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PREFACE

During my graduate study at Berkeley, I focussed on the study of nonlinear phenomena

occurTing in solid state systems. This led me to work on a number of problems, all linked by

. this common theme. The three most significant of these projects have been combined to form

this thesis. These are given as three parts, each of ‘which is self contained and may be read
independenty of the other parts. Each part has its own introduction, conclusion, and rcferences.
The first part concems itself with the dynamics of spin waves excited by microwaves in a
sphere of yttrium iron gamet. This study yiclded a variety of interesting experimental results
which were then analyzed both analytically and by numerical integration of the equations of
motion. The sccond part is a study Qf thc- dynamics Qf a forced magncticvoscanlor. The system
hcré isa toroidal magnetic corc which displays the nonlinear effccts of magnetié saturation and
hysteresis. It is excited by a winding connected to a linear external circuit driven By a signal
gencrator. This system was primarily developed to study a number of nonlinear phcnomena in
an experimental systcm.- particularly resonance effects related to the emergence of a second fre-
quency in the dynamics. The third part is concermned with a practical problem — an anomalous
"noise risc” that was obscrved to occur in Josephson Junction parametric amplifiers. A theory is
presented which offers an explanation for this effect. The theory is bascd on a "dynamical sys-

tems” approach to the problem, the results of which may be applicd to a broad class of similar

. systems.

Berkeley 1987 ' , Paul Bryant
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ABSTRACT

This work consists of three parts. These are linked by the common theme of nonlineaf

phenomena in solid state systems, but are otherwise independent and self contained.

Part 1: In this part an experimental study is made of the interactions between spin wave
modes excited in a sphere of yutrium iron gamct by pumping the Suhl subsidiary absorption ai
9.2 GHz with the dc ficld parallel to [111]. The dynamicﬁl behavior of the magnetization is
observed under high resolution by varying two control parameters, dc field (580 < H < 2100 Oe)

and microwave pump power (1 < P < 200 mW). Within this parameter space quite varied

~ behavior is found: (1) onset of the Suhl instability by excitation of a single spin wave modé

with very narrow linewidth (< 0.5 G); (ii) when two or more modcs are excited, interactions
lcad to auto-oscillations with a systematic dependence of frequency (104 to 10° Hz) on pﬁmp
power, these oscillations displaying period-doubling to chaos; (iii) quasiperiodicity, locking,
and chaos occur when three or more modes areb excited; (iv) abrupt tmns'ition to wide band
power spectra (i.e., turbulence), with hysteresis; (v) irregular relaxation oscillations and

aperiodic -spiking behavior. A theoretical model is developed from first principles, using the

planc wave approximation and including anisotropy effects, obtaining the lowest order non-

}incar interaction terms between the excited modes. Extension of this analysis to the true spher-
ical spin-modes is discussed. Bifurcation behavior is examined, and dynamical bchavior is
numcrica_lly computed and c'omparcd to the experimental data, explaining a number of features.
A theory is developed regarding the nature of the experimentally obscrved relaxation oscilla-
tons and spiking behavior based on the interaction of "weak" and "strong" modes, and this is
demonstrated in the numerical simulations for two modes. Quasiperiodicity is shown to occur

in the numerical study when at least 3 modes arc excited with appropriate parameter values. A



possible mechanism for generating microwave subharmonics at half of the pumping frequency

is discussed.

Part 2: This is an experimental study of a forced symmetric oscillator containing a satur-
able inductor with magnetic hysteresis. It displays a Hopf bifurcation to quasiperiodicity,
entrainment homs, and chaos. The bifurcations and hysteresis occurring near points of reso-
nance (particularly "strong resonance”) are studied in detail and it is shown how the observed
behavior can be understood using Amold’s theory. Much of the behavior relating to the
entrainment homs is explored: period doubling and symmetry breaking bifurcations; homoc-
linic bifurcations: and crises and other bifurcations taking place at the hom boundaries. Impor-
tant features of the behavior related to symmetry properties of the oscillator are studied and
explained through the concept of a half-cycle map. The system is shown to exhibit a Hopf
bifuréation from a phase-locked state to periodic "islands," similar to those found in Hamil-
tonian systems. An initialization technique is used to obscrve the manifolds of saddle orbits
and _othcr hidden structure. An unusual differential equation model is developed which is
irreversible and genecrates a noninvertible Poincare map of the plane. Noninvertibility of this
planar map has important effects on the behzivior observed. The Poincare map may also be
approximated through experimental méasuremems. resulting in a planar map with parameter
dependence. This model gives good comrespondence with the system in a region of the parame-

ter space.

Part 3: This part takes a new look at an old problem, namely the observed ‘‘noise risc’” in
superconducting Joscphson junction parametric amplifiers. By exploiting recent insights from
dynamical systems theory, it is shown how the interplay of random noise and (nonchaotic)
deterministic dynamics can result in a noise rise like that observed in experiments. This
analysis leads to a universal first order cquationA which applies to all similar systems in the
high-gain regime. scveral predictions are proposed which can be tested experimentally, includ-

ing that a similar noise risc should occur in modulated scmiconductor injection lascrs. An



xi

analysis is also made of a previously unknown mode of operation — a "six-photon" mode associ-
ated with a symmetry breaking bifurcation — and its potential advantages over the previously

studied three-photon and four-photon modes are discussed.



PART 1:

SPIN WAVE DYNAMICS IN YIG SPHERES'

1 INTRODUCTION

This part is concemned with the dynamics of interacting spin wave modes in single crystal
»sphen’cal samples of YIG (yttrium iron garnet: Y;Fesou).‘which is ferrimagnetic. Although the
existence of spin waves has been known for some time, the recent emergence of interest in
dynamical systems theory has warranted making a detailed study of the many phenomena that
can érise from the nonlinear interaction of excited spin waves. In order to orieni the reader, we

will start with a discussion of spin waves and how they may be excited.

When ferro- or ferri- magnetic materials are placed in a strong d.c. magnetic field H,
excited states exist which involve an ordered precession of the spins about the axis of the
applied ficld. bThc simplest of these is the uniform or Kittel mode,! in which all of the spins
process in phase, as shown in Fig. 1(a). This mode can be excited not only by thermal excita-
tion, but directly by applying a microwave field h transverse to the d.c. field at the precessioh
frequency. In ’addition to this mode there are spin wave modes in which there is a periodic vari-
ation of the precessional phase across the sample as shown in Fig. 1(b). The quanta of these
excitations arc called magnons. In many cascs uscful information and insight into the behavior
of spin waves may be obtained by studying Bloch spin waves in which the medium is approxi-
mated as infinite and the spatial variation takes the form of ¢'®T_ Naturally, to make correspon-

dence to a spin wave resonance in a finite sample we will assume a "standing spin wave" is



Part 1: Spin Waves ) §1

(a)

——
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(b)
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Figure 1. (a) Spins in uniform precession. (b) Spins in a traveling wave. (c) Spins in a stand-

ing wave.

formed by combinadon of a k and ~k magnon. Such a spin wave is shown in Fig. 1(c).

Although full theoretical details are given in Sec. 3, it is useful to introduce now a few

equations. For a spherical sample the frequency of the uniform precession is (ignoring cffects

of crystalline anisotropy):
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Wo=7Hg ey

where v, the gyromagnetic ratio, is approximately 1.76x10” G'sec™!. The basic dispefsion rela-

tion for spin waves in a ferromagnetic sphere is (again neglecting anisotropy):2

| wf = ('{Ho—%a)m + YDk*)(YH 0—-;- ®,, +YDk* + @, 5in°0,) )
for spin waves of frequency ®,, wavevector k, and azimuthal angle 6, of k relative to Hy. Here
M, is the saturation magnetization of the material, 4nM, = 1750 G for YIG, ®,, =v4mM,, and
D, the exchange constant, is approximately 5.4x107°Gcem? for YIG. These equations follow
from the more general expressions derived in Sec. 3.1 - see Egs. (59), (48) and (49). In Fig. 2
we show a typical dispersion curve for spin waves in YIG sphere. The frequency depends not
only on the magnilude of k but also on its azimuthal anglc 8,. There is also a slight dependence

on polar angle ¢, resuiting from anisotropy cffects not included in Eq. (2) or Fig. 2. '

Excitation of a spin wave mode may be accomplished in a variety of ways. On the quan-
tum mechanical levél, these include various scattering processes of magnons with other mag-
nons and with other types of cxcitations e.g. photons and phonons. On the classical level, these:
correspond to various nonlincar mode couplings. Low wave number modes may couple
dircctly to a ndnuniform microwave magnetic field. This effect produces a series of diminish-
ing peaks (Walker modes3 - 1! ) near the main resonance. Spin waves of all wave numbers may

be excited parametrically, through nonlinear coupling with the uniform mode or other spin

wave modes. In such cases Suhl!2-14.2 showed that excitation of spin waves by this means can

only occur when the driving field exceeds a certain threshold (now called the Suhl threshold)
beyond which the power coupled into the mode parametrically is in excess of that lost due to
dmping. This analysis was able to explain two important experimental observations: 1) The
subsidiary resonance absorption and 2) premature saturation of the main resonance, cffects
which were first observed by Blocmbergen and Wang!® and by Damon.!'® The subsidiary reso-
nance results from the first order Suhl instability. Here the pump frequency @, is roughly dou-

ble the uniform resonance g, and conscquently this mode is excited very weakly. However,
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SPIN-WAVE FREQUENCY w, (10"0sec™)
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Figure 2. Dispersion diagram wy vs. k for YIG sphere. 8y is the azimuthal angle of k with
respect to the d.c. magnetic field. Obtained from Eq. (2) for H,=1700 G.

when there are spin wave modes whose frequency is very close to W, /2 ‘(typically within
ilO‘Swp) then these modes can absorb power parametrically from the uniform mode and build
up to a large amplitude. Since the spin wave modes occur over a wide range of frequency the

subsidiary absorption peak is very broad, and under certain circumstances can even extend past
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the uniform resonance.!? In premature saturation, one observes a second order Suhl instability.
One drives the msoﬁance for the uniform mode, whicﬁ is strongly excited, and couples
parametricaily to spin wave modes at very nearly the same freqﬁency. This coupling is of higher
order than for the subsidiary resonance, but this is cdmpensated for by the much tﬁgher ampli-
tude of the uniform mode. The term "premature samratibn" comes from the fact that the Suhl
threshold occurs at a signiﬁcaml.y lower microwave power (several orders of magnitudé) than
that required to saturate the unifoﬁn mode in the absence of spin waves. Above the threshold
the effective damping of the uniform mode increases dramatically due to the large number of

accessible spin wave modes.

.'_’I'here is one 'additional means of coupling td the spin wave mo'des.. that is generaily
referred to as "parallel pumping". Like the Walker modes discussed earlier, this is a direct cou-
pljng between thé spin waves and the external field. Unlike them, however, this is a parametric
. cbupling, and the frequency of the spin waves must be very close to @,/2 (as for the subsidiary
| case). This process was first proposed (independently) by Morgemhaien18 Schléomann, Green

and Milano,!® and Kaganov and Tsukernik.20 It results from the fact that smriding spin wave
modes (made up of k and —k magnons) exhibit elliptical procéssion orbits when k is not parallel
to the d.c. field. The ellipticity results from the volume (as opposed to surface) demagnetizing
field. Elliptic orbits have a nonconstant z component of magnetization which oscillates a fre-
quency 2w, and thus can couple t0 ®,. The parallel pumping absorption is very broad and is
found in the same frequency region as the subsidiary absorption.

Although these instabilities werc extensively studied earlier (see Damon®! and
Zakharov<2 for review), no clear evidence of low dimensional chaotic motion was reportcd.
Nukamura ct al.3-2% and Ohta and Nakamura® re-cxamined the theory for parailel pumping,
numerically itcrated the cquations of motion assuming two modes, and found onsct of instabil-
ity, collective oscillations, and a period doubling cascade to chaos, with a Henon-like return

map. Gibson and Je(frics26 obscrved a period doubling routc to chaos, periodic windows, and a
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single-hump return map for the second order instability in YIG. Zhang and Suhl?’ iterated the
original equations for this instability and found a period doubling cascade to chaos. Similar
theoretical conclusions were reported by Rezende et al.:?® and de Aguiar and Rezende?

reported theory and experiments on parallel pumping.

In this thesis is reported a'detailed experimental study of the subsidiary absorption insta-
bility in a YIG sphere, along with a theoretical interpretation of these results. Above the thres-
hold one or more spin wave modes may become excited and these modes may interact with
each other nonlinearly, resulting in a variety of interesting phenomena. Some new effects di.s-

cussed in the present work include:

1) The regions and boundaries of behavior are found in a high resolution parzimeter space
diagram.

2) Fine structure is obscrvc_d in the parameter space. Previous studies focused on the
dynamics that occur when large numbers of spin wave modcs are simultaneously excited. How-
ever, under appropriate conditions excitations can be limited to a few (1, 2, 3,...) very closely
spaced modcs. With two modes phenorhena include low frequency (typically 10‘50),,) auto-
oscillations exhibiting period doubling and chaos, aperiodic relaxation oscillations and
aperiodic spiking. With three modes, quasiperiodicity (two incommensurate auto-oscillation

frequencies) quasiperiodic route to chaos, and various aperiodic and chaotic orbits.
3) Hysteresis is found at the Suhl threshold.

4) Transitons to.a wideband noisy state is found corresponding to hyper-chaos or tur-

bulence.

5) An approximate relationship between the auto-oscillation frequency and forcing ampli-
tude, is found
Although the primary focus in this study is on the subsidiary resonance, some additional

data is given for parallel pumping. YIG has some asymmetry and unless specificd otherwisc,
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data is with the d.c. field along the [111] or easy axis of the crystal.

2 EXPERIMENT

2.1 Experimental Sétup

The basic experimental arrangement is shown in Flg; 3. Microwave power of 200mW at
9.2GHz is supplied by a klystron tube (this can be mechanically tuned from 8 to 12GHz). This .
is coupled via x-band wave guide (3cm) to a precision attenuator. The microwaves enter port 1

of a 3-port circulator and exit through port 2 to the sample. Microwave power reflected by the

‘sample retums by _Lhe same wave guide entering port 2 of the circulator, from which it is

directed through port 3 to a tunable vidco crystal detector which is sensitive to changes in
micro»vvﬁve power from dc to frequencies of scveral megahertz. The sample is mounted in a
loop gap resonator3? located approximately 1 cm from an adjustable sliding short at the end of
the wave guide. The loaded resonator, shown in Fig. 4, is designed to resonate at the klystron
frequency. Adjustment of the resonator frequency is accomplished by either changing the gap
thickness or by inserting some diclectric material into the gap. The resonator is bras#. plated
with silver to improve the Q (Q =500). The resonator has a significant advantage over a Tyg;
cavity — it can produce a larger microwave 4 field (5 Gauss compared to 0.25 Gziuss at 100mw)
while providing a broader resonance. - The system is ﬁné -Luﬁed by adjusting the klystron fre-
quency to the resonator. One can achieve near perfect coupling between the wave guide In-d—the
resonator by adjustment of the sliding short. Input microwave power P, to the resonator is
measurcd with a power meter attached to a 20 dB cross guide cbupler. A balancing reference
arm is attached to the detector via an attenuator and phase shifter. This is particularly uscful for

locating the Suhl threshold.  One first nulls the detector output by adjusting the attenuator and
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pm fm
xc20|} txc20 S xclo[T]
= 9= Alc:) A | pat
| [T
res &samp at at| ldc #
5 mt
| \ .
det mi| | PPS | |KlY
lJ joe
. l
- kps
gm|
LSI plot

—spec T
[

L—scope

Figure 3. Diagram of the experimental setup. Notation: at = variable attenuator, cir = circula-
tor, (microwaves entering port 1 exit port 2; microwaves entering port 2 exit port 3), dc = direc-
tonal coupler (absorbs microwaves traveling opposite to arrow), det = tunable video crystal
detector (type 1N23B), fm = frequency meter (HP model 2590B microwave frequency convert-
er connected to 5245L electronic counter with 5253B plug-in), gm = Gauss meter, kly = klys-
tron (Varian V-58), kps = klystron power supply (FXR model Z815B), LSI = LSI-11 computer,
mag = elecromagnet 0 to 19 kG, mc = modulation coils for magnet, ml = matched load, mps =
magnet power supply (Harvey-Wells model HSR-1365B), mt = 4 arm magic T, res & samp =
resonator and sample (see Fig. 4), pat = precision 0 to 50 dB attenuator (HP model X382A),
plot = digitally controlled x-y plotter (HP model 7470A), pm = power meter (HP 431C), pps =
precision phase shifter (HP model X885A), scope = digital storage ocilloscope (Tektronics
468), short = adjustable sliding short at end of waveguide, spec = spectrum analyzer O to 40
MHz (HP model 3585A), xc10 = 10dB crossguide coupler (10% of power follows arrow while
remainder passes straight through), xc20 = 20dB crossguide coupler (1% of power follows ar-
row while remainder passes straight through).
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N resonator |
sample 0.026"dia
0.25" —slit 0.003"
thickness 0.10"
Y

* Figure 4. Loop-gap resonator with sample. Dimensions in inches.:

phase shifter in the réference_ arm, at some point well beiow threshold. When pbwe’r is
increased by adjusting the precision attenuator (pat) the detector output remains zero until thres-
hold is reached. Beyond this point the deteélor response increases abruptly due to the increas-
ing level of the effective damping resulting from spin wave excitaton. The sample is centered
on a large precision electromagnet with field 'stability of better than 0.1G. The magnet can be
rbtaxcd about the wave guide allowing one to vary the angle GR betweén Hy and h, thereby
choosing perpendicular, parﬁllcl or oblique pumping angles with a resolution of better than 1
degree. The sample itself may be rotated about the axis of the fcsonator to sample angle 85 —

also with better than 1 degree resolution.

A variety of 'pammctcrs may be varied to study the behavior. Most frequenty, the d.c.

magnetic field Hy and the applicd microwave power P are adjusted to produce a two
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dimensional parameter space plot. Other parameters, usually kept fixed, include: microwave
frequency w, (typically 9.2GHz), the position of the sliding short which controls the cpupling
between the wave guide and the resonator, the rotation angles 6z and 65, the resonant fre-
quency wg of the resonator, and the temperature of the sample (unregulated unless stated other-

wise — roughly 300K at low power but increasing significantly at full input power of 150mW.)

Efforts have been made to minimize noise, but some remains and limits the ultimate reso-
lution of various dynamical phenomena such as high order phase locking and period doubling
cascades. Sources include: intrinsic klystron noise, thermal magnons in the sample, klystron
power supply noise (60 'Hz and broadband), magnet power supply noise, temperature fluctua-

tions effecting the klystron and the sample, crystal detector noise, and microphonics.

22 Sample Description and Properties of YIG

The sample used is a sphere of pure YIG (yttrium iron garnet) having a radius of 0.033

cm. [tis a spherical to within AR/R = 6x1073 and highly polished, to within 0.15um.

In order to orient the crystalline axcs of the sample we plot the resonance field H of the
uniform mode as a function of sample angle 85 as shown in Fig. S. By adjusting the magnet
angle as well, one can easily find the (111] directions (absolute minima for the resonant field
strength) and the {100} directions (absolute maxima). The 8 [111] directions are the "casy axes”
for YIG — if left free to rotatc in a strong field the sample will tend to align itsclf with a [111)
axis parallel to the field; also, the anisotropy cnergy is a minimum when the magnetization is
aligned with [111]. By contrast, the 6 [100] dircctions arc "hard axcs” or dircction of unstable-
equilibrium, and the 12 [110] dircctions are "saddle axes”, i.e., they are saddle points for the

anisotropy cnergy.
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3530+ - .

| ] 1 I

1 | 1 |
QO 20 40 60 80 100 120 140 160 180
&, (degrees)

Figure 5. Field for uniform resonance as a function of sample angle 65. Axis of rotation is
roughly [110}. Minimum occurs for {111] parallel to d.c. field Ho, maximum occurs for [100].
Reladve maximum at 80° is [110]. If rotation axis was precisely {110] both minima in the
fizure would be the same. By rotating the magnet angle 8; as well, the location of the axes
may be determined precisely. The first minimum is within 5° of a [111] axis and is the orienta-
ton used in the experiment unlcss stated otherwise.

Yttrium iron gamet has the chemical formula Y;FesOy;. The name gamet was originally

given to certain silicates found to occur naturally (although usually in impure form). The
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general formula for such gamets is {A$*}{B3*1(Si;)Oy, where the A and B can be any of a
number elements, e.g., {Caf*}[df*](Sig)Olz is a commonly occurring form. The brackets
represent locations at different sites:{ } = c—site, [ ] = a—site, ( ) = d-site and no brackets =
h—site in the space group /a3d (0,'%) - see Geller.3! The only cations on symmetry centers are
those on the a—sites. The a;sites form a BCC lattice, however a full unit cube for a gamet has
a side twice the length of the g-site lattice and contains 8 formula units. Each d-site ion is
tetrahedrally bonded to four oxygen atoms, and each a—site ion is octahedrally surrounded by 6

oxygens.

The iron gamets have the general form {Aj}[Fe,](Fe;)O,4, where A can be Y** or any of a
number of rare earth ions. Note that iron ions fill both the a— and the d-sites. YIG is an ideal
Neel fcrﬁmagﬁet. The a— and d-site ions have opposite spin polarization because of a super
exchange interaction through the intervening O% ions. This produces a negative a—d exchange
field: B, =-1.5x10*M,. These ferric ions have S=5/2 and L=0, hence there is a net magnetiza-
tion of 5y per formula unit or 40y per unit cell at zero Kelvin. The lattice constant is 12.376
Angsuoms (at room temperature) and from this we can calculate the saturation magnetization
per unit volume: 4tV = 2459G. The magnetization falls with temperature however, dropping
to 3.65 pp per formula unit at 300K.32 This lowers 4nM, to 1795G. The sample used in this
thesis is specified to have 4nM, = 1750ﬁOG at room temperature. At still higher temperatures
the saturadon magnetization continues to decline, going to zero at the Curie temperature of

559K.

Technically, the presence of a spontancous magnetization implies that YIG cannot have
perfect cubic symmetry. The fact that its casy axis is the [111] axis indicatcs that the structure
is actually rhombohedral. Dectermination of the deviation from cubic structure have been car-

ricd out by various rescarchers (sce Geller3! ).
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Y*is dian'i‘agnetic,‘and the ferric ions being in an L = 0 state have very weak interactions
with lattice phonons. As a result, YIG has a very narfow line width, typically 0.4 Gauss at
room temperﬁture. In contrast, rare emﬁ ions are paramagnetic and when replacing Y in iron
gamets they have a weak exchange coupling to the ferric ions, resuiting in a magnetization
which opposes the Sy of the Fe3* jons. This results in a strong temperature dependence of M,
and also an increased line width. Rare earth impurities in YIG can lead to significant brﬁa_den-

ing of the line width.3!

The anisotropy energy for cubic crystals may be expanded as33
Wa=K\f \+K of oK Af T+Kf of o+
where f and f, are certain symmetry invarant functions (this is discussed in more ‘detail in
~ Sec. 3.1, Egs. (36) to (41)). The most significant of these coefficients have been measured by
Hansen3*33 for YIG and are given in Table 1. Some values for K3 were measured by Escu-

dier.33

Table 1: Anisotropy Factors for YIG
T K) | 4nM, G) | -K, (10%rgem™®) | =K, (10%rg cm™)

42 | 2460 24.8 2.3
77 | 2435 22.1 | 2.1
295 | 1750 6.1 0.05

The effect of exchange in YIG (and other cubic ferromagnets) may well be approximated
by an exchange ficld, H; =(D /M,)VZM(r) where D is the exchange constant, which for YIG is

5.4x107°G cm>.
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2.3 Experimental Resuilts

In Fig. 6 we show an overall parameter space diagram, pump power P, vs H, fora [111]
orientation of the sample along the d.c. field, and perpendicular pumping of the subsidiary reso-
nance. The solid lower boundary line represents the Suhl threshold for absorption by the spin
waves. Below this line the system behaves linearly — the reflected power being some fixed frac-

tion of the incident power that depends on the coupling between resonator and wave guide.

For comparison purposes we show in Fig. 7 the behavior for parallel pumping. Note that
here the threshold has a minimum at lower field than for perpendicular pumping. Most often
the data to be presented is for perpendicular pumping - one may assume this is the case unless

‘stated otherwise.

Near the absolute minimum of the threshold curve for perpendicular pumping (Fig. 6) the
dynamics of individual spin wave modes may be observed. These modes are very closely
spaced (typically 0.16 G ) and give an oscillatory character to the Suhl threshold on a scale
which is too fine to be seen in Fig. 6. In Fig.8 we plot the d.c. microwave absorption as a func-
tion of applied field over a very narrow range of ficld. This d.c. effect was first observed by
Jantz et al.36-39 As seen in Eq. (2), changing the field H q shifts the frequencies of the spin wave
modes in the sample so that in the figurc we are scanning through a scquence of modes. The
frequency is related to field approximately as Y/ g, so this implics that the mode frequency spac-
ing in this scquence is roughly 450 kHz. Just slightly above the Suhl threshold, neighboring
modes interact via nonlincar coupling. This gives rise to auto-oscillations in the reflected power
as shown in Fig. 9a. These are very low frequency compared to the applicd microwaves - typi-
cally 100 kHz. They appear as a modulation of the reflected microwave signal and directy in
the video detector output signal S (¢). The oscillation can undergo period doubling bifurcutio'ns

as shown in Fig. 9b. This occurs when a peak at half of the fundamental frequency begins (o
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Figure 6. Parameter space diagram for perpcndxcular pumping with the {111] axis parallel to
the d.c. magnetic field. .
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Figure 7. Parameter space diagram for (nearly) parallel pumping with the [111] axis parallel
(within 2°) to the d.c. magnetic field. Upper threshold marks the onset of high amplitude auto-
oscillations. These occur over a much broader range of field than was observed for perpendicu-
lar pumping. Oscillation frequencies given in kHz. Actual pumping angle: 65 = 18° off paral-
lel.
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Figure 8. Observed single mode resonances. Located as indicated in Fig. 6. Mode spacing ap-
proximately 0.16 G.

emerge in the power spectrum, as shown in Fig. 9c. This process may repeat and a cascade of
period doublings occurs culminating in a chaotic orbit as shown in Fig. 9d with power spectrum
shown in Fig. 9e. (However, due to the extreme sensitivity of the fine stmcﬁm: region, only the
first 2 or 3 bifurcations can be clearly obscrved). As will be demonstrated in Section 4, these

behavior patterns require only the presence of two cxcited spin wave modes. For the scquence
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Figure 9. (a) Periodic auto-oscillations at approximately 16 kHz, observed in the single mode
region of Fig. 6. Note: typical frequencies range from 10 kHz to 500 kHz. (b) Period doubling
(c) Period doubling power spectrum (d) Chaotic auto-oscillations (e) Power spectrum of chaotic
oscillations.

of peaks in Fig. 8, the first few starting at the left involve only single mode excitation and no
auto-oscillauons are observed - here the only observed effect is a d.c. shift in power absorption.

Moving to the right, the threshold for the successive modes is decreasing (we are approaching
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the absolute minimum of the Suhl curve in Fig. 6.) Thus, being higher above the threshold, we
can excite neighboring modes as well as the mode with the smallest denining from resonance.
(The detuning Aw, is defined to be W, — ®,/2). The a.c. effects we have described then occur
in conjunction with tﬁe d.c. shift of Fig. 8. Hysteresis is also observed, the dynamics may
switch suddenly into and out of oscillatory modes and the pattern is slightly changed when the
sweep direction is reversed. The a.c. as well as the d.c. behavior repeats approximately when
the field is swept through intervals of 0.16 Gauss. Farther to the right, as more modes become
involved, quasiperiodic behavior is sometimes observed, as shown in Fig. 10a. In this case the
power spectrum [Fxg 10b] shows two fundamental peaks (®, and a)?) which are irrationziuy'
related, along with all of their 2-component harmonics of the form ®,,, =md)1 +n . These .
harrnonic‘;s may be found arbitrarily close to any chosen frequency, however the amplitude of
the peaks decay rapidly with increasing m and n . These orbits can exhibi; the quasiperiodic
route to chaos, which has been the subject of much theoretical study (see e.g.*%-41 ) however, it
is difficult to resolve much of the dctails of the transition in this case due to the extreme sensi-
ﬁvity in the fine structure region. The computcr rcsults‘ in sectiori 4 howc?ér do show that
quasiperiodicity can occur when thee or more modes arc involved and exhibit the transition to

chaos.

Referring back to Fig.6 there is a region between 1200 and 1600 Gauss where the boun-
dary displays hysteresis — on increasing power, spin wave absorption is not observed untl the
upper curve, while on decreasing power, it continues until the lower one. - The attractors exist
for the system in the crosshatched zone, only one of which involves excited spin waves. In the
excited spin wave state, the system exhibits noisy oscillations as well as an increased d.c.
absorption. These do not appear to émergc through any bifurc‘alion sequence from a simplc
oscillation. Also, the fine structure of the absorption cannot be observed in this region, which
may be duc to a higher density of modes, and/or modes with higher damping (and therefore

grcater overlap with neighboring modes). The essential origin of the hysteresis effect can be
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Figure 10. (a) Quasiperiodic time series from single mode region of Fig. 6. (b) Quasiperiodic
power spectrum
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“Figure 11. (a) Relaxadon oscillations time series. Located as indicated in Fig. 6. (b) Relaxa-
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understood theoretically in the dynamics of a single mode as discussed in Section 3.4.

Between 700 and 1200 Gauss in Fig.6 we find that just above the Suhl threshold a form of
aperiodic relaxation oscillation occurs. An example of this is shown in Fig. 1la. These have a

characteristic "fast phase” during which the response of the system changes very rapidly which



22

Part 1: Spin Waves N §2.3
- p(f) (dB) (a)
-65‘.-
y
P"{\'\i
R
Sy
- ‘n-Mq?,M
Rl o/
- W‘M' I
. ,ww'““ o i

I’“I‘L
it
M o e Avisin

f (MHz) 4

Figure 12. (a) Low frequency noise spectrum. Below transition to high frequency noise in Fig.
6. (b) High frequency noisc spectrum. Above transition to high frequency noise in Fig. 6. For
both figures the vertical scale is 10 dB per division.

alternates with a "slow phase”. Typically the fast phase is at least an order of magnitude faster

and shorter (in duration) than the slow phase. These oscillations show no periodicity as can be

seen from the featureless power spectrum in Fig.11b. This behavior may be related to the

interaction of "weak" and “strong" modes as discussed in Sec. 3.5.
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Figure 13. Period 8 observed for parallel pumping. P, =50mW, H, = 1800G — see Fig. 7.

At a somewhat higher level of excitation, for d.c. fields in the range 1000 to 1400 Gauss,
the relaxation oscillations are superceded with the noisy oscillations of much higher amplitude
and frequency. The emergence of this new behavior occurs abruptly at the threshold curve indi-
cated by the dashed line in Fig. 6. In Fig. 12(a) and (b) we compare the power spectra for the

low and high frequency noise occurring just below and above the threshold. In both cascs these
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curves are nearly featureless, as was the case for the relaxation oscillations in Fig. 11b.

At still higher pumping power, with H in the range 1800 to 2000 Gauss, there are high
level periodic oscillations. These are typically at least an order of magnitude greater in ampli-

tude and frequency (typical frequency now 1MHz) than those of the fine structure regime. At

LS(t)

,‘S(tf) TR “"’ :\
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l_;i'ﬂ V{\ //\]v / \/‘(\/IU\/M\]V"M p WJ‘/\'}V\ vf\
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Figure 14. Data for d.c. field parailel to [100] (a) Quasi periodic time series (b) Phase locking
of period 8 (¢) Phase locking of period 14
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these power levels, a large number of spin wave modes become accessible, and the oscillations
may be a cooperative effect involving many modes. Thus analysis for the interaction of only a
few modes which is presented in Secs. 3 and 4 -may be of only limited applicability in this
region. (However, see the analysis of Suhl and Zhang*?-44 related to this behavior). These
oscillations exhibit all of the dynamical phenomené previously described for the fine structure
regime, e.g. period doubling, quasipexiodiciiy and chaos. They emerge in a Hopf bifurcation at
the threshold indicated in Fig. 6. Their emergencé does not eliminate the noisy oscillations
which exist below this point, h.owever this noise is nearly negligible compared to the oscilla-

tions when they reach full amplitude.

These high level oscillations are also observed for paraliel pumping where it occurs over a
much wider range of the d.c. field, as shown in Fig. 7. In Fig. 13 we show the spectrum follow- -
ing three period doublings to Period 8. Other crystalline orientations were also examined. Per-
pendicular pumping in the (100} (hard axis) oricntation showed some excellent examples of
émasiperibdicity and phasc locking. Fig. 14(a) shows the beating of two incommensura(e fre- -
quencies separated by about 12% in frequency. Figs 14(b) and (c) show two examples of high

order phase lockings.

In many cases the autd-dscillau’on frequency shows a trend of increasing with applied
microwave power. In Fig. 15(a) an example of such behavior is shown. This data agrees well
with the form f2 e (P /Pc)-l. where f is the auto-oscillation frequency, P is the pump power,
and P, is the threshold power. This form is suggested by the work of Zautkin et al.%> This

behavior can also be found in the numerical simulations of Sec. 4, as shown in Fig. 15(b).
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(FREQUENCY)? (10" sec™?)

Figure 15. (a) Square of observed auto-oscillation frequency f 2 vs. pump power.P relative to
threshold value at P,. The line is a fit to the data. (b) 10xf 2 vs. PP, computed for 2 mode
model (Sec. 4): The line has the same functional form as that of (a), f 2o [(P /P.)~1].

3 THEORY
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This section deals with the analytical formulation of a model of spin wave dynamics that
may be useful in understanding the expen'mcntal results of Sec. 2. The model equation [Eq.

(109)] will be numerically iterated in Sec. 4 and compared to the experimental dynamics.

3.1 Classical Hamiltonian Formulation of the Equations of Motion

We review spin wave theory and present a scmiclassical derivation of the fundamental
equations governing the rclevant spin wave dynamics (which we will go on to study in detail in
iater secdons). In this approach the classical magnetization M is considered to be an-analytic
function of position r and time ¢, and its dynamics arc considered to be govemed by its interac-
tion with an effcétive field H (r,¢). Suhl’s-original analysis of spin wave instabilities!3 is also a
semiclassical one which starts with classical equations of motion for M(r,z}) and goes on 1o find
the normal modes of the system and stability criteria for their calculation. Although this
approach may be cxtended to obtain equations of motion for the spin waves and their mutual
interactions, we take a slightly different approach here, working with the Hamiltonian for the
system and utilizing many results due to Schidmann? and Zakharov et a1.22-47-48 in order to
put it in the most desirable form. Much of this development has its roots in the quantum treat-
ment of spin waves by Holstcin and Primakoff*? in which they developed a sequence of
transformations to diagonalize their spin Hamiltonian. The Hamiltonian formulation has the
advantage of giving the cquations of motion in their canonical form. They arc obtained easily
from the Hnmiltoniun, which is cqual to the total encrgy of the system. In this representation
certain symmetries occur between the coefficients, resulting from the fact that the Hamiltonian
is rcal, while the variables used are complex. The form of the Hamiltonian is csscmiall;v the
samc as of'lhe quantum Hamiltonian, which we discuss in Scc. 3.2. In the analysis, (Secs. 3.4,
3.5, 3.6 and 4), however we will usc only the classical form of the equations since the cxcilation

levels of the experiment arc usually  far above the quantum regime. Damping is treated
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phenomenologically, by adding a linear damping term to the equations of motion for each spin

wave mode.

An effort is made to make the equations general — we consider oblique pumping showing
quite clearly the connection between parallel and perpendicular pumping in the subsidiary reso-
nance regime. We also consider many details omitted in some earlier works such as the effects
of crystalline anisotropy and interactions with the rcsonator or cavity used to couple the
microwaves to Lhcv sample. Explicit exprcséions arc obtained for the various coupling
coefficients — although some of these are very lengthy indced. Following the derivation of the
equations, we discuss in Scc. 3.3 the main approximation - the use of planar spin waves rather
than spherical spin- modes which should be the true modes of the sample. We also discuss the
possibility of obtaining a subharmonic response at half the microwave pumping frequency in

Sec. 3.6.

In the process of obtaining the cquationg of motion in their final form, we must change
variables a number of times. For a Hamiltonian these must take the form of canonical transfor-
mations so that the form of Hamilton’s equatdons of motion will be preserved. We list these
different representations for the magnetization in Table 2 in approximately the same order ih
which they appear in the text, and ending with ¢, the final form which we use throughout the

rest of this work.

We start by noting that provided we arc well below the Curie tcmpemturé (559K for YIG),
the magnitude of the magnetization is approximately a constant M, called the saturation mag-
netization. (4reM; = 1750 G at 300 K for YIG). Thus M,, M,, and M, are not all independent;
it is sufficient to know just M;andM,. Thesc arc the appropriate variabies to choose since the
d.c. field H points along the z axis and hence M, will deviate only slightly from M, while M,
and M, will oscillatc about zero. Aside from anisotropy effects (which we discuss later in this

scection) the system possesses axial symmetry, and this symmetry suggests the use of a complex
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Table 2: Nomenclature for Magnetization

M(r) | (M (r).M, (r)M, (r)] = magnetzadon. | Eq. (3)
M, Fourier component of M(r): M(r)= Y Me**". , Eq. (25)
” :
Mr(r) | Transverse magnetizaton =M_+iM,. , { Eq. (3)
Mzy Fourier component of Mr: My = YMpe'*™ Eq. (28)
k
s.s° Canonicail): c-onlitfx,gate complex magnetization variables: My = Eq. (4)
| SQRYWM; =5 s)V-
; - e o =12 k- :
St Se Fourier component of s: s =V, }E"ske‘ ", where V; is the | g4 (17
sample volume. _
Vi Vit Diagonalizes quadratic part of Hamiltonian: s, =A.v, — WV Eq. (56)
where A, and W, are constants.
b be Obrained from vy,v¢ by near id%mity canonical transformation Eg. (71)
effecting only terms of order v{ and higher. Transformaton
chosen to eliminate ail terms of order v . -
e Slow variables: ¢ye' > =y Exhibits dynamics on a slow | Eg (98)
time scale when the resonance condition @y =®,/2 is approxi-
mately satistied (0, = spin wave frcquency, @, = pump fre-
quency). ‘
Co Phase adjusted slow varables: ¢y =c e '9¥%, gy is appropriate Eq. (107)

phase shiftso that ¢, =c _,.

representation: we define the transverse magnetization My as:
Mr =M, +M, 3)
For small amplitudes, M, and M, behave esscnually as though mey were canonically conju-
gate, while at higher amplitudes they deviate {rom this behavior. However, a weakly nonlinear
ransformation exists (o new vanables s, and s, which arc canonically conjugate for all ampli-
tudes. This transformation previously used by Schidmann*® and Zakharov et al®>+7.43 s
essentally a classical version of the Holstein-Primako(f*? transformation for the quantum treat-
ment of spin waves. The tansformation is
My =5 QyM, =y ss HV* | (4
where s =5, + s, is a complex representation of the canonical variables s, and s, and vis the

. S - L \ . Crene 2N Qo
gyromagnetic ratio. (Note: in lincar approximation s o< My and s has units of Gsee'=.) Since
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the magnitude of the magnetization is constrained to equal M, , we can also express M, in terms
~of s and s* (the complex conjugate of s):

M, =M, ~yss" &)

The inverse relationship (s in terms of M) can be put in the form

s =Mpy VM +M 51 (6)
where M, = (M ~MpM7)" To verify that s, and s, represent canonically conjugate variables,
we will show that Hamilton’s equations give the correct equations of motion when the total

energy expressed in terms of the complex variable s.
The magnetization changes in response to an effective field H(r) which is defined to be:

Y4/
7
SM(r) )
where W /8M(r) is the functional derivative of the total cnergy W of the ferromagnet with

Hr)=-

respect to the magnetization as a function of r. To obtain the variation in W one must integrate

the functional derivative times the variation in the function M(r) over r, i.c.:

W = [———-3M()d’r 8
Jeoar S M ®)
(This rclationship defines the functional derivative) The torque per unit volume on the spin sys-
tem is given by the cross product MxH. Multiplying this by the gyro magnetic ratio y

(y=gup/Ti =1.76x10’G 15! for YIG) we obtain an expression for M(r):

M(r) = —y M(r)xH(r) ©9)

oW

=y M(r ) M)

- H(r) may be broken down into the applied d.c. ficld H,, applicd microwave ficld %, the
cxchange ficld H, the demagnetization or dipolar ficld Hp and the crystalline anisotropy ficld

. Similarly the cncrgy may be broken down into the energy due to applicd ficlds Wy, the
exchange cnergy Wi, the demagnetizing energy Wy, and the crystalline anisotropy cnergy W,,.

