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Correlations Between Panoramic Imagery and
Gamma-Ray Background in an Urban Area

M. S. Bandstra , B. J. Quiter , M. Salathe , K. J. Bilton , J. C. Curtis ,

S. Goldenberg , and T. H. Y. Joshi , Member, IEEE

Abstract— When searching for radiological sources in an urban
area, a vehicle-borne detector system will often measure complex,
varying backgrounds primarily from natural gamma-ray sources.
Much work has been focused on developing spectral algorithms
that retain sensitivity and minimize the false-positive rate even in
the presence of such spectral and temporal variability. However,
information about the environment surrounding the detector
system might also provide useful clues about the expected back-
ground, which if incorporated into an algorithm, could improve
performance. Recent work has focused on extensive measuring
and modeling of urban areas with the goal of understanding how
these complex backgrounds arise. This work presents an analysis
of panoramic video images and gamma-ray background data
collected in Oakland, California, by the radiological multisensor
analysis platform (RadMAP) vehicle. Features were extracted
from the panoramic images by semantically labeling the images
and then convolving the labeled regions with the detector
response. A linear model was used to relate the image-derived
features to gamma-ray spectral features obtained using nonneg-
ative matrix factorization (NMF) under different regularizations.
We find some gamma-ray background features correlate strongly
with image-derived features that measure the response-adjusted
solid angle subtended by sky and buildings, and we discuss the
implications for the development of future, contextually aware
detection algorithms.

Index Terms— Environmental radiation effects, gamma-ray
background, gamma-ray detectors, gamma-ray spectroscopy,
non-negative matrix factorization (NMF), radiation environment
characterization, security applications.

I. INTRODUCTION

Vehicle-borne gamma-ray detection systems have been 
developed and deployed for many years and
play a key role in radiological and nuclear security mis-
sions, especially the search for sources outside of regulatory
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control [1]–[7]. These systems can be rapidly deployed and
carry large volume detectors, giving them advantages in effi-
ciency and the ability to cover wide areas relative to human-
portable systems. However, with their higher efficiencies, these
systems also suffer from the complex natural radiological
backgrounds often found in urban areas [8], [9], whose spatial
and temporal complexities can be exacerbated by the added
mobility of vehicle-borne systems and limit the sensitivity of
detection algorithms [3], [10], [11].

The natural backgrounds encountered by a vehicle-borne
system include the three main terrestrial “KUT” sources (40K,
the 238U decay series, and the 232Th decay series), which are
found in some quantity in most minerals, soils, asphalt, and
building materials. The background also contains the progeny
of 222Rn, which, while a major portion of the U-238 series,
can also be suspended in the air; and cosmic emission, which
takes the form of a power-law continuum and 511 keV line
emission. (The decay products of 220Rn from the 232Th series
can also escape from the soil and be suspended in air, but due
to the very short half-life of 220Rn compared to 222Rn, this
decay chain is a negligible contribution to the background.)
The reader is directed to [12] for a review of background
sources and [13] for thorough measurements and modeling of
the backgrounds encountered by a ground-based gamma-ray
detector system. Because the compositions of KUT in building
materials can vary by orders of magnitude [14] and the sizes
of buildings and other structures can also vary widely in urban
areas, urban radiological backgrounds can vary significantly,
even over distances as small as several meters [8].

In order to improve their sensitivity to sources of interest,
many recent detection algorithms focus on capturing the
background complexity through analysis of the full gamma-ray
spectrum instead of only a portion of the spectrum [15]–[19].
However, these algorithms are not yet close to the Poisson
statistical limit [19], presumably due to the temporal variability
of the background, which is difficult to compensate for. One
way to potentially improve the performance of detection
algorithms in urban settings may be to include some nonradio-
logical contextual information. The most extreme hypothetical
example would be an algorithm that is able to perfectly predict
the Poisson mean of the current background spectrum through
the use of contextual information. Spectroscopic algorithms in
this case should therefore be able to achieve the Poisson limit
of detection sensitivity. However, such a contextual algorithm
does not exist, and instead we assert that finding correlations
between contextual features and spectroscopic features, even if
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they are weak, could provide useful information to algorithms
that could allow them to improve their performance, e.g.,
by adapting their detection thresholds to the current back-
ground environment.

Some radiation portal monitor (RPM) research has focused
on the use of contextual information to provide cues for
detection algorithms. The advantage that portal monitors have
is that they are stationary, so any rapid changes in the
background must be due to shielding by the vehicles being
monitored [20] or radon washout. Sensors to detect the pres-
ence of vehicles are typically used to estimate background
suppression profiles as vehicles pass through the sensors [20],
[21]. In some cases, cameras for monitoring the location
of vehicles have been used, although to correlate particular
vehicles with sources and not to identify background varia-
tions [22], [23]. Rainfall sensors have been used with RPMs
to estimate the increases in the background due to radon
washout [24].

For mobile detector systems, the problem is more complex;
both the movement of the detector system itself and the move-
ment of objects in the scene around the system can change
the radiological conditions surrounding the detector. Previous
research has shown that by being aware of the city [25] or the
region within a city [8] that a mobile system is in can give
some idea about the distribution of backgrounds encountered.
Other research has focused on “clutter,” i.e., vehicles and peo-
ple near the detector system, which temporarily shield some of
the background emissions and depress measured count rates.
Using contextual sensors such as cameras and light detection
and ranging (LiDAR) units to detect nearby clutter can be used
to identify when an algorithm threshold should be increased
so as not to alarm on the changing rates [26]. One recent
attempt was made to train a deep neural network on panoramic
images to predict the measured spectrum, with some promising
results [27].

This work is a part of the modeling urban scenarios and
experiments (MUSE) collaboration [28], [29], where the radi-
ological multisensor analysis platform (RadMAP) vehicle [30]
was used to explore the connections between gamma-ray back-
grounds and various contextual sensors. Previous work using
RadMAP within MUSE consisted of analysis of panoramic
imagery at a small mock urban area (the Military Operations
in Urban Terrain or MOUT facility in Fort Indiantown Gap,
PA, USA, or FtIG) [31], for which numerous gamma-ray
ground truth measurements had been made [32]. This work
investigates applying methods developed for analyzing data
collected at the MOUT facility to data from a dense urban
area for which no ground truth data exists but which offers
realistic complexity and covers a much larger survey area.
An earlier version of this analysis was presented in [33], and
this version expands upon it by examining more spectral fea-
tures, quantitatively comparing the results of the correlations
between imagery and spectral features, discussing the results
in more detail, and discussing future prospects for this type of
analysis.

This article will discuss the preparation of the dataset
(Section II), the linear model used to guide the analysis
(Section III), the extraction of gamma-ray background features

Fig. 1. Cutaway view of the RadMAP vehicle (from [30]). The locations of
cameras and the NaI(Tl) array and the relevant dimensions between the two
sensor systems have been indicated.

(Section IV), the extraction of features from panoramic
imagery (Section V), and then a search for correlations
between the two feature sets (Section VI). Finally, the impli-
cations for detection algorithms and the development of
improved models will be discussed in Section VII.

