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Electron-phonon interaction and thermal boundary resistance at the
crystal-amorphous interface of the phase change compound GeTe.

Davide Campi1, Davide Donadio2, Gabriele C. Sosso1,3, Jörg Behler4, and Marco Bernasconi1∗
1Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, Via R. Cozzi 53, I-20125, Milano, Italy

2 Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
3 Computational Science, Department of Chemistry and Applied Biosciences,

ETH Zurich, USI Campus, via Giuseppe Buffi 13, CH-6900 Lugano, Switzerland and
4 Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum,

Universitätsstrasse 150, D-44780 Bochum, Germany

Phonon dispersion relations and electron-phonon coupling of hole-doped trigonal GeTe have been
computed by density functional perturbation theory. This compound is a prototypical phase change
materials of interest for applications in phase change non-volatile memories. The calculations allowed
us to estimate the electron-phonon contribution to the thermal boundary resistance at the interface
between the crystalline and amorphous phases present in the device. The lattice contribution
to the thermal boundary resistance has been computed by non-equilibrium molecular dynamics
simulations with an interatomic potential based on a neural network scheme. The electron-phonon
term contributes to the thermal boundary resistance to an extent which is strongly dependent on
the holes concentration and mobility. For measured values of the holes concentration and electrical
conductivity the electron-phonon term overcomes the contribution from the lattice to the thermal
boundary resistance. It is also shown that the presence of Ge vacancies, responsible for the p-type
degenerate character of the semiconductor, strongly affect the lattice thermal conductivity of the
crystal.

I. INTRODUCTION

Chalcogenide alloys are attracting an increasing inter-
est for their use in optical data storage (digital versatile
disk, DVD) and, more recently, in electronic non volatile
memories (Phase Change Memories, PCM)1–5. These ap-
plications rest on a fast and reversible transformation be-
tween the amorphous and crystalline phases upon heat-
ing. The two phases can be discriminated thanks to a
large contrast in their electrical conductivity (in PCM)
and optical reflectivity (in DVD). In PCM operation,
cell read-out is performed at low bias. Programming the
memory requires instead a relatively large current to heat
up the active layer and induce the phase change: either
the melting of the crystal and subsequent amorphization
or the recrystallization of the amorphous.

Thermal conductivity (κ) is a key property for the de-
vice operation, as the set/reset processes strongly depend
upon heat dissipation and transport. In particular, the
thermal boundary resistance (TBR) with the surround-
ing dielectrics are crucial parameters for the control of
thermal cross-talks with adjacent cells which may arise
during memory programming. A large TBR can also lead
to a reduction in the programming current thanks to heat
confinement effects6. The complete electrothermal mod-
eling of PCM operation thus requires the knowledge of
the TBR at different interfaces which are often difficult
to be measured accurately at the operation conditions of
the PCM cells. Since the amorphous region is embed-
ded in a crystalline, untransformed matrix, the junction
between the crystal and the amorphous region is one of
the interfaces expected to mainly affect the operation of
PCM devices.

Atomistic simulations can provide crucial insights into

the thermal transport properties of phase change mate-
rials, suitable to aid a reliable modeling of the device
operation. Simulations based on density functional the-
ory (DFT) have indeed provided detailed information on
several features of phase change materials in the last few
years (see for example Refs.7–10). However, the calcula-
tion of the thermal conductivity in an amorphous system
and at its interface with the crystal requires very long
simulations of large models, which are presently beyond
the reach of fully DFT simulations. To overcome these
limitations, we have recently developed an interatomic
potential for the GeTe phase change compound11, by fit-
ting a large database of DFT energies by means of the
Neural Network (NN) method introduced by Behler and
Parrinello12. The potential displays an accuracy close to
that of the underlying DFT framework in describing the
structural and dynamical properties of GeTe.

