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Department of Computer Science
University of Skovde, S-54128, SWEDEN
lars@ida.his.se

Abstract

The question whether connectionism offers a new way of
looking at the cognitive architecture, or if its main contribution
is as an implementational account of the classical (symbol)
view, has been extensively debated for the last decade. Of spe-
cial interest in this debate has been to achieve tasks which eas-
ily can be explained within the symbolic framework, i.e., tasks
which seemingly require the possession of a systematicity of
representation and process, in a novel way in connectionist
systems. In this paper we argue that connectionism can offer a
new explanational framework for aspects of cognition. Specif-
ically, we argue that connectionism can offer new notions of
compositionality, content and context-dependence based on
connectionist primitives, i.e., architectures, learning, weights
and internal activations, which open up for new variations of
systematicity.

Introduction

Ever since Fodor and Pylyshyn (1988) published their semi-
nal paper in which they defined the relation between syste-
maticity (i.e.,, the systematic structure of mental
representations and the structure-sensitivity of mental pro-
cesses), compositionality (i.e., the method of composing/
decomposing structured mental representations) and the cog-
nitive architecture, the debate has been intense. It has had
two main research agendas; i) to exhibit and explain syste-
maticity in connectionist systems (Smolensky, 1990; van
Gelder, 1990; Pollack, 1990; Chalmers, 1990; Niklasson and
Sharkey, 1992, Niklasson van Gelder, 1994, Phillips, 1994)
and ii) to question the relevance of the systematicity and
compositionality phenomenon altogether (Goschke and Kop-
pelberg, 1991; van Gelder and Niklasson, 1994; Matthews,
1994),

The success of the early connectionist counter examples was
questioned by Hadley (1992, 1994a). He noted that in many
of these examples the success might have been due to the
constitution of the training set. He therefore re-formulated
systematicity in a learning-based fashion, defining different
levels of systematicity depending on the content of the train-
ing set. He identified three levels of systematicity:

* weak systematicity (concerned with generalization to
novel sentences in which tokens appear in syntactic posi-
tions in which they have appeared during training),

« quasi systematicity (requires weak systematicity and
embedded structures),
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strong systematicity (requires quasi systematicity and
generalization across syntactic positioning of tokens).

Hadley argued that no counter-example had achieved the
strongest form of systematicity, with the possible excep-
tion of Niklasson and van Gelder (1994). Hadley was,
however, concerned about the approach adopted by Nik-
lasson and van Gelder for generating representations. They
used a separate network which encoded syntactic informa-
tion in order to generate similar distributed representations
(i.e., close in the representational space) for tokens of sim-
ilar types, which caused Hadley (1994b) to classify their
result as a ‘border line’ case.

Recently, Phillips (1998) pointed out that connectionist
architectures using localistic representations, by them-
selves cannot account for strong systematicity. But also,
that this restriction does not preclude separate mechanisms
for generating similarity based representations, which
could be used in subsequent systematicity tasks. He out-
lined two research directions; develop architectures which
could support systematicity under localistic input/output
representations, or justify similarity-based distributed
representations sufficient for allowing systematicity.

The former of these directions is exemplified by Hadley
and Hayward (1997) when they showed that a network
could achieve an even stronger form of systematicity;
semantic systematicity, defined as:

A system possesses semantic systematicity if it is
strongly systematic and it assigns appropriate mean-
ings to all words occurring in novel test sentences
which (would or could) demonstrate strong systemati-
city of the network (Hadley, 1994b, p. 434).

The intention of this paper is to take the latter research
direction pointed out by Phillips (1998), i.e., to justify
similarity-based representations sufficient for systemati-
city. Two forms of justifications can be identified; i) empir-
ical justification of the exact boundaries of the
systematicity phenomenon (an analytic approach), or ii) a
technical justification related to the representational primi-
tives of connectionist architectures (a synthetic approach).

We will, in the following, take the latter of these and
define meaning (i.e., content) in relation to connectionist
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architectures, learning, weights and internal activations, and
show that the implications of this approach are rather differ-
ent compared to the notions within classicism. We argue that
our view allows systematic processes which are sensitive nol
to the syntax of the representation (which is a cornerstone of
the traditional definition) but instead to the conrext in which
the contenr of the representations is defined. This context
could naturally also include processing of expressions based
on their syntactic structure.

To substantiate our arguments, we will present some exam-
ples and performance results which assign the appropriate
meaning (admittedly, somewhat different than defined by
Hadley) to novel test cases. The examples can also be used to
indicate how our approach can be empirically validated or
refuted.