We will obtain explicit forms {or cach of these later in this scction.
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The equations of motion take a somewhat simpler form when expressed in terms of Mr:

oMt SW
— =2iyM
ot it My (10)
Mr SW
=2ivM, ——
a M

Note that in evaluating W /dM7 (or similar derivatives) W' is to be expressed in terms of M1 (r)
and M7 (r) and My (r) is to be treated like an independent function from M7 (r). One can show

that Eq. (10) is equivalent to Eq. (9) using:

Sw__ sw oM, sw M, ~sw oM,

= + 11
My M. oM M, oMm;y M, oM7 y
where
oM, 1
m; 2
oM,
Mg 2
and
8M, —IWT
My M,
We may now proceed to show that the equations of motion for s and s* are
os(r) _ . 8H ds'(t) _ . 8H
= = 12
ot lss‘(r) nd =5 s () (12)

where the Hamiltonian H is obtained by expressing the total energy W as a functional of s (r)
and s*(r). Eq. (12) is an appropriate form for Hamilton's equations when using the complex
representation of the conjugate variables s, and s,. (Note: if desired the i may be included in H
so that the equations have exacty the samc'form as the ordinary Hamilton’s equations). To
obtain Eq. (12) we first expanded i SH /3s " using the chain rule:
8H . sw oM{  §w oMy

i = — +i -
ds° My ds dMr Qs

then, using Eq. (10) we obtain
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8H _ 1 | oMf oMy oMr oMy

= - 14
¥ &s* 2"{Mz as” at os” ot (14)

again using the chain rule we may express ds/d¢ as:
3 _ s OMr 35 oMT (1)

or oMp ot oMy ot
Using Eq. (4) and Eq. (6), one can easily verify that
My -1 M

os _ 1 oMt ds 1 T (16)

= d =
My M, ds* 0 Jpr  2yM, ds+
This shows that the right hand sides of Eq. (14) and Eq. (15) are equal and hence Hamilton’s

equations {Eq. (13)] are correct.
The next step is to expand s and s in Fourier series:
—y-12 [ k-
s =V ZSk€‘ r amn
Kk .
s*= VS—IIZZS:keikr

where V; is the sample volume (V:=1.51x10"‘cm3 in the experiment). For Hamiltonian

expressed in terms of Fouricr components sy and s , we may express i 0H /S as

[81-7 =i S ds*(r) O&H as(r)3
o5y Ss*(r) 3sy  Os(r) sy

where the integral is required because we have functional derivatives on the right hand side.

(18)

Noting that ds (r)/ds, =0 and ds*(r)/dsg =V, 2e~*T we find

31'1 __J‘af(f) Y 2gmikrgly

19
a (19)
from which we obtain Hamilton’s equations in the form:
as osg 7
Sk O g B 0H (20)
at 0S¢ at oSy

[Note: if k was considercd continuous rather than discrete then we would still have functional ,

dedvatives, i.c., s (k)/ar =i 8H /35" (K)|.
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At this point we need to find explicit expressions for the different components of the total

energy W. We will then form the Hamiltonian by expressing W in terms of 5, and Sk -

W, — The Interaction Energy with External Field

The external field has an interaction energy W, with the magnetization of the ferromagnet

given by

Wo=[ - (Ho+h()Md*r @21)

where Hy is the d.c. magnetic ficld (oriented along the z axis) and h(t) is the microwave mag-
netic pumping field which has arbitrary orientation and frequency ®,. Defining a transverse

pumping field hr = A, +ih, we may express W as:
Wo=~ [dr| (Hgrho M, +—;—(hTMT'+hT‘MT ) @
or in terms of the constant Fourier components Mg and M, ¢ and sample volume V:

1 .
Wo==V,(Hgth,) — —Z—VS (hy M7 o+hrMro) (23)

Wg - The Exchange Energy

The exchange field can be shown to be30

D
s

where D is the exchange constant (D =2JSa* T chm2 where J is the Heiscnberg exchange

HE = VZM : (24)

encrgy. D = 5.4x10~°Gem* for YI1G). In terms of the Fourier components My of the magnetiza-

tion (M(r) = ¥Me'*¥") we find that the exchange ficld is
k
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=D ik :

H; = 7 kM, kT, (25)
It follows from Eq. (7) that

oWg/oM _ ==V Hgy (26)

where Hy is a Fourier component of Hg. An expression for W,;J which satisfies (26) is

DV,
WE =

T MM @7
s k

We can express this in terms of My and M, (the Fourier components of Mr and M) obtain-

ing:

w _ DY k(M Mo +My M%) 28
E—ZMZIkaTkszzk (28)

s k

Note that M7y is to be interpreted as (Mry)* not as (M7 )y.

Wy — The Demagnetizing or Dipolar Energy

Here we follow the approach of Suhl!3 and break the demagnetizing field into two com-
ponents. First, the k& = 0, case where for certain sample shapes including infinite sheets, infinite
rods, and spheres (or more generally cllipsoids), a uniform demagnetizing field Hpo within the
sample exactly solves the magnetostatic boundary conditions:

Hpo=—4rn(N,Myo NyMyo N: M) (29)
where Mo M, oM, are the constant Fouricr components of M and where N, N, N, are the
demagnetizing factors (notc — these must be generalized to a tensor if the ellipsoid is not
orented with its principle axes corresponding to X, y, and 2). The demagnetizing factors satisfy
Ny +N, +N, =1 and their valucs for the main cases of intcrest are given in Table 3. For the
more general case of ellipsoidal samples sce OsbornS! and Stoner.52 We define symmetric and

asymmetric demagnetizing factors Np, and Np_ as
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Table 3: Demagnetizing Factors
Shape N, | Ny | N; | Np. | Np-
1 1 1 1
Sph - | = | = = 0
phere 30333
1 1 1
Rod, al - | = - 0
od, along z 3 > 0 >
1 1 1 1
Rod, along v > 0 > 4 7
1 1 1 1
Rod, along x 0 > > y) 2
Sheet, normal z 0 0 1 0 0
' 1 1
Sheet, 1 - -
cet, normal y 0 0 > 5
1 1
Sheet, normal x 1 0 0 ry 5
Np.=(Nz+Ny) /2 and Np_=(N,=N,)/2 - (30)
The corresponding energy Wpq is given by
Wpo= 2TV, (Ny M3 + NyM2 +N, M%) @31
or in terms of the transverse magnetization '
« 1 .
Wpo =21V, (Np. MroMro TND—(MT:ZO +M7§ )+, M) (32)

The components with k=0 are very difficult to determine precisely for a spherical sample,
but the problem becomes relatively easy if we neglect the boundary conditions. This is not
really a very good approximation — especially since individual_ spherical modes have been
observed to be excited experimentally - however, this approximation has been used in all previ-
ous studies of spin wave instabilitics becausc it leads to equations which can be solved analyti-
cally. Stanting with the Maxwell Equuli;m V-B=0, we express B as Hp+Hg+h+4nM and
obtain:

V-Hp =—4nV-M (33)

expanding in Fourier components we (ind
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SHpye' "= Z#n;'%k-Mke ter (34)
. K k

The corresponding term in the total energy (which satisfies 0Wp /oM _ ==V, Hp ) including
all nonzero values for k is given by:

l b

| kM,
Wpg=2rV, ¥, ——F— (35)
k=0 K

’ . 2
=2zV, 3 —1-2— Ve My L+ My 2k, My |
Z . .

W, —The Anisotropy Energy

For crystals with cubic symmetry there arc two symmetry invariant functions £ and f,
(with m 3m(O,,) point group symmetry]:33

2.9, .2
f = ataj+oioi-afal (36)

2202
fa=afazay

where (0 0 03) is 2 represematipn of a unit vector with respect to the crystallographic (rather
than experimental) axes. We therefore expect that the anisotropy energy density for such a cry-
stal must be expressible as a function of f | and f , where alpha is a unit vector in the direction
of the magnetization. This assumes that the crystal is unstrained and that the exchange field is
large compared to external fields. Also, there may be a uniaxial comporicnt. especially in thin
films, resulting from stress induced by a mismatch between film and substrate or rclated to the

direction of crystal growth — sce Hansen.33 Expanding W, in terms of f; and f, we find:

Wy =[dr (K| fi+Kof oK f 4K f f o+e) (37)
Values for the anisotropy constants K; and K, for YIG arc given in Table 1 in Sec. 2.2.
Values for other gamets may be found in Hansen.33 In order to usc Eq. (37) we must eXpress it

in terms of M. The procedure is as follows: first find the lincar transformation R which
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relates (0t 0 03y With (M; M, M, ) and hence with M7 i.e.

o Mx} (Mp+M7)12 ,
o =R M} =R |~ (Mp=M7)I2 (38)
O M,J (1-Mp M)

then express f | and f , in terms of My. Finally expand Mr as a Fourier series, eliminate oscil-
latory terms from the integral with nonoscillatory terms being multiplied by V,, the sample
volume. The easiest case to evaluate is for H oriented along {001]. In this case we can nor-
mally make the additional conditions ¥ =(100] and y = [010]. [However some other choice
might be required for a sample which is not azimuthally symmetric if its principle axes (for
evaluating the demagnetizing ficld) do not agrce with the crystallographic axes]. In this case

R = M,'T where I is the idcmity matrix. From this we obtain ( for [100] orierﬁation):
« 9 . 1 .
fi=mrmy -"8‘("11 mr )2+R'(m7"‘ +mr *) (39)

fa= %(mf‘m; 4—2m'p2m;-,2)(1—m1-m7-') (40)
where we have dcﬁnéd mr =Mp/M,. In order to obtain all terms through order M7 in W, we
need to include the first three terms in Eq. (37) with coefficients K1,K 5, and K3. Similar
expressions to Eq. (39) above may be obtained for other orientations of interest. However rela-
tively simple results may be obtained if we restrict oursclves to the lowest order contributions
(order Mf”’) with the z axis corresponding to {001], [110], or (111}, and the y axis corresponding
to [110] (the three oricmations'indicaled for the z axis may be obtained by rotating about the

[ITO] axis). In this case the anisotropy energy has the form

W, =21V, 3| Ny MMy + %NA_(M.,-’-,‘ +Mpg)| +OrderMry) (41)
k
where:
for (001] N,,=2K/4nM?, N, =0

for [111] N,H:(—%Kl-—%l(g)mwsz. N,_=0
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for [110] N4, = (-%Kﬁ%z@mw}, N,,_:(—;-Kﬁi-l@mrm}
This notaton was chosen because of its similarity to the demagnetizing factors Np, and Np_
appearing in Eq. (32). Note that for 7 = [001] or [111] the results are independent of the orien-
tation of X and y, although there will be differences in higher order terms omitted in Eq. (41).
Only the Z = [110] case leads to a nonzero value of N4 _. This term breaks azimuthal symmetry
and leads to elliptical rather than circular orbits for the uniform mode (as does the factor Np_ in

Eq. (32) which results from shape anisotropy). Values for N4, and N,_ for YIG may be found

in Table 4.
Table 4: Anisotropy Factors for YIG
T () | [100IN,4, | [1111N,4, | [1101N4, | [1101N4_
42 | -0.1030 0.0708 0.0246 -0.0784
77 -0.0937 0.0644 0.0223 -0.0714
295 -0.0501 0.0335 0.0125 -0.0376

Now that the various contributions to the energy have becn evaluated [ Egs. (23), (28),
(32), (35)' and (41) ] we may combine them to form to obtain an expression for the Hamil-
tonian:

1‘? = Wo‘f“VE +WDO +WD k+WA (42)

Naturally, we will want to express the Hamiltonian in terms of the canonical variables s, and

sk This may be accomplished using:

1 -
Mp =M, | Y Sy Y32 Y Sk S kS kerkok| TOTder(s f ) (43)
Ki k2
and
1 "
M =M, (5/:‘? Y 3 kS Ky-k ) 44)
ki

where Y =2yM V; and §; =1 fork =0 and §, =0 tor k). Since the resulting Hamiltonian is
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a lengthy expression, we break it into components as follows:

H = const. +H,+H y+H 7+H 4+ - - (45)

where H, consists of terms involving the pumping fields A and h,, H, consists of quadratic

terms in sy, H 5 of cubic terms, and A 4 quartic terms. The results are:

l-ip =7h, ZSI:SK"YY—UZ(}ITSO' +hrsg) (46)
K
| G
ZAkSk S+ E(Bksks_k'*'C.C.) (47)
K
where
) L 12
Ay =V(H g+Dk ) +®,, (8, Np, = N, + N4+ (1-0;) Y ), 48)
kr?
By =w, (SkND_+NA_+(l—8k)?), 49
o, =471V Y, and c.c. denotes complex conjugate
H3——Y Z]/‘Sksklsk‘_,.k +c.C. (50)
. : L 89
~ where
ksz
Jk=mm-2k_2(1-8k) Sh)
and

L, . .
H4 = E Z (2Ek| ‘ka—Qh.Q ks)s knskzska‘) kl +ka=ky (Fklskls kS koS ki + Kz + Ky +c.c.) (52)
kyka,k3
where
, lkr 12
Qu =YDk* + 0 (8 Np+ + (1-5y) e

+ NA+) <53)

Ey = YDk*+0,, (5, N, + (1

and

,,

Fr=0 [(1-5k) +5/<N1) Na-] (53)
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Note that while we have included in A , its dependence on the anisotropy factors N, ., énd N,
there are additional contﬁbuﬁom to H, from terms of order M7-4 in the anisotropy energy such
as those given explicitly in Eq. (39) for the [100] orientation, and requiring knowledge of the
coefficients &k, and k3 in Eq. (37). However, anisotropy is not very strong in pure YIG and it

may be reasonable to neglect these terms in first approximation.

In the absence of dipoiar and anisotropy effects, the s variables would be the appropriate

normal coordinates for the problem sincc in that case H, would have the "diagonal" form

A syesy. However we have the additional terms %B 1S kS 4 and %Bks,:s.'k whose presence

means that s and s_, are coupled. Fortunately, H, can be diagonalized by means of a canoni-

cal transformation to the new variables v, and vy :

Sk = XkV k-ukv_'k (56)
with inverse transformation

Vk=)\.k.§'k+uks_‘k (57)

This is sometimes referred to as the Bogoliubov transformation. The cocfficients A, and My are

~ given by
12
Ak‘H.Ok
A = 8
()
and
B, [ A, 2
Kk = S
KT B 2wy
where
W = (A2 = | B 1H? (59)
is the spin wave dispersion relation. A, and p, satisfy
M-l l?=1 (60)

which is required in order that the transformation be canonical, i.e., that Hamilton's cquations

give the correct equations of motion:
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. .0H .« . 0H
vg=i— and vy =—£a—— : (61)
Vk Vk
The other useful relations are:
)\.k].lk = B k/20)k (62)
and
A+ I 2= Ay (63)

Note Lﬁat there is no real solution for wy in Eq. (59) in the event that Al < lBklz. This' first
occurs in the limit of small ( but nonzero) k when

Ho<d4mM (N, +Ns_—Nyy) (64)
below this field the ferromagnet is unstable against the formation of domains (roughly 600 G
for YIG). A typical dispersion diagram was shown prcviously in Fig. 2. Note that oy depends
not only on k| but also on 8y, the azimuthal angle of k. Neglecting the anisotropy factor Nyo,
oy is a minimum for 8, =0 and.a maximum for 8, =90°. The presence of N4_ changes the
minimum to a nonzero valué of 8, and also makes wy dependent on the ¢y the polar angle of k.
For N,_ positive, the minimum occurs for ¢y = 90°[dy = arg (kr)], while N,_ negative gives a
minimum for ¢, =0. (These conditions arc reversed for the maximum). The uniform mode fre-
quency g always lies within the band of allowed frequencies for small but nonzero k. Its loca-
tion depends primarily on the sample shape - for a sphere it has approximately the same fre-
quency as a spin wave with k =0 and 6, = 54.7°; for a thin disc with 7 normal the frequency
corresponds to 8, = 0°; for a thin disc with 7 parallel to the surface the frequency corresponds to
0, = 90°.

The Bogoliubov transformation puts the quadratic fcxm in the desired form

The pumping term now has the form

;| Ak, LBk (66)
b ="1hy Y, mkvkvk—z mkvkv_k C.C. . :

k
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= 1712 (hohr = olr)vg +e.c
note, if Np_+N,_ is negligibly small then Ag=1 and uy=0 and therefore vy=ys,. The
h,vgvZ term gives parallel pumping and the hyvqy term gives perpendicular pumping. The

transformed cubic term is:

1‘?3 = _Yl/2 2 [Uk"kzvklvkzv-_(kl +Ka) +C.C. ) + thkzvk‘vkzv_'(k‘ +kp) +c.c. ) (67)
ki k2
where
Ukhkz = Jk|“"‘:|p'k.zxk|+kz - jl:| )\'k| A’kzp"ﬁ + k1 (68)
X+ k2 =1 Mo Mo rka 7 i B Meatiris +J kerka M HicHkrrka (69)

= J 1, B Hicgi ey = kM Fig Ak, vk = kg Ay kg

For the quartic term H,, we will keep only thosc terms which couple two spin wave modes of
interest, say, k and k’. We will also ignore all terms with fasi time dependence. Only those
terms with slow time dependence, of the same order of magnitude as the damping rate.(to be
introduced later into the equation of motion), Will be needed. We naturally assume that

¢

Wy = Wy = W,/2. Factors vy and v_y have time dependence e'™ while v and v’ have time

dependence e ™™ As a result, A , is reduced to just two terms:

7 = . . 1 3 LI
Hy=TyevevxVevy + ‘2‘5 kk ViV VKV (70)
where the parameters T, and § xk’ may be obtained in terms of the previous parameters by sub-

sttuung Eq. (56) into Eq. (52) and collccting all terms of the indicated types.

While we have found terms in H 4, which dircctly couple two spin wave modes (of the
same frequency) there are no such terms in A4 Why then do we need H4? The reason is that
the H4 terms arc much larger than the H, terms and there are sccond order contributions from
H 4 which do couple k and k’. These occur through the off resonance or virtual excitation of the
modc k+k” or k—k". These modes will not normally have the same resonant frequency as k and

k!, however they may nevertheless be forced into a weak response at this frequency, which in
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turn produces a weak coupling between k and k” which may be of the same order as the terms in
H,. There are two essentially equivalent ways of dealing with this problem. First, one may
explicidy determine the response of these off resonance modes from the equations of motion.
Since these modes are strongly detuned they will not behave as dynamical variables — their
amplitudes may be expressed directly as a function of vy and v;’. A second method is to intro-
duce ahother canonical trz1nsforrn:ui§r1"'7 to new variables b, and b, which eliminates all of the

cubic terms in the Hamiltonian. The appropriate transformaton is:

X xsxbwb-w  Kew +Xox bbb
Vk'—'bk"l‘Y“zZ( - + - - (71)
k| Ok Ok Wk’ W= W+ Wy 4’
- - = » *
N Ui + Ui +Up k)b
mkmk"{’ﬁ)k’_',k

Hamilton’s equations in the b, variables are corrcct through quadratic terms but deviate from
the correct equatiqns of motion by cubic terms. These errox.s can be canceled by adding the
appropriate quartic terms to the Hamiltonian. [Note: These correction terms could be generated
by adding the appropriate cubic terms to Eq. (71)]. The transformation itself also generates
new quartic terms and as a result ka' and § wk are "renormalized” to new values Ty and Sy~
Thus we now have

1'?3:0 (72)

and

Hy=Toobyb by + %s bbb o (73)

The transformation leaves the quadratic part of the Hamiltonian in diagonal form:
Hy=wbgby (74)
However, there are some very important conscquences for the perpendicular pumping tcrm [sce
Eq. (66)). In the v, notation, the transverse fictd 4 only couples to the uniform mode v, which
is off rcsonance. This in turn couples to a spin wave pair, vy,V_g, via terms in H like

Xk-kVkVkvo. In the by notaton however, H5 has been climinated so this mechanism no
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longer exists. Instead, we now have new terms appearing in I-ip whereby the external field cou-
ples directly to spin wave pairs just as it does for the parallel pumping term. The importam part

of H, may now be expressed:

H =3 -l“h _B_k_y()\oh TN ‘)_X.‘E"_lf.'__ (75)
P& lemk T “{’To)O—Zcok

e v Uox+Uko+Ukx|, ., .
‘-Y(th'r—uoh'r) bkb—k +C.C.

Wg + 20y
Where we have omitted the direct coupling terms hArbg + c.c., since these are now unimportant
for the subsidiary absorption, howevef they are required for the second order Suhl instability
since this involves the egcitation of the uniform mode. Noting that Uy - and Xy were given
by Egs. (68) and (69) we see that the coefficient of byb m Eq. (75) can in general be very
complicated. However, if we restrict our attention to the case where Np_ and N,_ are both
zero, as occurs for example with a spherical sample with Hy parailel to [111] or [100], then

Ao =1 and Wy =0 and Eq. (75) simplifics to:

3 |: 1 By [JE?_»%—Jklkuk} (76)

UOTES % WiThy
—yhr'{ ke~ Tk kukHb,:b_'k +c.c.
W+ 20

The first term corresponds to parallel pumping by the z component of the microwave field /.
The second term corresponds to perpendicular pumping by the component of the transverse
field with c.c.w. circular polarization. The third term corresponds to perpendicular pumping by
the component of the c.w. circular poln'n'zation. The reader may be surprised that this last case
can contribute since it is opposed to the direction of precession of the uniform mode. However

the important factor is how far the excitation is detuncd from wg: the c.c.w. case is typically

1

dctuncd by -;—u)p while the c.w. casc is typically detuncd by %(op. Noting that @y = 3

(Dp wC

see that these factors appear in the denominators of the respective terms, hence the third term
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will be at least 3 times smaller than the second '(in the subsidiary resonance regime) and may be

considerably smaller still due to factors in the numerator.

Effects of Resonator and Waveguide

"Inthe experimental setup, the microwave pumping field is generated by a resonator which
surrounds the sample, as was discussed in Sec. 2.1. This device serves the same purposc as a
cavity, i.e., to intensify the ficld, and a similar analysis to that presented can be applied to that
case. The ncsonﬁtor amplitude will be reprcseméd by R, a complex variable, chosen so that R
and R * behave as canonical variables and contribute a term Hg to the Hamiltonian:

Hp =pR'R ' an

where @g is the resonator frequency. The resonator can be represented as a series LC circuit.

~ This has total cnergy L2l

5 5 CV? where L is the inductance, C is the capacitance, V is the

voltage and / is the current. In terms of these variables a suitable expression for R is:

L 174 C /4 ‘
and wg is given by '
wg =(LCY'? (79)

The magnetic ficld at the center of the resonator (cxcluding the sample) is proportional to I and
hence to R+R* By equating the maximum ficld energy with Hp we find that the ficld hg is

given by

' 27!0)R 12 . .
hR = v (R +R.) - (80)

R

where Vj, is the effective volume of the resonator. (V, may include corrections for end effects

but we will ignore these and use Vg =2.06x1073cm?, the experimental volume within the
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resonator used.) Since we wish to consider oblique pumping we assume that kg is linearly
polarized, lies in.the x-z plane and makes an angle 8, with the z axis. Thus the z component is

given by

[ 2TE(JJR ] vz
h, = (cosBp )(R+R™) (81)
Ve

and the transverse component is given by

[ ZRCOR ] 12
h, = ' (sinBp )[R +R™) (82)
Ve

We may now insert this into the expression for 1-7,, (Eq. (76) or the more general case Eq. (75))

to obtain (kceping only terms with slow time dependence assuming wg = 2wy)

Hp "—'%Gka;b:k +C.C. » (83)

where for the simpler case [Eq. (76)]

( 12
1 zan B K
G, =—— —cos9 84
k 2 YL A } o cosog (84)
2rnwg v . (J K kl;z ~Jihbi Tk Hl% = J i Aihix
=Y sinBp + -
VR W — 2(1);( Wq + ka

We will now consider the coupling of the resonator to the wave guide. In the wave guide

there is an incoming wave h;, and an outgoing wave h,,. For simplicity we will assume a

complex representation with the amplitude of 4;, equal to the square root of the input power P,

hiy = PN%e" ! (85)

Both h;, and h,,, are taken to be the effective amplitude of the waves at the location of the sam-

ple. The outgoing wave h,,, is made up of two components: 4;, is reflected at the cnd of the

wave guide and becomes the first component; the sccond component is the emission from the
resonator and is assumecd to be directly proportional to the resonator amplitude R :

oy =hy +iPR (86)

where B is 2 complex constant. From this expression we can determine the power entering the
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wave guide from the sample P,,:

P, =lhy12=1h, 12=BB"RR" +iBRA; —iB"R"hy, - (87

This must be balanced by the power entering the resonator %(WRR *R) (less resistive damping

and sample interaction terms) and by the rate of change of the interaction energy, £, between

the resonator and wave guide fields. We can expect the slowly varying part of £ ;,, to be of the
form

Em=8haR +E hyu R’ (88)

where & is a complex constant. The term BB°RR" in Eq. (87) must be balanced by a radiative

damping term =T, 4R in the equation for R . There must also be a term coupling to the incom-

ing wave h;, so we expect that :

R =—T,,, + T, )R +i(0gR + 0k, +§G,{bkb_k) o (39)
where T,,, is the resistive damping (T, and T,y are both assumed real) and a is a compiex
parameter. (Note that we have omitted the coupling term to the uniform mode, of the form
G by, since it is of no importance if @, # wp. Its only effect is to .slightly shift the resonant fre-

quency @g). The balance of power determines the relationship between o, B, &, and T4

T = %aa"wR (90)
B =owp | 1)
§=o" ®2)

Thus we only need to know the complex paramcter o.

One case of particular interest is critical coupling. In this case we choosc o so that

h,y =0 to obtain maximum cfficiency, thus

h;

n

=—io'Rwg (93)

For steady state the right hand side of Eq. (89) must cqual i@, R. Assuming wy =, and all

b,’s arc zcro ( below threshold) the conditon for critical coupling is:
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oo Wg (94)
or:

lal = T, /wg) 2= Q72 (95)
where Q is the quality factor of the resonator (Q =wr/2T,,). If we take @ =500 for the
experimental resonator, then |l =0.045. The fact that the critical condition depends only on
the magnitude of o implies that this can be achieved in general by the adjustment of only one
experimental parameter. This_is found to be the case — adjustment of the sliding short alone is

sufficient to achieve a null in the reflected power.

Elimination of the Resonator Variable

Under certain conditions the resonator may be eliminated as a dynamical variable. The
main requirement is that the damping of the resonator, I, + I',,y, must be much greater than
the effective damping, ¥y, for the spin wave modes being excited. 7, represents the combined
effects of a varicty of mechanisms whereby the energy of the excited spin waves couples to the
thermal reservoir of phonons and magnons. ¥ is introduccd phenomenologically into the equa-

tions of motion by modifying Hamilton’s cquations:

oby . dH
— =iy 96
5 37 YD« | (96)
thus the equation for bk is:
by = (i O = V)b +2G (Rb 5 +iS QT 141 by 126y + S yiebieb b ) ©7)
-

We will now change to show vanables:

by =ce' | (98)

R =Rye' ™ (99)

substituting these expressions into Egs. (89) and (97) and using Eq. (85) for h;, we obtain:



Part 1: Spin Waves §3.1 49
R0=—FR0+i(AQRRQ"P'(lP;,IIIZﬂ"ZG/:C-kC-_k) . (100)
k -

Er = (= + I AQC + 2G (R oS + i T2T e | €1 26 + Sk i€ €X%) (101)

"
where T=T,,4 + T, AQp =, = g, and AQy = ©y ~ ®,/2. Assuming that I > vy, we can
ex;ﬁect R 10 be in quasi-equilibrium with RO<<I“ R so that we may set Ro ={. Eq. (100) may

then be solved for R :

[

Ro= ——
07 T—iAQg

(@P? + TGk ) ' (102)
P
Using this in the equation for ¢ we obtain

(‘:_k = (—Yk + lAQk)C.k - ngulllzc-_‘k + [ZZTKK' | C-k'|2C-k + (Skk' + Rkk’)‘fk’c_—k’f:k (103)

K
where
Ry =2G oG (T-i AQR) (104)
and
2G, o 105
8k = a0, (105)

We must now discuss the relationship between ¢ and ¢_. Since we are dealing with a
sample of finite size, it makes no sense to talk of traveling spin waves. Instead, the theory must
be compatiblé to the fact that the sample must exhibit standing waves. In order to create stand-

ing waves, we must require

C.-k =C_‘qlC-k (106)

where g, is a real phase factor. If we take this as an initial condition, then an examination of
the equations for ¢y, and c_y shows that the condition will rcmain true [noting that
Tww =T and Sy =S If wedefine a ncw variable ¢ by:

Ce=ce™ (107)

so that by Eq. (106):

C=cye'? (108)

then we may write Eq. (103) as
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ék = (—Yk + lAQk)Ck el ngUI./ZC‘: + iZZTkk' | Cy | ch + (Skk' + Rkk’)C%Ci (109)

kl
Note that this equation still includes a sum over positive and negative values of k” — these may
be combined if desired. Eq. (109) is the main analytcal result and will be numerically solved in

Sec. 4. -

There are a number of symmetries satisfied by the spin wave coupling coefficients T -
and S . First, we note that certain terms are equivalent: Sy -, Sk k" S x> and S _ _y all mul-
tiply the same term (c ¢ -cxc’) in the Hamiltonian and similarly, Ty and T both m.ulti-
ply the same term (¢ cwcyCy ). Thus we are free to choose these coefficients sb that

Tk'k = Tkk’ . (110)

and
Sk =Sk-k =Sk =S kK" , (11D
These relations were used in obtaining Eq. (101). We also find from simple inversion sym-
metry that
. T x«=Tu ' (112)
However, T - and T ;- are not rcquired to be equal. Some additional conditions follow from
the fact that the Hamiltonian is real: -

Skk'=S,:/k (113)
and

T =Tx ’ (114)
From Egs. (110) and (114) we sce that T must be rcal while Sy, may be complex except for
the diagonal terms Sy, which must be rcal. As can be scen from Egs. (104) and (84), Ry
satisfies the same conditons as Sy in Eq. (111). The fact that Ty is real implies that these
terms cannot result in cnergy transfer between modes as they only effect the phase and not the

amplitude - all energy transfer takes place via the Sy, and R terms.
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32 Quantum Formulation ~ Qutline

The various steps which were required to obtain the classical Hamiltonian all have their
analogs using quantum operators. However, we will not go through this development in fuil

detail but instead will give only a brief outline.

The first step is to express the Hamiltonian in terms of transverse spin operators — analo-

gous to the transverse magnetization Mr:

Snse=Sne +iSy, and S,_=S, —iS, (115)

One then performs the Holstein-Primakoff transformation to new variables a, and a, {:

" 12
a,1a,
Sn+=(25)“2a,.7[1— >3 ] (116)
!a,.

n— = (ZS )1/2[
Spz ==S+a, ta,
where the square roots are interpreted formally as infinite series. The a, s satisfy the commuta-
tion rclations
(@, @y 1] =8, (117)
a,t and a, correspond to s (r) and s (r)" in the classical treatment. These are then expanded in

a Fourier series:

2ll~ 21!*

Yayexp(ikr,) | (118)
kK

Z «Cxp(=ikr,)
k
Where N is the total number of unit cells in the sample. One then performs the Bogoliubov

transformation

ak=kkvk*’ukv_k? (119)

where the magnon raising and lowering operators v+ and v, correspond to the spin wave vari-
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Wy
(8]

ables vy and vy in the classical treatment. Finally, we may make the transformation to b, and
by, corresponding to Eq. (71), which eliminates cubic terms from the Hamiltonian, alters the

nature of the coupling to the resonator, and renormalizes the quartic terms.

One may convert the classical expression to the corresponding quantum expression by
replacing b, with & b1, and replacing b, with & 26,. Note that in the conventional nota-
don it is the raising opératoxs byt which have positive frequency and therefore correspond to
our classical by. The state of the resonator may also be quantized — we similarly replace R with
7 YR+t and R* with & i’ZR.‘whcre R+ and R are the raising and lowering operators for the
electromagnetic state of the resonator. The number of k-magnons in the sample or of photons
in the resonator are determined by the number operators b, 7oy and R TR respectively. The

Hamiltonian including resonator terms becomes:
H=F wbtbe+7 0gR1R : (120)
+i RS GRbgb S +he. +T Pah,R* +he.
k

+h 22-‘1‘-(5 kk'b kb kb tb T +he) + —ZI-(Tkk,kab WOxby +hc.)
kk’ )

where h.c. = hermitian conjugate. The equations of motion for the magnon operators are now

given by:
oby - 3H
-t 097 121
3% ST abgr  kox (121)
and for the resonator by:
OR _ —i oH
—_ == ~-TR 122
ot h ORYT (122

where we have inctuded the phenomenological damping rates v and T.
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3.3 Spherical Spin-Modes

In deriving our spin wave equations of motion, we have made one major approximation —
we have used an expression in planar spin waves rather than spherical spin-modes. The theory
of these modes was first developed by Walker®-3 and they are often referred to as Walker
modes or magnetostatié modes. Walker’s analysis covers spheroids, axially aligned with the
d.c. field, but does not include the effects of exchange or anisotropy. The sphex;ical case was
studied in much greater detail by Fletcher and Bell.% 7 Damon and Eshbach!? discuss the modes

of a ferromagnetic slab.
Walker assumes, as we did in the previous analysis, that propagation effects may be
neglected (i.c.VxB =0). This allows one to define a magnctic potential y such that

H=Vy (123)

The Maxwell equation V-8 =0 leads to an cquutidn relating v and M:

Vhy +4nV-M=0 ' (124)

addidonally we have the gyromagnetic equation:

%l\;—l =-~vyMxH (125)
by performing a linearized analysis and imposing appropriate boundary conditions a general
solution may be found for y both inside and outside of the sphere. Solutions are characterized
by three indices (n, m, r). y,,, has n—Iml zero’s (not counting cnd points) as 6 is varied from
0° o 180°. Thcl ¢ and time dependence of y (in complex rcpresentation) is of the form
exp(im ¢ + i w¢) while the other part of y may be taken to be real. The index # is restricted to
positive integers, while m may be positive or negative in the range —n to n. Form > 0 therc
are (n = Iml1/2)+ 1 valucs of r (labeled 0, 1, 2, ...) while form < 0O Ll.lcrc are {n —1ml/2]

values (labeled 1, 2, 3, ...) where [x] is the largest integer in x. Modes with 7 =0 take the form

of surface waves!! (particularly for large n); the frequency of these modes lic in a band which
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is just above the band occupied by planar spin waves (for no exchange). The modes with =0
and the uniform mode (1,1,0) lie in a band that corresponds to the planar spin wave band. If we

express W as Woe' (mo+w) then the magnetization can be expressed as

ad .
4nM, =RCHK—8‘£O— +vm+y°] e‘(’"“-’*’“")] (126)
r.
) m .
47tM¢=—-Im|i[v—w£+1<——\£9- e‘("‘°+‘”‘)}
ar r

where M, is the radial magnetization and M, is the angular magnetization. x and v are related

to the frequency of the mode by

(YHO = Wn/3)W0,
(YH o= 0n/3)* - @*

K

(127)

WW,,
(‘YHO - .mm/3)2 - mz

where ®,, =4mM,y. Note: x and v are both ordinarily negative. The spins precess in elliptical

v

orbits with either the major or minor axis of the ellipse oriented radially. Spins on an axially
aligned circle in.the sample all precess on identical ellipses with relative phases varying as m,
as shown in Fig. 16-for several values of m. Thus modes with m #0 take the form of circulating
waves moving with angular phase velocity w/m. The case of m =0 is a "breather mode” in
which all spins on the circle move inwards and outwards (on the ellipses) together. Note that
the uniform mode (1, 1, 0) is not a breather mode, it has m =1 not m =0. The eccentricity of
the ellipses is a necessary factor in their coupling to both the uniform mode and to parallel
microwave ficlds. Because of the traveling wave nature of the solutions, m is similar to k in the
plane wave expansion in that products of spin wave variables in the Hamiltonian should have a
summed m value of zero, where the summed m value is just the sum of the m valucs of each
variable, with the sign of m changed for thosc varables which arc conjugated. A circularly
polarized microwave ficld has m = 1, while a parallel microwave ficld has m =0. Ifa spherical

spin mode is represented as v,,, (a complex amplitude) and if we normalize v,,,. so that the
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Figure 16. Spherical spin-mode: behavior of spins on an axially alligned circle for several
values of m as indicated.

energy of the mode is in the usual canonical forM Wy, Vam Vame then we can expect the follow-

ing terms in the Hamiltonian:
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H =3 O Verr Ve + Unorr R Vo i p Vi —m s + C.C. (128)
= L] AN )
+ Znmr V110V nmer Vo le-m s +c.c +gner110vnnvvn.—l—mJ' +c.c

+G R v o+ c.C. +other triple products and higher order terms.

The parallel pumping term U, RV, V, - - is relatively easy to justify. Here we just
compute the z component of the magnetization and integrate this with the applied parallel field
over the sample. The z component of the magnetization is approximately M, minus one half of
the square of the transverse magnetization. The transverse magnetization in tum can be
expressed as a linear combination of the v,,, amplitudes times appropriate phase factors. After
squaring and integrating the only contributing terms are products of the form shown. The

coefficient U, is determined primarily by the eccentricity of the precession orbits.

The triple terms which couple the uniform and spin wave modes (the terms with
coefficients g, and g,,,,) are more difficult to justify. Here we rcly on analogy with the plane
wave analysis. Since the uniform mode has m =1, the other two modes in the triple product do
not have exactly opposite values of m as they did in the parallel chse. We have rcquired nandr
(as we did in the pamllel- casc) to be the same for these two modes as otherwise we would
expect the interaction to integrate to zero. Other than to point out the impoi‘tance of having
some cccentricity, little is known at present about the dependence of the coupling coefficients

onn,m,andr.

The coupling to the uniform modc G *R*v 4 is of the expected form and the coefficient G
may be obtained from Egs. (66) and (82) where v ;o was called v and which includes aniso-
tropy cffects. This form of the Hamiltonian is equivalent to the onc we derived previously for
planar spin waves with one ¢xception — the modes (n, m, r), (n,-m, r), (n, 1-m, r), and (n,
-1-m, r) will not have exacdy the same frcqucncy as cach other (while the k and -k modes did
in the planar casc). For low order modes the difference in frequency can be significant — the

driving frequency will be split not in half but rather into two different values. This might then
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have a significant impact on the resultant dynamics — in particular our assumption that ¢y =c¢
may not carry over to the corresponding conditions: Cpm, =Cp —m; =Cn lom s = Cp ~1om - HOW-
ever, for high order modes (n large) it would seem reasonable to expect the condition of fre-

quency equality to be nearly sausfied.