In this paper, we report on the calculation of the TBR
at the crystal/amorphous interface of GeTe phase change
compound. Although the ternary system Ge2Sb2Te5

(GST) is mostly studied for PCM applications, the
binary GeTe compound is also under scrutiny for
applications13 as it shares most of the properties with
the more commonly used GST. We expect the presence of
both electronic and lattice contributions to the TBR. The
lattice contribution stems from the mismatch in the vi-
brational modes of the two phases. In fact the phonons of
the amorphous phase display a softening in the acoustic
branches and a stiffening in the highest frequency region
due to the appearance of phonons at about 24.8 meV,
localized on the GeTe4 tetrahedra.10,11,14. Moreover,
while in crystalline GeTe thermal conductivity is due to
propagating phonons that can be described within the
Boltzman transport equation, in the amorphous phase



2

the heat carriers are mostly non-propagating delocalized
vibrations (diffusions)15. In addition, since crystalline
GeTe is a degenerate p-type semiconductor, its electronic
conductivity is three orders of magnitude larger than in
the amorphous phase. We therefore need to consider the
electronic contribution to TBR, as in the general case of
metal/semicondutor interfaces.

The lattice contribution to the TBR has been obtained
from non-equilibrium molecular dynamics (NEMD) sim-
ulations with the NN potential. The electronic con-
tribution to the TBR has been computed according to
the theory developed by Majumdar and Reddy17 from
phonon dispersion relations and the electron-phonon cou-
pling constant obtained within DFT. Moreover we have
computed the lattice thermal conductivity of crystalline
GeTe, for which experimental data are scattered over a
wide range of values 0.1-4.1 W/(mK)18–23, possibly be-
cause of the difficulties in disentangling the lattice and
electronic contributions to κ, or because of different va-
cancy concentrations.

II. COMPUTATIONAL METHODS

A. Molecular dynamics simulations and lattice
contribution to the thermal boundary resistance

The NN interatomic potential of GeTe was obtained in
Ref. 11 by fitting a large database of DFT energies using
the method introduced by Behler and Parrinello12. The
database consists of the total energies of about 30000 con-
figurations of 64-, 96-, and 216-atom supercells computed
with the Perdew-Burke-Ernzerhof exchange and correla-
tion functional24 and norm conserving pseudopotentials.
The reliability of the DFT framework in describing struc-
tural and dynamical properties of GeTe and other phase
change materials was demonstrated in several previous
works7–10. The transferability of the NN potential was
formerly validated by simulations of liquid, amorphous
and crystalline GeTe11,15,25? . NN equilibrium molecular
dynamics (MD) calculation of the thermal conductivity
of bulk amorphous GeTe yields κ=0.27 ± 0.05 W/mK15,
which is very close to experimental results of 0.24 ∼ 0.25
W/mK18,26. The NN potential also reproduces well the
structural parameters of the trigonal ferroelectric phase
(space group Rm3m)27 stable at normal conditions. The
trigonal phase, with two atoms per unit cell, can be seen
as a distorted rocksalt geometry with an elongation of
the cube diagonal along the [111] direction and an off-
center displacement of the inner Te atom along the [111]
direction giving rise to a 3+3 coordination of Ge with
three short and stronger bonds (2.84 Å) and three long
and weaker (3.17 Å) bonds. In the conventional hexag-
onal unit cell of the trigonal phase, the structure can be
also seen as an arrangement of GeTe bilayers along the
c direction with shorter intrabilayer bonds and weaker
interbilayers bonds (see Fig. 1).

The structural parameters of the trigonal phase con-

FIG. 1. IMMAGINE PROVVISORIA Geometry of the GeTe
crystal seen as a stacking of bilayers along the c axis of the
conventional hexagonal unit cell with the three short intrabi-
layers bonds and three long interbilayers bonds.

sist of the lattice parameter a, the trigonal angle α, and
the internal parameter x that assigns the positions of
the two atoms in the unit cell, namely, Ge at (x,x,x)
and Te at (-x,-x,-x)27. The structural parameters op-
timized at zero temperature with the NN potential are
compared in Table I with experimental data and DFT re-
sults. The trigonal phase transforms experimentally into
the cubic paraelectric phase (space group Fm3̄m) above
the Curie temperature of 705 K28. Although we have
not estimated the theoretical thermodynamic transition
temperature for the trigonal→ cubic transformation, we
have verified that the trigonal phase is locally stable up
to 500 K in constant pressure simulations with the NN
potential.