II. RADMAP DATASET

The evaluation dataset used in this analysis consisted of data
from multiple sensors on board the RadMAP vehicle [30].
The RadMAP data offer a unique opportunity to explore
correlations between gamma-ray backgrounds and panoramic
imagery because of its large (1 m2) NaI(Tl) detector array
and two panoramic video cameras, which are shown in Fig. 1.
One long, continuous set of data was chosen for this analysis,
during which RadMAP traversed much of downtown Oakland,
California (Fig. 2). The data were taken on August 18, 2016,
from 11:12:42 to 11:52:42 Pacific Daylight Time (PDT) (UTC-
7), a total of 40 min. As in [31], images from the two
Ladybug3 panoramic cameras were down-sampled from the
maximum rate of 15 to 3 Hz so that the corresponding NaI(Tl)
spectra had no fewer than approximately one count per bin on
average, resulting in 7190 images from each camera being
considered. The panoramic images from each camera were
fused into a single panoramic image covering nearly the
entire scene around the vehicle. The rest of the preparation
of the contextual data followed the same procedure described
in [31] except for an improvement in the method used to align
radiation data with imagery, which is described below.

Because the panoramic cameras were located approximately
4.45 m forward on the vehicle from the NaI(Tl) array, spectral
and image data that are coincident in time do not necessarily
(and often do not) represent the same location in space, and
even a few meters can lead to a significant difference in back-
ground [8]. The typical speed of the vehicle varied between
0 and 10 m/s, implying that there is an inherent time delay of
at least 0.45 s between the imagery and spectra that must be
compensated for if they are to represent measurements of the
same location. Previously, this compensation was performed
using data from RadMAP’s Inertial Navigation System (INS),
specifically the Global Positioning System (GPS) coordinates



Fig. 2. Path taken by RadMAP during the evaluation dataset. (Map imagery:
Google.)

and heading, whereas in this work, the spatial alignment was
achieved by using RadMAP’s INS and two LiDAR units
to obtain a simultaneous localization and mapping (SLAM)
solution using Google Cartographer [34]. A SLAM solution
consists of two simultaneously derived objects, the pose of the
system (i.e., the 3-D position and orientation) at any timestamp
during the measurement and a 3-D model of the environment,
typically represented by a point cloud. The SLAM pose,
rotated and translated to fit the highest quality GPS points
with a least-squares optimization, is shown on the map in
Fig. 2.

The spatial alignment was achieved by converting the
timestamp of each panoramic image into a corresponding
range of timestamps for the list-mode radiation data generated
by the NaI(Tl) array. First, the pose solution was used to
calculate the distance traveled by the vehicle as a function of
time, denoted s(t). Next, each image was assumed to “cover”
the time range (t img

0 , t img
1 ) = t img ± (δt)/2 where t img is the

timestamp of the image and δt is the inverse of the frame rate
(1/3 s). The corresponding NaI(Tl) array timestamps were
calculated by solving s(tdet

0 ) − 4.45 m = s(t img
0 ) and the

analogous relationship for t img
1 . Note that the detector time

bins will not necessarily be of equal dwell time.
In order to ensure that the NaI(Tl) measurement was taken

before the scene had changed, image-spectra pairs were only
accepted if the delay between the image time and the NaI(Tl)
time was less than 2 s (tdet

0 − t img
0 ≤ 2 s and tdet

1 − t img
1 ≤ 2 s),

and if the duration of the NaI(Tl) measurement was less than
0.5 s (tdet

1 − tdet
0 ≤ 0.5 s). This cut reduced the number

of images and spectra from 7190 to 4198, primarily due
to times when RadMAP was stopped in traffic, often near
intersections.

III. METHODOLOGY

The main analysis of this work will be to relate gamma-ray
spectral features with features derived from the panoramic

Fig. 3. Schematic of the geometric definitions used in (1) and (2) relating
measurement i to the emission from the surface element subtended by
pixel k.

images. By “feature” we mean a scalar value that represents
a more complex data structure through some encoding scheme
to be determined. “Spectral features” (denoted y) will be one
or more scalar values with units of counts per second that
are derived from a single gamma-ray spectrum, and “image
features” (denoted R) will be one or more scalar values with
units of area derived from each image.

Spectral features and gamma-ray flux from the environment
are assumed to be related through a simple model. The model
is based on three assumptions: 1) all spectral features and
gamma-ray emissions are nonnegative; 2) the intensity of a
measured spectral feature is a linear combination of the inten-
sity of emission from all visible material in the environment
surrounding RadMAP; and 3) material that belongs to the same
visual category has identical gamma-ray emission. Assumption
1) must be true because of the physical properties of gamma-
ray emission, while assumption 2) is only an approximation
to reality because of the effects of scattering between visible
objects, shielding of emission from objects that are not visible,
and downscatter in the air. The third assumption is the weakest,
given the wide ranges of KUT concentrations in soil and
building materials [14]; however, it is possible that within a
single urban area the variations in KUT might not be that
large. Since the model requires that each spectral feature be
fully explained by a linear combination of nonnegative fluxes,
as a consequence, the model has an intercept of zero. Here,
we will explain the model in anticipation of the analysis later
on in Section VI.

We start with the detector being surrounded by a series of
solid surfaces and the sky, which we will simply model as
a fictional solid surface at a distant radius. The panoramic
images divide the world around the detector into the small
segments subtended by each image pixel, and each image
pixel k subtends some solid angle element ��k . During
measurement i , the pixel subtends some surface area element
�aik at distance rik and angle θik from its normal. Fig. 3 shows
the geometry we are considering and Table I summarizes the
indices that will be used throughout.

We then assume gamma-ray emission of some type j is
emitted from surface element �aik with photon current φi jk

(photons per second per area). An emission type may be
comprised of a characteristic distribution of photon energies,



Fig. 4. Schematic of the process of extracting features from the spectra and images and then comparing the features through fitting a linear model with
coefficients φ j�. The ith spectrum xi is a vector of counts in each energy bin, and �ti is its time duration. Spectral features yi j have units of counts per
second, and image features Rij� have units of area, leaving the photon currents φ j� with units of counts per second per area.

TABLE I

DESCRIPTION OF THE INDICES USED IN THIS ARTICLE

so any energy-dependent quantity will need to be indexed by
j . We will also assume that surfaces are solid objects that
are multiple photon scatter lengths thick (so the differential
photon current in units of photons per second per area per
solid angle is proportional to cos θik). Letting A jk be the
effective area (geometric area times efficiency) of the NaI
array for emission type j in the direction of image pixel k,
assuming the surfaces are in the far-field (i.e., r2

ik � �aik

and r2
ik � the area of the array), and neglecting attenuation

and scattering from the air, then the measured count rate of
emission type j is obtained by summing over all of the surface
elements

yi j ≈
�

k∈pixels

A jk
�aik cos θik

πr 2
ik

φi jk (1)

≈
�

k∈pixels

A jk
��k

π
φi jk. (2)

Notably, the quantity �aik cos θik/r2
ik loses any depen-

dence on the geometry and orientation of the surface
element to become simply the solid angle element ��k

subtended by each image pixel k. (Note that (1) in our
previous work [31] contains an erroneous factor of 2π in
the denominator that we have corrected to π here. This
factor comes from the normalization for the differential photon
current over the half unit sphere, which is

��
cos θd� =� 2π

0

� π/2
0 cos θ sin θdθdφ = π .)