If our approach is accepted, that would allow connectionists
to go beyond traditional symbol processing and account for
context-dependent semantic systematicity.

Content of connectionist representations

In a classical system appropriate meaning can be assigned to
words depending the structural positioning of their represen-
tational tokens. This is due to the definition of a classical
system which hinges on the possession of a combinatorial
syntax and semantics for mental expressions. The definition
states that the content of a complex representation is a func-
tion of the meaning of the constituents, together with the
constituent structure of the representation.

The kind of connectionist system we have in mind, does not
possess syntactically structured representations. Instead it
relies on the possession of spatially structured representa-
tions, formed as a result of an individual learning situation.

The main difference between the two approaches is what can
be assumed when trying to extract content from the represen-
tations. In a connectionist system, the spatial structure is the
result of a specific learning situation. It is generally not, con-
trary to the classical approach, possible to assume a sur-
rounding context when constructing representations.

In order to objectively compare the two approaches we argue
that they must be allowed to make the same assumptions
about the context when constructing systematicity examples.
Rather than using natural language examples (where it is dif-
ficult to define the complete contextual framework), we will
here use a different domain including reasoning with both
defaults and exceptions.

We propose the following understanding of content and con-
text within the connectionist framework:

* The only context supplied to a network is defined in
terms of its training set. Any content found in the repre-
sentations depends on this context.

* The organization of the representations is not arbitrary,
rather it depends on the contexr expressed in the training
set.
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* The weights operating on the representations extract
the content expressed in them. Therefore, the weights
and the internal dynamics of the receiving units can be
used to define content which entails that an explanation
to systematic processes working on the representa-
tions, is possible.

One possible objection to this view could be the definition
of content, but we argue that it is in line with Palmer’s
(1978) definition of information in cognitive representa-
tion:
The only information contained in a representation is
that for which operations are defined to obtain it
(Palmer, 1978, p. 266)

Figure 1 exemplifies some of the above points. Two input
units (x and y) are connected to a logistic output unit (z)
with weights -3.7 and 9.4 respectively. In addition to this,
a -3.2 bias weight is connected to the output unit. The fig-
ure shows how a particular weight configuration partitions
the input space, allowing the extraction of the content of
three sample input (A, B and C in Figure 1) representa-
tions to the network.

The context (i.e., the relations expressed in the training
set) in this example is that representations B and C belong
to the same category (z=0), and A to a different one (z=1).
As can be seen in the figure, the network has in this partic-
ular case learned this classification. It is also clear that we
now can use the weights in the trained network to extract
the content in the input representations, even for novel
ones, and identify spatial regions for the different classes.
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Figure 1: The result of a particular learning situation. The
lines represent different values for z (0.9 to 0.1)

What this simple example does not show is how the orga-
nization of the representations (i.e., the locations to points
in the n-dimensional representational space) can be made
sensitive to the particular context expressed in the training
set. For this, we need to extend the architecture with fea-
tures allowing learnable representations for tokens. Here
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network feedback is possible since a separate dictionary is used to store all representations (e.g., Bird) and the relation to its

constituents (e.g., bird and nil).

we use the same architecture as used by Bodén and Niklas-
son (1999), see Figure 2. This architecture is intended to
incorporate different kinds of context. Here we will use a
simple hierarchical taxonomy (e.g., that Sparrows are
Birds and that Ernie is a Sparrow) and, in the Objects
Encoder (OE), generate compositional representations based
on this context. In addition to this, the representations
needed to train and test the Inference Network (IN) need to
be generated (i.e., (Bird Fly), ((Bird Fly) Can)). This is
done by the Assertions Encoder (AE). Finally the particular
inferences valid in a particular context (e.g., that birds in fact
can fly) are trained in the IN. The encoders are standard
RAAM networks (Pollack, 1990) and the inference network
is related to Chalmers' (1990) transformation network. The
main difference from Chalmers is the use of between-net-
work error feedback (which is an extension to Chrisman's
(1991) confluent representations).

The within- and between-network error feedback (see Figure
2) allows that the representation for an object (e.g., Ernie)
is affected by its relation to other objects in the domain, the
assertions it appears in and the valid inferences it is part of. It
will therefore in the following be referred to as contextual
feedback.