Structural parameters DFT NN Exp.

a (Å) 4.33 4.47 4.31

α 58.14◦ 55.07◦ 57.9◦

Volume (Å3) 54.98 55.95 53.88

x 0.2358 0.2324 0.2366

Short, long bonds (Å) 2.85, 3.21 2.81, 3.31 2.84, 3.17

TABLE I. Structural parameters of the trigonal phase of crys-
talline GeTe computed with the NN potential, within DFT
and from the experimental data27. The lengths of the short
and long bonds are also given.

To study the thermal conductivity and the TBR we
used the “reverse NEMD” scheme proposed by Müller-
Plathe29. In this method, one sets up a stationary heat
flux q between a source and a sink at two edges of the
simulation cell, which gives rise to a temperature gradient
in bulk materials and to a temperature jump at an inter-
face. The bulk thermal conductivity in the linear regime
κ is computed exploiting Fourier’s law as κ = −q/∇T .
The Kapitza resistance R between two media at the in-
terface sketched in Fig. 2a is defined by

R =
T2 − T1

q

where q is the heat flux flowing across the interface in
steady conditions and T1 and T2 are the temperatures in
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the two media in proximity of the interface. The nota-
tions in text and figure are inconsistent. The simulations
were performed with the NN code RuNNer30 by using
the DL POLY v2.1931 code as MD driver. The time step
was set to 2 fs.

FIG. 2. IMMAGINE PROVVISORIA a) Temperature jump
across the interface between two media crossed by a heat flux
q. The temperature profile in the two media is schemati-
cally represented by dashed lines. b) Temperature profile
of electrons (Te) and ions Tp at the metal/non-metal in-
terface crossed by a heat flux q according to the theory of
Majumdar and Reddy17. Rpp = ∆Tp/q=(Tp − T )/q is the
phonon contribution to the total thermal boundary resistance
R = (T ′e − T )/q.

B. Electron-phonon coupling and electronic
contribution to the thermal boundary resistance

The crystal/amorphos interface is a metal/non-metal
junction, as the electrical conductivity of trigonal GeTe
is about three orders of magnitude larger than in the
amorphous phase. Heat is carried by both electrons and
phonons in the crystal, but only by phonons in the amor-
phous phase. As a consequence at the crystalline side of
the interface an energy transfer from electrons to ions
takes place to allow the transfer of heat across the junc-
tion. This is possible because of the a non-equilibrium
steady state is established, in which the temperature of
the electrons (Te) is higher than the temperature of the
ions (Tp) as sketched in Fig. 2. Majumdar and Reddy17

developed a theory to cope with this effect that pro-
vides an expression for the thermal boundary resistance
R given by the sum of a phononic (Rpp) and electronic

(Re) contribution:

R = Rpp +Re = Rpp + (
1

1 +
κph

κe

)
3
2

√
1

Gκph
(1)

where κe and κph are the electronic and phononic contri-
bution to the thermal conductivity of the metal andRpp=
∆Tp/q (cf. Fig. 2b). The two thermal resistances are in
series as electrons have to first transfer energy to the lat-
tice to let heat transfer across the interface by phonons.
Rpp has been computed by NEMD, as discussed above,
while Re is controlled by the parameter G, defined by
dE
dt = −G(Te−Tp), where E is the electronic energy den-

sity and t is the time. The parameter G controls the
electron to phonon energy transfer rate per unit volume,
which depends on the electron-phonon coupling constant
λ and on the electronic density of states (DoS) at the
Fermi level N(EF ) as