We will identify the quantities yi j as gamma-ray spectral
features with units of counts per second. These features are
calculated independently of the panoramic imagery from the
i th spectrum xi , a vector of counts in each energy bin, and
its time duration �ti . For example, spectral feature extraction
could be done using a linear model, e.g., yi j = U�j xi/�ti for
spectrum xi and some matrix U j .

Letting the semantic label for each pixel of every image
be denoted Lik , and if we assume that the photon currents
φi jk are identical for identically labeled pixels across all the
measurements (so that φi jk only needs to be indexed by
emission type j and label �), then this model further reduces
to

yi j =
�

�∈labels

⎡
⎣ �

k∈pixels

A jk
��k

π
δLik ,�

⎤
⎦φ j� (3)

≡
�

�∈labels

Ri j�φ j�. (4)

Once a scheme for extracting spectral features yi j and a
scheme for labeling the panoramic images have been chosen,
the image feature tensor Ri j�, which describes the spectral
response to each kind of image label, can be calculated and the
linear model solved for the photon currents for each label φ j�.
Fig. 4 presents a conceptual model of this methodology.
The following sections will explain the calculation of yi j

(Section IV) and Ri j� (Section V), and the fits of the linear
model will be examined in Section VI.

IV. GAMMA-RAY SPECTRAL FEATURES FROM NMF

There are many choices one could make to extract fea-
tures from measured gamma-ray background spectra. Simple
examples of such features are the gross counts or counts in
certain regions of each spectrum, while more complicated
examples could use principal component analysis (PCA) [35]
or convolutions with wavelets [36]. To preserve the physical
basis of the linear model, we are interested in nonnegative
features only. Previous work has shown nonnegative matrix
factorization (NMF) [37], [38] to be a useful full-spectrum rep-
resentation for gamma-ray background spectra [19], yielding
physically relevant spectral features for vehicle- and aircraft-
based systems [31], [39], so we will continue with that
approach here.

Three different versions of NMF models will be discussed
in more detail in Sections IV-A–IV-C, but first are a few
general details on how we prepared our dataset for NMF.
The NMF models generated in this section were trained
using 3-Hz NaI(Tl) spectra from RadMAP measured in the
same area of downtown Oakland as the evaluation dataset,
on August 18 and 22, 2016, and part of the training data
includes the route in the evaluation dataset. (Note that although
there is temporal overlap with the evaluation dataset, the



Fig. 5. Diagram of the NMF decomposition [see (5)] describing the matrix dimensions and the interpretation of the columns of each of the matrices.

training dataset is larger and binned evenly in time.) Three
nuisance sources were scrubbed from the training set by
coarsely binning the data into seven bins (boundaries at 50,
80, 100, 150, 300, 700, 1200, and 3060 keV) and applying
the spectral comparison ratio anomaly detection (SCRAD)
method [10], [40] with an exponential weighting parameter
of 0.01. All three nuisances found were encountered on
18 August but were outside of the time range of the evaluation
dataset. The final training dataset consisted of 18 569 spectra
totaling 6190 s.

A. NMF Decomposition With Poisson Loss (NR)

The list-mode gamma-ray event data from the NaI(Tl) array
on RadMAP were histogrammed in time and energy. The
energy bins were such that the widths were proportional to
the square root of energy but broken into two spacing groups:
120 bins from 50 to 3000 keV and 10 bins from 3000 to
4500 keV. The spectra are arranged as the columns of an m×n
matrix X, with m = 130 the number of spectral bins and n =
18 569 the number of time intervals.

A d-component NMF decomposition is a linear decompo-
sition of the spectra of the form

X ≈WH (5)

where W is an m × d matrix whose columns are the spectral
components and H is a d × n matrix whose rows are the
component weights. Fig. 5 shows a diagram of the matrices
in (5). Equation (5) is solved by minimizing the negative log
likelihood of X given X̂ ≡WH assuming Poisson statistics

− log L(X|W, H) =
��

X̂− X� log
�

X̂
	
+ log X!

	
(6)

where � denotes element-wise multiplication, the natural
logarithm and factorial are applied element-wise, and the sum
is over all matrix elements. To find an NMF solution, the
multiplicative update rules from [38], [41] can be used

W ← W �

�

X
WH

� ·HT

1m,n ·HT


(7)

H ← H�



WT · � X
WH

�
WT · 1m,n


(8)

where 1m,n is an m × n matrix of ones. To preserve the nor-
malization of the columns of W, the following renormalization

is done at each step:
D ≡ diag

�
W� · 1m

�
(9)

W ← WD−1 (10)

where 1m is a length-m column vector of ones and diag creates
a diagonal matrix from a column vector.

A series of NMF models were trained using the multi-
plicative update rules without any further regularization. Since
the multiplicative update rules are only guaranteed to find
a local, not necessarily global, optimum [41], the initializa-
tion of the model can influence the final result, and in the
high-dimensionality cases considered here and in related work,
the initialization appears to always affect the result. These
models were initialized by setting the components to the mean
spectral shape, with small random numbers between 0 and
10−6 added to break the degeneracy between them. In addition,
since NMF models have no preferred order of the components,
for ease of comparison between models, the components were
sorted in order of increasing variance of their weights, i.e.,
by the row-wise variance of H. This same NMF approach
was taken in [39].

The models that result from this procedure we will denote
NR-d (for no regularization, with d components). The first
column of Fig. 6 shows the results of these unregularized
models for d = 2 to 4 components when allowed to con-
verge until the difference in −(log L)/n between subsequent
iterations is less than the arbitrary level of 10−9. Of note is
that for all three models, exactly one component contains
the cosmic continuum above 3 MeV, and each of these
components also uniquely displays a slight 511 keV line,
which is expected from cosmic emission. For all models, this
component is always the component with the lowest variance
of its weights (i.e., component 0). Also worth noting is that
all of the components have different shapes for the low energy
continuum “roll off” around 100 keV. For the two- and three-
component models, all of the components display all of the
prominent lines from the KUT background sources, whereas
for NR-4 they do not—e.g., component 0 lacks prominent
238U series lines, component 2 lacks the prominent 232Th
series line at 2614 keV, and component 1 lacks the 40K line
at 1460 keV. Additionally, particularly for NR-4, different
ratios of the KUT background sources are clearly seen, with
higher 40K in component 3 and higher 238U and 232Th series
in component 1. These observations imply that NMF is able



Fig. 6. Spectral components found by the various NMF approaches explored for two, three, and four components. In each plot, the average measured
spectrum in the training dataset (black) is compared to the NMF components, each scaled by their mean weight. In addition, for the CR-d models, the power
law used in the regularization function is shown.

to capture spectral features that arise from physics, but the
various spectral features are not necessarily correlated across
the different decompositions. For example, the high energy
cosmic continuum is present in component 0 for all the NR
models, but the component that has the highest mean count
rate at 100 keV is different for each model (components
0, 1, and 2, respectively). Evidently, the dynamic range of
KUT backgrounds encountered is not enough to more cleanly
separate the KUT spectra from each other.

B. Cosmic Component Regularization

On its own, NMF does not contain any physics; it is a
mathematical method for finding structure in the training data.
However, physical priors and constraints, if expected to have
relevance to the model, can be encoded in the training process
in the form of regularization functions. Here we will present
one such physical prior—namely, that one of the components
should represent cosmic ray-induced gamma-ray emission, and
the remainder only terrestrial emission.

