correspondence with the system in a region of the parame-

ter space. 

Part 3: This part takes a new look at an old problem, namely the observed "noise rise" in 

superconducting Josephson junction parametric amplifiers. By exploiting recent insights from 

dynamical systems theory, it is shown how the interplay of random noise and (nonchactic) 

deterministic dynamics can result in a noise rise like that observed in experiments. This 

analysis leads to a universal first order equation which applies to all similar systems in the 

high-gain regime. several predictions are proposed which can be tested experimentally, includ-

ing that a similar noise risc should occur in modulated semiconductor injection lasers. An  



xi 

analysis is also made of a previously unknown mode of operation - a "six-photon" mode associ-

atcd with a symmetry breaking bifurcation - and its potential advantages over the previously 

studied three-photon and four-photon modes are discussed. 
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PART 1: 

SPIN WAVE DYNAMICS IN YIG SPHERES 

1 INTRODUCTION 

This part is concerned with the dynamics of interacting spin wave modes in single crystal 

spherical samples of YIG (yttrium iron garnet: Y 3Fe50 12), which is ferrimagnetic. Although the 

existence of spin waves has been known for some time, the recent emergence of interest in 

dynamical systems theory has warranted making a detailed study of the many phenomena that 

can arise from the nonlinear interaction of excited spin waves. In order to orient the reader, we 

will start with a discussion of spin waves and how they may be excited. 

When ferro- or fern- magnetic materials are placed in a strong d.c. magnetic field H 0 , 

excited states exist which involve an ordered precession of the spins about the axis of the 

applied field. The simplest of these is the uniform or Kittcl mode, 1  in which all of the spins 

process in phase, as shown in Fig. 1(a). This mode can be excited not only by thermal excita-

tion, but directly by applying a microwave field h transverse to the d.c. field at the precession 

frequency. In addition to this mode there are spin wave modes in which there is a periodic vari-

ation of the precessional phase across the sample as shown in Fig. 1(b). The quanta of these 

excitations are called magnons. In many cases useful information and insight into the behavior 

of spin waves may be obtained by studying Bloch spin waves in which the medium is approxi-

mated as infinite and the spatial variation takes the form of e ik,r.  Naturally, to make correspon-

dence to a spin wave resonance in a finite sample we will assume a "standing spin wave" is 
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Figure 1. (a) Spins in uniform precession. (b) Spins in a traveling wave. (c) Spins in a stand-
ing wave. 

formed by combination of a k and—k magnon. Such a spin wave is shown in Fig. 1(c). 

Although full theoretical details are given in Sec. 3, it is useful to introduce now a few 

equations. For a spherical sample the frequency of the uniform precession is (ignoring effects 

of crystalline anisotropy): 
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coo = 	 (1) 

where y, the gyromagnetic ratio, is approximately 1.76x i0 7  G 1 sec 1 . The basic dispersion rela-

lion for spin waves in a ferromagnetic sphere is (again neglecnng anisotropy): 2  

(Ok = (7HüO)m + 7D k2)(yH 0 	+ yDk 2  + a),,1  sin28k) 	 (2) 

for spin waves of frequency 0k  wavevector k, and azimuthal angle 0k  of k relative to H0. Here 

M is the saturation magnetization of the material, 47cM = 1750 G for YIG, 0 m = 'I4itM, and 

D, the exchange constant, is approximately 5.4x10 9Gcm2  for YIG. These equations follow 

from the more general expressions derived in Sec. 3.1 - see Eqs. (59), (48) and (49). In Fig. 2 

we show a typical dispersion curve for spin waves in YIG sphere. The frequency depends not 

only on the magnitude of k but also on its azimuthal angle ek. There is also a slight dependence 

on polar angle 4k  resulting from anisotropy effects not included in Eq. (2) or Fig. 2. 

Excitation of a spin wave mode may be accomplished in a variety of ways. On the quan-

turn mechanical level, these include various scattering processes of magnons with other mag-

nons and with other types of excitations e.g. photons and phonons. On the classical level, these 

correspond to various nonlinear mode couplings. Low wave number modes may couple 

directly to a nonuniform microwave magnetic field. This effect produces a series of diminish-

ing peaks (Walker modes3 .. 11) near the main resonance. Spin waves of all wave numbers may 

be excited parametrically, through nonlinear coupling with the uniform mode or other spin 

wave modes. In such cases Suh112 14.2  showed that excitation of spin waves by this means can 

only occur when the driving field exceeds a certain threshold (now called the Suhi threshold) 

beyond which the power coupled into the mode parametrically is in excess of that lost due to 

damping. This analysis was able to explain two important experimental observations: 1) The 

subsidiary resonance absorption and 2) premature saturation of the main resonance, effects 

which were first observed by Blocmbergen and Wang 15  and by Damon. 16  The subsidiary reso-

nance results from the first order SuhI instability. Here the pump frequency w, is roughly dou-

ble the uniform resonance w, and consequently this mode is excited very weakly. However, 



Part 1: Spin Waves 	 § 1 	 4 

6 

C 

Cl) 
o 

>- 
0 
z 
LU 

C 
LU 
rr 
LL 

LU 

CL 

WO 

I 	I 	I 	 I 	I 
—4 	—2 	0. 	2 	4 

WAVEVECTOR k (10cm 1 ) 

Figure 2. Dispersion diagram (L)k vs. k for YIG sphere. 0k  is the azimuthal angle of k with 
respect to the d.c. magnetic field. Obtained from Eq. (2) for 110 = 1700G. 

when there are spin wave modes whose frequency is very close to w/2 (typically within 

±10 5(o) then these modes can absorb power parametrically from the uniform mode and build 

up to a large amplitude. Since the spin wave modes occur over a wide range of frequency the 

subsidiary absorption peak is very broad, and under certain circumstances can even extend past 
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the uniform resonance. 17  In premature saturation, one observes a second order Suhi instability. 

One drives the resonance for the uniform mode, which is strongly excited, and couples 

parametrically to spin wave modes at very nearly the same frequency. This coupling is of higher 

order than for the subsidiary resonance, but this is compensated for by the much higher ampli-

tude of the uniform mode. The term "premature saturation' comes from the fact that the Subi 

threshold occurs at a significantly lower microwave power (several orders of magnitude) than 

that required to saturate the uniform mode in the absence of spin waves. Above the threshold 

the effective damping of the uniform mode increases dramatically due to the large number of 

accessible spin wave modes. 

There is one additional means of coupling to the spin wave modes, that is generally 

referred to as "parallel pumping". Like the Walker modes discussed earlier, this is a direct cou-

pling between the spin waves and the external field. Unlike them, however, this is a parametric 

coupling, and the frequency of the spin waves must be very close to o,/2 (as for the subsidiary 

case). This process was first proposed (independently) by Morgenthaler, 18  Schlömann, Green 

and Milano, 19  and Kaganov and Tsukernik. 20  It results from the fact that standing spin wave 

modes (made up of k and —k magnons) exhibit elliptical procession orbits when k is not parallel 

to the d.c. field. The ellipticity results from the volume (as opposed to surface) demagnetizing 

field. Elliptic orbits have a nonconstant z component of magnetization which oscillates a fre-

quency 2Ck and thus can couple to o,. The parallel pumping absorption is very broad and is 

found in the same frequency region as the subsidiary absorption. 

Although these instabilities were extensively studied earlier (see Damon 21  and 

14 
Zakharov 22  for review), no clear evidence of low dimensional chaotic motion was reported. 

Nakamura et al. 24  and Obta and Nakamura re-examined the theory for parallel pumping, 

numerically iterated the equations of motion assuming two modes, and found onset of instabil-

ity, collective oscillations, and a period doubling cascade to chaos, with a Henon-like return 

map. Gibson and Jcffrics 26  observed a period doubling route to chaos, periodic windows, and a 
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single-hump return map for the second order instability in YIG. Zhang and Suh1 27  iterated the 

original equations for this instability and found a period doubling cascade to chaos. Similar 

theoretical conclusions were reported by Rezende et aL 28  and de Aguiar and Rezende 29  

reported theory and experiments on parallel pumping. 

In this thesis is reported a detailed experimental study of the subsidiary absorption insta-

bility in a YIG sphere, along with a theoretical interpretation of these results. Above the thres-

hold one or more spin wave modes may become excited and these modes may interact with 

each other nonlinearly, resulting in a variety of interesting phenomena. Some new effects dis-

cussed in the present work include: 

The regions and boundaries of behavior are found in a high resolution parameter space 

diagram. 

Fine structure is observed in the parameter space. Previous studies focused on the 

dynamics that occur when large numbers of spin wave modes are simultaneously excited. How-

ever, under appropriate conditions excitations can be limited to a few (1, 2, 3,...) very closely 

spaced modes. With two modes phenomena include low frequency (typically 10 5ci),,) auto-

oscillations exhibiting period doubling and chaos, aperiodic relaxation oscillations and 

aperiodic spiking. With three modes. quasiperiodicity (two incommensurate auto-oscillation 

frequencies) quasiperiodic route to chaos, and various aperiodic and chaotic orbits. 

Hysteresis is found at the Suhi threshold. 

Transitions to. a wideband noisy state is found corresponding to hyper-chaos or tur-

bulence. 

An approximate relationship between the auto-oscillation frequency and forcing ampli-

tiidc, is found 

Although the primary focus in this study is on the subsidiary resonance, some additional 

data is given for parallel pumping. YIG has some asymmetry and unless specified otherwise, 
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data is with the d.c. field along the [111] or easy axis of the crystal. 

2 EXPERIMENT 

2.1 Experimental Setup 

The basic experimental arrangement is shown in Fig. 3. Microwave power of 200mW at 

9.2GHz is supplied by a klystron tube (this can be mechanically tuned from 8 to 12GHz). This 

is coupled via x-band wave guide (3cm) to a precision attenuator. The microwaves enter port 1 

of a 3-port circulator and exit through port 2 to the sample. Microwave power reflected by the 

sample returns by the same wave guide entering port 2 of the circulator, from which it is 

directed through port 3 to a tunable video crystal detector which is sensitive to changes in 

microwave power from dc to frequencies of several megahertz. The sample is mounted in a 

loop gap resonator3° located approximately 1 cm from an adjustable sliding short at the end of 

the wave guide. The loaded resonator, shown in Fig. 4, is designed to resonate at the klystron 

frequency. Adjustment of the resonator frequency is accomplished by either changing the gap 

thickness or by inserting some dielectric material into the gap. The resonator is brass, plated 

with silver to improve the Q (Q = 500). The resonator has a significant advantage over a T 102  

cavity - it can produce a larger microwave h field (5 Gauss compared to 0.25 Gauss at 100mW) 

while providing a broader resonance. The system is fine tuned by adjusting the klystron fre-

quency to the resonator. One can achieve near perfect coupling between the wave guide and the 

resonator by adjustment of the sliding short. Input microwave power P i,, to the resonator is 

measured with a power meter attached to a 20 dB cross guide coupler. A balancing reference 

arm is attached to the detector via an attenuator and phase shifter. This is particularly useful for 

locating the Suhi threshold. One first nulls the detector output by adjusting the attenuator and 
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Figure 3. Diagram of the experimental setup. Notation: at = variable attenuator, cir = circula-
tor, (microwaves entering port I exit port 2; microwaves entering port 2 exit port 3), dc = direc-
uonal coupler (absorbs microwaves traveling opposite to arrow), det = tunable video crystal 
detector (type 1N23B), fm = frequency meter (HP model 2590B microwave frequency convert-
er connected to 5245L electronic counter with 5253B plug-in), gm = Gauss meter, kly = klys-
iron (Varian V-58), kps = klystron power supply (FXR model Z815B), LSI = LSI-I 1 computer, 
mag = electromagnet 0 to 19 kG, mc = modulation coils for magnet, ml = matched load, mps = 
magnet power supply (Harvey-Wells model HSR-1365B), mt = 4 ann magic T, res & samp = 
resonator and sample (see Fig. 4), pat = precision 0 to 50 dB attenuator (HP model X382A), 
plot = digitally controlled x-y plotter (HP model 7470A), pm = power meter (HP 43 IC), pps = 
precision phase shifter (HP model X885A), scope = digital storage ocilloscope (Tektronics 
468), short = adjustable sliding short at end of waveguide, spec = spectrum analyzer 0 to 40 
MHz (HP model 3585A), xclO = 10dB crossguide coupler (10% of power follows arrow while 
remainder passes straight through). xc20 = 20dB crossguide coupler (1% of power follows ar-
row while remainder passes straight through). 

kps 
gm 
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Figure 4. Loop-gap resonator with sample. Dimensions in inches. 

phase shifter in the reference arm, at some point well below threshold. When power is 

increased by adjusting the precision attenuator (pat) the detector output remains zero until thres-

hold is reached. Beyond this point the detector response increases abruptly due to the increas-

ing level of the effective damping resulting from spin wave excitation. The sample is centered 

on a large precision electromagnet with field stability of better than 0.1G. The magnet can be 

rotaed about the wave guide allowing one to vary the angle OR  between H0  and h, thereby 

choosing perpendicular, parallel or oblique pumping angles with a resolution of better than 1 

degree. The sample itself may be rotated about the axis of the resonator to sample angle O - 

also with better than I degree resolution. 

A variety of parameters may be varied to study the behavior. Most frequently, the d.c. 

magnetic field H 0  and the applied microwave power P are adjusted to produce a two 
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dimensional parameter space plot. Other parameters, usually kept fixed, include: microwave 

frequency co, (typically 9.2GHz), the position of the sliding short which controls the coupling 

between the wave guide and the resonator, the rotation angles OR  and O, the resonant fre 

quency (R  of the resonator, and the temperature of the sample (unregulated unless stated other-

wise - roughly 300K at low power but increasing significantly at full input power of 150mW.) 

Efforts have been made to minimize noise, but some remains and limits the ultimate reso-

lution of various dynamical phenomena such as high order phase locking and period doubling 

cascades. Sources include: intrinsic klystron noise, thermal magnons in the sample, klystron 

power supply noise (60 Hz and broadband), magnet power supply noise, temperature fluctua-

tions effecting the klystron and the sample, crystal detector noise, and microphonics. 

2.2 Sample Description and Properties of YIG 

The sample used is a sphere of pure YIG (yttrium iron garnet) having a radius of 0.033 

cm. It is a spherical to within tR/R = 6x10 5  and highly polished, to within 0.15pm. 

In order to orient the crystalline axes of the sample we plot the resonance field H 0  of the 

uniform mode as a function of sample angle OS  as shown in Fig. 5. By adjusting the magnet 

angle as well, one can easily find the [iii] directions (absolute minima for the resonant field 

strength) and the [1001 directions (absolute maxima). The 8 [111] directions are the "easy axes" 

for YIG - if left free to rotate in a strong field the sample will tend to align itself with a [111] 

axis parallel to the field; also, the anisotropy energy is a minimum when the magnetization is 

aligned with [liii. By contrast, the 6 [1001 directions are "hard axes" or direction of unsrablc 

equilibrium, and the 12 [1101 directions arc "saddle axes", i.e., they are saddle points for the 

a 

anisotropy energy. 
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Figure 5. Field for uniform resonance as a function of sample angle e. Axis of rotation is 
roughly [110]. Minimum occurs for[I11] parallel to d.c. field H 0, maximum occurs for [100]. 
Relative maximum at 80 0  is [110]. If rotation axis was precisely [1101 both minima in the 
figure would be the same. By rotating the magnet angle OR  as well, the location of the axes 
may be deermined precisely. The first minimum is within 5° of a [111] axis and is the orienta-
tion used in the experiment unless stated otherwise. 

Yttrium iron garnet has the chemical formula Y 3Fc 50 12. The name garnet was originally 

given to certain silicates found to occur naturally (although usually in impure form). The 
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general formula for such gamets is (Aj)[B?](Si3)Oj2, where the A and B can be any of a 

number elements, e.g., (Ca}[C12](Si3)012  is a commonly occurring form. The brackets 

represent locations at different sites:( } c—site, { I = a—site, ( ) = d—site and no brackets = 

h—site in the space group Ia3d(Oh'°) - see Geller. 31  The only cations on symmetry centers are 

those on the a—sites. The a—sites form a BCC lattice, however a full unit cube for a garnet has 

a side twice the length of the a—site lattice and contains 8 formula units. Each d—site ion is 

tetrahedrally bonded to four oxygen atoms, and each a —site ion is octahedrally surrounded by 6 

oxygens. 

The iron garnets have the general form (A 3 )[Fe2](Fe3)0 12 , where A can be Y 3  or any of a 

number of rare earth ions. Note that iron ions fill both the a— and the d—sites. YIG is an ideal 

Neel ferrimagnet. The a— and d—site ions have opposite spin polarization because of a super 

exchange interaction through the intervening O ions. This produces a negative a—d exchange 

field: Ba  = —1.5xl0 4Md . These ferric ions have S=5/2 and L=0, hence there is a net magnetiza-

tion of 5p. g  per formula unit or 40.t8 per unit cell at zero Kelvin. The lattice constant is 12.376 

Angstroms (at room temperature) and from this we can calculate the saturation magnetization 

per unit volume: 41cM3  = 2459G. The magnetization falls with temperature however, dropping 

to 3.65 per formula unit at 300K. 32  This lowers 4tM3  to 1795G. The sample used in this 

thesis is specified to have 4icM = 1750±50G at room temperature. At still higher temperatures 

the saturation magnetization continues to decline, going to zero at the Curie temperature of 

559K. 

Technically, the presence of a spontaneous magnetization implies that YIG cannot have 

perfect cubic symmetry. The fact that its easy axis is the [111] axis indicates that the structure 

is actually rhombohedraL Determination of the deviation from cubic structure have been car-

ried out by various researchers (see Gcllcr 31  ). 
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Y is diamagnetic, and the ferric ions being in an L = 0 state have very weak interactions 

with lattice phonons. As a result, YIG has a very narrow line width, typically 0.4 Gauss at 

room temperature. In contrast, rare earth ions are parainagnetic and when replacing Y in iron 

garnets they have a weak exchange coupling to the ferric ions, resulting in a magnetization 

which opposes the 5.LB of the Fe3  ions. This results in a strong temperature dependence of M 

and also an increased line width. Rare earth impurities in YIG can lead to significant broaden-

ing of the line width. 31  

The anisotropy energy for cubic crystals may be expanded as 33  

WA _—K lf l +K 2f 2+K3f+K df Lf2+ 

where f 1  and f2 are certain symmetry invariant functions (this is discussed in more detail in 

Sec. 3.1, Eqs. (36) to (41)). The most significant of these coefficients have been measured by 

Hanscn' 33  for YIG and are given in Table 1. Some values for K 3  were measured by Escu-

dier. 35  

Table 1: Anisotropy Factors for YIG 

T (K) 4itM (G) —K 1  (103crg cm 3) —K., (10 3erg cm 3) 

4.2 2460 24.8 2.3 

77 2435 22.1 2.1 

295 1 	1750 1 	6.1 1 	0.05 

The effect of exchange in YIG (and other cubic fcrromagnets) may well be approximated 

by an exchange field, HE = (D/M)V 2M(r) where D is the exchange constant, which for YIG is 

5.4x10 9G cm. 
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2.3 Experimentil Results 

In Fig. 6 we show an overall parameter space diagram, pump power P1  vs H 0 , for a [111] 

orientation of the sample along the d.c. field, and perpendicular pumping of the subsidiary reso-

nance. The solid lower boundary line represents the Sul-il threshold for absorption by the spin 

waves. Below this line the system behaves linearly - the reflected power being some fixed frac-

tion of the incident power that depends on the coupling between resonator and wave guide. 

For comparison purposes we show in Fig. 7 the behavior for parallel pumping. Note that 

here the threshold has a minimum at lower field than for perpendicular pumping. Most often 

the data to be presented is for perpendicular pumping - one may assume this is the case unless 

stated otherwise. 

Near the absolute minimum of the threshold curve for perpendicular pumping (Fig. 6) the 

dynamics of individual spin wave modes may be observed. These modes are very closely 

spaced (typically 0.16 G ) and give an oscillatory character to the Suhi threshold on a scale 

which is too fme to be seen in Fig. 6. In Fig.8 we plot the d.c. microwave absorption as a func-

tion of applied field over a very narrow range of field. This d.c. effect was first observed by 

Jantz et aL 36  As seen in Eq. (2), changing the field H 0  shifts the frequencies of the spin wave 

modes in the sample so that in the figure we are scanning through a sequence of modes. The 

frequency is related to field approximately as 7o,  so this implies that the mode frequency spac-

ing in this sequence is roughly 450 kHz. Just slightly above the SuhI threshold, neighboring 

modes interact via nonlinear coupling. This gives rise to auto-oscillations in the reflected power 

as shown in Fig. 9a. These are very low frequency compared to the applied microwaves - typi-

cally 100 kl-lz. They appear as a modulation of the reflected microwave signal and directly in 

the video detector output signal S(t). The oscillation can undergo period doubling bifurcations 

as shown in Fig. 9b. This occurs when a peak at half of the fundamental frequency begins to 
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Figure 8. Observed single mode resonances. Located as indicated in Fig. 6. Mode spacing ap-
proximately 0.16 G. 

emerge in .the power spectrum, as shown in Fig. 9c. This process may repeat and a cascade of 

period doublings occurs culminating in a chaotic orbit as shown in Fig. 9d with power spectrum 

shown in Fig. 9e. (However, due to the extreme sensitivity of the fine structure region, only the 

first 2 or 3 bifurcations can be clearly observed). As will be demonstrated in Section 4, these 

behavior patterns require only the presence of two excited spin wave modes. For the sequence 
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region of Fig. 6. Note: typical frequencies range from 10 k.Hz to 500 kHz. (b) Period doubling 
(c) Period doubling power spectrum (d) Chaotic auto-oscillations (e) Power spectrum of chaotic 	 4 

oscillations. 

p 

of peaks in Fig. 8, the first few starting at the left involve only single mode excitation and no 

auto-oscillations are observed - here the only observed effect is a d.c. shift in power absorption. 

Moving to the right, the threshold for the succcssive modes is decreasing (we are approaching 



Part 1: Spin Waves 	 § 2.3 	 19 

the absolute minimum of the Stthl curve in Fig. 6.) Thus, being higher above the threshold, we 

can excite neighboring modes as well as the mode with the smallest detuning from resonance. 

(The detuning &ik is defined to be COk - oI2). The a.c. effects we have described then occur 

in conjunction with the d.c. shift of Fig. 8. Hysteresis is also observed, the dynamics may 

switch suddenly into and out of oscillatoxy modes and the pattern is slightly changed when the 

sweep direction is reversed. The a.c. as well as the d.c. behavior repeats approximately when 

the field is swept through intervals of 0.16 Gauss. Farther to the right, as more modes become 

involved, quasiperiodic behavior is sometimes observed, as shown in Fig. lOa. In this case the 

power spectrum [Fig. lOb] shows two fundamental peaks (w 1  and c) which are irrationally 

related, along with all of their 2-component harmonics of the form to,,,,, = m co + n O. These 

harmonics may be found arbitrarily close to any chosen frequency, however the amplitude of 

the peaks decay rapidly with increasing m and n. These orbits can exhibit the quasiperiodic 

route to chaos, which has been the subject of much theoretical study (see e.g. 40 ' 41  ) however, it 

is difficult to resolve much of the details of the transition in this case due to the extreme sensi-

tivity in the fine structure region. The computer results in section 4 however do show that 

quasiperiodicity can occur when three or more modes are involved and exhibit the transition to 

chaos. 

Referring back to Fig.6 there is a region between 1200 and 1600 Gauss where the boun-

dary displays hysteresis - on increasing power, spin wave absorption is not observed until the 

upper curve, while on decreasing power, it continues until the lower one. The attractors exist 

for the system in the crosshatched zone, only one of which involves excited spin waves. In the 

excited spin wave state, the system exhibits noisy oscillations as well as an increased d.c. 

absorption. These do not appear to emerge through any bifurcation sequence from a simple 

oscillation. Also, the fine structure of the absorption cannot be observed in this region, which 

may be due to a higher density of modes, and/or modes with higher damping (and thereibre 

greater overlap with neighboring modes). The esscntial origin of the hysteresis ellct can be 
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Figure 11. (a) Relaxation oscillations time series. Located as indicated in Fig. 6. (b) Relaxa-
tion oscillations power spectrum. 

understood theoretically in the dynamics of a single mode as discussed in Section 3.4. 

Between 700 and 1200 Gauss in Fig.6 we find that just above the Suhi threshold a form of 

aperiodic relaxation oscillation occurs. An example of this is shown in Fig. I la. These have a 

characteristic "fast phase" during which the response of the system changes very rapidly which 
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Figure 12. (a) Low frequency noise spectrum. Below transition to high frequency noise in Fig. 
6. (b) High frequency noise spectrum. Above transition to high frequency noise in Fig. 6. For 
both figures the vertical scale is 10 dB per division. 

alternates with a 'slow phase'. Typically the fast phase is at least an order of magnitude faster 

and shorter (in duration) than the slow phase. These oscillations show no periodicity as can be 

seen from the featureless power spectrum in Fig.11b. This behavior may be related to the 

interaction of "weak' and "strong" modes as discussed in Sec. 3.5. 
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Figure 13. Period 8 observed for parallel pumping. P j, = 50mW, H 0  z  1800G —see Fig. 7. 

At a somewhat higher level of excitation, for d.c. fields in the range 1000 to 1400 Gauss, 

the relaxation oscillations are superceded with the noisy oscillations of much higher amplitude 

and frequency. The emergence of this new behavior occurs abruptly at the threshold curve indi-

cated by the dashed line in Fig. 6. In Fig. 12(a) and (b) we compare the power spectra for the 

low and high frequency noise occurring just below and above the threshold. In both cases these 
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curves are nearly featureless, as was the case for the relaxation oscillations in Fig. 1 lb. 

At still higher pumping power, with H0  in the range 1800 to 2000 Gauss, there are high 

level periodic oscillations. These are typically at least an order of magnitude greater in ampli-

tude and frequency (typical frequency now 1MHz) than those of the fine structure regime. At 
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JdJI 
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' uII, 

.S(t) 	 (b) 

0 	t (ms) 	0.02 

S(t) 	 (c) 
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4 

Figure 14. Data for d.c. field parallel to [100](a)  Quasi periodic time series (b) Phase locking 
of period 8 (C) Phase locking of period 14 
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these power levels, a large number of spin wave modes become accessible, and the oscillations 

may be a cooperative effect involving many modes. Thus analysis for the interaction of only a 

• few modes which is presented in Secs. 3 and 4 may be of only limited applicability in this 

region. (However, see the analysis of Sithl and Thang42  related to this behavior). These 

oscillations exhibit all of the dynamical phenomena previously described for the fine structure 

regime, e.g. period doubling, quasiperiodicity and chaos. They emerge in a Hopf bifurcation at 

the threshold indicated in Fig. 6. Their emergence does not eliminate the noisy oscillations 

which exist below this point, however this noise is nearly negligible compared to the oscilla-

tions when they reach full amplitude. 

These high level oscillations are also observed for parallel pumping where it occurs over a 

much wider range of the d.c. field, as shown in Fig. 7. In Fig. 13 we show the spectrum follow-

ing three period doublings to Period 8. Other crystalline orientations were also examined. Per -

pendicular pumping in the [1001 (hard axis) orientation showed some excellent examples of 

quasiperiodicity and phase locking. Fig. 14(a) shows the beating of two incommensurate fre-

quencies separated by about 12% in frequency. Figs 14(b) and (c) show two examples of high 

order phase lockings. 

In many cases the auto-oscillation frequency shows a trend of increasing with applied 

microwave power. In Fig. 15(a) an example of such behavior is shown. This data agrees well 

with the form f2 oc (P/P)—1, wheref is the auto-oscillation frequency, P is the pump power, 

and PC  is the threshold power. This form is suggested by the work of Zautkin et al. 45  This 

behavior can also be found in the numerical simulations of Sec. 4, as shown in Fig. 15(b). 
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This section deals with the analytical formulation of a model of spin wave dynamics that 

may be useful in understanding the experimental results of Sec. 2. The model equation [Eq. 

- 	 (109)] will be numerically iterated in Sec. 4 and compared to the experimental dynamics. 

3.1 Classical Hamiltonian Formulation of the Equations of Motion 

We review spin wave theory and present a semiclassical derivation of the fundamental 

equations governing the relevant spin wave dynamics (which we will go on to study in detail in 

later sections). In this approach the classical magnetization M is considered to be an analytic 

function of position r and time r, and its dynamics are considered to be governed by its interac-

tion with an effective field H(r,t). Suhi's original analysis of spin wave instabilities 13  is also a 

semiclassical one which starts with classical equations of motion for M(r,:) and goes on to find 

the normal modes of the system and stability criteria for their calculation. Although this 

approach may be extended to obtain equations of motion for the spin waves and their mutual 

interactions, we take a slightly different approach here, working with the Hamiltonian for the 

system and utilizing many results due to Schlömann 46  and Zakharov et al.' ' 48 in order to 

put it in the most desirable form. Much of this development has its roots in the quantum treat-

ment of spin waves by Holstein and Primakofl49  in which they developed a sequence of 

trans fo rm ations to diagonalize their spin Hamiltonian. The Hamiltonian formulation has the 

advantage of giving the equations of motion in their canonical form. They are obtained easily 

from the Harniltonian, which is equal to the total energy of the system. In this representation 

certain symmetries occur between the coefficients, resulting from the fact that the Hamiltonian 

is real, while the variables used are complex. The form of the Hamiltonian is essentially the 

same as of the quantum Hamiltonian, which we discuss in Sec. 3.2. In the analysis, (Secs. 3.4, 

3.5, 3.6 and 4), however we will use only the classical form of the equations since the excitation 

levels of the experiment are usually far above the quantum regime. Damping is treated 
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phenomenologically, by adding a linear damping term to the equations of motion for each spin 

wave mode. 

An effort is made to make the equations general - we consider oblique pumping showing 

quite clearly the connection between parallel and perpendicular pumping in the subsidiary reso-

nance regime. We also consider many details omitted in some earlier works such as the effects 

of crystalline anisotropy and int.ractions with the resonator or cavity used to couple the 

microwaves to the sample. Explicit expressions are obtained for the various coupling 

coefficients - although some of these are very lengthy indeed. Following the derivation of the 

equations, we discuss in Sec. 3.3 the main approximation - the use of planar spin waves rather 

than spherical spin- modes which should be the true modes of the sample. We also discuss the 

possibility of obtaining a subharmonic response at half the microwave pumping frequency in 

Sec. 3.6. 

In the process of obtaining the equations of motion in their final form, we must chan ge 

variables a number of times. For a Hamiltonian these must take the form of canonical transfor-

malions so that the form of Hamilton's equations of motion will be preserved. We list these 

different representations for the magnetization in Table 2 in approximately the same order in 

which they appear in the text, and ending with Ck, the final form which we use throughout the 

rest of this work. 

We start by noting that provided we are well below the Curie temperature (559K for YIG), 

the magnitude of the magnetization is approximately a constant M, called the saturation mag-

netization. (4itM = 1750 G at 300 K for YIG). Thus M,  M. and M are not all independent; 

it is sufficient to know just MandM. These are the appropriate variables to choose since the 

d.c. field H0  points along the z axis and hence M  will deviate only slightly from M, while M 

and My  will oscillate about zero. Aside from anisotropy effects (which we discuss later in this 

section) the system possesses axial symmetry, and this symmetry suggests the use of a complex 
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Table 2: Nomenclature for Magnetization 

M(r) [M (r,M (r)1'f :  (r)} = magnetization. 	 Eq. (3) 

Fourier component of M(r): M(r) = 	Mke. Eq. (25) 

MT(r) Transverse maietization =L+iM,J . Eq. (3) 

MTk Fourier component of MT: MT = iMT ke r  Eq. (28) 
k 

Canonically coniugate complex magnetization variables: MT = Eq. (4) 
S(2?Mr  _r3.S)lr2  

Fourier component of s: s = Vs_ z Zs ke d r, where V 	is the Eq. (17) 

sample volume. 

Vk, Diagonaiizes quadratic part of Hamiionian: 5 k = 	- l.iicVk Eq. (56) 
where Xk  and k are constants. 

bk, 
Obtained from Vk,V 	by near identity canonical transformation Eq. (71) 
effecting only terms of order v 	and higher. Transformation 
chosen to eliminate all terms of order v 

Ck 
Slow variables: 	cke"''=bk. 	Exhibits dynamics on a slow Eq. (98) 
time scale when the resonance condition Wk = O)/2 is approxi- 
mately satisfied (ok = spin wave frequency, co,, = pump fre- 

_________ quency). 

Ck Phase adjusted slow variables: dk =cke " , q k  is appropriate Eq. (107) 
phase shift so that c=c. k . 

representation: we define the transverse magncuzauon Mr as: 

Mr = M .4-iMp 	 (3) 

For small amplitudes. M and M behave essentially as though they were canonically conju- 

gate, while at higher amplitudes they deviate from this behavior. However, a weakly nonlinear 

transformation exists to new variables s and s, which are canonically conjugate for all ampli-

tudes. This transformation previously used by Schi6mann 46  and Zakharov et 1r47.48 is 

- 

	

	 essentially a classical version of the E-Iolstcin-Primakotl 49  transformation for the quantum treat- 

mcnt of spin waves. The transformation is 

MT = S (27i%1 

where s = s, +is, is a complex representation of the canonical variables s, and s,,, and yis the 

gyromagnetic ratio. (Note: in linear approximation s 	Mr and s has units of G scc U2 .) Since 
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the magnitude of the magnetization is constrained to equal M, we can also express M  in terms 

of s and s (the complex conjugate of s): 

M =M?ss 	 (5) 

The inverse relationship (s in terms of MT) can be put in the form 

s = MT("2(MS  +M" 
	

(6) 

where M. = (M—M T Mi)"2  To verify that; and s, represent canonically conjugate variables, 

we will show that Hamilton's equations give the correct equations of motion when the total 

energy expressed in terms of the complex variable s. 

The magnetization changes in response to an effective field H(r) which is defined to be: 

H(r) 
= 6M() (7) 

where 6W/3M(r) is the functional derivative of the total energy W of the ferromagnct with 

respect to the magnetization as a function of r. To obtain the variation in W one must integrate 

the functional derivative times the variation in the function M(r) over r, i.e.: 

3W 	6M(r)d 3 r 	 (8) 

(This relationship defines the functional derivative) The torque per unit volume on the spin sys-

tern is given by the cross product WE Multiplying this by the gyro magnetic ratio ? 

(y= g J.L/ Ii 1.76x10 7Gs 1  for YIG) we obtain an expression for M(r): 

M(r) = —y M(r )xH(r) 	 (9) 

6W =yM(r)x 
6M(r) 

H(r) may be broken down into the applied d.c. field H 0, applied microwave field Ii, the 

exchange field HL, the demagnetization or dipolar field 11L)  and the crystalline anisotropy field 

H11 . Similarly the energy may be broken down into the energy due to applied fields W 0 , the 

exchange energy WE,  the demagnetizing energy W0  and the crystalline anisoiropy energy fl! ,1 . 

We will obtain explicit forms for each of these later in this section. 
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The equations of motion take a somewhat simpler form when expressed in terms of MT: 

 
=2Ly 	

ow 
at 	

M (10) 

aM 	6w 
at 

= 2z 'M 
6MT 

Note that in evaluating 6W16M (or similar derivatives) W is to be expressed in terms of MT(r) 

and M(r) and MT(r) is to be treated like an independent function from Mj(r). One can show 

that Eq. (10) is equivalent to Eq. (9) using: 

- 6W aM 6W aM 6W aM 
6M - 	 + 6M aM + 6M aM 	

(11) 

where 

I 
DM~ -  2 

aM 
- i 

aM; -  2 

and 

- —MT 

aMj2M; 

We may now proceed to show that the equations of motion fors and s' are 

as(r) 61 	3s(r) 	611 
=t 	and 	=—t 	 (12) 

at 	ös'(r) 	 ös(r) 

where the Hamiltonian H is obtained by expressing the total energy W as a functional of s (r) 

and s 0 (r). Eq. (12) is an appropriate form for Hamilton's equations when using the complex 

representation of the conjugate variables s and s,. (Note: if desired the i may be included in H 

so that the equations have exactly the same form as the ordinary Hamilton's equations). To 

obtain Eq. (12) we first expanded iöH/6s using the chain rule: 

• 611 	6W aM1 
• 6W aMT 

(L) 
6s 	6M 	3s 	61VIT as 

then, using Eq. (10) we obtain 
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- 1 [am; aMT aMT aM; 	
14 

2'jM 	as 	at - as 	at 	 ( 

again using the chain rule we may express as/at as: 

as -  as aMT  as aM; 
Tt - aMT  at aM;  at 	 (15) 

Using Eq. (4) and Eq. (6), one can easily verify that 

as - 1 aM; 
d 

as - —1 aMT 
aM - 2 yM as * an 

aMT * - 2yM as * 	
( 16 ) 

This shows that the right hand sides of Eq. (14) and Eq. (15) are equal and hence Hamilton's 

equations [Eq. (13)] are correct. 

The next step is to expands and s in Fourier series: 

S = v;1/2ZskeuI 
	

(17) 
k 

= 	 ik-r 

k 

where V5  is the sample volume (V 5 1.51x10cm 3  in the experiment). For Hamiltonian 

expressed in terms of Fourier components s k  and s , we may express i aziias 

• 	H 	as*(r) 	8.6 as(r)d3r 	 (18) 
as 	$ ös *(r) as; 	ös (r) as 

where the integral is required because we have functional derivatives on the right hand side. 

Noting that as (r)/as = 0 and as(r)Ias = V5_ e r we find 

.aH = 1as (r) V5_e_0rd3r 	 (19) 
as; 	at 

from which we obtain Hamilton's equations in the form: 

aSk 	 as 	.ai-i 
and (20) at  

[Note: if k was considered continuous rather than discrete then we would still have functional 

derivatives, i.e., as (k)/dt = i öH/s (k) 1. 
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At this point we need to find explicit expressions for the different components of the total 

energy W. We will then form the Hamiltonian by expressing W in terms of Sk and s. 

W 0  - The Interaction Energy with External Field 

The external field has an interaction energy W0 with the magnetization of the ferromagnet 

given by 

W0 = f - [ H0+h(t)]-Md 3r 	 (21) 

where H0  is the d.c. magnetic field (oriented along the z axis) and h(t) is the microwave mag-

netic pumping field which has arbitrary orientation and frequency o,,. Defining a transverse 

pumping field hr  _=h-1-ih we may express W 0  as: 

	

= _fd3r[(Ho+hz)Mz++(hrMi+hiMT)] 
	

(22) 

or in terms of the constant Fourier components M0 and Mo and sample volume V: 

	

—V(Ho+h) - +(hl.Mjo+hjMro) 	 (23) 

WE - The Exchange Energy 

The exchange field can be shown to be 50  

HE =._V2M 	 (24) 1   

where D is the exchange constant (D 2JSa 2I 71 'Gcm 2  where J is the Heiscnberg exchange 

energy. D = 5.4x10 9Gcm 2  for YIG). In terms of the Fourier components Mk of the magnetiza-

tion (M(r) = Mke) we find that the exchange field is 
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HE = 	k Mke 	 (25) 

It follows from Eq. (7) that 

aWE/aMk = —V HEk 	 (26) 

where HEk  is a Fourier component of H. An expression for WE which satisfies (26) is 

DV 
WE = 	kMk NI 	 (27) 

h.L L 	k 

We can express this in texms of MTk  and MZ k (the Fourier components of MT  and Mz) obtain-

ing: 

DV 

	

WE = 7Z k 2(MT kMTk +M kMzk ) 	 (28) 
sk 

Note that Mjk is to be interpreted as (Mr k ) not as (Mj) k . 