It is desirable to find out the approximatc values Ifor n,m,and r in various regions of the
parameter space, particularly the fine structure region. This cannot be stated with any certainty
as yet, however we can discuss some possibilitics. The main experimental fact we have is that
the mode spacing is AH = 0.16 Gauss in the fine structure region (sce-Sec. 2.3). One possibility
is that this results from the incrcasc in exchange energy with increasing wave number.
Exchange effects are not included in Walker’s analyéis, however we can estimate this effect
from our piane wave analysis. Using the dispersion relation Egs. (59), (48) and (49), and

neglecting anisotropy we have:

o = (yHo——;-m,,, + kaZ)(yHo-—;-(o,,, +YDk? + W, 5in’0;) (129)
if we assume Awy =0 and A8 =0 then we can obtain:

AH y=2Dk Ak (130)
we can take Ak from the sphere’s radius rg as Ak = Wrg= 95.2cm™! assuming that the effective
k value is determined primarily from oscillations in the radial dircction. The experimental
value of AH ; allows us to compute K:

k = 1.56x10%cm™
using this k value we may determine the number n, of half wavelengths along the radius of the
sample:
n, = 1640
While this value of k is consistent with the opcrating conditions (sce Fig. 2) the valuc of n,
seems excessively large for a high Q resonant mode. Onc might expect such a mode to have

much higher damping duc to surface roughness and other effects. Another reason why we
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might doubt the calculated value of & is the fact that the work of Patton et al’3 suggests that a
certain kink in the threshold curve is associated with the availability of low k, high Q modes,
occurring when ®,/2 coincides with the upper (6y = 90°) boundary of the spin wave manifold
(Fig. 2). In the experiment this kink occurs just below the field at which the fine structure
behavior is most clearly observed. In view of these facts another option may be considered —
assume k is small so Ak is unimportant and allow A8 to be nonzero. From Eq. (129) we can
relate A8, AH, and 9. Unfortunatcly, we do not have a simple relation giving the effective
angle 6 in terms of n, m, and r. However, on examining the literature on Walker modes, one
finds that their frequencies do strongly depend on the ficld and the indices 7, m, and r so that a

sequence of modes could certainly be found which exhibit the observed behavior.

3.4 Fixed Points and Stability

As a first step to understanding the behavior of cxcited spin wave modes, we will consider
the case where only one spin wave is excited. Examining Eq. (109) we find that cx =0 is
always a fixed point - this is true regardless of how many spin wave modes are excited to
nonzero values. However, this fixed point need not be stable, it’s stability depends on the rela-
tive strength of the damping term - v, ¢, and forcing term —g kP;,l’zc,: . An important feature to
note about Eq. (109) is that there is inversion symmetry - if ¢y (¢) is a solution then so is
—c (¢). This is also true for arbitrarily many modcs, the sign of cach may be changed indepen-
dently without effcc;ing the validity of the solution. To determine the stability of the fixed
point ¢, =0, we need only consider the lincar puﬁ of the cquation:

Ei= (Y + EAQC =g 1Pin "k (13D

This leads to the cigenvalue cquation (in complex form):
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A B =
448

A =~y +iAQB =g, P)?

E is the eigenvalue and & is the complex eigenvector. We set the determinant equal to zero:

where

A-E B '
det{ v aeg =0 (133)
and solve for E obtaining:
. 2 2
E,= A;A iHA*;‘ ] —(AA'-BB')] (134)

since (A +A')/2 =y, is always negative it is clear that both eigenvalues are negative if and
only if AA*-> BB " or equivalently:

IM1>1 forstability of ¢, =0

where

M =(=y—i AQ/g P2 | 13s)

The condition IM! =1 cérresponds to the "Suhl threshold" for the mode k. Since IMI is

inversely related to input power P, IM1>0 is below thrcshold‘ and {M1<0 is above threshold.

Above threshold the origin is a saddle point as it always retains one stable eigenvalue. Immedi-

ately below threshold the origin is a stable node with two negative real eigenvalues. However,

the eigenvalues may split into a conjugate pair below a lower threshold, which corresponds to a
change from-a stable node to a stable focus. This occurs fon

P, <AQ g, 12
We will now consider nontrivial (or nonzcro) ﬁxcd_ points. Since we are still considering
the behaQior of a single mode, the equation ¢, =0 [{from Eq. (109)] can be put in the simple

form
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2

M +Nlic %= = point on unit circle (136)

leyl? -
where N =~i (2T + Sy + Ry Vg, 'P;}* and M is as defined previously, (Eq. (135)). This
equation has a simple geometrical interpretation, as shown in Fig. 17. We plot the point M and
the unit circle in the complex plane. If we are below threshold then M lies outside the circle.
We draw a line from the point M making an angle arg (N) with respect to the real axis. Typi-
cally this line will either miss the circle as in (a) in which case there are no nontrivial fixed
points, or it will intersect the circle in two points as in (c) in which case there are two pairs of

nontrivial fixed points ¢ {!! and +c{?. Nontrivial fixed points always come in pairs because of

the symmetry of the equations mentioned previously. The transition between the two cases

arg N | M

—— S cemm em—— a—

(a) (b) - (c)

Figure 17. Nontrivial fixed point analysis: (a) No intersections with unit circle = no nontrivial
fixed points. (b) One intersection with unit circle = one pair of nontrivial fixed points. (c)
Two intersections with unit circle = two pairs of nontrivial fixed points.
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~occurs when the line is just tangent to the circle. This is a saddle-node bifurcation with the sad-
dle being the intersection point closest to M. Above the Suhl threshold M is inside the circle
and there. is always one ih[érsection point as in (b). There are two possibilities for what may
occuf when crossing ﬁhe Suhl threshold and these are illustrated in Fig. 18. In the first case,
which occurs for Re(M/N) > 0, we obtain a supercritical symmetry breaking'bifurcation as a
complimentary pair of stable nontrivial fixed points emerge from the oﬁgin asvthe origin is .
changing 'stla‘bility. The second case, which occurs for Re(M/N) < 0, involves the existence of
the saddle and node below threshold. In this case we obtain a subcritical symnig;ry breaking
bifurcatioh.-where the unstable nomﬁvial fixed points (the saddle points) converse on the origin
as it changes stability. There .is. a hysteresis loop as shown becausé the system must jump from

the origin to one of the stable nodes which are at finite amplitude. |
In the event that R, may be neglected, the type of bifurcation can be changed by chang- .
ing the sign of AQ,. We find this experimentally in the region where the fine structure is

obséwcd (as mentioned préviously in Sec. 2.3) but here the hysteresis is also a very fine effect,

Ck (a) Ck (b)

- - - - - oo - -

B F g F

Figure 18. (a) Supercritical symmetry breaking bifurcation. F is the level of forcing (pump
power), F is the bifurcation point or Suhl threshold. Solid lines - stable fixed points, dashed
lines — unstable fixed points. (b) Subcritical symmetry breaking bifurcation, preceded by saddle
node bifurcation of nonzero fixed points. Displays hysteresis as shown.
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occurring over very small distances in parameter space. However, there is a region indicated in
~ Fig. 6 in which the hysteresis occurs over a substantial distance in parameter — much more than
can be attributed to a single mode. This is likely to be due to a related effect in which more

than one mode is simultaneously excited.

3.5 Relaxation and Spiking Behavior Analysis

In the experiment it was observed that in certain regimes aperiodic relaxation type oscilla-
tons are observed which are characterized by alternating fast and slow phases, where in the fast
phase, the amplifude of the reflected microwaves changes very rapidly and in the slow phase it
changes much more gradually, typically by an order of magnitude or more (see Fig. 11). There |
has also been observed a rclated behavior pattern in which rapid spikes in the response are
separated by long donnaﬁt period;c. of irregular length. This latter case has been the subject of
much interest recently and there has been the suggestion that there may be a route to chaos by
irreguiar pedods.54'55 We will now present a mechanism which can explain both types of

- behavior and discuss some of its effects on the dynamics of the experimental system.

The simplest system which can exhibit this type of behavior is a 2 mode system,
represented by the complex variables ¢ and ¢,. The mode ¢, will be called the "strong mode";
it is assumed that the pumping level is above the Suhl threshold for this mode. The.mode ca
will be called the "weak mode"; it is assumed that the pumping level is below the Suhl thres-
hold for this mode. In the absence of coupling between ¢ and ¢,, we would expect that the ori-
gin of ¢, would be a saddle point so that this mode would be attracted to a nonzero fixed point,
while the origin would be stable for ¢, so this modbe wouldvdecay to zero. -Howc':ver, due to
intermodal coupling, the stability of the origin for cz' can be affected by the amplitude of c;.

When coupling is included the stability criterion for ¢, =0 is
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I A +Dlcy1? > 1 stable
—— 137
B +Fc12 < 1 unstable (137)
where
A =-Y2—iA§22
B =-g2P"
D =-2[.T2'1
and .

F ==i(Sq;+Ryy).
The assumption that ¢, is below its Suhl threshold (for ¢ | = 0) implies that

Al > 18I
There are four general cases for the behavior of the stability of ¢, as a fﬁnction of ¢,. Case 1:
IF1 > 1D1. In this case, as Ic,! is increased for any particular phaée d=argc,a pbint is
reached beyond which the denominator in Eq. (137) becomes larger in magnitude than thé
numerator and stability is lost. The point of stabiﬁly loss is a function of ¢ and has inversion
symmetry as shown in Fig. 19 (a). Casc 2: IFI<!D! and K > |BFI|, where
K =[(JAI2=I1BI1%(ID12= |F1%}¥2 +Re AD". In this case the point c, =0 is a stable fixed
point for all values of ¢, as shown in Fig. 19 (b). Casc 3: |F1 < ID!| and -IBF!| <K < IBFI.
In this case thérc are two symmetrically located stability zones in the ¢, plane as shown in Fig.
19 (c). Case4: |F1 <IDI and K <-1BF!. This case has a annulus of instability as shown in
Fig. 19(d). The general stability boundary for all three cﬁses can be expressed as a quadratic

solution;

122 —-b+(b* - 4ac)?

1
2a (138)

lc

where

a=1D12=|F|?

b=AD"+DA"-BF ¢~ %~ FB"¢i®
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Figure 19. Stability curve for ¢, =0 as a function of ¢;. S = stable, U = unstable. (a) Case 1.
() Case 2. (c) Case 3. (d) Case 4. '

c=1412-181?
Since for cases 2, 3, and 4, a and c are both positive, a solution for |¢ ! exists only if b is more

- negative than —V4qc (in which case there are two solutions).
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Now that we have analyzed the stability of the weak mode, we can proceed to explain the
nature of the oscillations. We will suppose that ¢ and ¢, both start at some small but finite
value. Then ¢, will increase, approaching a nontrivial fixed point and ¢, will decrease towards
zero. Assuming that the nontrivial fixed point for ¢ lies in (or possibly across) a zone of insta-
bility for ¢, the phase path of ¢, will eventually enter this zone. Beyond this point ¢, will
begin to increase. Under certain conditions, which we will not specify precisely but we will |
demonstrate in Sec 4, this can lead to a relaxation oscillation, with the fast phase occurring after
¢ reaches the instability boundary and the slow phase occurring when ¢ and ¢, both go bac;k
to v:al_ues near 0. The reason that ¢ can return to a point near zero is that the origin forc, is a
- saddle point and therefore an o.rbit near the stable manifold may come quite close to the origin
before escaping again. Orbits of the type we are describing are nearly homoclinic as they pass
very close to a saddle point in the four-dimensional ¢, ¢, space.- In the event that the weak -
mode has a focus at the origin, Lhev orbit may be of the Silnikov type (see Guchenheimer and
Holmes36 for discussion) which is known to imply the existence of horseshoes and other com- -
plicated behavior. The distinction between relaxation oscillations and aperiodic spiking lies in
the length of the dormant phase for the weak mode (examples of both are given in Sec. 4). Dur;
ing the dormant phase, the amplitude of ¢, decays exponentially. Consequently a moderately
long dormant phase can easily result in the amplitude of ¢, decaying to the thermal magnon
level. This introduces stochasticity into the dynamics — something which might not ordinarily
be expected for oscillators whose peak amplitude is many orders of magnitude above the ther-

mal level.
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3.6 Generation of Microwave Subharmonics

We will now briefly discuss mechanisms whereby a subharmonic response at haif the
applied microwave frequency might be obtained from the spin system. No experimental data
was taken of this effect (or lack of it), primarily because the wave guide used in the experimen-
tal setup has a lower cut off frequency of about 8 GHz and hence‘will not transmit the half fre-
quency respoﬁse at 4.6 GHz. However, this experiment could easily be done at some future
tme.

‘Although the parametrically excited spin waves we have been discussing have half of the
pump frequency, these modes do not couple directly to the wave guide and no microwave
subharmonic response will normaily be obtained. There are, however, two mechanisms which
rﬁight. under appropriate circumstances, allow a response at ©,/2. The first is the possibility of
achieving a parametric excitation of the uniform mode at ®,/2. In the absence of crystalline
anisotropy or shape anisotropy this can not occur because of symmetry. Crystalline anisotropy
becorﬁés important when the sample is not aligned with Hy along [111] or {100}, and in particu-
lar if it is aligned along [110] (a saddle point in the anisotropy energy). Then there is a differ-
ence between the x and y anisotropy factors (N, in table 4) which gives the uniform mode an
elliptical character to its motion. This ellipticity allows parametric coupling to the uniform
mode for parallel pumping if @y = ®,/2. The coupling coefficient is G for k = 0 [see Eq. (84)]
which is nonzero if N,_ is nonzero. In order to observe the fesponse it will be necessary to
pump obliquely so that there is a parallel component for excitation, and a perpendicular com-
. ponent allowing a direct coupling between the uniform mode and the resonator / wave guide so
that the subharmonic rcsponée may be detected by the experimenter. The main difficulty in
achieving this is that the anisotropy is not very large for YIG, and conscquently the ihreShold
for subharmonic excitation (or period doubling bifurcation péim) will be relatively high, and

onc may expect that spin wave modes will begin to absorb power at a lower threshold - making
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it very difficuit to reach the subharmonic threshold. This difficulty might be countered by using
a rare earth iron gamet some of which have very high anisotropies3> at low temperature. Unfor-
tunately, however, these gamets also have higher damping rates and thus have higher excitation

thresholds.

- The possibility of using shape anisotropy'to couple parametrically to the uniform mode
seems much more promising. This is because the asymmetric demagnetizing factor Np_ can be
large (0.5 or 1) compared to N, _ (typically 0.1) and also because this term is only present in the
equations for the uniform mode and will not enhance coupling to spin wave modes. In a loop =
gap resonator one could use an ellipsoidally shaped sample with two equal axes and one
elongated axis along the resonator axis (but ﬁot the d.c. field axis) which could achieve an ND; '
of nearly one half. In a cavity, a disc shaped sample could produce an Np_ of nearly 1 with H,

parallel to the plane of the disc.

A second approach is to try to paramectrically excite low order Walker mo.des3 in the sam-
ple. These are the Sphen'cnl spin modes which have sufficiently few spatial oscillaﬁons across
the sample so that they can couple directly to a nonuniform micmwaQe field. If there is ad.c.
field for which such modes are parametrically excited at a lower threshold than the many high
order modes, then a subharmonic response could be achiei'ed since they may also couple
directly to the applied microwave ficld. This effect may be distinguished from the parametric
excitation of the uniform mode in that it may be achieved in a purely perpendicular pumping

configuration, whereas the uniform mode case requircs oblique pumping.
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4 NUMERICAL SOLUTION OF SPIN WAVE EQUATIONS

In order to fully expiore the behavior of the spin wave equation [Eq. (109)], it is necessary
to use numerical methods, particularly when 2 or more interacting modes are involved. In this
section we will discuss the procedures used to perform the numerical analysis and then present

the results, many of which can be compared to the experimental results of Sec 2.3.

4.1 Procedures

Each spin wave mode is represented by a complex variable ¢, which contains both ampli-
tude and phase information for that mode. From Eq. (109), we obtain one equation for each
mode which is coupled to all other excited modes through the interaction parameters
R s S x> andT e, and to the microwave pumping field through the parameter g,. The analytic
results provide rough estimates for these parameters. They cannot be specified exactly from the
theory for two reasons: 1) we do not know for certain which spin wave modes in the sample are
being excited and involved in the dynamics, and 2) the plane wave approximation used in Sec.
3.1 can yield only approximate values for the interaction parameters of the spherical modes.
We typically set the spin wave damping ¥, to 1x10%™! and g, to 1.414x10"W~%s!, which
results in a Suhl threshold of about 5 mW as lis obscrved experimemaliy in the single mode
region. Ty and S, are estimated to be on the order of 10'? or 10% erg~!sec™?, but may vary
considerably depending on which modes are involved. In order to simulate the effect of a
scquence of modes as was obscrved experimentally, we will not assume that the modes all have
zero detuning, but will.instcad choose a scquence of equally spaced values for Af k wh_iéh will
typically extend from some negative value to some positivé value, where Af = Aw,/2r. If the

excitation level is low, only those modes with detunings closest to zero will be excited. The
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remaining modes will be below threshold and will remain at zero amplitude. From the
observed field spacing of the modes (0.16 G) we can estimate the frequency spacing using

Af mode = YAH /21 and obtain about 500 kHz.

The equations with appropriately chosen parameter values ﬁre numerically integrated
using a 4-point Runge-Kutta Algorithm57 on a Sun 3.0 computer. Initial conditions must
always be chosen to be nonzero since zero is always a fixed point of the equations. Results are
displayed on a graphics screen and may be printed on a laser pxintér to produce the figures givén

in Sec. 4.2. The Fortran code used to obtain these results is given in the Appendix.

4.2 - Results

In the case of excitation of a siﬁgle mode alone, the analytic results of Sec. 3.4 determine
the location and stability of all fixed points. There is always at least one stable fixed point and
the numerical results indicate that the systcm is always attracted to one of these; no periodic or
chaotic attractors are observed. For appropriate paramexer‘ valucs hysteresis may be observed as

was indicated in the theoretical treatment.

For two modes excited we first see periodic auto-oscillations. A particularly interesting
form is observed, as shown in Fig. 20 (a) and (b). Herc mode 2 is exhibiting an asymmctrivc
orbit while mode 1 is exhibiting a symmetrical orbit of twice the period. Symmetrical orbits are
possible because of the inherent inversion symmetry of the equations. When asymmetric orbits
occur they always come in complimentary pairs (C'(¢)=—=C(¢). The naturc of the coupling
between modes allows the type of behavior observed - since the square of C appears in the
equation for C,, a change sign of C, (to Lhc opposite point on the symmetric orbit) has the

identical influence on C,.
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Figure 20. Computed behavior for two modes: (a) Phase portrait for periodic oscillations,
asymmetric mode. Af, =-300kHz, Af , = 200kHz. (b) Symmetric mode. (c) Period doubling
of asymmetric mode. Af, = -385kHz, Af , = 115kHz. (d) Symmetry breaking of symmetric
mode. (e) Chaotic orbit following period doubling cascade; Af ; = 410kHz, Af | = 90kHz. (f)
Power spectrum of chaotic orbit, fn.x=2.5 MHz. For all figures, P, = 0.027W,
% = 1x10%s7}, gy = 1.414x10" W27t 5, =4.078x10°G %% for all k and K,
Ty =-1.896x10"G %52 fork =k’ and =0 fork = k’, and R k' = 0 (assumed negligible) for all
k and k’. ‘
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By changing the parameters this orbit may undergo a bifurcation. There are many param-
éters which could be adjusted to accomplish this, such as pbwer input or pump frequéncy, ﬁow-
ever in Fig. 20c and d we have chosen to synchronously shift the detunings of the spin modes.
This is equivalent to shifting .Lhe level of the d.c. magnetic field in the experiment. (We are
assuming that all niqdes in the sequence have _idcmical field dependence of their frequencies).
The result is interesting - mode 1 exhibits a symmetr;f breaking bifurcation while mode 2 simul-
taiaeously exhibits period doubling. Further shifting the frequencies leads to a cascade of period

doubling bifurcations for both modes, leading to a chaotic orbit (Figs 20e and f).

The numerical study for two modes also reveals behavior similar to' the relaxadoh oscilla-
tions and aperiodic spiking behaviors of the expen’mental system. An example of this behavior -
is shown in Fig. 21 ‘The mechanism for this behavior wasvdiscussed previously in Sec._é.S.
There is a "strong mode" which is above its threshold, and a "weak mode" which is initially
below threshold but whi'ch_. can become excited for brief periods when sufficient excitation is
supplied via the nonlinear coupling of the strong rnéde. Characteristically there is a Slow or
dormant phase during which the weak mode is decaying closer and closcr to zero and the strong
mode is changing at a relatively slow rate. At a certain critical point in the orbit.of the strong
mode, which is marked with an arrow in Fig. 21(a), a fast or active phase commences during |
which both modes (Figs. 21a and b) change rapidly. This is typically two or more orders of
magnitude faster and shorter in duration than the slow phase. The decay of the mode during the
dormant phase may be extreme - it has been obscrved in some cases in the numerical study to -
décay by over 10 orders of magnitude. This will casily take any experimental system to the
thermal level, thus introducing a stochastic clement into the dynamics. Orbits with a short dor-
mant phase tend to have the relaxation oscilladon appearance as in Fig. 21(c) [compare to
experimental ‘Fig. 11(a)] whilc orbits with a long dormant phase may tend to have the spiking
appearance - Fig.- 21(d). This dormant period may become arbitrarily long for certain parame-

ter values. This is becausc the orbit is approaching a saddle loop bifurcation which occurs when
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Figure 21. (a) aperiodic spiking — strong mode (mode 1). Arrow marks point of stability loss
for weak mode (mode 2). Origin is at center of figure as indicated. Af, = -200kHz, Af, =
300kHz. (b) Weak mode. (c) Time series for aperiodic spiking behavior. (d) Time series for
. relaxation oscillations. Af; = -175kHz, Af ; = 325kHz. (e) Fast Fourier transform for time
series in (d). All figures have P,, = 0.0135W and the other parameters are the same as in Fig.
20.

the orbit connects the saddle point at the origin. Beyond this point a transition must occur to

another attractor - typically a nonzero fixed point for the strong mode and zero for the weak
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mode. It should also be noted that the relaxation and spiking behaviors do not have to be irreg-
vula.r - they may, for appropriate parameter values, be perfectly periodic. In some cases a cas-
cade period doubling bifurcations to chaos has been observed to occur over extremely small
changes in parameters (< 0.1% change). This has the appearance, on first examination, as an

emergence of irregularity of the orbit starting at a critical parameter value.

With three modes some new phenomena emerge. One of these is the occurrence of quasi-
periodic behavior with two incommensurate frequencies. An example of this is shown in Fig.
22. The three modes do not have exactly the sanﬂe frequency, but rather are spaced equally in
: frequencf by a small amount to simulate the effect of a series of modes as was obseryed in the
experiment. Namrally all must be very near to half of the pumping frequency, and it is Lhé
detuning which plays an important role in the dynamics. Thé quasiperiodic orbit lies on a 2-
torus in the phase space. By strobing every cycle we can make a Poincare section of the érbit.
For a quasiperiodic orbit below the transition to chaos these points all lie on a closed curve -
the intersection of the 2-toxﬁs with the surface of scction. The section may be defined in various
ways; in Fig. 22 (a) the section points arc the maximum value of Imc, for each cyclé. The
orbit shown can be found to emerge from a simple periodic orbit in a Hopf bifurcation (see dis-
cussion in Guckenheimer and Holmes>® ). In the Poincare section, the periodic orbit appears as
a single point. This point spawns a circle at the bifurcation poim which initially grows in size
in proportion to the square root of the change in the parameter from its value at the bifurcation.
While mode 1 and mode 2 (not shown) are cxhibiting asymmetric orbits, mode 3 has a sym-
metric quasipériodic orbit as shown in Fig. 22 (b). Scction points on this orbit are made simul-
taneously with those of mode 1. They occur twice each cycle because the basic period here is
twice that of mode 1. The symmetry causcs a restriction on the frequencies that appear in the
spectrum. The spectrum for quc 1 is shown in Fig. 22 (c). Here the allowed frequencies are
all two componcnt harmonics of the form f,,, =mf | +nf 5. The choice of f, and f is not

unique, but it is gencrally prefcrable to choose the two highest peaks. Fig. 22 (d) shows the
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Figure 22. Computed quasiperiodic behavior for 3 modes: (a) Mode 1 for quasiperiodic orbit,
circles mark Poincare section. (b) Mode 3: this mode exhibits a symmetrical orbit while mode
1 is asymmetrical. Mode 2 is similar to mode 1. (c¢) Fast Fourier Transform for mode 1, verti-
cal range 150dB. Contains two component harmonics f ,,, =mf ; + nf ,, where f and f , may
be chosen to be the largest peaks in the spectrum. (d) Fast Fourier Transform for mode 3. Sym-
metry restricts peaks to those for which m +n is odd. All figures have P, = 0.027W, Af | =
-336kHz, Af 3 = 164kHz, Af; = 664kHz, Sy =3.971x10"°G %2 for k=k’ and =
4.265x10"G~*s"2 for k = k’, and other parameters same as in Fig. 20.

spectrum for mode 3. Here the allowed peaks arc those for which m +n is odd. This can be
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shown 0 result from the symmetry of the orbit — see the detailed discusgion in Part 2, Sec. 2.3.
Aﬁ alternate labeling scheme is very useful when the quasiperiodic orbit has just emerged from
a periodic orbit following a Hopf bifurcation. This i$ to choose f | to be the fundamental fre-
quency from beforé the bifurcation. and choose f, to be the difference between this and a
nearby incommensurate peak. In this case the symmetry condition is that m must be odd, while

n is unrestricted.

By changing the parameter values away from the Hopf bifurcation point, the 2-torus on

. which the orbit lies grows larger and becomes Iess. smooth. At a certain critical point the orbit
may become chaotic and the torus bécomes fractal. This is the quasiperiodic route to
 chaos. 4041 In Fig. 23 is shown a Poincare section of such a chaotic orbit and its power Speg:-
trum. This was reached by shifting thé frequencies of the three modes synchronousl.y, to simu-
late the effect of shifﬁng the d.c. magnetic field in the experiment. The orbit isnearto a p’eriod
5 phase locking, as can be seen in the S poimed character of the section and in the specuum;
There remain some sﬁrprisingly sharp peaks in the spéctrum considering the corﬁplexity shown

in the section.

More complicated versions of the relaxation oscillations are sometimes seen for three
vmodes (as well as the varicty previously described). In Fig. 24 is a case in which only the third
mode (shown) is of the "weak" variety, while the other two modes are normally oscillating at a
high level. The excitation which the weak mode receives from the pump and from the "strong”
modes is just sufficient to allow it to grow at a slow rate from an initially very small amplitude.
This growth may exténd over several orders of magnitude in amplitude, lasting for a hundred
cycles or more of the strong mode oscillatiqn. Fina.liy, when the size of the orbit becomes com-
parable to the size of the strong mode orbits, a rapid intcraction phase occurs involving all 'Lhree
modes and lcads to the rctum of the weak mode to a very low amplitude and then the process
repeats. This appears to be an orbit of the “Silnikov" or spiral saddlc type (see Guckenheimer

and Holmes3® ), for which the cxistence of "horseshoes” and other complex behavior have been
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Figure 23 (a) Poincare section of chaotic orbit, following quasiperiodic transition to chaos.
Proximity to period 5 locking produces five points on figure, Af, = -334.5kHz, Af, =
165.5kHz, Af , = 665.5kHz, other parameters same as in Fig. 22. (b) FFT for orbit in (a).

’

explicily shown.

This concept of a series of equally spaced modes may be taken to the limit of an infinite

series. The reason that this works is that only those modes with relatively small detuning can
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Figure 24. (a) Computed Silnikov type orbit for 3 modes. Only mode 3, the "weak mode", is
shown. P, = 0.02429W, Af | = -300kHz, Af , = 200kHz, Af, = 700kHz, other parameters
same as Fig. 20. (b) Time series for this orbit.

become excited and interact with the other excited modes. Modes which decay to zero have no
effect on the excited modes. Thus we need to include in the computer simulation only those
modes in the series with sufficiently small detuning (positive or negative) to become excited.

The necessary number may be found by extending the serics one mode at a time until the new
3
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modes added are observed to be inactive. Since the series is infinite, its behavior in parameter
space is periodic with respect to synchronously shifting the frequencies by the mode spacing.
In Fig. 25 one period ovf the parameter space is shown. In this region, all of the types of
behavior discussed previously may be found: stable fixed points (zero and nonzero), hysteresis,

auto-oscillations, period-doubling, quasiperiodicity, chaos, and relaxation oscillations.

5 SUMMARY AND CONCLUSION

Excited spin waves in YIG form a weakly damped — nearly Hamiltonian - system, which
displays a great variety of interesting nonlinecar phenomena. The study focussed on the
behavior of spin waves excited parametrically in a spherical sample via the first order Suhl ins-
tability. Data is primarily for perpendicular pumping, and with the d.c. field parallel to the
[111] or easy axis of the crystal, but with some data for other orientations of pumping and cry-
stalline axes. Observed phenomena includes: 1) fine structure — &e excitation of single spin
wave modes; 2) vdynamics in the fine structure regime, involving the interaction of a small
number (1, 2, 3, ...) of spin wave modes; thes'e typically exhibit such phenomena as periodic
auto-oscillations (typically 100 kHz), cascades of period doublings to chaos, and quasiperiodi-
city; 3) low frequency relaxation oscillations (Order 1 kHz) and aperiodic spiking (typically at
somewhat higher frequencies); 4) high amplitude collective oscillations (presumably) involving
the cooperation of many modes; thesc exhibit period'doubling quasiperiodicity and phase lock-
ing of multiple frequencics, and various types of chaotic orbits; 5) abrupt emergence of hig.h
frequency noise; 6) hystercsis at the Suhl threshold in which the system jumps from a quicscent
to a turbulent state; 7) in some cascs a systematic incrcase in auto-oscillation frequency with

pumping power is obscrved.
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Figure 25. Computed parameter space diagram for mode series. Frequency shift f, vs. applied
power P, (shift corresponds to change of d.c. field in experiment). The dynamics involve the
active participation of zero, one, two, or three modes. At higher powers than shown in the
figure additional modes may become involved. We label the modes as follows: mode 1 has
Af=f, — 500kHz, mode 2 has Af ;= f,, mode 3 has Af3=f, +500kHz. ST, and ST, are
the Suhl thresholds for excitation of modes 1 and 2 respectively when all other modes are set to
zero (this is actally a symmetry breaking bifurcation for the stable fixed point at zero). SN is
a saddle node bifurcation of nonzero fixed points below Suhl threshold [see Fig. 18 (b)]. Hys-
teresis is observed when traversing the region betwcen SN, and ST,. Crossing H, in the direc-
tion of the arrow a Hopf bifurcation occurs in which a limit cycle involving modes 1 and 2 em-
erges from a fixed point. This is of the type shown in Fig. 20 (a) and (b). This oscillation un-
. dergoes a period doubling bifurcation upon crossing the line labeled x2. Beyond this a cascade

- of period doublings occurs on route to chaos. On approach to the line H2, mode 3 becomes ac-
tive and the two mode solution we have been following is abrupty lost. H? actually
corresponds to a secondary Hopf bifurcation from a 3 mode periodic orbit (on the left side) to a
3 mode quasiperiodic orbit (on the right side), of the type shown in Fig 22. H, corresponds to
another primary Hopf bifurcation, this time involving modes 2 and 3. Relaxation oscillations
occur above the line ST, in the section below its intersection with ST,. Onset appears to occur
at the Suhl threshold ST;,.
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A first principles theoretical analysis has been presented, based on the many earlier works
on parametric excitation of spin waves, but developed here explicitly for the study of the non-
linear dynamics of excited spin wave modés. The theory explicitly includes the effects of cry-
stalline and shape anisotropy. 'Also included are the interactions with the resonator (used to
intensify the microwave field) and coupling to the waveguide. The result is a set of nonlinear
equations coupling the spin wave modes with each other and with the pump, each mode being

represented by a complex amplitude.

While the main analysis is made in the plane wave approximation an attempt is made to
determine foe effects of the true spherical spin-modes on the dynamics. A surprising result is
that for very ldw order modes, the excitation may involve a pair of counter circulating waves
with different frgquencies. The sum of the two frequencies would have to very nearly equal the
pumping frequency for resonance. For higher order modces however, the frequencies should be
nearly the same, as they are for the plane wave approximation. It is not known as yet whether

or not this effect can be detected experimentally.

An analysis has been made of trivial and nontrivial fixed points and it has been shown
how this can lead to hysteresis at the Suhl threshold, an effect which was observed in the exper-

iment,

Some theory is presented regarding relaxation oscillations and aperiodic spiking behavior,
based on the concept of weak modes which are only active during short burst phases which may
be instigated by the strong mode or modcs reaching a critical threshold. An interesting result is
that this is a natural way for stochasticity to enter into the experimental dynamics because dur-
ing the dormant phase of the weak mode it can easily dccay to the thermal magnon level. After
this the subsequent dynamics become unpredictable. This analysis may be related to the work

on irregular periods by Waldner et al.54.53
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The possibility of generating microwave subharmonics at half of the pumping frequency
is discussed based on the possibility of parametrically exciting either the uniform mode or a low

order Walker mode which could couple directly as well as parametrically to the external field.

Finally a detiled study is made of the behavior of the spin wave equations of motion
using numerical simulations. As ‘avguide to comparison between the experimental data and-
numerical simulations, Table 5 is presented, which summarizes the work showing which data

can be compared to which simulation.

Table 5: Guide to Data and Simulation Figures

, Phenomena Experimental Data Simulation
Parameter space Figs. 6,7, 8 Fig. 25
Auto-oscillations Fig. 9(a) Fig. 20(a), (b)
Period-doubling Fig. 9(b), (c), Fig. 13 | Fig. 20(c)
Chaos Fig. 9(d), (e) _Fig. 20(e)
Quasi-periodicity Fig. 10 Fig. 22
Relaxation oscillations | Fig. 11 Fig. 21, Fig. 24
Phase locking Fig. 14 --
Auto-osc. freq. Fig. 15(a) Fig. 15(b)
Broad band noise Fig. 12 Fig. 21(e)

A serics of equaliy spaced (in frequency) modes is studied, similar to that which was observed
experimentally. For two modes auto-osgillations are observed which may exhibit some interest-
ing symmetry characteristics. Relaxation and spiking behaviors are also observed, exhibiting
the weak mode / strong mode behavior discussed in the theory. Cascades of period doubling
bifurcations are also observed, leading to chaos. For three modes quasiperiodicity is first
observed, along with phase locking phenomena, Hopf bifufcations, and the quasiperiodic route
to chaos. Orbits nearly homoclinic to a spiral saddlc point of the Silinkdv type are also
observed. The case of an infinite serics of modes is also considered. It is possible to study due
to the fact that only a few modes in the scri.cs have sufficiently small detuning to be excited.
The type of behavior is periodic under a synchronous shifting of all of the frequencies of the

modes by the frequency spacing of the modes. (This shifting corresponds to the effect of

changing the d.c. field in the experiment.) A paramcter space plot is made (pump power vs.
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frequency shift) and compared with the behavior of parametrically excited surface waves.

Appendix: Computér Program Used in Sec. 4

The spin wave program numerically integrates and plots the spin wave dynamics as

~ govemned by Eq. (109) using a four point Runge Kutta algorithm, and can also accurately plot
the Poincare section of the orbit and obtain the power spectrum using a fast Fourier transform.
It is written in Fortran and uses double complex variables (this type is not available on all sys-
tems), as well as some real double precision variables. The subscripts k and k” used in the text
to refer to particular modes by their wavevectors are here converted to indices i and j since we
will be dealing with the dynamics of some finite number of modes. The number of modes may
be changed at aﬁy time by setting the variable nmag to the desired number. The spin wave vari-
ables c;, are represented in the program by the complex variables ps(i), and their derivatives ¢;
by dp(i). The main parameters of intercst in the program correspond to those used in the text as
follows: pp corresponds to P;,, fp corrcsponds to ®, /2w, fO corresponds to mo/ 2r, gamc
corresponds to I', gamO corresponds to v, (uniform mode damping, not used), gamk corresponds
10 v, (assumed equal for all modes), alpha corresponds to ¢, dfcav corresponds to AQg /2,
df(i) corresponds to AQ;/2r, gk(i) corresponds to g;, tkk(i,j) corresponds to T;;, skk(i,j)
corresponds to S;;, rkk(i,j) corresponds to R;;. ‘Some control variables are: dt (the time step in
seconds), nn0 (the number of steps per continuc command ’c’), nnf (initial steps not displayed
when using run command 'r’), imode (index of mode to be dis;)layed graphically) imodel
(mode uscd to determine strobing positions), istrob (strobing control: 1=real peak, 2=imaginary

" peak, 3=rcal zero, 4=imaginary zcro), it=trajectory display (1/0 = on/off), is=Poincare section
display (1/0 = on/off). Valucs for most of these variables are to be put in a data file prior to run-

ning the program. This file is read at the beginning of the program (sce code). New parameter
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files may be stored and retrieved for desired operating points while running the program.

The program is desjgned utilize interactive graphics — commands entered at the terminal
can generate a phase portrait, Poincare section, time series, or fast Fourier transform on a.
separate portion' of the screen reserved for the graphics display. - The mode being displayed is
| specified by the variable imode. The sequence of graphics commands is stofed and can be:
retrieved later to generate a -"hard copy" of the display on a laser 'pririter. AThé graphics pro-
- grams used were developed by Jim Crutchfield and Bruce McNamara. These graphics -pro->
grams will not be listed here since the spin wave program could easily be modified to operate
~ with any similar programs. The following subroutines in the spin wave program are for graph- -
ics: dpgraph (create graphics file which can be printed on a laser printer), e:'citg.mph'(end grnph-' :
ics), faxes (draw axes), fborder (d_raw border), fclear (clear display), fdomark (for mz;king Ya,ri'-
- ous symbols at specified position), fdotat (rhakc dot at speciﬂcd position), fgenwindow V(also for
initialization), flinewidth (set linewidth); fmove (move to specified position), fpendown (draw
- straight lines tb subsequent positions given by fmove command), fpenup (no draw on subse- |
quent"rnove'commands). fscale (set scale factor), ftriangle (make triangle at specified po,s'ition),
store (this is for initialization of the graphics display and for storage of graphics cdmmand’

sequence).

In addition to the graphics> subroutincs, their are a number of other subroutines which are
used for the spin wave analysis. These are listed following the main part of the program below.
They perform the following functions: "cavity" evaluates the dynamics of the cavity or resona- -
tor variable; "ssb" evaluatcs é; using Eq. (109); "rk" evaluates the four point Runge-Kutta algo-
- rithm for specified timestep; "spctrm” dctermines the power spectrum; "fourl” generates fast
Fourier transform (used by subroutinc spctrm); "dafwin" generates chosen window functionv

(used by subroutine spctrm);
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Some of the main commands which can be given to the program are: l=list variables,
parameters, Suhl threshold, and fixed points, q=quit, r=run, c=continue, cl=clear, ft=file trajec-
tory data, fp=file Poincafe section data, markfp=mark the fixed points on display, fft=generate
fast Fourier transform, si=change size (or scale) of display, dump=generate PostScript file of
display data for printing on laser printer, sct=rcad parameter file, and save=create parameter file.
In addition, any variable or parameter (with a few exceptions) may be changed by entering its
name followed on the next line by the new value; For vaﬁablcs or parameters with indices enter
the name without indices and the program will prompt for additional information. Compiex

quantities must be entered in the form (real, imaginary) even if chosen to be purely real.