Attempting to isolate a cosmic component may be worth-
while for the following reasons. First, we know that a cosmic
component is present in the data because any detector exposed
to the atmosphere will measure some background due to
cosmic rays. Second, the shape of the cosmic emission can
be partially estimated from the region above 3 MeV because
there are negligible contributions in that spectral region from
terrestrial emission. Third, repeatedly training with randomly
initialized NMF models usually results in a model where the
spectrum above 3 MeV is nearly entirely contained in only one

NMF component (e.g., the NR models in Fig. 6 all display this
behavior).

Regularization to isolate the KUT components from each
other was also attempted, but these results were less conclusive
than for the cosmic component. Profiles for each of the KUT
emission types were derived from simulations and used in
a similar manner to what will be described for the cosmic
regularization, however, these attempts have led to nonphysical
shapes at low energies, e.g., components where the counts
in the spectrum below 300 keV decrease with decreasing
energy more rapidly than expected. Another issue with KUT
regularization is that the training dataset itself appears to
comprise an area with a limited range in the ratios of K, U,
and T, so there is not enough data to support cleanly separating
those background sources from each other.

Here we will initialize an NMF component meant to repre-
sent cosmic emission and describe the regularization and final
results from training such models. The models that result from
this treatment will be denoted CR-d .

1) Initialization: The cosmic component has been observed
to consist of a continuum described by a power law with
an index of ≈1.3 and 511 keV emission from pair produc-
tion [13]. The power-law index can be estimated from the
spectrum above 3 MeV because energy deposition events
above the 208Tl line at 2614 keV are almost entirely due to
cosmic rays and cosmic-induced gamma rays. A weighted
least-squares fit of the data in the ten spectral bins above
3 MeV was performed using a power-law model, resulting
in a power-law index of 1.22. Although we do not expect
the entire cosmic spectrum to follow this power-law shape



Fig. 7. Average background spectrum in the training data shown with the
provisional cosmic and terrestrial components used to initialize the NMF
model. The solid line denotes the portion of the cosmic power law used for
the regularization function f1.

because changing detector efficiencies will cause a “roll off”
at the lowest energies and we have not yet included the
expected 511 keV emission, we nevertheless extrapolated this
power-law fit to all spectral bins and normalized it to unity
to generate the provisional cosmic component wcos. The first
column of W was initialized to wcos.

For the sake of initialization, an ansatz was made that
the count rate of the cosmic component be approximately
constant for all measurements. The constant weight hcos

was calculated as the average number of total counts above
3 MeV in X divided by the sum of the portion of wcos

above 3 MeV. The entire first row of H was initialized to
hcos. The provisional cosmic spectrum wcos times the average
cosmic counts hcos is compared to the average spectrum in
Fig. 7.

After the first column of W was initialized to wcos, the
following procedure was followed to initialize the remaining
d−1 components. First, the noncosmic spectrum (assumed to
be largely terrestrial) was estimated

Xterr = X− (wcos ⊗ 1n)hcos (11)

where ⊗ denotes the outer product. Any negative values
encountered were clipped to zero. The terrestrial rates hterr

were calculated as the sum over the columns of Xterr, while
the terrestrial component wterr was calculated by summing Xterr

over its rows and dividing by the sum of hterr . Fig. 7 shows
the resulting terrestrial component wterr times the average
terrestrial counts h̄terr compared to the average spectrum.

For all d ≥ 2, the remaining d − 1 columns of W were
initialized with wterr, and the remaining d−1 rows of H were
initialized with hterr/(d − 1). Small random numbers between
0 and 10−6 were added to these rows and columns to avoid
degeneracy between these components.

2) Cosmic Regularization Functions: With the provisional
shapes of the cosmic and terrestrial components now esti-
mated, we would like regularization functions that preserve the
power-law shape of the cosmic component during training and
keep the majority of events above 3 MeV in that component.
Two regularization functions were added to the loss function

	(W, H) = − log L(X|W, H)+α1n f1(W)+ α2n f2(W) (12)

where α1 and α2 are dimensionless regularization parameters,
n is used to account for the number of training spectra, and
f1 and f2 are the additional penalty functions.

The f1 regularization term is used to compare the shape
of the first column of W with wcos. We chose to use the
symmetric Kullback–Leibler (KL) divergence [42] since it is
a natural metric for comparing the shape of two normalized,
nonnegative distributions. For example, this divergence has
been used in the analysis of hyperspectral data to match
NMF components with laboratory-measured spectra [43]. The
symmetric KL divergence between normalized vectors p and
q takes the form

DS(p, q) =
�

i

(pi − qi) log

�
pi

qi

�
. (13)

Since we desire that the cosmic component maintain its
power-law shape at high energies, but we are uncertain what
the shape will be at low energies (in fact, the NR models
indicate we should anticipate a 511 keV peak feature), we only
apply the penalty to the components of the first column of W
that are above 1250 keV. The exact form of f1 and the positive
and negative terms in its gradient (∇+1 and −∇−1 ) are given in
the Appendix.

The f2 regularization term is used to suppress the contri-
butions above 3 MeV by any components except for the first
column of W. This regularization is needed as pressure to
keep the cosmic contribution entirely in the first column of W,
since f1 on its own does not guarantee that desired property.
For f2 we chose the sum of W over the nominally terrestrial
rows and spectral bins above 3 MeV. The exact form of f2 and
its gradient (∇+2 ) are given in the Appendix.

In the presence of regularization terms, the multiplicative
update rules for NMF can be modified to include the gradients
of the regularization terms (e.g., [44]). The multiplicative
update rule for W [see (7)] is changed to

W←W �

 � X

WH

� ·HT + α1n∇−1
1m,n ·HT + α1n∇+1 + α2n∇+2


(14)

where ∇+ are the positive and ∇− the negative parts of the
gradients (see appendix). This change means that the NMF
solution continues to approximately follow the negative gradi-
ent of 	 while maintaining nonnegativity, however, values of
α1 and α2 that are too large can lead to an overprioritization of
the regularization functions relative to the Poisson likelihood.
To keep the regularizations from having an undue influence
early on during the training, we delayed the application
of the regularization terms until after 500 iterations of the
multiplicative update rules so that gradients of the Poisson
loss were first able to stabilize. We chose α values by starting
with small values and increasing them until there was a small
but noticeable effect on the shapes of the components relative
to their unregularized counterparts after 10 000 iterations.
We found that α1 = 10−2 and α2 = 10+1 were suitable to
meet this goal.

3) Cosmic Component Training Results: The final results of
cosmic component initialization and regularization are shown
in the middle column of Fig. 6 as CR-d for d = 2 to 4. These



models show that component 0 is consistent in shape even as
the number of NMF components is increased. Even though the
regularization is only applied above 1250 keV, the shape of
component 0 below that energy is remarkably similar across
the models, and all components show the expected 511 keV
emission line from atmospheric positrons, which was not an
engineered feature.

Also of note is that, similar to the NR models, as the
number of components is increased, different KUT ratios are
captured by the components, although now the KUT variations
are all relegated to the noncosmic components. For example,
in CR-4, component 3 has a high amount of 238U and 232Th
series lines relative to the other components. Some of the
non-cosmic components even resemble the NR components,
such as CR-3 components 1 and 2, which look similar to
NR-3 components 1 and 2, respectively.