W0  - The Demagnetizing or Dipolar Energy 

Here we follow the approach of Suh1 13  and break the demagnetizing field into two corn-

ponents. First, the k = 0, case where for certain sample shapes including infinite sheets, infinite 

rods, and spheres (or more generally ellipsoids), a uniform demagnetizing field HDO within the 

sample exactly solves the magnetostatic boundary conditions: 

	

HDO = —41t(NM0, NM o.  NM o) 	 (29) 

where M o M o,Mo are the constant Fourier components of M and where NX ,NY .NZ are the 

demagnetizing factors (note - these must be generalized to a tensor if the ellipsoid is not 

oriented with its principle axes corresponding to x, y, and z). The demagnetizing factors satisfy 

N + + N = I and their values for the main cases of interest are given in Table 3. For the 

more general case of ellipsoidal samples see Osborn 51  and Stoner. 52  We define symmetric and 

asymmetric demagnetizing factors ND +  and ND. as 
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Table 3: Demagnetizing Factors 

Shape N N N N04 [ N0 

Sphere - -- - -- 0 

Rod,alongz + + 0 + 0 

Rod,alongy -- 0 -- -- 

Rod,alongx 0 -- 
1 1 

j-  
1 
-- 

1 
 -- 

Sheet, normal z 0 0 1 0 0 

Sheet, normal y 0 1 0 
-- -+ 

Sheet, normal x 1 0 0 -4- -4- 
N0  + = (N-1-N) /2 and N0 - = (N —N )/2 	 (30) 

The corresponding energy W00 is given by 

Woo 2itVs (NX ivf o  +Ny My0  +N2 M j ) 	 (31) 

or in terms of the transverse magnetization 

W00  = 27tV (ND +MTMjo .4N D _(M O  +M- )+NM) 	 (32) 

The components with k#() are very difficult to determine precisely for a spherical sample, 

but the problem becomes relatively easy if we neglect the boundary conditions. This is not 

really a very good approximation - especially since individual, spherical modes have been 

observed to be excited experimentally - however, this approximation has been used in all previ-

ous studies of spin wave instabilities because it lcads to equations which can be solved analyt-

cally. Starting with the Maxwell Equation VB=0, we express B as H0 +H0+h+4itM and 

obtain: 

VHD 
	 (33) 

expanding in Fourier components we find 
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ik-r 	 (34) 

The corresponding term in the total energy (which satisfies aWD k/aM.=—V $ HDk) including 

all nonzero values for k is given by: 

I 
WDk=2TCVS 	

lkMk 	
(35) 

k*O 	k2 

=2tVE--- I kTMj._k+kjMTk+2kMzk 12 

WA - The Anisotropy Energy 

For crystals with cubic symmetry there are two symmetry invariant functions f i and f2 

{with m 3m (Oh)  point group symmetry]: 33  

2 
f 1= aa-+c 2-a3 —a32a1 	 (36) 

f2 = atcx2a3 

where ((t 1 act3) is a representation of a unit vector with respect to the crystallographic (rather 

than experimental) axes. We therefore expect that the anisotropy energy density for such a cry-

stal must be expressible as a function of f 1  and f2  where alpha is a unit vector in the direction 

of the magnetization. This assumes that the crystal is unstrained and that the exchange field is 

large compared to external fields. Also, there may be a uniaxial component, especially in thin 

	

films, resulting from stress induccd by a mismatch between film and substrate or related to the 	* 

direction of crystal growth - see Hansen. 33  Expanding WA in tcrrns of f 1 and f2  we find: 
4 

W, 1  =fd3r(Kifi+K2f1+K3fF+K4f1f2+...) 	 (37) 

Values for the anisotropy constants K 1  and K2 for YIG are given in Table 1 in Sec. 2.2. 

Values for other gamcts may be found in Hansen. 33  In order to use Eq. (37) we must express it 

in terms of MTk.  The procedure is as follows: first find the linear transformation R which 
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37 

relates (cz 1 (x2,cz3) with (MX ,MY.M) and hence with MT i.e. 

* 	
M I 
	

(MT+Mj)12 

= R M 	R —i (MT—M7)/2 	 (38) 
a3J 	. Mj 	(1—MT)" 

then express f I  and f2 in terms of MT.  Finally expand MT as a Fourier series, eliminate oscil-

latory terms from the integral with nonoscillatory terms being multiplied by V, the sample 

volume. The easiest case to evaluate is for H0 oriented along [001]. In this case we can nor-

mally make the additional conditions e = [ 100] and j = [010]. [However some other choice 

might be required for a sample which is not azimuthally symmetric if its principle axes (for 

evaluating the demagnetizing field) do not agree with the crystallographic axes]. In this case 

R = iWI where I is the identity matrix. From this we obtain (for [100] orientauon): 

• 
fi =mTmT—j-(mTmT) 2  +-

1
--(m7+m7 4) 	 (39) 

fz = 	mr+m 4-2m.?m 2)( 1—mrmj) 	 (40) 
16 

where we have defined mT = MT/M I . In order to obtain all terms through order MT4  in WA we 

need to include the first three terms in Eq. (37) with coefficients K 1 ,K 2 , and K3. Similar 

expressions to Eq. (39) above may be obtained for other orientations of interest. However rela-

tively simple results may be obtained if we restrict ourselves to the lowest order contributions 

(orderM) with the z axis corresponding to [001], [110], or [1111, and they axis corresponding 

to [110] (the three orientations indicated for the z axis may be obtained by rotating about the 

[110] axis). In this case the anisotropy energy has the form 

W, 2V [N A  ITkMTk + NA _(Mk + M.)] + Order (M k ) 	(41) 

where: 

for[0011 N,1 =2K 1 14tM. N,_=0 

for [lii] N, = (_ K l_*K2)/41tM s2 , N 1 _ = 0 
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for [1101
(_+KIKlj,'47tM, NA=(--Kl++ 	rMK2)/47 

This notation was chosen because of its similarity to the demagnetizing factors ND +  and ND_ 

appearing in Eq. (32). Note that fort = [0011 or [111] the results are independent of the orien-

tat.ion of Y and Y , although there will be differences in higher order terms omitted in Eq. (41). 

Only the I = [110] case leads to a nonzero value ofN A _. This term breaks azimuthal symmetry 

and leads to elliptical rather than circular orbits for the uniform mode (as does the factor ND. in 

Eq. (32) which results from shape anisotropy). Values for NA +  and NA_  for YIG may be found 

in Table 4. 

Table 4: Anisotropy Factors for YIG 

T(K) [IOOINA +  [llllN4+  [llO]NA+  [llO]NA_ 

4.2 -0.1030 0.0708 0.0246 -0.0784 
77 -0.0937 0.0644 0.0223 -0.0714 

295 -0.0501 0.0335 0.0125 -0.0376 

Now that the various contributions to the energy have been evaluated [ Eqs. (23), (28), 

(32), (35), and (41) 1 we may combine them to form to obtain an expression for the Hamil-

tonian: 

H = W O+WE+WDO +WDk+WA 	 (42) 

Naturally, we will want to express the Hamiltonian in terms of the canonical variables Sk and 

Sk This may be accomplished using: 

Mrk=M$[Ysk_+Y3 	sksk 2sIkk] +Order(s) 	 (43) 

and 

MZ k = M (ök---Y Zksk 1 k) 	 (44) 

where Y M 2y1M V and ök  M 1 for k a 0 and 5 k  M 0 for k). Since the resulting [-lamiltonian is 
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a lengthy expression, we break it into components as follows: 

H = COflSt. +H +112+113+11 4+ 	 (45) 

where HP  consists of terms involving the pumping fields hT and h2 , H 2  consists of quadratic 

terms in Sk,  11 3  of cubic terms, and 11 4  quartic terms. The results are: 

H 	 +hs0 	 (46) 

	

H2 = EAkSkSk + --(Bs k5k + c.c.) 	 (47) 

where 

I k. 2 
Ak = HO+Dk2)+()m (SkND +  N + N, + (1k) 2k2 

	
(48) 

kr 2 

	

BkU) m (kND_+NA_+(lk)jj), 	 (49) 

= 47cMy, and c.c. denotes complex conjugate 

- 	1/2 
93 =—Y 	• 	+ C.C. 	 (50) 

k,k1 

where 

k /c 
2 (1—ak) 
	 (51) 

MI 

H4 = 

	

(2E1 	 +k2-k3 - (F 1 SkSk,Sk3S1 +k2+k3 + c.c.) 	(52) 
k 1 ,k2.k3 

where 

IkT I 
Qk?2+m(k1VD++(3k) 2k2 +N1%+) 	 (53) 

	

Ek = yDk 2+(o, (kN z  + (l-6k)—) 	 (54). 

and 

Fk 	m[(k)9kND_,t_] 	 (55) 
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Note that while we have included in 9 4  its dependence on the anisotropy factors NA+ and NA_ 

there are additional contributions to H 4  from terms of order M in the anisotropy energy such 

	

as those given explicitly in Eq. (39) for the [100] orientation, and requiring knowledge of the 	- 

coefficients k 1 k 2  and k3 in Eq. (37). However, anisotropy is not very strong in pure YIG and it 

may be reasonable to neglect these terms in first approximation. 

In the absence of dipoiar and anisotropy effects, the s k  variables would be the appropriate 

normal coordinates for the problem since in that case H2 would have the "diagonal" form 

AkSsk. However we have the additional terms + . Bsks and whose presence 

means that Sk  and s are coupled. Fortunately, 112  can be diagonal.ized by means of a canoni-

cal transformation to the new variables Vk and v: 

Sk = 
	

(56) 

with inverse transformation 

VkXkSk+ikSk 	 (57) 

This is sometimes referred to as the Bogoliubov transformation. The coefficients Xk and P.k  are 

given by 

1/2 

Xk 

and 

8k  I Ak—ük 112 

j
IBk  

where 

- 	
2)1/2  

is the spin wave dispersion relation. Xk  and 9k  satisfy 

(60) 

which is required in order that the transformation be canonical, i.e.. that Hamilton's equations 

give the correct equations of motion: 

 

 
S 
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• 	 . 
Vk=i7 and Vk =—L - 	 (61) 

aVk 	 (JVk 

The other useful relations are: 

= B k"2°k 
	

(62) 

X+ IJJ.kI=Ak/Ci)k 	 (63) 

Note that there is no real solution for 0k  in Eq. (59) in the event that A< I Bk 1
2 This first 

occurs in the limit of small (but nonzero) k when 

Ho <4.itM(N, +NA _—N A+) 	 (64) 

below this field the ferromagnet is unstable against the formation of domains (roughly 600 0 

for YIG). A typical dispersion diagram was shown previously in Fig. 2. Note that ok depends 

not only on I k I but also on 0k'  the azimuthal angle of k. Neglecting the anisotropy factor NA_, 

0k is a minimum for Bk = 0 and a maximum for Bk = 90° . The presence of NA_ changes the 

minimum to a nonzero value of Bk and also makes 0k  dependent on the O k the poiar angle of k. 

For NA_ positive, the minimum occurs for O k = 90014k = arg(kT )], while NA_ negative gives a 

minimum for Ok  =0. (These conditions are reversed for the maximum). The uniform mode fre-

quency coo always lies within the band of allowed frequencies for small but nonzero k. Its loca-

tion depends primarily on the sample shape - for a sphere it has approximately the same fre-

quency as a spin wave with k = 0 and °k = 54.7°; for a thin disc with i normal the frequency 

corresponds to Bk = 00 ; for a thin disc with i parallel to the surface the frequency corresponds to 

The Bogoliubov transformation puts the quadratic term in the desired form 

= 

	 (65) 

The pumping term now has the form 

- 	[Ak . 	lr Bk . 	I 1
H ='j/z

Wkk 	
k'kI 	

kV_k 	I (66) 
J 
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7Y-112 
	_Lohi)v+C.c] 

note, if ND_+NA_  is negligibly small then X= I and .t0 =0 and therefore v 0 =s0. The 

h,vv term gives parallel pumping and the hTv' term gives perpendicular pumping. The 

transformed cubic term is: a 

H 3  = 	 [Uk%,klvk,vklV.(.I +k2) + c.c. ) + Xk1,k,vk1Vk2vk1 + k2) + c.c.) 	(67) 

where 

jk19k,9k?t1+k2 - k1  Xk1 k2Pk1  + k2 	 (68) 

X k 1  + k2  = k1 Xk,?k2Xk1+k2  + 	Pk1 Xk29k1 +k2  + k1+k2  Xk1 9IC2P.k 1+k2 	(69) 

k1Pk1ik2l-1k1+k2 - Jk2Xk1 Pk?'k+k2 - " k1+k2tk1Xk2%k1+k2 

For the quartic term H 4 , we will keep only those terms which couple two spin wave modes of 

interest, say, k and W. We will also ignore all terms with fast time dependence. Only those 

terms with slow time dependence, of the same order of magnitude as the damping rate (to be 

introduced later into the equation of motion), Will be needed. We naturally assume that 

oJ2. Factors Vk  and V_k have time dependence e' while v and v have time 

dependence e' ° ' As a result, 11 4  is reduced to just two terms: 

H 4  = Tkk'VkVkVk'Vk' + --Skk'VkV._kYk'V_k' 	 (70) 

where the parameters Tkk' and Skk' may be obtained in terms of the previous parameters by sub-

stituting Eq. (56) into Eq. (52) and collecting all terms of the indicated types. 

While we have found terms in H 4  which dircctJy couple two spin wave modes (of the 
4 

same frequency) there are no such terms in H 3 . Why then do we need H 3 ? The reason is that 

the H 3  terms are much larger than the H 4  terms and there are second order contributions from 

/i 3  which do couple k and k'. These occur through the off resonance or virtual excitation of the 

mode k+k' or k-k'. Thcse modes will not normally have the same resonant frequency as k and 

k , however they may nevertheless be forccd into a weak response at this frequency, which in 
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turn produces a weak coupling between k and k' which may be of the same order as the terms in 

H 4 . There are two essentially equivalent ways of dealing with this problem. First, one may 

explicitly determine the response of these off resonance modes from the equations of motion. 

Since these modes are strongly detuned they will not behave as dynamical variables - their 

amplitudes may be expressed directly as a function of. Vk and Vk ' . A second method is to intro-

duce another canonical transformation 47  to new variables b k  and b which eliminates all of the 

cubic terms in the Hamiltonian. The appropriate transformation is: 

Vk = bk + 	
Xk',k_k'bk'bk'_k + ( X k' +Xk)bk'b 	

(71) 
k' t 	kk'k+k' 	k 0k'k+k' 

+ (U k,k'  + U k'k + U $'k4c'  )b 

Hamilton's equations in the b k  variables are correct through quadratic terms but deviate from 

the correct equations of motion by cubic terms. These errors can be canceled by adding the 

appropriate quartic terms to the Hamiltonian. [Note: These correction terms could be generated 

by adding the appropriate cubic terms to Eq. (71)]. The transformation itself also generates 

new quartic terms and as a result Tkk'  and are "renormalized" to new values Tj'  and Skk'. 

Thus we now have 

	

H 3 =O 
	

(72) 

and 

H 4  = Tkk'bkbbk'b' + 41-S kk 'bb1kbk'b_k' 	 (73) 

The transformation leaves the quadratic part of the Hamiltonian in diagonal form: 

H, = W kb k b k 	 (74) 

However, there are some very important consequences for the perpendicular pumping term [sce 

Eq. (66)]. In the vk notation, the transverse field IZT  only couples to the uniform mode v 0  which 

is off resonance. This in turn couples to a spin wave pair, Vk,V_k, via terms in H 3  like 

X_kVVkYO. In the bk  notation however, H 3  has been eliminated so this mechanism no 

* 
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longer exists. Instead, we now have new terms appearing in H whereby the external field cou-

pies directly to spin wave pairs just as it does for the parallel pumping term. The important part 

of H may now be expressed: 

- 	1 	Bk 	 _______ 
= 	2  - - 	 - i0h) 	; 	

(75) 
k' 

--7h 
2 	k 

* 	U6k + UkO + U ( l 
—'(X4Jh--j.L3hT) 	

02k 	
j 5k-k +C.C. 

Where we have omitted the direct coupling terms hTbo + c.c., since these are now unimportant 

for the subsidiary absorption, however they are required for the second order Suhi instability 

since this involves the excitation of the uniform mode. Noting that Ukk'  and Xkk' were given 

by Eqs. (68) and (69) we see that the coefficient of b'b. k ' in Eq. (75) can in general be very 

complicated. However, if we restrict our attention to the case where ND_ and NA_ are both 

zero, as occurs for example with a spherical sample with H0  parallel to [111] or [IOOL then 

X0  = I and j.t0 =0 and Eq. (75) simplifies to: 

k' [

1 	B, 	INx2_Jkxk.kl 
_h 	- 	

2W 	j 	
(76)  YhT 

I JkP.i
I  

— JkXkP.1l 
_?hTL 	0)0+20)k 	jj 	

+C.C. 

The first term corresponds to parallel pumping by the z component of the microwave field h. 

The second term corresponds to perpendicular pumping by the component of the transverse 

field with c.c.w. circular polarization. The third term corresponds to perpendicular pumping by 

the component of the c.w. circular polarization. The reader may be surprised that this last case 
4 

can contribute since it is opposed to the direction of precession of the uniform mode. However 

the important factor is how far the excitation is detuned from o 0 : the c.c.w. case is typically 

dctuncd by 
I 

wp  while the c.w. case is typically dctuned by 
3-u. Noting tha t (Dk 	WC 

see that these factors appear in the denominators of the respective terms, hence the third term 
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will be at least 3 times smaller than the second (in the subsidiary resonance regime) and may be 

considerably smaller still due to factors in the numerator. 

4 

4 

Effects of Resonator and Waveguide 

In the experimental setup, the microwave pumping field is generated by a resonator which 

surrounds the sample, as was discussed in Sec. 2.1. This device serves the same purpose as a 

cavity, i.e., to intensify the field, and a similar analysis to that presented can be applied to that 

case. The resonator amplitude will be represented by R, a complex variable, chosen so that R 

and R * behave as canonical variables and contribute a term HR to the Hamiltonian: 

HR=ORRR (77) 

where üR  is the resonator frequency. The resonator can be represented as a series LC circuit. 

This has total energy +U2+ }C V 2  where L is the inductance, C is the capacitance, V is the 

voltage and I is the current. In terms of these variables a suitable expression for R is: 

1/4 	
1 ci 

1/4 

R=[.j-] I+L[_- j  V 	 (78) 

and 0R  is given by 

WR = (LC )/2 	 (79) 

The magnetic field at the center of the resonator (excluding the sample) is proportional to I and 

- 	 hence to R +R By equating the maximum field energy with Hf?  we find that the field hR is 

given by 
a 

1/2 

hJ?= 	 (R+R) 	 (80) 
VI? 

where VR  is the effective volume of the resonator. (Vf?  may include corrections for end effects 

but we will ignore these and use VR = 2.06x10 3 cm 3 , the experimental volume within the 
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resonator used.) Since we wish to consider oblique pumping we assume that hR is linearly 

polarized, lies in. the x-z plane and makes an angle OR  with the z axis. Thus the z component is 

given by 

I 2tCJR '1 112  

	

h = [ V 
 J (coseR )(R+R*) 	 (81) 

and the transverse component is given by 

1/2 
2ItWR 

= 	 (SlfleR )(R +R *) 	 (82) 
VR 

We may now insert this into the expression for i-i, (Eq. (76) or the more general case Eq. (75)) 

to obtain (keeping only terms with slow time dependence assuming WR = 2k) 

H =EGkRbb 	+C.C. 	 (83) 
k 

where for the simpler case [Eq. (76)] 

I 	
k COSOj 	 (84) Gk - -i 

	
I 

[2ltCOR 1/2  
= 	 -- 

VR J 	k 

112 	
- k 1kPl ± J J.L 	' k'kPk 1 

_?[ VR ] sinOR[ 	
O - 2Wk 	 coo +2Wk j 

We will now consider the coupling of the resonator to the wave guide. In the wave guide 

there is an incoming wave hin  and an outgoing wave h. For simplicity we will assume a 

complex representation with the amplitude of hi, equal to the square root of the input power Pin  

	

h• _D.h/2e  t U4t 	 (85) 

Both h in  and Jz 0  are taken to be the effective amplitude of the waves at the location of the sam-

ple. The outgoing wave /z is made up of two components: /z,, is reflected at the end of the 

wave guide and becomes the first component: the second component is the emission from the 

resonator and is assumed to be directly proportional to the resonator amplitude R: 

	

h0 =hi, + i 3R 
	

(86) 

where 13 is a complex constant. From this expression we can determine the power enterin g  the 
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wave guide from the sample P: 

= I 	2_ .1 	2 1313*RR* + I (3Rh - I 3R h1 	 (87) ota

This must be balanced by the power entering the resonator f (0R R *R)  (less resistive damping 

and sample interaction terms) and by the rate of change of the interaction energy, E i,, between 

the resonator and wave guide fields. We can expect the slowly varying part of E im  to be of the 

form 

E11=Ji1R + h 1 R* 	 (88) 

where 4 is a complex constant. The term 1313RR * in Eq. (87) must be balanced by a radiative 

damping term Fr  R in the equation for R. There must also be a term coupling to the incom-

ing wave h i, so we expect that: 

	

R = -(r + F )R + I(()R)? + (Xh + ZG b kk) 	 (89) 

where Fres  is the resistive damping (Fr and rr  are both assumed real) and a is a complex 

parameter. (Note that we have omitted the coupling term to the uniform mode, of the form 

G b 0, since it is of no importance if # o. Its only effect is to slightly shift the resonant fre-

quency o). The balance of power determines the relationship between a, 13, , and ri.ad: 

rr 	-- aao)R 	 (90) 

 

 

Thus we only need to know the complex parameter a. 

One case of particular interest is critical coupling. In this case we choose a so that 

h0  = 0 to obtain maximum efficiency, thus 

h =_ia*RcOR 	 (93) 

For steady state the right hand side of Eq. (89) must equal iwR. Assuming ok =Cop and all 

bk's are zero ( below threshold) the condition for critical coupling is: 
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1 	* 
"rad = 1'res = 

2
-acL c0R (94) 

or 

lcd =(2rres lo)R) 1'2 =Q 1/2 	 (95) 

where Q is the quality factor of the resonator (Q co/2F). If we take Q z 500 for the 

experimental resonator, then I a I = 0.045. The fact that the critical condition depends only on 

the magnitude of a implies that this can be achieved in general by the adjustment of only one 

experimental parameter. This is found to be the case - adjustment of the sliding short alone is 

sufficient to achieve a null in the reflected power. 

Elimination of the Resonator Variable 

Under certain conditions the resonator may be eliminated as a dynamical variable. The 

main requirement is that the damping of the resonator, F r  + r'rai,  must be much greater than 

the effective damping, Yk,  for the spin wave modes being excited. Yk  represents the combined 

effects of a variety of mechanisms whereby the energy of the excited spin waves couples to the 

thermal reservoir of phonons and magnons. Yk  is introduced phenomenologically into the equa-

tions of motion by modifying Hamilton's equations: 

ab k  .H 	 (96) 

thus the equation for bk  is: 

1 k =(k 	'k)'-k +2GkRb k  + i(2T kk .lb k 'l 2b k  +Skk'bk'b_k'b..k) 	(97) 

We will now change to show variables: 

LI
I, - iüiI2 
k ' ke (98) 

R = R oe L 	 (99) 

substituting these expressions into Eqs. (89) and (97) and using Eq. (85) for /z we obtain: 
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= —FR 0  + i 	R 0  + O.P 1/2 + GCkC_) 	 (100)in 

Ck = (Yk+ i 	k)ck+22GkR0'_k #i (2TkkICk'I2ek+Skk.k'C_) 	(101) 

where F=Fr  +Fres , AnR = p  — ()R and Lflk—a)k—wP/2. Assuming that F>> Yk we can 

expect R 0  to be in quasi-equilibrium with R 0<<FR 0  so that we may set R 0  0. Eq. (100) may 

then be solved for R : 

	

R0 = F—i tnR 	
+ G kk-k) 	 (102) 

Using this in the equation for Ck we obtain 

C = (—Yk +tk)C'k —gP 2 	+ 	 ( 103) 

where 

Rkk'=2iGGkI(F—inR) 	 (104) 

2Gk  a 

	

gk  = F—LL2 	
(105) 

We must now discuss the relationship between Ck and c_u. Since we are dealing with a 

sample of finite size, it makes no sense to talk of traveling spin waves. Instead, the theory must 

be compatible to the fact that the sample must exhibit standing waves. In order to create stand-

ing waves, we must require 

	

C_k =Ck 	 (106) 

where q k  is a real phase factor. If we take this as an initial condition, then an examination of 

the equations for Ck  and C_k shows that the condition will remain tn.ic [noting that 

Tkk' = T_k_k' and Skk' = S_k,_k'I. If we define a new variable Ck by: 

-k = C ke 
-iqki2 

C   

so that by Eq. (106): 

then we may write Eq. (103) as 

- 

C_k = cke  
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Ck=(—?k Ck +iE2Tkk'!c k'1 2c k  +(Skk'+Rkk')cjc (109) 

Note that this equation still includes a sum over positive and negative values of k' - these may 

be combined if desired. Eq. (109) is the main analytical result and will be numerically solved in 

Sec. 4. 

There are a number of symmetries satisfied by the spin wave coupling coefficients 

and S. First, we note that certain terms are equivalent: Skk', Sk', Sk', and  S.k'  all mul-

tiply the same term (Ck'C'CC.)  in the Hamiltonian and similarly, Tkk'  and Tk'k  both multi-

ply the same term (c k'C c kC ). Thus we are free to choose these coefficients so that 

Tk'k = 
	 (110) 

and 

S k.k' = S k,-k' = S_k,k' = 	 (111) 

These relations were used in obtaining Eq. (101). We also find from simple inversion sym- 

metry that 

	

= 	 (112) 

However, Tk' and Tkk'  are not required to be equal. Some additional conditions follow from 

the fact that the Hamiltonian is real: 

S kk' = S k'k 
	 (113) 

and 

Tkk'=T'k 	 (114) 

From Eqs. (110) and (114) we see that Tkk'  must be real while Skk'  may be complex except for 

the diagonal terms Skk  which must be real. As can be seen from Eqs. (104) and (84), Rkk' 

satisfies the same conditions as Skk' in Eq. (lii). The fact that Tkk is real implies that these 

terms cannot result in energy transfer between modes as they only effect the phase and not the 

amplitude - all energy transfer takes place via the 5kk'  and I? kktcrms. 
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3.2 Quantum Formulation - Outline 

The various steps which were required to obtain the classical Hamiltonian all have their 

analogs using quantum operators. However, we will not go through this development in full 

detail but instead will give only a brief outline. 

The first step is to express the Hamiltonian in terms of transverse spin operators - analo-

gous to the transverse magnetization MT: 

S,. = S,. + isny  and S1 _ = S - LS, 	 (115) 

One then performs the Holstein-Primzikoff transformation to new variables a 1  and an  t: 

1/2 
a1  a1  

Sn ~ =(2S)'/2ant[l_ 	
] 
	

(116) 

a1ta1 I 
1/2 

S - 
(2S)1/2 [ 

= 	1- 	
j an  

S. =-S+a1 ta1  
where the square roots are interpreted formally as infinite series. The a 1  's satisfy the commuta- 

tion relations 

[a1,a1't] = ö,.'. 	 (117) 

an  i and an  correspond to s (r) and s (r) in the classical treatment. These are then expanded in 

a Fourier series: 

	

a1  =-=acxp(ikr1 ) 	 (118) 

an  = -.L-a kexp(-t  kr1 ) 

Where N is the total number of unit cells in the sample. One then performs the Bogoliubov 

transformation 

ak = XkVk - Pk''-kt 	 (119) 

where the magnon raising and lowering operators vkt and Vk correspond to the spin wave van- 
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ables v and Vk in the classical treatment. Finally, we may make the transformation to bkt and 

bk, corresponding to Eq. (71), which eliminates cubic terms from the Hamiltonian, alters the 

nature of the coupling to the resonator, and renorrnaLizes the quartic terms. 

One may convert the classical expression to the corresponding quantum expression by 

replacing bk with 71 112bkt,  and replacing b with 71 112b k . Note that in the conventional nota-

don it is the raising operators bkT  which have positive frequency and therefore correspond to 

our classical bk. The state of the resonator may also be quantized - we similarly replaceR with 

71 112k t and R with 71 12R where R t and 1? are the raising and lowering operators for the 

electromagnetic state of the resonator. The number of k-magnons in the sample or of photons 

in the resonator are determined by the number operators b kb k  and R tR respectively. The 

Hamiltonian including resonator terms becomes: 

11 = 71 Ct)b ktb k 	WR R tR 	 (120) 

+71 3T G kRbb 	+h.c. i-Ti 1 cxhR +h.c. 
k 

+71 2E 1 (s bbbbt + h.c.) + 	 + h.c.) 

where h.c. = hermitian conjugate. The equations of motion for the magnon operators are now 

given by: 

r7ibkt 	
Ykbk 	 (121) 

and for the resonator by: 

71 a R1 
—17? 	 (122) 

where we have included the phenomcnological damping rates Yk  and F. 
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0 

3.3 Spherical Spin-Modes 

In deriving our spin wave equations of motion, we have made one major approximation - 

we have used an expression in planar spin waves rather than spherical spin-modes. The theory 

of these modes was first developed by Walker 3  and they are often referred to as Walker 

modes or magnetostatic modes. Walker's analysis covers spheroids, axially aligned with the 

d.c. field, but does not include the effects of exchan ge or anisotropy. The spherical case was 

studied in much greater detail by Fletcher and Bell. 6 ' 7  Damon and Eshbach 10  discuss the modes 

of a ferromagnetic slab. 

Walker assumes, as we did in the previous analysis. that propagation effects may be 

neglected (i.c.VxB = 0). This allows one to define a magnetic potential W such that 

H=V 	 (123) 

The Maxwell equation VB =0 leads to an equation relating ui and M: 

+ 4itVM =0 
	

(124) 

additionally we have the gyromagnetic equation: 

at 
	 (125) 

by performing a linearized analysis and imposing appropriate boundary conditions a general 

solution may be found for ui both inside and outside of the sphere. Solutions are characterized 

by three indices (n.m. r). uy,. has n — ImI zero's (not counting end points) as 0 is varied from 

00 to 180°. The 4) and time dependence of Ni (in complex representation) is of the form 

exp(im 4) + i wr) while the other part of w may be taken to be real. The index it is restricted to 

positive integers, while in may be positive or negative in the range —n to n. For m > 0 there 

are [n - ImI/21 + I values oft (labeled 0, 1, 2. ...) while form < 0 there are [n — l,nt/21 

values (labeled 1,2,3,...) where [xJ is the largest integer in x. Modes with r =0 take the form 

of surface waves 11  (particularly for large n); the frequency of these modes lie in a band which 
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is just above the band occupied by planar spin waves (for no exchange). The modes with r3 

and the uniform mode (1,1,0) lie in a band that corresponds to the planar spin wave band. If we 

express ii as ioe mO4 then the magnetization can be expressed as 

[1  
47tM r  R 	

a 0 	mWol i(mO+)] 	 (126) 	 14 C 	I +V 

	

LL ar 	rj 

47tM 	—lm II 
rr 

v 
aN!0 	mN!01 i(mO+)] =—+K 

	

LL ar 	rj 

where M is the radial magnetization and M is the angular magnetization. K and v are related 

to the frequency of the mode by 

(yH0 - m1'3)0)m 

(yH0 O)/3)2 

(t)O)m  
v 

(?H0 0m/ 3)20)2  

where C m  = 41tM7. Note: K and v are both ordinarily negative. The spins precess in elliptical 

orbits with either the major or minor axis of the ellipse oriented radially. Spins on an axially 

aligned circle in the sample all precess on identical ellipses with relative phases varying as m , 

as shown in Fig. 16 for several values of m. Thus modes with in #0 take the form of circulating 

waves moving with angular phase velocity oJm. The case of in =0 is a 'breather mode' in 

which all spins on the circle move inwards and outwards (on the ellipses) together. Note that 

the uniform mode (1, 1, 0) is not a breather mode, it has in = I not in =0. The eccentricity of 

the ellipses is a necessary factor in their coupling to both the uniform mode and to parallel 

microwave fields. Because of the traveling wave nature of the solutions, m is similar to k in the 

plane wave expansion in that products of spin wave variables in the Hamiltonian should have a 

summed m value of zero, where the summed m value is just the sum of the m values of each 

variable, with the sign of m changed for those variables which are conjugated. A circularly 

polarized microwave field has in = I, while a parallel microwave field has m = 0. If a spherical 

spin mode is represented as v,.., (a complex amplitude) and if we normalize so that the 

(127) 
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Figure 16. Spherical spin-mode: behavior of spins on an axially alligned circle for several 
values of in as indicated. 

energy of the mode is in the usual canonical form 	 then we can expect the follow- 

ing terms in the Hamiltonian: 
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H = 	 + U,R*Vn,,n,Vn,_m,r  +C.C. 	 (128) 

+ g,.v 	 + c.c. + 	V 110V,,V, 1,_1 , + C.0 

± G R *110  + c.c. + other triple products and higher order terms. 

The parallel pumping tcim 	 is relatively easy to justify. Here we just 

compute the z component of the magnetization and integrate this with the applied parallel field 

over the sample. The z component of the magnetization is approximately M minus one half of 

the square of the transverse magnetization. The transverse magnetization in turn can be 

expressed as a linear combination of the v,.,,., amplitudes times appropriate phase factors. After 

squaring and integrating the only contributing terms are products of the form shown. The 

coefficient U,,., is determined primarily by the eccentricity of the precession orbits. 

The triple terms which couple the uniform and spin wave modes (the terms with 

coefficients g,, and gnmr are more difficult to justify. Here we rely on analogy with the plane 

wave analysis. Since the uniform mode has m = 1, the other two modes in the triple product do 

not have exactly opposite values of m as they did in the parallel case. We have required n and r 

(as we did in the parallel case) to be the same for these two modes as otherwise we would 

expect the interaction to integrate to zero. Other than to point Out the importance of having 

some eccentricity, little is known at present about the dependence of the coupling coefficients 

on n, m, and r. 

The coupling to the uniform mode GRv 110  is of the expected form and the coefficient G 

may be obtained from Eqs. (66) and (82) where v 110  was called v 0  and which includes aniso-

tropy effects. This form of the Hamiltonian is equivalent to the one we derived previously for 

planar spin waves with one exception - the modes (n, m, r), (n, -rn, r), (a, 1-rn, r), and (a, 

- 1-rn, r) will not have exactly the same frequency as each other (while the k and -k modes did 

in the planar case). For low order modes the difference in frequency can be significant - the 

driving frequency will be split not in half but rather into two different values. This might then 
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have a significant impact on the resultant dynamics - in particular our assumption that Ck = c 

may not carry over to the corresponding conditions: c,,.,,,,. = c,,, = 	,,. = 	How- 

ever, for high order modes (n large) it would seem reasonable to expect the condition of fre-

quency equality to be nearly satisfied. 

It is desirable to find out the approximate values for n, in, and r in various regions of the 

parameter space, particularly the fine structure region. This cannot be stated with any certainty 

as yet, however we can discuss some possibilities. The main experimental fact we have is that 

the mode spacing is E,J-! = 0.16 Gauss in the fine structure region (see Sec. 2.3). One possibility 

is that this results from the increase in exchange energy with increasing wave number. 

Exchange effects are not included in Walker's analysis, however we can estimate this effect 

from our plane wave analysis. Using the dispersion relation Eqs. (59), (48) and (49), and 

neglecting anisotropy we have: 

= ('(Hg---o, + YD k2)(yH  cr-.4 ,,, + ?D/c2  + wm sin2O 	 (129) 

if we assume Mk =0 and i9 =0 then we can obtain: 

.H 0  = 2Dkik 
	

(130) 

we can take zk from the sphere's radius r0  as Ak = 7ir0  = 95.2cm 1  assuming that the effective 

k value is determined primarily from oscillations in the radial direction. The experimental 

value of zXH 0  allows us to compute k: 

k = l .56xl05 cm _ 1  

using this k value we may determine the number n, of half wavelengths along the radius of the 

sample: 

- 	 nl640 

While this value of k is consistent with the operating conditions (sec Fig. 2) tile value of tir  

seems excessively large for a high Q resonant mode. One might expect such a mode to have 

much higher damping due to surface roughness and other effects. Another reason why we 
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might doubt the calculated value of k is' the fact that the work of Patton et a1 53  suggests that a 

certain kink in the threshold curve is associated with the availability of low k, high Q modes, 

occurring when (1);, /2 coincides with the upper (Ok = 900) boundary of the spin wave manifold 

(Fig. 2). In the experiment this kink occurs just below the field at which the fine structure 

behavior is most clearly observed. In view of these facts another option may be considered - 

assume k is small so Ak is unimportant and allow iO to be nonzero. From Eq. (129) we can 

relate iO, Mi 0  and 0. Unfortunately, we do not have a simple relation giving the effective 

angle 0 in terms of n, m, and r. However, on examining the literature on Walker modes, one 

finds that their frequencies do strongly depend on the field and the indices n, m, and r so that a 

sequence of modes could certainly be found which exhibit the observed behavior. 

3.4 Fixed Points and Stability 

As a first step to understanding the behavior of excited spin wave modes, we will consider 

the case where only one spin wave is excited. Examining Eq. (109) we find that Ck = 0 is 

always a fixed point - this is true regardless of how many spin wave modes are excited to 

nonzero values. However, this fixed point need not be stable, it's stability depends on the rela-

tive strength of the damping term - ?kCk ahd forcing term —9P j, 12c. An important feature to 

note about Eq. (109) is that there is inversion symmetry - if ck(t)  is a solution then so is 

—Ck(t). This is also true for arbitrarily many modes, the sign of each may be changed indepen-

dently without effecting the validity of the solution. To determine the stability of the fixed 

point Ck = 0, we need only consider the linear part of the equation: 

Ck = (—Yk + iI..L)c—g kik 	 (131) 

This leads to the cigcnvalue equation (in complex form): 
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[

rA A B 
B* 	E[] 	 (132) *j 

[j - 
where 

A = —Yk + ikB = —gP 2Ln  

E is the eigenvalue and is the complex eigenvector. We set the determinant equal to zero: 

det [4B_*E 
A*_E] = 0 	

(133) 

and solve for £ obtaining: 

E= A+A*±[[ A+A*] 	*BB*)] 
1/2 	

(134) 

since (A + A *)/2 = Yk is always negative it is clear that both eigenvalues are negative if and 

only if AA > BB * or equivalently: 

MI >1 forstabilityofc k =0 

where 

M = (—?k — i zfl)/g P'2 	 (135) 

The condition I MI = 1 corresponds to the "Suhi threshold" for the mode k. Since I M I is 

inversely related to input power Pi,, I MI >0 is below threshold and I M 1<0 is above threshold. 

Above threshold the origin is a saddle point as it always retains one stable eigenvalue. Immedi-

ately below threshold the origin is a stable node with two negative real eigenvalues. However, 

the eigenvalues may split into a conjugate pair below a lower threshold, which corresponds to a 

change from a stable node to a stable focus. This occurs for 

P1,2  <zfl/ I g 12 

We will now consider nontrivial (or nonzero) fixed points. Since we are still considering 

the behavior of a single mode, the equation ck = 0 [from Eq. (109)] can be put in the simple 

form 



IN 
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c '  
M +NIckI2= 	2 = point on unit circle 	 (136) 

ICkI 

where N =—i(2Tkk +S +R)/g'P, and M is as defined previously, [Eq. (135)]. This 

equation has a simple geometrical interpretation, as shown in Fig. 17. We plot the point M and 

the unit circle in the complex plane. If we are below threshold then M lies outside the circle. 