An illustrative example

The OE was trained to encode the following:

Node: Denoted by:
OE (bird nil) Bird

OE (sparrow Bird) Sparrow
OE(ernie Sparrow) Ernie

OE (penguin Bird) Penguin

OE (tweety Penguin) Tweety

The AE was trained to encode the following assertions:

AE (Bird Fly) AE((Bird Fly) Can)
AE (Sparrow Fly) AE((Sparrow Fly) Can)

AE (Penguin Fly) AE((Penguin Fly) Cannot)
AE (Ernie Fly) AE( (Ernie Fly) Can)
ARE((Ernie Fly) Cannot)

AE (Tweety Fly) AE((Tweety Fly) Can)
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AE ( (Tweety Fly) Cannot)

For Ernie and Tweety both possible inferences (i.e.,
Can and Cannot) were generated for test purposes. The
IN was trained to do the inferences:

AE (Bird Fly) -> BRE((Bird Fly) Can)

AE (Penguin Fly) -> AE((Penguin Fly) Cannot)
AE (Sparrow Fly) =-> AE((Sparrow Fly) Can)
The relations encoded in the OE and the valid inferences
in the IN can be visualized as (see Figure 3):
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Figure 3: Graphical representation of the domain.

The main purpose of this simplified example is not to
show that the architecture can handle both defaults and
exceptions, but rather to relate the points made about con-
text and content to a specific example. It, however, shows
why the this particular network can generalize to the novel
situations:

AE (Ernie Fly) AE (Tweety Fly)

For visualization purposes the dimensionality of the hid-
den layer of the encoders was reduced to two units. The
OE was a 12-2-12 sequential RAAM (i.e., the left input
slot, in Figure 2, had a size of 10 units and the right had
the same as the hidden layer). The representations for the
atomic objects (i.e., bird, sparrow, etc.) were assigned a
10-element localistic non-overlapping representation. The
AE was a 4-2-4 sequential RAAM, and the IN a 2-2 feed-
forward network.

The hidden space for the encoded objects is shown in Fig-
ure 4(a). In this diagram, the hyperplanes for weights con-
nected to the two output units (i.e., units 11-12,
represented in the figure by 1 and 2 respectively) repre-
senting classes (i.e., Bird, Sparrow and Penguin) are
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Figure 4: The hidden space of the OE (a), the AE (b and c) and the IN (d). Please note, that all the locations in the space
(e.g., bird) actually are the generated representation after training (e.g., Bird).

also included. The first thing to note is that the representation
for Bird (top left corner) has become close to [0 1]. This
means that all members of the class Bird (i.e., Penguin and
Sparrow) must end up on the negative side of the hyper-
plane enforced by the first class unit (i.e., unit 11), and the
positive side of the other (i.e., unit 12). The representational
region in the OE for members of the Bird class therefore
becomes the region between the positive side of the second
hyperplane and the x-axis. Similarly, the region for members
of the sparrow class (represented by [0 0]) becomes the
region between the two hyperplanes, and the Penguin class
the top-right region in the diagram. The reason that Bird ([0
1]) ends up in the Sparrow class region, is that the represen-
tation chosen for nil is [0 0] which is the same as the one
developed for the Sparrow class. That, however, is not
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essential for the current purposes.

In the assertion space (Figure 4b and 4c) the representa-
tional regions for Fly, Can and Cannot are easy to iden-
tify. These regions are defined by output units 3 and 4 in
the AE. Fly and Cannot are located to the positive side of
3 and negative side of 4, and can vice versa. Moreover, the
findings for the objects space are useful also in the asser-
tion space, which in turn is the space used by the IN. It is
possible to identify the region of the assertion space in
which, for instance, new members of the Penguin class
will end up. We can note that both units of the OE (the x
and y axis in Figure 4a) will receive an activation above
0.5 for members of the Penguin class. This means that all
new members of the class will be on the positive side of



the units | and 2 in the AE when combined with F1y (Figure
4b), i.e., the region in which TweetyFly now appears.
Combining this with the hyperplanes of the IN (Figure 4d) it
is possible to define the region for which the IN will make
‘correct’ inferences concerning Penguin. A location on
the positive side of both hyperplanes means that the infer-
ence network will transform the location to one above [0.5
0.5] in the assertion space (Figure -¢), which always is clas-
sified as a no-F1ly zone, by hyperplanes 3 and 4. One could
also note that not all members of the Penguin class are
guaranteed to actually end up the positive side of these
hyperplanes. Some (e.g., those which receive an activation in
the AE of about [1.0 0.3] which are likely to be transformed
in the IN to a position close to O for the x axis and definitely
below 0.5 for the y axis) novel member of the Penguin class
will be classified as flying. We will in the following simula-
tion see examples of this.