* % % %k k% Version magspec.f khhhkhkkkhdhkhkkhkRhkkhkhhkhkkhkhkhkhkdekkhhkhkkkkhhk*kx

implicit double precision(a-h,o0-z)
double complex ps(100),ps0(100),dp(100),MM(100),NN(100),
*gk (100) ,tkk (100,100),skk (100,100),tk(100,100),sk(100,100),
*w0 (100) ,w1(100),w2(100),w3(100),x1k(100),£1(100),Gk(100),
*ck1(100),ck2(100),DD,EE,cav,cav0,psl(100),rlci,
*rkk (100,100), rkkp, skkp, tkkp, gkang
character filename*20, command*20
double precision df(100),ppthx(100),aa(100),bb(100),
*cc(100) ,disc(100),wd (16384) ,w5(8192)
common rlk, f1l, sk, tk,gk,nmag
common /al/ xw0,xwl,yw0,ywl,alLW
common /a2/ alpha,rlci
external ssb
twopi = 8.d40 * datan(l1.d0)
hbar=1.055d-27
sizemk=,01
xs=0.02
ys=0.02
aLwW=1
iAR=1
do 1251 i=1,100
ps(i)=(1d-8,1d-8)
psO0(i)=(1d4~-8,1d-8)
df (1)=0
, gk(i)=(1.41447,0)
1251 continue
do 1252 i=1,100
do 1253 j=1,100
tkk (i, j)=(0,0)
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skk (i, 3)=(0,0)
rkk (i, 3)=(0,0)
1253 continue
1252 continue -
print*, ‘version magspec.f Aug. 22, 1987’
print*, ‘parameter filename: ‘' ‘
read*, filename
open (unit=3,file=filename)
read (3, *) dt,nn0,nnf,nmag .
read(3, *) pp,fp,£0,gamc, gam0, gamk, alpha dfcav
do 1051 i=1,nmag
read (3, *) pS(l),df(l),gk(l)
ps0(i)=ps (i)
1051 continue
do 1052 i=1,nmag.
do 1053 j=1,nmag
read (3,*) tkk(i,j),skk(i, )
1053 - continue
-1052 continue .
read (3, *) xw0,xwl,yw0,ywl, xs0,xsl,ys0,ysl
read(3,*) x0,y0,xt,yt
close(unit=3)
g=alpha ‘
if(alpha .gt. 1.d0) alpha=0.045d0
it=1
is=1
imod=1
imode=1
imodel=1l
istrob=1
sign=1.d0
iflag=1
itick=1
sign=1.d0
call store(0)

* cl=clear and draw axes
call fclear ()
call fgenwindow (xw(,yw0, xwl,ywl, iAR)
call fscale(xs0,xsl,ys0,ysl) ‘
call flinewidth (alW,alLWold)
call fborder ()
call faxes(x0,y0,xt,yt,xs,ys)

IR E R SR R R E R N R PP RS R LRSS RS S R EEE RS SRR SRR R

50 print*, ‘command:
read*, command

* dimensionality
if (command .eq. ‘nmag’) read*, nmag
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* time step control
if (command .eqg. ‘dt’) read*, dt
if (command .eqg. ‘nn0’) read*, nn0
if (command .eqg. ‘nnf’) read*, nnf

* parameters
if (command .e ‘pp’) read*, pp
if (command .e rfp’) read*, fp
if (command .eqg. ‘£0’) read*, £0
if (command .eq. ‘gamc’) read*, gamc
if (command .eq. "gam0’) read*, gam0
if (command .eq. ‘gamk’) read*, gamk
if(command .eq. ‘g’) read*, g
if (command .eq. ‘alpha’) read*, alpha

if (command .eqg. ‘gk‘) then
print*, ‘index i: '
read*, i
print*, ‘gk{(i):
read*, gk(i)

endif

if (command .eq. ‘tkk‘) then
print*, ‘index i:

read*, i
print*, ‘index j: '
read*, j

print*, rtkk(i,j): *

read*, tkk(i, j)

.tkk(j,1i)=dconjg(tkk (i, j))
endif

if (command .eqg. ’skk’) then
print*, ‘index i:

read*, i
print*, ‘index j:
read*, j

print*, ‘skk(i,3j): ’

read*, skk(i, Jj)

skk(j,1i)=dconjg(skk (i, j))
endif

if (command .eqg. ’‘rkk‘) then
print*, ‘index i: '

read*, i
print*, ‘index j:
read*, j

print*, ‘rkk(i,J): ’
read*, rkk(i, Jj) : —_
endif
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if (command .eq. ‘rkkp’) then
print*, ’‘enter 1 for k=kp,
read*, k
print*, ‘xrkkp: '
read*, rkkp
do 460 i=1,nmag
do 461 j=1,nmag
if((k .eg. 1) .and. (1
if((k .eq. 2) .and. (i
rkk (i, j)=rkkp
461 . continue
460 continue
endif

if (command .eq. ‘skkp’) then
.print*, ’‘enter 1 for k=kp,
read*, k
print*, ’skkp: '
read*, skkp
do 560 i=1, nmag
do 561 j=1,nmag’
if((k .eq. 1) .and. (i
if((k .eq. 2) .and. (i
skk (i, j) =skkp ‘
S61 continue
560 continue
endif

if (command .eq. "tkkp’) then
print*, ‘entexr 1 for k=kp,
read*, k
print*, ‘tkkp:
read*, tkkp
do 660 i=1,nmag
do 661 j=1,nmag
if((k .eq. 1) .and. (i
if((k .eq. 2) .and. (i
tkk (i, j) =tkkp
661 continue
660 continue
endif

if (command .eq. ‘df’) then
print*, ‘index: ’
read*, index :
print*, ‘df(index): ’
read*, df (index)

endif

2 for k!=kp, 3

.ne.
.eq.

j)) go to
j)) go to

2 for k!=kp, 3

.ne.
.eq.

j)) go to
3)) go to

2 for k!=kp, 3

.ne.
.eq.

if (command .eq. ‘dfcav’) read*,

j)) go to
3)) go to

dfcav

for

461
461

for

561
561

for

661
661

all’

all’

allf
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if (command .eqg. ’‘s’) then

print*, ‘amount of freqg. shift:

read*, shift
do 93 i=1,nmag
df (i)=df (i) +shift
93 continue
endif

* initial wvalues
if (command .eq. ’‘ps’) then
print*, ‘index: ’
read*, index
print*, ‘ps(index): '
read*, ps{index)
“enddif :
if (command .eq. ‘ps0’) then
print*, ’index: ’
read*, index
print*, ‘ps0(index): ’
read*, psO(index)
endif
if (command .eqg. "Set’) then
do 1005 i=1,nmag
ps0 (i) =ps (i)
1005 continue
endif

* fixed points

if ((command .eq. ‘markfp’).and.(imode.gt.0)) then

call ftriangle(0.,0.)

call
call
call
call

ftriangle(dreal (ckl (imode) ) ,dimag(ckl (imode) ))
ftriangle (-dreal (ckl (imode) ), ~dimag(ckl (imode)))
ftriangle (dreal{(ck2 (imode) ) ,dimag{ck2 (imode)))
ftriangle (-dreal (ck2 (imode) ), -dimag (ck2 (imode)) )

endif

* rescale=rescale frequencies
if (command.eq.’rescale’) then

print*, ’'new freqg. = beta*old freq.’

print*, ‘beta= ’

read*, beta

betal=1/dsqgrt (beta)

dt=dt/beta

gamk=beta*gamk

pPp=pp*beta*beta

do 94 i=1,nmag
ps(i)=ps(i)/betal
ps0 (i)=ps0 (i) /betal
df (i) =df (i) *beta

94 continue
endif

88
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* plotting parameters
if (command .eq. ‘xw0’) read*, xw0
if (command .eq. ‘xwl’) read*, xwl
if (command .eq. ‘yw0’) read*, yw0
if (command .eqg. ‘ywl’) read*, ywl
if (command .eq. ‘xs0’) read*, xs0
if (command .eqg. ‘xsl’) read*, =xsl
if (command .eq. ’‘ys0’) read*, ys0
if (command .eq. ‘ysl’) read*, ysl
if (command .eq. ‘x0’) read*, x0
if (command .eq. ‘y0’) read*, y0
if (command .eq. 'xt’) read*, =xt
if (command .eq. ’‘yt’) read*, yt

* print, trajectory, section, & variable control parameters

if (command .eq. 'ip’) read*, ip
if (command .eq. ‘it’) read*, it
if (command .eq. 'is’) read*, is
if (command .eq. ‘itick’) read*, itick

- if (command .eq. ‘iflag’) read*, iflag
if (command .eq. ’‘sign’) read*, sign
if(command .eq. ’istrob’) read*, istrob
if (command’ .eq. ‘imode’) read¥*, imode
if (command .eq. ‘imodel’) read*, imodel
if ((command .eq. ‘imode’).and. (lflag eqg.0)) iflag=2
if (imode.lt.l) imode=(Q
if (imode.gt.nmag) imode=nmag

* rescale gk to adjust threshold and make gk real
* assumes all gk(i)‘’s are identical
if (command .eq. ‘rescalegk’) then
print*, ’‘desired pump threshold for df=0:
read*, ppth
ppth2=ppth**(0.5
gkl=zabs (gk (1))
gkang = gk(1l)/gkl
do 470 i=1, nmag
ps(i)=ps (i) *gkang**-0.5
gk(1)=dcmplx(gamk/ppth2 0)
470 continue
' pp=pp* (gkl*ppth2/gamk) **2
‘endif

* set rkk parameters in terms of gk and alpha
if (command .eqg. ‘setrkk’) then
do 500 i=1, nmag
do 501 j=1,nmag _
rkk (i, j)=(0, 1d~- 7)*gk( ) *dconijg(gk(j))/(2*rlci*alpha**2)
501 .continue
500 continue
endif
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* change quantum parameters to classical

451
450

453

if (command .eq. ‘change’) then

f=dsqgrt (gamc*1.d7/ (twopi*fp*hbar))

DD=-g/ (dcmplx (gamc, twopi*dfcav) *

(demplx (gam0, twopi*d£0) +g*g/demplx (game, twopi*dfcav) ))
EE=(0,~-1)/

(demplx (gamQ, twopi*d£0) +g*g/dcmplx (gamc, twopi*dfcav))
hbar2=dsqgrt (hbar)

xs0=xs0*hbar2

xsl=xsl*hbar2

ysO0=ys0*hbar2

ysl=ysl*hbar2

x0=x0*hbar?2

y0=y0*hbar2

xt=xt*hbar2

.yt=yt*hbar2

do 450 i=1,nmag
do 451 j=1,nmag
tkk (i, j)=tkk(4i, j)/hbar
skk (i, j)=skk (i, j)/hbar
rkk (i, j)=EE*gk(i) *dconjg(gk(]j) ) /hbar
continue
continue
do 453 i=1,nmag
ps(i) = ps(i)*hbar2
gk(i) = (0,1)*DD*f*gk (i)
continue

endif

* determine converted parameters

1021

df0=£0-£fp
rlei=(1.d40,0.d40)/dcmplx (~-gamc, ~twopi*dfcav)
do 1010 i=1,nmag

rlk (i) =dcmplx (~gamk, -twopi*df (i))
£1(i)=-gk (i) *dsqrt (pp)
fthr=zabs (rlk(i)/gk(i))
ppthr (i)=fthr*fthr
do 1021 j=1,nmag
tk(i,3)=(0.d0,-2.d0) *tkk (i, J)
sk(i, j)=(0.d0,-1.d0) *(skk (i, j) +rkk (i, j))
continue '
MM(i)= =-rlk(i)/£1(i)
aa(i)=dreal (NN(i)) *dreal (NN(i))+dimag (NN (i) ) *dimag (NN (i))
bb (i)=dreal (MM (i) ) *dreal (NN(i))+dimag(MM(1i) ) *dimag (NN (1))
cc(i)=dreal (MM(1i)) *dreal (MM (i) )+dimag(MM(i)) *dimag (MM (i) )
disc(i)=bb (i) *bb (i) ~aa (i) *(cc(i)-1)
i1f (disc(i) .gt.0) then
cktl= (-bb(i) =-dsqrt(disc(i)))/aa(i)
ckt2= (-bb(i) +dsqgrt(disc(i)))/aa(i)
if (cktl.1lt.0) then
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ckl(i)=(0,0)
else
ckl(i)=dconjg(zsqrt (cktl* (MM(1i)+NN(1i)*cktl))
endif
if(ckt2.1t.0) then
ck2(i)=1(0,0)
else : .
ck2 (i) =dconjg(zsqgrt (ckt2* (MM (i) +NN (i) *ckt2)))
endif
else
ckl(i)=(0,0)
ck2(i)=(0,0)
endif '
1010 continue

* l=list
* lb=list bare parameters
if ((command.eq.’1l’) .or. (command.eq.’1lb’)) then
. print 900, ’dt=’,dt, 'nnl0=‘,nn0, 'nnf=’,nnf
900 format (a4,d11.3,a4,16,a4,1i6)
print 905, 'nmag=’,nmag
905 format (a6,13,a6,13)
print 901,'fp=',fp,’Hz ’,’£0=',£0,'Hz ','pp=',ppP, W '
901 format (ad4,dl4.6,a4d4,a4,dl4.6,a4,a4,dl4.6,a4)
- print 902, ’gamc=’,gamc, ’'gaml=’,gamQ, ' gamk=’, gamk
902 format (a6,d14.6,a6,d14.6,a6,d14.6)
print 902, "alpha=‘,alpha,’dfcav’,dfcav
print*, ‘i, j= rkk='
do 1081 i=1,nmag ‘
do 1082 j=1, nmag
print*, 4i,3,rkk(i, )

1082 continue
1081 continue
print*, ‘i, j= skk=’

do 1181 i=1,nmag
do 1182 j=1, nmag
print*, i, j,skk(i,J)

. 1182 o continue
1181 continue
’ print*, ‘i, j= tkk=’

do 1281 i=1,nmag
do 1282 j=1, nmag
print*, i,7j,tkk(i,J)

1282 ‘ continue
1281 continue
print*, ’i= ps='

do 1008 i=1l,nmag
print*, i,ps(i)
1008 continue
print*, ’i= df='
do 1108 i=1,nmag
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print*, i,df(i)
1108 continue
print*, .‘i= _ gk=’
do 1208 i=1,nmag
print*, i,gk(i)
1208 continue
endif

* lc=list converted parameters
if((command.eqg.’l’).or. (command.eqg.’1lc’)) then
print 802,/df£0=',df0
print*,’Suhl thresholds, pump power in Watts’
do 1011 i=1,nmag - »
print 907, ‘ppthr(’,i,’)= ’,ppthr(i)

907 format(a6,i3,a3,dl4.6)
1011 continue
endif

* ls=list state
if (command.eq.’ls’) then
call cavity{(cav,cav0,ps)
print*, ‘cav = ’,cav
print*, ‘cav0= ’,6cav(
do 1007 i=1,nmag
print 903, ‘ps(’,i,’)= ',ps(i)
903 format (a4,i3,a4,d14.6,d14.6)
1007 continue
call ssb(tt,ps,dp,l+nmag)
do 2007 i=1,nmag
print 903, ‘dp(‘,i,")= ‘,dp(i)
2007 continue
endif

* ls2=list sigma state
if (command.eq.’1s2’) then
do 3007 i=1,nmag+l
print 903, ’ps2(’,i,’)= ’,ps(i)*ps(i)
3007 continue
call ssb(tt,ps,dp,l+nmaqg)
do 4007 i=1,nmag+ncav
print 903, ‘dp2(’,i,")= ',2*dp(i)*ps (i)
4007 continue
endif

* lfp=1l1list fixed points
if((command.eqg.’1l’) .or. {(command.eq.’1lfp’)) then
print*,’fixed points for mode i, with other modes at zero:’

do 908 i=1, nmag
print*, ‘i ckl ck2’
print*, i,ckl(i),ck2(i)
908 continue
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909

do 90S i=1,nmag

. print=*, ‘i MM NN
print*, i,MM(i),NN(i)
continue

endif

* lw=list window parameters

906

if((command.eqg.’l’) .or.(command.eq.”’1lw’)) then

-print*, ‘window xmin, xmax, ymin, ymax:’
print 906, ’'xwlO=’,xw0,’ xwl=’,xwl,’ ywl=’,yw0, ywl=', ywl
print*, ‘scale xmin, xmax, ymin, ymax:’
print 906, ‘xs0=’,xs0,’xsl=’,xsl,’ys0=',ys0, 'ysl=",ysl
print*, ‘origin x0,y0 tick interval xt,yt’
print 906, ‘x0=',x0,’y0=',y0,’'xt=",xt, " yt=",yt

format (a6,dl11.4,a6,d11.4,a6,d11.4,a6,d11.4)

endif

* lcon=list control parameters

if ({(command.eq.’l’) .or. (command.eq.’lcon’)) then

print*, ‘control parameters l=on 0O=off: ’
print*, ‘printing ip=',ip

print*, ‘trajectory it=’,it

print*, ‘section is=’,is :
print*, ’'mode number (0 for cavity) imode=’, imode
print*, "file trajectory ifilet=’,ifilet
print*, ’file poincare section ifilep=’,ifilep

endif

* lcom=list commands

if({(command.eq.’l’) .or. (command.eq.’lcom’)) then

print*, ‘commands:’

print*, ‘l=list g=quit r=run c=continue cl=clear’
print*, "ft=£file trajectory fp=file poincare section’
print*, ‘markfp=mark the fixed points on display’
print*, ffft=generate fast Fourier transform’

print*, ‘si=change size (or scale) of display’
print*, ‘dump=generate PostScript file of display data‘’
print*, ‘set=read parameter file’

print*, ’save=create parameter file’

print*, ‘any variable (with a few exceptions)’
print*, ‘may be changed by entering its name’

print*, ’'followed on next line by the new value’

endif

* read parameter file

if(command .eq. ‘set’) then

print*, 'parameter filename: ’

read*, filename

open (unit=3,file=filename)

read (3, *) dt,nn0,nnf,nmag

read (3, *) pp, fp, £0, gamc, gam0, gamk, alpha,dfcav
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g=alpha
do 1061 i=1,nmag
read(3,*) ps(i),df(i),gk(i)
psO (i) =ps (i)
1061 continue
do 1062 i=1,nmag
de 1063 j=1,nmag
read(3,*) tkk(i, j),skk (i, )
1063 continue
1062 continue
read (3, *) xw0,xwl,yw0,ywl,xs0,xsl,ys0,ysl
read(3,*) x0,y0,xt,yt
close (unit=3)
endif

* create parameter file
if (command .eg. ‘save’) then
print*, ‘parameter filename: °
read*, £filename
open (unit=3, file=filename)
write (3, *) dt,nn0,nnf, nmag
write (3, *) pp, fp,£0,gamc, gam0, gamk, alpha,dfcav
do 1071 i=1,nmag
, write(3,*) ps(i),df(i),gk (i)
1071 continue
do 1072 i=1,nmag
do 1073 j=1,nmag
write(3,*) tkk(i,j),skk(i,3)
1073 continue
1072 continue
write (3, *) xw0,xwl,yw0,ywl,xs0,xsl,ys0,ysl
write(3,*) x0,y0,xt,yt
close (unit=3)
endif

* fp=file poincare data
if (command .eq. ‘fp’) then :
print*, ‘filename of data (n = do not file) ? '
read*, filename
if (ifilep .eq. 1) close(unit=1)
if (filename.ne.’n’) then
open (unit=1,file=filename)
ifilep=1
else
ifilep=0
endif
endif

* ft=file trajectory data
if (command .eq. ’£ft’) then
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print*, ‘filename of data (n = do not file) ? °
read*, filename
if (ifilet .eq. 1) close(unit=2)
if(filename.ne.’n’) then
open (unit=2,file=£filename)
‘ifilet=1
else
ifilet=0
endif
endif

* cl=clear and draw axes

if (command .eq. ‘cl’) then
call store(3)
call fclear ()
call fgenwindow (xw0,yw0,xwl,ywl,iAR)
call fscale(xs0,xsl,ys0,ysl)
call flinewidth(aLW, aLWold)
call fborderx()
if (itick.eq.l) call faxes (x0,y0,xt,yt,xs,ys)
if (iflag.eq.0) iflag=2

endif :

* dump=create PostScript file
if{command .eq. ’‘dump’) then
call store(2)
call exitgraph{()
call dpgraph(0)
call exitgraph{()
call dpgraph(l)
call store(l)
endif

* fft=generate fft

. if (command.eq.’£f£ft’) then

- call spctrm(tt,ps,nmag,dt,ssb,wl,wl,w2,w3, w4, wS)
if(iflag.eq.0) iflag=2

endif

* line=set line width for laserprinter
if (command .eqg. ‘line’) then
print*, ‘linewidth:
read*, alLW
call £flinewidth(alW,alLWold)
endif

* si=size graphics
if (command .eq. ’‘si’) then
print*, ’‘center on origin/strobing, enter 0/1:
read*, center



Part 1: Spin Waves Appendix

i

print*, ‘size’
read*, size
if (center .eq. 0) then
xs0= -size
xXsl= size
ys0= -size
ysl= size
else
xs0= gxx-size
xsl= gxx+size
ysO0= gyy-size
ysl= gyy+size
endif
Xt= size/10.
yt= size/10.
call store(3)
call fclear()
call fgenwindow (xwQ,yw0, xwl, ywl, 1AR)
call fscale(xs0,xsl,ys0,ysl)
call fbordexr ()
if (itick.eq.l) call faxes(x0,y0,xt,yt,xs,ys)
if(iflag.eq.0) iflag=2
endif

* gq=quit '

if (command .eq. ‘q’) then
if (ifilet .eq. 1) close(unit=2)
if (ifilep .eq. 1) close(unit=1)
call exitgraph()

endif

* r=run (use ¢ for continue)
if (command .eq. ‘r’) then

do 1006 i=1,nmag

ps (1)=ps0 (1)
1006 continue

if (imode.eq.0) then
call cavity(cav,cav0,ps)
axx=dreal (cav)
ayy=dimag (cav)

else
axx=dreal (ps (imode))
ayy=dimag (ps (imode) )

endif

gwx=axx

gwy=ayy

tt=0.d0

ikk=0

kks=0

par=0.5d0

nnl=1
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iflag=2
if (nnf.gt.0) iflag=1
endif

* c=continue, r=run (re-initialize)
if((command.eq.’c’) .or.(command.eqg.’r’)) then
if (imocde.eq.0) then

call cavity(cav,cav0,ps)
axx=dreal (cav)
ayy=dimag{(cav)
else
axx=dreal (ps (imode) )
ayy=dimag (ps (imode) )
endif
if(iflag.eqg.2) then
call fpenup{()
call fmove (axx, ayy)
call fpendown ()
iflag=0
.endif
if(iflag.eq.3) then
ecks=xs0
wigh=(ysl-ys0) * (axx-xs0)/ (xsl-xs0) +ys0
call fpenup ()
call fmove(ecks,wigh)
call fpendown ()
-endif
if(iflag.eq.4) then
. ecks=xs0
wigh=ayy
call fpenup()
call fmove (ecks,wigh)
call fpendown ()
endif
do 700 istep=nnl,nnl+nn0-1
call rk(tt,ps,nmag,dt, ssb,w0,wl,w2,w3)
call ssb(tt,ps,dp,nmag)
409 format (a6,4dl4.6)
******Tk*** Calculation Of trajectory AKX AXAXKRIXXTX XA AAX Kk h Kk kdxk
if(istep.le.nnf) go to 700
510 ikk=ikk+1
if(imode.eq.0) then
call cavity(cav,cav(0,ps)
axx=dreal (cav)
ayy=dimag (cav)
else
axx=dreal (ps (imode) )
ayy=dimag (ps (imode) )
endif
if(it.eq.l) then



Part 1: Spin Waves Appendix 98

if(iflag.eq.0) call fmove (axx,ayy)
if(iflag.eqg.l) then
call fpenup()
call fmove (axx,ayy)
call fpendown() .
iflag=0
endif
if(iflag.eq.3) then -
ecks=(istep-nnl+1l.d0)*(xsl-xs0)/nn0 +xs0
wigh=(ysl-ys0) * (axx~xs0)/ (xsl-xs0) +ys0
call fmove(ecks,wigh)
endif
if (iflag.eqg.4) then
ecks=(istep~-nnl+l1.d0) * (xsl-xs0)/nn0 +xs0
wigh=ayy
call fmove (ecks,wigh)
endif
endif
if(ifilet .eq. 1) write(2,1100) dcmplx(axx,ayy)
if(ip .eq. 1) write(6,1100) dcmplx(axx,ayy)
if(is.eq.0) go to 700 -

***;k************************************************************

95

96

if(istrob.eq.l) dpl=dreal(dp(imodel))
if (istrob.eq.2) dpl=dimag(dp (imodel))
if(istrob.eq.3) dpl=dreal(ps(imodel))
if(istrob.eqg.4) dpl=dimaqg(ps (imodel))

if((sign*par.lt.0.d0) .or. (sign*dpl.ge.0.d0)
*.or.(istep.eq.l) .or.(iflag.ne.0)) go to 600
dpO=dpl
-do 95 i=1, nmag
psl(i)=ps (i)
continue
tsave=tt
delt=dt
do 96 i=1,6
dsp=par-dpl
if (dsp.ne.0.d0) then
delt=delt*dpl/dsp
call rk(tt,ps,nmag,delt,ssb,wl,wl,w2,w3) .
call ssb(tt,ps,dp, nmag)
par=dpl
if (istrob.eq.l) dpl=dreal (dp(imodel)
if (istrob.eq.2) dpl=dimag (dp(imodel)
if (istrob.eq.3) dpl=dreal (ps(imodel)
if (istrob.eq.4) dpl=dimag(ps(imodel)
endif
continue
if(imode.eq.0) then
call cavity(cav,cav0,ps)

— e e
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97

991

600
700

1100
100
270
800
1270
1800

e Je ke d

gxx=dreal (cav)
gyy=dimag(cav)
else
gxx=dreal (ps (imode))
gyy=dimag (ps (imode))
endif
tsect=tt
period=tsect-tsect2
tsect2=tsect

“do 897 i=1, nmag

ps(i)=psli(i) .
continue
tt=tsave
dpl=dp0

print 991, 'period=‘,period, ‘sec ’,’freqg=’,1.d0/period,'Hz’
format (a7,dl4.6,a4,a5,dl4.6,a2)
if (it .eq. 0) then :
call fdotat (gxx,gyy) '

" else

call fdomark(gxx,gyy,O,sizemki

endif

call fpenup()
call fmove (axx,ayy)

if(it .eq. 1) call fpendown({)

if(ifilep .eq.. 1) write(l,1100) dcmplx(gxx,gyy)
par=dpl

continue

nnl=nnl+nn0

if(ifilet.eq.l) write(2,1100) dcmplx{axx,ayy)
if(ip.eq.1l) write(6,1100) dcmplx(axx,ayy)

endif

if (command.ne.’qg’) go to 50
stop

format (4d14.6)

format (10£8.4)

format (10x,’'total points=’,i4)

format (5x%,"i=’,15,5%, 'gxx=",£11.7, 5%, "gyy=',£11.7)
format (10x, 'total points=’,i4)

format (5%, i=’,15, 5%, "axx=',£11.7, 5%, "ayy=’,£11.7)
end

Subroutines are given below IR SR L RS R LSRR EREEEEEEEEEEEEEEEEE
subroutine cavity (cav, cav0, ps)

implicit double precision{(a-h,o-z)
double complex ps(100),cav,gk(100),£1(100),tk(100,100),

*sk (100,100),zlk(100),cav0, rlci

common rlk, £1, sk,tk,gk,nmag
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99

111

113

112

common /a2/ alpha,rlci

cav=(0.d0,0.40)

do 99 i=1,nmag
cav=cav+dconjg(gk (i) ) *ps (i) **2

continue '

cav=(0.d0,1.d0) *cav/ (2*alpha)

cav0=(0.d0,1.d0) *alpha* (pp**0.5) *rlci

return

end

subroutine ssb(tim,vr, £n, jdim)
implicit double precision(a-h,o0-z)
double precision n(100)
double complex vr (100),£n(100), suml, sum2, sig(100)
double complex tk(100,100),sk(100,100),£1(100),xrlk(100),
*gk (100)
common rlk, f1, sk, tk,gk,nmag
suml=(0.40,0.d0)
sum2=0.d0
do 111 i=1,nmag
vrR=dreal (vr (i))
vrI=dimag(vr(i))
n{i)=vrR*vrR+vrI*vrl
sig(i)=vr (i) *vr (i)
continue
do 112 i=1,nmag
suml= rlk(i)
sum2=£1 (1)
do 113 j=1,nmag
suml=suml+dcmplx (dreal (tk(i, j)) *n(j),dimag(tk (i, J)) *n(3j))
sum2=sum2+sk (i, j) *sig(j)
continue
fn(i)=suml*vr (i) +sum2*dconjg(vr(i))
continue
return
‘end

subroutine rk(time, state,idim, step,diffeq,ul,ul,u2,ul)
implicit double precision(a-h,o-z)

double complex u4,state(100),u0(100),ul(100),u2(100),
*u3 (100) '

external diffeq

half=step*0.5d0

sixth=step*(0.16666666666666d0

call diffeqg(time, state,ul, idim)

do 1 i=1,idim 4

ud (i)=state (i) +dcmplx (half*dreal (ul(i)),half*dimag(ul(i)))
continue ’

time=time+half

call diffeqg(time,u0,u2,idim)

do 2 i=1,idim
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ul (i)=state (i) +dcmplx (half*dreal(u2(i)),half*dimag(u2 (i})))
continue '

call diffeg(time,ul,u3,idim)

do 3 i=1,idim :

ul0 (i) =state (i) +dcmplx (step*dreal (u3(i)),step*dimag(u3(i)))
u3 (i)=u3 (i) +u2 (1)

continue

time=time+half

call diffeqg(time,ul,u2, idim)

do 4 i=1,idim

ud=ul (i) +u2 (i) +u3 (i) +u3 (i)
state(1)=state(l)+dcmplx(smxth*dreal(u4),31xth*d1mag(u4))
continue

return

end

subroutine spctrm(tt, ps, nmag,dt,ssb,wl,wl,w2,w3,wd, wd)
implicit double precision{a=h,;o0-2z)

‘double complex ps(100}),w0(100),w1(100),w2(100),w3(100)"
double complex aps, cav, cav( '

character filefft*20

external ssb 4

logical ovrlap,pdata,asym

dimension p(4096),w4(16384),w5(8192)

common /al/ xwQ,xwl,yw0,ywl,alLW

twopi = 8. * datan(1.d0)

print*, ‘# freq. bins (2**i, enter i<=12) : ’

read*, i '
if(i.gt.12) i=12

if£(i.1t.1) i=1

mh=2%%*i

m=mh+mh

print*, ‘time steps per data point:

read*, nsteps

fmax= 1./(2.*dt*nsteps)

print*, ‘maximum freq=‘, fmax

print*, ‘number of segments to average initially: *
read*, k .

print*, ‘overlap segments? (enter t (true) or £ (false)):
read*, ovrlap

print*, ‘mode to transform:

read*, mode

print*, ‘window type- “

print*, ’l=square,2=Hanning, 3=Parzen, 4=Welsh,5, 6=special:
read*, itype

if(itype.eq.5) printw*,

* rdatwin=dexp (-ak* (m*m/(4.*(j=.5) *(j=-m=.5))) **2)"’
if(itype.eqg.6) printr*,

* ‘datwin=dexp(ak*m*m/(4.*(j=-.5)*{j-m=-.5)))"

print*, ‘enter power ak, l=normal:

read*, ak

[4
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print*, ‘enter phase factor aph, O=normal: '
read*, aph
print*, ‘asymmetrize window? (enter t (true) or f (false)): ’
read*, asym
if (asym) then
print*, ‘tilt factor (l.0=normal): -
read*, b
endif
print*,” ’‘printout data? (enter t (true) or f (false)): ’
read*, pdata
print*, ‘data source- '
print*, ‘l=normal, 2=save, 3=retrieve, d4d=test (constant): ’
read*, idat
if((idat.eq.2) .or.(idat.eq.3)) then
print*, ’‘data filename:
read*, filefft
open (unit=4, file=filefft)
endif
print*, ‘window compression factor (>=1, l=normal): *
read*, wcom
mm=m+m
m4=mm-+mm
m44=m4+4
m43=m4+3
den=0.d0
facm=m-1.d0
facp=1l./m
sumw=0.d0
do 11 j=1,m _
sumw=sumw+datwin(j,mh, itype,ak,b,asym, wcom) **2
if (pdata) print*, ‘datwin(’,3,’)=’,
* datwin(j,mh, itype, ak,b, asym, wcom)
11 continue

p0=0.d0
do 12 j=1,mh
p(j)=0.d0

12 continue
if (ovrlap) then
do 1 j=1,mh
j2=3+]
if((idat.eqg.l) .or.(idat.eq.2)) then
do 2 i=1,nsteps
call rk(tt,ps,nmag,dt,ssb,wl,wl,w2,w3)
2 continue ..
if (mode.eq.0) then
call cavity(cav,cav0,ps)
aps=cav-cavi
else
aps=ps (mode)
endif
endif
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1

if(idat.eq.2) write(4,*) aps
if(idat.eq.3) read(4,*) aps
if(idat.eq.4) aps= (1.,0.)
w5 (32-1)=dreal (aps)

w3 (j2)=dimag (aps)

continue
endif

o 10 do 18 kk=1,k

13

32

31

if (ovrlap). then

do 13 j=1,mh
j2=j+]
if (aph.eq.0.) then
w4 (j2-1)=w5(j2-1) *datwin (j,mh, itype, ak,b, asym, wcom)
w4 (j2)=w5(j2) *datwin(j,mh, itype, ak,b,asym, wcom)
else
aph0O=aph* (j2-m-1) *twopi/mm
aphl=dcos (aph0) *datwin(j,mh, itype, ak, b, asym,wcom)
aph2=dsin(aph0) *datwin(j,mh, itype, ak,b, asym,wcom)
w4 (j2-1)=w5(j2-1) *aphl-w5(j2) *aph2
w4 (j2)=w5(j2-1) *aph2+w5 (j2) *aphl
endlf
if (pdata)
print*,’wd(",32-1,")=",w4(j2-1)," wa(',32,")=",wa(32)
continue
do 31 j=1,mh
j2=1+7 - :
if((idat.eq.1l) .or. (idat.eq.2)) then
do 32 i=1,nsteps
call rk(tt,ps,nmag,dt,ssb,wl,wl,w2,w3)
continue
if(mode.eq.0) then
call cavity(cav,cav0,ps)
aps=cav-cav(
else
aps=ps (mode)
endif
endif
if (idat.eq.2) write(4,*) aps
if (idat.eq.3) read(4,*) aps
if(idat.eq.4) aps= (1.,0.)
w5(j2-1)=dreal (aps)
w3 (j2)=dimag (aps)

.continue

do 14 j=mh+1l,m
j2=3+]
if(aph.eq.0.) then
wd (j2-1) '
=w5(j2~-1-m)*datwin (j,mh, itype, ak, b, asym, wcom)
w4 (j2)=w5(3j2-m) *datwin(Jj,mh, itype, ak,b,asym, wcom)
else
aphO=aph* (j2-m-1) *twopi/mm
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aphl=dcos (aph0) *datwin (j,mh, itype, ak,b, asym, wcom)
aph2=dsin(aph0) *datwin(j,mh, itype, ak,b, asym, wcom)
w4 (j2-1)=w5(j2~-1-m) *aphl-w5(j2-m) *aph2
wéd (j2)=w5(j2-1-m) *aph2+w5(j2-m) *aphl
endif :
if (pdata)
* print*, ‘w4 (’,32-1,")=',w4(j2=1)," w4 (’',32,")=",w4(32)
14 continue :
else
do 41 j=1,m
j2=3+]
if((idat.eq.l) .or. (idat.eq.2)) then
do 42 i=1,nsteps
: call rk(tt,ps,nmag,dt,ssb,w0,wl,w2,w3)
42 continue
if (mode.eq.0) then
call cavity(cav,cavQ,ps)
aps=cav-cav(Q
else
aps=ps (mode)
endif
endif .
if (idat.eq.2) write(4,*) aps
if (idat.eq.3) read(4,*) aps
if (idat.eq.4) aps= (1.,0.)
if (aph.eq.0.) then
wd (j2-1)
* =dreal (aps) *datwin (j,mh, itype, ak, b, asym, wcom)
w4 (j2)=dimag(aps) *datwin (j,mh, itype, ak,b,asym, wcom)
else
aphO=aph* (j2-m=-1) *twopi/mm
aphl=dcos (aph0) *datwin(j,mh, itype, ak,b, asym, wcom)
aph2=dsin(aph0) *datwin(j,mh, itype, ak, b, asym, wcom)
w4 (j2-1)=dreal (aps) *aphl-dimag (aps) *aph2
w4 (j2)=dreal (aps) *aph2+dimag (aps) *aphl

endif
if (pdata)
* print*, " .wd(’,3j2-1,')=',w4(j2-1)," wa(’,32,)=",wd (j2)
41 continue
endif
16 continue

call fourl(wd4,m,1)
pPO=p0+wd (1) **2+wg (2) **2
print*, 'p(0)=‘,p0

do 17 j=1,mh-1

j2=3+]
P(I)=p(J)+wd (j2+1) **2+w4 (j2+2) **2

* +w4 (mm+1=-32) **2+wd (mm+2~32) *¥*2
if (pdata)

* print*, ’'p(’,3,")=',p(Jj)
17 continue
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18

19

60

p(mh)=w4 (m+1) **2+wd (m+2) **2
- print*, ‘p(’,mh,’)=’',p(mh)
den=den+sumw
continue
powmax=p0
powmin=p0
do 19 j=1i,mh
if(p(3j).eq.0.) then
print*r 'P(':j,')= 0r
else
. if (powmax.lt.p(Jj)) powmax=p(j)
if ((powmin.gt.p(j)) .or. (powmin.eq.0.)) powmin=p(]j)
endif
continue
denmé4=den*m4
powmax=10.d0*dlogl0 (powmax/denm4)
powmin=10.d0*dlogl0 (powmin/denm4)
print*, ‘PSD range in dB: '
print*, ‘powmin= ’,powmin,’powmax= ’,6 powmax
print*, ’enter desired plotting range: '
print*, ‘minimum= ‘'
read*, ysoO
print*, ‘maximum= ’
read*, ysl
iAR=1

- print*, ‘plot from bin #: *
read*, xs0

print*, ‘to bin #: '

read*, xsl .
print*, ‘freq range ’,xsO*fmax/mh,’ to ’, xsl*fmax/mh
call store(3)

call fclear()

call fgenwindow (xw0,yw0,xwl,ywl, iAR)

call fscale(xs0,xsl,ys0,ysl)

call flinewidth (alLW,alLWold)

call fborder ()

xs=0.01d0

ys=0.014d0

yt=10.d0 »

call faxes({xsO,ysC,xsl/10,yt,xs,ys)

call fpenup()

j=xs0

if(j.eq.0) yyy=10.d0*dlogl0Q(p0/denm4)

“if(j.gt.0) yyy=10.d0*dloglO(p(j)/denm4)

if(yyy.gt.ys0) call fmove (xs0,yyy)
if(yyy.lt.ys0) call fmove (xs0,ys0)
call fpendown() '
do 20 xxx=xs0+1,xsl
j=xxx
yyy=10.d0*dlogl0(p(j)/denmd)
if(yyy.gt.ys0) then
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20

50

call fmove (xxx,yyy)
else
call fmove (xxx, ys0)
endif
continue
call fpenup()
print*, ‘0O=quit ££t, l=continue ££t,’
print*, ‘2=dump fft to printer, 3=replot:
read*, command
if (command.eqg.l.) then
print*, ‘number of additional segments to average: '
read*, k )
go to 10
endif
if (command.eqg.2.) then
call store(2)
call exitgraph()
call dpgraph(0)
call exitgraph()
call dpgraph(1l)
call store(l)
endif
if (command.eq.2.) go to 50
if (command.eqg.3.) go to 60
if ((idat.eq.2) .0xr. (idat.eq.3)) close(unit=4)
return
end

subroutine fourl (data,nn,isign)
implicit double precision(a-h,o0-2)
dimension data(16384)
twopi = 8. * datan(1.d0)
n=2*nn
j=1
do 11 i=1,n,2
if(j.gt.i) then
tempr=data (i)
tempi=data (j+1)
data(j)=data (i)
data(j+l)=data(i+l)
data(i)=tempr
data (i+1l)=tempi
endif
m=n/2
if((m.gt.2).and.(j.gt.m)) then
j=Jj-m
m=m/2
go to 1
endif
j=3+m

11 continue
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mmax=2
2 if(n.gt.mmax) then
istep=2*mmax
_ theta=twopi/ (isign*mmax)
wpr= -2 .d0*dsin(0.5d0*theta) **2
wpi=dsin (theta)
wr=1.d0
wi=0.d0
do 13 m=1,mmax, 2
do 12 i=m,n,istep
j=i+mmax
tempr=wr*data(j)-wi*data(j+1)
tempi=wr*data (j+1)+wi*data(j)
data(j)=data(i)-tempr
data(j+1l)=data(i+1l)-tempi
data(i)=data(i)+tempzr
data(i+l)=data (i+1) +tempi
12 continue
wtemp=wr
WE=Wr*Wpr-wi*wpi+wr
Wwi=wi*wpr+wtemp*wpi+wi
13 continue
mmax=istep
go to 2
endif
return
end

double precision function datwin(j,mh,itype, ak,b, asym wcom)
implicit double precision(a-h,o-=z).
logical asym
pi = 4. * datan(1.d0)
c=(j-mh=-0.5d0) *wcom/mh
if (dabs(c).1t.1.d0) then
* Square window
if (itype.eqg.l) datwin=1.d0
* Hanning window
if(itype.eq.2) datwin=(1l.d0+dcos(pi*c)) **ak
*  Parzen window
if (itype.eq.3) datwin=(1.0d0-dabs(c)) **ak
* Welch window
_ if(itype.eq.4) datwin=(1.0d0-c**2)**ak
* Special windows
if (itype.eqg.5) datwin=dexp(-ak/(1.d0 = c**2)**2)
if (itype.eq.6) datwin=dexp(-ak/(1.d0 - c**2))
* Asymmetrize
if (asym) datwin=datwin*(1l.d0+b*c)
else :
datwin=0.d0
endif
return
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PART 2:

DYNAMICS OF A MAGNETIC OSCILLATOR

1 INTRODUCTION AND OVERVIEW

In this part of the thesis, the results of a study of another magnetic system will be

presented — this one very different from the spin wave system of Part 1. This is a low frequericy ..

experiment (~100 Hz) in which the nonlinear effects resuit from saturation and hysteresis of a
magnetic core. This experiment was designed to study some of the wealth of phenomena asso-
ciated with the emergence of a second frequency in a dynamical system and the subsequent

interactions between those frequencies.