G = πkBλ~ < ω2 > N(EF ) (2)

where< ω2 > is the second moment phonon spectrum ac-
cording to McMillan32. To compute the electron-phonon
coupling constant and the G parameter we resort to DFT
calculations. We used the PBE exchange-correlation
energy functional24 and norm conserving pseudopoten-
tials, as implemented in the Quantum-Espresso suite of
programs33. Only outermost s and p electrons were con-
sidered in the valence. The spin-orbit interaction was ne-
glected since it has been shown to have negligible effects
on the structural and vibrational properties of GeTe34.
Kohn-Sham (KS) orbitals were expanded in a plane
waves basis up to a kinetic cutoff of 30 Ry. The Bril-
louin Zone (BZ) integration for the self-consistent elec-
tron density was performed over a 12×12×12 Monkhorst-
Pack (MP) mesh35. Results on the equilibrium geometry
of trigonal GeTe are given in Table I.

The ideal GeTe crystal is a narrow gap semiconduc-
tor with a DFT-PBE band gap of 0.45 eV. It turns into
a degenerate semiconductor because of defects in stoi-
chiometry, in the form of Ge vacancies, which induce
the formation of holes in the valence band36. We con-
sidered a p-doping of 8 · 1019 holes/cm3 studied exper-
imentally in Ref.37, and a larger hole concentration of
2.1 · 1021 holes/cm3, also investigated in previous DFT
work34. The former and latter holes concentrations will
be referred to hereafter as nh1 and nh2. The p-doping
is introduced by removing electrons and by neutralizing
the system with a uniform positive background34. We
relaxed the atoms positions at the two doping levels by
keeping the lattice parameters fixed at the values of the
ideal crystal: the x internal coordinate becomes 0.2359
(cf. Table 1) for both nh1 and nh2. The Ge vacancies,
present in the real crystal but lacking in our models of
the p-type compound, are in fact expected to affect the
lattice parameters, as much as the holes in the valence
bands do34.

Phonon dispersion relations were calculated using den-
sity functional perturbation theory (DFPT)38 for both
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the ideal crystal and the two p-dopings, computing the
dynamical matrices on a 6×6×6 uniform mesh in the BZ.

The electron-phonon coupling constant λ was com-
puted as

λ = 2

∫ ∞
0

α2F (ω)

ω
dω (3)

where α2F (ω) is the Eliashberg spectral function which
measures the contribution of phonons with frequency ω
to the electron-phonon coupling:

α2F (ω) =
2

~N(EF )

∑
~q,ν

δ(ω − ω~q,ν)×

∑
~k,n,m

δ(ε~k,n − EF ) | gn,m(~k~qν) |2 δ(ε~k+~q,m − EF ) (4)

where the first sum runs over phonon bands at frequency
ω~q,ν while in the second sum the index n,m runs over
electronic states at energies ε~k,n and ε~k+~q,m. N(EF ) is

the electronic density of states of both spins per cell at the

Fermi energy EF and gn,m(~k~qν) is the electron-phonon
matrix element. This is given in turn by

gn,m(~k~qν) =

√
~

2ωq,ν
〈uk+q,m |M−

1
2∇V q

effενq | uk,n〉(5)

where M is the atomic mass matrix, uk,n is the periodic
part of the Kohn-Sham state, ενq is the normalized eigen-
state of the dynamical matrix, and ∇V q

eff is the derivative
of the Kohn-Sham effective potential with respect to the
atomic displacement caused by a phonon with wavevector
q. The two δ functions containing the electron band en-
ergies were replaced by order-one Hermite-Gauss smear-
ing function with different value of variance ranging from
0.0005 to 0.05 Ry39. The second moment phonon spec-
trum < ω2 > according to McMillan32 is given in turn
by

< ω2 >=

∫
ωα2F (ω)dω∫ α2F (ω)dω

ω

(6)

The electron-phonon matrix elements are computed
by means of DFPT on a 6x6x6 q-point grid for the
phonons and on a dense 132x132x132 k-points grid for
nh1 and 96x96x96 k-point grid for nh2 for the electrons.
Most of the variation of the value of λ with the size of
k and q-point mesh can be ascribed to fluctuations in
the density of states at the Fermi level. The quantity
α2F (ω)/N(EF ) thus converges faster with the size of k
and q-point mesh40. Then the value of λ is obtained by
multiplying λ/N(EF ) by a more accurate value of N(EF )
computed using the tetrahedron method over a uniform
160x160x160 k-point mesh. We estimated a total error in
λ below 10%. Convergence with respect to the smearing
is shown in Fig. 10 in the Appendix.

