
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Visualization of Mobile Network Activity

Permalink
https://escholarship.org/uc/item/95p4m4c1

Author
Sathyamurthy, Nivedhita

Publication Date
2017

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/95p4m4c1
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Visualization of Mobile Network Activity

THESIS

submitted in partial satisfaction of the requirements
for the degree of

MASTER OF SCIENCE

in Computer Engineering

by

Nivedhita Sathyamurthy

Thesis Committee:
Associate Professor Athina Markopoulou, Chair

Professor Carter T. Butts
Assistant Professor Aparna Chandramowlishwaran

2017

c© 2017 Nivedhita Sathyamurthy

DEDICATION

To my parents for their unconditional love and support.

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES v

LIST OF TABLES vi

LIST OF ALGORITHMS vii

ACKNOWLEDGMENTS viii

ABSTRACT OF THE THESIS ix

1 Introduction 1

2 Related Work 5
2.1 Existing Applications . 5
2.2 Visualization Approaches . 6

2.2.1 Data Collection and Mining . 6
2.2.2 Techniques in Rendering . 7

2.3 AntMonitor . 8

3 Visualization on the Mobile Device 10
3.1 Overview . 10
3.2 Visualization objectives . 11
3.3 System Design . 12

3.3.1 Offline Visualization . 12
3.3.2 Online Visualization . 13

3.4 Graphical User Interface . 19
3.5 Performance Optimization . 20
3.6 Example Visualizations . 21
3.7 Performance Evaluation . 21

4 Visualizations on the Web 23
4.1 Overview . 23
4.2 Data Collection and Parsing . 24
4.3 System Design . 25
4.4 Performance Optimization . 28
4.5 Example Visualizations . 29

iii

4.6 Performance Evaluation . 29

5 Conclusion 31

Bibliography 33

iv

LIST OF FIGURES

Page

1.1 Permissions requested by Flashlight application 2
1.2 Sample visualization from LightBeam. The circles represent the web page user

intended to visit and the triangles represent the third party sites visited by
the user in real-time. Visualization similar to this did not exist for network
activity by mobile applications prior to this thesis. 3

3.1 AntMonitor with offline and online visualization modules 12
3.2 Online visualization with methods numbered according to the sequence of

actions. 14
3.3 Representation of the graph data structure containing the network activity

data. The bipartite graph depicts the set of applications connected to the set
of servers. An edge indicates an open connection between an application and
a destination IP and an edge appears as long as the connection is active. . . 15

3.4 Screen shot of Online visualization on the mobile device 21
3.5 Time taken for loading initial connections 22

4.1 Server-side Visualizations with methods numbered according to sequence of
actions . 25

4.2 Screenshot of the AntMonitor Web. Users can select time period for viewing
visualization . 26

4.3 Representation of the graph data structure containing the network activity
data. The bipartite graph contains set of applications connected to set of
remote servers. Remote servers are colored depending the labeled group they
belong to. 27

4.4 Visualization on the Antmonitor Website . 28
4.5 Graphs showing the time taken to load the visualizations on the server for

various simulated conditions . 29

v

LIST OF TABLES

Page

5.1 Summary of Visualization Capabilities . 32

vi

LIST OF ALGORITHMS

Page
1 Pseudo-code for adding a link to the existing Network Activity Graph 16
2 Pseudo-code for adding a new network connection into the Network Activity

Graph . 17
3 Pseudo-code for removing connection from Network Activity Graph 18

vii

ACKNOWLEDGMENTS

I would like to thank my advisor Dr.Athina Markopoulou for her encouragement and guid-
ance. I could not have asked for a more patient and motivating advisor.

I would also like to thank my committee - Dr.Aparna Chandramowlishwaran and Dr.Carter
T. Butts. I am especially grateful to Dr.Carter T. Butts for his valuable insights during the
various phases of this project.