We draw a line from the point M making an angle arg (N) with respect to the real axis. Typi-

cally this line will either miss the circle as in (a) in which case there are no nontrivial fixed 

points, or it will intersect the circle in two points as in (C) in which case there are two pairs of 

nontrivial fixed points ±cI I I and ±c. Nontrivial fixed points always come in pairs because of 

the symmetry of the equations mentioned previously. The transition between the two cases 

Figure 17. Nontrivial fixed point analysis: (a) No intersections with unit circle = no nontrivial 
fixed points. (b) One intersection with unit circle one pair of nontrivial fixed points. (c) 
Two intersections with unit circle = two pairs of nontrivial fixed points. 
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occurs when the line is just tangent to the circle. This is a saddle-node bifurcation with the sad-

dle being the intersection point closest to M. Above the Suhl threshold M is inside the circle 

and there is always one intersection point as in (b). There are two possibilities for what may 

occur when crossing the Suhi threshold and these are illustrated in Fig. 18. In the first case, 

which occurs for Re(M/N) >0, we obtain a supercritical symmetry breaking bifurcation as a 

complimentary pair of stable nontrivial fixed points emerge from the origin as the origin is 

changing stability. The second case, which occurs for Re(M/N) < 0, involves the existence of 

the saddle and node below threshold. In this case we obtain a subcritical symmetry breaking 

bifurcation, where the unstable nontrivial fixed points (the saddle points) converse on the origin 

as it changes stability. There is a hysteresis loop as shown because the system must jump from 

the origin to one of the stable nodes which are at finite amplitude. 

In the event that R kk  may be neglected, the type of bifurcation can be changed by chang-

ing the sign of Af2l, We find this experimentally in the region where the fine structure is 

observed (as mentioned previously in Sec. 2.3) but here the hysteresis is also a very fine effect, 

Ck 	 (a) (b) 

_TET:T:TTI 
F 	 F 

Figure 18. (a) Supercritical symmetry breaking bifurcation. F is the level of forcing (pump 
power), F. is the bifurcation point or Suhl threshold. Solid lines - stable fixed points, dashed 
lines - unstable fixed points. (b) Subcritical symmetry breaking bifurcation, preceded by saddle 
node bifurcation of nonzero fixed points. Displays hysteresis as shown. 
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occurring over very small distances in parameter space. However, there is a region indicated in 

Fig. 6 in which the hysteresis occurs over a substantial distance in parameter - much more than 

can be attributed to a single mode. This is likely to be due to a related effect in which more 

than one mode is simultaneously excited. 

3.5 Relaxation and Spiking Behavior Analysis 

In the experiment it was observed that in certain regimes aperiodic relaxation type oscilla-

tions are observed which are characterized by alternating fast and slow phases, where in the fast 

phase, the amplitude of the reflected microwaves changes very rapidly and in the slow phase it 

changes much more gradually, typically by an order of magnitude or more (see Fig. 11). There 

has also been observed a related behavior pattern in which rapid spikes in the response are 

separated by long dormant periods of irregular length. This latter case has been the subject of 

much interest recently and there has been the suggestion that there may be a route to chaos by 

irregular periods. 54' 55  We will now present a mechanism which can explain both types of 

behavior and discuss some of its effects on the dynamics of the experimental system. 

The simplest system which can exhibit this type of behavior is a 2 mode system, 

represented by the complex variables c I  and c 2. The mode c 1  will be called the "strong mode"; 

it is assumed that the pumping level is above the Suhi threshold for this mode. The mode c 2  

will be called the "weak mode"; it is assumed that the pumping level is below the SuM thres-

hold for this mode. In the absence of coupling between c 1  and c 2 , we would expect that the ori-

gin of c 1  would be a saddle point so that this mode would be attracted to a nonzero fixed point, 

while the origin would be stable for c, so this mode would decay to zero. However, due to 

intermodal coupling, the stability of the origin for c 2  can be affected by the amplitude of c 1 . 

When coupling is included the stability criterion for C2 = 0 is 

11 
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A +DIc 1 I 2 	> 1 stable 

B + Fc 	< 1 unstable 	 (137) 

where 

A =——izD., 

B =—g 2l''2  

D2iTzi 

and 

F = —i(S2 1  +Rzi). 
The assumption that c 2  is below its Suhl threshold (for c 1  = 0) implies that 

tAt> IBI 

There are four general cases for the behavior of the stability of c 2  as a function of c 1 . Case 1: 

I F I > IDI. In this case, as 1c 1 1 is increased for any particular phase 4=arg C1 a point is 

reached beyond which the denominator in Eq. (137) becomes larger in magnitude than the 

numerator and stability is lost. The point of stability loss is a function of 0 and has inversion 

symmetry as shown in FIg. 19 (a). Case 2: IFI < I D I and K> IBFI, where 

K [(I A 12 - I B I 2)(  ID 12  IF I 2)] 1/2 + Re AD . In this case the point c 2  =0 is a stable fixed 

point for all values of c 1  as shown in Fig. 19 (b). Case 3: IF I < ID I and - I BF I <K < I BF I. 

In this case there are two symmetrically located stability zones in the c 1  plane as shown in Fig. 

19(c). Case4: IF! < I D I andK < — IBFI. This case has a annulus of instability as shown in 

Fig. 19(d). The general stability boundary for all three cases can be expressed as a quadratic 

solution: 

Ic1I2= b±(b4ac)2 	
(138) 

2a 
- 	 where 

a = ID! 2 	P1 2  

b =AD*+DA*_BFe_FB*eS 
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(C) Im C1 

Rec 1  

U 

(c) 
	

1":: . 
	

(d) S 
	I 	S 

U\I S 6  loon %M - Ar  

Figure 19. Stability curve for c 2  = 0 as a function of c 1 . S = stable, U = unstable. (a) Case 1. 
(b) Case 2. (C) Case 3. (d) Case 4. 

c = 1Al 2 — 1B1 2  

Since for cases 2, 3, and 4, a and c are both positive, a solution for Ic 1  I exists only if b is more 

negative than 	(in which case there are two solutions). 
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Now that we have analyzed the stability of the weak mode, we can proceed to explain the 

nature of the oscillations. We will suppose that c 1  and c 2  both start at some small but finite 

value. Then c 1  will increase, approaching a nontrivial fixed point and c 2  will decrease towards 

zero. Assuming that the nontrivial fixed point for c 1  lies in (or possibly across) a zone of insta-

biity for c 2 , the phase path of c 1  will eventually enter this zone. Beyond this point c 2  will 

begin to increase. Under certain conditions, which we will not specify precisely but we will 

demonstrate in Sec 4, this can lead to a relaxation oscillation, with the fast phase occurring after 

c 1  reaches the instability boundary and the slow phase occurring when c 1  and c 2  both go back 

to values near 0. The reason that c 1  can return to a point near zero is that the origin for c 1  is a 

saddle point and therefore an orbit near the stable manifold may come quite close to the origin 

before escaping again. Orbits of the type we are describing are nearly homoclinic as they pass 

very close to a saddle point in the four-dimensional c 1 c 2  space. In the event that the weak 

mode has a focus at the origin, the orbit may be of the Silnikov type (see Guchenheimer and 

Holmes56  for discussion) which is known to imply the existence of horseshoes and other com-

plicated behavior. The distinction between relaxation oscillations and aperiodic spiking lies in 

the length of the dormant phase for the weak mode (examples of both are given in Sec. 4). Dur-

ing the dormant phase, the amplitude of c 2  decays exponentially. Consequently a moderately 

long dormant phase can easily result in the amplitude of c 2  decaying to the thermal magnon 

leveL This introduces stochasticity into the dynamics - something which might not ordinarily 

be expected for oscillators whose peak amplitude is many orders of magnitude above the ther -

mal level. 
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3.6 Generation of Microwave Subharmonics 

We will now briefly discuss mechanisms whereby a subharmonic response at half the 

applied microwave frequency might be obtained from the spin system. No experimental data 

was taken of this effect (or lack of it), primarily because the wave guide used in the experimen-

tal setup has a lower cut off frequency of about 8 GHz and hence will not transmit the half fre-

quency response at 4.6 GHz. However, this experiment could easily be done at some future 

time. 

Although the parametrically excited spin waves we have been discussing have half of the 

pump frequency, these modes do not couple directly to the wave guide and no microwave 

subharmonic response will normally be obtained. There are, however, two mechanisms which 

might, under appropriate circumstances, allow a response at o,/2. The first is the possibility of 

achieving a parametric excitation of the uniform mode at co/2. In the absence of crystalline 

anisotropy or shape anisot.ropy this can not occur because of symmetry. Crystalline anisotropy 

becomes important when the sample is not aligned with H0  along [111] or [1001, and in particu-

lar if it is aligned along [1101 (a saddle point in the anisotropy energy). Then there is a differ-

ence between the x and y anisotropy factors (NA_ in table 4) which gives the uniform mode an 

elliptical character to its motion. This ellipticity allows parametric coupling to the uniform 

mode for parallel pumping if o, = o,,/2. The coupling coefficient is Gk  fork = 0 [see Eq. (84)] 

which is nonzero if NA_  is nonzero. In order to observe the response it will be necessary to 

pump obliquely so that there is a parallel component for excitation, and a perpendicular com-

ponent allowing a direct coupling between the uniform mode and the resonator / wave guide so 

that the subharmonic response may be detected by the experimenter. The main difficulty in 

achieving this is that the anisotropy is not very large for YIG, and consequently the threshold 

for subharmonic excitation (or period doubling bifurcation point) will be relatively high, and 

one may expect that spin wave modes will begin to absorb power at a lower threshold - making 
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it very difficult to reach the subharmonic threshold. This difficulty might be countered by using 

a rare earth iron garnet some of which have very high anisotropies 33  at low temperature. Unfor-

tunately, however, these gamets also have higher damping rates and thus have higher excitation 

thresholds. 

The possibility of using shape anisotropy to couple parametrically to the uniform mode 

seems much more promising. This is because the asymmetric demagnetizing factor ND_  can be 

large (0.5 or 1) compared to NA... (typically 0.1) and also because this term is only present in the 

equations for the uniform mode and will not enhance coupling to spin wave modes. In a loop 

gap resonator one could use an ellipsoidally shaped sample with two equal axes and one 

elongated axis along the resonator axis (but not the d.c. field axis) which could achieve an ND_ 

of nearly one half. In a cavity, a disc shaped sample could produce an ND_ of nearly 1 with H0 

parallel to the plane of the disc. 

A second approach is to try to parametrically excite low order Walker modes 3  in the sam-

ple. These are the spherical spin modes which have sufficiently few spatial oscillations across 

the sample so that they can couple directly to a nonuniform microwave field. If there is a d.c. 

field for which such modes are parametrically excited at a lower threshold than the many high 

order modes, then a subharmonic response could be achieved since they may also couple 

directly to the applied microwave field. This effect may be distinguished from the parametric 

excitation of the uniform mode in that it may be achieved in a purely perpendicular pumping 

configuration, whereas the uniform mode case requires oblique pumping. 
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4 NUMERICAL SOLUTION OF SPIN WAVE EQUATIONS 

In order to fully explore the behavior of the spin wave equation [Eq. (109)], it is necessaly 

to use numerical methods, particularly when 2 or more interacting modes are involved. In this 

section we will discuss the procedures used to perform the numerical analysis and then present 

the results, many of which can be compared to the experimental results of Sec 2.3. 

4.1 Procedures 

Each spin wave mode is represented by a complex variable c k  which contains both ampli-

tude and phase information for that mode. From Eq. (109), we obtain one equation for each 

mode which is coupled to all other excited modes through the interaction parameters 

R kk , , S kk ,, andTkk, and to the microwave pumping field through the parameter g k  The analytic 

results provide rough estimates for these parameters. They cannot be specified exactly from the 

theory for two reasous: 1) we do not know for certain which spin wave modes in the sample are 

being excited and involved in the dynamics, and 2) the plane wave approximation used in Sec. 

3.1 can yield only approximate values for the interaction parameters of the spherical modes. 

We typically set the spin wave damping Yk  to 1x106s and g x  to 1.414xI07W 12s, which 

results in a Suhi threshold of about 5 mW as is observed experimentally in the single mode 

region. Tkk,  and 5kk'  are estimated to be on the order of 1019  or  1020  ergsec 2, but may vary 

considerably depending on which modes are involved. In order to simulate the effect of a 

sequence of modes as was observed experimentally, we will not assume that the modes all have 

zero detuning, but will instead choose a sequence of equally spaced values for tf k  which will 

typically extend from some negative value to some positive value, where if k  a Awk/27c- If the 

excitation level is low, only those modes with dctunings closest to zero will be excited. The 
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remaining modes will be below threshold and will remain at zero amplitude. From the 

observed field spacing of the modes (0.16 G) we can estimate the frequency spacing using 

fmo(fc = ?4H/2t and obtain about 500 kHz. 

The equations with appropriately chosen parameter values are numerically integrated 

using a 4-point Runge-Kutta Algorithm 57  on a Sun 3.0 computer. Initial conditions must 

always be chosen to be nonzero since zero is always a fixed point of the equations. Results are 

displayed on a graphics screen and may be printed on a laser printer to produce the figures given 

in Sec. 4.2. The Fortran code used to obtain these results is given in the Appendix. 

4.2 Results 

In the case of excitation of a single mode alone, the analytic results of Sec. 3.4 detemiine 

the location and stability of all fixed points. There is always at least one stable fixed point and 

the numerical results indicate that the system is always attracted to one of these; no periodic or 

chaotic attractors are observed. For appropriate parameter values hysteresis may be observed as 

was indicated in the theoretical treatment. 

For two modes excited we first see periodic auto-oscillations. A particularly interesting 

form is observed, as shown in Fig. 20 (a) and (b). Here mode 2 is exhibiting an asymmetric 

orbit while mode I is exhibiting a symmetrical orbit of twice the period. Symmetrical orbits are 

possible because of the inherent inversion symmetry of the equations. When asymmetric orbits 

occur they always come in complimentary pairs (C '(t) = —C (t). The nature of the coupling 

between modes allows the type of behavior observed - since the square of C 1  appears in the 

equation for C 2, a change sign of C 1  (to the opposite point on the symmetric orbit) has the 

identical influence on C2. 
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Figure 20. Computed behavior for two modes: (a) Phase portrait for periodic oscillations, 
asymmetric mode. if 1  = -300kHz, Af 2 = 200kHz. (b) Symmetric mode. (c) Period doubling 
of asymmetric mode. if I  = -385kHz, if1 = 115kHz. (d) Symmetry breaking of symmetric 
mode. (e) Chaotic orbit following period doubling cascade; Af I  = 410kHz, Wi = 90kHz. (f) 
Power spectrum of chaotic orbit, f = 2.5 MHz. For all figures, P 1  = 0.027W, 

= 1x10s', g= 1.414x107 Ws 1 , Skk=4.078x10' 9(T2s 2  for all k and k', 
= l.896x10'9G 2s 2  for k = k' and = 0 for k # k', and R kk' = 0 (assumed negligible) for all 

k and W. 
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By changing the parameters this orbit may undergo a bifurcation. There are many param-

eters which could be adjusted to accomplish this, such as power input or pump frequency, how-

ever in Fig. 20c and d we have chosen to synchronously shift the detunings of the spin modes. 

This is equivalent to shifting the level of the d.c. magnetic field in the experiment. (We are 

assuming that all modes in the sequence have identical field dependence of their frequencies). 

The result is interesting - mode I exhibits a symmetry breaking bifurcation while mode 2 sixnul-

taneously exhibits period doubling. Further shifting the frequencies leads to a cascade of period 

doubling bifurcations for both modes, leading to a chaotic orbit (Figs 20e and f). 

The numerical study for two modes also reveals behavior similar to the relaxation oscilla-

dons and aperiodic spiking behaviors of the experimental system. An example of this behavior 

is shown in Fig. 21 •The mechanism for this behavior was discussed previously in Sec. 3.5. 

There is a "strong mode" which is above its threshold, and a "weak mode" which is initially 

below threshold but which can become excited for brief periods when sufficient excitation is 

supplied via the nonlinear coupling of the strong mode. Characteristically there is a slow or 

dormant phase during which the weak mode is decaying closer and closer to zero and the strong 

mode is changing at a relatively slow rate. At a certain critical point in the orbit of the strong 

mode, which is marked with an arrow in Fig. 21(a), a fast or active phase commences during 

which both modes (Figs. 21a andb) change rapidly. This is typically two or more orders of 

magnitude faster and shorter in duration than the slow phase. The decay of the mode during the 

dormant phase may be extreme - it has been observed in some cases in the numerical study to 

decay by over 10 orders of magnitude. This will easily take any experimental system to the 

thermal level, thus introducing a stochastic element into the dynamics. Orbits with a short dor-

mant phase tend to have the relaxation oscillation appearance as in Fig. 2 1(c) [compare to 

experimental Fig. 11(a)] while orbits with a long dormant phase may tend to have the spiking 

appearance - Fig. 21(d). This dormant period may become arbitrarily long for certain parame-

ter values. This is because the orbit is approaching a saddle loop bifurcation which occurs when 
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Figure 21. (a) aperiodic spiking - strong mode (mode 1). Arrow marks point of stability loss 
for weak mode (mode 2). Origin is at center of figure as indicated. if 1  = -200kHz, Af 2 = 
300kHz. (b) Weak mode. (c) Time series for aperiodic spiking behavior. (d) Time series for 
relaxation oscillations. Af I = - 175kHz, Af 2 = 325kHz. (e) Fast Fourier transform for time 
series in (d). All figures have P = 0.0 135W and the other parameters are the same as in Fig. 
20. 

the orbit connects the saddle point at the origin. Beyond this point a transition must occur to 

another attractor - typically a nonzero fixed point for the strong mode and zero for the weak 
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mode. It should also be noted that the relaxation and spiking behaviors do not have to be irreg-

ular - they may, for appropriate parameter values, be perfectly periodic. In some cases a cas-

cade period doubling bifurcations to chaos has been observed to occur over extremely small 

changes in parameters (<0.1% change). This has the appearance, on first examination, as an 

emergence of irregularity of the orbit starting at a critical parameter value. 

With three modes some new phenomena emerge. One of these is the occurrence of quasi-

periodic behavior with two incommensurate frequencies. An example of this is shown in Fig. 

22. The three modes do not have exactly the same frequency, but rather are spaced equally in 

frequency by a small amount to simulate the effect of a series of modes as was observed in the 

experiment. Naturally all must be very near to half of the pumping frequency, and it is the 

detuning which plays an important role in the dynamics. The quasiperiodic orbit lies on a 2-

torus in the phase space. By strobing every cycle we can make a Poincare section of the orbit. 

For a quasiperiodic orbit below the transition to chaos these points all lie on a closed curve - 

the intersection of the 2-torus with the surface of section. The section may be defined in various 

ways; in Fig. 22 (a) the section points arc the maximum value of Irnc 1  for each cycle. The 

orbit shown can be found to emerge from a simple periodic orbit in a Hopf bifurcation (see dis-

cussion in Guckenheimer and Holmes56 ). In the Poincare section, the periodic orbit appears as 

a single point. This point spawns a circle at the bifurcation point which initially grows in size 

in proportion to the square root of the change in the parameter from its value at the bifurcation. 

While mode I and mode 2 (not shown) are exhibiting asymmetric orbits, mode 3 has a syrn-

metric quasiperiodic orbit as shown in Fig. 22 (b). Section points on this orbit are made simul-

taneously with those of mode 1. They occur twice each cycle because the basic period here is 

twice that of mode I. The symmetry causes a restriction on the frequencies that appear in the 

spectrum. The spectrum for mode 1 is shown in Fig. 22 (c). Here the allowed frequencies are 

all two component harmonics of the form f,,. =mf 1  +nf2 . The choice off 1  and f2 is not 

unique, but it is generally preferable to choose the two highest peaks. Fig. 22 (d) shows the 
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Figure 22. Computed quasiperiodic behavior for 3 modes: (a) Mode I for quasiperiodic orbit, 
circles mark Poincare section. (b) Mode 3: this mode exhibits a symmetrical orbit while mode 
1 is asymmetrical. Mode 2 is similar to mode 1. (C) Fast Fourier Transform for mode 1, verti-
cal range 150dB. Contains two component harmonics f,,,.,, =mf 1  + nf 2, where f 1  and f2  may 
be chosen to be the largest peaks in the spectrum. (d) Fast Fourier Transform for mode 3. Sym-
metry restricts peaks to those for which m + n is odd. All figures have P = 0.027W, zf I  = 
-336kHz, Af = 164kHz, 4f3 = 664kHz, Skk' = 3.971x10'9G 2s 2  for k = k' and = 
4,265xl0 19Gs 2  fork # k', and other parameters same as in Fig. 20. 

spectrum for mode 3. Here the allowed peaks are those for which m + iz is odd. This can be 
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shown to result from the symmetry of the orbit - see the detailed discussion in Part 2, Sec. 2.3. 

An alternate labeling scheme is very useful when the quasiperiodic orbit has just emerged from 

a periodic orbit following a Hopf bifurcation. This is to choose f I  to be the fimdamental fre-

quency from before the bifurcation, and choose f2 to be the difference between this and a 

nearby incommensurate peak. In this case the symmetry condition is that m must be odd, while 

n is unrestricted. 

By changing the parameter values away from the Hopf bifurcation point, the 2-torus on 

which the orbit lies grows larger and becomes less smooth. At a certain critical point the orbit 

may become chaotic and the torus becomes fractal. This is the quasiperiodic route to 

chaos.401
41  In Fig. 23 is shown a Poincare section of such a chaotic orbit and its power spec-

trum. This was reached by shifting the frequencies of the three modes synchronously, to simu-

late the effect of shifting the d.c. magnetic field in the experiment. The orbit is near to a period 

5 phase locking, as can be seen in the 5 pointed character of the section and in the spectrum. 

There remain some surprisingly sharp peaks in the spectrum considering the complexity shown 

in the section. 

More complicated versions of the relaxation oscillations are sometimes seen for three 

modes (as well as the variety previously described). In Fig. 24 is a case in which only the third 

mode (shown) is of the "weak" variety, while the other two modes are normally oscillating at a 

high level. The excitation which the weak mode receives from the pump and from the "strong" 

modes is just sufficient to allow it to grow at a slow rate from an initially very small amplitude. 

This growth may extend over several orders of magnitude in amplitude, lasting for a hundred 

cycles or more of the strong mode oscillation. Finally, when the size of the orbit becomes com-

parable to the size of the strong mode orbits, a rapid interaction phase occurs involving all three 

modes and leads to the return of the weak mode to a very low amplitude and then the process 

repeats. This appears to be an orbit of the "Silnikov" or spiral saddle type (see Guckcnheimer 

and Holmes56 ), for which the existence of "horscshocs' and other complex behavior have been 
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Figure 23 (a) Poincare section of chaotic orbit, following quasiperiodic transition to chaos. 
Proximity to period 5 locking produces five points on figurt, if 1  = -334.5kHz, if 2  = 
165.5kHz, Af 2  = 665.5kHz, other parameters same as in Fig. 22. (b) FF1' for orbit in (a). 

explicitly shown. 

This concept of a series of equally spaced modes may be taken to the limit of an infinite 

series. The reason that this works is that only those modes with relatively small detuning can 
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Figure 24. (a) Computed Silnikov type orbit for 3 modes. Only mode 3, the "weak mode', is 
shown. Ps,, = 0.02429W, Af I  = -300kHz, Af 2  = 200kHz, Af 2  = 700kHz, other parameters 
same as Fig. 20. (b)Time series for this orbit. 

become excited and interact with the other excited modes. Modes which decay to zero have no 

effect on the excited modes. Thus we need to include in the computer simulation only those 

modes in the series with sufficiently small detuning (positive or negative) to become excited. 

The necessary number may be found by extending the series one mode at a time until the new 
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modes added are observed to be inactive. Since the series is infinite, its behavior in parameter 

space is periodic with respect to synchronously shifting the frequencies by the mode spacing. 

In Fig. 25 one period of the parameter space is shown. In this region, all of the types of 

behavior discussed previously may be found: stable fixed points (zero and nonzero), hysteresis, 

auto-oscillations, period-doubling, quasiperiodicity, chaos, and relaxation oscillations. 

S SUMMARY AND CONCLUSION 

Excited spin waves in YIG form a weakly damped — nearly Hamiltonian — system, which 

displays a great variety of interesting nonlinear phenomena. The study focussed on the 

behavior of spin waves excited parametrically in a spherical sample via the first order Suhl ins-

tability. Data is primarily for perpendicular pumping, and with the d.c. field parallel to the 

[111] or easy axis of the crystal, but with some data for other orientations of pumping and cry-, 

stalline axes. Observed phenomena includes: 1) fine structure — the excitation of single spin 

wave modes; 2) dynamics in the fine structure regime, involving the interaction of a small 

number (1, 2, 3, ...) of spin wave modes; these typically exhibit such phenomena as periodic 

auto-oscillations (typically 100 kHz), cascades of period doublings to chaos, and quasiperiodi-

city; 3) low frequency relaxation oscillations (Order 1 kHz) and aperiodic spiking (typically at 

somewhat higher frequencies); 4) high amplitude collective oscillations (presumably) involving 

the cooperation of many modes; these exhibit period doubling quasiperiodicity and phase lock-

ing of multiple frequencies, and various types of chaotic orbits: 5) abrupt emergence of high 

frequency noise; 6) hysteresis at the Suhl threshold in which the system jumps from a quiescent 

to a turbulent state; 7) in some cases a systematic increase in auto-oscillation frequency with 

pumping power is observed. 
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Figure 25. Computed parameter space diagram for mode series. Frequency shiftf 3  vs. applied 
power P (shift corresponds to change of d.c. field in experiment). The dynamics involve the 
active participation of zero, one, two, or three modes. At higher powers than shown in the 
figure additional modes may become involved. We label the modes as follows: mode I has 
fi=f — 500kHz, mode 2 has 'f2=f. mode 3 has Af3=f:  +500kHz. ST1  and ST2  are 

the Suhl thresholds for excitation of modes 1 and 2 respectively when all other modes are set to 
zero (this is actually a symmetry breaking bifurcation for the stable fixed point at zero). SN 1  is 
a saddle node bifurcation of nonzero fixed points below Suhl threshold [see Fig. 18 (b)].  Hys-
teresis is observed when traversing the region between SN 1  and ST 1 . Crossing H. in the direc-
tion of the arrow a Hopf bifurcation occurs in which a limit cycle involving modes I and 2 em-
erges from a fixed point. This is of the type shown in Fig. 20 (a) and (b). This oscillation un-
dergoes a period doubling bifurcation upon crossing the line labeled x2. Beyond this a cascade 
of period doublings occurs on route to chaos. On approach to the line H 2, mode 3 becomes ac-
tive and the two mode solution we have been following is abruptly lost. H 2  actually 
corresponds to a secondary Hopf bifurcation from a 3 mode periodic orbit (on the left side) to a 
3 mode quasiperiodic orbit (on the right side), of the type shown in Fig 22. Hb corresponds to 
another primary Hopf bifurcation, this time involving modes 2 and 3. Relaxation oscillations 
occur above the line ST 1  in the section below its intersection with ST 2. Onset appears to occur 
at the Suhi threshold ST1. 
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A first principles theoretical analysis has been presented, based on the many earlier works 

on parametric excitation of spin waves, but developed here explicitly for the study of the non-

linear dynamics of excited spin wave modes. The theory explicitly includes the effects of cry-

stalline and shape anisotropy. Also included are the interactions with the resonator (used to 

intensify the microwave field) and coupling to the waveguide. The result is a set of nonlinear 

equations coupling the spin wave modes with each other and with the pump, each mode being 

represented by a complex amplitude. 

While the main analysis is made in the plane wave approximation an attempt is made to 

detennine the effects of the true spherical spin-modes on the dynamics. A surprising result is 

that for very low order modes, the excitation may involve a pair of counter circulating waves 

with different frequencies. The sum of the two frequencies would have to very nearly equal the 

pumping frequency for resonance. For higher order modes however, the frequencies should be 

nearly the same, as they are for the plane wave approximation. It is not known as yet whether 

or not this effect can be detected experimentally. 

An analysis has been made of trivial and nontrivial fixed points and it has been shown 

how this can lead to hysteresis at the Suhi threshold, an effect which was observed in the exper-

irnent. 

Some theory is presented regarding relaxation oscillations and aperiodic spiking behavior, 

based on the concept of weak modes which are only active during short burst phases which may 

be instigated by the strong mode or modes reaching a critical threshold. An interesting result is 

that this is a natural way for stochasticity to enter into the experimental dynamics because dur -

ing the dormant phase of the weak mode it can easily decay to the thermal magnon level. After 

this the subsequent dynamics become unpredictable. This analysis may be related to the work 

on irregular periods by Waidner et al.54'55 
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The possibility of generating microwave subharmonics at half of the pumping frequency 

is discussed based on the possibility of parametrically exciting either the uniform mode or a low 

order Walker mode which could couple directly as well as parametrically to the external field. 

Finally a detailed study is made of the behavior of the spin wave equations of motion 

using numerical simulations. As a guide to comparison between the experimental data and 

numerical simulations, Table 5 is presented, which summarizes the work showing which data 

can be compared to which simulation. 

Table 5: Guide to Data  and Simulation Figures 
Phenomena Experimental Data Simulation 

Parameter space Figs. 6, 7, 8 Fig. 25 
Auto-oscillations Fig. 9(a) Fig. 20(a), (b) 
Period-doubling Fig. 9(b), (c), Fig. 13 Fig. 20(c) 
Chaos Fig. 9(d), (e) Fig. 20(e) 
Quasi-periodicity Fig. 10 Fig. 22 
Relaxation oscillations Fig. 11 Fig. 21, Fig. 24 
Phase locking Fig. 14 
Auto-osc. freq. Fig. 15(a) Fig. 15(b) 
Broad band noise Fig. 12 Fig. 21(e) 

A series of equally spaced (in frequency) modes is studied, similar to that which was observed 

experimentally. For two modes auto-oscillations are observed which may exhibit some interest-

ing symmetry characteristics. Relaxation and spiking behaviors are also observed, exhibiting 

the weak mode / strong mode behavior discussed in the theory. Cascades of period doubling 

bifurcations are also observed, leading to chaos. For three modes quasiperiodicity is first 

observed, along with phase locking phenomena. Hopf bifurcations, and the quasiperiodic route 

to chaos. Orbits nearly homoclinic to a spiral saddle point of the Silinkov type are also 

observed. The case of an infinite series of modes is also considered. It is pösible to study due 

to the fact that only a few modes in the series have sufficiently small detuning to be excited. 

The type of behavior is periodic under a synchronous shifting of all of the frequencies of the 

modes by the frequency spacing of the modes. (This shifting corresponds to the effect of 

changing the d.c. field in the experiment.) A parameter space plot is made (pump power vs. 
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frequency shift) and compared with the behavior of parametrically excited surface waves. 

Appendix: Computer Program Used in Sec. 4 

The spin wave program numerically integrates and plots the spin wave dynamics as 

governed by Eq. (109) using a four point Runge Kutta algorithm, and can also accurately plot 

the Poincare section of the orbit and obtain the power spectrum using a fast Fourier transform. 

It is written in Fortran and uses double complex variables (this type is not available on all sys-

tems), as well as some real double precision variables. The subscripts k and k' used in the text 

to refer to particular modes by their wavevcctors are here converted to indices i and j since we 

will be dealing with the dynamics of some finite number of modes. The number of modes may 

be changed at any time by setting the variable rimag to the desired number. The spin wave vari-

ables c1 , are represented in the program by the complex variables ps(i), and their derivatives 

by dp(i). The main parameters of interest in the program correspond to those used in the text as 

follows: pp corresponds to P, fp corresponds to / 27t, if) corresponds to CO/ 27v, gamc 

corresponds to F, gamO corresponds toYo (uniform mode damping, not used), gamk corresponds 

to y (assumed equal for all modes), alpha corresponds to cx, dfcav corresponds to 'R / 21c, 

df(i) corresponds to i.Q1  /2it, gk(i) corresponds to g 1 , tkk(i,j) corresponds to Tip skk(i,j) 

corresponds to S11, rkk(i,j) corresponds to R1. Some control variables are: dL (the time step in 

seconds), nn0 (the number of steps per continue command 'c'), nnf (initial steps not displayed 

when using run command 'r'), imode (index of mode to be displayed graphically) imodel 

(mode used to determine strobing positions), istrob (sirobing control: l=rcal peak, 2=imaginary 

peak, 3=rcal zero, 4=imaginary zero), it=trajectory display (1/0 = on/off), is=Poincare Section 

display (1/0 = on/off). Values for most of these variables arc to be put in a data file prior to run-

ning the program. This file is read at the beginning of the program (see code). New parameter 
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files may be stored and retrieved for desired operating points while running the program. 

The program is designed utilize interactive graphics - commands entered at the terminal 

can generate a phase portrait. Poincare section, time series, or fast Fourier transform on a 

separate portion of the screen reserved for the graphics display. The mode being displayed is 

specified by the variable imode. The sequence of, graphics commands is stored and can be 

retrieved later to generate a 'hard copy" of the display on a laser printer. The graphics pro-

grams used were developed by Jim Crutchfield and Bruce McNamara. These graphics pro-

grams will not be listed here since the spin wave program could easily be modified to operate 

with any similar programs. The following subroutines in the spin wave program are for graph-

ics: dpgraph (create graphics file which can be printed on a laser printer), exitgraph (end graph-

ics), faxes (draw axes), fborder (draw border), fclear (clear display), fdomark (for making vari-

ous symbols at specified position), fdotat (make dot at specified position), fgenwindow (also for 

initialization), flinewidth (set linewidth), fmove (move to specified position), fpendown (draw 

straight lines to subsequent positions given by fmove command), fpenup (no draw on subse-

quent move commands), fscale (set scale factor), ftriangle (make triangle at specified position), 

store (this is for initialization of the graphics display and for storage of graphics command 

sequence). 

In addition to the graphics subroutines, their are a number of other subroutines which are 

used for the spin wave analysis. These are listed following the main part of the program below. 

They perform the following functions: "cavity" evaluates the dynamics of the cavity or resona-

tor variable; "ssb" evaluates 6k  using Eq. (109); "rk' evaluates the four point Runge-Kutta algo-

rithm for specified timestep; "spctrm" determines the power spectrum; "fourl" generates fast 

Fourier transform (used by subroutine spctrm); "datwin" generates chosen window function 

(used by subroutine spctrm); 



Part 1: Spin Waves 	 Appendix 	 84 

Some of the main commands which can be given to the program are: l=list variables, 

parameters, Suhl threshold, and fixed points, q=quit, r=run, c=continue, cl=clear, ft=tlle trajec-

tory data, fp=file Poincare section data, markfp=mark the fixed points on display, fft=generate 

fast Fourier transform, si=change size (or scale) of display, dump=generate PostScript file of 

display data for printing on laser printer, sct=read parameter file, and save=create parameter file. 

In addition, any variable or parameter (with a few exceptions) may be changed by entering its 

name followed on the next line by the new value. For variables or parameters with indices enter 

the name without indices and the program will prompt for additional information. Complex 

quantities must be entered in the form (real, imaginary) even if chosen to be purely real. 

Version magspec.f 

implicit double precision(a-h,o-z) 
double complex ps(100),psO(100),dp(100),MM(100),NN(100), 
*gk(100),tkk(100,100),skk(100,100),tk(100,100),sk(100,100), 
*w0 (100) ,wl (100) ,w2 (100) ,w3 (100), rlk(100) , fl (100) ,Gk (100), 
*ckl(100),ck2(100),DD,EE,cav,cavO,psl(100),rlcj, 
*rkk(100,100) ,rkkp,skkp,tkkp,gkang 
character filename*20, cominand*20 
double precision df(100) ,ppthr(100) , aa(100) ,bb(100), 
*cc (100) ,disc(100),w4(16384) ,w5(8192) 
common rlk,fl,sk,tk,gk,nmag 
common /alI xw0,xwl,yw0,ywl,aLW 
common /a2/ a.Lpha,rlci 
external ssb 
twopi 	8.dO * datan(1.dO) 
hbar=1. 055d-27 
si z emk=. 01 
xs=0 . 02 
ys=0 .02 
aLW=1 
iAR= 1 
do 1251 i1,100 

PS (i)=(ld-8, ld-8) 
psO (i)=(ld-8, ld-8) 
df(i)=0 
gk(i)=(1. 414d7, 0) 

1251 	continue 
do 1252 1=1,100 

do 1253 j=1,100 
tkk(i, j)=(0,0) 
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skk(i, j)=(0, 0) 
rkk(i,j)=(0,0) 

1253 	continue 
1252 	continue 

print*, 'version magsoec.f Aug. 22, 1987' 
print*, 'parameter filename: 
read*,filename 

a 	 open(unit=3,file=filename) 
read(3,*) dt,nn0,nnf,nmag 
read(3, *) pp, fp, fO, gamc, gamO, gamk, alpha, dfcav 
do 1051 i=1,nrrtag 

read(3,*) ps (i) , df (i) , gk (i) 
ps0(i)=ps(i) 

1051 	continue 
do 1052 i=1,nmag. 

do 1053 j=1,nxnag 
read(3,*) tkk(i,j),skk(i,j) 

1053 	continue 
1052 	continue 

read(3, ) xwO,xwl,yw0,ywl,xsO,xsl,ys0,ysl 
read(3,*) xO,yO,xt,yt • 	
close (unit=3) 

• 	 g=alpha 
if(alpha .gt. 1.dO) alpha=0.045d0 
it = 1 
is=1 
imod=1 
imode=1 
imodel=1 
istrob='l 
sign=1.dO 
iflag=1 
itick=1 
sign=1 . dO 
call store(0) 

* cl=clear and draw axes 
call fclear() 
call fgenwindow(xw0, ywO, xwl, ywl, jAR) 
call fscale (xs0, xsl, ysO, ysi) 
call flinewidth (aLW, aLWold) 
call fborder() 
call faxes (xO, yO, xt, yt, xs, ys) 

************** ***** ********** * ** ******* ****** ***** **** ***** ***** 
50 print*,  'command: 

read*, command 

* dimensionality 
if (command .eq. 'nmag') read*, nmag 
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* time step control 
if(corrnand .eq. 
if(corruitand .eq. 
if(cormnand .eq. 

* parameters 
i(conixnand .eq. 
if(cozmnand .eq. 
if(corrnand .eq. 
i(corrunand .eq. 
i.f(cornrnand .eq. 
if(corrnand .eq. 
if(cornmand .eq. 
if(command .eq. 