C. Maximizing the Covariance of the NMF Weights (WR)

Finally, the third class of NMF models, which we shall refer
to as weight covariance regularization (WR-d), was generated.
Rather than using physics to inform the spectral shape (W),
this regularization applies a desired mathematical property to
the temporal evolution of the weights (H). For example, if we
assume that the features arise from spatially distinct sources
of radiation in the environment (e.g., soil versus buildings),
we might expect them to evolve somewhat independently of
one another over time.

To put this property in mathematical language, we cal-
culated the row-wise mean of the weights H, which is
(1/n)H1n,n, and then the row-wise covariance of H

var[H] = 1

n

�
H− 1

n
H1n,n

��
H− 1

n
H1n,n

��
(15)

= 1

n
HCC�H� (16)

= 1

n
HCH� (17)

where C = I− (1/n)1n,n and we have used the fact that C is
both symmetric and idempotent, meaning CC� = C2 = C.

We want var[H] to be as diagonal as possible since that
would mean the rows of H vary independently. There are
multiple ways to apply regularizations to achieve this goal.
Following a similar constraint in local NMF (LNMF) [45],
the trace of the covariance matrix was maximized. This choice
allows the regularization function and its gradient (calculated
symbolically using [46]) to take the forms

f3(H) = −1

n
tr
�
HCH�

�
(18)

∂ f3

∂H
= −2

n
HC (19)

and the positive and negative parts of the gradient become
∇+3 = (2/n2)H1n,n and ∇−3 = (2/n)H. As before, the NMF
models were trained using a modified multiplicative update
rule (the analogous version of (14) for H, including weighting
f3 with a factor of n). This regularization was applied to
the same training data with a coefficient α3 = 10−7, arrived
at using the same heuristic as previously. Once again, the

regularization was not applied until after 500 iterations of the
multiplicative update rules.

The results of applying the WR to the training data for 2 to 4
components are shown in Fig. 6. Compared with the NR and
component regularization (CR) models, the cosmic continuum
above 3 MeV is shared more between multiple components,
except for WR-4 where component 0 contains most of it. The
two components of WR-2 look more similar to each other than
those of the other two-component models (these components
will be examined further in Section VI-C). Component 0 of
WR-3 seems to contain mostly KUT emission, while the
other two components of WR-3 are similar mixtures of KUT
but differ in the low energy shape. Finally, WR-4 seems to
break the spectra into cosmic emission (component 0), a sharp
low energy continuum that resembles skyshine (i.e., emission
downscattered in the air from distant sources, which has its
largest contributions below 200 keV [13]) in component 1, and
two similar KUT components (2 and 3) that seem to differ
mostly in the relative amount of 40K.

D. Extracting Spectral Features Using the NMF Models

Finally, all the NMF models W (WNR−2, etc.) obtained in
Sections IV-A–IV-C using the training data were applied to
the evaluation dataset from August 18, 2016, to generate new
NMF decompositions (e.g., HNR−2). These decompositions
were performed by holding each model’s component matrix
W fixed and minimizing (6) to obtain the weight matrix H,
i.e., by performing repeated applications of the multiplicative
update rule for H [see (8)]. The various regularization func-
tions were only used during the respective training processes
and not during this step. The final result for a d-component
NMF model is that the m × n matrix of spectra (m = 130 and
n = 4198) is reduced to the d × n matrix of weights H, or in
other words that the spectral data are reduced to d feature
vectors of length n.

In addition, the NMF weights have measurement uncertain-
ties due to Poisson statistics that will be needed to properly
weight the different models later when being fit to the image
features. To estimate the uncertainty of each element of H,
we use the Fisher information in the following manner. For
each measurement xi (the i th column of X), we will call the
d corresponding best-fit weights hi , i.e., the i th column of H.
Since hi was determined using maximum likelihood, which is
to say

hi = arg max
h

log L(xi |Wh) (20)

then the covariance of hi can be approximated using the
inverse of the observed Fisher information matrix

Fi ≡ − ∂2 log L

∂h∂h

����
hi

(21)

= W�diag

�
xi

(Whi )
2

�
W. (22)

So, the covariance of hi is approximately

var[hi ] ≈ F−1
i (23)



Fig. 8. Creation of semantically labeled panoramic images. The original
stitched panoramic image (top) is labeled using the DeepLabv3+ model
(middle). The classes that can be seen in this image are sky (light blue),
building (brown), road (dark gray), sidewalk (light gray), vegetation (green),
car (yellow), person (magenta), pole (purple), and traffic sign (light green).
The foreground region is masked out in the middle image. The bottom image
is the result of using the vehicle pose to transform nearby labeled images
to estimate the missing foreground region and thus obtain a label for all 4π
steradians around the vehicle.

and for simplicity the standard deviation of each element of h
was approximated as the square root of the diagonal elements

σ hi ≈
�

diag
�
F−1

i

�
. (24)

Then call �H the matrix with the same dimension as
H where column i is σ hi . These uncertainties are used in
Section VI.

V. FEATURES FROM PANORAMIC IMAGERY

In [31], the panoramic images were labeled according to
known visual classes at the FtIG MOUT facility, such as
asphalt, concrete, gravel, red building, brown building, etc.
This class selection was motivated by the small variety of
visual classes at the facility as well as the extensive ground
truth measurements of those materials, which revealed relative
uniformity within several of the visual classes [32].

For this dataset, since no ground truth exists but also
because there are many possible visual classes, we decided
to use other tools to label the imagery. To do so, we took
advantage of recent advances in machine learning for

TABLE II

REDUCED SET OF EIGHT CLASSES MADE BY COMBINING
DEEPLABV3+ IMAGE CLASSES

the semantic segmentation of urban scenes by using a
DeepLabv3+ model [47] trained on the Cityscapes
dataset [48]. The model applies 19 separate labels: flat
horizontal regions (road, sidewalk), humans (person, rider),
vehicles (car, truck, bus, train, motorcycle, bicycle), vertical
structures (building, wall, fence), small structures (pole,
traffic light, traffic sign), nature (vegetation, terrain), and
sky [48]. The results of the segmentation of one RadMAP
panoramic image from the Oakland dataset are shown
in Fig. 8. Although the model was trained on standard
projection images, the results show that the model can still
correctly identify many features of the panoramic images,
so no retraining of the network was performed (although
ideally such work should be performed in the future). The
accuracy of the model observed elsewhere was 82.1% when
measured as pixel intersection-over-union and averaged over
all the classes in the evaluation [47]. The misidentifications
present in Fig. 8 are fairly typical of the quality of labeling
observed throughout the present work (e.g., sometimes clouds
are mislabeled as building or vegetation, which may be due
to the panoramic projection). As in [31], labeled images close
in time and the relative motion of RadMAP were used to
fill in the masked-out foreground region at the bottoms of
all the images. Because some classes were rare, the number
of classes was reduced from 19 to eight as summarized
in Table II.

With labeled images providing Lik , the image feature tensor
Ri j� can be calculated using (4). As in [31], when calculating
these features, the solid angle element of each pixel ��k was
increased in the bottom half of the image to account for the
vertical displacement of the cameras, which were appreciably
higher than the array. In addition, the effective area A jk was
derived from Monte Carlo simulations as described in [31],
where the shapes of the NMF components were used to form
a weighted sum of the effective areas calculated at a variety
of discrete energies.