III. RESULTS

A. Phonons and electron-phonon coupling in
crystalline GeTe from DFT calculations

The phonon dispersion relations of GeTe along high
symmetry direction in the BZ are reported in Fig. 3 for
both stoichiometric and hole-doped GeTe. The results
are very similar to those reported in Ref.34, computed
with DFT-LDA. As usual, phonons are somehow softer
with PBE than with LDA functional. The metallic char-
acter of the hole-doped systems removes the discontinu-
ities in the phonon dispersion at the Γ point (TO-LO
splitting) present in the stoichiometric compound. The
highest frequency phonon of A1 symmetry (at Γ) softens
continuously by increasing p-doping as already shown in
Ref.34. The A1 mode, measured experimentally by Ra-
man spectroscopy41, shows a strong temperature depen-
dance as it corresponds to the soft mode of the ferro-
electric transition. The experimental frequency extrap-
olated to zero temperature is 17.4 meV in the sample
measured in Ref.41, for which the doping level is un-
known. The theoretical frequency is 18.6 meV in the
stoichiometric compound and 14.9 meV in the system
with nh2=2.1 · 1021h/cm3, which means that we could
match the experimental frequency by a suitable choice of
doping.
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FIG. 3. Phonon dispersion relation of GeTe. The continuous
line refers to the results for the stoichiometric compound while
the dashed line correspond to the p-doped system with nh=
8 · 1019 holes/cm3 and the dot-dashed line to nh=2.1 · 1021

holes/cm3. (La frequenza del LO a Gamma non e’ monotona
decrescente col doping: sei sicuro che rosso e blu non siano
scambiati? La riga verde lungo Γ-T non si vede: puoi farla
piu’ spessa?)

The Eliashberg function and the phonon density of
states are reported in Figs. 4,5 for the two doping lev-
els. The electronic density of states (DOS) does not de-
pend on the holes concentration in the range of nh con-
sidered here as shown in Fig. 6. The average phonon
frequency according to Eq. 6 is (< ω2 >)

1
2 = 13.05 meV

for nh1=8 · 1019h/cm3 and (< ω2 >)
1
2 = 10.79 meV for
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nh2. The band structure along high symmetry direction
of the BZ close to the energy gap and the electronic den-
sity of states are reported in Fig. 6. An increase in nh
simply shifts the Fermi level deeper in the valence band
with no significant changes in the DOS. Integration of
α2F (ω) leads to very similar values of λ/N(EF ) for the
two doping levels, namely 0.12 (1/states/Ry/unit cell) for
both nh1 and nh2. The DoS at the Fermi level is in turn
0.64 states/Ry/cell and 4.3 states/Ry/cell, which yields
λ=0.077 for nh1 and λ=0.51 for nh2. Since λ/N(EF ) is
poorly dependent of the hole concentration, it is possi-
ble to estimate the value of λ at different doping levels
by multiplying our result for λ/N(EF ) with the actual
density of state at the Fermi level.
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FIG. 4. Phonon density of states and Eliashberg function
α2F (ω)/N(EF ) for GeTe with holes concentrations of nh1=8 ·
1019 holes/cm3.
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tion α2F (ω)/N(EF ) for GeTe with holes concentrations of
nh2=2.1 · 1021 holes/cm3.
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FIG. 6. Electronic bands along high symmetry directions and
electronic density of states (DoS) of trigonal GeTe. The DoS
does not change by hole doping on the scale of the figure. The
position of the Fermi level is indicated by a dot-dashed line
(dashed line) for hole concentration nh1=8 · 1019 holes/cm3

(nh2=2.1 · 1021 holes/cm3). The DoS are computed with the
tetrahedron method on a 160x160x160 mesh and aligned at
the lowest energy.