'dt') read*, dt 
'nnO') read*,  nnO 
'nn±') read*,  nnf 

'pp') read*, pp 
'fp') read*, fp 
'fO') read*,  fO 
'gamc') read*,  gamc 
'gamO') read*,  gamO 
'gamk') read*,  gamk 
'g') read, g 
'alpha') read*,  alpha 

if(cornxnand .eq. 'gk') then 
print*, 'index i: 
read*, j 
print*, 'gk(i): 
read*, gk(i) 

endif 

if(corruttand .eq. 'tkk') then 
print*, 'index i: 
read*, j 
print*, 'index j: 
read*, j 
print*, 'tkk(i,j): 
read*, tkk(i,j) 
tkk(j,i)dconjg(tkk(i, j)) 

endif 

if(conunand .eq. 'skk') then 
print*, 'index 1: 
read*, i 
print*, 'index j: 
read*, j 
print*, 'skk(i,j) 
read*, skk(i,j) 
skk(j,i)=dconjg(skk(i, j)) 

e ndi f 	 C 

if(comirtand .eq. 'rkk') then 
print*, 'index i: 
read*, i 
print*, 'index j• 
read*, j 
print*, 'rkk(i,j) : 
read*, rkk(i,j) 

endif 
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if (command .eq. 'rkkp') then 
print*, 'enter 1 for k=kp, 2 for k!=kp., 3 for all' 
read*, k 
print*, 'rkkp: 
read*, rkkp 
do 460 i=1,rixnag 

do 461 j=1,nxnag 
if((k .eq. 1) .arid. (i .ne. j)) go to 461 
if((k .eq. 2) .and. (i .eq. j)) go to 461 
rkk(i, j)=rkkp 

461 	. 	continue 
460 	continue 

endif 

if (command .eq. 'skkp') then 
.print*, 'enter 1 for k=kp, 2 for k!=kp, 3 for all' 
read*, k 
print*, 'skkp: 
read*, skkp 
do 560 i=1,nxnag 

do 561 j=1,nmag 
if((k .eq. 1) .and. (i .ne. j)) go to 561 
if((k .eq. 2) .and. (i .eq. j)) go to 561 
skk(i, j)=skkp 

561 	continue 
560 	continue 

endif 

if(command .eq. 'tkkp') then 
print*, 'enter 1 for kkp, 2 for k!=kp, 3 for all' 
read*, k 
print*, 'tkkp: 
read*, tkkp 
do 660 i1,rimag 

do 661 j=1,nxnag 
if((k .eq. 1) .and. (i .ne. j)) go to 661 
if((k .eq. 2) .and. (i .eq. j)) go to 661 
tkk(i,j)tkkp 

661 	continue 
660 	continue 

endif 

if(comrnand .eq. 'df') then 
print*, 'index: 
read*, index 
print*, 'df(index): 
read*, df(index) 

endif 

if (command .eq. 'dfcav') read*,  dfcav 
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if(comznand .eq. 's') then 
print*, '-amount of freq. shift: ' 
read*, shift 
do 93 i=1,nmag 

df (i)=df (i) +shjft 

	

93 	continue 
endif 

* initial values 
if(cornmand .eq. 'ps') then 

print*, 'index: 
read*, index 
print*, 'ps(index): 
read*, ps(index) 

endif 
if(command .eq. 'psO') then 

print*, 'index: 
read*, index 
print*, 'psO(index) 
read*, ps0(index) 

endif 
if(comrnand .eq. 'Set') then 

do 1005 i=1,nmag 
psO (i)=ps (i) 

	

1005 	continue 
endif 

* fixed points 
if ((command .eq. 'rnarkfp') . and. (imode .gt.0)) then 

call ftriangle(0.,0.) 
call ftriangle(dreal(ckl(imode) ) ,dimag(ckl (imode))) 
call ftriangle(-dreal(ckl (imode) ) , -dimag(ckl (imode))) 
call ftriangle (dreai. (ck2 (imode)) , dimag(ck2 (imode))) 
call ftriangle(-dreal(ck2 (imode) ) , -dimag(ck2 (imode))) 

endif 

* rescale='rescale frequencies 
if (command. eq. 'rescale') then 

print*, 'new freq. = beta*old freq.' 
print*, 'beta= 
read*, beta 
betal=1/dsqrt (beta) 
dt=dt/beta 
gamk=beta*gamk 
pppp*beta*beta 
do 94 i=1,nmag 

ps (i)=ps (i)/betal 
psO (i)=psO (i) /betal 
df (i) =df (i) *beta 

	

94 	continue 
endif 
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'xwO' 
'xwl' 
'ywO' 
ywl' 
xs0' 
xsl' 

'yso ,  
ysi' 

'xO') 
, yO') 
'xt') 
yt') 

* plotting parain 
if (command 
if (command 
if (command 
if (command 
if (corrnand 
if (command 
if (command 
if ( command 
if (command 
if (command 
if (command 
if (command 

t er s 
.eq. 
.eq. 
.eq. 
.eq. 
.eq. 
• ec. 
.eq. 
.eq. 
.eq. 
.eq. 
.eq. 
.eq. 

read*, xw0 
read*, xwl 
read*, ywO 
read*, ywl 
read*, xsO 
read*, xsl 
read*, ysO 
read*, ysi 

read*, xO 
read*, yO 
read*, xt 
read*, yt 

* print, trajectory, section, & variable control parameters 
if (command .eq. 'ip') read*,  jp 
if (command .eq. 'it') read*,  it 
if(command .eq. 'is') read*,  is 
if (command .eq.. 'itick') read*,  itick 
if (command .eq. 'iflag') read*,  if lag 
if(command .eq. 'sign') read*, sign 
if(comand •eq. 'istrob') read*,  istrob 
if (command .eq. 'imode') réad*,  imode 
if (command •eq. 'imodel') read*, imodel 
if( (command .eq. 'imode') .and. (iflag.eq.0)) if lag2 
if(imode.lt.l) imode=0 
if (imode . gt . nmag) imode=nmag 

* rescale gk to adjust threshold and make gk real 
* 	assumes all gk(i)'s are identical 

if (command •eq. 'rescalegk') then 
print*, 'desired pump threshold for df=0: 
read*, ppth 
ppth2=ppth**0 .5 
gklzabs (gk (1)) 
gkang = gk(1)/gkl 
do 470 i=l,nmag 
ps(i)=ps(i)*gkang**_O.5 
gk(i) =dcmplx (gamk/ppth2, 0) 

470 	continue 
pppp* (gkl*ppth2/gamk) **2 
endi f 

set rkk parameters in terms of gk and alpha 
if(corrmand .eq. 'setrkk') then 
do 500 i=1,nmag 
do 501 j=1,rimag 
rkk(i,j)=(O,ld_7)*gk(i)*dconjg(gk(j))/(2*rlci*alpha**2) 

501 	continue 
500 continue 

endif 



Part 1: Spin Waves 	 Appendix 	 90 

change quantum parameters to classical 
if (command .eq. 'change') then 

f=dsqrt(gamc*1.d7/ (twopi*fp*hbar)) 
DD=-g/ (dcmplx (gamc, twopi*dfcav) * 

* (dcrnplx(garnO,twopi*dfO)+g*g/dcmplx(gamc,twopi*dfcav))) 
EE(O, -1) / 

* (dcmplx(gamo,twopi*dfo)+g*g/dcmplx(gamc, twopi*dfcav)) 
hbar2=dsqrt (hbar) 
xs 0=xs 0 *ar2 
xs l=xs l*hbar2 
ys 0=ys 0 *ar2 
ys 1=ys l*hbar2 
x0x0*hbar2 
yQyQ*hbar2 
xt=xt*hbar2 
yt=yt*hbar2 
do 450 i=1,nmag 

do 451 j=l,rimag 
tkk(i, j)=tkk(i, j)/hbar 
skk(i, j)=skk(i, j)/hbar 
rkk(i, j)=EE*gk(i)*dconjg(gk(j) ) /hbar 

	

451 	continue 

	

450 	continue 
do 453 i=1,nmag 

ps(i) = Ps (1) *hbar2 
gk(i) = (0,1)*DD*f*gk(i) 

	

453 	continue 
endif 

* determine converted parameters 
df0=fO-fp 
rlci=(1.dO, 0 .dO) /dcmplx(_gamc,_twopi*dfcav) 
do 1010 i=1,nmag 

rlk(i) =dcmplx (-garnk, _twopi*df  (i)) 
f1 (i)=-gk (i) *dsqrt (pp) 
fthr=zabs (rik (i) /k (i)) 
ppthr (i) =fthr*fthr 
do 1021 j=].,nmag 

tk(i,j)=(0.dO,_2.dO)*tkk(i,j) 
sk(i,j)=(0.dO,_1.dO)*(skk(i,j)+rkk(i,j)) 

	

1021 	continue 
MM(i)= -rlk(i)/fl(i) 
NN(i)= (-tk(i,i)-sk(i,i))/fl(i) 
aa(i)=dreal(NN(i))*dreal(NN(i))+dimag(NN(i))*dimag(NN(i)) 
bb(i)=dreal(MM(i) ) *drea1((i) )+dimag(MN(i)) *dimag(NN(i)) 
cc(i)=dreal(MM(i))*dreal(MM(i))+dimag(MM(i))*dimag(MN(i)) 
disc(i)=bb(i)*bb(i)_aa(i)*(cc(i)_1) 
if(disc(i) gt.0) then 

cktl= (-bb(i) -dsqrt(disc(i)))/aa(i) 
ckt2= (-bb(i) +dsqrt(disc(i)))/aa(i) 
if(cktl.lt .0) then 



Part 1: Spin Waves 	 Appendix 	 91 

ckl (i) =(0, 0) 
else 

ckl(i)=dconjg(zsqrt(cktl*(MM(i)+NN(i)*cktl))) 
endif 
if(ckt2.1t.0) then 

ck2 (i) =(0, 0) 
else 

ck2(i)=dconjg(zsqrt(ckt2*(MM(i)+NN(i)*ckt2))) 
endif 

else 
ckl (i) =(0, 0) 
ck2(i)=(0, 0) 

endif 

	

1010 	continue 

• i=iist 
• lb'list bare parameters 

if((cornmand.eq.' 1') .or. (comrnand.eq. 'ib')) then 
print 900, 'dt=' , dt, 'nnO=' , nn0, 'nnf=' , nnf 

	

900 	format (a4,dll.3,a4,i6,a4, i6) 
print 905,'nmag',nrnag 

	

905 	forxnat(a6,i3,a6,i3) 
print 901,'fp=' ,fp, 'Hz ','f0' ,fO, 'Hz ','pp=' ,pp, 'W 

	

901 	format(a4,d14.6,a4,a4,d14.6,a4,a4,d14.6,a4) 
print 902,'gamc=',gamc,'gamo=',gamO,'gamk=',gaxnk 

	

902 	forzriat(a6,d14.6,a6,d14.6,a6,d14.6) 
print 902, 'alpha=' ,alpha, 'dfcav' ,dfcav 
print*, 'i,j= 	 rkk' 
do 1081 i1,nmag 

do 1082 j=1,nmag 
print*, i,j,rkk(i,j) 

	

1082 	continue 

	

1081 	continue 
print*, 'jj 	 skk=' 
do 1181 i1,nmag 

do 1182 j=1,nmag 
print*, i,j,skk(i,j) 

	

1182 	continue 

	

1181 	continue 
print*, 'i,j= 	 tkk' 
do 1281 i1,nmag 

do 1282 j=1,nmag 
print*, i,j,tkk(i,j) 

	

1282 	continue 

	

1281 	continue 
print*, 'i= 	ps=' 
do 1008 i-1,nmag 

print*, i,ps(i) 

	

1008 	continue 
print*, 'i= 	df'' 
do 1108 i1,nmag 
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print*, j,f(j) 

	

1108 	continue 
print*, 'j 
	

gk=' 
do 1208 i1,nmag 

print*, i,gk(i) 

	

1208 	continue 
endif 

* lc=list converted parameters 
if( (conirnand.eq. '1') .or. (cornmand.eq.' ic')) then 

print 902,' dfO=' , df0 
print*,lSuhl thresholds, pump power in Watts' 
do 1011 i=1,nmag 

print 907, 'ppthr(' ,i,' )= ',ppthr(i) 

	

907 	forrnat(a6,i3,a3,d14.6) 

	

1011 	continue 
endif 

* ls=list state 
if(command.eq.'ls') then 

call cavity(cav, cav0,ps) 
print*, 'cay 	',cav 
print*, 'cavO=' ',cavO 
do 1007 i=1,nmag 

print 903, 'ps(' ,i,')= ',ps(i) 

	

903 	format (a4, i3, a4, d14 .6, d14 .6) 

	

1007 	continue 
call ssb(tt,ps,dp, 1+nmag) 
do 2007 i1,ninag 

print 903, 'dp(',i,')= ',dp(i) 

	

2007 	continue 
endif 

* 1s2=list sigma state 
if (command. eq.' 1s2 1 ) then 
do 3007 i1,nmag+1 
print 903, 'p52(',i,')=',ps(i) *ps(i) 

	

3007 	continue 
call ssb (tt, ps, dp, 1+nmag) 
do 4007 i=1,nmag+ncav 
print 903, 'dp2(',i,')=1,2*dp(i)*ps(i) 

	

4007 	continue 
endif 

* lfp=list fixed points 
if( (command.eq. 1 1 1 ) . or. (command.eq.' lfp')) then 
print*,fixed points for mode i, with other modes at zero:' 

do 908 i=1,nmag 
print*, 'i 	 ckl 	 ck2' 
print*, i,ckl(i),ck2(i) 

908 	continue 
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do 909 i=1,nmag 
print*, Ii 	 44 	 NNF 
print*, j,'iM(j),NN(i) 

909 	continue 
endif 

* lw=list window parameters 
if ((command .eq.' 1' )..or. (command. eq.' 1w')) then 

print*, 'window xmin, xrnax, ymin, ymax:' 
print 906, 'xwQ=' ,xw0, 'xwl=' , xwl, 'ywO=' ,yw0, 'ywl=' ,ywl 
print*, 'scale cnin, xmax, ymin, ymax:' 
print 906, 'xsO=',xsO,'xsl=',xsl,'ysO=',ysO,'ysl=',ysl 
print*, 'origin xO,yO 	tick interval xt,yt' 
print 906, 'xO=',xO,'yO=',yO,'xt=',xt,'yt=',yt 

906 	format(a6,dll.4,a6,dll.4,a6,dll.4,a6,dll.4) 
endif 

* lcon=list control parameters 
if( (command.eq.' 1') .or. (command.eq.'Icon')) then 
print*, 'control parameters 1=on 0=off: 
print*, 'printing ip=',ip 
print*, 'trajectory it=',it 
print*, 'section is=',is 
print*, 'mode number(0 for cavity) imode=',imode 
print*, 'file trajectory ifilet=',ifilet 
print*, 'file poincare section ifilep=',ifilep 

endif 

* lcom=list commands 
if((command.eq.'l').or.(cornmand.eq.'lcom')) then 
print*, 'commands:' 
print*, 'l=list q=quit r=run c=continue cl=clear' 
print*, 'ft=file trajectory fp=file poincare section' 
print*, 'markfp=mark the fixed points on display' 
print*, 'fft=generate fast Fourier transform' 
print*, 'si=change size (or scale) of display' 
print*, 'dump=generate PostScript file of display data' 
print*, 'set=read parameter file' 
print*, 'save=create parameter file' 
pr.int*, 'any variable (with a few exceptions)' 
print*, 'may be changed by entering its name' 
print*, 'followed on next line by the new value' 

endif 

* read parameter file 
if(command .eq. 'set') then 
print*,parameter filename: ' 
read*, filename 
open (unit=3, file=filename) 
read(3,*) dt,nnO,rinf,nmag 
read(3, *) pp, fp, f 0, gamc, gamO, gamk, alpha, dfcav 
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g=alpha 
do 1061 i=1,nmag 

read(3,*) ps(i),df(i),gk(i) 
psO(i)=ps(i) 

1061 	continue 
do 1062 i=1,nmag 

do 1063 j=1,nmag 
read(3,*) tkk(i, j) ,skk(i, j) 

1063 	continue 
1062 	continue 

read(3, *) xw0,xwl,yw0, ywl,xs0, xsl, ysO,ysl 
read(3,*) xO,yU,.xt,yt 
close (unit=3) 

endif 

* create parameter file 
if(cornmand .eq. 'save') then 

print*,'parameter filename: 
read*, filename 
open (unit3, file=filename) 
write (3, *) dt, nn0, nnf, nmag 
write(3,*) pp,fp,fO,gamc,gam0,gamk,alpha,dfcav 
do 1071 i=1,nmag 

write(3,*) ps (i) , df (i) , gk (i) 
1071 	continue 

do 1072 i=1,nmag 
do 1073 j1,nmag 

write(3,*) tkk (i, j) , skk (i, j) 
1073 	continue 
1072 	continue 

write(3, *) xwO,xwl,ywO,ywl,xsO,xsl,ys0,ysl 
write(3,*) xO,yO,xt,yt 
close (unit=3) 

endif 

* fp=file poincare data 
if (command .eq. 'fp') then 

print*, 'filename of data (n = do not file) ? 
read*, filename 
if(ifilep .eq. 1) close(unit=1) 
if(filename.ne.'n') then 

open (unit=1, file=filename) 
if ilep=1 

else 
if ilep=0 

endif 
endif 

* ft=file trajectory data 
if(command .eq. 'ft') then 
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print*, 'filename of data (n = do not file) ? 
read*, filename 
if(ifilet .eq. 1) close(unit=2) 
if(filename.ne.'n') then 

open (unit=2, file=filename) 
ifilet=1 

else 
if ilet=O 

endif 
endif 

* cl=clear and draw axes 
if(coxtnand .eq. 'cl') then 

call store(3) 
call fclear() 
call fgenwindow(xwO, ywO, xwl, ywl, jAR) 
call fscale(xsO,xsl,ysO,ysl) 
call flinewidth (aLW, aLWold) 
call fborder() 
if(itick.eq,1) call faxes(xO,yO,xt,yt,xs,ys) 
if (iflag.eq. 0) iflag=2 

endif 

* dump=create PostScript file 
if(cornmand .eq. 'dump') then 

call store(2) 
call exitgraph () 
call dpgraph(0) 
call exitgraph() 
call dpgraph(1) 
call store(1) 

endif 

* fft=generate f ft 
if (command. eq.' fft') then 

call spctrm(tt,ps,nmag,dt, ssb,wO,wl,w2, w3,w4, w5) 
if(iflag.eq.0) iflag=2 

endif 

* line=set line width for laserprinter 
if(command .eq. 'line') then 
print*, 'linewidth: 

• 	 read*, aLW 
call flinewidth(aLW,aLWold) 

endif 

* si=size graphics 
if (command .eq. 'Si') then 
print*, 'center on origin/strobing, enter 0/1: 
read*, center 
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print*, 'size' 
read*, size 
if(center .eq. 0) then 

xs0= -size 
xsl= size 
ys0= -size 
ysl= size 

else 
xs0= gxx-size 
xsl= gxx+size 
ys0= gyy-size 
ysl= gyy+size 

endif 
xt= size/lO. 
yt= size/lU. 
call store(3) 
call fclear() 
call fgenwindow(xwo, ywO, xwl, ywl, iAR) 
call fscale(xs0,xsl,ys0,ysl) 
call fborder() 
if(itick.eq.l) call faxes(xO,yO,xt,yt,xs,ys) 
if(iflag.eq.0) iflag=2 

endif 

* qquit 
if(cornxnand .eq. 'q') then 

if(ifilet .eq. 1) close(unit=2) 
if(ifilep .eq. 1) close(unit=1) 
call exitgraph() 

endif 

* r=run (use c for continue) 
if(cornmand .eq. 'r') then 
do 1006 i1,nmag 

ps (i)=ps0 (i) 
1006 	continue 

if(imode.eq.0) then 
call cavity(cav, cav0,ps) 
axx=dreal (cay) 
ayy=dimag (cay) 

else 
axx=dreal (ps (imode)) 
ayy=dimag(ps (imode)) 

endif 
gwx=axx 
gwyayy 
tt=0 .dO 
ikk=O 
kks=0 
par=0 . 5d0 
nnl=1 
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iflag=2 
if(nnf.gt .0) iflag=1 

endif 

* c=continue, r=run (re-initialize) 
if((cornmand.eq.'c') .or. (cornmand.eq.'r')) then 
if(imode.eq.0) then 

call cavity (cay, cavO, ps) 
axx=dreal•( cay) 
ayy=dimag (cay) 

else 
axx=dreal (ps (irnode)) 
ayy=dimag (ps (imode)) 

endif 
if(iflag.eq.2) then 

call fpenup() 
call fxnove(axx,ayy) 
call fpendown() 
if lag0 

endif 
if(iflag.eq.3) then 

ecks=xsO 
wigh= (ysi-ysO) * (axx-xs0) / (xsl-xs0) +ysO 
call fpenup() 
call fmove (ecks, wigh) 
call fpendown() 

endif 
if(iflag.eq.4) then 

ecks=xs0 
wigh=ayy 
call fpenup() 
call finove (ecks, wigh) 
call fpendown() 

endif 
do 700 istep=nnl,nnl+nnO-1 
call rk (tt, ps, nmag, dt, ssb, wO, wi, w2, w3) 
call ssb(tt,ps,dp,nrnag) 

409 format(a6,4d14.6) 
********* calculation of trajectory 

if(istep.le.nnf) go to 700 
510 ikk=ikk+1 

if(imode.eq.0) then 
call cavity(cav,cav0,ps) 
axx=dreal(cav) 
ayy=dimag (cay) 

else 
axxdreal (ps (imode)) 
ayy=dimag (ps (imode)) 

endif 
if(it.eq.1) then 
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if(iflag.eq.0) call frnove(axx,ayy) 
if(iflag.eq.1) then 

call fpenup() 
call fmove (axx, ayy) 
call fperidown() 
if lag= 0 

endi f 
if(iflag.eq.3) then 

ecks=(istep_nnl+1.dO)*(xsl_xsQ)/nn0 +xs0 
wigh= (ysi-ysO) * (axx-xsO) / (xsl-xs0) +ysO 
call frnove (ecks, wigh) 

endif 
if (iflag.eq. 4) then 

ecks=(istep_nnl+1.dO)*(xsl_xs0)/nno +xs0 
wigh=ayy 
call finove (ecks, wigh) 

endif 
endif 
if(ifilet .eq. 1) write(2,1100) dcmplx(axx,ayy) 
if(ip .eq. 1) write(6,1100) dcmplx(axx,ayy) 
if(is.eq.0) go to 700 

**************************************************************** 

if(istrobeq.1) dpl=dreai(dp(imodel)) 
if(istrob.eq.2) dpl=dimag(dp(imodel)) 
if(istrob.eq.3) dpl=dreal(ps(irnodel)) 
if(istrob.eq.4) dpl=dimag(ps(imodel)) 

if((sign*par.1t.0.dO).or.(sign*dpl.ge.0.dQ) 
*.or. (istep.eq.1) .or. (iflag.ne.0)) go to 600 
dpO=dpl 
do 95 i=1,nmag 

psl(i)=ps(i) 
95 continue 

tsave=tt 
delt=dt 
do 96 i=1,6 

dsp=par-dpl 
if(dsp.ne.0.dO) then 

deJ.t=delt*dpl/dsp 
call rk(tt,ps,nmag,delt, ssb,wO,wl,w2,w3) 
call ssb(tt,ps,dp,nmag) 
par=dpl 
if(istrob.eq.1) dol=dreal(dp(imodel)) 
if(istrob.eq.2) dpl=dirrtag(dp(ixnodel)) 
if (istrob.eq.3) dpl=dreal (ps (imodel)) 
if(istrob.eq.4) dp1=dimag(ps(imode1)) 

endif 
96 continue 

if(iinode.eq.0) then 
call cavity(cav,cav0,ps) 
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gxx=dreal (cay) 
gyy=dimag (cay) 

else 
gxx=dreal (ps (imode)) 
gyy=dirnag(ps (irnode)) 

endif 
tsect=tt 
period=tsect-tsect2 
tsect2=tsect 
do 97 i=1,nmag 

ps(i)=psi(i) 
97 continue 

tt=tsave 
dpi =dp 0 

print 991, 'period=' ,period, 'sec ','freq=' ,1.dO/period, 'Hz' 
991 	format(a7,d14.6,a4,a5,d14.6,a2) 

if(it .eq. 0). then 	 . 	. 
call fdotat(gxx,gyy) 

else 
call fdornark(gxx,gyy,0,sizemk) 

e ndi £ 
call fpenup() 
call frnove(axx,ayy) 
if(it .eq. 1) call fpendown() 
if(ifilep .eq.. 1) write(1,1100) dcrnplx(gxx,gyy) . 

600 par=dpl 
700 continue 

nnl=nrii+nnO 
if(ifilet.eq.1) write(2,1100) dcmplx(axx,ayy) 
if(ip.eq.1) write(6,1100) dcmplx(axx,ayy) 
endif 

if(command.ne.'q') go to 50 
stop 

1100 format(4d14.6) 
100 format(10f8.4) 
270 format(lOx,'total points=',i4) 
800 format(5x,'i=',i5,5>c,'gxx=',fhl.7,5x,'gyy=',fll.7) 

1270 format(lOx, 'total points=',i4) 
1800 format(5x,'i=',i5,5x,'axx=',fil.7,5x,'ayy=',fll.7) 

end 

subroutines are given below ****************************** 

subroutine cavity(cav, cav0,ps) 
implicit double precision(a-h, o-z) 
double complex ps(100),cav,gk(100),fl(100),tk(100,100), 

*sk(100 100) , rlk(100) , cavO, rlci 
common rlk,fl,sk,tk,gk,rimag 
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common /a2/ alpha,rlci 
cav=(0.dO,0.dO) 
do 99 i=1,nmag 

cav=cav+dconjg (gk (j) ) * p  (j) **2 
99 continue 

cav=(0 .dO, 1 .dO) *cav/ (2*aIpha) 
cav0=(O .dO, 1.dO) *ajpha*(pp**0 .5) *cj 
return 
end 

subroutine ssb (tim, vr, fn, jdim) 
implicit double precision(a-h,o-z) 
double precision n(100) 
double complex vr(100),fn(100),suml,sum2,sig(100) 
double complex tk(100,100),sk(100,100),fJ.(100),rlk(100), 
*gk(100) 
common rik, fi, sk, tk, gk, nmag 
suml=(0 .dO, 0.dO) 
sum2=0 . dO 
do 111 i=1,rimag 

vrR=dreal (yr (i)) 
vrl=dimag(vr(i)) 
ri (i) vrR*vrR+vrI*vrI 
sig (i) =vr (i) *vr (i) 

111 	continue 
do 112 i1,runag 
suml= rlk(i) 
sum2=f 1 (i) 
do 113 j=1,nmag 
suml=suml+dcmplx (dreal (tk (i, j) ) *n(j) ,dimag(tk(i, j) ) *n(j) 
sum2=sum2+sk(i, j) *sig(j) 

113 	continue 
fn(i)=suml*vr(i) +sum2*dconjg(vr(i)) 

112 continue 
return 
end 

subroutine rk(time,state,idim,step,diffeq,uO,ul,u2,u3) 
implicit double precision(a-h,o-z) 
double complex u4,state(100),uO(100),ul(100),u2(100), 

*u3 (100) 
external diff eq 
half=step*0 . 5d0 
sixth=step*0 .16666666 666666d0 
call diffeq(time, state,ul, idim) 
do 1 i=1,idim 
uO (i) =state (i) +dcmplx (half*dreal (ul (i) ) half*dimag(ul (i) ) ) 
continue 
time=time+half 
call diffeq(time, uO, u2, idim) 
do 2 i=1,idim 
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uO (i)=state (i) +dcntplx (half*dreal (u2 (1)) , half*dimag(u2 (1))) 
2 continue 

call diffeq(time, uO, u3, idirn) 
do 3 i=l,idirn 
uO(i)=state.(i)+dcmplx(step*dreal(u3(i)),step*dimag(u3(i))) 
u3 (i)=u3(i) +u2 (1) 

3 continue 
time=tixne+half 
call diff eq (time, uO, u2, idim) 
do 4 i=l,idim 
u4=u1(i)+u2 (i)+u3 (i)+u3 (1) 
state(i)=state(i)+dcrnplx(sixth*dreal(u4), sixth*dimag(u4)) 

4 continue 
return 
end 

subroutine spctrm(tt,ps,nmag,dt,ssb,wO,wl,w2,w3,w4,w5) 
implicit double precision(ah,o-z) 
double complex ps(100),wO(100),wl(100),w2(100),w3(100) 
double complex aps, cay, cavO 
character filefft*20 
external ssb 
logical ovrlap,pdata,asym 
dimension p(4096),w4(16384),w5(8192) 
common /alI xwO,xwl,ywO,ywl,aLW 
twopi = B. * datan(l.dO) 
print*, '# freq. bins (2**i,  enter i<=12) : 
read*, j 
if(i.gt.12) i=12 
if(i.lt.l) i=l 
mh=2**i 
m=mh+mh 
print*, 'time steps per data point: 
read*, nsteps 
fmax= 1.! (2.*dt*nsteps) 
print*, 'maximum freq=', finax 
print*, 'number of segments to average initially: 
read*, k 
print*, 'overlap segments? (enter t (true) or £ (false)): 
read*, ovrlap 
print*, 'mode to transform: 
read*, mode 
print*, 'window type- 
print*, 1 1=square,2=Hanning,3=Parzen, 4=Welsh,5, 6=special: 
read*, itype 
if(itype.eq.5) print*, 

• 'datwin=dexp(_ak* (m*rn/  (4. *(j_. 5) *(j_m_.  5))) **2) 
if(itype.eq.6) print*, 

• 'datwin=dexp(ak*m*m/(4.*(j_.5)*(j_m_.5))) 
print*, 'enter power ak, l=riorrnal: 
read*, ak 
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print*, 'enter phase factor aph, O=normal: 
read*, aph 

print*, 'asyrninetrize window? (enter t (true) or £ (false)): 
read*, asym 
i.f(asym) then 

print*, 'tilt factor (10=norrnal) 
read*, b 

endif 
print*,printout data? (enter t (true) or £ (false)) 
read*, pdata 
print*, 'data source- 
print*, 'l=normal, 2=save, 3=retrieve, 4=test (constant): 
read*, idat 
if((idat.eq.2).or.(idat.eq.3)) then 

print*, 'data filename: 
read*, filefft 
open (unit=4, file=filefft) 

endif 
print*, 'window compression factor (>=1, 1=normal) : 
read*, wcom 
mrn=m+m 
m4 =mm+mm 
m44=m4+4 
m4 3 =m4 + 3 
den=0.dO 
facmm-1 dO 
facp1. 
suniwO . dO 
do 11 j1,m 

suniw.sumw+datwin(j,mh, itype,ak,b,asym,wcom) **2 
if(pdata) print*, 'datwin(',j,')=', 

	

* 	datwin(j,mh,itype,ak,b, asym, wcom) 
11 continue 

p0=0 dO 
do 12 j=i,rnh 

p(j)=0 .dO 
12 continue 

if(ovrlap) then 
do 1 j=1,mh 

j2= j + j 
if((idat.eq.1) .or. (idat.eq.2)) then 

do 2 i=1,nsteps 
call rk(tt,ps,nmag,dt,ssb,wO,wl,w2,w3) 

	

2 
	

continue 
if(mode.eq.0) then 

call cavity(cav, cavO, ps) 
aps=cav-cavO 

else 
aps=ps (mode) 

endif 
endif 
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if(idat.eq.2) write(4,*) aps 
if(idat.eq.3) read(4,*)  aps 
if(idat.eq.4) aps= (1.,0.) 
w5 (j2-1)=dreal(aps) 
w5 (j2)=dirnag(as) 

continue 
endif 

10 do 18 kk=1,k 
if(ovrlap) then 

do 13 j=1,rnh 
j2=j+j 
if(aph.eq.O.) then 

w4(j2_1)=w5(j2_1)*datwin(j,mh,itype,ak,b,asyxrj,wcom) 
w4(j2)=w5(j2)*datwin(j,mh,itype,ak,b,asyrrt,wcorn) 

else 
apho=aph* (j2-rn-1) *twopj/Jrl 
aphl=dcos (aphO) *datwin(j,mh, itype, ak,b,asym, wcom) 
aph2=dsin(aph0)*datwin(j,mh,itype,ak,b,asym,wcom) 
w4 (j2-1)=w5 (j2-1) *aphl_w5  (j2)  *aph2 
w4(j2)=w5(j21)*aph2+w5(j2)*aphl 

endif 
if(pdata) 

	

* 	print*, 'w4(' , j2-1, ')=' ,w4 (j2-1) ,' w4 (', j2, ' )=' ,w4 (j2) 

	

13 	continue 
do 31 j=1,mh 

j2=j+j 
if((idat.eq.1).or.(idat.eq.2)) then 

do 32 i1,nsteps 
call rk(tt,ps,nmag,dt,ssb,wO,wl,w2,w3) 

	

32 	 continue 
if(mode.eq.0) then 

call cavity(cav, cav0,ps) 
aps=cav-cav0 

else 
aps=ps (mode) 

endif 
endif 
if(idat.eq.2) write(4,*) aps 
if(idat.eq.3) read(4,*) aps 
if(idat.eq.4) aps= (1.,0.) 
w5 ( j2-1)=dreal (aps) 
w5(j2)=dimag(aps) 

	

31 	continue 
do 14 j=mh+1,m 

j2=j+j 
if(aph.eq.0.) then 

w4(j2-1) 
=w5(j21_m)*datwin(j,mh,itype,ak,b,asym,wcom) 

w4(j2)=w5(j2_m)*datwin(j,mh,itype,ak,b,asym,wcom) 
else 

aph0=aph* (j2-m-1) *twopi/r 
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aphl=dcos (aphO) *datwin  (j,mh, itype, ak,b, asym, wcorn) 
aph2=dsin (aphO) *datwjn(j,mh, itype, ak,b, asym, wcom) 
w4 (j2-1) =w5 (j2-1-m) taphl-w5 (j2-m) *aph2 
w4 (j2) =w5 (j2-1-m) *aph2+w5 (j2-rn) *aphl 

endif 
if(pdata) 

	

* 	print*, 'w4 (', j2-1, ' )=' ,w4 (j2-1) , ' w4 (', j2, ' )' ,w4 (j2) 

	

14 	continue 
else 

do 41 j=1,xn 
j 2= j + j 
if( (idat .eq.1) .or. (idat .eq.2)) then 

do 42 i=1,nsteps 
call rk(tt,ps,nrriag,dt, ssb,wO,wl,w2,w3) 

	

42 	 continue 
if(mode.eq.0) then 

call cavity (cay, cavO, ps) 
aps=cav-cavO 

else 
aps=ps (mode) 

endif 
endif 
if(idat.eq.2) write(4,*) aps 
if(idat.eq3) read(4,*) aps 
if(idat.eq.4) aps= (1.,0.) 
if(aph.eq.O.) then 

w4 (j2-1) 

	

* 	 =dreal(aps)*datwin(j,rnh,itype,ak,b,asym,wcom) 
w4(j2)=dimag(aps)*datwin(j,mh,itype,ak,b,asym,wcom) 

else 
aphO=aph* (j2-m-1) *twopi/rmn  
aphl=dcos(aphO)*datwin(j,mh,itype,ak,b,asym,wcom) 
aph2=dsin(aphO)*datwin(j,mh,itype,ak,b,asym,wcorn) 
w4 (j2-1) =dreal (aps) *aphl_dimag(aps)*aph2 
w4(j2)=dreal(aps)*aph2+dimag(aps)*aph1 

endif 
if (pdata) 

	

* 	print*, ' .w4(',j2-1,')=',w4(j2-1),' w4(',j2,')=',w4(j2) 

	

41 	continue 
endif 

	

16 	continue 
call fourl(w4,m, 1) 
pO=pO-+-w4 (1) **2+w4  (2)  **2 
print*, 'p(0)',pO 
do 17 j=1,mh-1 

j2=j-4-j 
p(j)=p(j)+w4 (j2+1) **2+w4  (j2+2)  **2 

	

* 	+w4(mm+1j2)**2+w4(rnm+2-j2)**2 
if (pdata) 

	

* 	print*, 'p('j')'p(j) 

	

17 	continue 
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p(rtth) =w4 (rn+1) **2+w4  (m+2)  **2 
print*, 'p(',rrth,')=',p(mh) 
den=den+ sn_mw 

18 continue 
powrnax=pO 
powmin=p0 
do 19 j=i,rrth 

if(p(j).eq.0.) then 
print*, 'p(',j,') 	0' 

else 
if(powmax.lt.p(j)) powmax=p(j) 
if((powrnin.gt.p(j)) .or. (powmin.eq.0.)) powmin=p(j) 

endi f 
19 continue 

denm4=den*m4 
powmax=10 .dO*dloglO (powmax/denxn4) 
powmin=10 .dO*dloglO  (powmin/denm4) 

60 print*, 'PSD range in dE: 
print*, 'powmin= ', powmin, 'powmax= ', powmax 
print*, 'enter desired plotting range: 
print*, 'nifljnn 
read*, ysO 
print*, 'maxixnum= 
read*, ysi 
iAR=1 
print*, 'plot from bin #: 
read*, xs0 
print*, 'to bin #: 
read*, xsl 
print*, 'freq range ',xsO*fmax/rrth,'  to ', xsl*fmax/mh 
call store (3) 
call fclear() 
call fgenwindow (xw0, ywO, xwl, ywl, iAR) 
call fscale(xs0,xsl,ysO,ysl) 
call flinewidth(aLW,aLWold) 
call fborder() 
xs=0 OldO 
ys0 OldO 
yt=10.dO 
call faxes(xs0,ys0,xsl/10,yt,xs,ys) 
call fpenup() 
j=xs0 
if(j.eq.0) yyy=10.dO*dloglO(pO/denm4) 
if(j.gt.0) 	yyy=10.dO*dloglO(p(j)/derlm4) 
if(yyy.gt.ys0) call fmove(xs0,yyy) 
if(yyy.lt.ysO) call fmove(xs0,ys0) 
call fpendown() 
do 20 xxx=xs0+1,xsl 

j=xxx 
yyy=lO . dO*dloglO (p (j) /denm4) 
if(yyy.gt.ys0) then 
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call fmove (xxx, yyy) 
else 

call finove (xxx, ysO) 
endi f 

20 continue 
call fpenup() 

50 print*, 'O=auit fft, 1=continue fft,' 
print*, 1 2=duinp fft to printer, 3=replot: 
read*, corrnand 
if (coirmand. eq. 1.) then 

print*, 'number of additional segments to average: 
read*, k 
go to 10 

endif 
if(command.eq.2.) then 

call store(2) 
call exitgraph() 
call dpgraph(0) 
call exitgraph() 
call dpgraph(1) 
call store(1) 

endif 
if(coxrimand.eq.2.) go to 50 
if (command. eq. 3. ) go to 60 
if((idat.eq.2).or.(idat.eq.3)) close(unit=4) 
return 	 - 
end 

subroutine fourl (data, nn, isign) 
implicit double precisiori(a-h,o-z) 
dimension data(16384) 
twopi = 8. * datan(1.dO) 
n=2 *nn 
j=1 
do 11 i=1,n,2 

if(j.gt.i) then 
ternpr=data (j) 
teinpi=data (j+1) 
data (j) =data (i) 
data(j+1)=data(i+1) 
data (i) =tempr 
data (i+1) =tempi 

endif 
m= n /2 
if((m.gt.2) .and. (j.gt.rn)) then 

j=j-m 
rn=m/2 
go to 1 

endif 
j=j+m 

11 continue 
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xrtmax=2 
2 if(n.gt.inmax) then 

istep=2*mmax 
theta=twopi/ (isign*nimax) 
wr= _2,dO*dsin(O.5d0*theta)**2 
wpi=dsin (theta) 
wr=1.dO 
wi=0.dO 
do 13 m=1,mrnax,2 

do 12 i=m,n,istep 
j=i+mmax 
tempr=wr*data (j) _wi*data(j+1) 
tempi=wr*data (j+1) +wi*data (j) 
data(j)=data(i)-ternpr 
data ( j+1) =data (i+1). -tempi 
data (i) =data(i) +tempr 
data(i+1)=data(i+1) +tempi 

12 	continue 
wtemp=wr 

• 	 wr=wr*wpr_wj*wpj+wr 
wi=wi *wpr4.wt emp  *wpij 

• 	 13 	continue 
rnmax=i Step 
go to 2 

endif 
return 
end 

double precision function datwin(j,mh,itype, ak,b, asym,wcom) 
implicit double precision(a-h,o-z) 
logical asym 
pj = 4 * datan(1.dO) 
c(j-mh-O .5d0) *wcom/mh 
if (dabs (c) .lt.1.dO) then 

* Square window 
if(itype.eq.1) datwin=1.dO 

* Hanning window 
if(itype.eq.2) datwin=(1.dO+dcos (pi*c)) **ak 

* Parzen window 
if(itype.eq.3) datwin=(1.OdO_dabs(c))**ak 

* Welch window 
if(itype.eq.4) datwin=(1.OdO_c**2) **ak 

* Special windows 
if(itype.eq.5) datwin=dexp(-ak/(1.dO - c**2)**2) 
if(itype.eq.6) datwin=dexp(-ak/(1.dO - c**2)) 

* Asymmetrize 
if (asym) datwin=datwin* (1 .dO+b*c) 

else 
datwin=O.dO 

endif 
return 
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end 
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PART 2: 

DYNAMICS OF A MAGNETIC OSCILLATOR 

1 INTRODUCTION AND OVERVIEW 

In this part of the thesis, the results of a study of another magnetic system will be 

presented - this one very different from the spin wave system of Part 1. This is a low frequency 

experiment (-100 Hz) in which the nonlinear effects result from saturation and hysteresis of a 

magnetic core. This experiment was designed to study some of the wealth of phenomena asso-

ciated with the emergence of a second frequency in a dynamical system and the subsequent 

interactions between those frequencies. 

There has recently been considerable interest in nonlinear dissipative systems which exhi-

bit quasiperiodic behavior and phase locking, and in particular how such systems make the tran-

sition from regular to chaotic motion. There have been several theoretical and computer-

assisted studies of this problem1 -8  as well as a large amount of experimental work 9 , primarily 

with fluids, and also in solid state systems. 