There has recently been considerable interest in nonlinear dissipative systems which exhi-
bit quasipériodic behavior and phase locking, and in particular how such systems make the tran-
sition from regular to chaotic motion. There have been several theoretical and computer-
assisted studies of this problem! -3 as well as a large amount of experimental work®, primarily

with fluids, and also in solid state systems.

Systems that display quasiperiodicity can often be pictured as equivalent to two or more
coupled nonlinear oscillators or modes. For systems equivalent to only one nonlincar osciilator.
the route to chaos is typically through a period doubling cascade. Simple systems of two or
more oscillators have not been fully studicci, particularly their complex bchavior near reso-
nances, where a new frequency is emerging that is rationally related to a previously existing fre-

quency (by some factor M/N). This study is concemed with this complex behavior for a weakly
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oscillating nonlinear oscillator that is being driven by a second oscillator which is a prime

mover. A brief report of some of this work has been published earlier!0,

A comprehensive study of the behavior near "strong resonance” points is presented for the
expen‘memal system and compared with the theoretical work of V. I. Amold and others.
Although this is a local theory, it can aid in the understanding of much of the complex behavior
observed, some of which extends far from the resonance points. A thorough understanding of
the dynamics requires the study of unstable orbits and basins-of attraction. This is accom-
plished through a novel technique of repeated initialization, which allows one to locate these
unstable orbits and observe the stable and unstable manifolds of saddle points, The bifurcations
occurring within regiohs of phase locking and those that mark their boundaries are also

explored in detail.

Symmetry plays a véry important role in this physical system. Resonance points can be
separated into symmetric and asymmetric types. Symmetric quasiperiodic attractors occur for
which certain peaks in the frequency spectrum are suppressed. Symmetry breaking bifurcations
and complementary band mergings are observed as a conscquence of symmetry. Much of this

symmetry-related behavior is explained using the concept of a half-cycle map.

In addition to this study of the important dynamics observed, two models are developed
and studied for the physical system itself. The first is an unusual differental equation model
which is irreversible and leads to a noninvertible Poincare map of the plane. The folding of this
mapping has important conscquences and explains some of the unusual behavior obséwed in
the phase locked regions. (Note: noninvertibility does not preclude use of Amold’s theory - see
Sec. 4.3.2)) In the second model a planar (2-D) mapping is assumed and an approximation for
this Poincare map is obtained dircctly from cxperimental data by expanding the map in a 2-D
Tﬁylor expansion. Compared to the first model, this modcl shows improved agreement with me

bifurcation sct mcasured experimentally. This mcthod could be useful in modeling other sys-
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tems, especially those for which differential equation models arc inaccurate or too complicated

1o analyze.

In the remainder of this section a description of the physical system is presented, the
“experimental methods used are described, and an introduction to and preview of the experimen-

tal results is given (with full details in Sec. 3).

1.1 Description of the Dynamical System

This system is a forced symmetriéal nonlinear oscillator.- It contains a single nonlineér
element, an inductor made by winding a coil on a toroidal fnagnetic cofell. This element acts
both as a nonlinear inductor (through core saturation) and as a nonlinear dissipator (through
magnetic hystexfesis). This is driven by a "linear }exciter" consis;ing of an oscillar.ingb current
source /(t), a negative resistance R, and a capacitance C, connectéd in parallel as shown in

Fig. 1. The current source is generated by an operational amplifier that is driven by a sine wave

Y L INDUCTOR
CD | " NDU

LW R e g

l VL NONLINEAR

CURRENT
MONITOR
o GND

LINEAR EXCITER

Figure 1. Schematic diagram of the forced magnetic oscillator. Note: R is a linear negative
resistance.
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generator of frequency ®,, so that

I5(t) =Igsinwyz, _ ¢y
where / is typically 1 mA and ®, is typically 2t X 100 Hz. The negative resistance is linear
and is generated by another operational amplifier circuit. R is typically =500Q2 and C is typi-
cally 7.5 uF. The negative resistance allows the system to be self-oscillatory for 7/ = O (typi-
cally 200 Hz) and to exhibit two-frequency oscillations for certain operating conditions with

]0#0.

In addition to these components there is a resistance R; of one ohm in series with the
inductor which is used as a current monitor by measuring the voltage V; across it. R; has been
found (by decreasing its value) to have a negligible influence on the system’s behavior, so we

will not include it in our analysis below.

The effects of the linear components are easily combined in the relation:

y 1
IL ‘—'—CVL-EVL “"]S(t), : (2)
relating the inductor current (/) and voltage (V. ). Making the usual approximations about uni-

form magnetic induction B and magnetic field H in the core, we may write (in S. I. units):

V, =naB ©

Ip =(L/n)H C)

where n = number of turns (100), A = effective core cross section (1.51 x 107°m),and L = mag-

netic path length (0.1097 m). Substituting these into Eq. (2) we find the basic equation

—%H:IS(t)—-nRAB-nAC§ | ) -

The nonlinearity of the core effects the system through the relation between B and H,
knowledge of which is required to solve Eq. (5), i.c. to find B (¢) or A (¢); this problem is treated
in Scc. 4. At sufficiently low frequencics (so that the corc is in quasi-cquilibrium) there will be

some nonlincar monotonic relation between B and A and this relation will change whenever B

changes sign, i.e. when V, = 0, duc to magnetic hysteresis.
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The state variables through whiph we usually observe the system behavior are the inductor
current fL, its voltage V;, and the current source /5. Since /g(¢) is a sinusoidal oscillation
(I psinwy ), its state (for fixed /4 and ,) is given by its phase 65 (¢) = 0 (mod 2x). For con-
vénience hoWever, we observe /g (¢) directly since this is equivalent to knowing 8 if we also
know the sign of /s (t). The.magnexic induction B may be determined by integrating V; [Eq.
(3)] as we did to produce one of the figures in Sec. 1.3. However, for complicated behavior of
the system, there is considerable difficulty caused by the arbitrary constant of integration, since
one must stabilize the integral against any minute nonoscillatory part of V; without introducing

large fluctuating errors in the integral due to low frequency components of V.

The parameters by which we usually vary the behm)ior of the system are /[, the peak
amplitude of Isv (¢); Ty, the 'period of /5(¢); and R, the negative resistance. Normally we will be
looking at some region of the /,,t, spaée with some fixed R. Varying other parameters such as
C, n, and core parameters A and L is expected to yicld no new behavior due to system scaling

relations which we discuss in Sec. 4.2.

1.2 Methods of Observation

Most of the experimental data presented in this paper are periodically strobed phase por-
traits or Poincare sections. A simple periodic oscillation appears as a single point in the Poin-
care section. As parameters are varied, this oscillation may lose stability and some more com-
plicated pattern may appear. Most of the Poincare sections presented in this paper are of [ vs.
/s sampled when V,, crosses zero (i.c. a peak of /). The data points were collected using a

trace storing oscilloscope and then photographed.
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In order to fully understand the behavior of a nonlinear dynamical system, it is very help-
ful to be able to observe the transient behavior from some initial condition as well as the mode
or modes of behavior that the system may exhibit after the tmnsiems have died away. For
example, there may be two stable periodic oscillatory modes which caﬁ be reached from dif-
ferent initial conditons. Often there are unstable modes, slight perturbations from which (such

as caused by noise) will grow exponentially with time.

For reasons explained in Sec. 4.3.1, the state of the system at a peak or tuming point of IL.
may be 'appmximated by just two variables: /; and /g, provided the core is near saturation.
Thus, if one can initialize the system to any desired /g and /; at a ime when V; = 0, then one
has a simple and effective means of exploring the transient behavior of the system. This is
accomplished by using an electronically controlled analog switch, which when activated, forces
the system into a periodic oscillation at the driving frequency ®; but with amplitude and phase
adjustable with respect to that of /g(z). One then electronically deactivates this at a turning

point (V, = 0), freeing the system to follow its own path from this initial condition.

With this initializer we can set Is and 7, at the initial tuming point. If the above approxi-
mation on core saturation is valid, then we have access to ihe entire Poincare space. But if not,
this space has additional dimensions. In this case we might have difficulty finding an unstable
node if it is also unstable on these extra dimensions.. If, however, an unstable fixed point has at
least one stable direction in the full Poincare space, then we can reach this point by initializing
on the stable manifold!? of the fixed point, provided this manifold intersects the subspace that
we can access with the initializer. Thus, in general, an initializer can be uscful even in cases

where it cannot access all possible initial states.
In additon to phase space diagrams ("phase portraits") and Poincare scctions of thesc
diagrams, we also measure the frequency spectrum V(w) of Vp (¢) with a scanning spectrum

analyzer, an HP Model 3580A, with 90 dB dynamic range. The results are plotted as @ vs.
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V(w) in dBV, i.e. the peaks in the spectra are to be read in decibels above 1 volt rms (dBV =20

log10 V mns). Unless otherwise specified, the resolution bandwidth used is 1 Hz.

13 Preview of Experimental Results

When we vary the parameters (/, @y, R) of the system, we find that there is a region in
this parameter space wheré the system exhibits a symmetrical periodic oscillation at the driving
frequency ®;. This could be described as a relaxation oscillation, having a "slow phase" where
VL- and /; do not change much, alternating with a "fast phase" where V, and /;, rapidly change
sign. When one observes the behavior of the system in two or more state variables, such as /;,

vs. I, one sees a closed curve as shown in Fig. 2a.

However, as one crosses a certain surface in the parameter space, one finds -that the system
begins to develop another oscillation at some new frequency w,. In the primary region of study
this is in the range ®; < , < 2w;. The ratio w,/®, may be imtiohal. in which case the oscilla-
tdon will no longer be periodic. | When observed in the space of three or more state vaﬁablés
(e.g. I, V., Is), the orbit will remain on a two-dimensional torus and will proceed to fill 'in this
surface completcly as t—eo (Fig. 2b). We can examine a cross-section (or Poincare section) of
this figure (say by strobing at appropriate intervals a storage oscilloscope) and will find a set of
poims forming a closed curve. A frequency spectrum (say of V, (¢)) will show the frequencies
®; and @, and smaller components at all their "odd" linear combinations: ®,,, =m®; +nW;
where n + m = odd integer (Fig. 2¢). We discuss this further in Sec. 2.3.3. This change in sta-
bility, i.c. the onset of a second frequency w,, is known as a Hopf bifurcation. In a two-
paramcter space (say /g, @), the Hdpf biﬁircation occurs when one crosses a certain line.

Across this line there arc regions where ./, is a rational ratio (M /N in lowest terms) and the
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Figure 2. (a) Phase portrait of the inductor current /; vs. the forcing current /g. Strobing every
cycle as the inductor voltage V, crosses zero from positve to negative produces the point
shown. Here there is a symmetrical 1:1 phase locking. (b) At another point in parameter space
the system undergoes a Hopf bifurcation and a symmetrical quasiperiodic attractor emerges. By
strobing, the Poincare section is seen to’display an invariant circle. (c) Frequency spectrum of
V. (¢) — shows only odd 2-component harmonics (m+n = odd) due to symmetry.
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Figure 3. (a) Phase portrait and spectrum of V, (¢) for the symmetric type of entrainment with
Wy/y = 7/5. (b) Asymmetric type: shows two complementary attractors (by double exposure)
interwoven with each other. Each has w,/@; = 3/2. The Poincare section of (a) is five points: of

(b), it is two sets of two points.

behavior is again periodic. Here the system is said to be phase locked or entrained. We find
that when M and N are both odd, that the behavior of the system is again symmetrical (e.g.

V() = -V (¢t where t5 = t; + Nm/w,) and the frequency spectra will contain only odd har-
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monics of the frequency ®;/N (see phase portrait and frequency spectrum in Fig. 3a). In all
other cases of entrainment there are two complementary asymmetric modes in which the system

can oscillate (see phase portrait and frequency spectrum in Fig. 3b).
If we define the order of the entrainment ¢ as

q =N for symmetric behavior )

q =2N for asymmetric behavior %

then we find that in a two-dimensional parameter space {we use /o(rms) and T, = 2r/w,], for
q 25 the entrainment regions all have a typical shape called a resonance hom or an entrainment
hom or a tongue. The frequency ratio changes smoothly along the line of Hopf bifurcation and
- the homs emerge from this line at the points corresponding to rational ratios, called points of
resonance. We show such a parameter space diagram in Fig. 4. The points of resonance are
labeled by their order ¢. For resonances of order less than five, there are other characteristic
pattemns often involving the coexistence of more than one stable behavior pattern. The ¢ = 4
resonance has a homnlike region ecmerging from it in this figure, but it also has many other

forms, some of which are described in Sec. 3.1.4.

In this paper our primary emphasis is on behavioral changes that the system goes through
as we vary its parameters near the points of resonance and the associated phase locked regions.
We discuss both the theory (Sec. 2.2) and our experimental results (Sec. 3.1) for both the weak
(¢ 25) and strong (¢ <4) resonances. An understanding of the theorctical behavior, particu-
larly of the strong resonances, is found to be very important in predicting the qualitative
behavior far from the resonance point. Moving within the horn away from its vertex one finds
the system behavior becoming more complex, as described in Sec. 3.2. In Sec. 3.3 we describe
what can happen when two phase locking domains overlap or coexist. In some cases we
observe a Hopf bifurcation initiating from an cntrainment. This will appear as a set of closed

" curves, which we describe in Sec. 3.4.
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Figure 4. Parameter space diagram. Here 7 is the period of the driving current /g(t) and / g is
the rms aplitude of /5(t); for R =-500 Q and C =7.5 uF. Phase locked regions are labeled by
W/, points of resonance by order ¢ (for ¢ < 10), Hopf bifurcation by H. Portions of phase
locked regions labeled with a plus sign have coexisting quasiperiodic attractors. In some re-
gions two phase locked attractors coexist, e.g. the region labeled 1/1 and 5/3. The region la-
beled 2 x 1/1 has two distinct 1/1 type attractors. Hysteresis is observed when these multiple at-
tractor regions are traversed. The region labeled 2/1 exhibits an asymmetric attractor with two
complementary modes and is thus distinguishable from the symmetrical 1/1 attractor. In Sec. 3,
many structures shown here are studied in great detail and are found to be related to the theoret-
ical behavior of the points of "strong resonance”. Note that the points labeled "1" and "2" are

the end points of the Hopf bifurcation line.
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Throughout the paper we will be emphasizing the importance of hidden behavior related

to unstable oscillatory modes of the system and the transient behavior that couples the unstable
orbits Wim stable ones. Knowledge of this "hidden behavior” is very imﬁortam: to the under-
standing of the "visible behavior" and how it changes with the parameters. ’I’hus, for example,
we experimentally investigate motion on both the unstable and stable manifolds of saddle

orbits.

2 THEORETICAL CONCEPTS

2.1 Bifurcation Types

We expect that most readers of this paper will be familiar with the fundamental types of
bifurcations (saddle-node, Hopf, period doubling, etc.), and thercfore we restrict our discussion
to some details which may be less commonly known. For a review of material not presented

here we refer to Ref. 12.

Many different types of bifurcations, both local and global, are important to the dynamics
of a system, like the present one, in which a second frequency is emerging. In order to fully
understand the dynamics, it is necessary (in some cases) to study the bifurcations of unstable
ﬁxed points in the system. Although these bifurcations do not directly effect the attractor(s) of
the system, they will effect the basins of attraction. Frequently, unstable fixed points emerging
from such bifurcations will, at some other paramecter sctting, be involved in a bifurcation

involving a stable attractor. In a two-dimensional Poincare space there are four types of period

doubling bifurcations, two of which involve only unstable fixed points (in the Poincare section),

as shown in Fig. 5. In cach case a single fixed point splits into a period doubled pair, separated

by a period one fixed point of altered stability (relative to the original fixed point). There arc
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TABLE 1 - NOTATION USED IN BIFURCATION DIAGRAMS

2-D bifurcation diagrams have a number of lines representing co-dimension 1 bifurcations,
which separate regions of parameter space in which qualitatively different behavior patterns exist. -
The patterns drawn for each region represent typical 2-D Poincare sections. In them, solid dots
represent stable points (sinks) and open dots (very small circles) represent unstable points
(sources). Saddles have no dot but are clearly indicated by arrows on their stable and unstable
manifolds. Foci are distinguished from nodes by a slight spiral on approach. The co-dimension 1
bifurcations are indicated by an arrow connecting the Poincare patterns of two adjacent regions or -
crossing a bifurcation line in the bifurcation diagram, and an abbreviation for the bifurcation.
- These are used both in the theoretical and experimental figures. The bifurcations occur as
described below in the direction of the arrow.

Abbrev. . » 7 Description

A. The following are continuous bifurcations with no jump to another attractor and no hysteresis
implied:

H , Hopf: circle(s) emerge from point(s) in the Poincare section.

X2 Period doubling.

x4 2nd period doubling.

Xoo End of period doubling cascade.

bml Band merging: two-band chaotic attractor merges to one band.

sb Symmetry breaking: one symmetric attractor splits into two complementary
asymmetric attractors.

cbm Complementary band merging: two complementary chaouc attractors merge
into one symmetric one.

plc . Phase-locked circle: periodic nodes and saddles appear (in saddle-node pairs)
on an mvanant circle and then scparate.

cr(i) Interior crisis? penod n chaotic attractor contacts period n saddle point and
loss of phase locking occurs in conjunction with a sudden increase in at-
tractor size.

nf Node changes to focus (trivial blfurczmon)

Ir Left focus changes to right focus (iterates clockwise). This is usually with

respect to the rotation of a periodic attractor encircling the focus (trivial
bifurcation).

B. The following involve a jump (i.e., a discontinuous change in the observed variable) and im-
ply hysteresis. ,

sn Saddle-node: a saddle and node appear together and separate. In reverse, a
jump to another attractor occurs when the node is annihilated.
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he Homoclinic: circle(s) contact periodic saddle(s) forming a homoclinic orbit;
circle(s) are annihilated and a jump to another attractor occurs.

cr(b) Boundary crisis?’: chaotic attractor contacts the boundary of its basin of at-
traction, is annihilated, and a jump occurs.

x2(b) Subcritical period doubling (see Fig. 5(b)]. In reverse a jump can occur after

the stable node combines with the period doubled saddle to form a period
one saddle, leaving no attractor locally.
sb(b) Subcritical symmetry breaking, similar to 2(b).

C. The following involve only unstable fixed points.

su Saddle and unstable node appear together and then separate.
x2(c ord) Type (c) or (d) period doubling of unstable fixed points, see Figs. 5(c) or (d).
sb(c ord) ‘Type (c) or (d) symmetry breaking of unstable fixed points, similar to 2(c or

d).
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Figure S. Structure of period doubling bifurcations for a 2-D Poincare section. There are four
types: (a) The standard case involving a stable node. After bifurcation the two parts of the
period 2 node are separated by a saddle point. (b) A saddle point bifurcates in its unstable
direction to a period 2 saddle separated by a stable node. (c) A saddle bifurcates in its stable
direction to a period 2 saddle separated by an unstable node. (d) An unstable node bifurcates to
a period 2 unstable node separated by a saddle.

also four cases of symmetry breaking. These can also be represented by Fig. 5 except that in
this case all fixed points are period 1. Saddle node bifurcations occur in two types, one of
which involves a saddle and a stable node, the other a saddle and an unstable node. The second
case has no attractors. An important type bf global bifurcation is the.homoclinic bifurcation!2,
Here, as parameters are varied, an invariant circle (corresponding to quasiperiodic motion) con-
tacts a saddle orbit after which it is annihilated. In a nondegenerate case, this occurs as a point
of tangency develops between the stable and unstable manifolds of the saddle point(s). We fre-

quently observe, however, a (nearly) degenerate case where the stable and unstable manifolds
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(nearly) coincide. In the nondegenerate case, the attractor becomes highly chaotic before it is
annihilated, while in the degenerate case the circle remains relatively smooth (aside from a kink
near the approaching saddle point). Table 1 presents a list of bifurcation types which have been
observed in the experimental system, and defines a set of abbreviations which are later used in

the bifurcation diagrams.

2.2 Bifurcations Near Points of Resonance

The case of bifurcation near points of resonance is.discusscd by Amold!3- 15, Iooss!6, and.
Takens!”. In this case the bifurcating fixed point of the Poincare map has conjugate eigen-
values that are roots of unity (A = exp 2xip/q). This fixed point is doubly degenerate since we
are requiring both 1Al = 1 and arg(A) = p/q, and therefore we will have a bifurchtion of co-
dimension 2. This requires the variation of two parameters about the bifurcation point to be
fully charactcrizéd. Amold approaches this problem by making the connection between the
bifurcation of a resonant fixed point in the Poincare mﬁp and the biﬁxrcation of fixed points of
vector fields in the plane. In the vicinity of the bifurcating orbit, the behavior may be approxi-
mated by a vector field of the plane that is detcrmined by averaging in the Seifert foliation
corresponding to the resonance being studied (see Amold!3, page 170). In essence, this means
we are looking at the behavior in a coordinate system which has one coordinate parallel to the
bifurcating orbit (i.c. the angle indicating_a particular point on the orbit) and two coordinates
(x,y) transverse to the orbit with their origin at the orbit. Thesc transverse coordinates rotate
about the orbit at the same average rate as the nearby phase paths wind around it, i.c. p/q per
cycle. This is the Seifert fbliation. Averaging the behavior in the transverse coordinates over g
cycles, one can represent the behavior as a vector field in the plane with symmetry under rota-

tion by 2m/q. This averaging is valid on the assumption that motion in these transverse
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coordinates is very slow near the origin, occurrlng over many cycles. This will be true since at
the bifurcation point the eigenvalues have unit magnitude there. For cases of order q greater
~ than two, Amold treats the problem in the plane of the cornplek variable z =x +iy. A Taylor’s.
expansion of the vector field near the origin is made yielding z=3F j-sz 7%, where T is the
complex conjugate of z. The rotational symmetry requires j—4—1 be divisible by q. Keeping
the linear term, the lowest nonzero term with ¢ symmetry and the lowest nonlinear term with
no g dependence:

i =gz +AzIz12+B777), ¢ 23, @
wheré €, A, and B are complex coefficients. Amold refers to this as the prin’ciple deformation.
The linear coefficient € for this vector field must be zero at the bifurcation poim (when A =j
e¥?/4), Varying € by a small amount around zero in the complex plane will determine the
bifurcation sequence (i.e. varying Re € and Im € about zcro: can be assumed to be équivalent to
varying any two parameters about the bifurcation point). We can assume that € is much smaller
than A and B so that they are effectively constant during the biﬁrcadon process. However, dif-
ferent bifurcation patterns may be obtained for different values. of A and B. These biﬁmadon
battems take the form of a sequence of co-dimension 1 bifurcations that are encountered as € is

varied around zero.

B can be set to one by rescaling the other parameters and the time. Letting z =r el and

solving for fixed points (z =0) we find

%=—‘A —ri~demiad, ’ | &)
oo :
For ¢ 25 the last term is small for small r, and thus € =-Ar? (i.e. e and -A | must have nearly
the same argument for there to be fixed points oLh'cr thanz =0 sincé r must bé rcal). When the
last term is included, one finds that fixed points exist within a hom-shaped rcgion, shown in Fig.
6. In this figurc as in all other 2-D bifurcation diagrams throughout the rest of this paper, we

use an abbreviated notation to describe co-dimension 1 bifurcation lines which is given in Table
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Figure 6. 2-D bifurcation diagram for resonant fixed point in the case of weak (g 2 5) reso-
nance with ReA and ImA < O (other cases related by symmetry). Central figure shows the bi-
furcation lines, in this case a hom, in the complex parameter space & Table 1 lists co-
dimension 1 bifurcation abbreviations used in these figures. The surrounding figures represent
the topological behavior pattern for a typical 2-D Poincare space for the indicated domains in
the parameter space.

1. This hom (sometimes called a resonance hom or tongue) is centered on arg(—A ) and has an

angular width 6 that spreads with €:

21gl1 @472

N (9

Within the horn there are ¢ nodes altemating with ¢ saddles in a circle, as shown in Fig. 6.
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This is sometimes called a circle in resonance or a phase-locked circle. Moving € clockwise
toward the horn boundary, the nodes approach the saddles which are clockwise from their posi-
tions. These annihilate and leave an invariant circle with clockwise. rotation. Moving € coun-
terclockwise results in a counterclockwise approach and annihilation, and produces a counter-
clockwise invariant circle. Note that for the Poincare map this rotation of the invariant circle is

with respect to the entrained rotation of p/q. The circle disappears (via inverse Hopf bifurca-

Figure 7. 2-D bifurcation diagram for ¢ = 3. Involves no period 3 nodes, only period 3 sad-
dles. Same diagramatic arrangement as discussed in caption of Fig. 6. Some regions have no
attractors so a jump to some distant attractor must occur when entering these regions.
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tion) when crossing Re € = 0. Thus, except for the narrow hom-shaped region we have the
same behavior as for an ordinary (nonresonant) Hopf bifurcation, in the case of weak (¢ 25)
resonance. This is not the case however for strong (¢ <4) resonance. The cases ¢ = 3 and 4

can also be studied using the complex equation:

g =3 z=¢z+Azlz1%+B7% (11)

q =4 z=¢€z+Azlzi?+B3, (12)

For g = 3 there is only one bifurcation pattem [and its time (or arfow) reversed equivalent]
which we show in Fig. 7. It should be noted that no stable period 3 fixed points are involved in
this bifurcation. This fact will be explored further in Secc. 3.1. The ¢ = 4 case, however, has
not been completely characterized on a theoretical basis, although it is known that a large
number of possibilities exist depending upon the choice of the parameters A and B13-21
Unlike ¢ = 3, many of the ¢ = 4 bifurcation patterns do involve stable period 4 points. For the
cases ¢ = 1 and ¢ = 2, another approach is needed. Amold shows that the principle deforma-

tions can be expressed in the x-y plane as:

g=1: x=y, y =0a+px +Ax?+Bxy, (13)

q=2: £=y, y=ax +By +Ax> +Bx%y. (14)
There is one type of ¢ = 1 bifurcation (Fig. 8) and two types of ¢ =2 of which we show the one

forA >0, B <0 (Fig. 9). The second type is not shown hcre (but see Ref. 13) since we have
not observed this behavior in our system as we have for the other cases discussed above. The g

= 2 case shown involves no stable period 2 points, while the other one does.
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Figure 8. 2-D bifurcation diagram for ¢ = 1 with A > 0, B < 0 (other cases related by sym-
metry). Same diagramatic arrangement as discussed in the caption of Fig. 6. Some regions
have no attractors.
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Figure 9. 2-D bifurcation diagram for ¢ =2 with 4 > 0 and B < 0. ‘Same diagramatic arrange-
ment as discussed in the caption of Fig. 6.

23 Behavior of a Symmetrical System

©2.3.1 Half Cycle Map

We definc a symmetrical system to be onc which for any state x there is a complementary
state x” such that if x(¢) is a possiblc phase path of system, then x’(¢) is also. We require that

x”#x for almost all x and also that x”* = x, where x””is the complement of the complement of
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x. The exact definition of the complementary state will depend on the type of symmetry
involvéd. In our forced magnetic oscillator we assume that the magnetic core is perfectly sym-
metrical an(i that the complementary state satisfies: B’ = =B, H' = =H, V' =' -V., and the
.pha.?se of the forcing oscillation (which is also considered part of the state) is shifted by 1/2
cycle. In our case the forcing oscillation must be symmetrical and contain no dc offset. (Note:
the core exhibits complex memory effects as discussed in Sec. 4.1, and its state is not com-

pletely specified by B and H .)

Symmetry has important consequenées for the behavior we can observe. First of ail there
are two types of attractors (or other invariant manifolds): those which are asymmetrical and
have a‘complememary form, and those which are symmetrical and are their own complement.
Symmetry breaking bifurcations become possible where one symmetrical attractor splits into
two complementary ones. For a fixed point in the Poincare space, this can happen in the same
way as period doubling except that the bifurcating eigenvalue passes through +1 instead of -1,
and the bifurcated fixed points do not double in period (see Fig. 5). A symmetrical periodic
oscillation clearly can only have odd harmonics in the frequency spectrum of V;, or Ip,. This
méans that the ratio of any two frequencies exhibited by a stmetn’cal oscillation must be a
ratio of odd integers; hence phase-locked states whose fundamental frequencies cannot be

expressed as proportional to odd integers cannot be symmetrical.

As discussed in the prcvious section, the behavior of the bifurcation of a resonant fixed
point is characterized by a symmetry under a rotation through an angle of 2r/q where g is the
order of the resonance. When the frequency ratio corresponding to that fixed point is M/N and
M and-N are not both odd, then the order must be ¢ = 2N (instead of N) to allow for the divi-

sion into two complements of anything that bifurcates from that resonant point.

Some of the behavior of a symmetrical systcm can be clarified through the concept of a

half-cycle Poincarc map22. We can define a complementary Poincare section as the intersection
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of the orbit with the complement of the original Poincare space, e.g. for the space defined V; =
0, V,_ > 0 we have the complement V;, =0, VL > 0. We consider a situation whére the orbit
alternates crossing the two complementary sections. Mapping from the point X, in the original
section to the subsequent point X, in the complement, we have the map X, = F (X;) and from
this point to the subsequent point X, in the original we have the map X, = F_(Xl). But sym-

metry requires that

F.Xp =X, implies F_X;) =X, (15
and therefore
X2, = G¥(Xp, (16)

where G%*)(X) is the 2nth iterate of X through the map G(X) and G(X) = F,/(X) = F_(X") is the
half-cycle Poincare map. Thus one iteration of the full-cycle Poincare map can be expressed as
two iterations of this half-cycle map G(X), which mapé to the complementary section and then

takes the complement of the result putting it back in the original Poincare space.

Note that if the half-cycle map has an invariant circle, its rotation number is not @,/ 2w;.
This is because this map takes the complement of the state that actually occurs one-half cycle

later. Thus,

P1n = [(0y/2w) ~ —;] mod 1, an
where b,,z is the rotation number of the half-cycle map of a point inside the invariant circle.

The existence of this half-cycle map has important implications. If a fixed point is a fixed
point for the half-cycle map (i.c. a symmetric oscillation), then we can study its bifurcation
under Lhié map. If an even number g of identical fixed points bifurcate from it, then we can
state at once that a symmetry breaking bifurcation has taken place. This is because after g
iterations of the half-cycle map, all points will have been visited, while at the same time only
q /2 of them are visited by the {ull cycle Poincare map. Thus the attractor for the half-cycle map

has period ¢, while the full-cycle map has two attractors of period q /2. However, if ¢ is odd, q
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iterations of the half-cycle map does not correspond to a whole number of iterations of the full-
cycle map, and thefefone the full-cycle map will visit all points resulting in a single (and hence
symmetrical) attractor. For a phase-locked circle (as discussed in Sec. 2.2 in connection with
bifurcations of order ¢ 2 5), we have symmetric and complementary asymmetric forms for odd

and even numbers of nodes, respectively, as shown in Fig. 10.

Another important implication refates to the nature of symmetry breaking bifurcations. |
For a symmetric oscillation ;he attractor for the half-cycle map and the full-cycle map are the
same. After a symmetry breaking bifurcation the full-cycle map iterates on one attractor or the
other whil¢ the half-cycle map iterates back and forth between the two attractors. Thus a sym-

metry breaking bifurcation is just a period doubling bifurcation for the half-cycle map. 1t is to

a2

b2 bl

al

(a) | (b)

Figure 10. (a) Poincare map for symmetric phase-locked circle. Here the rotation number is
2/5 so an orbit through the stable nodes iterates in the sequence shown (i.e. 1,2,3,4,5,1,2,..).
(b) Complementary asymmetric phase-locked circle. Here the rotation number is 1/2 so the a
orbit iterates in the sequence (al, a2, al, a2, ...) and the b orbit in the sequence (bl, b2, bl, b2,
(b) could bifurcate from a ¢ =4 point.




Part 2: Magnetic Oscillator §23.1 136

be expected therefore that symmetric oscillations will ordinarily undergo a symmetry breaking
bifurcation before (rather than simultaneously with) the first period doubling bifurcation, this

being the second such bifurcation for the half-cycle map.

232 Effects of Asymmerry

While we are used to thinking of an inductor as a symmetrical component (i.e. when the
leads are interchanged, it behaves the same), this will not necessarily be the case in a real induc-
tor with a magnetic core. First, there may be a slight inherent anisotropy favoring the (average)
alignment of domains in one direction over anothgr. If we assume this is insignificant, there is
still another problem: a small fraction of the domains may be very difficult to rotate and these
may remain unchanged throughout the oscillatory cycle if the core is not being driven hard
enough. If these have a net magnetization, they will produce an asymmetric perturbation on the
system'’s behavior. This will be most strongly seen near a symmetry breaking bifurcation (see
Secs. 2.3.1 and 3.2) where a symmetrical attractor splits into two complementary asymmétric

- attractors as a parameter is varied. The effect of the asymmetric perturbation will be to cause
the system to choose a particular asymmetric attractor as shown in Fig. 11. Furthermore, if the
behaviér of the core is initially symmetric, it can develop asymmetry when it undergoes a sym-
metry breaking bifurcation. When one repeatedly passes the parameter through the bifurcation
point, it is not uncommon to find it has devcioped a preference for a particular state. This net
magnetization behaves much like a parameter that is very hard to control, it gets changed as we
adjust other parzimcters but it doesn’t return to its original value when they do. This peculiar
property of the magnetic core is fairly weak in most of its cffects on the behzivior we have stu-
died. However, it is very strong ncar the ¢ = 2 bifurcation point (sce Fig. 4 and Sec. 3.1)

because of the strongly asymmetric orbits existing there and makes study of this region very
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Figure 11. (a) Symmetry breaking bifurcation: the dotted line is an unstable symmetric attrac- )
tor that separates the two complementary asymmetric attractors following bifurcation. (b)
Asymmetric perturbation causes the original (nearly) symmetric attractor to go to a particular
asymmetric (nearly) complementary attractor. The other (near) complement. appears via
saddle-node bifurcation. Thus symmetry breaking bifurcations are only to be expected in per-
fectly symmetric systems.

difficult.

233 Frequency Spectra for Quasiperiodicity

Modon on a 2-torus can be described by two angles: 6, = @, and 6, = @yt corresponding
o the two ways in which one can go around the torus. Thus the state of the system can be

| specified by these two angles:

X =X(8,, 6,) = state of system. } (18)

We can express this as a Fourier series:
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X= 3 Y Xn.exp(im8; +in6,],

m=-o0 g =—o0

where

1
(2m)?
Thus we can get Fourier components at all integral linear combinations (two component har-

nm

2z T
jo de, jo d8, X(8,, 8)exp[ ~im O, —in6,].

monics) of ®; and ,,

Opy =MWy + 10y, (19)

where m and » are integers.

- Provided the torus remains intact, the amplitude of these components must fall off as m

and n become large.

For a symmetrical oscillation we expect that

X(el, 97) =-X(el +7t, ez"'n)v .
provided that the complement of X is =X which is true at least for most components of X (like
V. or ). This results in the elimination of ccrtain terms in the spectrum. If m + n is even,
then

exp{ =im8, —in 8] = exp( ~ im (8, + ®) —in (6, + m)], (20)
so the integral for X,,, vanishes by symmetry. Thus only odd harmonics where m + n is odd

are allowed for a symmetrical oscillation.

3 EXPERIMENTAL RESULTS

3.1 Bifurcation Patterns Near Points of Resonance

In this section we discuss the behavior of our systcm near points of resonance, particularly

“strong" resonances of order ¢ <4, as well as the more familiar "weak" resonances of order
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q 25 Each of the strong resonance cases has its own characteristic behavior patterns, the
theory for which we discuss_ed in the previous section. An undemténding of each of these cases
i; essential to othMng an overall picture of the behavior in the parameter space. Associated
with most cases of strong resonance there are regions in parameter space where two attractors
coexist or overlap, each of which continues into some adjacent region where it is the only
attractor. This results in the phenomenon of hystercsis: when traversing a path in parameter
space, the system gets to a point where the attractor it is on is annihilated and a jump occurs to a
coexisting attractor; but when the path is reversed, the jump occurs at the opposite end of the
overlap region, so that the forward and reverse paths are different. This behavior is éasily
traced back to the behavior near the resonant fixed point which can be understood through the
theory presented in Sec. 2.2. In addition to the cases q = 1 Lhrough 4, we also Show a case
involving strong hysteresis for g = 5 although in this case the hysteresis does not extend all the
way to the bifurcation point. In each case we show the region of a two-parameter space
[/ ((rms) and T, = 27/w,] in which behavior of the indicated order can be found. This is divided
by lines iﬁdiCating bifurcations of co-dimension 1. A number of these linés emerge from the
resonant point while some others do not. To each subregion there corresponds a diagram which
indicates qualitatively the behavior in each region (i.e. shows all attractors, saddle points, and
their stable -and unstable manifolds). In some cascs we also show actual Poincare sections
corresponding to these subregions or the transitions ‘betwcen them. The 2-D bifurcation
diagrams given in this section use the abbreviations in Table 1 to label co-dimension 1 bifurca-

tions as we did in Scc. 2.2.
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3.1.1 Resonance of Order 1

The experimental bifurcation pattern we obtained in this case is shown in Fig. 12. This is .

essentially an enlargemém of the region near the ¢ = 1 point shown in Fig. 4 which marks one
endpoint of the Hopf bifurcation line. It may surprise the reader to find that this line could
abrupdy stop in this manner. This behavior will normally occur only at first and second order
resonance points as a consequence of the theory governing the dynamics near these points. We
show some actual Poincare sections from region a, in Figs. 13(a) and (b). The regions labeled
a;, a5, b, ¢y, ¢y, and d cbrrespond to idcntically labeled regions in Fig. 8 which shows the
theoretical behavior of a typical ¢ = 1 bifurcation very near the bifurcation point. Note that the
stable node present in each of these regions does not appear in Fig. 8. This is because it is not
involved in the bifurcation of this resonant fixed point, i.e. it does not approach the resonant
fixed point as € = 0, and {t is effectively at infinity on the scale of the fixed points and limit
cycles that do. Nevertheless, its presence can be inferred from the behavior at the bifurcation
point: the unstable manifolds that point to infinity in Fig. 8 must in a real system connect to
some other attractor. Since attractors bifurcate from the ¢ = 1 point in regions ¢ and d, they
must coexist with this other attractor (in this case a nodc) and thus we see hysteretic behavior in
these regions. The node is finally annihilated with the saddle point that was generated in the g
= 1 bifurcation so that regions é and f have only one attractor. Guckénheimcr and Holmes (Ref.
12, pp. 71-72) show a similar bifurcation pattcm for a ¢ = 1 point in the forced Van der Pol

oscillator, which is based on carlier studics of this equation® - 26,

The sn (saddle node) and hc (homoclinic) bifurcation lines approaching the ¢ = 1 point in
our data do not appear to become tangent as in the theoretical diagram. It could be that this

feature was destroyed duc to some slight noisc or fluctuations in the physical system.