B. Electronic contribution to the thermal
boundary resistance

The parameter G (Eq. 2) has been computed for
the two representative hole concentrations nh1=8 · 1019

holes/cm3 and nh2= 2.1 · 1021 holes/cm3 (cf.34,37) from
the electron-phonon coupling constant and 〈ω2〉 dis-
cussed in the previous section. The values of G is 1.43 ·
1015 W/(m3 K) for nh1 and 4.5 · 1016 W/(m3 K) for nh2

. By using the phononic thermal conductivity κph ∼ 3.1
W/(m K) as calculated in Sec. IIID, the ratio κe/κ can
be chosen such that the prefactor in Re (cf. Eq. 1) is in

the range 0.086 < (κe/κ)
3
2 < 1 where the lower extreme

corresponds to the low value of κe=0.73 W/(mK) for the
sample measured in Ref.18. (this part is quite unclear:
what is the prefactor of Re in Eq.1? try to be more ex-
plicit.) By plugging these numbers into formula 1, Re
falls in the range 1.3 · 10−9-1.4 · 10−8 m2K/W for nh1

and 2.2 · 10−10-2.6 · 10−9 m2K/W for nh2.
Note that the sample with holes density nh1= 8 · 1019

holes/cm3 measured in Ref.37 displays an electrical re-
sistivity of ρ=1.4 · 10−4 Ω cm while in a more recent
work42 Hall measurements on samples with the same re-
sistivity of about ρ=1.4 · 10−4 Ω cm yielded a much
higher holes concentration of 8 · 1020 holes/cm3 possibly
because of a different hole mobility. The estimate of Re
for a specific sample thus requires the measurements of
both nh (or N(EF ) by whatever means) and κe eventu-
ally from ρ and the application of the Wiedemann-Franz
law. For the specific sample of Ref.37 for which both nh
(8 · 1019 holes/cm3) and ρ (1.4 · 10−4 Ω) (ρ si misura
in Ωm) are known we can estimate κe=5.22 W/m· K
from the Lorenz number Lo= 2.44 · 10−8 WΩ/K and
κe=LoT/ρ for T=300 K, which finally yields Re= 0.7
· 10−8 K m2/W. This value is actually larger than the
lattice contribution as we will see in the next sections.

The calculated value of G can be used to estimate Re

also for the interface of GeTe with other dielectrics.
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C. Lattice thermal conductivity of bulk amorphous
GeTe

The amorphous models were generated by quenching
from the melt (1000 K) to 300 K in 100 ps, according to
the protocol used in our previous works11,15. We consid-
ered several supercells with different size, up to 24.8 Å x
24.8 Å x 397.3 Å (8192 atoms). The heat source and sink
are placed at the edges of the cell along the z-direction,
they consists of a slice of mobile atoms 5 Å thick along z
neighboring a region of fixed atoms, which decouple the
source and the sink in the presence of periodic boundary
conditions (see Fig. 7).

A plot of the temperature profile in the largest simu-
lation cell is shown in Fig. 7. The temperature profile
reaches a converged steady condition after 800 ps. The
temperature of the sink and source are ? K and ? K
and the imposed flux is q=?. From the Fourier law q=-
κdTdz and the slope of the temperature profile we obtain
κ=0.26 W/(mK) which is very close to our previous re-
sult of 0.27±W/(mK) at 300 K obtained from equilib-
rium MD and the use of the Green-Kubo formula15. We
checked the convergence of κ by using supercells with
different cross section areas perpendicular to the heat
flux, and with different length along z. We probed the
thermal conductivity for a cross-section areas of 24.8 x
24.8 Å2 and 49.7 x 49.7 Å2. Since the phonon mean free
path in a-GeTe is always below few Å15, κ is already
converged in a smaller 24.8 Å x 24.8 Å x 99.3 Å (2048
atoms) cell. Since the phononic specific heat has already
reached its classical limit at 300 K, possible changes of
κ with temperature should arise only from the increase
of anharmonicities at higher temperatures. (agree, but
what is the point to mention it here?)