VI. CORRELATIONS BETWEEN IMAGE

AND SPECTRAL FEATURES

This section will explain how weighted nonnegative least
squares was used to fit the linear model in (4) to the evaluation



dataset, which figures of merit were used to analyze the results,
and what those results might indicate about the connections
between the spectra and contemporaneous imagery.

A. Fitting NMF Weights With the Linear Model

The linear model in (4) was fit in the following manner. For
each NMF model, the linear model was fit to each of the rows
of H independently of one another. Specifically, for a given
NMF model WH (fit to the evaluation dataset according to
Section IV-D), the following steps were performed for each
feature j :

1) For feature j , choose the j th column of W (w j ) and the
j th row of H (h j ).

2) Estimate the effective area A jk for spectral shape w j

and the image feature tensor Ri j� as described earlier.
Since j is fixed, call the resulting 2-D matrix R j .

3) With j fixed, the 2-D spectral feature tensor yi j in (4) is
a 1-D feature vector y j . Identify the count rates h j/�t =
y j as this feature vector.

4) Using Section IV-D, estimate the uncertainty of y j and
call it σ j = σ h j /�t, where σ h j is the j th column of
�H.

5) Fit the linear model y j = R jφ j using nonnegative least
squares weighted by σ j , finally obtaining the photon
currents φ j and the fit ŷ j .

The weighted nonnegative least-squares fit was performed
using Lasso (least absolute shrinkage and selection operator)
regression, which is implemented in scikit-learn [49].
Lasso performs nonnegative linear regression while trying to
minimize the number of nonzero coefficients in the solution,
i.e., enforcing sparsity on the solution. The sparsity parameter
was empirically set to 0.1, which had the effect of forcing
the fits to use approximately four out of the eight total image
features.

B. Results of Linear Model Fits

In order to assess the quality and physical relevance of each
fit, multiple statistics were considered.

First, in order to understand the prominence of individual
image features within each fit, the fraction of the fit from
each image feature was calculated. For measurement i , NMF
feature j , and image feature �, this fraction is

f j� =
�

i Ri j�φ j��
i ŷi j

. (25)

In addition to the fraction made up by each image feature,
three goodness-of-fit metrics were considered to assess how
well the fits represent the data. The reduced chi-squared
statistic (χ2

ν ) was chosen as a standard statistical measure
of goodness of fit, however, a model with large weight
uncertainties (σ h) can lead to an acceptable χ2

ν value but an
uninformative model. To also provide a sense of how well
the model follows trends in the data, the Pearson’s correlation
coefficient was calculated between the image features and a
smoothed version of the data. Finally, the usefulness of the
model in predicting the count rates of each feature using

the imagery was calculated using the root mean squared
deviation (RMSD).

The reduced chi-squared statistic is

�
χ2

ν

�
j
= 1

n

�
i

�
yi j − ŷi j

�2

σ 2
i j

(26)

and has an expected value of unity for a model that perfectly
describes the data. Technically, the degrees of freedom are not
n but could be as few as n − 8 depending on the sparsity of
the linear model, but since n is so large this difference was
ignored.

The second metric is Pearson’s correlation coefficient r ,
to measure how closely the model count rate correlates with
the count rate from the NMF weights

r j =
�

i

�
ỹi j − μ

�
ỹ j

���
ŷi j − μ

�
ŷ j

��
��

i

�
ỹi j − μ

�
ỹ j

��2
��

i

�
ŷi j − μ

�
ŷ j

��2
(27)

where ỹ j is obtained by smoothing y j using a boxcar kernel of
width 5 and μ[·] is the sample mean over all n measurements.
This filtering, which smooths the data over a timescale of at
least 1.67 s, was done to reduce the influence of statistical
fluctuations on r . The values r can take range from −1
(perfectly anticorrelated) to +1 (perfectly correlated).

The third metric is the RMSD, for a measure of each
model’s prediction error

RMSD j =
�

1

n

�
i

�
ỹi j − ŷi j

�2
(28)

where ỹ j is once again the smoothed y j .
The results of fitting all of the NMF models are shown

in Fig. 9, which displays the fraction of the fits made up
by each of the image features as well as the goodness-of-
fit metrics. It is immediately apparent that the vast majority of
the fits are not objectively good (i.e., the null hypothesis can
be rejected with high confidence), since all but five of the χ2

ν

values are too large given the number of degrees of freedom,
which, at approximately 4198, would require χ2

ν > 1.05 to
reject the null hypothesis at the 10−2 level). In addition, the
RMSD values, which range from 27 to over 2200 counts per
second, indicate that the fits frequently under-predict and/or
over-predict the spectral features. (For comparison, the mean
gross count rate is 10 056 counts per second.) Even the five
models with acceptable χ2

ν values have some of the largest
RMSD values. This comparison of RMSD and χ2

ν values
reveals that the NMF-WR models, probably as a side effect
of the regularization itself, are creating inflated values of σ h

and thus appear to be good fits in a χ2
ν sense but in fact have

a high prediction error (RMSD value). From these metrics,
we can conclude that the linear model approach of relating
spectral and image features is not statistically correct, and a
more complex model or different features would be needed
for greater goodness of fit and lower prediction error.

On the other hand, the correlation coefficient r reveals
that all models have positive correlations between the image
features and the NMF-derived spectral features, ranging from
weak (0.08) to somewhat strong (0.76). Of particular interest



Fig. 9. Results of Lasso fits the evaluation RadMAP dataset for all of the NMF models considered. Shown in grayscale are the fractions of each fit made
up by the image class, along with the goodness of fit as measured by the reduced χ2 statistic (red), correlation coefficient (green), and root-mean-squared
deviation (blue). Darker shades indicate better performance or stronger correlation, whichever is appropriate. The goodness-of-fit metrics represent how well
the temporal evolution of the spectral features matches the linear model.

are those models indicative of strong correlations, and espe-
cially those with both the largest r values and the largest
fractions of the fits made up of a single image feature f j�.
Though the overall fit may be statistically or predictively poor,
if a large fraction of the fit is made up of a single image
feature, that is an indication that the spectral data still correlate
with that image feature in a meaningful sense. For example,
each model except d = 1 has at least one component with
a fit comprised of a significant fraction (>30%) from sky.
The component with the largest fraction from sky is always
the component that contains the largest amount of emission
over 3 MeV, as can be seen in Fig. 6, and it also tends to
be the lowest-variance component (0). This finding comports
with the prediction that atmospheric emission should have
some connection to the sky feature, and that of the natural
background sources, cosmic emission has the most stable flux
and composition.

Further examining the fractions from sky, we can see that
cosmic regularization, which was designed to produce an NMF
component 0 that has a shape consistent with cosmic emission,
does not enhance this fraction in the CR-d models when
compared to the other models—component 0 in the equivalent
NR-d and WR-d models counterintuitively have a similar
or greater fraction from sky. The process of regularization,
however, does force the component’s spectral shape to be
consistent across different values of d .

Besides sky, other features that have significant fractions
are road and building. Of particular note is that building
has some fraction values near and over 50% (e.g., NR-3
component 2 and WR-2 component 1). The components
with large fractions of these image features tend to have

low fractions from sky, suggesting that these correlations
are due to a difference between atmospheric and terrestrial
emission.