Systems that display quasiperiodicity can often be pictured as equivalent to two or more 

coupled nonlinear oscillators or modes. For systems equivalent to only one nonlinear oscillator, 

the route to chaos is typically through a period doubling cascade. Simple systems of two or 

more oscillators have not been fully studied, particularly their complex behavior near reso-

nances, where a new frequency is emerging that is rationally related to a previously existing fre- 

quency (by some factor M/N). This study is concerned with this complex behavior for a weakly 



Part 2: Magnetic Oscillator 	 § 1 	 112 

oscillating nonlinear oscillator that is being driven by a second oscillator which is a prime 

mover. A brief report of some of this work has been published earlier 10  

A comprehensive study of the behavior near "strong resonance" points is presented for the 

experimental system and compared with the theoretical work of V. I. Arnold and others. 

Although this is a local theory, it can aid in the understanding of much of the complex behavior 

observed, some of which extends far from the resonance points. A thorough understanding of 

the dynamics requires the study of unstable orbits and basins of attraction. This is accom-

plished through a novel technique of repeated initialization, which allows one to locate these 

unstable orbits and observe the stable and unstable manifolds of saddle points. The bifurcations 

occurring within regions of phase locking and those that mark their boundaries are also 

explored in detail. 

Symmetry plays a very important role in this physical system. Resonance points can be 

separated into symmetric and asymmetric types. Symmetric quasiperiodic attractors occur for 

which certain peaks in the frequency spectrum are suppressed. Symmetry breaking bifurcations 

and complementary band mergings are observed as a consequence of symmetry. Much of this 

symmetry-related behavior is explained using the concept of a half-cycle map. 

In addition to this study of the important dynamics observed, two models are developed 

and studied for the physical system itself. The first is an unusual differential equation model 

which is irreversible and leads to a noninvertible Poincare map of the plane. The folding of this 

mapping has important consequences and explains some of the unusual behavior observed in 

the phase locked regions. (Note: noninvertibility does not preclude use of Arnold's theory - see 

Sec. 4.3.2.) In the second model a planar (2-D) mapping is assumed and an approximation for 

this Poincare map is obtained directly from experimental data by expanding the map in a 2-D 

Taylor expansion. Compared to the first model, this model shows improved agreement with the 

bifurcation set measured experimentally. This method could be useful in modeling other sys- 
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tems, especially those for which differential equation models are inaccurate or too complicated 

to analyze. 

In the remainder of this section a description of the physical system is presented, the 

experimental methods used are described, and an introduction to and preview of the experimen-

tal results is given (with full details in Sec. 3). 

Li Description of the Dynamical System 

This system is a forced symmetrical nonlinear oscillator. It contains a single nonlinear 

element, an inductor made by winding a coil on a toroidal magnetic core 11 . This element acts 

both as a nonlinear inductor (through core saturation) and as a nonlinear dissipator (through 

magnetic hysteresis). This is driven by a "linear exciter" consisting of an oscillating current 

source I (t), a negative resistance R, and a capacitance C, connected in parallel as shown in 

Fig. 1. The current source is generated by an operational amplifier that is driven by a sine wave 

VL NONLINEAR 
INDUCTOR 

V1 CURRENT 
MONITOR 

GND 

LINEAR EXCITER 

Figure 1. Schematic diagram of the forced magnetic oscillator. Note: R is a linear negative 
resistance. 
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generator of frequency cot, so that 

Is(t)=1osiri(01t, 	 (1) 

where I o  is typically 1 mA and co, is typically 27c x 100 Hz. The negative resistance is linear 

and is generated by another operational amplifier circuit. R is typically —500Q and C is typi-

cally 7.5 iF. The negative resistance allows the system to be self-oscillatory for I o  = 0 (typi-

cally 200 Hz) and to exhibit two-frequency oscillations for certain operating conditions with 

Io#0. 

In addition to these components there is a resistance R, of one ohm in series with the 

inductor which is used as a current monitor by measuring the voltage V1  across it. R1  has been 

found (by decreasing its value) to have a negligible influence on the system's behavior, so we 

will not include it in our analysis below. 

The effects of the linear components are easily combined in the relation: 

= —GIlL 	VL + Is (t), 
	 (2) 

relating the inductor current (IL)  and voltage (VL ). Making the usual approximations about urn-

form magnetic induction B and magnetic field H in the core, we may write (in S. I. units): 

VL =  nAB 
	

(3) 

IL  = (Lln) H 	 (4) 

where n = nuinber of turns (100), A = effective core cross section (1.51 x 10 5m), and L = mag-

netic path length (0.1097 m). Substituting these into Eq. (2) we find the basic equation 

n 	
R —nACB 
	

(5) 

The nonlinearity of the core effects the system through the relation between B and H, 

knowledge of which is required to solve Eq. (5), i.e. to find B(r) orH(t); this problem is treated 

in Sec. 4. At sufficiently low frcqucncics (so that the core is in quasi-equilibrium) there will be 

some nonlinear monotonic relation between B and H and this relation will change whenever B 

changes sign, i.e. when VL = 0, due to magnetic hysteresis. 
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The state variables through which we usually observe the system behavior are the inductor 

current 1L'  its voltage VL, and the current source I. Since Js(t)  is a sinusoidal oscillation 

(1 0sinw 1 t), its state (for fixed I 0  and i)  is given by its phase 05 (t) = co l t(mod 27c). For con-

venience however, we observe I (:) directly since this is equivalent to knowing O s  if we also 

know the sign of I (t). The magnetic induction B may be detezmined by integrating VL [Eq. 

(3)] as we did to produce one of the figures in Sec. 1.3. However, for complicated behavior of 

the system, there is considerable difficulty caused by the arbitrary constant of integration, since 

one must stabilize the integral against any minute nonoscillatory part of VL without introducing 

large fluctuating errors in the integral due to low frequency components of VL. 

The parameters by which we usually vary the behavior of the system are J, the peak 

amplitude of Is(t); t1, the period of I5(t); and R, the negative resistance. Noxmally we will be 

looking at some region of the I 0 ,T j  space with some fixed R. Varying other parameters such as 

C, n, and core parameters A and L is expected to yield no new behavior due to system scaling 

relations which we discuss in Sec. 4.2. 

1.2 Methods of Observation 

Most of the experimental data presented in this paper are periodically strobed phase por -

traits or Poincare sections. A simple periodic oscillation appears as a single point in the Poin-

care section. As parameters are varied, this oscillation may lose stability and some more corn-

plicated pattern may appear. Most of the Poincare sections presented in this paper are of 'L VS. 

Is sampled when VL  crosses zero (i.e. a peak of IL).  The data points were collected using a 

trace storing oscilloscope and then photographed. 

13 
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In order to fully understand the behavior of a nonlinear dynamical system, it is very help-

ful to be able to observe the transient behavior from some initial condition as well as the mode 

or modes of behavior that the system may exhibit after the transients have died away. For 

example, there may be two stable periodic oscillatory modes which can be reached from dif-

ferent initial conditions. Often there are unstable modes, slight perturbations from which (such 

as caused by noise) will grow exponentially with time. 

For reasons explained in Sec. 4.3.1, the state of the system at a peak or turning point of 'L 

may be approximated by just two variables: 1L  and I, provided the core is near saturation. 

Thus, if one can initialize the system to any desired Is  and 'L  at a time when VL = 0, then one 

has a simple and effective means of exploring the transient behavior of the system. This is 

accomplished by using an electronically controlled analog switch, which when activated, forces 

the system into a periodic oscillation at the driving frequency co, but with amplitude and phase 

adjustable with respect to that of 15(t). One then electronically deactivates this at a turning 

point (VL = 0), freeing the system to follow its own path from this initial condition. 

With this initializer we can set Is and 'L  at the initial turning point. If the above approxi-

mation on core saturation is valid, then we have access to the entire Poincare space. But if not, 

this space has additional dimensions. In this case we might have difficulty finding an unstable 

node if it is also unstable on these extra dimensions. If, however, an unstable fixed point has at 

least one stable direction in the full Poincare space, then we can reach this point by initializing 

on the stable manifold 12  of the fixed oint, provided this manifold intersects the subspace that 

we can access with the initializer. Thus, in general, an initializer can be useful even in cases 

where it cannot zcccss all possible initial states. 

In addition to phase space diagrams ("phase portraits") and Poincare sections of these 

diagrams, we also measure the frequency spectrum V(w) of VL(t) with a scanning spectrum 

analyzer, an HP Model 3580A, with 90 dB dynamic range. The results are plotted as w vs. 
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V(w) in dBV, i.e. the peaks in the spectra are to be read in decibels above 1 volt rms (dBV = 20 

loglO V mis). Unless otherwise specified, the resolution bandwidth used is 1 Hz. 

1.3 Preview of Experimental Results 

When we vary the parameters (Jo,  o, R) of the system, we find that there is a region in 

this parameter space where the system exhibits a symmetrical periodic oscillation at the driving 

frequency o. This could be described as a relaxation oscillation, having a "slow phaset' where 

VL and 'L  do not change much, alternating with a "fast phase" where VL and 'L  rapidly change 

sign. When one observes the behavior of the system in two or more state variables, such as 'L 

vs. I, one sees a closed curve as shown in Fig. 2a. 

However, as one crosses a certain surface in the parameter space, one finds that the system 

begins to develop another oscillation at some new frequency (02.  In the primary region of study 

this is in the range co, < o < 2o. The ratio co,Jo may be irrational, in which case the oscilla-

tion will no longer be periodic. When observed in the space of three or more state variables 

(e.g. 1L' VL, Is), the orbit will remain on a two-dimensional torus and will proceed to fill in this 

surface completely as t—eo (Fig. 2b). We can examine a cross-section (or Poincare section) of 

this figure (say by strobing at appropriate intervals a storage oscilloscope) and will find a set of 

points forming a closed curve. A frequency spectrum (say of V (t)) will show the frequencies 

01 and co, and smaller components at all their "odd" linear combinations: im = m co, + n (O 

where n + m = odd integer (Fig. 2c). We discuss this further in Sec. 2.3.3. This change in sta-

bility, i.e. the onset of a second frequency u, is known as a Hopf bifurcation. In a two-

parameter space (say ! o, (h), the Hopf bifurcation occurs when one crosses a certain line. 

S 

Across this line there are regions where cajw j  is a rational ratio (MIN in lowest terms) and the 
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Figure 2. (a) Phase portrait of the inductor current IL vs. the forcing current I. Strobing every 
cycle as the inductor voltage VL  crosses zero from positive to negative produces the point 
shown. Here there is a symmetrical 1:1 phase locking. (b) At another point in parameter space 
the system undergoes a Hopf bifurcation and a symmetrical quasiperiodic attractor emerges. By 
strobing, the Poincare section is seen to'display an invariant circle. (C) Frequency spectrum of 
VL (t) shows only odd 2-component harmonics (m+n = odd) due to symmetry. 
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Figure 3. (a) Phase portrait and spectrum of VL (r) for the symmetric type of entrainment with 
= 7/5. (b) Asymmetric type: shows two complementary attractors (by double exposure) 

interwoven with each other. Each has co,Jai = 3,2. The Poincare section of (a) is five points; of 
(b), it is two sets of two pOifltS. 

behavior is again periodic. Here the system is said to be phase locked or entrained. We find 

that when M and N are both odd, that the behavior of the system is again symmetrical (e.g. 

VL(tl) = -VL(t2) where t2 = t1 + Nic/( 1 ) and the frequency spectra will contain only odd har- 
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monics of the frequency 01/N (see phase portrait and frequency spectrum in Fig. 3a). In all 

other cases of entrainment there are two complementary asymmetric modes in which the system 

can oscillate (see phase portrait and frequency spectrum in Fig. 3b). I 

If we define the order of the entrainment q as 

q = N for symmethc behavior 
	

(6) 

q = 2N for asymmetric behavior 
	

(7) 

then we find that in a two-dimensional parameter space [we use 1 0(rms) and t1 = 27r/u 1 ], for 

q Zt 5 the entrainment regions all have a typical shape called a resonance horn or an entrainment 

horn or a tongue. The frequency ratio changes smoothly along the line of Hopf bifurcation and 

the horns emerge from this line at the points corresponding to rational ratios, called points of 

resonance. We show such a parameter space diagram in Fig. 4. The points of resonance are 

labeled by their order q. For resonances of order less than five, there are other characteristic 

patterns often involving the coexistence of more than one stable behavior pattern. The q = 4 

resonance has a homlike region emerging from it in this figure, but it also has many other 

forms, some of which are described in Sec. 3.1.4. 

In this paper our primary emphasis is on behavioral changes that the system goes through 

as we vary its parameters near the points of resonance and the associated phase locked regions. 

We discuss both the theory (Sec. 2.2) and our experimental results (Sec. 3.1) for both the weak 

(q ~: 5) and strong (q :5 4) resonances. An understanding of the theoretical behavior, particu-

larly of the strong resonances, is found to be very important in predicting the qualitative 

behavior far from the resonance point. Moving within the horn away from its vertex one finds 

the system behavior becoming more complex, as described in Sec. 3.2. In Sec. 3.3 we describe 

what can happen when two phase locking domains overlap or coexist. In some cases we 

observe a Hopf bifurcation initiating from an entrainment. This will appear as a set of closed 

curves, which we describe in Sec. 3.4. 
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Figure 4. Parameter space diagram. Here t is the period of the driving current Is(t) and 1 is 
the mis aplitude of I (t); for R = —500 Q and C = 7.5 jiF. Phase locked regions are labeled by 
O),JQ), points of resonance by order q (for q 5 10), Hopf bifurcation by H. Portions of phase 
locked regions labeled with a plus sign have coexisting quasiperiodic attractors. In some re-
gions two phase locked attractors coexist, e.g. the region labeled 1/1 and 5/3. The region la-
beled 2 x 1/1 has two distinct 1/1 type attractors. Hysteresis is observed when these multiple at-
tractor regions are traversed. The region labeled 2/1 exhibits an asymmetric attractor with two 
complementary modes and is thus distinguishable from the symmetrical 1/1 attractor. In Sec. 3, 
many structures shown here are studied in great detail and are found to be related to the theoret-
ical behavior of the points of 'strong resonance". Note that the points labeled "1" and "2" are 
the end points of the Hopf bifurcation line. 
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Throughout the paper we will be emphasizing the importance of hidden behavior related 

to unstable oscillatory modes of the system and the transient behavior that couples the unstable 

orbits with stable ones. Knowledge of this "hidden behavior" is very important to the under-

standing of the "visible behavior" and how it changes with the parameters. Thus, for example, 

we experimentally investigate motion on both the unstable and stable manifolds of saddle 

orbits. 

2 THEORETICAL CONCEPTS 

2.1 Bifurcation Types 

We expect that most readers of this paper will be familiar with the fundamental types of 

bifurcations (saddle-node, Hopf, period doubling, etc.), and therefore we restrict our discussion 

to some details which may be less commonly known. For a review of material not presented 

here we refer to Ref. 12. 

Many different types of bifurcations, both local and global, are important to the dynamics 

of a system, like the present one, in which a second frequency is emerging. In order to fully 

understand the dynamics, it is necessary (in some cases) to study the bifurcations of unstable 

fixed points in the system. Although these bifurcations do not directly effect the attractor(s) of 

the system, they will effect the basins of attraction. Frequently, unstable fixed points emerging 

from such bifurcations will, at some other parameter setting, be involved in a bifurcation 

involving a stable attractor. In a two-dimensional Poincare space there are four types of period 

doubling biftircations, two of which involve only unstable fixed points (in the Poincare section), 

as shown in Fig. 5. In each case a single fixed point splits into a period doubled pair, separated 

by a period one fixed point of altered stability (relative to the ori ginal fixed point). There arc 
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TABLE 1 - NOTATION USED IN BIFURCATION DIAGRAMS 

2-D bifurcation diagrams have a number of lines representing co-dimension I bifurcations, 
which separate regions of parameter space in which qualitatively different behavior patterns exist. 
The patterns drawn for each region represent typical 2-D Poincare sections. In them, solid dots 
represent stable points (sinks) and open dots (very small circles) represent unstable points 
(sources). Saddles have no dot but are clearly indicated by arrows on their stable and unstable 
manifolds. Foci are distinguished from nodes by a slight spiral on approach. The co-dimension 1 
bifurcations are indicated by an arrow connecting the Poincare patterns of two adjacent regions or 
crossing a bifurcation line in the bifurcation diagram, and an abbreviation for the bifurcation. 
These are used both in the theoretical and experimental figures. The bifurcations occur as 
described below in the direction of the arrow. 

Abbrev. 	 Description 

The following are continuous bifurcarions with no jwnp to another attractor and no hysteresis 
implied: 

H Hopf: circle(s) emerge from point(s) in the Poincare section. 
x2 Period doubling. 
x4 2nd period doubling. 
Xoo End of period doubling cascade. 
bm 1 Band merging: two-band chaotic attractor merges to one band. 
sb Symmetry breaking: one symmetric attractor splits into two complementary 

asymmetric attractors. 
cbm Complementary band merging: two complementary chaotic attractors merge 

into one symmetric one. 
plc Phase-locked circle: periodic nodes and saddles appear (in saddle-node pairs) 

on an invariant circle and then separate. 
cr(i) Interior crisis27 : period n chaotic attractor contacts period n saddle point and 

loss of phase locking occurs in conjunction with a sudden increase in at- 
tractor size. 

nf Node changes to focus (trivial bifurcation). 
Ir Left focus changes to right focus (iterates clockwise). This is usually with 

respect to the rotation of a periodic attractor encircling the focus (trivial 
bifurcation). 

The following involve a jump (i.e., a discontinuous change in the observed variable) and Un-
ply hysteresis. 

sn 	 Saddle-node: a saddle and node appear together and separate. In reverse, a 
jump to another attractor occurs when the node is annihilated. 
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hc 	 Homoclinic: circle(s) contact periodic saddle(s) forming a homoclinic orbit; 
circle(s) are annihilated and a jump to another attractor occurs. 

cr(b) 

	

	 Boundary crisis27 : chaotic attractor contacts the boundary of its basin of at 
traction, is annihilated, and a jump occurs. 

x2(b) 	 Subcritical period doubling [see Fig. 5(b)]. In reverse a jump can occur after 
the stable node combines with the period doubled saddle to form a period 
one saddle, leaving no attractor locally. 

sb(b) 	 Subcritical symmetry breaking, similar to 2(b). 

C. The following involve only unstable fixed points. 

su 	 Saddle and unstable node appear together and then separate. 
x2(c or d) 	Type (c) or (d) period doubling of unstable fixed points, see Figs. 5(c) or (d). 
sb(c or d) 	Type (C) or (d) symmetry breaking of unstable fixed points, similar to 2(c or 

d). 
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Figure S. Structure of period doubling bifurcations for a 2-D Poincare section. There are four 
types: (a) The standard case involving a stable node. After bifurcation the two parts of the 
period 2 node are separated by a saddle point. (b) A saddle point bifurcates in its unstable 
direction to a period 2 saddle separated by a stable node. (C) A saddle bifurcates in its stable 
direction to a period 2 saddle separated by an unstable node. (d) An unstable node bifurcates to 
a period 2 unstable node separated by a saddle. 

also four cases of symmetiy breaking. These can also be represented by Fig. 5 except that in 

this case all fixed points are period 1. Saddle node bifurcations occur in two types, one of 

which involves a saddle and a stable node, the other a saddle and an unstable node. The second 

case has no attractors. An important type of global bifurcation is the homoclinic bifurcation 12. 

Here, as parameters are varied, an invanant circle (conesponding to quasiperiodic motion) con-

tacts a saddle orbit after which it is annihilated. In a nondegenerate case, this occurs as a point 

of tangency develops between the stable and unstable manifolds of the saddle point(s). We fre-

quently observe, however, a (nearly) degenerate case where the stable and unstable manifolds 
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(nearly) coincide. In the nondegenerate case, the attractor becomes highly chaotic before it is 

armihilated, while in the degenerate case the circle remains relatively smooth (aside from a kink 

near the approaching saddle point). Table I presents a list of bifurcation types which have been 

observed in the experimental system, and defines a set of abbreviations which are later used in 

the bifurcation diagrams. 

2.2 Bifurcations Near Points of Resonance 

• The case of bifurcation near points of resonance is discussed by Arnold13 - 15, boss 16 , and 

Takens 17. In this case the bifurcating fixed point of the Poincare map has conjugate eigen-

values that are roots of unity (A. = exp 2irip /q). This fixed point is doubly degenerate since we 

are requiring both IAJ = I and arg(A.) = p /q, and therefore we will have a bifurcation of co-

dimension 2. This requires the variation of two parameters about the bifurcation point to be 

fully characterized. Arnold approaches this problem by making the connection between the 

bifurcation of a resonant fixed point in the Poincare map and the bifurcation of fixed points of 

vector fields in the plane. In the vicinity of the bifurcating orbit, the behavior may be approxi-

mated by a vector field of the plane that is determined by averaging in the Seifert foliation 

corresponding to the resonance being studied (see Arnold 13 , page 170). In essence, this means 

we are looking at the behavior in a coordinate system which has one coordinate parallel to the 

bifurcating orbit (i.e. the angle indicating a particular point on the orbit) and two coordinates 

(x,y) transverse to the orbit with their origin at the orbit. These transverse coordinates rotate 

about the orbit at the same average rate as the nearby phase paths wind around it, i.e. p/q per 

cycle. This is the Seifert foliation. Avera ging the behavior in the transverse coordinates over q 

cycles, one can represent the behavior as a vector field in the plane with symmetry under rota-

tion by 27r./q. This averaging is valid on the assumption that motion in these transverse 

01 



Part 2: Magnetic Oscillator 	 § 2.2 	 127 

coordinates is very slow near the origin, occurring over many cycles. This will be true since at 

the bifurcation point the eigenvalues have unit magnitude there. For cases of order q greater 

than two, Arnold treats the problem in the plane of the complex variable z = x + iy. A Taylor's 

expansion of the vector field near the origin is made yielding i = F1jz FC, where F is the 

complex conjugate of z. The rotational symmetry requires f—k—i be divisible by q. Keeping 

the linear term, the lowest nonzero term with q symmetry and the lowest nonlinear term with 

no q dependence: 

I =cz +AzIzI 2 +BF 1 , q ~:3, 	 (8) 

where e, A, and B are complex coefficients. Arnold refers to this as the principle deformation. 

The linear coefficient c for this vector field must be zero at the bifurcation point (when X= 

e'). Varying c by a small amount around zero in the complex plane will determine the 

bifurcation sequence (i.e. varying Re c and Im c about zero can be assumed to be equivalent to 

varying any two parameters about the bifurcation point). We can assume that c is much smaller 

than A and B so that they are effectively constant during the bifurcation process. However, dif-

ferent bifurcation patterns may be obtained for different values of A and B. These bifurcation 

patterns take the form of a sequence of co-dimension I bifurcations that are encountered as e is 

varied around zero. 

B can be set to one by rescaling the other parameters and the time. Letting z = r eiO and 

solving for fixed points (I =0) we find 

--=--A —re' 
r 2  

(9) 

For q 2: 5 the last term is small for small r, and thus c = —Ar 2  (i.e. c and —A must have nearly 

Is the same argument for there to be fixed points other than z = 0 since r must be real). When the 

last term is included, one finds that fixed points exist within a horn-shaped region, shown in Fig. 

6. In this figure as in all other 2-D bifurcation diagrams throughout the rest of this paper, we 

use an abbreviated notation to describe co-dimension 1 bifurcation lines which is given in Table 
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Figure 6. 2-D bifurcation diagram for resonant fixed point in the case of weak (q ~: 5) reso-
nance with ReA and ImA <0 (other cases related by symmetry). Central figure shows the bi-
furcation lines, in this case a horn, in the complex parameter space C. Table 1 lists co-
dimension 1 bifurcation abbreviations used in these figures. The surrounding figures represent 
the topological behavior pattern for a typical 2-D Poincare space for the indicated domains in 
the parameter space. 

10 

1. This horn (sometimes called a resonance horn or tongue) is centered on arg(—A) and has an 

angular width e that spreads with C: 

2I€I 	 (10) 

Within the horn there are q nodes alternating with q saddles in a circle, as shown in Fig. 6. 
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This is sometimes called a circle in resonance or a phase-locked circle. Moving C clockwise 

toward the horn boundary, the nodes approach the saddles which are clockwise from their posi-

tions. These annihilate and leave an invariant circle with clockwise rotation. Moving € coun-

tercicrckwise results in a counterclockwise approach and annihilation, and produces a counter-

clockwise invariant circle. Note that for the Poincare map this rotation of the invariant circle is 

with respect to the entrained rotation of p /q. The circle disappears (via inverse Hopf bi.furca- 

a 

Figure 7. 2-D bifurcation diagram for q = 3. Involves no period 3 nodes, only period 3 sad-
dles. Same diagramatic arrangement as discussed in caption of Fig. 6. Some regions have no 
attractors so a jump to some distant attractor must occur when entering these regions. 
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don) when crossing Re c = 0. Thus, except for the narrow horn-shaped region we have the 

same behavior as for an ordinary (nonresonant) Hopf bifurcation, in the case of weak (q ~: 5) 

resonance. This is not the case however for strong (q :5 4) resonance. The cases q = 3 and 4 

can also be studied using the complex equation: 

1 =ez +AzIz$ 2 +B12, 	 (11) 

1 =cz +Az1z1 2 +Bz 3 , 	 (12) 

For q = 3 there is only one bifurcation pattern [and its time (or arrow) reversed equivalent] 

which we show in Fig. 7. It should be noted that no stable period 3 fixed points are involved in 

this bifurcation. This fact will be explored further in Sec. 3.1. The q = 4 case, however, has 

not been completely characterized on a theoretical basis, although it is known that a large 

number of possibilities exist depending upon the choice of the parameters A and B 1821 . 

Unlike q = 3, many of the q = 4 bifurcation patterns do involve stable period 4 points. For the 

cases q = I and q = 2, another approach is needed. Arnold shows that the principle deforma-

tions can be expressed in the x-y plane as: 

q=1: i=y,y=a+3x+Ax 2 +Bxy, 	 (13) 

q =2: x =y, =ax +3y +Ax 3 +Bx 2y. 	 (14) 

There is one type of q = I bifurcation (Fig. 8) and two types of q = 2 of which we show the one 

for A > 0, B <0 (Fig. 9). The second type is not shown here (but see Ref. 13) since we have 

not observed this behavior in our system as we have for the other cases discussed above. The q 

= 2 case shown involves no stable period 2 points, while the other one does. 

1. 
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Figure 8. 2-D bifurcation diagram for q = I with A > 0, B <0 (other cases related by sym-
metry). Same diagramatic anangement as discussed in the caption of Fig. 6. Some regions 
have no attractors. 
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Figure 9. 2-D bifurcation diagram for q = 2 with A > 0 and B <0. Same diagramatic arrange-
ment as discussed in the caption of Fig. 6. 

2.3 Behavior of a Symmetrical System 

2.3.1 Half Cycle Map 

We define a symmetrical systcm to be one which for any state x thcre is a complementary 

state x' such that if x(r) is a possible phase path of system, thcnx'(t) is also. We require that 

x' #X for almost all x and also that x" =x, where x" is the complement of the complement of 
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x. The exact definition of the complementary state will depend on the type of symmetry 

involved. In our forced magnetic oscifiator we assume that the magnetic core is peiect1y sym-

metrical and that the complementary state satisfies: B' = —B, H' = —H, VL' = -VL, and the 

phase of the forcing oscillation (which is also considered part of the state) is shifted by 1,2 

cycle. In our case the forcing oscillation must be symmetrical and contain no dc offset. (Note: 

the core exhibits complex memory effects as discussed in Sec. 4.1, and its state is not com-

pletely specified by B and H.) 

Symmetry has important consequences for the behavior we can observe. First of all there 

are two types of attractors (or other invariant manifolds): those which are asymmetrical and 

have a complementary form, and those which are symmetrical and are their own complement. 

Symmetry breaking bifurcations become possible where one symmetrical attractor splits into 

two complementary ones. For a fixed point in the Poincare space, this can happen in the same 

way as period doubling except that the bifurcating eigenvalue passes through +1 instead of -1, 

and the bifurcated fixed points do not double in period (see Fig. 5). A symmetrical periodic 

oscillation clearly can only have odd harmonics in the frequency spectrum of Vt  or 1L•  This 

means that the ratio of any two frequencies exhibited by a symmetrical oscillation must be a 

ratio of odd integers; hence phase-locked states whose fundamental frequencies cannot be 

expressed as proportional to odd integers cannot be symmetrical. 

As discussed in the previous section, the behavior of the bifurcation of a resonant fixed 

point is characterized by a symmetry under a rotation through an angle of 2it/q where q is the 

order of the resonance. When the frequency ratio corresponding to that fixed point is MIN and 

,M and N are not both odd, then the order must be q = 2N (instead of N) to allow for the divi-

sion into two complements of anything that bifurcates from that resonant point. 

Some of the behavior of a symmetrical system can be clarified through the concept of a 

half-cycle Poincare map 22. We can define a complementary Poincare section as the intersection 
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of the orbit with the complement of the original Poincare space, e.g. for the space defined VL = 

0, V > 0 we have the complement VL = 0, V > 0. We consider a situation where the orbit 

alternates crossing the two complementary sections. Mapping from the point X 0  in the original 

section to the subsequent point X 1  in the complement, we have the map X 1  = F(X0) and from 

this point to the subsequent point X 2  in the original we have the map X 2  = FJX 1). But sym-

metry requires that 

F(X0) = X 1  implies F_(X0') = X 1 ' 
	

(15) 

and therefore 

X2 ,2  =G"kX0), 	 (16) 

where 	kX) is the 2nth iterate of X through the map G(X) and G(X) F'(X) = F_(X') is the 

half-cycle Poincare map. Thus one iteration of the full-cycle Poincare map can be expressed as 

two iterations of this half-cycle map G(X), which maps to the complementary section and then 

takes the complement of the result putting it back in the original Poinc are space. 

Note that if the half-cycle map has an invariant circle, its rotation number is not o/ 2ü 1 . 

This is because this map takes the complement of the state that actually occurs one-half cycle 

later. Thus, 

P1,2 = [(co2/2w1) - 	mod 1, 	 (17) 

where P1/2  is the rotation number of the half-cycle map of a point inside the invariant circle. 

The existence of this half-cycle map has important implications. If a fixed point is a fixed 

point for the half-cycle map (i.e. a symmetric oscillation), then we can study its bifurcation 

under this map. If an even number q of identical fixed points bifurcate from it, then we can 

state at once that a symmetry breaking bifurcation has taken place. This is because after q 

iterations of the half-cycle map, all points will have been visited, while at the same time only 

q12 of them are visited by the full cycle Poincare map. Thus the attractor for the half-cycle map 

has period q, while the full-cycle map has two attractors of period q /2. However, if q is odd, q 
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iterations of the half-cycle map does not correspond to a whole number of iterations of the full-

cycle map, and therefore the full-cycle map will visit all points resulting in a single (and hence 

symmetrical) attractor. For a phase-locked circle (as discussed in Sec. 2.2 in connection with 

bifurcations of order q ~: 5), we have symmetric and complementary asymmetric forms for odd 

and even numbers of nodes, respectively, as shown in Fig. 10. 

Another important implication relates to the nature of symmetry breaking bifurcations. 

For a symmetric oscillation the attractor for the half-cycle map and the full-cycle map are the 

same. After a symmetry breaking bifurcation the full-cycle map iterates on one attractor or the 

other while the half-cycle map iterates back and forth between the two attractors. Thus a ym-

metry breaking bifurcation is just a period doubling bifurcation for the half-cycle map. It is to 

(a) 	 (b) 

Figure 10. (a) Poincare map for symmetric phase-locked circle. Here the rotation number is 
2/5 so an orbit through the stable nodes iterates in the sequence shown (i.e. 1, 2, 3, 4, 5, 1 1  2, ...). 
(b) Complementary asymmetric phase-locked circle. Here the rotation number is 1/2 so the a 
orbit iterates in the sequence (al, a2, al, a2, ...) and the b orbit in the sequence (bi, b2, bi, b2, 
(b) could bifurcate from a q =4 point. 
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be expected therefore that symmetric oscillations will ordinarily undergo a symmetry breaking 

bifurcation before (rather than simultaneously with) the first period doubling bifurcation, this 

being the second such bifurcation for the half-cycle map. 

2.3.2 Effects of Asymmerrj 

While we are used to thinking of an inductor as a symmetrical component (i.e. when the 

leads are interchanged, it behaves the same), this will not necessarily be the case in a real induc-

tor with a magnetic core. First, there may be a slight inherent anisotropy favoring the (average) 

alignment of domains in one direction over another. If we assume this is insignificant, there is 

still another problem: a small fraction of the domains may be very difficult to rotate and these 

may remain unchanged throughout the oscillatory cycle if the core is not being driven hard 

enough. If these have a net magnetization, they will produce an asymmetric perturbation on the 

system's behavior. This will be most strongly seen near a symmetry breaking bifurcation (see 

Sees. 2.3.1 and 3.2) where a symmetrical attractor splits into two complementary asymmetric 

attractors as a parameter is varied. The effect of the asymmetric perturbation will be to cause 

the system to choose a particular asymmetric attractor as shown in Fig. 11. Furthermore, if the 

behavior of the core is initially symmetric, it can develop asymmetry when it undergoes a sym-

metry breaking bifurcation. When one repeatedly passes the parameter through the bifurcation 

point, it is not uncommon to find it has developed a preference for a particular state. This net 

magnetization behaves much like a parameter that is very hard to control, it gets changed as we 

adjust other parameters but it doesn't return to its original value when they do. This peculiar 

property of the magnetic core is fairly weak in most of its effects on the behavior we have stu-

died. However, it is very strong near the q = 2 bifurcation point (see Fig. 4 and Sec. 3.1) 

because of the strongly asymmetric orbits existing there and makes study of this region very 

10 
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Figure 11. (a) Symmetry breaking bifurcation: the dotted line is an unstable symmetric attrac-
tor that separates the two complementary asymmetric attractors following bifurcation. (b) 
Asymmetric perturbation causes the original (nearly) symmetric attractor to go to a particular 
asymmetric (nearly) complementary attractor. The other (near) complement appears via 
saddle-node bifurcation. Thus symmetry breaking bifurcations are only to be expected in per-
fectly symmetric systems. 

difficulL 

2.3.3 Frequency Spectra for Quasiperiodicity 

I' 
	

Motion on a 2-tonis can be described by two angles: 01 = co l t and 02 = ot corresponding 

to the two ways in which one can, go around the torus. Thus the state of the system can be 

specified by these two angles: 

X = X(9 1 , 02) = state of system. 	 (18) 

We can express this as a Fourier series: 
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X 	 X,,.exp[ime 1  +inO2], 
m = —so 4 

where 

I 	2t 	It  
Xnm= 	25 de 1 $ de2 x(e 1 ,02)exp[-.ime 1 -.ine1. 

Thus we can get Fourier components at all integral linear combinations (two component hat-

monics) of co and o),, 

O),,, =mU)1 +n(, 	 (19) 

where m and n are integers. 

Provided the torus remains intact, the amplitude of these components must fall off as m 

and n become large. 

For a symmetrical oscillation we expect that 

x(e 1 , 02)=-X(0 1  +it, e2 +0, 
provided that the complement of X is —x which is true at least for most components of X (like 

VL or IL).  This results in the elimination of certain terms in the spectrum. If m + n is even, 

then 

exp[ - im e 1  - in 0,1 = exp[ - im(e 1  + it) - in(e2  + it)], 	 (20) 

so the integral for X,,.,, vanishes by symmetry. Thus only odd harmonics where m + n is odd 

are allowed for a symmetrical oscillation. 

3 EXPERIMENTAL RESULTS 

3.1 Bifurcation Patterns Near Points of Resonance 

In this section we discuss the behavior of our system near points of resonance, particularly 

'strong' resonances of order q :5 4, as well as the more familiar 'weak" resonances of order 
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q ~t 5. Each of the strong resonance cases has its own characteristic behavior patterns, the 

theory for which we discussed in the previous section. An understanding of each of these cases 

is essential to obtaining an overall picture of the behavior in the parameter space. Associated 

with most cases of strong resonance there are regions in parameter space where two attractors 

coexist or overlap, each of which continues into some adjacent region where it is the only 

attractor. This results in the phenomenon of hysteresis: when traversing a path in parameter 

space, the system gets to a point where the attractor it is on is annihilated and a jump occurs to a 

coexisting attractor, but when the path is reversed, the jump occurs at the opposite end of the 

overlap region, so that the forward and reverse paths are different. This behavior is easily 

traced back to the behavior near the resonant fixed point which can be understood through the 

theory presented in Sec. 2.2. In addition to the cases q = I through 4, we also show a case 

involving strong hysteresis for q = 5 although in this case the hysteresis does not extend all the 

way to the bifurcation point. In each case we show the region of a two-parameter space 

[1 0(rms) and c 1  = 27r/u] in which behavior of the indicated order can be found. This is divided 

by lines indicating bifurcations of co-dimension 1. A number of these lines emerge from the 

resonant point while some others do not. To each subregion there corresponds a diagram which 

indicates qualitatively the behavior in each region (i.e. shows all attractors, saddle points, and 

their stable and unstable manifolds). In some cases we also show actual Poincare sections 

corresponding to these subregions or the transitions between them. The 2-D bifurcation 

diagrams given in this section use the abbreviations in Table 1 to label co-dimension 1 bifurca-

dons as we did in Sec. 2.2. 

it 
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3.1.1 Resonance of Order 1 

The experimental bifurcation pattern we obtained in this case is shown in Fig. 12. This is 

essentially an enlargement of the region near the q = 1 point shown in Fig. 4 which marks one 

endpoint of the Hopf bifurcation line. It may surprise the reader to find that this line could 

abruptly stop in this manner. This behavior will normally occur only at first and second order 

resonance points as a consequence of the theory governing the dynamics near these points. We 

show some actual Poincare sections from region a 1  in Figs. 13(a) and (b). The regions labeled 

a 1 , a2, b, c 1 , c1, and d correspond to identically labeled regions in Fig. 8 which shows the 

theoretical behavior of a typical q = I bifurcation very near the bifurcation point. Note that the 

stable node present in each of these regions does not appear in Fig. 8. This is because it is not 

involved in the bifurcation of this resonant fixed point, i.e. it does not approach the resonant 

fixed point as c - 0, and it is effectively at infinity on the scale of the fixed points and limit 

cycles that do. Nevertheless, its presence can be inferred from the behavior at the bifurcation 

point: the unstable manifolds that point to infinity in Fig. 8 must in a real system connect to 

some other attractor. Since attractors bifurcate from the q = 1 point in regions c and d, they 

must coexist with this other attractor (in this case a node) and thus we see hysteretic behavior in 

these regions. The node is finally annihilated with the saddle point that was generated in the q 

= I bifurcation so that regions e and f have only one attractor. Guckenheimer and Holmes (Rd. 

12, pp.  71-72) show a similar bifurcation pattern for a q = I point in the forced Van der Pol 

oscillator, which is based on earlier studies of this equation -26 

The sn (saddle node) and hc (homoclinic) bifurcation lines approaching the q = I point in 

our data do not appear to become tangent as in the theoretical diagram. It could be that this 

feature was destroyed due to some slight noise or fluctuations in the physical system. 
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flgure 12. Experimental parameter space diagram near q = 1 resonance point. Coordinates are 

= 21cko 1  vs. 1 0(mis). Other parameters are fixed: R = -500 fl, C = 7.5 j.LF. Small figures 
below show the structure in a typical 2-D Poincare space for each region of the parameter space. 
Regions a 1 , a2, b, c 1 , c2, and d correspond to the same regions in the theory, Fig. 8. The figures 
are constructed from data obtained from initialized Poincare sections. 
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Figure 13. Initialized (see Sec. 1.2) experimental Poincare sections in region a 1  of Fig. 12. (a) 
Initialized at the unstable focus (arrow). (b) Initialized at the saddle point (arrow). Both cases 
approach the stable node (N) after a few cycles. Initialization is then repeated many times to 
produce Continuous lines. Parameters for (a) and (b): 1 0(ims) = 1.052 mA,; = 8.079 ms. 