FIG. 7. IMMAGINE PROVVISIORIA Temperature profile
in the NEMD simulation of bulk amorphous GeTe under a
steady state heat flux q=?.

We also investigated possible non-linear effect by tun-
ing the initial temperature and the heat flux in order to
have large temperature gradients from 1 K/nm up to a
value of 30 K/nm which might arise in PCM during the
reset process. We actually did not observe changes of κ

within the error bar of 0.03 W/(mK) for dT
dz in the range

given above and for an average temperature in the range
200-400 K at which the amorphous phase is stable against
crystallization on the time scale of our simulations. We
can conclude at the conditions of the PCM operation we
can still use the bulk value of the thermal conductivity of
a-GeTe measured/computed for small temperature gra-
dients.

D. Lattice thermal conductivity of bulk crystalline
GeTe

In a trigonal crystal one expect different values of the
thermal conductivity along the z direction (c axis of the
conventional hexagonal cell) and in the xy plane. The
values of κz and κx were computed within NEMD by set-
ting the planes of the sink and sources either perpendic-
ular to the z direction or to the x direction in supercells
of the trigonal phase at the theoretical lattice parameters
optimized at zero temperature (cf. Sec. II).

FIG. 8. The dependence of the thermal conductivity κ as
a function of the size of the simulation cell L long for the
trigonal crystalline phase. The thermal conductivity perpen-
dicular (parallel) to the c-axis is reported in the upper (lower)
panel.

In particular κz is obtained with supercells with sizes
from 28.6 Å x 24.8 Å x 56.71 Å to 28.6 Å x 24.8 Å x 748.61
Å where the longer edges are along the c direction of the
conventional hexagonal cell while κx = κy is obtained

with sizes from 21.5 Å x 22.7 Å x 62.0 up to 21.5 Å x
22.7 Å x 744.1 Å. The dependance of κ on L is reported
in Fig. 8. We obtained a converged value κz= 3.23 ± 0.1
W/(mK) and κx = κy =3.15 ± 0.2 W/(mK).

For a polycrystalline sample the calculated effective
thermal conductivity κeff= 2

3κx + 1
3κz=3.2 W/(mK)

which is comparable, although larger, than the experi-
mental value of 2.35 ± 0.53 W/(mK) of Ref.18. Our re-
sult thus confirm a sizable contribution of the lattice to
the thermal conductivity of trigonal GeTe in agreement
with the most recent experimental data of Ref.18 but in
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contrast to the conclusions of previous experimental work
in Ref.21.

A better agreement with experiments is actually ob-
tained by including the effect of Ge vacancies on the
thermal conductivity. Ge vacancies are expected to be
present in the real material, with concentration depend-
ing on preparation conditions up to a few %. The va-
cancies generate holes in the valence band which turn
the stoichiometric narrow gap compound in a degenerate
p-type semiconductor36. We introduced vacancies in a
random manner on the Ge sublattice with concentration
of 3 % corresponding to the hole concentration of 1.1·1021

holes/cm3 (two holes per vacancy). We then repeated the
simulations with vacancies and a 28.6 Å x 24.8 Å x 499.0
Å supercell yielding κz=1.55 ± 0.1 W/(mK) which 49%
lower than the value obtained with the same supercell at
the same average temperature of 300 K for the stoichio-
metric compound. Similarly we obtained κx = κy=1.3

± 0.2 W/(mK) with the supercell of size 21.5 Å x 22.7
Å x 496.0 which is 56% lower than the value for the sto-
ichiometric compound at the same conditions. We can
thus conclude that vacancies with concentration up to
3% can significantly reduce the thermal conductivity in
agreement with the experimental data of Ref.23. This
also leads to an enhancement of the electronic contribu-
tion to the thermal boundary resistance Re by about

√
2.