The models exhibiting the largest fractions for both sky and
building are the two- and three-component NMF models with
WR (WR-2 and WR-3). We will examine WR-2 in further
detail, since each of its two components has a large fraction
associated with a single image feature. For this model, both
NMF components have large fractions explained by image
features—component 0 has a 79% fraction from sky, and
component 1 has an 87% fraction from building. These fits and
their breakdown by image feature are shown in Fig. 10, with
a comparison to fit the simplest model, NMF-NR-1, which
is just the gross count rate. Although there are significant
departures between the data and the fits (which is the subject
of Section VI-C), the general trends in both are strong.

C. Examination of WR-2

The WR-2 model will be further examined here, both for
its spectral component shapes and when the linear model fit
when the linear model fit is poorest.

1) Spectral Component Shapes: The two components of
this NMF model are shown in Fig. 6. Fig. 11, which shows
the two components rescaled to match in the region around
1460 keV, reveals that they have a similar shape between
500 and 2800 keV. The main contrasts between the compo-
nents are that component 0 has relatively increased rates above
3 MeV, below 200 keV, and also near 511 keV. To draw these
differences into sharper contrast, the two scaled components
are subtracted from each other and shown in Fig. 11. The



Fig. 10. Results of Lasso fits NMF component weights from model WR-2 (middle and bottom). For comparison, the Lasso fits the single component of
NR-1, which are the gross counts, is also shown (top). The spectral features from NMF, shown in black, are smoothed with a boxcar filter of width 5 to
improve clarity, but the residuals are not smoothed. Image features with coefficients of zero (due to Lasso’s sparsity regularization) are not shown.

shape of this difference spectrum is strikingly similar to the
cosmic-regularized component (component 0) of the CR-d
models in Fig. 6. This finding suggests that the difference
between the two WR-2 components is that component 0 con-
tains an additional amount of cosmic and skyshine emission
in addition to the terrestrial, skyshine, and cosmic emission
shared by both components. Therefore, component 0 may
represent emission that has relatively more “distant” emission,
and component 1 may represent emission from relatively more
“nearby” emission, although both include a mixture of all
emission types. Though different kinds of regularizations have

been applied to obtain many different NMF models, this
cosmic and skyshine spectrum and its association with sky
consistently emerge from this analysis.

2) Discrepancies Between Fits and NMF Weights: Examin-
ing the weights of WR-2, it is clear from Fig. 10 that there are
certain regions where the fit and the data significantly diverge.
The largest discrepancies were examined to see if there were
consistent explanations for why the models may have failed
in a manner consistent with their assumed (more distant
versus more nearby) origins. The twelve regions containing
the largest RMSD values were identified and the index of the



Fig. 11. Difference between the two components of NMF-WR-2, after scaling
the components to be the same in the 1460-keV region. The resulting spectrum
resembles the cosmic components of the NMF-CR models.

Fig. 12. Panoramic images at the times when the linear model under-predicts
the spectral features from component 0 of WR-2. Intersections (top) and plazas
or open fields (middle—the orange color is the terrain label) are common
scenarios that occur when the model under-predicts. One large discrepancy
was seen when a large tree obscured the sky behind it (bottom). DeepLabv3+
labeling is overlaid as transparency.

maximum was recorded. In many, but not all, cases, a plausible
explanation could be found for the differences.

For component 0, the twelve largest discrepancies where the
fit under-predicted the NMF weights were found and examined
(these discrepancies are in raw count rate, not σ residual).
In nine of these cases, the panoramic images showed that
the vehicle was either in the center of an intersection or
adjacent to a large open lot or plaza (see top and middle
images in Fig. 12 for examples). In these scenarios, buildings

Fig. 13. Panoramic images at the times when the linear model under-predicts
the spectral features from component 1 of WR-2. Trees (top) or large
vehicles (middle) can visually obscure emission from buildings, as can errors
in the labeling of buildings (bottom). DeepLabv3+ labeling is overlaid as
transparency.

are farther away from the sides of the vehicle, which breaks
up the typical “urban canyon” scenario found in the dataset,
and so more distant, downscattered terrestrial emission such
as skyshine might be expected due to greater exposure to the
distant roads and terrain. At the same time, the portion of
the image subtended by sky may increase somewhat when
in these locations, but the increase might not fully capture
what is actually a 3-D phenomenon that should include,
e.g., scattering in the air from distant terrestrial emission
(see [50] for the development of a 3-D emission model).
In one of the other cases, a large tree obscured the open
sky behind it, thus leading to a much lower estimated con-
tribution from sky than if the tree were not there, presum-
ably without commensurate attenuation by the tree (bottom
images in Fig. 12). In two other cases, there were no clear
explanations.

The 12 largest discrepancies where the fit over-predicted
the component 0 weights were also examined. In six of these
cases, the vehicle was directly adjacent to a large building on
its right side, which is the side of the NaI array with a larger
effective area. The other six cases offered no obvious common
features, and, in general, it is not known what the main reasons
for these over-predictions are.

For component 1, the same inspections were performed of
the top 12 discrepancies caused by model underprediction.



There were five cases where a large foreground object
obscured a building behind it (four were trees and one was
a large truck). Two such examples are shown in the top and
middle images of Fig. 13. It is likely that those particular
objects do not fully attenuate the emission from the buildings
that is passing through them, and since the model coefficients
have low photon currents from vegetation and vehicles and
people, there is a net deficit in the model prediction. These
cases thus reveal another weakness in using 2-D imagery
alone instead of a 3-D model (see [50]) that could account
for material present behind the foreground objects. Two other
cases involved encounters with two different facades of the
same building, a possible indication that that particular build-
ing likely comprises material with higher concentrations of
radioactive material than other buildings in the area. The last
two cases involved the DeepLabv3+ model’s mislabeling of
large parts of the buildings as vegetation or vehicles and
people, thus decreasing the linear model’s prediction (e.g., the
bottom image of Fig. 13).

Of the dozen cases where the model over-predicted com-
ponent 1, five involved passing by wooden buildings, which
were less common in the downtown area than concrete and
brick buildings and possibly indicates that the lower emissivity
of buildings constructed from wood results in poor fits in this
model. Three cases involved the right side of the vehicle being
very close to (nonwooden) building facades, which could be
an indication that those buildings were lower in activity than
the average building. The other scenarios offered no clear
commonalities.

VII. DISCUSSION

The work presented here shows that features derived from
measurements of the gamma-ray background in an urban
area can be correlated with some fidelity to features derived
from panoramic visual imagery of the same. In particular,
the WR-2 model decomposition of the measured spectra
resulted in one component that is strongly associated with the
presence of buildings, and another that is strongly associated
with the visibility to the sky. Although all of the model
fits had high prediction error and only a few were statis-
tically acceptable, the analysis presented here nevertheless
finds connections between spectral and image features similar
to what has previously been seen with the same mobile
system but in a smaller and more radiologically uniform urban
environment [31].