%
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Figure 12. Experimental parameter space diagram near ¢ = 1 resonance point. Coordinates are
Ty = 2rt/®W, vs. [ o(rms). Other parameters are fixed: R =-500 Q, C = 7.5 uF. Small figures
below show the structure in a typical 2-D Poincare space for each region of the parameter space.
Regions a,, a1, b, ¢y, ¢;, and d correspond to the same regions in the theory, Fig. 8. The figures
are constructed from data obtained from initialized Poincare scctions.
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Figure 13. Inidalized (sce Sec. 1.2) experimental Poincare sections in region a, of Fig. 12. (a)
Inidalized at the unstable focus (arrow). (b) Initialized at the saddle point (arrow). Both cases
approach the stable node (N) after a few cycles. Initialization is then repeated many times to
produce continuous lines. Parameters for (a) and (b): /4(rms) = 1.052 mA, T, = 8.079 ms.

Note the homoclinic bifurcation occurring between regions d and a, (see discussion of

homoclinic bifurcations in Sec. 2.1). This bifurcation is initially of a nearly degenerate form

forming a saddle loop. Moving upwards in the parameter plot (/y increasing), the region d

comes to an end and a, becomes adjacent to e. As we go further, however, the a,-¢ line splits

again and a new d region appears. The homoclinic bifurcation at this higher /4 is not degen-

erate, however, as the dynamics are much more chaotic in this region. Here the chaotic attractor

in regions e and d disappears upon the formation of a homoclinic tangency at the a-d boundary,

as shown in Fig. 14.
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IL

Figure 14. Experimental Poincare section /; vs. /s on approaching homoclinic tangency at d-a
boundary in region d at high /,. The oscillations in the attractor at the lower left will contact
the stable manifold of a saddle point (dotted line), after which (in region a;) the attractor will
no longer exist, i.c., if initialized here the system will ultimately escape to some other attractor
(a node in this case). Parameters: /4(mms) = 1.700 mA, t; = 6.800 ms, R =-500 Q, C =7.5 uF.

3.1.2 Resonance of Order 2

There are actually two possible bifurcation patterns for this case according to the theory,
but we have only observed one of these. Like the ¢ = 1 case, this point of resonance marks an

end point to the Hopf bifurcation line.

In our system, this resonance corresponds to a frequency ratio of 2/1. Since this is not a
ratio of odd integers, this is a complementary asymmetric type of resonance, and hence we mul-

tiply the denominator by 2 to get the order ¢ (see Section 2.3.1). The experimental data are
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presented in Fig. 15. The behavior near the bifurcation point agrees with the theoretical result
given in Fig. 9. Here again (as for ¢ = 1) there are nodes that do not approach the resonant
fixed point as € — 0. The bifurcating 2/1 type points (asymmetric period 1) are all saddle
points, and the bifurcation process is effectively a rearrangement of their separatrices. As in the
q = 1 case, the presence of the nodes is implied by the theoretical picture in which unstable
manifolds apparently go off to infinity. In a real system we expect these to connect to attractors
which are very distant on the scale where the theoretical picture is accurate. This in tum
implies that there wiil be hysteresis and ultimately a boundary line where these attractors disap-
pear. As is easily seen, the hysteresis in this case covers a very large area. There is a large hole
in the center of the hysteretic regions which is possibly an attempt to avoid the 5/3 entrainment
domain (seevag. 4). It does slightly overlap a hysterctic region of this domain, however, and in
that small region there are four coexisting attractors: a pair of asymmetric (2/1) nodes, a period
3 (5/3) node, and an invariant circle. On approaching this hole from méions by, ¢, or d, period
doubling bifurcations occur (not shown) for the pair of 2/1 nodes. These become chaotic and a
crisis?’ occurs at Lﬁe hole boundary. In b, and c this is a boundary crisis and a jump occurs to
the coexisting symmetrical oscillation. In d, this is an interior crisis in which the two comple-
mentary asymmetric attractors contact the scparatrix between them and a loss of phase locking
occurs. There is no jump or hysteresis in this case. It is important to note that an asymmetric
2/1 entrainment is not distinguishable from a symmetry broken 1/1 entrainment. In fact onc can
get from the 1/1 region to the 2/1 region via symmetryA breaking bifurcation at low current lev-

els (<0.65 mA mms) as shown in Fig. 15.
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Figure 15. Experimental parameter space diagram near q = 2 resonance point. Coordinates are
T, vs. I o(rms). Other parameters are fixed: R =-500 Q, C = 7.5 uF. Small figures below show
the structure in a typical 2-D Poincare space for each region of the parameter space. Regions la-
beled a, by, bs, ¢, dy, and d, correspond to same labeled regions in Fig. 9 (thcory). The differ-
ence between b, and b, and between d, and d, is a trivial change of a node to a focus. The
figures are constructed from initialized Poincare sections.

3.1.3 Resonance of Order 3
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This case is different from the first and second orders in that it occurs in the middle rather

than at an end point of the Hopf bifurcation line. It is differcnt from weak resonances in that it
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Figure 16. Experimental parameter space diagram for ¢ = 3 resonance point. Coordinates are
T, vs. I'o(rms). Other parameters are fixed: R =-500 Q, C = 7.5 uF. Small figures below show
the structure in a typical 2-D Poincare space for each region of the parameter space. Regions la-
beled ay, a,, by, by, ¢y, and ¢, correspond to same labeled regions in Fig. 7 (theory). The figurcs
shown in these regions are constructed from initialized Poincare sections.
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exhibits hysteresis, that the entrainment region is not horn shaped, and that entrainment is found

on both sides of the Hopf bifurcatiori line.

The case we studied corresponds to a frequency ratio of 5/3. The bifurcation diagram is
given in Fig. 16 and some observed Poincare sections are shown in Fig. 17. There is agreement
with the theoretical treatment shown in Fig. 7. Similar to the ¢ = 1 and 2 cases, no pen‘od 3
nodes are involved in the bifurcation at the resonance point, only saddle points and invariant
circles. As before, there are period 3 nodes not involved in this bifurcation whose presence can
be inferred from the unstable manifolds going towards infinity in Fig. 7. The result, as in the
previous cases, is the formation of hysteretic regions, here a;, a;, by, and b,. The attracting cir-
cle in the b, and b, regions disappears in a homoclinic bifurcation at the by-¢, and b,-c, boun-
daries when«it contacts the period ‘3 saddle point. A distinctive feature of this case is that the
bifurcation diagram is symmetric about a center line (Ir) across which the focu; (and the circ;le
in the b and d regions) changes from left rotation to right rotation with respect to the rotation of
the period 3 attractor. Otherwise, the (1) rcgions and corresponding (2) regions are the same.
The period 3 nodes undergo period doubling bifurcations (not shown in P’xg; 16) as we move
towards the line labeled cr(i). This becomes a period 3 chaotic attractor which loses phase lock-

ing through an intcrior crisis?’ at cr(i).

3.14 Resonance of Order 4

This is the last of the strong resonance cases. It can occur in a wide variety of forms -
sometimes being similar to the weak rcsonance cases, somctimes having similar characteristics

to the third order case, and sometimes exhibiting other complex pattemns.
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I

Figure 17. Initialized Poincare sections. (a) Parameters set in region b, of Fig. 16 [/ o(mms) =
1.325 mA, 1, = 11.75 ms] initialized on period 3 saddle point (arrow) — shows its unstable man-
ifold going out to period 3 node and in to circle. (b) Parameters set in region ¢; (1.346 mA,
11.78 ms). Central circle has disappeared in a homoclinic bifurcation. The period 3 attractor
has become chaotic through a period doubling sequence. Produced by initializing near central
focus on route to period 3 attractor via a near pass by the period 3 saddle.

The case studied corresponds to a frequency ratio of 3/2. It is an asymmetric type where a

complementary pair of period 2 fixed points can bifurcate from the resonant point, thus giving
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an order of ¢ = 4. This case is the least well understood theoretically. Amold!3 gives two pos-
sible bifurcatioh paaeﬁm, neither of which have we seen. However, the three pattemns we have
seen are nevertheless compatible with the present theoretical understanding. It was possible to
observe more than one pattemn by sciting a’third parameter (R ) at different values. This has the
effect of changing A and B in Eq. (12). B can, in fact, be eliminated from Eq. (12} by a change
of variables, but since A is complex, one actually needs two additional parameters to explore all
possible bifurcation patterns in this case. The first case is the one shown in Fig. 4 for R = -500
ohms where the appearance is that of an ordinary resonance horn except that it emerges in a vee
at the Sése. There is some slight hysteresis on the right boundary of the hom, but it seems to
disappear as one approaches the bifurcation point. For R slightly more negative (- —600 Q),
this hysteresis is stronger and does appear to go all the way to the bifurcation point, giving us a
second case. In the hystcretic region the emrqihcd solution and the quasi- periodic solution

coexist with different basins of attraction.

For R more negative still, a third case occurs when this hys'teresis‘extends below the line
of Hopf bifurcation, as shown in Fig. 18." Note that unlike the resonances of second, and third
order shown préviously, these cases of fourth order resonance do involve stable nodes in the
bifurcation of the resonant point. The saddle node and homoclinic bifurcations at the d-b; and
d-a; boundaries, respectively, are shown in progress in Figs. 19(a) and (b). The dots are the

jump that occurred as the parameter (t,) was adjusted across the bifurcation point.

3.1.5 Resonance of Order 5 and Above

While resonance of order ¢ 25 always follows the entrainment hom form very near the
bifurcation point, there can still be strong hysteresis that extends nearly to that point. Such is

the case with the 7/5 rcsonance at R = -800 ohms shown in Fig. 20. Here the phasc-locked
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Figure 18. Experimental parameter space diagram near ¢ = 4 resonance point (third case).
Coordinates are t; and /o(rms) with R = -750 Q, C = 7.5 uF fixed. Small figures below show
the structure in a typical 2-D Poincare space for cach region of the parameter space. Note: in
the second case, region e is absent, and regions b; and d both emerge as wedge-shaped regions
from the resonant point. '
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Figure 19. Experimental Poincare sections, /; vs. Ig, near ¢ = 4. (a) Saddle node bifurcation
at d-b, boundary of Fig. 18. The system was on one of the two complementary period 2 nodes
in region d near the boundary. The parameter was T; moved across the boundary and this orbit
annihilated with a period 2 saddle. The dots are a single trajectory (a jump) to the invariant cir-
cle. (b) Homoclinic bifurcation at the d-a; boundary. System was on the circle in region d near
the boundary. Proximity of a pair of period 2 saddles to the circle produces corners. As the
parameter is moved across the boundary, stability is lost and the trajectory jumps along the un-
stable manifold of one of the period 2 saddles (chosen at random) to the con'espondmg period 2
node. The initialization (Sec. 1.2) was not used in these figures.
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Figure 20. Experimental parameter space diagram (/ o(rms), 7,] near q = 5 resonance point with
R =-800 Q, C =75 pF. Small figures below show the structure in a typical 2-D Poincare
space for each region of the parameter space. Note strong hysteresis (region d) and also overlap
of 7/5 and 3/2 domains (region e) discussed in Sec. 3.3. The figures are inferred from Poincare
section data.

circle exists only in a very narrow hom (a), while there is a very large region (d) where a 7/3
entrainment coexists with an invariant circle. This region actually overlaps another entrainment

domain (3/2), and we will be discussing this region (e) in Sec. 3.3.
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3.2 Internal and Boundary Bifurcations of Entrainment Horns

3.2.1 Symmerry Breaking and Period Doubling Bifurcations

Period doubling bifurcations are the route by which the motion within a horn approaches
chaos. These form a series of lines inside the homn that one crosses as one moves (in parameter
space) away from the vertex inside the homn. In a case where the attractor is initially symmetric
. (i.e. the frequency ratio is M/N where M and N are both odd as discussed in Sec. 2.3.1) these
period doubling bifurcations will be preceded by a symmetry breaking bifurcation where two
asymmetric attractors emerge from the initial symmetric one. Figure 21 shows the 7/5 reso-
nance horn at R ‘= -392 ohms. Note that the symmetry breaking (sb) and period doubling (x2)
lines do not run pamllei to the sides of the homn as one might at first expeét but can run directly
into it. This feature is less pfonounccd in the homn for R = -500 ohms, but other features are .
very similar. This behavior can occur only for certain types of Poincare maps — see discussion
in Sec. 4.3.2. -Chaos is reached at the e linc. In Figs. 22(a) and (b) wé show Poincare sections
showing typical period doubling and symmetry breaking of a phase-locked circle. In both cases
the bifurcating pairs of nodes split away from the circle, one going out and the other in. A sad-

dle point is left on the circle.

322 Complementary Band Merging |

It is well known that after an infinitc sequence of period doubling bifurcations, a band
merging sequence begins. A scquence of band merging (bm) lines could be found within a
resonance hom starting with an infinite number of bands and decrcasing by factors of two down

to the original periodicity of the hom. Howecver, in the initially symmetric case, there is an
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Figure 21. Experimental entrainment hom (7/5) showing intemnal and boundary bifurcations, in
(/ o, 7y) parameter space with R =-392 Q, C = 7.5 uF fixed. Abbreviations are defined in Table
1.
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Figure 22. (a) Symmetry breaking bifurcation of 7/5 phase-locked circle. Poincare section ini-
tialized at period 5 saddle point (arrow). The two attracting period 5 nodes are labeled a and b
and iterate in the sequence ((1,2,3,4,5,1,2,...). Parameters: /(rms) = 1.240 mA, T, = 9.456 ms,
R =-500 Q, C =7.5 uF. (b) Period doubling bifurcation of 4/3 phase-locked circle. Poincare
. section initialized at one of the period 3 saddle points (arrow). The missing manifolds can be
reached from the complementary saddle. This is a complementary type of phase-locked circle
with a and b attractors as marked. Each has period doubled and iterates in the indicated se-
quence. Parameters: /g=1.210mA, 1, =8.855ms,R =-500Q,C =7.5 uF.

addidonal bifurcation where the two complementary bands contact each other and symmetry is
restored. What one observes is that in crossing this complementary band merging line (cbm in
Fig. 21) the attractor will suddenly double in size as the region previously on the complemen-
tary attractor becomes accessible. This bifurcation is completely analogous to the earlier sym-
metry breaking bifurcation, and it may be considered as simply the final band merging of Lﬁe
attractor for the half-cycle map (sce Sec. 2.3.1). In Figs. 23(a) and (b) we' show Poincare sec-

tions just before and after cbm.
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Figure 23. Poincare sections /; vs. /5. (a) Just before complementary band merging. Double
exposure shows both a and b attractors which iterate in the sequence shown. Parameters:
Io(rms) = 1.245 mA, 1, = 9.354 ms, R = -500 Q, C = 7.5 uF. (b) Just after cbm, now single
symmetric attractor. Parameters: /o(rms) was increased to 1.252 mA.

3.2.3 Boundary Bifurcation.s“

Prior to crossing the first symmetry breaking or period doubling line, the boundary bifur-
cations of a resonance horn are simple saddle node bifurcations on the resonance circle as dis-
cussed in Sec. 2.2. Nevertheless, the invariant circle just outside the horn does not have to be
smooth. For the Poincare scction shown in Fig. 24 the hom has a symmetry breaking line just
inside the boundary, so the stable cigcnvalue (transverse to the circle) is veAry near one, and thus
has little ability to quench the transverse oscillations. One sees a laminar or periodic phase as
the system slowly slips by the old nodal site, followed by a chaotic burst. This is a form of the

intermittency route to chaos28:29,
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Figure 24. Poincare section showing intermittency at 7/5 hom boundary.

At the boundary of the hom in Fig. 21 between the sb line and the X2 line the boundary is
reached with broken symmetry. For this to happen the period 5 saddle must also break sym-
metry before the boundary (similarvto the type C period doubling in Fig. 5) so that each set of
attracting nodes can annihilate with a set of saddles. The general structure just before the boun-
dary is shown in Fig. 25. Figure 26 show§ a sequence of Poincare sections moving away from
the homn boundary outside. The first (3.15a) clearly shows the remnant of the unstable mani-
folds of the complementary pair of period 5 saddles and their oscillatory approaéh towards the
prior location of the pair of period 5 nodes. The following section (3.15b) shows how this wild

oscillation at the old nodal site dies out and a circle develops.
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Figure 25. Drawing showing segment of phase-locked circle having broken symmetry saddles
and nodes, near horn boundary and approaching saddle node annihilation. Shows heteroclinic
crossing between the saddle points.
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Figure 26. Sequence of Poincare scctions after saddle node annihilation (in Fig. 25). All at R
=-392 Q, C =7.5 yF, and 1, = 10.365 ms. (a) At a point nearest hom boundary (but outside),
Io(rms) =0.971 mA. (b) 0.965 mA.

As we move farther up the horn boundary, we cross period doubling lines and presumably
the saddle points here also period double although these cascs cannot be studied in much detail

experimentally due to noise in the system.

The upper boundary of the homn occvurs when the expanding periodic attractor contacts the
scparatrix between it and the adjacent piece of the attractor. At this point an interior crisis??
occurs and entrainment is lost. In Fig. 27 we show the attractor just below and just above this
boundary. Above the boundary the attractor makes a sudden jurnp. in size, each piece now con-

tacting the adjacent piece.
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Figure 27. Poincare section showing crisis at upper boundary of hom. BothatR =-392 Q, C
= 7.5 uF, 1, = 10.300 ms. (a) Still phase locked, /4(rms) = 0.989 mA. (b) Loss of phase lock,
I o(rms) = 0.991 mA.

33 Overlapping Entrainment Domains



&
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It is possible for neighboring domains to overiap in some regions. When this occurs, the
separatrices between the two attractors cannot be simple since they have different rotation
numbers. We show such a case in Fig. 28, a Poincare section corresponding to the overlap of
the 3/2 and 7/5 entrainment domains of region e, Fig. 20. Here there is a pair of period 2 attrac-
tors surrounded by a period $ attractor. The unstable manifold of the period S saddle points are
shown as it wraps around the period 2 attractors an infinite number of times. The stable mani-
fold of the period 2 saddie points (not sﬁown) crosSes this manifold as it spirals outward (coun-
terclockwise). Due to the peculiar kink in the period 5 manifold, the stable period 2 manifold

crosses each winding of the shown manifold three times in succession.

3.4 Entrainment Islands

As is well known (e.g., see Ref. 30), Hamiltonian systems can exhibit "resonance islands.”
In Hamiltonian systems there are no attractors or repellers, rathér the phase space is foliated into
invariant manifolds by the invariants of the system, e.g. the energy. These manifolds can be tori
and the case ‘of a rational frequency ratio is referred to as a primary resonance. One can find an
initial condition for which the Poincare scction for this resonance is a series of points. But fora
nearby initial condition, the Poincare section will have the appearance of a set .of small circles
or "primary resonance islands," one encircling each of the points for the previous initial condi-
tion. The Poincare map goes from one island to another with the same rotation number as
before (the system is still in resonance) but now there is in addition a rotation about the islands
for each iteraion. When one looks closer, one finds "secondary resonances” and secondary

islands located about these primary resonances, and so on ad infinitum,

It is intercsting that dissipative systcms can be attracted to such islands. In Fig. 29 we

show an entrainment domain in part of which attracting period 3 islands are found. These
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Figure 28. Overlapping entrainment domains (7/5 and 3/2) shown in initialized (see Sec. 1.2)
Poincare sections. (a) Initialized at period 5 saddle point (arrow). Shows unstable manifold
leading out to period S node and winding in to pair of period 2 foci. Parameters: /o(mms) = 2.18
mA, 7, =7.070 ms, R =-500 Q, C = 7.5 uF (see Fig. 20). (b) Enlargement, showing fine struc-
ture and period 2 saddles (arrow). Note: initialization must be repeated many times (>100) to
obtain these pictures.
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Figure 29. Entrainment domain (1/3) in which a Hopf bifurcation to periodic “islands" occurs.
Fixed parameters: R =-500 Q, C = 5.42 uF. Small figures below show the structure in a typi-
cal 2-D Poincare space for each region of the parameter space. Between the saddle-node (sn)
and Hopf (H) bifurcations there must be a node-to-focus (nf) bifurcation which is not shown.

islands appear through a Hopf bifurcation of an ordinary period 3 entrainment. In Fig. 30(a) we

show a phase portrait of the islands with strobing superimposed.
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Figure 30. (a) Phase portrait with strobing superimposed, showing periodic "islands" for a
point in region g of Fig. 29. (b) Frequency spectrum at same setting as in (a).

As in the case of a 2-torus, a point on the attractor-can be described by two angles 6, and
8, (sce Sec. 2.3.3).. Only now 8, = w,¢/3 instcad of w,¢ since three cycles of ®, are required to
get back to the original circle in the Poincare section. Thus the frequency spectra can contain

the two-component harmonics of ®;/3 and w,. However, this is a symmetric attractor and so
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only odd harmonics are found:

m oy

®py =

+nw,
where m and n are integers and m + n is odd. In the case presented, ©,= 800 Hz (much higher
than the other experiments in this paper), and , is very close to ®y/3. The frequency spectrum

corresponding to Fig. 30(a) is given in Fig. 30(b).

As seen in Fig. 29 there is strong hysteresis present. In one region the islands coexist with
a surrounding circle, and in another they coexist with a circle that is centered between them.
These hysteretic regions terminate through variations of the homoclinic bifurcation, in which
either the circle or the islands contact the period 3 saddle forming a homoclinic orbit connecting
the three saddles in a single loop, or three loops, respectively. Beyond this point (in parameter
space) the circle or islands involved cease to exist. In Fig. 31(a)-(c) we show the three bifurca-
tions of this type that were found. These Poincare sections were made by starting the system on
" one attractor just before its annihilation point and then adjusting the parameter through the
bifurcation point. The data reprcscnt’ a single transient from the annihilated attractor to }the
other attractor. They follow the unstable manifold of the periqd 3 saddle point involved in this

bifurcation.

4 ANALYSIS AND MODELING OF THE SYSTEM

Up to this point our theoretical "model" has Ecen Amold’s rather abstract theory of bifur-
cations near points of resonance. That is, we have mcasurcd Poincare sections near points of
resonance, both strong and weak, and comparcd them graphically to the theorctical model. We
now present an entircly different kind of theorctical modél and compare with the data: we

rctum to the basic cquation [Eq. (5)] of the physical systcm and numerically solve it under
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Figure 31. Poincare sections of homoclinic bifurcations in progress (shows loss of stability and
jump). Initializing system (Sec. 1.2) not used. (a) Corresponds to hc-a in Fig. 29, three circles
contact three saddle points, the attracting circles vanish and a jump occurs along the unstable
manifold of the saddles to the coexisting extemal circle when crossing the boundary from re-
gion g to region f. (b) Reverse of (a) occurring at hc-b. Saddles contact outer circle and an in-
ward jump occurs to the three islands when crossing the boundary from g to h. (c) Sintilar to
(b) but here the circle losing stability does not surround the islands (hc-c). Jump occurs when
crossing the boundary from i to h.

several approximations for the relationship between A and 8. This model is shown to generate
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a noninvertible Poincare map of the plane, with important consequences for the dynamical
behavior. We also develop another model for our physical system — a 2-D map determined
directly from experimental data. This is accomplished by expanding the map in a 2-D ’Taylor
expansion, with coefficients determined from scts of experimental data points. The objective is
to obtain a model which can predict specific behavior of the system, e.g. the locus. of points of

resonance, the boundaries of phase-locked regions, and period doublings.

4.1 Magnetic Core Behavior

Qur basic problem here is to explore the rclationship between the magnetic field # and
the magnetic induction B in the core. This system is highly dependent on core dissipation due
to magnetic hysteresis, as well as nonlinear inductance due to core saturation, so highly

simplified models will be of little value.

In the most general case (assuming uniform B and A) we would expect that the present
values of B and # would be some complicatcd functional of the previous excitation of the core
(which could be specified by I, (¢) or V (¢)] and would also depend on the initial state of the
core S (¢=0), which could be much more complicated than simply H (0) and B (0). Since [ (¢)
is related to H(¢) by Eq. 4) zind V, (¢) is rclated to B (¢) by Eq. (3), we could in principle find
H(z) as a functional of B (¢) or vice versa:

H(@)=H[B("),0<1t'<t,5(0)]. (21)
Dealing with such a functional would be very difficult even if we knew what it was, so instead
we will examine the bchavior of The core at very low frequencies. Here we can make the
approximation (as discussed in Sec. 1.1) that A is a monotonic function of 8 which changes at
the tuming points of B, whenever B changes sign. At low frequency we can assume that A and

B change sign simultancously. This function can only depend on the previous turning points of
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H (or equivalently of B) and the initial state of the core:

H=H[B,H,,S©O)], ' (22)
where H, are all prior turning points of A (i.e. where H and B = 0). This behavior suggests
that it may be fruitful in some cases to consider the behavior in terms of a map from the state at

one turning point to the next. This idea is further developed in Sec. 4.3.1.

-~

The complicated B—H behavior of the core is due to a combi.nation of reversible (energy
conserving) and irreversible (dissipative) changes in the polarization of the magnetic domains.
Just following a turning point in B, the reversible processes tend to dominate. These are typi-
caily smooth Bloch wall motions (i.e. motion of the domain boundaries) at low B, and smooth
domain mtatior‘x at high B. In this region éB /0H is low. After a while these smooth motions
tend to get stopped at imperfections in the core material. These are passed in irreversible jumps
resulting in minute jumps in B. Here dB/dH stecpens. Ultimately B is limited by saturation
when all domains point in the same dircction. The work doné on the core can be obtained using
Egs. (3) and (4):

W = [V,I,dt = [LABH ds = LA [H dB. | (23)
This shows that the energy dissipated in a cycle is proportional to the area enclosed by the hys-

teresis loop.

4.2 Scaling Properties

In this scction we will explorc ways in which the system can be "scaled” to give
equivalent behavior at some new set of parameters. In so doing we will discover how many

parameters must be varied to cover all distinct modcs of behavior.
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From Eq. (5),

2 2
n . n“A .  n“AC :
= A Iosin(wye) — B - 2 B. 24)

If B changes slowly enough, then 4 depends on the path taken by B (as could be specified by

the turning points) but not how fast that path is traversed. This means that we can consider

changing the frequency as well as the other parameters. Let 6 = @,¢, then

. dB 48
H = sinb — 0p— — a3,
1 Sind — T 02 (25)
where
7 nZA (Dl d ’leC (1)2
H=7 fe Gy MG =T

Thus in this approximation we need to vary only three parameters to cover all distinct behavior
pattemns. Any change in the parameters that leaves the o’s unchanged will not effect the type of
behavior the system exhibits; thus we obtain the scaling constraints:

i - A @, AAC @}

fo=1. — L=1 and =1 (26)

where the ~ indicates that this is the ratio of the new value of the parameter to its original value.

Using Egs. (3) and (4) we find

Vi=idAw, I = 5 and f =1/, . Q@7
n
where the ~ indicates that this is the rado of the variable with the new parameters.(at the new

time) to its original value (at the old time).

In the general case where H is some functional of the previous history of B (¢), we must
also require @; = 1 in order to scale the system. In this case we necd four parameters to fully
exploré the behavior of the system (e.g. /4, 0, R, and C).

In the experiments prescnted in this paper (near 100 Hz) the low frequency scaling rela-

tions for 031 # 1 are found to be only roughly corrcct. However, if R is varied slightly from the

value it should have from Eq. (26), a valuc can be found for which ncarly identical behavior is
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found at the new frequency. It is believed that this adjustment can compensate for a slight
change in dissipation per cycle in the magnetic core at the new frequency. For most of the data

presented, only three parameters are varied: /g, ®;, and R.

43 Irreversible Differential Equation Model

In Section 4.2 we saw that the behavior of the forced system could be described by Eq.
(25), a differential equation in # and B. Clearly we must be able to express H as a function of
B in order to have a solvable model for the behavior of the system. Since we are operating at
low frequencies (typically 100 Hz), we can make the approximation that the core is in
quasiequilibrium. Then there will be some monotoqic relation between B and H, and this rela-
ton will change (because of m.agn‘etiC hysteresis) whenever B changes sign. The resultant
equation of motion is irreversible. As B is changed continuously in one direction, and particu-
larly as it approaches saturation, it is reasonable to expect the core to "forget” its previous his-
tory as the magnetic domains become aligned in nearly the same direction. H (B) approaches
the saturation curve Hg(B) which is the same each cycle. The state of the core (under these
conditions) can be described by a single variable, H or B, without any significant dependence
on previous history. Thus, when the tuming point of the magnetic induction, Brp, occurs well
into the saturation region, we can expect that the function H (B ) which is followed until the next

turning point can be represcnted approximately as a function of Brp , i.e. H = H(B .Brp).

Most of the dynamics described in this paper occur under conditions where the magnetic
core is going from near saturation in onc direction to near saturation in the other. We can there-
fore use the approximations just discusscd to develop an empirical model for the A (B) function
which can be used in Eq. (25) to approximately describe the dynamics of this system. We have

chosen a form roughly bascd on the obscrved dynamics in the B-H plane, but left certain
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coefficients free to be varied (within reasonable limits) to obtain the best agreement between the
Hopf bifurcation line of the model and that of the actual system (see Fig. 4). In this model the

saturation hysteresis loop is represented by the function

v
2 ’
where w and f are constants. This is the increasing branch of the loop, the decreasing one is

Hs(B)=fB’+ (28)
related due to core symmetry, i.e. it is just fB3-wi2. The parameter w can be thought of as
the width of the loop, since it is the differcnce between the increasing and decreasing branches.
A fifth power was choscn for Hg (8 ) because it was a good fit to the observed curve. However,
the exact function is not critical to the behavior of the model; qualitatively very similar results

can be obtained using a cubic function or even an inverse tangent function.

As sfated previously, Hg(B ) must describe the asymptotic behavior of H (B). Thus H(B)
is given by Hs(B) plus a term which decays as B increases. In order to obtain a simple model
we chose a decay function which decays completely to zero for some finite change in B,
corresponding to the approximation that past history is completely eliminated beyond a certain
point. The form used is

H(B)=Hs(B)+Hp(B), ’ (29)
where the decay term Hp (B ) is given by -

-w(Brp +Bp —B)YBE for B <Bpp +Bp a0
Hp®)=10 . for B 2Byp +Bp

Bp is a decay constant, and Bp is the last tumning point for B. This model is only to be used
when the oscillations always rcsult in a change in B between tuh'ling poihts greater than Bp.
Otherwise a more complicatcd model is rcquircd. such as one in which H(B) depends on
several (or all) previous tumning points of 8. The exact form of the decay function is of course
very difficult to determine experimentally, but the dynamics do not appear to be strongly depen-
dent on the form used, provided it mcrges smoothly (i.e. continuous first derivative) »\"ith the

saturation curve and that the decay length (here Bp ) can be adjusted. It should be emphasized
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that this model for A (B ) results in making Eq. (25) an irrcversible differential equation. This is
because H(B) depends on Brp, the previous turning point. To follow the equation in reverse,
we would need to know Bp before reaching it. As it tumns out, it is impossible to find the
proper value of Brp to use because the solution to the reverscd equatiori is not unique. This will

be discussed further in Secs. 4.3.1 and 4.3.2.

The dynamics of Eq. (25) were explored numerically using a 4th order Runge-Kutta
method3l. Our experimental estimates for the parameters are: f =60, W =3.3, and B =0.4. In
order to attempt to compensate for a varicty of effects not included in the model, we _adjusted
these slightly, obtaining a reasonable fit to the experimental bifurcation set with f =60,
W =4.00, and BD =0.357: The resultant Hopf bifurcation line and points of resonance are
compared with the experimental line in Fig. 32. The model also exhibits entrainment homs and
other features in quali;ative correspondence to those obscrved experimentally (Fig. 4). The
main difference is the greater slope of the Hopf bifurcation line of the rﬁodel relative to that
observed. No reasonable adjustment of the three model parameters will correct this‘ difference
nor does any alternate form tried for the saturation curve such as a cubic function or an inverse
tangent function. It is possibly the result of some departure of the real system from our quasis-

tatic approximation.

In Fig. 33 we show typical phase portraits for the model for a 1:1 phase-locked case [Fig.
33(a)] and a quasiperiodic case [Fig. 33(b)]. As can be scen, these compare quite well with

similar experimental results given in Figs. 2(a) and (b).
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Fi.gure 32. Comparison of points of resonance resulting from the differential equation model
with those from the experiment. The same points are shown as on the H line in Fig. 4. The
parameters were adjusted for exact agreement with experiment at the 3/2 point.
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Figure 33. Typical phase portraits generated by the model. (a) 1:1 phase locking, below the
line of Hopf bifurcation, cf. Fig. 2(a). (b) Quasiperiodic, above the line of Hopf bifurcation, cf.
Fig. 2(b).

4.3.1 Reduction to a Noninvertible Planar Map

The process of merging with the saturation curve H s(B) corresponds to the contraction of
the dynamical system to a lower dimensional phase space. Before the merging has occurred, we
nced to know B and Brp — to represent the state of the core, and V, and 8 (the inductor voltage
and the phase of the driver, respectively) — to represent the state of the driver and linear com-
ponents. But after H(8) merges with Hg(B), the dependence of the mode!l on Bgp vanishes
and the phase space is three-dimensional. We éan climinate one dimension by defining a Poin-
care section and studyihg the dynamics of the mapping defined by successive intersections of

the orbit with this surface of section. The logical choice is to use the section defined by V, =0,
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since this is the turning point for the magnetic induction B and therefore the point of maximum
saturation. Thus the Poincare space is two-dimensional — one dimension represents the state of
the core (e.g. B or H or [, ), and one represents the state of the drivef (e.g. B orIg). Note that
most of the experimental Poincare section data given in this paper are in the (., /) space

strobed at V;, =0.

The differential equation model [Eq. (25) with Eq. (29) for H(B)] can easily be used to
generate the corresponding Poincare map. In Fig. 34 we show a typical example, produced by
iterating a square grid through the mapping. This is actually a half cycle map (see Sec. 2.3.1),
~ i.e., we follow the differential equation from a positive turning point initial condition to a nega-

tive tumning point and then take the complement of the result (by changing the sign of I, >and Ig
to give us another positive turning point state. This gridwork representation gives us a com- -
plete description of a two-dimensional map in a single figure. Itis a.lsd the clearest way to show
the noninvertibility of the mapping, since one can casily sec that it fo/lds over onto itself so fhat
there are two choices for the pre-iterate ofa given point. There is a line in the Poincare space
where the Jacobian (defined in Sec. 4.3.3) of the mapping is zero, as shown in Fig. 34(a). This
is the line which maps into the fold in Fig. 34(b). On one side of this line the Jacobian is posi-
tve (the ﬁght side);, so the map is oricntation preserving, while the other side of the line has
- negativé Jacobian and is orientation reversing. This line is very important to the dynamics and

is discussed further in Sec. 4.3.2.

4.3.2  Effects of Irreversibility

We would first of all like to point out the fact that Amold’s theory for diffcomorphisms
may still be applied in spite of the global noninvertibility of the mapping. This is because the

mapping may be considered locatly invertible near the fixed point, i.c. for a given point near the
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Figure 34. The 2-D Poincare map for the model, shown by iterating a grid pattern. At this
parameter setting, the attractor is phase locked at a 1/5 rotation and has period doubled once.
{This actually corresponds in the experiment to a point in the 7:5 hom just past symmetry
breaking, sce Eq. (17) and Fig. 22(a).) (a)Shows grid pattern, attractor (points) connected by
dashed lines showing the iteration sequence, and zcro Jacobian line. (b) Iterate of the grid pat-
term. The fold is the iterate of the zero Jacobian line.

fixed point'thc inverse mapping of this point is unique if we require that it also be near the fixed

point. Typically there will be a sccond value for the inverse mapping, but it will be far from the
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fixed point and will have no effect on the local dynamics.

While it is expected that high order phase lockings will follow circle map behavior -6
when near the critical "chaos" line in the parameter space, low order phase lockings can exhibit
more complex behavior patterns not adequately described by a (1-D) circle map, requii‘ing at
least a 2-D map model. The ifreversibility of the map can also play an important role in the
dynamic#. For an orientation preserving fnap, both eigenvalues of a fixed point (if real) must
have the same sign. Also a 2-D map must alway§ be orientation preserving near a focus (or
spiral fixed point). In Fig. 22(a) we showed the symmetry breaking of a period 5 fixed point.
This occurred when one eigenvalue of this periodic fixed point became less than -1. Ina re\)er-
sible orientation prescrving map, the other eigenvalue would have to be negative as well, bixt
this eigenvalue is observed (in the experimental sysfcm) to be positive. This is possible because
one of the points on the peﬁod 5 orbit has (as we moved up the horn) crossed the line of zei‘o
Jacobian as shown for the model in Fig. 34. This makes the .Jacobian negative and requires that
the eigenvalues be of opposite sign. This can effect the qualitative structure of the bifurcations
within the entrainment horns. The bifurcation pattern shown in Fig. 21 cannot occur forva 2-D
reversfble orientation preserving map. The reason is that the sequence of lines labeled sb, X2, -
.., Xoo, and cbm- all interscct the left boundary of the hom. At the points of intersection we
must have eigenvalues of +1 and -1 (+1 for the saddle-node at the boundary and -1 for the
period doubling); hence the map must exhibit orientation reversal. We know that the map also
exhibits a Hopf bifurcation; and since this is a bifurcation of a Yocus, it requires an orientation
preserving map. In order for a map to exhibit both rcvérsing and preserving regions, it must
(for nohdegenerate cases) exhibit a folding character as shown in Fig. 34 and hence be irreversi-
ble. This restriction does not apply to higher diménsional maps since these will have additional
eigenvalues whose signs can be adjusted so as to maintain a positive Jacobian and allow a
reversible map' under the conditions described. Hence the experimental bifurcation pattern

shown in Fig. 21 can be exhibited by invertible or noninvertible maps of dimension greater than
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2, but only by noninvertible maps of dimension equal to 2.

4.3.3 Numerical Methods Used in the Model

The locations of the points of resonance for the model as shown in Fig. 32 were deter-
mined using the Jacobian matrix for the mapping. For an arbitrary mapping X’ = F(X) the Jaco-
bian matrix is given by:

;¥
o= Ky (31)

The determinant of this matrix is the Jacobian .I In the present application, the Poincare space
is two-dimensional, so J is a 2 X 2 matrix. Since the mapping is defined by integrating the dif-
ferential eqtiation model, J must also be determined numerically. This can be done by iterating
two points which are very close together, i.e.

J 4a(X) = [F X + Dp) = F o(X = D]/ 2D, (32)
where Dy is a small displacement in the (3 direction. The first step 1o locate a particular point of
résonancé in the parameter space is to find the fixed point in the Poincare space for some param-
eter setting thought to be near the resonanée point. It is quite impractical to do this by repeat-
édly iterating the map, bcc_ause the fixed boint is on the verge of instability and will exhibit
exceedingly long decay times. However, if X, is the fixed point, then locally the mapping is
given approximately by the linear relation

X =X+ J (X - Xp. (33)
thus

Xo = (1= [FX) - J-X). ' (34)

Successive iterations of this estimation procedure for X rapidly converge, provided the initial

point was not too far away. The sccond step to locating the points of resonance is to look at the
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eigenvalues of J. They must be of the form .

ex=exp(Hinp/q) =A¢tiBo,
where p/q is the rational rotation number (for the half cycle map) corresponding to that point of
resonance. If the eigenvalues of the fixed point for ‘ parameter setting P are actually
A (P)+iB (P), then an estimate for the location of the resonance point Py can be made by look-
ing at the local variation of A (P) and B (P) with P. Define" .

B3P, IBI3P,|" (33)

QdA/dP| dA /0P,

o~ 3mor. s,
The components of C can be dctermined numerically using small déviations in the parémeters
Pand Py e.g., dA/P = [A(P + dp1) - A (P - 3p))/28p The location of the fixed point may
change when P is changed by 6p, so it must be relocated before A and B can be determined.