Context-dependent processing

Let us now turn to the remaining issue to be resolved; i.e.,
the impact of the context for solving practical problems. We
will here refer to simulations reported elsewhere (cf. Bodén
and Niklasson, 1999). In a series of simulations we exam-
ined the performance of the architecture on problems involv-
ing defaults and exceptions. Two contexts for some test
objects (see D1 and D2 Figure 5) were used to evaluate the
performance of the architecture. Of special interest was to
evaluate the effect of the contextual feedback between the
different sub-networks, allowing fully context-dependent
representations.

D1
Figure 5: Two sample contexts, D1 and D2.

The architecture was trained on the two contexts (D1 and
D2). After training, it was tested which content (P+ or p-)
was assigned to the test objects (AS and BS for both D1 and
D2, and c1 for D2). The content assigned by the IN was
compared to the representations formed in the AE, and the
one with the closest Euclidean distance was chosen. This
can, for reasons explained earlier, be somewhat misleading
but this approach do not favor one outcome over the other,
which means that an average over several runs will give an
objective result. In the first run on D1 the inference on ASP
(i.e., the output of the IN) was 1.300 from A5P+ and 0.116
from ASP-.

For D1, the size of the RAAMs used were OE 10-3-10, AE
6-3-6 and IN 3-3. For D2, the size were 12-3-12, 6-3-6 and
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3-3. For each experiment 30 runs were conducted with
contextual feedback enabled, and 30 with it disabled.
Training was conducted for 10000 epochs with learning
rate 0.1 and momentum 0.9. The results are listed in Table
l.

Table 1: Results from the D1 and D2 data sets

Context | Object | % P+ | % P- | Contextual feedback
DI AS 30 70 Yes
Dl AS 37 63 No
DI BS 77 23 Yes
DI B5 62 38 No
D2 AS 10 90 Yes
D2 A5 20 80 No
D2 BS 43 57 Yes
D2 BS 13 87 No
D2 Cl 20 8O Yes
D2 Cl 47 53 No

Some interesting observations can be made. Generally the
architecture supports shortest path reasoning, e.g., for AS
and BS in D1. Contextual feedback accentuates this prefer-
ence, which is most obvious for B5 in D2, where the path
B5->B3->P+ is as long as B5S->B4->P~, The results show
that architecture with feedback assigns positive or negative
content with almost equal probability (without feedback
13% vs. 87%, and with feedback 43% vs. 57%). Compare
this to A5S->A4->P- and A5->A2->A1->P+, where the
feedback has increased the bias for the shorter of the paths.

The most obvious reflection one can make, is that the
effect on c1 in D2 is rather dramatic. Without feedback the
two outcomes occur with almost equal probability. With
feedback the preference is for P-. This example can be
compared to an extension of the famous Nixon diamond,
i.e., Nixon is a quaker, republican and colonel. Quakers
are pacifists, but republicans and colonels are not. One
way of reasoning is that since the majority of categories of
which Nixon is a member are non-pacifists, he is too.

Conclusion

We have argued that connectionism can offer alternatives
to classical explanations for cognitive phenomena pro-
vided that content and context are defined in terms more
natural to connectionist architectures, learning, weights
and internal activations. Such definitions were provided
and connected to an example.

If the approach we suggest is accepted, it is possible to
explain not only context-independent reasoning (see Nik-
lasson and van Gelder (1994) who used a related architec-
ture for syntactic transformations), but also context-
dependent reasoning, by referring the performance exhib-
ited on data sets like D1 and D2.

Phillips (1998) noted that the networks used by Niklasson
and van Gelder (1994) could not support systematicity at



the compositional level, only at the component level. The
approach used in this paper shows that connectionist archi-
tectures can support systematicity at both levels, by incorpo-
rating contextual feedback.

We have shown how compositionality and context-depen-
dence can co-exist within the same framework. The explana-
tion we supply is based on weight regions expressing spatial
structure which mirror contextual similarities among repre-
sentations.

We also argued that connectionist and classicist systems
should be allowed to make the same assumption about the
example domain. Here two rather small data sets were used
and cannot give the complete story but they can serve as use-
ful indicators of what to look for. It would be quite easy to
define an empirical investigation of how humans perform on
D1 and D2. If the performances of humans differ signifi-
cantly from the performance of our architecture, this would
be quite damaging for our argument. If not, our view would
be justified both on technical and empirical grounds.
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