The shapes of the spectral components from NMF suggest
there may be a reason for the associations since WR-2
component 0’s spectrum shows what is likely to be more
cosmic and skyshine emission than WR-2 component 1, and
visibility to the sky should be a rough proxy for exposure
to cosmic and skyshine emission. In addition, nearby KUT
emission, captured at a higher proportion by component 1,
should increase when there are larger surfaces of KUT emis-
sion around the vehicle, a rough proxy for which is the size
of nearby buildings. These same associations were noted in
a separate RadMAP dataset at Fort Indiantown Gap, PA,
USA [31], and a similar separation of gamma-ray emission

into nearby and distant emission has also been observed in
airborne data [39]. The separation of urban gamma-ray back-
grounds into nearby (building-dominated) and distant (sky-
dominated) emission may therefore be a general phenomenon.
The connection between cosmic emission and the sky feature
is also reminiscent of the connection between measured fast
neutron backgrounds and the fraction of the sky visible and
not shielded by buildings [51]–[53]. The results of this work
suggest an analogous result for gamma-ray backgrounds.

Another result of this work is that in all of the models,
little to no emission is fit to clutter: the classes vehicles and
people and other. The fact that they contribute so little to
the fits comports with the notion their presence largely serves
to attenuate background emission coming from the buildings
or roads behind or beneath them, which is a known impact
of such clutter on these systems [26]. Of course, the rare
exception for clutter is when vehicle cargo is particularly
radioactive or a pedestrian has undergone a nuclear medicine
treatment, but such events have been screened for and are not
in this dataset.

Obviously, models that tie gamma-ray backgrounds more
strongly to surrounding imagery may exist than what is shown
here. This work takes the brute-force approach of generating
various sets of gamma-ray features, using NMF models that
have been tailored by regularization approaches that were
inspired by physics or statistical considerations. These gamma-
ray features are then compared to image features that were
derived using a single semantic segmentation approach with
fixed visual categories. This approach results in our only
examining a small parameter space within a high-dimensional
dataset. Correlations were found to exist between some of
these feature sets, but there could easily be other correlations
that exist outside of the small set of features examined here.
For example, different kinds of buildings (e.g., brick versus
concrete versus wooden) might cluster together into different
and predictable levels of KUT flux that the DeepLabv3+
model is currently blind to since it collapses all building types
into one class. But even for the same type of material, the KUT
activities can vary by orders of magnitude [14], and therefore
any model that seeks to make a unique KUT activity prediction
based on imagery alone is going to have difficulty. Also, the
correlations might break down outside of this relatively small
region of this particular city, if, for example, the flux from
the roadbed or nearby soil is much larger in another location,
or if the magnitude and composition of surface fluxes among
buildings becomes more variable. Other radiological effects
that might not be readily noticed in imagery are those due
to weather, especially the increased background due to radon
progeny during rainfall events, and while the data analyzed
herein did not include any rainfall, we posit other contextual
sensors could be incorporated into a model to address such
complications. To be as robust and accurate as possible, any
model like this would have to be trained and deployed in
the same local area, but some phenomena such as sky-related
features would likely persist even if a model were broadly
trained.

One area for improvement over this work would be to
extend the model beyond the simple linear model used here.



A trivial extension would be to include an intercept in the
linear model, which would allow the model to capture spectral
emission that does not change in time and may not be
attributable to imagery. Some nonlinear models may also be
useful.

Another area for improvement would be in the simultaneous
engineering and correlation of spectral and image features.
We attempted a small move in this direction via regularization
with NMF. Training on the evaluation dataset, we used a
regularization term that minimized the symmetric KL diver-
gence between component 0’s weights and the sky image
feature, and also the symmetric KL divergence between com-
ponent 1’s weights and the building image feature. The result-
ing two-component model closely resembled NMF-WR-2
and had only slightly higher fractions f for the two image
classes.

The simultaneous engineering and correlation of spectral
and image features is perhaps a task better performed by deep
convolutional neural networks (CNNs). Indeed, CNNs have
already been used for this task with some initial success [27].
This work could provide guidance to the design of future
CNNs as well as in aiding the interpretability of a trained CNN
model. For example, a model that takes its inspiration from
the DeepLabv3+ model for its initial layers, and with one or
more fully connected layers at the end to predict the spectrum,
might be a promising direction to pursue (one fully connected
layer is equivalent to a linear model like NMF). Of course,
one would want to explore such a model not only in Oakland,
but in many other cities to understand the transferability of
the knowledge, since different cities have different background
distributions (e.g., [25]).

Given the complexity of urban scenes, a model that can
generate a spectrum based only on a single image may be
possible but may not be robust. Instead, another potential
avenue of research is to explore machine learning mod-
els that update the current background estimate using both
recently measured spectra and the changing context around
the system. A reinforcement learning model, i.e., a model
that is trained to make predictions based on the recent state
and new data, could be appropriate here. Such a model
could be more flexible in generic urban scenes by learning
universal trends in spectral variability that correspond to
noticeable trends in imagery, such as learning that a vehicle
pulling up next to the system will depress the background
count rate by a certain amount. Beyond these suggested
machine learning approaches, there likely exist numerous
other approaches that could leverage the observations made
herein in effort to improve radiological anomaly detection
algorithms’ efficacy when confronted with the realistic spectral
and temporal variability encountered when operating in urban
environments.

A limitation of this current work is the small size of the
dataset examined, which consisted of 40 min in the same
neighborhood of a single city. To draw wider conclusions
on the types of correlations present in urban backgrounds,
more data from more neighborhoods and cities is needed.
RadMAP data can provide some of this need, although its
coverage is limited to certain portions of the San Francisco

Bay Area. Larger datasets will be crucial for the training
of CNNs, which typically require enormous datasets due to
their multitude of parameters. It is unknown whether a single
model (of any type) could be useful for any urban area,
or whether its domain would be limited to a single city or even
neighborhood.

The ultimate application of the types of models discussed
here would be to improve the performance of a detection algo-
rithm by leveraging visual imagery. Whether this is achieved
by creating an algorithm that directly predicts background,
or whether algorithms simply leverage context to inform
alarming behavior is unclear. However, it is arrived at, a model
that is able to ingest contextual information such as panoramic
imagery and improve algorithm performance beyond the state-
of-the-art would potentially revolutionize the urban search
problem.

APPENDIX

COSMIC REGULARIZATION FUNCTIONS

AND THEIR GRADIENTS

We only apply the penalty f1 to the components of the
first column of W that are above 1250 keV, represented by
spectrum index I1250. To use the symmetric KL divergence,
we generate normalized vectors for the cosmic component and
first row of W above index I1250

pi ≡ Wi0�
i �>I1250

Wi �0
(29)

qi ≡ wcos,i�
i �>I1250

wcos,i �
(30)

f1(W) =
�

i>I1250

(pi − qi) log

�
pi

qi

�
. (31)

The gradient of f1 is

∂ f1

∂Wi j
= [ j = 0][i > I1250]�

i �>I1250
Wi �0

×
�


1− log qi −
�

i �>I1250

pi � log pi �



−



qi

pi
− log pi −

�
i �>I1250

pi � log qi �

�
(32)

≡ �∇+1 �
i j
− �∇−1 �

i j
(33)

where [] is the Iverson bracket (1 if argument is true, 0 other-
wise), and we have split the gradient into a sum of terms
that are always positive (∇+1 ) and terms that are always
negative (−∇−1 ).

The f2 function is the sum of W for the spectral bins above
3 MeV, represented by the spectral index I3000

f2(W) =
�

i>I3000

�
j>0

Wi j . (34)

The gradient of f2 is

∂ f2

∂Wi j
= [i > I3000][ j > 0] (35)

≡ �∇+2 �
i j
. (36)
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