The estimate for P is then given by

Ag—-A
- -1, <20 : -
Po=P+C [Bo'-»B]' | ‘ (36)
Successive iterations of this procedure rapidly determine Py for a particular resonance point to

high accuracy.

434 Corrections to the Model

We will now bricfly discuss a few modifications which can be made to improve the model
for H(B), Eq. (29). These fall into thrce general categorics: (1) functional changes, (2) time

dependent effects, and (3) higher dimensional effects.

(1) The most obvious changes to consider arc to improve the accuracy of the functions
Hg¢(B) and Hp(B). We used a fifth power for Hg(8), but this function could instcad be

expanded in a Taylor scries of several terms, or represcnted by a sequence of data points deter-
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mined experimentally: A similar improvement could be made for the function Hj (B ), e.g., the
decay length B could be made dependent on the tuming point Brp and the functional form

may be modified to more accurately agree with experimental measurements.

(2) Deviations from the approximation of quasistatic field changes in the core may be
corrected for an improved model. It is found experimentally that A is slightly increased when
B is nonzero. If we assume that AH e B, then this is equivalent to having an effective resis-

tance Rz in parallel with the quasistatic model.

(3) Increasing the dimensionality of the model is to be avoided if possible, since this will
complicate the numerical computations. However, a discussion of the higher dimensional
effects is useful since it may lcad to insight into how to correct the model to compensate for
these effects without i'ncmasing its_ dimension. The higher dimensionality arises when the H(B)
function does not completely merge with the saturation curve Hg(B ), and when the core retains
some "memory" of earlier tuming points in B. In our model we have artiﬁcjally eliminated
such effects by making the decay term Hp(B) go to zero when B has changed by Bp. Ina
more realistic model we would expect some kind of exponential decay, never going rcompletely
to zero. Thus there remains some remnant of past history, the true dimensionality being effec-
dvely infinite. However, so long as these higher dimensional cffects are smail, one can hope to
compensate for them and retain a 2-D Poincare scction for the model. One approach would be
to apply some correction term to the Poincare map (as gencrated by the differential equation)
which compensated for the fact that H (8) for the experimental system was slightly displaced

from the saturation curve Hg (8).
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4.4 Measuring the Map Coefficients — Experimentally Détermined 2-D Taylor Expan-

sion

The reduction from a flow to a mapping is a very useful one since the mapping exhibits all
of the important dynamics of the flow while being much easier to analyze. Unfortunately, this
reduction cannot be accomplished analytically for most differential equations. Instead, we have
decided to try another approach here — expanding the map in a 2-D Taylor expansion and deter-
mining the coefficients. Since our diffcrential equation model is not in perfect agreement with
the observed behavior, we make this expansion dircctly from experimental data, attempting to

improve the agreement between the bifurcation set of the model and of the experiment.

The expansion must be carried out in both parameter space and in Poincare variable space.
We have chosen to make the parameter expansion about the center point on the line of Hopf
bifurcation -- the 3:2 resonance point (see Fig. 4), and the Poincare variable expansion about the
central focus which undergoes the Hopf bifurcation. Nonlinear termﬁ through third order inbthe
Poincare space are crucial to the dynamics when near the Hopf bifurcaﬁon. While it is true that
the Hopf bifurcation of a map can be reduccd to a complex nbrmal form!2 having just a single
nonlinear (cubic) term, we were also interested in folding (irreversibility) of the map, a proper
- description of which may require a more complex knowledge of the nonlinearities than a single
term. Therefore, we have carried out a full expansion to third order. For a 2-D expansion in /7,

and /s, this entails four linear terms, six quadratic terms, and cight cubic terms:
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" =Ap I +ALs Is @37
+ A I8 +Aus I Is +Apss I§
“Ar IR+ Apprs 121 +Aprss I I+ Apsss 1S

Is"=Ag I +Ass Is
+ Astp I+ Agps I Is + Agss I§

+Agppp 1P + Aspps IR s + Agpss I 1§ + Agsss 1§

- There are no constant terms because we have shifted the coordinates (/; , /) so that the central
focus is at (0, 0). We restrict the parameter dcpendence to the linear coefficients,
A, Ars,Agsr, and Ags. A linear expansion in the parameters T; and /o requires three terms for

each linear coefficient:

ALL =AnL Arro +AZJ.T ATy +Aw Al (38)
A[.g =ANL ALSO +Am' A’El +Al.§l Alo
Asy =Ang Asio +Asur Ot +Agy Ao

Ags = Ay Asso +AgsT ATy +Agg Al

where AT, and Al are the displacements from the location of the 3:2 resonance point (located at
Ty =10.8 ms and /3 = 1.22 mA), and Ay, is a nonlinear correction factor used to correct the cur-
vature of the Hopf bifurcation line, which is approximately unity for small displacements. The
form used for Ay, is:

Anp =1+ Arp ATE + Aqp AT Al g+ Ay AIG (39)
The reason for keeping sb many terms is to obtain some degree of quantitative agreement with
experiment, both for the bifurcation set in parameter spa;:e and for the attractor(s) in Poincare

space.

The linear coefficients and their parameter dependence were determined by examining the

attractor for a number of paramcter values. These parameter values were all chosen to be in the
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quasiperiodic regime, slightly above the Hopf bifurcation line (hereafter referred to as the H
line). Here the attractor is a set of points lying approximately on an ellipse which is centered on
the unstable focus, which is the origin of our expansion. The four linear coefficients can be
approximately détexmined from four features of thxs attracting ellipse: (1) the rotation number,
i.e. the average angular jump around the ellipse between successive points; (2) the Jacobian of
the mapping - this is approximately urﬁty if very close to the H line (as is the case); (3) the
eccentricity of the ellipse; and (4) Lhev angular tilt of the major axis of the ellipse. The eccentri;
city and tilt are easy to determine by inspection and are found to only chaﬁgc slightly along the
H line. The rotation number is known accuratcly from previous measurements locating the
pc_)intsvof resonhnce (having rational rotation number). In additionvto the behavior along the H
line, we also need the behavior transverse to it. This is more difficult, since the Jacobi:in is né |
longer equal to unity when we move away from the H line. This génerally requires using ini-
tialization techniques (see Sec. 1.2). For.points above thé H line we initialize the system near
the central focus, and observe the outward spiral of the orbit. Sufficienty close to the cenuﬁl
focus, the nonlinear terms will be negligible and the linear terms can be determined to fit the.
‘experimental scquérice of points. Following this procedure the linear coefficients were detér—

mined:

Apo =1.082499, A o =—=7.576032, Agp =0.286668, Agso =—1.082499,
Apr =—026553, Ay =1.1066,  Agp =-0.0013991, Ager =-0.19248,
Aw = 10051, ALSI =—22.464, ASU =036103, ASSI =—47891.

Know-ledgevof the lincar tcrmé is all that is nceded to locate the H line and points of reso-
nance. The lincar ‘expansion in the paramcters, however, is only accurate near the pqint in
parameter space we are expanding about, i.e. the 3:2 resonance point. In order to obtain some
degree qf 1ong range agreement, we found it nccessary to modify the lincar expahsion. How-
ever, rather than goihg to a full quadratic cxpansion in the parameters, we have chosen instead

to use a nonlinear corrcction factor Ay, [Eq. (39)] requiring only three additional coefficients,
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rather than 12. These arc adjusted mainly to correct the curvature of the H line to improve
agreement with experiment. Using A = -0.02266,'A7-, = -0.37898, and Ay = -1.5512, we.
obtain the results shown in Fig. 35, in which the H line for the model is compared with the
experimental H line. As can be seen, agreement is excellent near the 3:2 point, but deterioraies

slighty towards the end points.

In order to determine all 14 nonlinear coefficients (Lhroﬁgh 3rd order), a more sophisti-
cated approach must be taken than that used to determine the linear coefficients. By taking a
sequence of points in the experimental Poincare section, which are sufficiently far from the ori-

gin to make nonlinear effects important, we use the method of least squares>! to determine the
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Figure 35. Comparison of the points of resonance resulting from the measured map cocfficient
model with those of the experiment (same points as in Figs. 32 and 4).
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set of coefficients giving the best fit of the approximation to the experimental mapping between
succeséive data points. This method requires one to invert a large matrix, and thus must be car-
' ried out on a digital computer. We took data for an outward spiraling transient (frorh which we
used 13 successive data pbims) leading to a 19:13 phase-locked attractor (frorﬁ which allv 13
points were used). The atrractor was far enough out that it deviated significantly from a cen-
tered ellipse, but stll close enough to the origin that higher order terms (beyond cubic) might
reasonably be neglected. The transient was important for the proper determination of the linear

coefficients. The result of this calculation is the set of nonlinear coefficients given below:

A =0.014745, A, 5=-0.42672, Apgs=-3.1192,

Ay =0.020851, Ags=023495, - Agss=—1.5591,

Apr =0.047467, Ay 5=0.15150, A;755=0.094472, A, s55=1.0667,
Asrzr =0.0084103, Agy;5=0.056690, Agss=—0.12257, Agscs=—0.39779.

The mapping thus determined agrees quitc well with the experimental data points, the rms error

for all points being about 1% of the range of the data sct.

In Fig. 36 we show the boundary of the 3:2 hom from experiment (solid line) and modcl
(dashed line). Also shown is the interior line which marks the first period doubling bifurcation.
Agreement is fairly good considering that we only carricd out the parameter expansion for the

linear coefficients.

'I'his represents the first attempt (to the author’s knowlcedge) to accurately measure the
- coefficients for a Z—D damping directly‘ from a dynamical system. The approach of expanding
as aTaylor series _has shown some dcgfce of quantitative agreement with a complex physical
system. The accuracy of the results should be expected to improve dramatically if the order of
the expansion is incrcased, with coefficicnts calculated from a larger data set. This approach
may be valuable for_othcr systems which, duc to their complexity, cannot be modeled accu-
“rately with a differential equation bascd on lirst principles. High dimensional systems will gen-
erally exhibit low dimensional dynamics when near an instability, such as Hopf bifurcation, and

thus can (when near the instability at lcast) be accuratcly described by a low dimensional
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Figure 36. Boundary of 3/2 hom and first pcriod doubling line in its interior. Solid lines - ex-
perimental data; dashed lines - computed {or measurcd cocfficicnt model.

mapping.

S SUMMARY AND CONCLUSION

The driven symmetric nonlincar magnctic oscillator described by Eq. (5) has a very rich
dynamical behavior, for which extensive data has been presented. An overall view of the
behavior is given by Fig. 4, in thc parameter spacc (/o ;). A dominant feature is the Hopf
bifurcation to quasiperiodicity, together with the formation of entrainment horns and hysteresis.

Within a hom there are period doubling cascades, intemal crises, and loss of entrainment.
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Berween homs the system follows a quasiperiodic route: loss of smoothness of the Poincare
section at an irrational rotation number followed onsct of chaos. Also observed are symmetry--
breaking bifurcations and homoclinic bifurcations. The system exhibits a Hopf bifurcation

from an entrained state to periodic islands, similar to those found in Hamiltonian systems.

| Phenomena near and on the phase locking boundaries have been explored in detail. Bifur--
cations near points of resonance are obscrved, and can be understood from Amold’s theory of
versal deformations of the planc. By a novel technique of repealed initializations of the system
we observe "hidden” behavior (c.g. motion on both unstable and stable manifolds of saddle.
points) in a 2-D Poincare space and compare to .'Lhc theory, with excellent_ agreement. Much of
the complex behavior observed, including multiple attractors and hysteresis, are found to result
from the behavior at these resonance points. We belicve that this is the first detailed study of .

strong resonance in a physical system.

Important pmpeﬁics of the bchavior related to symmetry arc expiored. -The concept of a
half-cycle map ‘is developed which explains much of -Lhc‘ obscrved behavior such as the
existence of two types of resonance points — symmectrical and asymmetrical, how their order g |
is related to the frequency ratio MIN, why a symmetry breaking bifurcation may precede a'
period doubling scquence, and why a compicmentary band merging may follow a band merging
sequence (of the chaotic .altmctor). Symmetrical quasipcriodic attractors containing only odd

2-component harmonics are obscrved [F‘xg. 2(b) and (c¢)] and cxplained (Sec. 2.3.3). -

In a sccond, and quite diffcrent, kind of theoretical analysis, a differcntial equation model
is developed, bascd on empirical propertics of the magnetic core, which gives good qualitative
agreement with the physical system in terms ol the bifurcation patterns observed and the locus
in parametcr space of the points of resonance. This modcl leads to a noninvertible map of the

plane, with important conscquences for some of the behavior exhibited.
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Based on the assumption that a 2-D mapping could rcpresent an accurate model for the
physical system, this mapping has bcen cxpanded as a 2-D Taylor series with the coefficients
measured from experimental data. The resultant model shows improved quantitative agreement
with experiment for its bifurcation sct over the differential cquation model, as well as ‘being fas-
ter w0 analyze numerically. Specifically, good agreement is found between this model and the
dara for the actual locus in parameter space of the Hopf bifurcation line, hom boundaries, and
period doubling boundary line. Similar tcchniques could be uscful in modeling other physical
systems which are too complex to be described by a differential equation based on first princi-
ples. These modeling techniques may have applications in cngincering as well as in the study

of other nonlinear phenomena.
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PART 3:

NOISE RISE IN JOSEPHSON JUNCTIONS

1 INTRODUCTION

This part of the thesis is conccmed with a practical problem — an anomalous "noise rise”
that was observed to occur in Josephson Junction parametric amplifiers. A thcovry is presented -
which offers an explanation for this effect. Tﬁe thcory is based on a "dynamical systems"
approach to the prqblem, the results ovf wmch may be applicdf o a broad class'of siniilaf Sys-

tems. Predictions are made which may be tested in futurc experiments.

About a dozen years ago, the first Joscphson junction parametric amplifiers were built and
studied.! -6 These devices achieved good signal gain of electromagnetic radiation in the difficult
frequency range‘ ~ 1 - 100 GHz, a range important for astrophysical observations. Unfor-
tunately, these amplifiers have proven impractical because of a noise problem — the so-called
noise rise’-7 — previously unscen in other kinds of paramectric amplifiers. Typically, one
expects the ratio of signal amplification G, to broadband noise amplification G, to be a con-
‘stant for a given device, independent of pamméter’ scttings: this ratio is proportional to the noise -
temperature T charactenizing the ampliﬁcr. The Joscphson devices, however, display a noisc
temperaturé which is an increasing f{unction of G, : that is,A the greater the signal gain, the worse

the signal-to-noise ratio, until the noisc output overwhelms the coherent signal.

Although a varicty of explanations have been forwarded,8 - 14 this noisc rise phenomenon

. remains an open problem. The purposc of this paper is 1o examine a new mechanism that
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results in a gain-dependent noise temperature. This theory exploits very recently developed
insights linking parametric amplification to the generic properties of nonlinear dynamical sys-
tems near the onset of simple bifurcations.!3-17 Besides generating a noise rise like that
observed in past experiments, the theory leads to a number of predictions to enable future

experiments to determine whether the present mechanism is truly at play.

The ideﬁ that any time-periodic dynamical system can be used as a parametric amplifier
near a simple bifurcation point has been supported by experiments involving nuclear magnetic
resonance lasers,!® electrical analog circuits,!5 Barium Sodium Niobate crystals,!® and a
mechanical “‘bouncing ball’ system. %20 The rcason why general quantitative statements can
be made about small-signal amplification propertics in such diverse physical systéms rests on

ideas from bifurcation theory. Near an instability, the relevant phase space dimension typically
reduces to a very small number — for the cases relevant to this paper, the: effective dynamics
reduces to a one dimensional phase space. This reduction of dimension results in sd—called
‘“‘universal’’ behavior, with results that arc independent of physical details. Although this
universality holds only close to the bifurcation point, it is precisely near such points that

parametric 'ampliﬁers achieve high gain. This happy coincidence is the linchpin of the theory

presented in this paper.

Previous attempts to explain the origin of the noisc rise have all examined directly the
specific circuit. equations governing the dynamics of Josephson junction parametric
amplifiers.®-14 A succinct and informative review of many of these theories may be found in
Ref.10. With one exception, which suggested that the noisc rise is due to dcterministic
chaos,!%13 these.explanutions involve the presence of external noise, as we,do here. Of these
theories, the work presented here has most in common with the idea of the “*phasc instability’”
(invoked by Chiao ct al. for the 4-photon modc’ ) and the noise-induced hopping picturc
(described by Miracky and Clarke for the 3-photon mode!4 ). The essential ingredient in cach

of thesc is that the amplifier dynamics can have multiple solutions — in dynamical systems
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parlance, there can be coexisting attractors. — and external noise can ‘‘kick’ the system back
and forth between these stable solutions. In each case, analog simulations of the governing cir-

cuit equation supported this basic picture.

A major difference between previous work and the present paper is that, rather than
procéed from a direct analysis of the circuit equaﬁom valid for the Josephson junction devices,
we focus on the universal dynamics valid in the neighborhood of a bifurcation point. (The
appropriate ‘‘universality class’’ depends only on the type of bifurcation encountered; conse-
quently, the 3-photon mode is described by a different normal form than is the 4-photon mode,
as explained in Sec. 3.) This new approach should be viewed as complementary to the body of
work based on the detailed circuit equations. The present theory has certain advantages, both in
its power to explain previous observations and to make several new, experimentally testable
predictions. On the other hand, the weakness of this approach is:lthat it only predicts the scaling
~ behavior for the parameter dependence of van'ou§ physical quantitiés, and not their absolute
magnitudes. For example, we do not quote values for the noise temperature in degrees Kelvin,
nor do we cxplain the physical origin of the random external {luctuations '(e.g. shof noise, John-
son noise, etc.). Bécausc of this complemeﬁtary relationship, we try to make contact between

the results of this study and previous theories wherever possible.

This paper is organized as follows. Scc. 2 bricfly describes the previous noise-free
theories of the 3- and 4-photon modcs, and recaps the recent insights linking dynamical instabil-
ities and parametric amplification. Sec. 3 discusscs in detail the reduced *‘normal form’’ equa-
tions appropriate for each mode. The results of digital and analog simulations of these reduced
equations are presented in Scc. 4, examining in detail the propertics of the noise rise in cach of
the two modes. Analytic expressions for the signal gain and the noise gain, valid in certain lim-
iting pamméter regimes, are derived in Scc. 5», and comparcd with the simulations. Scc. 6'is
devoted to a discussion of how to apply the results to experimental data, and provides a number

of specific predictions for future experiments. Applying this gencral theory to two new
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situations is the focus of Sec. 7. We discuss the possibility (and potential advantages) of
operating the Josephson junction parametric amplifier in a 6-photon mode, and also discuss the
relevance of the gerieml theory to an entirely different system, namely modulated semiconduc-
tor lasers. Finally, the results are summarized in Sec. 8, with a brief look at what these results

suggest about the theoretical optimal performance of paramem‘c amplifiers.

2 BACKGROUND

Josephson junction parametric amplifiers have been built using a variety of arrangements,
employing either single junctions (microbridges,! point contacts,? or tunnel junctions® ) or an
array of many junctions in series.? The noise rise has been observed in all of these designs. The
fact that the noise-free performance is well understood theoretically for these devices suggests
that the deterministic theorics contain' much of the essential dynamics. Therefore, it is
worthwhile to review briefly these analyses — which are based on a direct attack on the govern-
ing circuit equations — ;md to compare them with the recent results revealed by the general
approach to the nonlinear dynamics of bifurcating dynamical systems. We consider the 3- and
4-photon modes scparately, with an emphasis on those aspects that have a bearing on the noise

rise phenomenon.

2.1 Three-Photon Mode2!.22

The basic modcl of the Josephson junction paramectric ambliﬁef is depicted schematically

in Figure 1. In dimensionless form, the goveming circuit cquation has the form
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Figure 1. Schematic model of the resistively shunted Josephson junction parametric amplifier.
The cross represents the idealized junction through which supercurrent flows. C, R, and /, are
- the capacitance, resistance, and critical current, respectively.

O +PB7 20 +sing = A #Bcos(wpt)-i-Ccos(m,He) | 1)

where ¢ is the difference between the phases of the wavefunction across the junction, f.-is the
McCumber parameter, and A, B, C are the external voltage drives at zero, pump, and signal
frequencies, respectively. The McCumber parameter can be expressed in terms of the system’s |
critical current /., capacitance C, resisiivc shunt R, electron charge e, and the reduced Planck’s
constant #, as . =2eR 2CIC/bi. Equation (1) represents an idealization of the physical system;
for example it neglects the quasiparticle current across the junction, and ignores the presence of
tuning circuit(s) necessary to couple the device to the external world. It is generally believed
that these complications affcct only the details of the amplifier’s performance, and not its essen-
tial behavior. Of course, sincc the noise rise is not yet understood, the importance of these
““details’” cannot be ruled out; however, the mechanism discussed in this paper is insensitive to

their presence.

In the 3-photon mode, the (smgll) signal has frequency @, nearly equal to one half the
pump frequency ®,. It is convenient to introduce the small parameter A which measures the

. Lo
detuning of w; from lw,:
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8=, - 30, @
Direct analysis of nonlinear equations such as (1) is a nbtoriously difficult task; nonetheless, by
truncating thevcomribution of higher harmonics generated by the sing term, an expression for
G, can be derived, which is a complicated function of all the parameters appearing in Eq. (1):
G; =G;(B..A.8B, ®p, ®;). In the limit of zero detuning, one can show that parameter values
exist for which G, diverges, leading to an ‘‘infinite gain’’ condition.21-22 (The possibility of
divergence stems from the fact that the calculations are linearized about the C =0 solution of
Eq. (1).) It was also shown that the infinite gain condition coincides with the condition for the
onset of a period doubling bifurcation. This fact has prdvcd to be a useful rule of thumb for

locating high-gain regions of parameter space in experiments. 14

From the dynamical systems perspective, the coincidence of a bifurcation point and very
high parametric gain is a general phenomenon.15 For example, any T -periodic system close to a
period doubling bifux.'cation will amplify small signals of frequency ®, near T (or 3m/T,
SmT, etc.). Moreover, the scaling of the expected gain is universal: a linearized theory!3 shows
that the gain depends on two parameters only,

G, o= (u? + 8% (3)
where § is proportional to the detuning A, and y is the bifurcation parameter, with =0 at the
bifurcation point. For example, if Eq. (1) suffers a period doubling when A = A. — holding all
other parameters fixed — then one takes [ o< (A — A.)/A.. The proportionality constants will
depend on the details of the governing equation: experimental determination of these constants

is discussed in Sec. 6.

From Eq. (3), we recover the infinite gain result for zero detuning at the bifurcation point.
Of course, this formula must break down when the gain gets too large (i.c. for y too close to
zcro), at which point nonlinear effects must be included. The appropriate nonlinc.ar theory has
been developed for period doubling systems, and a varicty of intcresting phcnomcnh arc

observed.Z® For cxample, onc cffect is a shift of the bifurcation point away from p=0, the
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, magnin;de of this shift growing as the two-thirds power of the signal arhplitude. Moreover, the
direction of Lhé shift is always such as to suppress the onset of period doubling, an effect which
has been observed in electrical analog simulations of Duffing’s Equation,23 a mechanical
‘‘bouncing ball’’ experiment,20 measurements on the oscillations of 4 magnetorestrictive ribbon

to alternating magnetic fields,?# and in digital simulations of Eq. (1).2°

In cdntrast to. the result Eq. (3) of the linearized theory, the scaling of G, in tﬁe nonlinear
theory depends explicitly on the input signal strength €, (€ is proportional to C in Eq. (1)). A
simple expression analogous to Eq. (3) cannot be written down: however, all the results follow
from studying the simple first order nonlinear differential equation

X =px -x° N €CcosAt | C))
where x(¢) may bé pictured as the (slowly varying) amplitude of the period doubled component
of the response of the system. We postpone a more detailed explanation of the precise meaning

and justification of this equation until the next section.

22 Four-Photon Mode!

In the 4-photon mode, gain is achieved for signal fnequiencies nearly equal to the pump
frequency, ®, =w,. One major difference with the 3-photon mode is that the system is nor-
mally operated with no dc bias, i.e. 4 =0 in Eg. (1), (although this is not a requirement). Just
as in the 3-photon theory, a harmonic balance calculation leads to an expression for G as a
complicated function of all the systcm parameters.! And again, for zero detuning A,

A=W, — o &)
there is the possibility of infinite gain, Lhé conditions {or which coincide with a dynamical insta-

~ bility; this time a saddle-node bifurcation. -2
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One important complication in the behavior of the 4-photon mode is the presence of hys-
teresis. This led to the central theorctical notion of the Infinite Nonre-entrant Gain (ING)
curve.! The term “‘re-entrant’’ means that G, is a multiply-valued function of a control parame-
ter, so that as this parameter is swept back and forth the gain displays hysteresis (Figure 2a),
which is an undesirable trait even though there exist theoretical infinite gain points. However,
by tuning a second parameter, it is possible to eliminate the hysteresis (Figure 2b). The cost of
doing this is great: eliminating the hysteresis also eliminates the infinite gain points. Thus,
one’s best strategy is to find the crossover between thesc two behaviors — by tuning both param-
eters (say, B énd ®, in Eq. (1)) it is possible to operate near a point of infinite, nonre-entrant

gain (Figure 2¢).

From the point of view of dynamical systems theory, this behavior is easy to understand.
The infinite gain condition corresponds to a saddle-node bifurcation, and saddle-node bifurca-
tions are generically accompanied by hysteresis as a si(zgle parameter is varied (i.e. this is a
codimension-one bifurcation). The idea of tuning mwo parameters, the second allowing the
disappearance of a saddlc-node, leads to the familiar ““cusp’” bifurcation.2” Figure 3 illuﬁrates
the unfolding of the cusp bifurcation in parameter sbace: two curves of saddle-nodes intersect to
form the cusp point. According to the gencral theory of amplification in bifurcating dynamical
systems,26 the saddle-node curves correspond to infinite-gain points (in a linearized theory, and
at zero detuning). Operating just below the cusp point gives the ideal; sweeping just a single

parameter yields large gain while avoiding the hystcresis.

Again, near such ‘‘infinite gain’’ points, the linearized thcory breaks down. No nonlinear
noisc-free amplificr theory analogous to the one for period doubling has been developed. As
described in the next section, the appropriate noisc-free reduced equation for this case differs
from Eq. (4), insofar as it rcquires two bifurcation parameters | and v (as expected from the dis-

cussion above).
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Figure 2. Sketch of signal gain versus control parameter P, illustrating the concept of *‘infinite
nonre-entrant gain.”’ The three different situations shown correspond to different values of a
second control parameter. (a) Gain goes to infinity at saddle-node bifurcation points but hys-
teresis makes these operating points undesirable, since thermal noise may cause a transition to
the coexisting low gain state. (b) Changing the second parameter eliminates the bifurcations for
all values of P, now there is no hysteresis, but no infinite gain either. (¢) Transition point from
" re-entrant to nonre-entrant — now we have infinite gain without hysteresis.
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Figure 3 Typical Parameter space plot of a cusp blfurcauon two lines of saddle node bifurca-
tion points terminate at the cusp point (P, Q).

X =px +Vv—-x3 + ecosAr (6)
The cusp point occurs at p=v=0. We discuss how y and v can be related to experimental con-

trol parameters in Sec. 6.

Before moving on to the next section, we would like to point out two additional conclu-
sions that follow readily from the present point of view, both concerning the unbiased Joseph-
son junction parametric amplifier. The unbiased (A =0) case has always been identified with
the 4-photon mode, but this really misscs the essential point that it is the kind of bifurcation that
matters and not the govemning equation. Consequently, since it is known that Eé. (HwithA=0
can undergo period doubling bifurcations,? it is possible to operate the unbiased amplifier in
the 3-photon mode (in the appropriate parametcr regime). Moreover, the unbiased amplifier
could be operated in yet a different mode, which is a 6-photon mode (with ©; =2W,), a possi-

bility which is discussed further in Sec. 7. The latter possibility is due to the occurrence of a
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symmerry-breaking bifurcation?® 1! in the unbiased dynamics, a class of instability distinct

from either period doubling or cusp bifurcations.

3 THE REDUCED EQUATION

The results of this paper follow from the study of the reduced equations (4) and (6) in the
presence of noise for' the 3- and 4-photon modes of the Josephson junction parametric
amplifiers. In this section it is explained why these equations predict the important dynamical
behavior of the much more complex system (1), or indced any parametric amplifier operated in
these modes. The basic behavior of the reduced equations is introduced with emphasis on the
effects of the signal and the noise. In the next section the results of computer simulations

demonstrate that the reduced equations can provide detailed understanding of the noise rise.

Before we discuss the derivation of the reduccd equation we will discuss its intcrprctationA
in terms of the full dynamical variable ®. We assume for the moment that we are considering
the period doubling case. For Eq. (1) the state of the full system (excluding the perturbation) is
three dimensional; that is, <1>=(¢,£p,e,,) where 8, is tﬁe phase of the pump. However, in general
@ may have any dimension greater than two. (We do assume here that the system is driven,
that is, the fundamental frequency , is fixed. The analysis for autbnomous systems is slightly
more complicated.) In this spacc we assume that the unperturbed system has a periodic orbit
Dt )=yt +T), T=27:/(op that is near a period doubling bifurcation. We further assume that
the period doubling bifurcation is supercritical, so that past the bifurcation point the orbit ®g
© still exists but is now unstable, and ncarby there is a stable period-two orbit. Becausc we arc
near the bifurcation point, the period doubled solution and any long lived transients are confincd

to the center manifold of the bifurcation.
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Regardless of the dimension of the phase space of ®, the dimension of the center manifold
is two, parameterized by a phase 8, and another variable x. Transients relax rapidly back to the
center manifold, then slowly onto the stable solution. One can visualize the center manifold as
a band centered on the orbit ®y(¢) which, in the.case of a period doubling bifurcation, under-
goes a half twist between 8, =0'and 8, =2x. Thus it is in the form of a Mobius strip. A general
orbit on this manifold can be expressed approximately as

(1) = Do(t) + x (HP() ™
where x(¢) is a slowly varying function describing deviations of the Orbit from ®y(z), and Py(2) |
is a symmetric function of period 2T satisfying ®;(¢) = —@1(I+T). In the steady state x will be
zero below the bifurcation and a non-zero constant above it. Due to the slow nature of dynam-
ics on the center manifold, a small, near resonant perturbation may have a significant influence
on x(¢), while having little ability to deviate the orbit off of the center manifold, so that Eq. (7)
remains a good description 6f the behavior. Thus the dynamics may be well approxixﬁatéd by
understanding the behavior of thc' reduced scalar variable x(¢). As will be shown below, when
perturbed by a periodic signal near the resonant frequency ,/2, the amplitude x responds as if
driven at the difference frequency A=w,—®,/2. Furthermore, when the system is randomly
perturbed, it is the part of the noise spectrum néar to ®,/2 which has the dominant effcct on the

variable x.
As introduced in the previous section, x (¢) satisfies the reduced equation

% =px — x> +ecosde +E&(t) )
for the period doubling and symmetry breaking bifurcations, and

% =v+ux —x> +ecosdt +E(r) )
for the cusp bifurcation. Here p and v are bifurcation paramcters, € is proportional to the per-
turbation amplitude, § is proportional to the detuning frequency 4, and §(¢) is white noisc of
unit strength. Henceforth we will often work only with Eq. (9), since Eq. (8) may be considered

a special case of it. The rcduced variable may be dircctly obscrved in an experiment by making
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a Poincare section in which the phase portrait is strobed every two cycles of the pump. The
sequence of points will be closcly spaced and can be approximated by a continuous function
that is proportonal to x(z). Taking a Poincare section eliminates the phase variable e,, and

further reduces the dimension of the problem from two to one.

Qualitatively, what behavior might be expected [or this system? From the theory of noisy
precursors,2031 it is clear that just before :md. just after the bifurcation, the power spectrum will
display a noise bump with a Lorentzian shape centered at ,/2 (in the three photon case) for the
. -full system and at @=0 in the reduccd equation. As W passes through O, the bump will grow
taller and become narrower. Likewisc, the theory of parametric signal ampliﬁcatién in bifurcat-
ing systems26 predicts a gain profile for coherent signals with a similar Lorentzian shape that
grows and narrows as u approaches 0 in the same way. Why then do we observe noise gain
increasing faster than signal gain in the Joscphson junction parametric amplifier? The above
mentioned theories for noise and signals arc bascd on a lincarized analysis, valid in the limit of
small signal and noise. For extrecmely small detuning 8 — where signal gain is greatest — how-
ever, nonlinear effects cannot be ignored. Above u=0, there are two attracting basins, near +‘fﬁ
and -‘/ﬁ. The barrier between them, at x =0 grows morc formidable as p gets larger. The pres-
ence of noise causes the system to switch apcriodically between these two basins — a process
which can be approximated as telegraph noise. This fact is exploited in Scc. 5 to obtain analytic
expressions for signal and noisc gains. As W is increascd (or applicd noise decrecascd) switching
becomes less frequent confining the power of this noise driven squaé wave to lower frequen-
cies, i.e., the noise bump grows narrower and taller approaching (but never exactly recaching) a
delta function. The bifurcation point is not well defined in the presence of noise, since this nor-
mally corresponds to the point where the dcita function appears. Surprisingly, the signal gain is
not maximized at L =0 (as predicted by a iincurizcd analysis), but continues to incrcase for
n>0 for sufﬁcicnﬁy small detuning. The signal is ablc to achicve high gain in this rcgion by

altering the transition rates for the noisc driven switching — favoring the positive basin during
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the positive phase of the signal and the negative basin during the negative phase. However, this
mechanism is only effective when the switching rate is greater than or approximately equal to
the detuning of the signal. As j is increased, the switching rate decreases and the noise bump
eventually becomes narrower than the detuning frequency, after which point signal gair; falls
off. The noise rise results from the fact that the height of the noise bump increases more rapidly
than the signal gain. The signal gain for sufficiently small signals is linear, whereas the noise

level at the signal frequency is a highly nonlinear function of the applied noise spectrum.

We now proceed with the derivation, again conccntratihg on the period doubling case.
For no perrur'bation, x(t) exhibits a symmetry breaking bifurcation when the actual dynamical
variable exhibits period doubling. Thus it can be described by the noimal form for a symmetry
breaking bifurcation: |
% =px —x3 + higher order terms | | (10)
where w=0 is the bifurcation point. (One way to derive this is to start with the normal form for
the period doubling of a mapping x’=~(1+w)x +x>+0 (x°) and approximate the second iterate
as a flow in the Iiniit of small w.) For sufficiently small signal, the effect of the signal is essen-
tially linear. We can think of the perturbation between time ¢ and time £+27 as being made up
of small sub-intervals, each of which is assigned an average value of the perturbation over that
sub-interval. In the linear approximation each of these will have a linear influence on the value
of x at time ¢t+2T. The ratio between the influcnce and the perturbation need not be constant
over the cycle but will in general be a ﬁmcﬁon g(t) of the phaseb of the subharmonic period.
The Mobius strip nature of the center manifoid requires that g (¢)=-g (¢+T), for example g(¢)
might be something like cosw, ¢/2. Thus, for an arbitrary (but small) perturbation f (¢),

X=px —x2+F () (an
where

F 1 0+ , \
€)===) 4 8GN ()t (12)
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The function g (¢) can have Fourier components at frequencies ®, =n ®,/2, where n is odd, i.e..

ga)= 3 g.e'™ ' (13)
n odd
Thus, only perturbations with frequencies near one of these Fourier components can produce a
slowly varying F(t), which can in turn have a significant influence on the dynamics of the
slowly varying x(¢). For a periodic perturbation C cos(®w, +A): detuned by an amount A, we
find from Eq. (12) that
F@)=Clg, lcos[At - Arg(g,)] (14)

For the case where f (¢) is noise, we can compute the spectral density of F (). We define the

power spectral density F () as

. 2
21:F(m)=1im% <! [diei*F @)l "> | (15)
. § =300 ‘
where the brackets <> indicate an enscmble average. Inserting the expression for F (¢), Eq.
(12), one can obtain (we assume here that F(¢) varies continuously rather than discretely to

. simplify the calculation):

o1 1.7 e i )‘}, _ 2.

2nF (@) = lim— <| ==[ dt’e™ [, dt”Te" ™ >
(@)= lim=- <l [ dre J. Ze gf (¢ (16)
The limits on the ¢” integral can be changed to O to ¢ for sufficiently large ¢ (¢’ becomes
insignificant). For @<« 1/T we can approximate the ¢’ integral as unity. This yields the expres-

sion
1« 2
2nF (@) = lim = <| T F, ()| > an
t—oo [ n
where

Fo(@)=g, [e! ™Y F ¢"ar’

Assuming the F,’s to be uncorrclated, we can express F () in terms of f (w), the power spec-

tral density of the applied noise: -

F (@)=Y 1g, 1 (@, +0) | (18)

Since only low frequencies can effect the slowly varying x(¢), we can approximatc F (®) as
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white noise with spectral density equal to F(0) in Eq. (18). V_Vhen signal and noise are both
applied, the reduced equation takes the form:

X =px = x> +€,Cos(Ar +0) + £, E(r) (19)
where € is proportional to the signal amplitude, €, is proportional to the noise amplitude, and

&(t) is white noise with unit delta autocorrelation.

Proper choice of time origin can eliminate the phase factor 8. We wish to consider the
case where the noise is much stronger than the signal, as it is in this limit where the noise rise
becomes a severe problem in the experimental situation. We therefore perform a rescaling of
the equation to set €, to unity:

dx,

dr,

where g, =¢2%¢, x=x,Ve,, 0W=1L€,, t=t,/€,, and A=3¢,. Note that E(¢,/€,) has the same

=X, ~x; +ecosdey +E(ty) (20)

spectral density as \/E: E(¢1). Equation (20) is the fundamental equation we wish to study. In
the interest of simplifying the notation, the subscript 1' will not be used explicitly throughout the
rest of the paper. One may assume that the rescaled variables are used uniess stated otherwise.
Except in special cases?0 it is quite difficult to obtain analytic expressions for the parameters in
Eqg. (20) in terms of those in the full equations of motion. However, one may always estimate
these relationships in linear approximation from numerical or experimental data as discussed in

Sec. 6.

Extension of these results to the cusp and symmetry breaking bifurcations is quite simple

-~ we just use the appropriate normal form in place of Eq. (10). For the cusp the normal form is

X =x +Vv —x° + higher order terms 21
and the result with perturbations is

T=u1x1+vl-xl +€C055f1+§([1> . (22)
1
32

where v=v,&;'“. The interpretation of Eq. (7) is now slightly diffcrent — both @, and @, have
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period T. If @y is a symmetrical orbit then @; will in generai also be - ie.:
Dy(t) =—Dy(¢+T/2) and ©y(t) =—D(r+T/2). This case occurs in the unbiased fosephson junc;
“tion 'and it represents the breaking up of one symmetrical orbit in two coexisting symmetrical
~ orbits. Asymmetrical cases are also possible however. The symmetry breaking bifurcation has
the same normal form as the period doubling bifurcation, Eq. (10). Now, however, @, in Eq.
(7) is a symmetrical orbit (@g(t) = —Dy(¢t+T/2)) and O, (¢) represents the asymmetric part of the

orbit (@, (t) = O,(t+T/2)).

4 - SIMULATIONS

Three idnds of simulations we& performed in order to study ;he noise rise phenomenon
and detex'mine how it is affected by the various parametcrs in thé cquation. First, the full ben-
dulum equation (1) was integrated on an analog computer. An analog, as opposed to digitﬁl.
simulation has the advantages of high specd and tremendous ease in varying parameters. The
basic phenomenon, poise gain increasing faster (with increasing W) than signal gain, was
obs{erved and the importance of using a very small dctuning frequency & was quite clear. In a
scc(;nd set of simulations, the reduced equations (8) and (9) were studied on an analog com-
puter. This provided clear evidence that these simpler equations can capture the important
features of the noisc rise. Finally, extensive digital simulations of the reduced equations were
performed for varibus values of p and 8. These again confirmed the presence of the noise rise

in the reduced equations and suggest a number of predictions, presented in Sec. 6, about how

rcal systems such as the Josephson junction parametric amplifier will perform.
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4.1 Analog Simulations

To reproduce the noise rise in the pendulum eduation (1), an analog computer was con-
structed using low offset, low drift operational amplifiers and a Josephson junction box to
implement the sin¢ nonlinearity. A 33 bit digital feedback shift register was used to generate
noise with adequate low and high frequency chamctexistics.. To observe a significant noise rise,
a sinusoidal signal of very small detuning A and small amplitude C was required. Thus the sig-
nal generators for w, and ®, werc seleéted to have especially stable signals. _'I‘o place the ana-
log computer in the 3-photon mode, the parameters were varied to put the system near a period

doubling bifurcation and as far as possible from any other bifurcations. .