E. Lattice contribution to the thermal boundary
resistance at the crystal-amorphous interface

We computed the lattice contribution Rpp to the TBR
by performing NEMD simulations in supercells made of
the junction of the amorphous and crystalline models dis-
cussed in Secs. IIIa-b above. We considered two inter-
faces, one lying on the (111) crystalline plane and a sec-
ond in the (100) crystalline plane in the rhombohedral
notation for the GeTe crystal. For the (111) interface we
used a supercell with edges 50.1 Å x 49.6 Å x 348.5 Å
made by a junction between a 28.6 Å x 24.8 Å x 249.5
Å cell of the bulk crystal and a 28.6 Å x 24.8 Å x 99.3
Å cell of the bulk amorphous phase. The length along
the z direction of the amorphous and crystalline regions
is comparable to the typical size of an ultrascaled PCM
device. The supercell was then annealed at 500 K for 20
ps and then quenched again at 300 K in 20 ps to optimize
the interface geometry.

The steady temperature profile reached in about 2.2
ns of simulation is shown in Fig. 9. The stoichiometric
trigonal phase is considered.

A temperature jump at the interface can not be ap-
preciated in Fig. 9. If any it is smaller than the size of
temperature fluctuations still present in the model due
to the finite simulation time. Note that to achieve con-
vergence in the temperature profile a much longer simu-
lation time is needed in the presence of an interface with
respect to the homogeneous bulk models. We repeated
the simulations for the (100) interface with similar re-
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FIG. 9. Temperature profile in the NEMD simulation of the
junction between the amorphous and crystalline phases. The
heat sink and source are separated by 330 Å. The interface
lies on the (111) crystalline plane. The heat flux is q=9.8
kJ/mol/ps.

sults. We can thus set an upper limit to Rpp for both
interfaces of about 2· 10−9 m2K/W which is comparable
to the electronic contribution discussed in Sec. IIIB. In
fact, the lattice contribution is lower than the electronic
contribution (0.7 · 10−8 m2K/W) to the TBR for the hole
concentration and electronic conductivity of the sample
of Ref.37.

IV. CONCLUSIONS

We have computed phonon dispersion relations and
the electron-phonon coupling constant λ for the phase
change compound GeTe at different levels of p-doping
which, in the real system, is due to the presence of Ge va-
cancies. The quantity λ/N(EF ) is slightly dependent on
the p-doping for hole concentration in the range 8·1019-
2.1·1021 holes/cm3 which correspond to a vacancy con-
centrations in the range 0.2-5.7 %. The calculated λ al-
lowed us to estimate the electron-phonon contribution
Re to the thermal boundary resistance (TBR) at the in-
terface between the trigonal crystal and the amorphous
phase which is present in the memory device. This contri-
bution, calculated according to the theory of Majumdar
and Reddy17, is dependent on the concentration of va-
cancies via the density of states N(EF ) and on hole mo-
bility which leads to large fluctuations of Re in the range
10−8-10−10 m2K/W. For a specific system for which both
the hole concentration and the electronic conductivity is
known (Ref.37) the electronic contribution to the TBR
(0.7 · 10−8 m2K/W) is larger than the upper bound (2
· 10−9 m2K/W) that we have estimated for the lattice
contribution to the TBR from non-equilibrium molec-
ular dynamics simulations. NEMD simulations of the
bulk thermal conductivity of crystalline GeTe also reveal
that the presence of about 3 % of Ge vacancies reduce
the lattice thermal conductivity from 3.1 W/(mK) to 1.2
W/(mK) which justifies the large spread in the thermal
conductivity measured experimentally.
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V. APPENDIX
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FIG. 10. Dependence of the electron-phonon coupling con-
stant λ/N(EF ) on the smearing parameter (eV) of the Dirac
δ-functions in Eq. 4. The doping of 8 · 1019 hole/cm3.
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