Note the homoclinic bifurcation occurring between regions d and a1 (see discussion of 

homoclinjc bifurcations in Sec. 2.1). This bifurcation is initially of a nearly degenerate form 

forming a saddle loop. Moving upwards in the parameter plot (! 0  increasing), the region d 

comes to an end and a 1  becomes adjacent to e. As we go further, however, the a 1 -e line splits 

again and a new d region appears. The homocinic bifurcation at this higher 10  is not degen-

erate, however, as the dynamics are much more chaotic in this region. Here the chaotic attractor 

in regions e and d disappears upon the formation of a homodinic tangency at the a-d boundary, 

as shown in Fig. 14. 

S 
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e s  

IL 

Figure 14. Experimental Poincare section 'L  vs. Is  on approaching homoclinic tangency at d-a 
boundary in region d at high J. The oscillations in the attractor at the lower left will contact 
the stable manifold of a saddle point (dotted line), after which (in region a i)  the attractor will 
no longer exist, i.e., if initialized here the system will ultimately escape to some other attractor 
(a node in this case). Parameters: 1 0(rms) = 1.700 mA, t1 = 6.800 ms, R = -500 0, C = 7.5 pF. 

3.1.2 Resonance of Order 2 

There are actually two possible bifurcation patterns for this case according to the theory, 

but we have only observed one of these. Like the q = I case, this point of resonance marks an 

end point to the Hopf bifurcation line. 

In our system, this resonance corresponds to a frequency ratio of 2/1. Since this is not a 

ratio of odd integers, this is a complementary asymmetric type of resonance, and hence we mul- 

Is 

tiply the denominator by 2 to get the order q (see Section 2.3.1). The experimental data arc 
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presented in Fig. 15. The behavior near the bifurcation point agrees with the theoretical result 

given in Fig. 9. Here again (as for q = 1) there are nodes that do not approach the resonant 

fixed point as c - 0. The bifurcating 2/1 type points (asymmetric period 1) are all saddle 

points, and the bifurcation process is effectively a rearrangement of their separatrices. As in the 	 - 

q = 1 case, the presence of the nodes is implied by the theoretical picture in which unstable 

manifolds apparently go off to infinity. In a real system we expect these to connect to attractors 

which are very distant on the scale where the theoretical picture is accurate. This in turn 

implies that there will be hysteresis and ultimately a boundary line where these attractors disap-

pear. As is easily seen, the hysteresis in this case covers a very large area. There is a large hole 

in the center of the hysteretic regions which is possibly an attempt to avoid the 5/3 entrainment 

domain (see Fig. 4). It does slightly overlap a hysteretic region of this domain, however, and in 

that small region there are four coexisting attractors: a pair of asymmetric (2/1) nodes, a period 

3 (5/3) node, and an invariant circle. On approaching this hole from regions b 1 , c, or d, period 

doubling bifurcanons occur (not shown) for the pair of 2/1 nodes. These become chaotic and a 

crisisV occurs at the hole boundary. In b 1  and c this is a boundary crisis and a jump occurs to 

the coexisting symmetrical oscillation. In d 1  this is an interior crisis in which the two comple-

mentary asymmetric attractors contact the separatrix between them and a loss of phase locking 

occurs. There is no jump or hysteresis in this case. It is important to note that an asymmetric 

2/1 entrainment is not distinguishable from a symmetry broken 1/1 entrainment. In fact one can 

get from the 1/1 region to the 2/1 region via symmetry breaking bifurcation at low current 1ev-

els (<0.65 mA rms) as shown in Fig. 15. 
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Figure 15. Experimental parameter space diagram near q = 2 resonance point. Coordinates are 
vs. 1 0(rms). Other parameters are fixed: R = -500 Q , C = 7.5 j.LF. Small figures below show 

the structure in a typical 2-D Poincare space for each region of the parameter space. Regions la-

beled a, b1, b2, c, d 1 , and d2 correspond to same labeled regions in Fig. 9 (theory). The differ-
ence between b 1  and b2  and between d 2  and d1 is a trivial change of a node to a focus. The 
figures are constructed from initialized Poincare Sections. 

3.1.3 Resonance of Order 3 
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This case is different from the first and second orders in that it occurs in the middle rather 

than at an end point of the Hopf bifurcation line. It is different from weak resonances in that it 

period of I 	J 	(ms) 

S k, Ir * 

LIC 

d1 bl b 

sn 

d2 

7 L± 
Figure 16. Experimental parameter space diagram for q = 3 resonance point. Coordinates are 
'r vs. 10(rms). Other parameters are fixed: R = -500 0, C = 7.5 .tF. Small figures below show 
the structure in a typical 2-D Poincare space for each region of the parameter space. Regions la-
beled a 1 , a2, b 1 , b-i, c 1 , and c2 correspond to same labeled regions in Fig. 7 (theory). The figurcs 
shown in these regions are constructed from initialized Poincare sections. 
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exhibits hysteresis, that the entrainment region is not horn shaped, and that entrainment is found 

on both sides of the Hopf bifurcation line. 

The case we studied corresponds to a frequency ratio of 5/3. The bifurcation diagram is 

given in Fig. 16 and some observed Poincare sections are shown in Fig. 17. There is agreement 

with the theoretical treatment shown in Fig. 7. Similar to the q = 1 and 2 cases, no period 3 

nodes are involved in the bifurcation at the resonance point, only saddle points and invariant 

circles. As before, there are period 3 nodes not involved in this bifurcation whose presence can 

be inferred from the unstable manifolds going towards infinity in Fig. 7. The result, as in the 

previous cases, is the formation of hysteretic regions, here a 1 , a2, b 1 , and b2. The attracting cir-

cle in the b 1  and b2  regions disappears in a homoclinic bifurcation at the b 1 -c 1  and b2-c2  boun-

daries when it contacts the period 3 saddle point. A distinctive feature of this case is that the 

bifurcation diagram is symmetric about a center line (Ir) across which the focus (and the circle 

in the b and d regions) changes from left rotation to right rotation with respect to the rotation of 

the period 3 attractor. Otherwise, the (1) regions and corresponding (2) regions are the same. 

The period 3 nodes undergo period doubling bifurcations (not shown in Fig. 16) as we move 

towards the line labeled cr(i). This becomes a period 3 chaotic attractor which loses phase lock-

ing through an interior crisis 27  at cr(i). 

3.1.4 Resonance of Order 4 

4 	 This is the last of the strong resonance cases. It can occur in a wide variety of forms - 

sometimes being similar to the weak resonance cases, sometimes having similar characteristics 

to the third order case, and sometimes exhibiting other complex patterns. 
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Figure 17. Initialized Poincare sections. (a) Parameters set in region b 1  of Fig. 16 [1 0(rrns) = 
1.325 mA, t1 = 11.75 ms] initialized on period 3 saddle point (arrow) - shows its unstable man-
ifold going Out to period 3 node and in to circle. (b) Parameters set in region c 1  (1.346 mA, 
11.78 ms). Central circle has disappeared in a homocinic bifurcation. The period 3 attractor 
has become chaotic through a period doubling sequence. Produced by initializing near central 
focus on route to period 3 attractor via a near pass by the period 3 saddle. 

The case studied corresponds to a frequency ratio of 3/2. It is an asymmetric type where a 

complementary pair of period 2 fixed points can bifurcate from the resonant point, thus giving 
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an order of q = 4. This case is the least well understood theoretically. Arnold 13  gives two pos- 

sible bifurcation patterns, neither of which have we seen. However, the three patterns we have 

It seen are nevertheless compatible with the present theoretical understanding. It was possible to 

observe more than one pattern by setting a third parameter (R) at different values. This has the 

effect of changing A and B in Eq. (12). B can, in fact, be eliminated from Eq. (12) by a change 

of variables, but since A is complex, one actually needs two additional parameters to explore all 

possible bifurcation patterns in this case. The first case is the one shown in Fig. 4 for R = -500 

ohms where the appearance is that of an ordinary resonance horn except that it emerges in a vee 

at the base. There is some slight hysteresis on the right boundary of the horn, but it seems to 

disappear as one approaches the bifurcation point. For R slightly more negative (— —600 2), 

this hysteresis is stronger and does appear to go all the way to the bifurcation point, giving us a 

second case. In the hysteretic region the entrained solution and the quasi- periodic solution 

coexist with different basins of attraction. 

For R more negative still, a third case occurs when this hysteresis extends below the line 

of Hopf bifurcation, as shown in Fig. 18. Note that unlike the resonances of second, and third 

order shown previously, these cases of fourth order resonance do involve stable nodes in the 

bifurcation of the resonant point. The saddle node and homoclinic bifurcations at the d-b 1  and 

d-a1  boundaries, respectively, are shown in progress in Figs. 19(a) and (b). The dots are the 

jump that occurred as the parameter (t1) was adjusted across the bifurcation point. 

3.1.5 Resonance of OrderS and Above 

While resonance of order q 5 always follows the entrainment horn form very near the 

bifurcation point, there can still be strong hysteresis that extends nearly to that point. Such is 

the case with the 7/5 resonance at 1? = -800 ohms shown in Fig. 20. Here the phase-locked 

a 
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Figure 18. Experimental parameter space diagram near q = 4 resonance point (third case). 
Coordinates arcr l  and 10(rms) with R = -750 Q, C = 7.5 pP fixed. Small figures below show 
the structure in a typical 2-D Poincare space for each region of the parameter space. Note: in 
the second case, region e is absent, and regions b 1  and d both emerge as wedge-shaped regions 
from the resonant point. 
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Figure 19. Experimental Poincare sections, 'L  vs. I, near q = 4. (a) Saddle node bifurcation 
at d-b 1  boundary of Fig. 18. The system was on one of the two complementary period 2 nodes 
in region d near the boundary. The parameter was t1 moved across the boundary and this orbit 
annihilated with a period 2 saddle. The dots are a single trajectory (a jump) to the invariant cir-
cle. (b) Homoclinic bifurcation at the ti-a 1  boundary. System was on the circle in region d near 
the boundary. Proximity of a pair of period 2 saddles to the circle produces corners. As the 
parameter is moved across the boundary, stability is lost and the trajectory jumps along the un-
stable manifold of one of the period 2 saddles (chosen at random) to the corresponding period 2 
node. The initialization (Sec. 1.2) was not used in these figures. 
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Figure 20. Experimental parameter space diagram [1 0(rms), t1] near q = 5 resonance point with 
R = -800 fl, C = 7.5 j.i.F. Small figures below show the structure in a typical 2-D Poincare 
space for each region of the parameter space. Note strong hysteresis (region d) and also overlap 
of 7/5 and 3,2 domains (region e) discussed in Sec. 3.3. The figures are inferred from Poincare 
Section data. 

circle exists only in a very narrow horn (a), while there is a very large region (d) where a 7/5 

entrainment coexists with an invariant circle. This region actually overlaps another entrainment 

domain(3f2), and we will be discussing this region (e) in Sec. 3.3. 



Part 2: Magnetic Oscillator 	 § 3.1.5 	 153 

3.2 Internal and Boundary Bifurcations of Entrainment Horns 

32.1 Symmetry Breaking and Period Doubling Bifurcations 

Period doubling bifurcations are the route by which the motion within a horn approaches 

chaos. These form a series of lines inside the horn that one crosses as one moves (in parameter 

space) away from the vertex inside the horn. In a case where the attractor is initially symmetric 

(i.e. the frequency ratio is MIN where M and N arc both odd as discussed in Sec. 2.3.1) these 

period doubling bifurcations will be preceded by a symmetry breaking bifurcation where two 

asymmetric attractors emerge from the initial symmetric' one. Figure 21 shows the 7/5 reso-

nance horn at R = -392 ohms. Note that the symmetry breaking (Sb) and period doubling (4) 

lines do not run parallel to the sides of the horn as one might at first expect but can run directly 

into it. This feature is less pronounced in the horn for R = -500 ohms, but other features are 

very similar. This behavior can occur only for certain types of Poincare maps - see discussion 

in Sec. 4.3.2. Chaos is reached at the xoe line. In Figs. 22(a) and (b) we show Poincare sections 

showing typical period doubling and symmetry breaking of a phase-locked circle. In both cases 

the bifurcating pairs of nodes split away from the circle, one going out and the other in. A sad-

dle point is left on the circle. 

3.2.2 Complementary Band Merging 

a 

It is well known that after an infinite sequence of period doubling bifurcations, a band 

merging sequence begins. A sequence of band merging (bm) lines could be found within a 

resonance horn starting with an infinite number of bands and decreasing by factors of two down 

to the original periodicity of the horn. However, in the initially symmetric case, there is an 
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Figure 21. Experimental entrainment horn (7/5) showing internal and boundary bifurcations, in 
(Jo, t 1 ) parameter space with R = -392 Q, C = 7.5 hF fixed. Abbreviations are defined in Table 
1. 
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Figure 22. (a) Symmetry breaking bifurcation of 7/5 phase-locked circle. Poincare section ini-
tialized at period 5 saddle point (arrow). The two attracting period 5 nodes are labeled a and b 
and iterate in the sequence ((1,2,3,4,5,1,2,...). Parameters: 1 0(rms) = 1.240 mA, t = 9.456 rms, 
R = -500 Q, C = 7.5 pF. (b) Period doubling bifurcation of 4/3 phase-locked circle. Poincare 
section initialized at one of the period 3 saddle points (arrow). The missing manifolds can be 
reached from the complementary saddle. This is a complementary type of phase-locked circle 
with a and b attractors as marked. Each has period doubled and iterates in the indicated se-
quence. Parameters: 1 0  = 1.210 mA,; = 8.855 ms, R = -500 fl, C = 7.5 IiF. 

additional bifurcation where the two complementary bands contact each other and symmetry is 

restored. What one observes is that in crossing this complementary band merging line (cbm in 

Fig. 21) the attractor will suddenly double in size as the region previously on the complemen-

tary attractor becomes accessible. This bifurcation is completely analogous to the earlier sym-

metry breaking bifurcation, and it may be considered as simply the final band merging of the 

attractor for the half-cycle map (see Sec. 2.3.1). In Figs. 23(a) and (b) we show Poincare sec-

tions just before and after cbm. 
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Figure 23. Poincare sections 'L  vs. Ig. (a) Just before complementary band merging. Double 
exposure shows both a and b attractors which iterate in the sequence shown. Parameters: 
I 0(mis) = 1.245 mA, 'r 1  = 9.354 ms, R = -500 Q, C = 7.5 pP. (b) Just after cbm, now single 
symmetric attractor. Parameters: 10(rms) was increased to 1.252 mA. 

3.2.3 Boundarj Bfurcations 

Prior to crossing the first symmetry breaking or period doubling line, the boundary bifur-

cations of a resonance horn are simple saddle node bifurcauons on the resonance circle as dis-

cussed in Sec. 2.2. Nevertheless, the invariant circle just outside the horn does not have to be 

smooth. For the Poincare section shown in Fig. 24 the horn has a symmetry breaking line just 

inside the boundary, so the stable cigcnvalue (transverse to the circle) is very near one, and thus 

has little ability to quench the transverse oscillations. One sees a laminar or periodic phase as 

the system slowly slips by the old nodal site, followed by a chaotic burst. This is a form of the 

2829 • intermittency route to chaos  
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Figure 24. Poincare section showing intermittency at 7/5 horn boundary. 

At the boundary of the horn in Fig. 21 between the sb line and the x2 line the boundary is 

reached with broken symmetry. For this to happen the period 5 saddle must also break sym-

metry before the boundary (similar to the type C period doubling in Fig. 5) so that each set of 

attracting nodes can annihilate with a set of saddles. The general structure just before the boun-

dary is shown in Fig. 25. Figure 26 shows a sequence of Poincare sections moving away from 

the horn boundary outside. The first (3.15a) clearly shows the remnant of the unstable mani-

folds of the complementary pair of period 5 saddles and their oscillatory approach towards the 

prior location of the pair of period 5 nodes. The following section (3. 15b) shows how this wild 

oscillation at the old nodal site dies out and a circle develops. 

Is 
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Figure 25. Drawing showing segment of phase-locked circle having broken symmetry saddles 
and nodes, near horn boundary and approaching saddle node annihilation. Shows heteroclinic 
crossing between the saddle points. 
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Figure 26. Sequence of Poincare sections after saddle node annihilation (in Fig. 25). AU at R 
= -392 fl, C = 7.5 iF, and t1 = 10.365 ms. (a) At a point nearest horn boundary (but outside), 
1 0(rms) = 0.971 mA. (b) 0.965 mA. 

As we move farther up the horn boundary, we cross period doubling lines and presumably 

the saddle points here also period double although these cases cannot be studied in much detail 

experimentally due to noise in the system. 

The upper boundary of the horn occurs when the expanding periodic attractor contacts the 

separatrix between it and the adjacent piece of the attractor. At this point an interior crisis 27  

occurs and entrainment is lost. In Fig. 27 we show the attractor just below and just above this 

boundary. Above the boundary the attractor makes a sudden jump in size, each piece now con-

tacting the adjacent piece. 
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Figure 27. Poincare section showing crisis at upper boundary of horn. Both at R = -392 Z C 
= 7.5 jiF, c 1  = 10.300 ms. (a) Still phase locked, 1 0(rrns) = 0.989 mA. (b) Loss of phase lock, 
1 0(rrns) = 0.991 mA. 

p 

3.3 Overlapping Entrainment Domains 
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It is possible for neighboring domains to overlap in some regions. When this occurs, the 

separatrices between the two attractors cannot be simple since they have different rotation 

numbers. We show such a case in Fig. 28, a Poincare section corresponding to the overlap of 

the 3/2 and 7/5 entrainment domains of region e, Fig. 20. Here there is a pair of period 2 attrac-

tors surrounded by a period 5 attractor. The unstable manifold of the period 5 saddle points are 

shown as it wraps around the period 2 attractors an infinite number of times. The stable mani-

fold of the period 2 saddle points (not shown) crosses this manifold as it spirals outward (coun-

terclockwise). Due to the peculiar kink in the period 5 manifold, the stable period 2 manifold 

crosses each winding of the shown manifold three times in succession. 

3.4 Entrainment Islands 

As is well known (e.g., see Ref. 30), Hamiltonian systems can exhibit "resonance islands." 

In Hamiltonian systems there are no attractors or repellers, rather the phase space is foliated into 

invariant manifolds by.the invariants of the system, e.g. the energy. These manifolds can be tori 

and the case of a rational frequency ratio is referred to as a primary resonance. One can find an 

initial condition for which the Poincare section for this resonance is a series of points. But for a 

nearby initial condition, the Poincare section will have the appearance of a set of small circles 

or "primary resonance islands," one encircling each of the points for the previous initial condi-

don. The Poincare map goes from one island to another with the same rotation number as 

before (the system is still in resonance) but now there is in addition a rotation about the islands 

for each iteration. When one looks closer, one finds "secondary resonances" and secondary 

islands located about these primary resonances, and so on ad infinitum. 

It is interesting that dissipative systems can be attracted to such islands. In Fig. 29 we 

show an entrainment domain in part of which attracting period 3 islands are found, These 
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Figure 28. Overlapping entrainment domains (7/5 and 3/2) shown in initialized (see Sec. 1.2) 
Poincare sections. (a) Initialized at period 5 saddle point (arrow). Shows unstable manifold 
leading out to period 5 node and winding in to pair of period 2 foci. Parameters: 1 0(rms) = 2.18 
mA, t1 = 7.070 rns, R = -500 92, C = 7.5 jiF (see Fig. 20). (b) Enlargement, showing tine struc-
ture and period 2 saddles (arrow). Note: initialization must be repeated many times (>100) to 
obtain these pictures. 
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Figure 29. Entrainment domain (1(3) in which a Hopf bifurcation to periodic "islands" occurs. 
Fixed parameters: R = -500 Q, C = 5.42 iF. Small figures below show the structure in a typi-
cal 2-D Poincare space for each region of the parameter space. Between the saddle-node (sn) 
and Hopf (H) bifurcations there must be a node-to-focus (at) bifurcation which is not shown. 

islands appear through a Hopf bifurcation of an ordinary period 3 entrainment. In Fig. 30(a) we 

show a phase portrait of the islands with strobing superimposed. 
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Figure 30. (a) Phase portrait with strobing superimposed, showing periodic "islands" for a 
point in region g of Fig. 29. (b) Frequency spectrum at same setting as in (a). 

As in the case of a 2-torus, a point on the attractor.can be described by two angles 01  and 

02 (see Sec. 2.3.3).. Only now 0 1  = otJ3 instead of o 1 r since three cycles of Co l  are required to 

get back to the original circle in the Poincare section. Thus the frequency spectra can contain 

the two-component harmonics of cof3 and o. However, this is a symmetric attractor and so 
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only odd harmonics are found: 

m0 1 
 +flO) 

where m and n are inte gers and m + n is odd. In the case presented, o 800 Hz (much higher 

than the other experiments in this paper), and w2 is very close to oI3. The frequency spectrum 

corresponding to Fig. 30(a) is given in Fig. 30(b). 

As seen in Fig. 29 there is strong hysteresis present. In one region the islands coexist with 

a surrounding circle, and in another they Coexist with a circle that is centered between them. 

These hysteretic regions terminate through variations of the homoclinic bifurcation, in which 

either the circle or the islands contact the period 3 saddle forming a homoclinic orbit connecting 

the three saddles in a single loop, or three loops, respectively. Beyond this point (in parameter 

space) the circle or islands involved cease to exist. In Fig. 31(a)-(c) we show the three bifurca-

dons of this type that were found. These Poincare sections were made by starting the system on 

- one attractor just before its annihilation point and then adjusting the parameter through the 

bifurcation point. The data represent a single transient from the annihilated attractor to the 

other attractor. They follow the unstable manifold of the period 3 saddle point involved in this 

bifurcation. 

4 ANALYSIS AND MODELING OF THE SYSTEM 

Up to this point our theoretical "model" has been Arnold's rather abstract theory of bifur-

cations near points of resonance. That is, we have measured Poincare sections near points of 

resonance, both strong and weak, and compared them graphically to the theoretical model. We 

now present an entirely different kind of theoretical model and compare with the data: we 

return to the basic equation jEq. (5)1 of the physical system and numerically splvc it under 
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Figure 31. Poincare sections of homocinic bifurcations in progress (shows loss of stability and 
jump). Initializing system (Sec. 1.2) not used. (a) Corresponds to hc..a in Fig. 29, three circles 
contact three saddle points, the attracting circles vanish and a jump occurs along the unstable 
manifold of the saddles to the coexisting external circle when crossing the boundary from re-
gion g to region f. (b) Reverse of (a) occurring at hc-b. Saddles contact outer circle and an in-
ward jump occurs to the three islands when crossing the boundary from g to h. (c) SiMilar to 
(b) but here the circle losing stability does not surround the islands (hc-c). Jump occurs when 
crossing the boundary from I to h. 
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VL 

several approximations for the relationship between H and B. This model is shown to generate 
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a noninvertible Poincare map of the plane, with important consequences for the dynamical 

behavior. We also develop another model for our physical system - a 2-D map determined 

directly from experimental data. This is accomplished by expanding the map in a 2-D Taylor 

expansion, with coefficients determined from sets of experimental data points. The objective is 

to obtain a model which can predict specific behavior of the system, e.g. the locus of points of 

resonance, the boundaries of phase-locked regions, and period doublings. 

4.1 Magnetic Core Behavior 

Our basic problem here is to explore the relationship between the magnetic field H and 

the magnetic induction B in the core. This system is highly dependent on core dissipation due 

to magnetic hysteresis, as well as nonlinear inductance due to core saturation, so highly 

simplified models will be of little value. 

In the most general case (assuming uniform B and H) we would expect that the present 

values of B and H would be some complicated functional of the previous excitation of the core 

[which could be specified by 'L  (t) or VL (t)] and would also depend on the initial state of the 

core S(t=O), which could be much more complicated than simply H(0) and B (0). Since 1L(t) 

is related to H(t) by Eq. (4) and VL(t)  is related to B (t) by Eq. (3), we could in principle find 

H (t) as a functional of B (t) or vice versa: 

H(t)=H[B(t'),O< t'<t,S(0)]. 	 (21) 

Dealing with such a functional would be very difficult even if we knew what it was, so instead 

we will examine the behavior of the core at very low frequencies. Here we can make the 

approximation (as discussed in Sec. 1.1) that H is a monotonic function of B which changes at 

the turning points of B, whenever B changes sign. At low frequency we can assume that H and 

B change sign simultaneously. This function can only depend on the previous turning points of 
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H (or equivalently of B) and the initial state of the core: 

H=H[B,H,,,S(0)], 	 (22) 

where H,, aie all prior turning points of H (i.e. where H and B = 0). This behavior suggests 

that it may be fruitful in some cases to consider the behavior in terms of a map from the state at 

one turning point to the next. This idea is further developed in Sec. 4.3.1. 

The complicated B —H behavior of the core is due to a combination of reversible (energy 

conserving) and irreversible (dissipative) changes in the polarization of the magnetic domains. 

Just following a turning point in B, the reversible processes tend to dominate. These are typi-

cally smooth Bloch wall motions (i.e. motion of the domain boundaries) at low B, and smooth 

domain rotation at high B. In this region 3B IaH is low. After a while these smooth motions 

tend to get stopped at imperfections in the core material. These are passed in irreversible jumps 

resulting in minute jumps in B. Here aB /aH steepens. Ultimately B is limited by saturation 

when all domains point in the same direction. The work done on the core can be obtained using 

Eqs. (3) and (4): 

W = JVL IL dt =JLABHd: = LA JHdB. 	 (23) 

This shows that the energy dissipated in a cycle is proportional to the area enclosed by the hys-

teresis loop. 

4.2 Scaling Properties 

In this section we will explore ways in which the system can be "scaled's to give 

equivalent behavior at some new set of parameters. In so doing we will discover how many 

parameters must be varied to cover all distinct modes of behavior. 
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From Eq. (5), 

H=-I0sin(olt)---B— 
nAC  B. 	 (24) 

If B changes slowly enough, then H depends on the path taken by B (as could be specified by 

the turning points) but not how fast that path is traversed. This means that we can consider 

changing the frequency as well as the other parameters. Let 0 = co l t, then 

dB 	d2B H=ct1sin0 - a2 	—a3 ---, 
dO 	dO2  

where 

n 2Ao 1 	n 2ACco? 

RL 
anda3= 	

L 

Thus in this approximation we need to vary only three parameters to cover all distinct behavior 

patterns. Any change in the parameters that leaves the a's unchanged will not effect the type of 

behavior the system exhibits; thus we obtain the scaling constraints: 

nAo 1 	 nAC 
- L=land 	- 	=1. 

L 	R 	 L 
(26) 

where the indicates that this is the ratio of the new value of the parameter to its original value. 

Using Eqs. (3) and (4) we find 

VL  = ' ) i' 'L = 	and (= I/C-0 1 	 (27) 
if 

where the - indicates that this is the ratio of the variable with the new parameters (at the new 

time) to its original value (at the old iime). 

In the general case where H is some functional of the previous history of B (t), we must 

also require = 1 in order to scale the system. In this case we need four parameters to fully 

explore the behavior of the system (e.g. I, (, R, and C). 

In the experiments presented in this paper (near 100 Hz) the low frequency scaling rela-

tions for co l  # I are found to be only roughly correct. However, if R is varied slightly from the 

(25) 

value it should have from Eq. (26), a value can be found for which nearly identical behavior is 
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found at the new frequency. It is believed that this adjustment can compensate for a slight 

change in dissipation per cycle in the magnetic core at the new frequency. For most of the data 

presented, only three parameters are varied: I, oi  and R. 

43 Irreversible Differential Equation Model 

In Section 4.2 we saw that the behavior of the forced system could be described by Eq. 

(25), a differential equation in H and B. Clearly we must be able to express H as a function of 

B in order to have a solvable model for the behavior of the system. Since we are operating at 

low frequencies (typically 100 Hz), we can make the approximation that the core is in 

quasiequilibrium. Then there will be some mono tonic relation between B and H, and this rela-

tion will change (because of magnetic hysteresis) whenever B changes sign. The resultant 

equation of motion is irreversible. As B is changed continuously in one direction, and particu-

larly as it approaches saturation, it is reasonable to expect the core to "forget" its previous his-

tory as the magnetic domains become aligned in nearly the same direction. H (B) approaches 

the saturation curve Il  (B) which is the same each cycle. The state of the core (under these 

conditions) can be described by a single variable, H or B, without any significant dependence 

on previous history. Thus, when the turning point of the magnetic induction, Brp,  occurs well 

into the saturation region, we can expect that the function H (B) which is followed until the next 

turning point can be reprcscnted approximately as a function of Brp,  i.e. H = H (B ,BTp). - 

Most of the dynamics described in this paper occur under conditions where the magnetic 

core is going from near saturation in one direction to near saturation in the other. We can there-

fore use the approximations just discussed to develop an empirical model for the H (B) function 

which can be used in Eq. (25) to approximately describe the dynamics of this system. We have 

chosen a form roughly based on the observed dynamics in the B —H plane, but left certain 
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coefficients free to be varied (within reasonable limits) to obtain the best agreement between the 

Hopf bifurcation Line of the model and that of the actual system (see Fig. 4). In this model the 

saturation hysteresis loop is represented by the function 

• 	 Hs B)=fB 5 +f 	 (28) 

where w and f are constants. This is the increasing branch of the ioop, the decreasing one is 

related due to core symmetry, i.e. it is just fB 5  - w /2. The parameter w can be thought of as 

the width of the loop, since it is the difference between the increasing and decreasing branches. 

A fifth power was chosen for I-1 (B) because it was a good fit to the observed curve. However, 

the exact function is not critical to the behavior of the model; qualitatively very similar results 

can be obtained using a cubic function or even an inverse tangent function. 

As stated previously, Ifs  (B) must describe the asymptotic behavior of H (B). Thus H (B) 

is given by II  (B) plus a term which decays as B increases. In order to obtain a simple model 

we chose a decay function which decays completely to zero for some finite change in B, 

corresponding to the approximation that past history is completely eliminated beyond a certain 

point. The form used is 

H(B)H5 (B)+H0 (B), 	 (29) 

where the decay term HD  (B) is given by 

—w (B + BD B )21B02  for B :5 Brp + BD 
H 'B'— 	 (30) 

0 	 forB ~ BTP+BD 

B0  is a decay constant, and Brp  is the last turning point for B. This model is only to be used 

when the oscillations always result in a change in B between turning points greater than B0. 

Otherwise a more complicated model is required, such as one in which H (B) depends on 
I,  

several (or all) previous turning points of B. The exact form of the decay function is of course 

very difficult to determine experimentally, but the dynamics do not appear to be strongly depen-

dent on the form used, provided it merges smoothly (i.e. continuous first derivative) with the 

saturation curve and that the decay length (here B0) can be adjusted. It should be emphasized 
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that this model for H (B) results in making Eq. (25) an irreversible differential equation. This is 

because H(B) depends on B 7-, the previous turning point. To follow the equation in reverse, 

we would need to know B before reaching it. As it turns Out, it is impossible to find the 

proper value of Brp to use because the solution to the reversed equation is not unique. This will 

be discussed further in Secs. 4.3.1 and 4.3.2. 

The dynamics of Eq. (25) were explored numerically using a 4th order Run ge-Kutta 

method31 . Our experimental estimates for the parameters are: f z60, W3.3,  and BD  0.4. In 

order to attempt to compensate for a variety of effects not included in the model, we adjusted 

these slightly, obtaining a reasonable fit to the experimental bifurcation set with f = 60, 

W = 4.00, and BD = 0.357. The resultant Hopf bifurcation line and points of resonance are 

compared with the experimental line in Fig. 32. The model also exhibits entrainment horns and 

other features in qualitative correspondence to those observed experimentally (Fig. 4). The 

main difference is the greater slope of the Hopf bifurcation line of the model relative to that 

observed. No reasonable adjustment of the three model parameters will correct this difference 

nor does any alternate form thed for the saturation curve such as a cubic function or an inverse 

tangent function. It is possibly the result of some departure of the real system from our quasis-

tatic approximation. 

In Fig. 33 we show typical phase portraits for the model for a 1:1 phase-locked case [Fig. 

33(a)] and a quasiperiodic case [Fig. 33(b)]. As can be seen, these compare quite well with 

similar experimental results given in Figs. 2(a) and (b). 
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period of 15 (t) 	(s) 

Figure 32. Comparison of points of resonance resulting from the differential equation model 
with those fmm the experiment. The same points are shown as on the H line in Fig. 4. The 
parameters were adjusted for exact agreement with experiment at the 312 point. 
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Figure 33. Typical phase portraits generated by the model. (a) 1:1 phase locking, below the 
line of Hopf bifurcation, cf. Fig. 2(a). (b) Quasiperiodic, above the line of Hopf bifurcation, cf. 
Fig. 2(b). 

4.3.1 Reduction to a Noninverrible Planar Map 

The process of merging with the saturation curve Hs  (B) corresponds to the contraction of 

the dynamical system to a lower dimensional phase space. Before the merging has occurred, we 

need to know B and BTP - to represent the state of the core, and VL and e (the inductor voltage 

and the phase of the driver, respectively) - to represent the state of the driver and linear corn-

ponents. But after H (B) merges with H (B), the dependence of the model on Brp vanishes 

and the phase space is three-dimensional. We can eliminate one dimension by defining a Pain-

care section and studying the dynamics of the mapping defined by successive intersections of 

the orbit with this surface of section. The logical choice is to use the section defined by VL = 0, 
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since this is the turning point for the magnetic induction B and therefore the point of maximum 

saturation. Thus the Poincare space is two-dimensional - one dimension represents the state of 

the core (e.g. B or H or IL)  and one represents the state of the driver (e.g. B or!g). Note that 

most of the experimental Poincare section data given in this paper are in the (!L  !) space 

strobed at VL =0. 

The differential equation model [Eq. (25) with Eq. (29) for H (B)] can easily be used to 

generate the corresponding Poincare map. In Fig. 34 we show a typical example, produced by 

iterating a square grid through the mapping. This is actually a half cycle map (see Sec. 2.3.1), 

i.e., we follow the differential equation from a positive turning point initial condition to a nega-

tive turning point and then take the complement of the result (by changing the sign of 'L  and Is 

to give us another positive turning point state. This gridwork representation gives us a com-

plete description of a two-dimensional map in a single figure. It is also the clearest way to show 

the noninvertibility of the mapping, since one can easily see that it folds over onto itself so that 

there are two choices for the pm-iterate of a given point. There is a line in the Poincare space 

where the Jacobian (defined in Sec. 4.3.3) of the mapping is zero, as shown in Fig. 34(a). This 

is the line which maps into the fold in Fig. 34(b). On one side of this line the Jacobian is posi-

tive (the right side), so the map is orientation preserving, while the other side of the line has 

negative Jacobian and is orientation reversing. This line is very important to the dynamics and 

is discussed further in Sec. 4.3.2. 

4.3.2 Effects of Irreversibiliiy 

We would first of all like to point out the fact that Arnold's theory for diffcomorphisms 

may still be applied in spite of the global noninvertibility of the mapping. This is because the 

mapping may be considered locally invertible near the fixed point, i.e. for a given point near the 
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Figure 34. The 2-D Poincare map for the model, shown by iterating a grid pattern. At this 
parameter setting, the attractor is phase locked at a 115 rotation and has period doubled once. 
[This actually corresponds in the experiment to a point in the 7:5 horn just past symmetry 
breaking, see Eq. (17) and Fig. 22(a).] (a)Shows grid pattern, attractor (points) connected by 
dashed lines showing the iteration sequence, and zero Jacobian line. (b) Iterate of the grid pat-
tern. The fold is the iterate of the zero Jacobian line. 
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fixed point the inverse mapping of this point is unique if we require that it also be near the fixed 

point. Typically there will be a second value for the inverse mapping, but it will be far from the 
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4 

fixed point and will have no effect on the local dynamics. 

While it is expected that high order phase lockings will follow circle map behavior3 -6 

when near the critical "chaos" line in the parameter space, low order phase lockings can exhibit 

more complex behavior patterns not adequately described by a (l-D) circle map, requiring at 

least a 2-D map model. The irreversibility of the map can also play an important role in the 

dynamics. For an orientation preserving map, both eigenvalues of a fixed point (if real) must 

have the same sign. Also a 2-D map must always be orientation preserving near a focus (or 

spiral fixed point). In Fig. 22(a) we showed the symmetry breaking of a period 5 fixed point. 

This occurred when one eigenvalue of this periodic fixed point became less than -1. In a rever-

sible orientation preserving map, the other eigenvalue would have to be negative as well, but 

this eigenvalue is observed (in the experimental system) to be positive. This is possible because 

one of the points on the period 5 orbit has (as we moved up the horn) crossed the line of zero 

Jacobian as shown for the model in Fig. 34. This makes the Jacobian negative and requires that 

the eigenvalues be of opposite sign. This can effect the qualitative structure of the bifurcations 

within the entrainment horns. The bifurcation pattern shown in Fig. 21 cannot occur for a 2-D 

reversible orientation preserving map. The reason is that the sequence of lines labeled sb, x2, 

xeo, and cbm all intersect the left boundary of the horn. At the points of intersection we 

must have eigenvalues of +1 and -1 (+1 for the saddle-node at the boundary and -1 for the 

period doubling); hence the map must exhibit orientation reversal. We know that the map also 

exhibits a Hopf bifurcation; and since this is a bifurcation of a Thcus, it requires an orientation 

preserving map. In order for a map to exhibit both reversing and preserving regions, it must 

(for nondegenerate cases) exhibit a folding character as shown in Fig. 34 and hence be irreversi-

ble. This restriction does not apply to higher dimensional maps since these will have additional 

cigenvalucs whose signs can be adjusted so as to maintain a positive Jacobian and allow a 

reversible map under the conditions described. Hence the experimental bifurcation pattern 

shown in Fig. 21 can be exhibiled by inveri.iblc or noninvertible maps of dimension greater than 
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2, but only by noninvertible maps of dimension equal to 2. 

423 Numerical Methods Used in the Model 

The locations of the points of resonance for the model as shown in Fig. 32 were deter-

mined using the Jacobian matrix for the mapping. For an arbitrary mapping X' = F(X) the Jaco-

bian matrix is given by: 

aF a .  
(31) 

The determinant of this matrix is the Jacobian J. In the present application, the Poincare space 

is two-dimensional, so J is a 2 x 2 matrix. Since the mapping is defined by integrating the dif-

ferential equation model, J must also be detemiined numerically. This can be done by iterating 

two points which are very close together, i.e. 

J(X) = [F(X + Dp) - F a(X Dp)1/2D, 	 (32) 

where Dp is a small displacement in the 0 direction. The first step to locate a particular point of 

resonance in the parameter space is to find the fixed point in the Poincare space for some param-

eter setting thought to be near the resonance point. It is quite impractical to do this by repeat-

edly iterating the map, because the fixed point is on the verge of instability and will exhibit 

exceedingly long decay times. However, if X0  is the fixed point, then locally the mapping is 

given approximately by the linear relation 

X'X0 +J(X—X0). 	 (33) 

thus 

X0  = ( l—J)[F(X) - J•x}. 	 (34) 

Successive iterations of this estimation procedure for X0  rapidly converge, provided the initial 

point was not too far away. The second step to locating the points of resonance is to look at the 
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eigenvalues of J. They must be of the form. 

e=exp(±itp/q)=A()±iB 0 , 

where p /q is the rational rotation number (for the half cycle map) corresponding to that point of 

resonance. If the eigenvalues of the fixed point for parameter setting P are actually 

A (P) + iB (P), then an estimate for the location of the resonance point P0  can be made by look-

ing at the local variation of A (P) and B (P) with P. Define 

[DA lap 1  aA/P 2  

C = 3B laP 1  a iap2 	
(35) 

The components of C can be determined numerically using small deviations in the parameters 

P 1  and P2. e.g., aA/aP 1  = [A (P + 5p 1 ) A (P 5p 1)]/25p 1  The location of the fixed point may 

change when P is changed by 5, 1 , so it must be relocated before A and B can be determined. - 

The estimate for P0  is then given by 

Po =P+c_1 .[o1]. 	 (36) 

Successive iterations of this procedure rapidly determine P0  for a particular resonance point to 

high accuracy. 