Figure 4 shows results taken with a spectrum analyser monitoring the variable ¢ With a
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Figure 4. Power spectra from analog simulation of Eq. (1) with noise added for the 3-photon
case with A = 5x10"‘mp. (a) u=0; this is the period doubling bifurcation point in the absence of
noise. (b) p=p’; this is the point of maximum signal gain. The noise bump is starting to move
inside the detuning frequency. Note the diminished signal to noise ratio. (c) u>u’; signal gain
falls off, noise rise continues.
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detuning of 0.1% from 1, , as the parameter A was increased the signal gain G, was seen to
increase by 8 dB but the signal-to-noise ratio fell from 20 dB to 14 dB. Similar results have

been published using actual Josephson junction ampliﬁe'rs.6

The 4-photon mode was studied by tuning the analog computer near a cusp bifurcation,
and a similar noise rise was observed there. In Figure 5 the noise rise - the rato Qf G, (atw;)
to G, — is plotted against the signal gain, as the parameters are varied. The curve shown
corresponds approximately to .varying ) with v set to zero (sce Eq. (%)). When u is positive one
enters the ‘‘switching regime’’ in which noise induces a hopping between two coexisting attrac-

tors. When v is zero, the equation is symmetrical and hence equal time (on the average) is

|O i 1 1 L i | I 1 I LD b i i 1

Gp/Gs (dB)
NGB o
T i

Gs (dB)

Figure 5. Signal gain vs. noise rise from analog simulation of Eq. (1) with noise added for the
4-photon case. Note that the noisc rise continues as we go beyond the point of maximum signal
gain. The detuning for this data is A=1.25x10"w,. .
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spent in cach of the two states. We usc this fact to obtain the data in the simulations — we
adjust one parameter to some new value and then a sccond parameter is adjusted to symmetrize
the hopping. Signal and noise gains are recorded at this parameter setting and then the process
is repeated to obtain a scquence of data points (see Figure 5). In the linear approximation,
G,/G, would be exactly unity for all values of G,. Instead, along the line v=0 the ratio G, /G,

gradually increases and continues to do so even after the signal gain has begun to fall off.

Thé reduced equation (8) for the 3-photon mode was integrated with a similar analog
computer. Without a pump signal and with just a cubic nonlinearity, the first order reduced
equation is much simpler to instrument that the full pendulum equation Eq. (1). However, the
need for low drift clements continues, and for v=0 it is especially important to maintain low

offsets. Figure 6 shows the switching behavior which occurs for positive . In this regime the
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time (arbitrary. units)

x(t)

Figure 6. Behavior of x(¢) in the “*switching regime’’ p>0 for the reduced Eq. (8).
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dynamics can be approximated as a telegraph process (random switChing between fixed levels)
and analytic results may be obtained (sce Sec. 5).. In Figure 7 we show the power spectrum of
x(t) for three values of u. Again a noise rise is clearly apparent as y is increased. The effect is

somewhat larger than in Figure 4 because the effective detuning § is smaller in this case.
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Figure 7. Power spectra from analog simultation of the reduced Eq. (8). Zero. frequency here
corresponds to w, for the dynamical variable (sec Fig. 4). Noise-rise is greater than in Fig. 4
because the effccnve dctumng is smaller here. (a) p=0; this is the period doubling bifurcation
point in the absence of noise. (b) w=y’; this is the point of maximum signal gain. The noise
bump is starting to move inside the detuning frequency. Signal to noise ratio has fallen from
30dB to 15dB. (c) u>u'; signal gain falls off, noise rise continues.
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4.2 Digital Simulations

While digital integration is considerably slower than analog, it provides far greater preci-
sion and flexibility for determining the behavior of the reduced equations. Happily, our particu-
lar problem has certain characteristics and symmetries which allow significant improvement in
speed over a standard approach. The details of the method used are discussed in the Appendix.
The goal is to estimate the signal and noisc gains as functions of the parameters it and 8. For
sufficiently small signal amplitude €, we expect the quantiies G, and G; to be essentially

independent of €. This was verified in the simulations.

In Figure 8 a, b and ¢ 'we plot G, (at the sigmﬂ frequency), G, , and noise rise, all as func-
tions of the bifurcation paramcbter u for several values of the (rescaled) detuning 8. As can be
seen, for ﬁnite@etuning G, reaches a maximum at some value p=y". G, continues to increase
however, reaching its maximum beyond p'. While the G, and G, are both sensitive functions
of 3, their ratio is insensitive to 0. A significant differcnce (from $=0) shows up only when well
beyond the y of maximum G,. In Figure 9 we piot noiée rise versus G, for several values of §.
These curves show that the noise rise continues to increase as we pass the point of maximum
G,. We also sce -how the maximum G, increases as |81 is decreased, but so does the noise rise
at the point of maximum G;. The bandwidth of the G, decreases very rapidly with increasing

i This effect is shown in Figure 10 where we plot G, versus detuning for several valucs of [

In summary, the simulations verify our expectation that the reduced equations capture the

important dynamical propertics responsible for the noisc risc in the full dynamical system Eq.

(1). Of course, the validity of the reduced cquations is much widcr, applying in the high-gain
limit of all other weak-signal parametric amplificrs. Which reduced equation is appropriate

dcpends solcly on the bifurcation involved, i.e. solcly on the ‘‘mode’’ of operation. In this

sense, these dynamical propertics arc universal, so that the results of the simulations can be
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Figure 8. ' Numerically generated data from the reduced equation Eq. (8). (a) Noise gain G,
vs. bifurcation parameter p. (b) Signal gain G; vs. p. (c) Noise-rise G, /G, vs. . In(a) and
(b) the highest curve corresponds to the limit of zero detuning (8 = 0), with successively lower
curves following the sequence: & = 0.001, 0.01, 0.1, 1. In (c) the cases of =0, 0.001, and 0.01,
are indistinguishable and form the highest curve shown, with successively lower curves in the
sequence: § = 0.1, 1.
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Figure 9. Numerical data showing noise rise G, /G, as a function of G,. Comparing with the
analog data in Fig. 5 we would estimate that this previous result corresponds approximately to
0=0.1.
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Figure 10. Numen‘cai data showing signal gain as a function of detuning for several values of
the bifurcation parameter p. Note that the bandwidth decreases very rapidly.

used to make quantitative predictions about the behavior of parametric amplifiers in this

regime. We discuss many such predictions in Sec. 6.
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S ANALYTICAL RESULTS

Usiné the tools of bifurcation theory, we were able to reduce the full phase space dynam-
ics to a study of the one dimensional center-manifold dynamics. As disarmingly simple as the
reduced equations appear, their analysis requires computer simulations near the bifurcation
point u=0. However, there are two limiting regimes where one can derive analytic results: for
sufficiently negative 1 a linearized analysis is possible, and for sufficiently positive p the

dynamics is well-approximated by a switching process.

In the lincar regime, the cubic term may be ignored due to the low amplitude of the
response. The rcsulting analysis yiclds identical signal and noise power gains at the signal fre-
quency,

G =(u2+d%)7, , (23)
and thus there is no noise rise. As one increases W toward =0, the linear theory breaks down —
as it must, since G, and G, cannot go to infinity (for 8=0) as predictcd by the linear theory —

and one must rely on numerical analysis or simulations like those of Sec. 4.

Upon increasing W to sufficiently positive valucs, the systcm enters the switching regime
where one can again make analytic headway: the remainder of this section is devoted toward
this end. Before launching into the detailed calculations, we give a brief description of the

dynamics in this regime and an overview of the results.

In the switching regime, the undriven system (e=0, £=0) has two stable equilibria x,. and
x.. In the 3-photon mode, these correspond to diffcrent branches of the same phasc-space
attractor, while in the 4-photon mode (and the 6-photon mode — sce Sec. 7) these correspond to
two distinct attractors. The addition of a noisc tcrm induces swilching between x, and x_, as
was shown in Figure 6. For sufficicntly large W, this bchavior is well approximated by a tele-

raph process,3%33 i.c. random switching between two fixed levels. The effect of the small sig-
graph p g
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nal (e#0) is to periodically alter the escape rates from the two equilibria; the x, state being

favored while the signal is positive, the x_ state while ncgative.

-

To obtain analytic results for the switching regime, we first calculate the mean lifetimes T,
and 1. for the x, and x_ states respécu’vély by solving the Fokker-Plank equation in the limit of

-

low diffusion between states. We find
1 1 = -

P S=V2P £ 38 exp—gu +2s) 24)
where S =v+ecosdr. This result compares quite well with numerical simulations: for [,L=3 and
8=0 we obtain T=133.3 from Eq. (24) and 132.0 from simulations. The noise gain is then

- determined from the autocorrelation function of the associatcd telegraph process, with result -

-1

1!:“/‘2-8""2/2 o 2 '
=2 1+ 2 eFeosh?vViL 25
cosh(2vVp) 2u? ¢ @V 25)

This is compared with numerical data in Fig. 11(a). Agreement is good above p=2 with errors
0f 0.5 dB or less (for small detuning).
The signal gain receives its main contribution in the switching regime from the ability of

the (slowly varying) signal to slightly alter T,. This yiclds the result:

2 2 _1 :
G, =— |1+ BT roouton 26)
cosh*(2vVp) 20

This result is compared with numerical data in Fig. 11(b). Here the convergence is somewhat
slower, the numerical rcéult being 1.5 dB lbw at =2, but within 0.5 dB at u=4. We define the
noise rise NR as the ratio G, /G, evaluated at ©=34:

NR =nre*2cosh®(2vVpy2vap? . @n
Note that the noise rise is independent of 8. This bchavior is also exhibited by the numerical
data as shown in Fig. 11(c). Deviations from this rulc occur only after  is well past the point
of maximum G,. It is worthwhile to co’nsidcrv simplificd versions of Egs. (25) - (27) which

result in certain special cascs of interest. For v=0 they reduce to:
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Figure 11. Comparison of the asymptotically correct theory (solid lines) with the data generat-
ed numericaily from the reduced equation. :

G, =4p%/ (1 + 8*nle¥2p?) (28)
G, = 7V2e*72 1 (1 + (w?le2p)) (29)
NR =meh'? ) 2V2)2 (30)

These equations apply to the period doubling (3-photon) and symmetry breaking (6-photon)
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- cases which do not require the parameter v. It also tums out that it is preferable to operate the
cusp (4-photon) case with v=0. For non-zero v the behavior is always less desirable — the sig-

nal gain decreases while the noise rise increases, as can be seen in Eqs (26) and (27).

'If we consider the limit of § and ® approaching zero (still with v=0) we obtain the partic-

ularly simple results:

G, =4p® ' (31)

G, =mV2eF " - (32)

Thus both G, and G, increase monotonically with p, but with G, increasing much more

" rapidly. The bandwidth over which this level of gain may be achieved is easily seen to be

BW = in@ue- 2 - : (33)

Thus the gain-bandwidth product (for signal gain) is not a constant in the switching regime, but
rather it decreases exponentially with increasing L. This behavior_ can be seen quite dramati-
cally in the num'erical results shown previously in Fig. 10. In all of the results presented here
one can expiicidy include the effect of input noise amplitude €,. This is accomplished by rev-
. ersing the transformation used in Eqs. (20) and (22). That is, replace . with p/g,, v with
vig3”, § with 8/¢,, © with ©/e,, G, with e2G,, G, with £2G,, NR with NR, and BW with
BW /¢, . Thus, for example, Eq. (315 becomes G, = 4p?/e?, which shows that a slight reduction

in noise level can result in a dramatic improvement in signal gain.

In the remainder of this section we prescnt a derivation of 7, and then, using this result,
we determine G, and Gs'. We start with the reduced cquation for the cusp or 4-photon case .
since it is the most general:

% =V +px — x> +ecosd +&(t) (34)

This starting equation can be rewritten as

x ==0, y(x,t) +§(t) ' (35)

which is a Langevin equation for a heavily damped particic moving in the slowly-modulated
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quartic potential

Wxp) = —px? + 2xt - Sx (36)
where § =v+¢€cosdz. In the present case,  is a double-well potential, with minima at x_ and x,.
separated by a maximum at xq (sce Fig. 12). As before, we take &(¢) to be delta-correlated
noise with unit strength,

<E@)EE)> = 8(t-t") &)
The Fokker-Plank equation corresponding to Eq. (35) is

W =—0,j ' (38)
where W is the probability density and j is the probability current

J =-WaxW°%'azW (39)

For j constant, we can intcgrate this between the two minima to get an explicit expression for j

Iwexp@y) |,

J =%
I, expvds
If we assume that the system starts near the state x_, with initially no probability of being at x,

(40

(i.e.: W(x,)=0), we can interpret j as 1/1_ wherc 1_ is the mean lifetime of the state X

Figure 12. The potential y vs. x, showing two wells scparated by a barrier.
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For x near x_, we can approximate Eq. (39) as

j==(x_=x)k W - %a,w ' 41)
where 4 _ is the curvature of y(x_). Since we assume j is very small (high barrier limit), we can
solve immediately for W

W (x) = const-exp(~k _(x =x _)*) (42)
Proper normalization of W (x) implies that '

Wx)=vkin , (43)
The integral in Eq. (40) receives its dominant contribution near x, where w(x)=%ko(x —xo)z.
Thus,
j ‘expQydx =Vmw—ky . | (44)
Combining Egs. (43) and (44), with kg, k_ determincd from Eg. (36), we can evaluate Eq (40)
forj:
.1 1 — _
j=—=5 V2u?-3VpS expl-u?+2VuS ] 2 (45)
Similarly, we can write
T—— 2u2+3VS expl—tp?-2%us] 46)
4

which is just Eq. (45) with the sign of S changed. For large u, the prefactor can be approxi-

mated by u.‘/f so that

—= —*j——-exm—%uz;ﬂﬁS ] @

where S =v+€cosdr.
Although S is ass.umcd small, the S dependence of T is crucial to the dctermination of sig-
nal gain. This is because the primary contribution to signal gain in the switching regime comes
from the ability of the signal to slightly altcr the transition probabilitics, favoring the positive

state while the signal is positive and [avoring the ncgative state while the signal is ncgative.
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We now calculate expressions for the noisc and signal gains. Let n, and n_ be the frac-
tions of the ensemble in the states x, and x_ respectively, so that n +n_=1. If the offsetterm S
is small, these states have constant amplitudes x;;:i‘fﬁ in the telegraph noise approximation

(w>>1). Thus the ensemble average response is

<x>=Vu(n,~n_) | (48)

The rate of change of n_ obeys

. n. n, '
A= T T, ’ 49)
so that
. 111 R
==| —+— + | ———

e e el
is

For convenience, we assume a complex representation for the applied signal, i.e. we use ge

instead of ecosd¢.. For sufficiently small € we have

11 ;
T maitebie & (51)
1 1] ;
‘lﬁ[?’?} =ag+ebge’™ : (52)
- Ts

where the coefficients aq, a1, b, b follow from expanding Eq. (47) to first order in &,

a, | coshvip)
ao| _ pV2 | Visinh2vi) -
2 2Vsinh(2vVip)
by 2ucosh(2vVp)
First we analyze the steady state solution of Eq. (50) to dctermine the signal responsc. Let
<x>=A +eBe'¥ | (54)
Substitution of Egs (51), (52), (54) into Eq. (50) and ignoring O (€% terms yiclds
boa|~ba 5|7
A =ay/lay;;, B= [__0__1__2_1_2] [1+‘£—5-] (55)
ai a,

Since B is the signal amplitude gain, the power gain G, is equal to |B |2 Using Eq. (53), this

becomes
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-1

2 <2,
A 1+ 8 o2 cosh vV (56)

G; = =
cosh*(2vVy) 2u?
and the phase shift of the signal response is

v phaseshift =-arctan(d/a )
In the small signal limit, the response of the system to the signal is a linear amplification of that

signal, with the power spectrum being unaffected at other frequencies. Thus we calculate the

noise gain with € set to zero, and Eq. (50) reduces to

<i>=—a1<x>+ao 7

In equilibrium, <x>,, =a¢/a which implies: . .
ag 1 1 o ag
= = 4 —, —eg = T ——
Byeq 22 I\Ju- | 5 R_eq 2 " 2a 'l‘ll-‘- (38)

When initialized in the state x_ the solution for <x> is:

a a i ' ,
<x>, = z% + (ﬁ'a_?)ew £20 | (59)

The corresponding <x>_ solution is:
ag ao '
<> =— —(p+—)e™ 120 (60)
' a, a,
The autocorrelation function is

G (1) = <x (X (> = VU1, XD, = Ny <X>) (61)

—eq

)
= —aT + | k- 2_1: 4

The noise power gain G, is given by the Fourier transform of G (1):
B P 1) N P @
n = a, K a, a 12 (

- nﬁexp(y.z_/}) 1+ ww?
cosh(2vVp) 2u?

Note that the frequency dependence is the same as for G, (compare Eq. (56)).

or, using Eq. (53),

-1
exp(n?) Coshz(Zv‘/E)} (63)
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Equations (56) and (63) are the main results of this section. We can extend this analysis
to include an approximation for non-telegraph processes. In the u>>1 limit, the noise and sig-
nal driven _oscillations about a given equilibrium (which we previously ignored) can be deter-
mined by a linear analysis. The signal amplitude gain for this effect can be expressed in com-
plex notation as 1/(i 3+2p), and should be added to the previous result for the signal amplitude
gain Eq. (55). For the noise, the power gain of this effect is the same as for the signal, i.e.
1/(8%+41?) and it should be a good approximation (for high 1) to add this to the expression for
G, calculated in the telegraph approximation. These additional terms are not significant near
the maximum gain point for a given dctuniﬁg. In fact they could be misleading as there are
other small corrections which have not been included which may be of comparable size. The
new terms only become important as . is increased well beyond the maximum gain point where

they fall off much less rapidly with increasing p than the ofi_ ginal expressions.

6 DISCUSSION AND PREDICTIONS

Discussion

Understanding the dynamics near bifurcation points is essential to the theory of pararhetric
amplification since it is only near such points that very high gain levels may be achieved. For-
tunately, the dynamics near such points is focussed onto a low dimensional center manifold and
can be understood through a relatively simple reduced cquation (9). The case studied in this
work, where the system is driven by both signal and noise, has been shown to generate a noise
rise as one increases the signal gain. The study shows that for sufficiently small signals linear
qmpliﬁcation of the signal occurs at all paramctcr settings in spite of the highly nonlinear
processes which lead to the noise rise. Anéthcr uncxpected result is that gain continues to

increase as one passes the bifurcation point (L=0). This is in contrast to the lincarized theory
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which says that the gain should be a maximum at p=90.

In order to clarify the connection between the experim'ental parameters and those of the
theory, we now discuss Some procedures by which one might change from one set of parameters
to the other. The period doubling (3-photon) and symmetry breaking (6-photon, see Sec. 7)
cases are the simplest because here the parameter v is abscnt. The parameter | will be given
approximately by a linear transformation of any convenient parameter c'>f the real physical sys-
tem, i.e. wW=Y(P -Py). Here P is some convenicnt cxperimental parameter, P is the bifurca-
tion point, and ¥ is a scale factor. Both P and v are initially unknown, and it is t):pically very
hard to calculate these values analytically for a specific equation. However, one can estimate
them by fitting experimental data to the numerical results. (Note that the exact location of Pg :
will obscured by the presence of noise unless this can be turned off co'x'npletely.) One approach"_
is to compare the noise rise measured experimentally with the numerical results given in Fig. 8c
which plot G, /G, vs W A few well chosen data points should determine estimates for y and

P,.

Once p has been determined, the scaling factor for 3 is easily estimated. For exampie, for
fixed , one can measﬁre the 3 dB bandwidth of the noise peak and compare this with either the
numerical results (Fig. 10), or use the analytic expression (33) to detcrmine 8/A. The noise
gain G, will be related by some scale factor to the experimentally measured spectral density,
which is easily found once & and w are known. The signal gain G, will be related by yet
another scale factor to the measured signal power gain. For the present purposes, it is unimpor-
tant to determine the rplation between € and the input signal amplitude because the results
assume linear signal gain, which occurs for sufficicntly small €. Of course, the reduced equa-
tion is valid for larger €, where nonlinear amplification and saturation can be cxpected, and in

this regime this scaling factor is very important.



Part 3: Noise Rise §6 226

In the cusp bifurcation (or 4-photon case), two experimental bifurcation parameters P and
Q must be used. The choice is somewhat arbitrary — to be determined by the experimenter.

Near the cusp point, these will be related to i and v by some linear approximation

B Py, Qu | P-Po

v P v Qv Q"QO
where P, 0 w Pv Qv. Pgand Q are constants to be determined. ‘There will be a hom shaped
region in the (P, Q) parameter space where there exist two different attractors (see Fig. 13).

Hysteresis will be observed when traversing the hom. Near the cusp of the horn these attractors

will be sufficiently close that we may obscrve hopping between them, driven by the input noise.

=0
q horn line
constant Gg ,» P

Iines\
constant p

cusp H=v=0

Pr—

P

Figure 13. This sketch shows qualitatively the relationship between arbitrary system parame-
ters P and Q and the parameters [ and v of the reduced equation.

I
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~The line in the (P, Q) plane along which equal time on average is spent on each of the attrac-

tors cofresponds to v=0. Values of 1 along this line may be determined by the method outlined
previously. The poiﬁt (Pg, Qo) is the cusp of the hom. Its exact lécadon will be obscured by
the noise, however, so it must be determined by the process of fitting experimental results with
the numerical data.v Normally one will not be interested in nonzero values of v since, as has
been shown, the behavior of the amplifier is always inferior. However, if desired, values of v
may be determined as follows: First, plot contours of constant signal gain in the (P, Q) plane.
At the crossing point with the v=0 line, the noise rise should be a minimum (this is another
method of locating the v=0 line). Straight lines tangent to these contours at the crossing points
with v=0 are (in linear approximation) lincs of constant . Values of v along these lines may

be determined by comparison of the behavior with the analytic formulas.

- It is important to- remember that the theory is bascd on certain limiting approximations.
Specifically, to obtain the reduced equation wev assume that the perturbation (signal and noise)
is small, that the detuning is small, and that the system is close to the bifurcation point. For all
results presented in this paper, it is furthe; assumed that the signal is small relative to the noise
in the sense that the telegraph or switching process is primarily noise driven. While ecosdt is
positive there will be a slight preference to the "+" state over the "-" state. However this effect
should be small (say up to 10% shift in the mean lifetimes of these two states) because other-
wise the signal gain will start to become nonlincar and deviations from the theory presented
here may bé expected. Another important consideration is the possibility of higher order degen-
eracies. For example, the cubic term in the reduced equation might vanish for some combina-
tion of parametcrs. This wouid then have to be replaced by the next nonzero term (typically x%)
which we have been neglecting. It is quite possible that the dynamics in this case would be
improved in regard to maximum achicvabic signal gain, and thercfore the experimenter in try-
ing to optimize the amplificr performance might be drawn towards a degencrate operating point

where some deviations from the thcory presented here might again be expected.
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We emphasize that the dynamics in the switching rcgime is very sensitive to the level of
input noise. We have used the term *‘noise gain’’ or G, in numerous places in the text, but this
is not a linear gain and thus quite diffcrent behavior can be expected when the input noise level
is changed. In fact, all of the scaling factors rclating the experimental parameters to those of the
reduced equation will change when the input noisc lcvél is changed. This rescaling caﬁ be

determined quite precisely and is the same as the rescaling used at the end of Sec. 3 (Eq. (20)).

As was pointed out in Sec. 3, amplification will occur when the signal is slightly detuned
from one of a discrete set of ‘‘resonant’’ frequencies. Furthermore, the response to the signal
will have components near each of these frequencies. For the 3-photon or périod doubling
mode, these frequencies are n®,/2 where 2 is odd. For the 4-photon or cusp mode these are
nw,. (However, this mode can occur for a symmetrical oscillation in which case » must be
odd, i.e. if ©(t) shows no even hmmc;nics of @, near the bifurcation point then the restriction
applies.) For the symmetry breaking bifurcation the frequencies arc 2n ®,. In addition, the
case n =0 is suppressed in the driven pendulum (Josephson modet) in cases when; ¢(¢) is phase
locked with the pump. This is because the junction voltage V, is proportional to d¢/dt and
hence V;, has an invariant constant component (the phase ¢ itself is not an observable dynamical

variable).

The optimal operating frequency will be the one for which ®;(z) and g (¢) (defined in Sec.
3) have the largest components. This will usually be thc lowest allowed frequency —i.e. @,/2
for period doubling, @, for cusp, and 2w), for symmetry breaking. Operation at the higher har-
monics will usually result in a worsened signal-to-noise ratio. Frequency conversion is possi-
ble, i.e. a response at @,/2 will result from a signal at 3w,/2 in the period doubling mode. If
one does not want a response to these {requencies, carc must be taken to filter them out 6f the
signal before it reaches the device. In casces where n =0 is suppressed, it is not possible to use

these devices as ““detectors’” i.e. to produce a low frequency response (near zcro) to a high fre-
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quency signal. In other cases, however, it is possible to combine the amplification and detec-

tion of a high frequency signal.

The mechanism of the noisc rise we have been discussing occurs over a relatively short-
interval in parameter space — near the bifurcation point. However, when parameters are varied
by more subMﬂ amounts there are other sources of noise rise which are important. One of
these, which we refer to as ‘‘idler noise’’ results from the emergence of an idler frequency as
the bifurcation point approached. Noise frequencies near the idler can produce a response near
the signal. This effectively doubles the power spectral density of the noise. Thus the emer-
gence of the idler peak will result in a 3 dB noise rise. A similar effect ~ ‘‘*harmonic noise’’ -
results from conversion of noise near the othér harmonics of the fundamental resonant fre-
quency to a response near the signal frequency. This effect will usually be fairly smz:u when
operating near the fundamental frequency. Finally, an effect which is often overlooked is that
signal and noise may be coupled to the amplifier in diffcrent ways. Substantial changes in

operating point may then cause differing changes in gain for signal and noise. This effect can

be very large, easily amounting to 10 dB or more of noise rise.

Predictions

In a previous work3* A number of predictions were made which could be tested in an
experimental system. These will now be discusscd in greater detail:
(1) For u<0 the noise temperaturc is cssentially constant (i.e. no noise rise), even as Gy
increases. This statcment is based on the numerical results. It is not preciscly true in a
mathematical sense — in fact the numerical study did show a noise rise at p=0, but it was only
04 dB; and therefore negligible for most practical applications. The result is not surprising
since a linearized analysis (valid for large negative p) results in no noise rise.
(2) For u>0 (and nonzecro detuning), there exists a i of maximum signal g:iin. w’, while the

noise gain at the signal frequency also rcaches a maximum which is beyond p” (this behavior is
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clearly shown in the numerical results). Moreover, | increases either with increasing noise
input or decreasing detuning. The effect of changing the noise input can be determined from
the rescaling given in Sec. 3 Eq. (20), while the effect of changing the detuning ié evident from
the numerical results — sce Fig. 8. '

(3) The noise rise is insensitive to changes in dctuning — both G, and G, fall off initially in the
same way as the detuning is increased from zero. The analytic rcs_ult Eq. (27) shows this is
exactly true for high p values. For sufficiently large §, however, the noise rise must fall off —
when § is much greater than the average hopping rate, 1/1, a linearized treatment becomes pos-
sible which yields no noise rise.

(4) For sufficiently small detuning and large negative i we find G; o G, o= W2 (this follows
from Eq. (23)), while for large posﬁivc i a‘nd (v=0) the behavior is G, = InG, +const o u?
(this follows from the analytic results for the switching rcgiine, Egs. (28) and (29)). Further-
more G; and G, increase monotonically with W including in the crossovér region near u=0.
This result was obtained from the numerical data - it has not been rigorously proven. Note that
for any nonzero detuning G, and G, reach maximum.values as discussed in prediction (2).

(5) The bandwidth BW over which the gain indicatcd in (4) may be achieved is proportional to
lu! for large negative | and to pexp(—k p?) for large positive i where £ is a positive constant
(these follow from Egs. (23) and (33) respectively). Thus we cross over from a region of con-
stant gain-bandwidth product G,"28W to one which rapidly diminishes and may explain the
unexpectedly small valués for this product previously reported for the Josephson devices. 10
(Note that G,? is the signal amplitude gain.) This effect is casily seen in Fig. 10 from the
numerical study.

(6) A variety of theoretical curves have been gencrated numerically and were presented in Scc.
4. Through the use of appropriate scaling factors cxperimental data may be compared graphi-

cally with the theoretical model.

v
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7 SIX-PHOTON MODE AND SEMICONDUCTOR LASERS

As has been emphasized, the results prescnicd above are based on quite general dynamical
arguments: the underlying physical details of the amplifying system are unimpoitant, the cmcial
element being the type of dynamical instabﬂiﬁy involved. 'I"llis fact leads us, in this section, to
go beyond the immediate subject of noise rise in 3- and 4-ph6ton Josephson junction parametric
amplifiers. We first examine the possibility of a ‘‘6-photon mode’ that ought to océur in
unbiased Josephsori junction parametric amplifiers. Although this mode also displays a noise
rise, it may have certain advantages over the 3- and 4-photon modes. We then discuss a sem-
iconductor laser parametric amplificr which, though a very differcnt physical system, should
also display the noise risc. As we discuss below, the semiconductor system may be a good

experimental system to test the predictions of Sec. 6.

Amplification in the Six-photon Mode

The occurrance of a period doubling bifurcation allows amplification ih the 3-photon
mode, while the saddle-node (and cusp) allows operation in the 4-photon mode. However, there
is a third kind of simple bifurcation the Joscphson junction parametric amplifier can suffer,
which has associated with it a third mode of operation. This is the symmetry breaking (or pitch-
JSork) bifurcation, which can occur in certain paramecter regimes of the unbiased system (A =0 in

Eq. (1))_29. 11

A discussion of the small-systcm amplification propertics ncar the onset of a symmetry
breaking bifurcation is presented in Ref.26. The basic fcaturcs are as follows. The experimen-
tal signature of this instability is the onsct of power at cven multiples of the pump fn:quency W,
(Figure 14). Near this instability, high gain can be achicved for signals o, =2w,. The idler ;

will also appear near 2w,, so that @, + @; =4w,; keeping with previous nomenclature this
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x
S (w)  (a)

J
Swi| (b).

Figure 14. Signature of symmetry-brcaking bifurcation. (a) below bifurcation, odd harmonics
only. (b) above bifurcation, even harmonics appear.

would be called a 6-photon mode.

It appears that experiments have never tried to operate in this mode, although it should be
possible: symmetry breaking for Eq. (1) has bcen rebortcd in analog and digital simula-
tions,28:2%:12 and has been suggested as well By the analytic work of Levinsen.!! Aside from its
novelty, this mode may have desirable characteristics: since gain is achieved near twice the
pump frequency, Lh_is mode operates at higher frcquencics than the other modes; as an unbiased
mode, it does not require contacts ncedced to supply the dc voltage; since @, is not near @,, it is

easier to separate the signal output from the pump-frequency output. There is also no hysteresis

associated with the symmetry breaking bifurcation. Whether these advantages are realized in a

practical sense is an open question, and must await actual cxperiments.

2
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and the detuning A is defined by
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In any event, the 6-photon modc also displays a noisc rise. The appropriate normal form
equation is the same as for the period doubling case, Eq. (8), but now the decomposition Eq.

(7) involves functions ©4 and @, such that

([)o(t+-—7-r—) =-Qy2) ; (Dl(t-i-l) = +(D1(f) . v (64)
(l)pv mp

A=w, -2, (65)

Moreover, the reduced Eqg. (8) is now the continuous-time limit of the first iterate of the Poin-

caré return map, while it corresponded to the sccond iterate in the 3-photon case.

With the appropriate interpretations (64) and (65), all of the results for the noise rise in the
3-photon case go through. For example, the noisc rise illustrated in Figure 7 will be seen in the
6-photon mode, with zero frequency in Figure 7 corresponding to 2w, in the full system’s-

power spectrum.

Noise-Rise in Modulated Scmiconductor Injection Lascrs

In 1976, Grothe et al. demonstrated experimentally that a semiconductor lascr, pumped by
an injection current modulated at 9 GHz, could act as a small-signal parametric ampliﬁ?r.35
They called this behavior ‘‘parametric sideband amplification’’, an effect which has been

predicted theoretically.36 It was shown later that the experimental parameter values which

A

yielded high gain nearly coincided with those for the onsct of a period doubling bifurcation.37

(The amplifier operated in the 3-photon mode.)

The basic idca of the semiconductor injection lascr is depicted in Figure 15. By injecting,
say, holes across a p-n junction, onc can induce electron-hole recombinations. There is a thres-
hold dc injection current beyond which stimulated recombination produccs strong coherent
radiation. (The cleaved surfaces at cither end act as reflective ““mirrors’” in analogy with gas

lasers.) In the modulated injection lascr, the injected current has a small ac component in
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l junction
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n output
—
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= ends
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Figure 15. Semiconductor injection lascr.

addition to a large dc component. As in gas lascrs, varying the parameter values leads to insta-

bilities in the output light intensity, /(¢). (The variations in /(¢) are at much lower frequencies
- typically GHz - than the optical radiation frcquencices, allowing for a semiclassical rate-

equation description of the dynamics.) A varicty of bifurcations have been documented for

injection lasers,33-40 including the period doubling csscntial to the parametric amplification '

experiment of Grothe et al.

It appears that this so-called paramectric sidcband amplification has not been pursued
beyoﬁd the briginal experiments a decade ago. In the present context, it may be a good system
to re-examine, for two reasons. First of all, it can test whether the noisé rise occurs in systems
other than the Joscphson junction amplifiers: as a high frcquency device, it should be possible to

achieve small detunings, cnhancing the range over which a noisc rise might be observed.

P X
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>

Second, the semiconductor device has the technical advantage of not requiring low tempera-

tures, so the experiments may be relatively inexpensive to perform.

8 CONCLUSION

It has been shown how the presence of extemal noise can be responsible for the ‘‘anamo-
lous™ noise rise observed in Josephson junction parametric amplifiers. The essence of the
theory is the synthesis of two observations: (1) the high-gain limit of a parametric amplifier
coincides with the onset of a dynamical instability, and (2) it is precisely near such bifurcation
points that the effective phase space dimension is drastically reduced. This last fact implies that
éertain ““universal’’ behavior is expected for parametric amplifiers of all kinds; the appropriate
universality class depends only on the kind of bifurcation involved. The familiar 3- and 4-
photon modes correspond to period doubling and cusp bifurcations, respéctivel&, while the
newly broposed 6-photon mode corresponds to a symmetry-breaking bifurcation. In‘all cases
the noise rise phenoménon is found to occur as the result of noise-induced switching% in the 3--

photon mode the switching occurs between branches of a single phase space attractor, while the

4- and 6-photon modes display switching behind coexisting multiple attractors.

The regime studied was that of weak signal and rclatively strong noise. Weak signal
implies that the system response at the signal frequency is a linear function of input signal,
while ‘‘strong noise’’ simply means that the random perturbations are sufﬁciently largé to
excite a nonlinear dynamical rcsponse. That this is the relevant noise regime in the Josephson
junction experiments is supported by a recent paper?® which demonstrates that the experimental
noise level is sufficient to. wash out the distinctly nonlinear phenomenon of period-doubling

suppression.23
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The powerful tools of bifurcaton theory — in particular the center manifold construction -
allowed us to fcduce the full dynamical systcm to the study of the appropriate first order non-
linear equation. Except in certain limiting cases, the solution of the reduced equations required
digital and analog simulations. Togcther with the analytic results presented in Sec. 5, this
analysis leads to a number of predictions which can be readily tested by future parametric

amplifier experiments, using cither Josephson junctions, semiconductor lasers, or other devices.

Whether or not the theory prescnted underlics previous noise rise observations must be
determined by future experiments — for this rcason, the predictive nature of the theory has been
emphasized. Since the noisc rise phenomenon appears to be a universal property (in the small-
detuning limit), there is no simple prescription for avoiding this undesirable characteristic.
Nevertheless, dynamical systems thcory provides invaluable insights into understanding the

optimally achievable performance of parametric amplificrs.

APPENDIX

Accurate determination of power spectral density in a numerical simulation typically
requires a great deal of processor time because the stochastic fluctuations can only be averaged
out by using a large amount of data. However, our particular problem has certain characteristics
and symmetrics which allow significant improvement over the standard approach. In general,

to calculate the spectral dcnsity‘S () at a particular frequency @ we may evaluate

2mS (@) = Jim =< jo x()e™ Y dt | "> psembie (66)
Thus to approximate S (®) we must intcgratc an cnscmble of data scts over a long time T. The
accuracy of the result is proportional to 1/VK , where K is the number of clements in the

ensemble. One cannot obtain an accurate result without the ensemble average regardless of

YR
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how large T is — the error will always be of the same order as the measurement. This is because
the distribution of fOTx (¢£)e™“ dt for the enscmble is a.Gaussian in .the complex plane, centered
on zero. Thus the ensemble average measures the variance of this distribution. To achieve 1%
accuracy on this measurement we need X =10000. Once this has been realized, we see that the
way to improve efficiency is through reduction of the time T. As we will now show, if the time

intervals are properly chosen, substantial improvement is possible.

The key is to break up the time sequence for each enscmble element into a series of inter-
vals each of which starts and ends at x =0 (these intcrvals may have different 1eﬁgths of course).
To avoid the compli';:au'on of having very short intcrvals we require thdt x| be greater than
some threshold value at some point during cach interval. Let z, be the interval endpoims, and

define Y, as:

b;o ; )
.= r()e O gy | 67)
In terms of the ¥, ’s, we find |

1

. 2 »
<3V, e %dr 17> (68)
T n

27S (0) = lim
. T =00

= lim & 3 <Y, Ve o>

T T ma

since each interval is chosen by the same critcria and since cach starts in the same state (x =0)
we can expect the Y, 's to be uncorrelated. (This assumes that the signal is very small and can
be neglected when calculating the noise rcsponse.) However, there may be a correlation

between Y, and t,, where T, =¢,,,~¢,. Thus we may write:
27S () = lim l(z< 1Y, 15> (69)
Tesoo T n ..

+ ¥ <V, e s<ln><e™ Wt =ta)y,
m>n

+ T <Y<l e g T O )
m<n

We can now usc the symmetry of our system to simplify this cxpression. For the v=0 casc, Eq.



Part 3: Noise Rise Appendix 238

(9) has inversion symmetry. Recall that nonzero valucs of v are permitted only for the cusp
bifurcation (4-photon mode) and in this case nonzero values are of little interest since they pro-
duce infén'or amplifier performance. This symmectry combincd with the symmetrical nature of
our interval selection scheme haé the impornant consequence that <¥,>=0. Thus the last two

terms drop out of Eq. (69) leaving:

.1
27S () = lim =3<1Y, %>
(@ = lim 3 (70)
What we have acéomplishcd is to divide cach clement in the ensemble into a large number of
sub-elements. Now it is the total number of thesc sub-elements which will determine the
overall accuracy of the measurcment. All of the sub-elcments are équivalent regardless of

which primary element they belong to. Thus we may write:

1
2T

n

To achieve 1% accuracy we necd 10000 intervals but the average length of these intervals is

= 2
2nS (W) = %I Y, ! : (71)

much shorter than would normally be possible for direct evaluation of Eg. (66), resulting in a
significant improvement in efficiency. Note: since the applied noise has unit delta autocorrela-

~ tion, the noise gain G, is given by 275 (w).
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