4.3.4 Corrections to the Model 

We will now briefly discuss a few modifications which can be made to improve the model 

for H(B), Eq. (29). These fall into three general categories: (1) functional changes, (2) time 

0. 	 dependent effects, and (3) higher dimensional effects. 

(1) The most obvious changes to consider are to improve the accuracy of the functions 

Hs (B) and 110 (B). We used a fifth power for Hs  (B), but this function could instead be 

expanded in a Taylor series of several terms, or represented by a sequence of data points deter- 
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mined experimentally: A similar improvement could be made for the function j1D  (B ),.e.g., the 

decay length BD  could be made dependent on the turning point BTp and the functional form 

may be modified to more accurately agree with experimental measurements. 

Deviations from the approximation of quasistatic field changes in the core may be 

corrected for an improved model. It is found experimentally that H is slightly increased when 

B is nonzero. If we assume that zJ-1 oc  B, then this is equivalent to having an effective resis-

tance RE  in parallel with the quasistatic model. 

Increasing the dimensionality of the model is to be avoided if possible, since this will 

complicate the numerical computations. However, a discussion of the higher dimensional 

effects is useful since it may lead to insight into how to correct the model to compensate for 

these effects without increasing its dimension. The higher dimensionality arises when the H(B) 

function does not completely merge with the saturation curve Hs  (B), and when the core retains 

some "memory" of earlier turning points in B. In our model we have artificially eliminated 

such effects by making the decay term ND (B) go to zero when B has changed by BD. In a 

more realistic model we would expect some kind of exponential decay, never going completely 

to zero. Thus there remains some remnant of past history, the true dimensionality being effec-

tively infinite. However, so long as these higher dimensional effects are small, one can hope to 

compensate for them and retain a 2-D Poincare section for the modeL One approach would be 

to apply some correction term to the Poincare map (as generated by the differential equation) 

which compensated for the fact that H (B) for the experimental system was slightly displaced 

from the saturation curve lf  (B). 
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4.4 Measuring the Map Coefficients - Experimentally Determined 2-D Taylor Expan-

sion 

The reduction from a flow to a mapping is a very useful one since the mapping exhibits all 

of the important dynamics of the flow while being much easier to analyze. Unfortunately, this 

reduction cannot be accomplished analytically for most differential equations. Instead, we have 

decided to try another approach here - expanding the map in a 2-D Taylor expansion and deter-

mining the coefficients. Since our differential equation model is not in perfect agreement with 

the observed behavior, we make this expansion directly from experimental data, attempting to 

improve the agreement between the bifurcation set of the model and of the experiment. 

The expansion must be carried out in both parameter space and in Poincare variable space. 

We have chosen to make the parameter expansion about the center point on the line of Hopf 

bifurcation - the 3:2 resonance point (see Fig. 4), and the Poincare variable expansion about the 

central focus which undergoes the Hopf bifurcation. Nonlinear terms through third order in the 

Poincare space are crucial to the dynamics when near the Hopf bifurcation. While it is true that 

the Hopf bifurcation of a map can be reduced to a complex normal form 12  having just a single 

nonlinear (cubic) term, we were also interested in folding (irreversibility) of the map, a proper 

description of which may require a more complex knowledge of the nonlinearities than a single 

term. Therefore, we have carried out a full expansion to third order. For a 2-D expansion in 'L 

and I, this entails four linear terms, six quadratic terms, and eight cubic terms: 

IF 
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ILAJIL+Af5IS 	 (37) 
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There are no constant terms because we have shifted the coordinates (IL'  I) so that the central 

focus is at (0, 0). We restrict the parameter dependence to the linear coefficients, 

A1 , Aç, ASL,  and Ass. A linear expansion in the parameters 'r 1  and I 0  requires three terms for 

each linear coefficient: 

ALL =ANL '4LLO  +AT Lt1 +Aw Ala 	 (38) 

ALs =A NL  A 0  +A. &r1  +A 1  M 0  

ASL =ANLASLO +ASLT&Cl+ASU&1O 

Ass = ANL A 550  + A55. Ax 1  + Assj M 0  

where A r, and M 0  are the displacements from the location of the 3:2 resonance point (located at 

10.8 ms and 1 0  = 1.22 mA), and ANL  is a nonlinear correction factor used to correct the cur-

vature of the Hopf bifurcation line, which is approximately unity for small displacements. The 

form used for ANL is: 

ANt 	 (39) 

The reason for keeping so many terms is to obtain some degree of quantitative agreement with 

experiment, both for the bifurcation set in parameter space and for the attractor(s) in Poincare 

space. 

The linear coefficients and their parameter dependence were determined by examining the 

attractor for a number of parameter values. These parameter values were all chosen to be in the 
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quasiperiodic regime, slightly above the Hopf bifurcation line (hereafter referred to as the H 

line). Here the attractor is a set of points lying approximately on an ellipse which is centered on 

the unstable focus, which is the ori gin of our expansion. The four linear coefficients can be 

approximately detexmined from four features of this attracting ellipse: (1) the rotation number, 

i.e. the average angular jump around the ellipse between successive points; (2) the Jacobian of 

the mapping - this is approximately unity if very close to the H line (as is the case); (3) the 

eccentricity of the ellipse; and (4) the angular tilt of the major axis of the ellipse. The eccentri-

city and tilt are easy to determine by inspection and are found to only change slightly along the 

H line. The rotation number is known accurately from previous measurements locating the 

points of resonance (having rational rotation number). In addition to the behavior along the H 

line, we also need the behavior transverse to it. This is more difficult, since the Jacobian is no 

longer equal to unity when we move away from the H line. This generally requires using ini-

tialization techniques (see Sec. 1.2). For points above the H line we initialize the system near 

the central focus, and observe the outward spiral of the orbit. Sufficiently close to the central 

focus, the nonlinear terms will be negligible and the linear terms can be determined to fit the, 

experimental sequence of points. Following this procedure the linear coefficients were deter-

mined: 

ALJJ, = 1.082499, A LSO  = —7.576032, Asw  =0.286668, Asso 	1.082499, 

ALJJ =-0.26553, A g  = 1.1066, 	ASLT =-0.0013991, A 5gj' 	0.19248, 

Auj = 1.0051, 	Aisi  =-22.464, 	Asij = 0.36103, 	Ass, 	4.7891. 

Knowledge of the linear terms is all that is needed to locate the H line and points of reso-

nance. The linear expansion in the parameters, however, is only accurate near the point in 

parameter space we are expan'ding about, i.e. the 3:2 resonance point. In order to obtain some 

degree of long range agreement, we found it necessary to modify the linear expansion. How-

ever, rather than going to a full quadraLic expansion in the parameters, we have chosen instead 

to use a nonlinear correction factor ANL  [Eq. (39)] requiring only three additional coefficients, 
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rather than 12. These are adjusted mainly to correct the curvature of the H line to improve 

agreement with experiment. Using A--A  = -0.02266, AT! = -0.37898, and A ll  = -1.5512, we 

obtain the results shown in Fig. 35, in which the H line for the model is compared with the 

experimental H line. As can be seen, agreement is excellent near the 3:2 point, but deteriorates 

slightly towards the end points. 

In order to determine all 14 nonlinear coefficients (through 3rd order), a more sophisti-

cated approach must be taken than that used to determine the linear coefficients. By taking a 

sequence of points in the experimental Poincare section, which are sufficiently far from the ori-

gin to make nonlinear effects important, we use the method of least squares 31  to determine the 
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Figure 35. Comparison of the points of resonance resulting from the measured map coefficient 
model with those of the experiment (same points as in Figs. 32 and 4). 
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set of coefficients giving the best fit of the approximation to the experimentil mapping between 

successive data points. This method requires one to invert a large matrix, and thus must be car-

ried out on a digital computer. We took data for an outward spiraling transient (from which we 

used 13 successive data points) leading to a 19:13 phase-locked attractor (from which all 13 

points were used). The atrractor was far enough out that it deviated siificantly from a cen-

tered ellipse, but still close enough to the origin that higher order terms (beyond cubic) might 

reasonably be neglected. The transient was important for the proper determination of the linear 

coefficients. The result of this calculation is the set of nonlinear coefficients given below: 

AUL =-0.014745, A 1 	0.42672, Ajg 	3. 1192, 

As,j-0.020851, A sj 0.23495, A1.5591, 

Aujj, —0.047467, Ajg 0.15150, Aijs  =0.094472,  Ass  1.0667, 

As111 0.0084 103, Asjjs i056690, A5s =0.12257,  Assss  0.39779. 

The mapping thus determined agrees quite well with the experimental data points, the rms error 

for all points being about 1% of the range of the data set. 

In Fig. 36 we show the boundary of the 3:2 horn from experiment (solid line) and model 

(dashed line). Also shown is the interior line which marks the first period doubling bifurcation. 

Agreement is fairly good considering that we only carried out the parameter expansion for the 

linear coefficients. 

This represents the first attempt (to the author's knowledge) to accurately measure the 

coefficients for a 2-D damping directly from a dynamical system. The approach of expanding 

as a Taylor series has shown some degree of quantitative agreement with a complex physical 

- system. The accuracy of the results should be expected to improve dramatically if the order of 

the expansion is increased, with coefficients calculated from a larger data set. This approach 

may be valuable for other systems which, due to their complexity, cannot be modeled accu-

rately with a differential equation based on Iirst principles. High dimensional systems will gen-

emily exhibit low dimensional dynamics when near an instability, such as Hopf bifurcation, and 

thus can (when near the instability at least) be accurately described by a low dimensional 
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Figure 36. Boundary of 3/2 horn and first period doubling line in its interior. Solid lines - ex-
perimental data; dashed Lines - computed for measured coefficient model. 

mapping. 

5 SUMMARY AND CONCLUSION 

The driven symmetric nonlincar magnetic oscillator described by Eq. (5) has a very rich 

dynamical behavior, for which extensive data has been presented. An overall view of the 

behavior is given by Fig. 4, in the parameter space (I s , t1). A dominant feature is the Hopf 

bifurcation to quasiperiodicity, together with the formation of entrainment horns and hysteresis. 

Within a horn there are period doubling cascades, internal crises, and loss of entrainment. 

I 
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Between horns the system follows a quasiperiodic route: loss of smoothness of the Poincare 

section at an irrational rotation number followed onset of chaos. Also observed are symmetry-

breaking bifu.rcations and homoclinic bifurcations. The system exhibits a Hopf bifurcation 

from an entrained state to periodic islands, similar to those found in Hamiltonian systems. 

Phenomena near and on the phase locking boundaries have been explored in detail. Bifur-

cations near points of resonance are observed, and can be understood from Arnold's theory of 

versal deformations of the plane. By a novel technique of repeated initializations of the system 

we observe "hidden" behavior (e.g. motion on both unstable and stable manifolds of saddle 

points) in a 2-D Poincare space and compare to the theory, with excellent agreement. Much of 

the complex behavior observed, including multiple attractors and hysteresis, are found to result 

from the behavior at these resonance points. We believe that this is the first detailed study of 

strong resonance in a physical system. 

Important properties of the behavior related to symmetry arc explored. The concept of a 

half-cycle map is developed which explains much of the observed behavior such as the 

existence of two types of resonance points - symmetrical and asymmetrical, how their order q 

is related to the frequency ratio M IN, why a symmetry breaking bifurcation may precede a 

period doubling sequence, and why a complementary band merging may follow a band merging 

sequence (of the chaotic attractor). Symmetrical quasiperiodic attractors containing only odd 

2-component harmonics are observed [Fig. 2(b) and (c)] and explained (Sec. 2.3.3). 

In a second, and quite different, kind of theoretical analysis, a differential equation model 

is developed, based on empirical properties of the magnetic core, which gives good qualitative 

agreement with the physical system in terms of the bifurcation patterns observed and the locus 

in parameter space of the points of resonance. This model leads to a noninvertibic map of the 

plane, with important consequences for some of the behavior exhibited. 
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Based on the assumption that a 2-D mapping could represent an accurate model for the 

physical system, this mapping has been expanded as a 2-D Taylor series with the coefficients 

measured from experimental data. The resultant modcl shows improved quantitative agreement 

with experiment for its bifurcation set over the diffcrcniial cquation model, as well as being fas 

ter to analyze numerically. Specifically, good agreement is found between this model and the 

data for the actual locus in parameter space of the Hopf bifurcation line, horn boundaries, and 

period doubling boundary line. Similar techniques could be useful in modeling other physical 

systems which are too complex to be described by a differential equation based on first princi-

pies. These modeling techniques may have applications in engineering as well as in the study 

of other nonlinear phenomena. 
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PART 3: 

NOISE RISE IN JOSEPHSON JUNCTIONS 

1 INTRODUCTION 

This part of the thesis is concerned with a practical problem - an anomalous "noise rise" 

that was observed to occur in Josephson Junction parametric amplifiers. A theory is presented 

which offers an explanation for this effect. The theory is based on a "dynamical systems" 

approach to the problem, the results of which may be applied to a broad class of similar sys-

tems. Predictions are made which may be tested in future experiments. 

About a dozen years ago, the first Josephson junction parametric amplifiers were built and 

studied.1 6  These devices achieved good signal gain of electromagnetic radiation in the difficult 

frequency range - 1 - 100 GHz, a range important for astrophysical observations. Unfor-

tunately, these amplifiers have proven impractical because of a noise problem - the so-called 

noise rise5 - - previously unseen in other kinds of parametric amplifiers. Typically, one 

expects the ratio of signal amplification G  to broadband noise amplification G to be a con-

'stant for a given device, independent of parameter settings: this ratio is proportional to the noise 

temperature T characterizing the amplifier. The Josephson devices, however, display a noise 

temperature which is an increasing function of G: that is, the greater the signal gain, the worse 

the signal-to-noise ratio, until the noise output overwhelms the coherent signal. 

Although a variety of explanations have been forwardcd,8 14  this noise rise phenomenon 

m 

remains an open problem. The purpose of this paper is to examine a new mechanism that 
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results in a gain-dependent noise temperature. This theory exploits very recently developed 

insights linking parametric amplification to the generic properties of nonlinear dynamical sys-

tems near the onset of simple bifurcations.15 - 17 Besides generating a noise rise like that 

observed in past experiments, the theory leads to a number of predictions to enable future 

experiments to determine whether the present mechanism is truly at play. 

The idea that any time-periodic dynamical system can be used as a parametric amplifier 

near a simple bifurcation point has been supported by experiments involving nuclear magnetic 

resonance lasers, 16  electrical analog circuits, 15  Barium Sodium Niobate crystals, 18  and a 

mechanical "bouncing ball" system. 19' 20  The reason why general quantitative statements can 

be m&le about small-signal amplification properties in such diverse physical systems rests on 

ideas from bifurcation theory. Near an instability, the relevant phase space dimension typically 

reduces to a very small number - for the cases relevant to this paper, the effective dynamics 

reduces to a one dimensional phase space. This reduction of dimension results in so-called 

"universal" behavior, with results that are independent of physical details. Although this 

universality holds only close to the bifurcation point, it is precisely near such points that 

parametric amplifiers achieve high gain. This happy coincidence is the linchpin of the theory 

presented in this paper. 

Previous attempts to explain the origin of the noise rise have all examined directly the 

specific circuit. equations governing the dynamics of Josephson junction parametric 

amplifiers.8 -14  A succinct and informative review of many of these theories may be found in 

Ref.lO. With one exception, which suggested that the noise rise is due to deterministic 

chaos,1' 13  these explanations involve the presence of external noise, as we,do here. Of these 

theories, the work presented here has most in common with the idea of the "phase instability" 

(invoked by Chiao et al. for the 4-photon mode 7  ) and the noise-induced hopping picture 

(described by Miracky and Clarke for the 3-photon mode 14 ). The essential ingredient in each 

of these is that the amplifier dynamics can have multiple solutions - in dynamical systems 
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parlance, there can be coexisting attractors - and external noise can "kick" the system back 

and forth between these stable solutions. In each case, analog simulations of the governing cir -

cuit equation supported this basic picture. 

A major difference between previous work and the present paper is that. rather than 

proceed from a direct analysis of the circuit equations valid for the Josephson junction devices, 

we focus on the universal dynamics valid in the neighborhood of a bifurcation point. (The 

appropriate "universality class" depends only on the type of bifurcation encountered; conse-

quently, the 3-photon mode is described by a different normal form than is the 4-photon mode, 

as explained in Sec. 3.) This new approach should be viewed as complementary to the body of 

work based on the detailed circuit equations. The present theory has certain advantages, both in 

its power to explain previous observations and to make several new, experimentally testable 

predictions. On the other hand, the weakness of this approach is that it only predicts the scaling 

behavior for the parameter dependence of various physical quantities, and not their absolute 

magnitudes. For example, we do not quote values for the noise temperature in degrees Kelvin, 

nor do we explain the physical origin of the random external fluctuations (e.g. shot noise, John-

son noise, etc.). Because of this complementary relationship, we try to make contact between 

the results of this study and previous theories wherever possible. 

This paper is organized as follows. Sec. 2 briefly describes the previous noise-free 

theories of the 3- and 4-photon modes, and recaps the recent insights linking dynamical instabil-

ides and parametric amplification. Sec. 3 discusses in detail the reduced "normal form" equa- 

- dons appropriate for each mode. The results of digital and analog simulations of these reduced 

equations are presented in Sec. 4, examining in detail the properties of the noise rise in each of 

the two modes. Analytic expressions for the signal gain and the noise gain, valid in certain lim-

iting parameter regimes, are derived in Sec. 5, and compared with the simulations. Sec. 6 is 

devoted to a discussion of how to apply the results to experimental data, and provides a number 

of specific predictions for .fi.iture experiments. Applying this general theory to two new 
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situations is the focus of Sec. 7. We discuss the possibility (and potential advantages) of 

operating the Josephson junction parametric amplifier in a 6-photon mode, and also discuss the 

relevance of the general theory to an entirely different system, namely modulated semiconduc-

tor lasers. Finally, the results are summarized in Sec. 8, with a brief look at what these results 

suggest about the theoretical optimal performance of parametric amplifiers. 

2 BACKGROUND 

Josephson junction parametric amplifiers have been built using a variety of arrangements, 

employing either single junctions (microbridges,' point contacts, 2  or tunnel junctions 6  ) or an 

array of many junctions in series. 5  The noise rise has been observed in all of these designs. The 

fact that the noise-free performance is well understood theoretically for these devices suggests 

that the deterministic theories contain much of the essential dynamics. Therefore, it is 

worthwhile to review briefly these analyses - which are based on a direct attack on the govern-

ing circuit equations - and to compare them with the recent results revealed by the general 

approach to the nonlinear dynamics of bifurcating dynamical systems. We consider the 3- and 

4-photon modes separately, with an emphasis on those aspects that have a bearing on the noise 

rise phenomenon. 

2.,1 Three-Photon Mode21 ' 22  

The basic model of the Josephson junction parametric amplifier is depicted schematically 

in Figure 1. In dimensionless form, the governing circuit equation has the form 
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I = Isin 

d 
- 2e.dt 

Figure 1. Schematic model of the resistively shunted Josephson junction parametric amplifier. 
The cross represents the idealized junction through which supercurrent flows. C , R, and I 
the capacitance, resistance, and critical current, respectively. 

+ 	+ sino =A +Bcos((t)+ CcoS(u)r+O) 	 (1) 
where 0 is the difference between the phases of the wavefunction across the junction, 13 -  is the 

McCumber parameter, and A, B, C are the external voltage drives at zero, pump, and signal 

frequencies, respectively. The McCumber parameter can be expressed in terms of the system's 

critical current I, capacitance C, resistive shunt R, electron charge e, and the reduced Planck's 

constant K. as P, = 2eR 2CJ/yi. Equation (1) represents an idealization of the physical system; 

for example it neglects the quasiparticle current across the junction, and ignores the presence of 

tuning circuit(s) necessary to couple the device to the external world. It is generally believed 

that these complications affect only the details of the amplifier's performance, and not its essen-

tial behavior. Of course, since the noise rise is not yet understood, the importance of these 

"details" cannot be ruled out; however, the mechanism discussed in this paper is insensitive to 

their presence. 

In the 3-photon mode, the (small) signal has frequency o  nearly equal to one half the 

pump frequency o. It is convenient to introduce the small parameter A which measures the 

detuning of o from 
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= 0s - 40)p 	 (2) 

Direct analysis of nonlinear equations such as (1) is a notoriously difficult task; nonetheless, by 

truncating the contribution of higher harmonics generated by the sinp term, an expression for 

G can be derived, which is a complicated function of all the parameters appearing in Eq. (1): 

= G (0, A , B, o, (). In the limit of zero detuning, one can show that parameter values 

exist for which G diverges, leading to an "infinite gain" condition. 21 ' (The possibility of 

divergence stems from the fact that the calculations are linearized about the C =0 solution of 

Eq. (1).) It was also shown that the infinite gain condition coincides with the condition for the 

onset of a period doubling bifurcation. This fact has proved to be a useful rule of thumb for 

locating high-gain regions of parameter space in experiments. 14  

From the dynamical systems perspective, the coincidence of a bifurcation point and very 

high parametric gain is a general phenomenon. 15  For example, any T-periodic system close to a 

period doubling bifurcation will amplify small signals of frequency (o,, near irIT (or 3rJT, 

5irJT, etc.). Moreover, the scaling of the expected gain is universal: a linearized theory 15  shows 

that the gain depends on two parameters only, 

(p.2  + 

where 5 is proportional to the detuning A, and p. is the bifurcation parameter, with p.=0 at the 

bifurcation point. For example, if Eq. (1) suffers a period doubling when A = A - holding all 

other parameters fixed - then one takes p.06  (A —As )/A. The proportionality constants will 

depend on the details of the governing equation: experimental determination of these constants 

is discussed in Sec. 6. 

From Eq. (3), we recover the infinite gain result for zero detuning at the bifurcation point. 

Of course, this formula must break down when the gain gets too large (i.e. for p. too close to 

zero), at which point nonlinear effects must be included. The appropriate nonlinear theory has 

been developed for period doubling systems, and a variety of interesting phenomena are 

observed. 23  For example, one effect is a shift of the bifurcation point away from L=0,  the 
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magnitude of this shift growing as the two-thirds power of the signal amplitude. Moreover, the 

direction of the shift is always such as to suppress the onset of period doubling, an effect which 

has been observed in electrical analog simulations of Duffing's Equation, 23  a mechanical 

"bouncing ball" experiment, 20  measurements on the oscillations of a magnetorestrictive ribbon 

to alternating magnetic fields, 24  and in digital simulations of Eq. (1). 25  

In contrast to the result Eq. (3) of the linearized theory, the scaling of G 3  in the nonlinear 

theory depends explicitly on the input signal strength c, (c is proportional to C in Eq. (1)). A 

simple expression analogous to Eq. (3) cannot be written down: however, all the results follow 

from studying the simple first order nonlinear differential equation 

x =px —x3 +ccos& 
	

(4) 

where x(t ) may be pictured as the (slowly varying) amplitude of the period doubled component 

of the response of the system. We postpone a more detailed explanation of the precise meaning 

and justification of this equation until the next section. 

2.2 Four-Photon Mode 1  

In the 4-photon mode, gain is achieved for signal frequencies nearly equal to the pump 

frequency, o —0.,,. One major difference with the 3-photon mode is that the system is nor-

many operated with no dc bias, i.e. A =0 in Eq. (1), (although this is not a requirement). Just 

as in the 3-photon theory, a harmonic balance calculation leads to an expression for G 3  as a 

complicated function of all the system parameters. 1  And again, for zero detuning L, 

(5) 

there is the possibility of infinite gain, the conditions for which coincide with a dynamical insta-

bility; this time a saddle-node bifurcation. 1.26 
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One important complication in the behavior of the 4-photon mode is the presence of hys-

teresis. This led to the central theoretical notion of the Infinite Nonre-entrant Gain (ING) 

curve. 1  The term "re-entrant" means that G. is a multiply-valued function of a control parame-

ter, so that as this parameter is swept back and forth the gain displays hysteresis (Figure 2a), 

which is an undesirable trait even though there exist theoretical infinite gain points. However, 

by tuning a second parameter, it is possible to eliminate the hysteresis (Figure 2b). The cost of 

doing this is great: eliminating the hysteresis also eliminates the infinite gain points. Thus, 

one's best strategy is to find the crossover between these two behaviors - by tuning both param-

eters (say, B and o, in Eq. (1)) it is possible to operate near a point of infinite, nonre-entrant 

gain (Figure 2c). 

From the point of view of dynamical systems theory, this behavior is easy to understand. 

The infinite gain condition corresponds to a saddle-node bifurcation, and saddle-node bifurca-

tions are generically accompanied by hysteresis as a single parameter is varied (i.e. this is a 

codimension-one bifurcation). The idea of tuning two parameters, the second allowing the 

disappearance of a saddle-node, leads to the familiar "cusp" bifurcation. 27  Figure 3 illustrates 

the unfolding of the cusp bifurcation in parameter space: two curves of saddle-nodes intersect to 

form the cusp point. According to the general theory of amplification in bifurcating dynamical 

systems,26  the saddle-node curves correspond to infinite-gain points (in a linearized theory, and 

at zero detuning). Operating just below the cusp point gives the ideal; sweeping just a single 

parameter yields large gain while avoiding the hysteresis. 

Again, near such "infinite gain" points, the linearized theory breaks down. No nonlinear 

noise-free amplifier theory analogous to the one for period doubling has been developed. As 

described in the next section, the appropriate noise-free reduced equation for this case differs 

from Eq. (4), insofar as it requires two bifurcation parameters j.t and v (as expected from the dis- 

cussion above). 
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G5  

(c) 

Re-entrant Gain 

GS 
	

(b) 

Nonre-entrant Gain 

(c) 

Infinite 
Nonre-entront Gain 

Figure 2. Sketch of signal gain versus control parameter?, illustrating the concept of "infinite 
nonre-entrant gain." The three different situations shown correspond to different values of a 
second control parameter. (a) Gain goes to infinity at saddle-node bifurcation points but hys-
teresis makes these operating points undesirable, since thermal noise may cause a transition to 
the coexisting low gain state. (b) Changing the second parameter eliminates the bifurcations for 
all values of P, now there is no hysteresis, but no infinite gain either. (c) Transition point from 
re-entrant to nonre-entrant - now we have infinite gain without hysteresis. 
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Figure 3. Typical Parameter space plot of a cusp bifurcation: two lines of saddle-node bifurca-
tion points terminate at the cusp point (P0, Q0). 

I = j.ix + v - + ccos& 	 (6) 
The cusp point occurs at p.=v=0. We discuss how .t and v can be related to experimental con- 

trol parameters in Sec. 6. 

Before moving on to the next section, we would like to point out two additional conclu-

sions that follow readily from the present point of view, both concerning the unbiased Joseph-

son junction parametric amplifier. The unbiased (A =0) case has always been identified with 

the 4-photon mode, but this really misses the essential point that it is the kind of bifurcation that 

matters and not the governing equation. Consequently, since it is known that Eq. (1) with A =0 

can undergo period doubling bifurcations, 28  it is possible to operate the unbiased amplifier in 

the 3-photon mode (in the appropriate parameter regime). Moreover, the unbiased amplifier 

could be operated in yet a different mode, which is a 6-photon mode (with (03  = 2co), a possi-

bility which is discussed further in Sec. 7. The latter possibility is due to the occurrence of a 
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symmetry-breaking bifurcation29' 11  in the unbiased dynamics, a class of instability distinct 

from either period doubling or cusp bifurcations. 

3 THE REDUCED EQUATION 

The results of this paper follow from the study of the reduced equations (4) and (6) in the 

presence of noise for the 3. and 4-photon modes of the Josephson junction parametric 

amplifiers. In this section it is explained why these equations predict the important dynamical 

behavior of the much more Complex system (1), or indeed any parametric amplifier operated in 

these modes. The basic behavior of the reduced equations is introduced with emphasis on the 

effects of the signal and the noise. In the next section the results of computer simulations 

demonstrate that the reduced equations can provide detailed understanding of the noise rise. 

Before we discuss the derivation of the reduced equation we will discuss its interpretation 

in terms of the full dynamical variable 'b. We assume for the moment that we are considering 

the period doubling case. For Eq. (1) the state of the full system (excluding the perturbation) is 

three dimensional; that is, D=(4,4,G) where G, is the phase of the pump. However, in general 

D may have any dimension greater than two. (We do assume here that the system is driven, 

that is, the fundamental frequency o, is fixed. The analysis for autonomous systems is slightly 

more complicated.) In this space we assume that the unperturbed system has a periodic orbit 

D0(t)=.D0(t+T), T=2ic/co that is near a period doubling bifurcation. We further assume that 

the period doubling bifurcation is supercririca!, so that past the bifurcation point the orbit (D 0  

still exists but is now unstable, and nearby there is a stable period-two orbit. Because we are 

near the bifurcation point, the period doubled solution and any long lived transients are confined 

to the center manifold of the bifurcation. 
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Regardless of the dimension of the phase space of CD, the dimension of the center manifold 

is two, parameterized by a phase 8, and another variable x. Transients relax rapidly back to the 

center manifold, then slowly onto the stable solution. One can visualize the center manifold as 

a band centered on the orbit 00(r) which, in the case of a period doubling bifurcation, under- 
S 

goes a half twist between Op  =0 and 6P  =2it. Thus it is in the foim of a Mobius strip. A general 

orbit on this manifold can be expressed approximately as 

CD(t) = 00(t) + x (t )CD 1(t) 
	

(7) 

where x(t) is a slowly varying function describing deviations of the orbit from 00(t), and 0 1 (t) 

is a symmetric function of period 2T satisfying 0 1 (t) = —CD 1 (t+T). In the steady state x will be 

zero below the bifurcation and a non-zero constant above it. Due to the slow nature of dynam-

ics on the center manifold, a small, near resonant perturbation may have a significant influence 

on x (t), while having little ability to deviate the orbit off of the center manifold, so that Eq. (7) 

remains a good description of the behavior. Thus the dynamics may be well approximated by 

understanding the behavior of the reduced scalar variable x(r). As will be shown below, when 

perturbed by a periodic signal near the resonant frequency o/2, the amplitude x responds as if 

driven at the difference frequency A=o, —te/2. Furthermore, when the system is randomly 

perturbed, it is the part of the noise spectrum near to o/2 which has the dominant effect on the 

variable x. 

As introduced in the previous section, x(r) satisfies the reduced equation 

x =p.x —x 3 -i-ccos& +(t) 	 (8) 

for the period doubling and symmetry breaking bifurcations, and 

x=v+p.x—x3 +ecos&+(t) 	 (9) 	 - 

for the cusp bifurcation. Here j.t and v are bifurcation parameters, e is proportional to the par- 

turbation amplitude, 5 is proportional to the dctuning frequency & and (t) is white noise of 

unit strength. Henceforth we will oftn work only with Eq. (9), since Eq. (8) may be considered 

a special case of it. The reduced variable may be directly observed in an experiment by making 
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a Poincare section in which the phase portrait is strobed every two cycles of the pump. The 

sequence of points will be closely spaced and can be approximated by a continuous function 

that is proportional to x(t). Taking a Poincare section eliminates the phase variable and 

further reduces the dimension of the problem from two to one. 

Qualitatively, what behavior might be expected for this system? From the theory of noisy 

precursors,30' 31  it is clear that just before and just after the bifurcation, the power spectrum will 

display a noise bump with a Lorentzian shape centered at co,/2 (in the three photon case) for the 

full system and at o)=0 in the reduced equation. As p. passes through 0, the bump will grow 

taller and become narrower. Likewise, the theory of parametric signal amplification in bifurcat-

ing systems26  predicts a gain profile for coherent signals with a similar Lorentzian shape that 

grows and narrows as p. approaches 0 in the same way. Why then do we observe noise gain 

increasing faster than signal gain in the Josephson junction parametric amplifier? The above 

mentioned theories for noise and signals are based on a linearized analysis, valid in the limit of 

small signal and noise. For extremely small dctuning 6 - where signal gain is greatest - how-

ever, nonlinear effects cannot be ignored. Above p.=0, there are two attracting basins, near +'Ip. 

and —Ij The barrier between them, at x =0 grows more formidable as j.L gets larger. The pres-

ence of noise causes the system to switch aperiodically between these two basins - a process 

which can be approximated as telegraph noise. This fact is exploited in Sec. 5 to obtain analytic 

expressions for signal and noise gains. As j.. is increased (or applied noise decreased) switching 

becomes less frequent confining the power of this noise driven square wave to lower frequen-

cies, i.e., the noise bump grows narrower and taller approaching (but never exactly reaching) a 

delta function. The bifurcation point is not well defined in the presence of noise, since this nor-

many corresponds to the point where the delta function appears. Surprisingly, the signal gain is 

not maximized at p. =.0 (as predicted by a linearized analysis), but continues to increase for 

p.> 0 for sufficiently small detuning. The signal is able to achieve high gain in this region by 

altering the transition rates for the noise driven switching - favoring the positive basin during 
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the positive phase of the signal and the negative basin during the negative phase. However, this 

mechanism is only effective when the switching rate is greater than or approximately equal to 

the detuning of the signal. As i. is increased, the switching rate decreases and the noise bump 

eventually becomes narrower than the detuning frequency, after which point signal gain fafls 

off. The noise rise results from the fact that the height of the noise bump increases more rapidly 

than the signal gain. The signal gain for sufficiently small signals is linear, whereas the noise 

level at the signal frequency is a highly nonlinear function of the applied noise spectrum. 

We now proceed with the derivation, again concentrating on the period doubling case. 

For no perturbation, x(t) exhibits a symmetry breaking bifurcation when the actual dynamical 

variable exhibits period doubling. Thus it can be described by the normal form for a symmetry 

breaking bifurcation: 

I =Jix —x 3 +higherorderterms 	 (10) 

where i=0 is the bifurcation point. (One way to derive this is to start with the normal form for 

the period doubling of a mapping x'=—(l+p.)x +x3 +0 (x5) and approximate the second iterate 

as a flow in the limit of small p..) For sufficiently small signal, the effect of the signal is essen-

tially linear. We can think of the perturbation between time t and time r+2T as being made up 

of small sub-intervals, each of which is assigned an average value of the perturbation over that 

sub-interval. In the linear approximation each of these will have a linear influence on the value 

of x at time t+2T. The ratio between the influence and the perturbation need not be constant 

over the cycle but will in general be a function g (t) of the phase of the subharmonic period. 

The Mobius strip nature of the center manifold requires that g (t)=—g (t+T), for example g(t) 

might be something like coso:/2. Thus, for an arbitrary (but small) perturbationf (t), 

x =p.x —x 3 +F(r) 
	

(11) 

where 

1 	+T 
F(t)=ff 	g(tf(t't' 	 (12) 
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The function g(t) can have Fourier components at frequencies o =n co, /2. where n is odd, i.e.: 

	

g (t) 	& e 	 (13) 
nodd 

Thus, only perturbations with frequencies near one of these Fourier components can produce a 

slowly varying F(t), which can in turn have a significant influence on the dynamics of the 

slowly varying x (:). For a periodic perturbation C cos(o)n  +i)t detuned by an amount A, we 

find from Eq. (12) that 

	

F(t)C Ig lcos[At .-Arg(g)] 	 (14) 

For the case where f (r) is noise, we can compute the spectral density of F (t). We define the 

power spectral density F (c&)) as 

22tF (a)) = urn <I Jdte"'' F (t) I 2> 

where the brackets <> indicate an ensemble average. Inserting the expression for F (t ), Eq. 

(12), one can obtain (we assume here that F(t) varies continuously rather than discretely to 

simplify the calculation): 

T 	, 1+1' 

27cF (( ) = lim -- <I 	dt 'e °' I 	dt "Ze °'' g 4 f (t") I 2> 	
(16) T 	Jt' I-4*t 4 

The limits on the t" integral can be changed to 0 to t for sufficiently large t (t' becomes 

insignificant). For o<< lIT we can approximate the r' integral as unity. This yields the expres-

sion 

	

. 	 2 

	

2ltF(co)=ltm— 
1  <IZF4 (a))I > 	 ( 17) I-4GOt 

'I 

where 

F. (a)) = g4  5e1 ': 	I (t ')dr' 

Assuming the F4  's to be uncorrelated. we can express F(w) in terms of f(a), the power spec- 

tral density of the applied noise: 

F(a))=!g4I2f(w4+a)) 	 (18) 

Since only low frequencies can effect the slowly varying x(t), we can approximate F(w) as 
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white noise with spectral density equal to F(0) in Eq (18). When signal and noise are both 

applied, the reduced equation takes the form: 

x =j.rx —x 3 +ccos(&+8)+e,(t) 	 (19) 

where € is proportional to the signal amplitude,; is proportional to the noise amplitude, and 

(t) is white noise with unit delta autocorrelation. 

Proper choice of time origin can eliminate the phase factor e. We wish to consider the 

case where the noise is much stronger than the signal, as it is in this limit where the noise rise 

becomes a severe problem in the experimental situation. We therefore perform a rescaling of 

the equation to set; to unity: 

dx 1  
7— =.t1x1-x? +Ecos& 1 +(t 1) 	 (20) 

where c3  =ec, x =x 	p.=ic,, t =t i,';,  and i=&,. Note that (t 1/c,,) has the same 

spectral density as J(t 1 ). Equation (20) is the fundamental equation we wish to study. In 

the interest of simplifying the notation, the subscript I will not be used explicitly throughout the 

rest of the paper. One may assume that the rescaled variables are used unless stated otherwise. 

Except in special cases20  it is quite difficult to obtain analytic expressions for the parameters in 

Eq. (20) in terms of those in the full equations of motion. However, one may always estimate 

these relationships in linear approximation from numerical or experimental data as discussed in 

Sec. 6. 

Extension of these results to the cusp and symmetry breaking bifurcations is quite simple 

- we just use the appropriate normal form in place of Eq. (10). For the cusp the normal form is 

x =px +v—x 3 +liigherordcrtcims 	 (21) 

and the result with perturbations is 

(22) 

where v=v 1 c 3 '2. The interpretation of Eq. (7) is now slightly different - both D 0  and D 1  have 
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period T. If cD0  is a symmetrical orbit then 0 1  will in general also be - i.e.: 

D0(t) =- 0(t+T/2) and D 1 (t) =- 1 (t+TI2). This case occurs in the uribiased Josephson junc-

tion and it represents the breaking up of one symmetrical orbit in two coexisting symmetrical 

orbits. Asymmetrical cases are also possible however. The symmetry breaking bifurcation has 

the same normal form as the period doubling bifurcation, Eq. (10). Now, however, (D o  in Eq. 

(7) is a symmetrical orbit (0 0(t) = -40(t+T12)) and 0 1 (t) represents the asymmetric part of the 

orbit (0 1 (t) = 0 1 (t+T12)). 

4 SIMULATIONS 

Three kinds of simulations were performed in order to study the noise rise phenomenon 

and determine how it is affected by the various parameters in the equation. First, the full pen-

dulum equation (1) was integrated on an analog computer. An analog, as opposed to digital, 

simulation has the advantages of high speed and tremendous ease in varying parameters. The 

basic phenomenon, noise gain increasing faster (with increasing p) than signal gain, was 

observed and the importance of using a very small dctuning frequency ö was quite clear. In a 

second set of simulations, the reduced equations (8) and (9) were studied on an analog com-

puter. This provided clear evidence that these simpler equations can capture the important 

features of the noise rise. Finally, extensive digital simulations of the reduced equations were 

performed for various values of j.t and S. These again confirmed the presence of the noise rise 

in the reduced equations and suggest a number of predictions, presented in Sec. 6, about how 

real systems such as the Josephson junction parametric amplifier will perform. 
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4.1 Analog Simulations 

To reproduce the noise rise in the pendulum equation (1), an analog computer was con-

structed using low offset, low drift operational amplifiers and a Josephson junction box to 

implement the sino nonlinearity. A 33 bit digital feedback shift register was used to generate 

noise with adequate low and high frequency characteristics. To observe a significant noise rise, 

a sinusoidal signal of very small detuning A and small amplitude C was required. Thus the sig-

nal generators for oJ,, and o were selected to have especially stable signals. To place the ana-

log computer in the 3-photon mode, the parameters were varied to put the system near a period 

doubling bifurcation and as far as possible from any other bifurcations. 

Figure 4 shows results taken with a spectrum analyser monitoring the variable 4 With a 

1 WI Wp  W 

Figure 4. Power spectra from analog simulation of Eq. (1) with noise added for the 3-photon 
case with A = 5xlOu. (a) .t=O; this is the period doubling bifurcation point in the absence of 
noise. (b) p.=p.';  this is the point of maximum signal gain. The noise bump is starting to move 
inside the detuning frequency. Note the diminished signal to noise ratio. (C) j.t>i'; signal gain 
falls off, noise rise continues. 
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detuning of 0.1% from o,, as the parameter A was increased the signal gain G  was seen to 

increase by 8 dB but the signal-to-noise ratio fell from 20 dB to 14 dB. Similar results have 

been published using actual Josephson junction amplifiers. 6  

The 4-photon mode was studied by tuning the analog computer near a cusp bifurcation, 

and a similar noise rise was observed there. In FIgure 5 the noise rise - the ratio of G (at CO,) 

to G - is plotted against the signal gain, as the parameters are varied. The curve shown 

corresponds approximately to varying p. with v set to zero (see Eq. (9)). When p. is positive one 

enters the "switching regime" in which noise induces a hopping between two coexisting attrac-

tors. When v is zero, the equation is symmetrical and hence equal time (on the average) is 

LSi - - --------------- 

8 

(1)4 

N 

:oi 

0 	2 	4 	6 	8 	K) 	12 	14 	16 
G5  (dB) 

Figure 5. Signal gain vs. noise rise from analog simulation of Eq. (1) with noise added for the 
4-photon case. Note that the noise rise continues as we go beyond the point of maximum signal 
gain. The detuning for this data is A=l.25xl(F3o. 
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spent in each of the two states. We use this fact to obtain the data in the simulations - we 

adjust one parameter to some new value and then a second parameter is adjusted to symmetrize 

the hopping. Signal and noise gains are recorded at this parameter setting and then the process 

is repeated to obtain a sequence of data points (see Figure 5). In the linear approximation, 

G4  /G:  would be exactly unity for all values of G 1 . Instead, along the line vO the ratio G . /G 

gradually increases and continues to do so even after the signal gain has begun to fall off. 

The reduced equation (8) for the 3-photon mode was integrated with a similar analog 

computer. Without a pump signal and with just a cubic nonlinearity, the first order reduced 

equation is much simpler to instrument that the full pendulum equation Eq. (1). However, the 

need for low drift elements continues, and for v=O it is especially important to maintain low 

offsets. Figure 6 shows the switching behavior which occurs for positive .t. In this regime the 

Figure 6. Behavior of x(r) in the "switching regime" .L>O for the reduced Eq. (8). 
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dynamics can be approximated as a telegraph process (random switching between fixed levels) 

and analytic results may be obtained (see Sec. 5). In Figure 7 we show the power spectrum of 

x (t) for three values of i. Again a noise rise is clearly apparent as p. is increased. The effect is 

somewhat larger than in Figure 4 because the effective detuning 5 is smaller in this case. 

2C 

I. 

0, 
U, 

c—I 
0 
0. 
CA 
a, 

-20 

-30 

( 

frequency 	(Hz) 

Figure 7. Power spectra from analog simultation of the reduced Eq. (8). Zero frequency here 
corresponds to co ,, for the dynamical variable (see Fig. 4). Noise-rise is greater than in Fig. 4 
because the effective detuning is smaller here. (a) .t=O; this is the period doublingbifurcation 
point in the absence of noise. (b) p.=p.'; this is the point of maximum signal gain. The noise 
bump is starting to move inside the detuning frequency. Signal to noise ratio has fallen from 
30dB to 15dB. (c) p.>p.'; signal gain falls off, noise rise continues. 
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4.2 Digital Simulations 

While digital integration is considerably slower than analog, it provides far greater preci-

sion and flexibility for determining the behavior of the reduced equations. Happily, our particu-

lar problem has certain characteristics and symmetries which allow significant improvement in 

speed over a standard approach. The details of the method used are discussed in the Appendix. 

The goal is to estimate the signal and noise gains as functions of the parameters p. and 6. For 

sufficiently small signal amplitude e, we expect the quantities G and G to be essentially 

independent of e. This was verified in the simulations. 

In Figure 8 a, b and ewe plot G (at the signal frequency), G 3 , and noise rise, all as func-

tions of the bifurcation parameter p. for several values of the (resealed) detuning 6. As can be 

seen, for finite(detuning G  reaches a maximum at some value p.=p.'. G continues to increase 

however, reaching its maximum beyond W. While the G and G3  are both sensitive functions 

of 6, their ratio is insensitive to 6. A significant difference (from 6=0) shows up only when well 

beyond the p. of maximum G1 . In Figure 9 we plot noise rise versus G  for several values of 6. 

These curves show that the noise rise continues to increase as we pass the point of maximum 

G. We also see how the maximum G  increases as 151 is decreased, but so does the noise rise 

at the point of maximum Q.  The bandwidth of the G 3  decreases very rapidly with increasing 

j.L This effect is shown in Figure 10 where we plot Q  versus detuning for several values of ji. 

In summary, the simulations verify our expectation that the reduced equations capture the 

important dynamical properties responsible for the noise rise in the full dynamical system Eq. 

(1). Of course, the validity of the reduced equations is much wider, applying in the high-gain 

limit of all other weak-signal parametric amplifiers. Which reduced equation is appropriate 

depends solely on the bifurcation involved, i.e. solely on the "mode" of operation. In this 

sense, these dynamical properties are universal, so that the results of the simulations can be 
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Figure 8. Numerically generated data from the reduced equation Eq. (8). (a) Noise gain G 
vs. bifurcation parameter i.. (b) Signal gain G , vs. p.. (C) Noise-rise GJG, vs. p.. In (a) and 
(b) the highest curve corresponds to the limit of zero dctuning (6= 0), with successively lower 
curves following the sequence: 6 = 0.001,0.01, 0.1, 1. In (C) the cases of 8 = 0, 0.001, and 0.01, 
are indistinguishable and fonn the highest curve shown, with successively lower curves in the 
sequence: 6=0.1,1. 
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Figure 9. Numerical data showing noise rise G /G as a funcdon of G. Comparing with the 
analog data in Fig. 5 we would estimate that this previous result corresponds approximately to 
6=0.1. 
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Figure 10. Numerical data showing signal gain as a function of detuning for several values of 
the bifurcation parameter .t. Note that the bandwidth decreases very rapidiy. 

used to make quantitative predictions about the behavior of parametric amplifiers in this 

regime. We discuss many such predictions in Sec. 6. 
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5 ANALYTICAL RESULTS 

Using the tools of bifurcation theory, we were able to reduce the full phase space dynam-

ics to a study of the one dimensional center-manifold dynamics. As disarmingly simple as the 

reduced equations appear, their analysis requires computer simulations near the bifurcation 

point p.=0. However, there are two limiting regimes where one can derive analytic results: for 

sufficiently negative p.. a linearized analysis is possible, and for sufficiently positive p. the 

dynamics is well-approximated by a switching process. 

In the linear regime, the cubic term may be ignored due to the low amplitude of the 

response. The resulting analysis yields identical signal and noise power gains at the signal fre-

quency, 

G (p.2+62)' 
	

(23) 

and thus there is no noise rise. As one increases p. toward p.=0, the linear theory breaks down - 

as it must, since G and G  cannot go to infinity (for 8=0) as predicted by the linear theory - 

and one must rely on numerical analysis or simulations like those of Sec. 4. 

Upon increasing ji to sufficiently positive values, the system enters the switching regime 

where one can again make analytic headway: the remainder of this section is devoted toward 

this end. Before launching into the detailed calculations, we give a brief description of the 

dynamics in this regime and an overview of the results. 

In the switching regime, the undrivcn system (E=0, =0) has two stable equilibria x, and 

x.... In the 3-photon mode, these correspond to different branches of the same phase-space 

attractor, while in the 4-photon mode (and the 6-photon mode - see Sec. 7) these correspond to 

two distinct atuactors. The addition of a noise term induces switching between x and x_, as 

was shown in Figure 6. For sufficiently large p., this behavior is well approximated by a tele-

graph process, 32' 33  i.e. random switching between two fixed levels. The effect of the small sig- 
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nal (e#0) is to periodically alter the escape rates from the two equilibria; the x, state being 

favored while the signal is positive, the x_ state while negative. 

To obtain analytic results for the switching regime, we first calculate the mean lifetimes t+  

and t.... for the x +  and x_ states respectively by solving the Fokker-Plank equation in the limit of 

low diffusion between states. We find 

	

= _I2 .L2  ± 3.iS exp(-4J.t2  + 2iS) 	 (24) 

where S =v+ccos&. This result compares quite well with numerical simulations: for p.=3 and 

6=0 we obtain 't=133.3 from Eq. (24) and 132.0 from simulations. The noise gain is then 

determined from the autocorrelation function of the associated telegraph process, with result 

= 	
I + 	ecosh2(2v) 	 (25) 

	

cosh(2v4j.t) 	2ji 

This is compared with numerical data in Fig. 11(a). Agreement is good above i=2 with errors 

of 0.5 dB or less (for small detuning). 

The signal gain receives its main contribution in the switching regime from the ability of 

the (slowly varying) signal to slightly alter;. This yields the result: 

= 	4f.0 - 1 + 	e 2 cosh2(2vt) 	 (26) 

	

cosh (2vllJ.) 	21.0 

This result is compared with numerical data in Fig. 11(b). Here the convergence is somewhat 

slower, the numerical result being 1.5 dB low at p.=2, but within 0.5 dB at j=4. We define the 

noise rise NR as the ratio G IC3  evaluated at co=S: 

NR = 	 (27) 

Note that the noise rise is independent of 6. This behavior is also exhibited by the numerical 

data as shown in Fig. 11(c). Deviations from this nile occur only after .t is well past the point 

of maximum G3 . It is worthwhile to consider simplified versions of Eqs. (25) - (27) which 

result in certain special cases of interest. For v=0 they reduce to: 
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Figure 11. Comparison of the asymptotically correct theory (solid lines) with the data generat-
ed numerically from the reduced equation. 

= 4p,2  / ( 1 + 52ir2e212p.2) 	 (28) 

G1 = 	 / ( 1 + (ci)2t2e p222)) 	 (29) 

	

NR = 	I 2 1 4 	 (30) 

These equations apply to the period doubling (3-photon) and symmetry breaking (6-photon) 
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cases which do not require the parameter v. It also turns out that it is preferable to operate the 

cusp (4-photon) case with v=0. For non-zero v the behavior is always less desirable - the sig-

nal gain decreases while the noise rise increases, as can be seen in Eqs (26) and (27). 

If we consider the limit of S and 0) approaching zero (still with v=0) we obtain the partic-

ularly simple results: 

G = 4p 2 
	

(31) 

G,, 	qie 2h'2 	 (32) 

Thus both G5  and G increase monotonically with ji, but with G increasing much more 

rapidly. The bandwidth over which this level of gain may be achieved is easily seen to be 

BW 
= 	 (33) 

Thus the gain-bandwidth product (for signal gain) is not a constant in the switching regime, but 

rather it decreases exponentially with increasing p.. This behavior can be seen quite dramati-

cally in the numerical results shown previously in Fig. 10. In all of the results presented here 

one can explicitly include the effect of input noise amplitude;. This is accomplished by rev-

ersing the transformation used in Eqs. (20) and (22). That is, replace p. with p.!;, V with 

v/cr, 3 with 3/;, (j) with 0)1;, G5  with cG5 , G with e 2  G, NR with NR, and BW with 

BW I;. Thus, for example, Eq. (31) becomes Q = 4p.2/ c,, which shows that a slight reduction 

in noise level can result in a dramatic improvement in signal gain. 

In the remainder of this section we present a derivation of r ±  and then, using this result, 

we determine Q and G5 . We start with the reduced equation for the cusp or 4-photon case 

since it is the most general: 

x =v+ —x3 +ccos& +(t) 	 (34) 

This starting equation can be rewritten as 

(35) 

which is a Langevin equation for a heavily damped particle moving in the slowly-modulated 
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quartic potential 

\I(x ,t)= -4h-pX 2 + +x 4 _Sx 	 (36) 

where S =v+ecos&. In the present case, j is a double-well potential, with minima atx. andx +  

separated by a maximum at x 0  (see Fig. 12). As before, we take (t) to be delta-correlated 

noise with unit strength, 

<(t)(t')> = 50 -t') 
	

(37) 

The Fokker-Plank equation corresponding to Eq. (35) is 

a,W -_ -aj 	 (38) 

where W is the probability density and j is the probability current 

j = -W 'V la.  W 	 (39) 

For] constant, we can integrate this between the two minima to get an explicit expression for] 

-}Wexp(2ji) X. 

(40) 

L.. exp(2i)dx 

If we assume that the system starts near the state x..., with initially no probability of being at x.. 

(i.e.: W(x)=0), we can interpret j as lit.., where Sr.., is the mean lifetime of the state x.... 

4 

x_ 	 xo 	 x4. 

Figure 12. The potential N'  vs. x, showing two wells separated by a barrier. 
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For x near x_, we can approximate Eq. (39) as 

. 	 j=—(x_—x)k_W—W 	 (41) 

where k_ is the curvature of 'qi(x_). Since we assume j is very small (high barrier limit), we can 

solve immediately for W 

W(x) =constexp(—k...(x—x...)2) 	 (42) 

Proper normalization of W (x) implies that 

W(x..)="flZ 	 (43) 

The integral in Eq. (40) receives its dominant contribution near x0 where iiJ(x)- 4k0(x—x() 2. 

Thus, 

X. 

fexp(2w)dx = 47tf—k 0 	 (44) 

Combining Eqs. (43) and (44), with k 0, k_ determined from Eq. (36), we can evaluate Eq. (40) 

for j: 

..L42p.2_3sI,s exp[_-L.t2+2IS] 	 (45) t_ 	2ir 	 2 

Similarly, we can write 

= .L_I2p.2+3I1.1S exp[}p.2_2ljiS 1 	 (46) 

which is just Eq. (45) with the sign of S changed. For large p., the prefactor can be approxi-

mated by p.'i so that 

_Lexp[_!p.2+2S] 	 (47) 
t± iV12 	2 

where S =v+ecos&. 

Although S is assumed small, the S dependence oft is crucial to the determination of sig-

nal gain. This is because the primary contribution to signal gain in the switching regime comes 

from the ability of the signal to slightly alter the transition probabilities, favoring the positive 

state while the signal is positive and favoring the negative state while the signal is negative. 
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We now calculate expressions for the noise and signal gains. Let n, and n be the frac-

tions of the ensemble in the states x +  and x_ respectively, so that n ++n.— 1. If the offset term S 
S 

is small, these states have constant amplitudes x..=±Ip. in the telegraph noise approximation 

(jL>> 1). Thus the ensemble average response is 

<x>=t(n—n_) 	 (48) 

The rate of change of n +  obeys 

	

,z_ 	n +  
(49) 

t_ t+  

so that 

1 	1 	1 	1 •  <X>=- -+ <x>+ 	 (50) t_ t+  

For convenience, we assume a complex representation for the applied signal, i.e. we use Ce 

instead of Ccos&. For sufficiently small C we have 

	

t_ t+ 
 =a1 	 (51) 

	

=a0 +cb0& 6' 	 (52) 

where the coefficients a 0, a 1 , b 0, b 1  follow from expanding Eq. (47) to first order in e, 

a 1  
a 0  
b 1  
b 0  

First we analyze the steady state s 

cosh(2vN'ji) 

'4tsinh(2v'I i) = 	e 	2Ijisinh(2v'J) 	
(53) 

2icosh(2v'I) 

)lutiOfl of Eq. (50) to determine the signal response. Let 

<x>=A +cBe'6' 
	

(54) 

Substitution of Eqs (51), (52), (54) into Eq. (50) and ignoring 0(c2) terms yields 

b 0a 1 —b 1 a 	I 	•1 1  
A =a 01a 1 ; B 

= [ 	
1+—i 	 (55) 

a 	JL 	aJ 

Since B is the signal amplitude gain, the power gain 	is equal to I B 12.  Using Eq. (53), this 

becomes 
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Gs  = 	- 1 
+ 	

exp() cosh2(2v) 	 (56) 
cosh (2vi) 	2.t 

and the phase shift of the signal response is 

phaseshift = —arctan(/a ) 
In the small signal limit, the response of the system to the signal is a linear amplification of that 

signal, with the power spectrum being unaffected at other frequencies. Thus we calculate the 

noise gain with e set to zero, and Eq. (50) reduces to 

(57) 

In equilibrium, <X>eq —aWa1 which implies: 

a0 	 i 	a0  
= 	+ , 	 = - 	 (58) 

2a 1 i h 	 h 2a 149 

When initialized in the state x +  the solution for <x> is: 

a0 	a0 
t~:0 

a1 	a1 

The corresponding <x>.. solution is: 

a0 ( T 	0)_t 	
aØ 	 (60) - 

a1 	a1 

The autocorreladon function is 

	

G(t) = <x(0)x(t)> = hii(1i+eq<X>+ 
- 11

-eq <x>_) 	 (61) 

[a]2[[a]2J e_ahlXI 

a l 

The noise power gain G is given by the Fourier transform of G ('r): 

	

r 	 r 	1-1  =-j j 	] 	 (62) 
a1 	a1 	

[ 	
a1

2 

 

or, using Eq. (53), 

	

it'Jexpt2I2) r 	2 	
p. 2 	2 	) 	 (63) ] 1 + 

2 

2 
cxp( )cosh (2vI 

	

G 
- 

- 

cosh(2vlp.) L 	2j.x. 

Note that the frequency dependence is the same as for G  (compare Eq. (56)). 
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Equations (56) and (63) are the main results of this section. We can extend this analysis 

to include an approximation for non-telegraph processes. In the p.>> 1 limit, the noise and sig-

nal driven oscillations about a given equilibrium (which we previously ignored) can be deter-

mined by a linear analysis. The signal amplitude gain for this effect can be expressed in corn-

plex notation as 11(i 6+2p.), and should be added to the previous result for the signal amplitude 

gain Eq. (55). For the noise, the power gain of this effect is the same as for the signal, i.e. 

1/(62+4p.2) and it should be a good approximation (for high p.) to add this to the expression for 

G. calculated in the telegraph approximation. These additional terms are not significant near 

the maximum gain point for a given detuning. In fact they could be misleading as there are 

other small corrections which have not been included which may be of comparable size. The 

new terms only become important as p. is increased well beyond the maximum gain point where 

they fall off much less rapidly with increasing p. than the original expressions. 

6 DISCUSSION AND PREDICTIONS 

Discussion 

Understanding the dynamics near bifurcation points is essential to the theory of parametric 

amplification since it is only near such points that very high gain levels may be achieved. For-

tunately, the dynamics near such points is focussed onto a low dimensional center manifold and 

can be understood through a relatively simple reduced equation (9). The case studied in this 

work, where the system is driven by both signal and noise, has been shown to generate a noise 	
4 

rise as one increases the signal gain. The study shows that for sufficiently small signals linear 

amplification of the signal occurs at all parameter settings in spite of the highly nonlinear 

processes which lead to the noise rise. Another unexpected result is that gain continues to 

increase as one passes the bifurcation point (p.=O). This is in contrast to the linearized theory 
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which says that the gain should be a maximum at p.=0. 

In order to clarify the connection between the experimental parameters and those of the 

theory, we now discuss some procedures by which one might change from one set of parameters 

to the other. The period doubling (3-photon) and symmetry breaking (6-photon, see Sec. 7) 

cases are the simplest because here the parameter v is absent. The parameter p.. will be given 

approximately by a linear transformation of any convenient parameter of the real physical sys-

tern, i.e. p.y(P —P 0). Here P is some convenient experimental parameter, P0 is the bifurca-

tion point, and y is a scale factor. Both P0  and y are initially unknown, and it is typically very 

haiti to calculate these values analytically for a specific equation. However, one can estimate 

them by fitting experimental data to the numerical results. (Note that the exact location of Po  

will obscured by the presence of noise unless this can be turned off completely.) One approach 

is to compare the noise rise measured experimentally with the numerical results given in Fig. 8c 

which plot G /Q  vs p.. A few well chosen data points should determine estimates for y and 

P0. 

Once p.. has been determined, the scaling factor for 6 is easily estimated. For example, for 

fixed p., one can measure the 3 dB bandwidth of the noise peak and compare this with either the 

numerical results (Fig. 10), or use the analytic expression (33) to determine 5/i.. The noise 

gain G. will be related by some scale factor to the experimentally measured spectral density, 

which is easily found once 6 and p.. are known. The signal gain G will be related by yet 

another scale factor to the measured signal power gain. For the present purposes, it is unimpor-

tant to determine the relation between e and the input signal amplitude because the results 

assume linear signal gain, which occurs for sufficiently small a. Of course, the reduced equa-

tion is valid for larger a, where nonlinear amplification and saturation can be expected, and in 

this regime this scaling factor is very important. 

.41 
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In the cusp bifurcation (or 4-photon case), two experimental bifurcation parameters P and 

Q must be used. The choice is somewhat arbitrary - to be detemiined by the experimenter. 

Near the cusp point, these will be related to p. and v by some linear approximation 

p. 	P Q1, P—P 0  
v 	P Q Q — Qo 

where P, Q, F,,,  Q v , P 0  and Q0 are constants to be detemiined. There will be a horn shaped 

region in the (F, Q) parameter space where there exist two different attractors (see Fig. 13). 

Hysteresis will be observed when traversing the horn. Near the cusp of the horn these attractors 

will be sufficiently close that we may observe hopping between them, driven by the input noise. 

ig 
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Figure 13. This sketch shows qualitatively the relationship between arbitrary system parame-
ters P and Q and the parameters p. and v of the reduced equation. 
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The line in the (P. Q) plane along which equal time on average is spent on each of the attrac-

tors corresponds to v=0. Values of .t along this line may be determined by the method outlined 

previously. The point (P0. Q a) is the cusp of the horn. Its exact location will be obscured by 

the noise, however, so it must be determined by the process of fitting experimental results with 

the numerical data. Normally one will not be interested in nonzero values of v since, as has 

been shown, the behavior of the amplifier is always inferior. However, if desired, values of V 

may be determined as follows: First, plot contours of constant signal gain in the (P, Q) plane. 

At the crossing point with the v=0 line, the noise rise should be a minimum (this is another 

method of locating the v=O line). Straight lines tangent to these contours at the crossing points 

with v=0 are (in linear approximation) lines of constant j.t. Values of v along these lines may 

be determined by comparison of the behavior with the analytic formulas. 

It is important to: remember that the theory is based on certain limiting approximations. 

Specifically, to obtain the reduced equation we assume that the perturbation (signal and noise) 

is small, that the detuning is small, and that the system is close to the bifurcation point. For all 

results presented in this paper, it is further assumed that the signal is small relative to the noise 

in the sense that the telegraph or switching process is primarily noise driven. While Ecos& is 

positive there will be a slight preference :to  the "+' state over the ?I_hI  state. However this effect 

should be small (say up to 10% shift in the mean lifetimes of these two states) because other-

wise the signal gain will start to become nonlinear and deviations from the theory presented 

here may be expected. Another important consideration is the possibility of higher order degen-

eracies. For example, the cubic term in the reduced equation might vanish for some combina-

don of parameters. This would then have to be replaced by the next nonzero term (typically x 5) 

which we have been neglecting. It is quite possible that the dynamics in this case would be 

improved in regard to maximum achievable signal gain, and therefore the experimenter in try-

ing to optimize the amplifier performance might be drawn towards a degenerate operating point 

where some deviations from the theory presented here might again be expected. 
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We emphasize that the dynamics in the switching regime is very sensitive to the level of 

input noise. We have used the term "noise gain" or G in numerous places in the text, but this 

is not a linear gain and thus quite different behavior can be expected when the input noise level 

is changed. In fact, all of the scaling factors relating the experimental parameters to those of the 

reduced equation will change when the input noise level is changed. This rescaling can be 

determined quite precisely and is the same as the rescaling used at the end of Sec. 3 (Eq. (20)). 

As was pointed Out in Sec. 3, amplification will occur when the signal is slightly detuned 

from one of a discrete set of "resonant" frequencies. Furthermore, the response to the signal 

will have components near each of these frequencies. For the 3-photon or period doubling 

mode, these frequencies are n o/2 where it is odd. For the 4-photon or cusp mode these are 

it co.. (However, this mode can occur for a symmetrical oscillation in which case it must be 

odd, i.e. if D(t) shows no even harmonics of o, near the bifurcation point then the restriction 

applies.) For the symmetry breaking bifurcation the frequencies are 2n O),. In addition, the 

case it =0 is suppressed in the driven pendulum (Josephson model) in cases where (t) is phase 

locked with the pump. This is because the junction voltage Vj  is proportional to d/dt and 

hence V1  has an invariant constant component (the phase 0 itself is not an observable dynamical 

variable). 

The optimal operating frequency will be the one for which 0 1 (:) and g(t) (defined in Sec. 

3) have the largest components. This will usually be the lowest allowed frequency - i.e. co/2  

for period doubling, a, for cusp, and 2co, for symmetry breaking. Operation at the higher har-

monies will usually result in a worsened signal-to-noise ratio. Frequency conversion is possi-

ble, i.e. a response at o/2 will result from a signal at 3co,,/2 in the period doubling mode. If 

one does not want a response to these frequencies, care must be taken to filter them out of the 

signal before it reaches the device. In cases where n =0 is suppressed, it is not possible to use 

these devices as "detectors" i.e. to produce a low frequency response (near zero) to a high fre- 

L) 
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quency signal. In other cases, however, it is possible to combine the amplification and detec-

don of a high frequency signal. 

The mechanism of the noise rise we have been discussing occurs over a relatively short 

interval in parameter space - near the bifurcation point. However, when parameters are varied 

by more substantial amounts there are other sources of noise rise which are important. One of 

these, which we refer to as "idler noise" results from the emergence of an idler frequency as 

the bifurcation point approached. Noise frequencies near the idler can produce a response near 

the signal. This effectively doubles the power spectral density of the noise. Thus the emer-

gence of the idler peak will result in a 3 dB noise rise. A similar effect - "harmonic noise" - 

results from conversion of noise near the other harmonics of the fundamental resonant fre-

quency to a response near the signal frequency. This effect will usually be fairly small when 

operating near the fundamental frequency. Finally, an effect which is often overlooked is that 

signal and noise may be coupled to the amplifier in different ways. Substantial changes in 

operating point may then cause differing changes in gain for signal and noise. This effect can 

be very large, easily amounting to 10 dB or more of noise rise. 

Predictions 

In a previous work34  A number of predictions were made which could be tested in an 

experimental system. These will now be discussed in greater detail: 

For p.<0 the noise temperature is essentially constant (i.e. no noise rise), even as G 3  

increases. This statement is based on the numerical results. It is not precisely true in a 

mathematical sense - in fact the numerical study did show a noise rise at p.=0, but it was only 

0.4 dB, and therefore negligible for most practical applications. The result is not surprising 

since a linearized analysis (valid for large negative p.) results in no noise rise. 

For p.>0 (and nonzero dctuning), there exists a p. of maximum signal gain. p.', while the 

noise gain at the signal frcqucncy also reaches a maximum which is beyond p.' (this behavior is 
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clearly shown in the numerical results). Moreover, p.' increases either with increasing noise 

input or decreasing detuning. The effect of changing the noise input can be determined from 

the rescaling given in Sec. 3 Eq. (20), while the effect of changing the detuning is evident from 

the numerical results - see Fig. 8. 

The noise rise is insensitive to changes in detuning - both G and G  fall off initially in the 

same way as the detuning is increased from zero. The analytic result Eq. (27) shows this is 

exactly true for high p. values. For sufficiently large 6, however, the noise rise must fall off - 

when S is much greater than the average hopping rate, lit, a linearized treatment becomes pos-

sible which yields no noise rise. 

For sufficiently small detuning and large negative j.t we find G 	G ° -2 (this follows 

from Eq. (23)), while for large positive p. and (v=0) the behavior is G oc  1nG +const oc  p.2 

(this follows from the analytic results for the switching regime, Eqs. (28) and (29)). Further-

more G and G increase monotonically with p. including in the crossover region near p.=0. 

This result was obtained from the numerical data - it has not been rigorously proven. Note that 

for any nonzero detuning G and G reach maximum. values as discussed in prediction (2). 

The bandwidth BW over which the gain indicated in (4) may be achieved is proportional to 

I p. I for large negative p. and to p.exp(—k p.2) for large positive p. where k is a positive constant 

(these follow from Eqs. (23) and (33) respectively). Thus we cross over from a region of con-

stant gain-bandwidth product G 112BW to one which rapidly diminishes and may explain the 

unexpectedly small values for this product previously reported for the Josephson devices. 10  

(Note that Q112  is the signal amplitude gain.) This effect is easily seen in Fig. 10 from the 

numerical study. 

A variety of theoretical curves have been generated numerically and were presented in Sec. 

4. Through the use of appropriate scaling factors experimental data may be compared graphi-

cally with the theoretical model. 

4)  
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7 SIX-PHOTON MODE AND SEMICONDUCTOR LASERS 

As has been emphasized, the results presented above are based on quite general dynamical 

arguments: the underlying physical details of the amplifying system are unimportant, the crucial 

element being the type of dynamical instability involved. This fact leads us, in this section, to 

go beyond the immediate subject of noise rise in 3- and 4-photon Josephson junction parametric 

amplifiers. We first examine the possibility of a "6-photon mode" that ought to occur in 

unbiased Josephson junction paramethc amplifiers. Although this mode also displays a noise 

rise, it may have certain advantages over the 3- and 4-photon modes. We then discuss a sem-

iconductor laser parametric amplifier which, though a very different physical system, should 

also display the noise rise. As we discuss below, the semiconductor system may be a good 

experimental system to test the predictions of Sec. 6. 

Amplification in the Six-photon Mode 

The occurrance of a period doubling bifurcation allows amplification in the 3-photon 

mode, while the saddle-node (and cusp) allows operation in the 4-photon mode. However, there 

is a third kind of simple bifurcation the Josephson junction parametric amplifier can suffer, 

which has associated with it a third mode of operation. This is the .symmetry breaking (or pitch-

fork) bifurcation, which can occur in certain parameter regimes of the unbiased system (A =0 in 

Eq. (1)).29. 11  

A discussion of the small-system amplification properties near the onset of a symmetry 

breaking bifurcation is presented in Rcf.26. The basic features are as follows. The experimen-

tal signature of this instability is the onset of power at even multiples of the pump frequency O) 

(Figure 14). Near this instability, high gain can be achieved for signals a, =2U. The idler ci 

will also appear near 2o,, so that o + (o i  = 4o,,; keeping with previous nomenclature this 
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Figure 14. Signature of symmetry-breaking bifurcation. (a) below bifurcation, odd harmonics 
only. (b) above bifurcation, even harmonics appear. 

would be called a 6-photon mode. 

It appears that experiments have never tried to operate in this mode, although it should be 

possible: symmetry breaking for Eq. (1) has been reported in analog and digital simula-

tions,'29' 12 and has been suggested as well by the analytic work of Levinsen. 11  Aside from its 

novelty, this mode may have desirable characteristics: since gain is achieved near twice the 

pump frequency, this mode operates at higher frequencies than the other modes; as an unbiased 

mode, it does not require contacts needed to supply the dc voltage; since o is not near co t,, it is 

easier to separate the signal output from the pump-frequency output. There is also no hysteresis 

associated with the symmetry breaking bifurcation. Whether these advantages are realized in a 

practical sense is an open question, and must await actual experiments. 
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In any event, the 6-photon mode also displays a noise rise. The appropriate normal form 

equation is the same as for the period doubling case, Eq. (8), but now the decomposition Eq. 

(7) involves functions 'D0  and 0 1  such that 

p  
'D0(t+ It  

—)=-00(t) ; cD1(t+ It  —)=+0 1(t) 	 (64) 
p 	 p 

and the detuning A is defined by 

(65) 

Moreover, the reduced Eq. (8) is now the continuous-time limit of the first iterate of the Poin-

card return map, while it corresponded to the second iterate in the 3-photon case. 

With the appropriate interpretations (64) and (65), all of the results for the noise rise in the 

3-photon case go through. For example, the noise rise illustrated in Figure 7 will be seen in the 

6-photon mode, with zero frequency in Figure 7 corresponding to 2co in the full system's 

power spectrum. 

Noise-Rise in Modulated Semiconductor Injection Lasers 

In 1976, Grothe et al. demonstrated experimentally that a semiconductor laser, pumped by 

an injection current modulated at 9 0Hz, could act as a small-signal parametric amplifier. 35  

They called this behavior "parametric sideband amplification", an effect which has been 

predicted theoretically. 36  It was shown later that the experimental parameter values which 

yielded high gain nearly coincided with those for the onset of a period doubling bifurcation. 37  

(The amplifier operated in the 3-photon mode.) 

The basic idea of the semiconductor injection laser is depicted in Figure 15. By injecting, 

say, holes across a p-n junction, one can induce electron-hole rccombinations. There is a thres-

hold dc injection current beyond which stimulated recombinarion produces strong coherent 

radiation. (The cleaved surfaces at either end act as reflective "mirrors" in analogy with gas 

lasers.) In the modulated injection laser, the injected current has a small ac component in 
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Figure 15. Semiconductor injection laser. 

addition to a large dc component. As in gas lasers, varying the parameter values leads to insta-

bilities in the output light intensity, 1(r). (The variations in 1(t) are at much lower frequencies 

- typically GHz - than the optical radiation frequencies, aliowing for a semiclassical rate-

equation description of the dynamics.) A variety of bifurcations have been documented for 

injection lasers, 38  including the period doubling essential to the parametric amplification 

experiment of Grothe et al. 

It appears that this so-called parametric sideband amplification has not been pursued 

beyond the original experiments a decade ago. In the present context, it may be a good system 

to re-examine, for two reasons. First of all, it can test whether the noise rise occurs in systems 

other than the Josephson junction amplifiers: as a high frequency device, it should be possible to 

achieve small detunings, enhancing the range over which a noise rise might be observed. 
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I 

Second, the semiconductor device has the technical advantage of not requiring low tempera-

tures, so the experiments may be relatively inexpensive to perform. 

-, 

8 CONCLUSION 

It has been shown how the presence of external noise can be responsible for the "anamo-

bus" noise rise observed in Josephson junction parametric amplifiers. The essence of the 

theory is the synthesis of two observations: (1) the high-gain limit of a parametric amplifier 

coincides with the onset of a dynamical instability, and (2) it is precisely near such bifurcation 

points that the effective phase space dimension is drastically reduced. This last fact implies that 

certain "universal" behavior is expected for parametric amplifiers of all kinds; the appropriate 

universality class depends only on the kind of bifurcation involved. The familiar 3- and 4-

photon modes correspond to period doubling and cusp bifurcátions, respectively, while the 

newly proposed 6-photon mode corresponds to a symmetry-breaking bifurcation. In all cases 

the noise rise phenomenon is found to occur as the result of noise-induced switching: in the 3-

photon mode the switching occurs between branches of a single phase space attractor, while the 

4- and 6-photon modes display switching behind coexisting multiile attractors. 

The regime studied was that of weak signal and relatively strong noise. Weak signal 

implies that the system response at the signal frequency is a linear function of input signal, 

while "strong noise" simply means that the random perturbations are sufficiently large to 

excite a nonlinear dynamical response. That this is the relevant noise regime in the Josephson 

junction experiments is supported by a recent paper 25  which demonstrates that the experimental 

noise level is sufficient to wash Out the distinctly nonlinear phenomenon of period-doubling 

suppression.23  
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The powerful tools of bifurcation theory in particular the center manifold construction 

allowed us to reduce the full dynamical system to the study of the appropriate first order non- 
Li 

linear equation. Except in certain limiting cases, the solution of the reduced equations required 

digital and analog simulations. Together with the analytic results presented in Sec. 5, this 

analysis leads to a number of predictions which can be readily tested by future parametric 

amplifier experiments, using either Josephson junctions, semiconductor lasers, or other devices. 

Whether or not the theory preserncd underlies previous noise rise observations must be 

determined by future experiments - for this reason, the predictive nature of the theory has been 

emphasized. Since the noise rise phenomenon appears to be a universal property (in the small-

detuning limit), there is no simple prescription for avoiding this undesirable characteristic. 

Nevertheless, dynamical systems theory provides invaluable insights into understanding the 

optimally achievable performance of parametric amplifiers. 

APPENDIX 

Accurate determination of power spectral density in a numerical simulation typically 

requires a great deal of processor time because the stochastic fluctuations can only be averaged 

out by using a large amount of data. However, our particular problem has certain characteristics 

and symmetries which allow significant improvement over the standard approach. In general, 

to calculate the spectral density S (o) at a particular frequency o we may evaluate 

It 
T  2S(c) = urn !< I $ x(t)e_i dr 2 	

(66) 
T-T 	0 

Thus to approximate S(c) we must integrate an ensemble of data sets over a long time T. The 

accuracy of the result is proportional to 1 /"JK, where K is the number of elements in the 

ensemble. One cannot obtain an accurate result without the ensemble average regardless of 



Part 3: Noise Rise 	 Appendix 	 237 

how large T is - the error will always be of the same order as the measurement. This is because 

the distribution of f0x(t)e_t0  cit for the ensemble is aGaussian in the complex plane, centered 

on zero. Thus the ensemble avera ge measures the variance of this distribution. To achieve 1% 

accuracy on this measurement we need K = 10000. Once this has been realized, we see that the 

way to improve efficiency is through reduction of the time T. As we will now show, if the time 

intervals are properly chosen, substantial improvement is possible. 

The key is to break up the time sequence for each ensemble element into a series of inter-

vats each of which starts and ends at x =0 (these intervals may have different lengths of course). 

To avoid the complication of having very short intervals we require that I xl be greater than 

some threshold value at some point during each interval. Let z be the interval endpoints, and 

define Y,, as: 

p 

	

Y = I x(t)e ° ''dt 	 (67) t. 

In terms of the Y 's, we find 

	

27rS(co)= urn 1  < ILAfle 	'cit 12> 	 (68) rT n 

= lim 1 
T 4Oo T m  a 

since each interval is chosen by the same criteria and since each starts in the same state (x =0) 

we can expect the Y 's to be uncorrelated. (This assumes that the signal is very small and can 

be neglected when calculating the noise response.) However, there may be a correlation 

between Y and;, where; Thus we may write: 

27tS(w)= urn -- (<lY 12> 	 (69) 

	

* 	+ 
+ E<Ye 	><Ym><C ('0:.t..)> 

In >11 

+ 
m <a 

We can now use the symmetry of our system to simplify this expression. For the v=0 case, Eq. 
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(9) has inversion symmetry. Recall that nonzero values of v are permitted only for the cusp 

bifurcation (4-photon mode) and in this case nonzero values are of little interest since they pro-

duce inferior amplifier performance. This symmetry combined with the symmetrical nature of 

our interval selection scheme has the important consequence that <Y>=0. Thus the last two 

terms drop out of Eq. (69) leaving: 

2JrS(o))= urn —<lY 12> 	 (70) 
T—o T 

What we have accomplished is to divide each element in the ensemble into a large number of 

sub-elements. Now it is the total number of these sub-elements which will determine the 

overall accuracy of the measurement. All of the sub-elements are equivalent regardless of 

which primary element they belong to. Thus we may write: 

21rS(o) = 
I 

El Y 12 	
(71) E; 

n 

To achieve 1% accuracy we need 10000 intervals but the average length of these intervals is 

much shorter than would normally be possible for direct evaluation of Eq. (66), resulting in a 

significant improvement in efficiency. Note: since the applied noise has unit delta autocorrela-

don, the noise gain G is given by 21cS (u). 
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