Next, I would like to thank my lab mates: Anastasia Shuba for helping me integrate the
visualization with AntMonitor and for her continuous support and insight; Minas Gjoka for
bootstrapping the AntMonitor website and also for his help and advice.

I would also like to thank my family and friends for supporting and motivating me. I owe my
parents - Sathyamurthy and Radha for their continuous encouragement love and support, for
this would not be possible without them. I express my gratitude to my friend, Aiyswarya,
for always believing in me even when I failed to.

I am thankful to NSF grants 1228995, 1028394 and 1649372; and to Data Transparency Lab
for funding the AntMonitor project. I would also like to acknowledge open source libraries
- D3.js, BeautifulSoup, I used in my project.

viii

ABSTRACT OF THE THESIS

Visualization of Mobile Network Activity

By

Nivedhita Sathyamurthy

Master of Science in Computer Engineering

University of California, Irvine, 2017

Associate Professor Athina Markopoulou, Chair

As smartphones and mobile devices are becoming ubiquitous and mobile applications in-

creasingly use the network both while active or in the background, users are unaware of the

continuous network activity on their phone. In this thesis, we use fine-grained network traffic

measurements from mobile devices to make users aware of the network traffic activity on

their devices. We use AntMonitor[19] - a system for monitoring network traffic, to intercept

network packets in mobile devices. We use the data collected by AntMonitor, to provide

visualization of network activity, not only on a server but also - and for the first time- on

the device and in real-time. The visualizations on the phone informs the users about the

servers the different applications on the phone communicate with over the Internet. The

visualization on the server, with the data collected from the phone, gives the user a more

detailed perspective of the network activity on their phones and over a period of time. In

this thesis we describe the design and implementation of these visualizations and we discuss

how they can be used to enhance the users’ understanding about the network activity on

their phones.

ix

Chapter 1

Introduction

Mobile devices and smart phones have become ubiquitous and the number of unique cellular

subscribers have reached half the population in the world [16]. More and more people are

using mobile devices for Internet access that the usage has surpassed traditional desktop

Internet usage [9]. With mobile devices becoming smart, our reliance and trust on them for

daily activities have also been increasing. Mobile applications tend to have access to Per-

sonally Identifiable Information (PII) on the device such as device IDs, contact information,

location etc.

Mobile applications, typically request access to various resources, including PIIs and the

network during installation. However, the user does not often notice when these resources are

accessed, or when PIIs are sent over the network to remote servers, in real-time. Sometimes,

there are applications that have access to the network and other resources with no obvious

functionality requirement. For example, the Flashlight application[6] in Google Play Store

requests access to the network, contacts and storage as shown in Figures 1.1(a), 1.1(b), 1.1(c)

whereas the description of the application does not state a reason for these requests. These

applications, with access to the abundant private information on the phone pose a threat of

1

(a) Flashlight requesting
access to location data

(b) Flashlight requesting
access to memory

(c) Flashlight requesting
access to Wifi network

Figure 1.1: Permissions requested by Flashlight application

leaking this information to servers that are malicious or act as trackers or Adservers. The

users are currently unaware of the applications that use their data and the servers the data

is sent to.

Ongoing work in the field of network traffic logging and identifying trackers on mobile de-

vices include applications that require android devices to be rooted[11], browsers specifically

identifying trackers[7], applications that display IPs contacted in a list format[10].

Ongoing work on visualizing data collected from applications, on the mobile and on a data

server, include pseudo real-time pie-chart visualization requiring rooted device[15], web based

pseudo real-time line charts of network flow[17]. Other interesting visualizations[12] require

devices to be rooted.

One of the effective visualizations towards understanding the different servers contacted

per HTTP request is provided by Lightbeam[8], an add-on for the Firefox web browser.

Lightbeam depicts the various websites the user intends to browse and the third-party web

pages that are contacted by the website in real-time. Figure 1.2 shows a sample capture

by Lightbeam. To the best of our knowledge similar visualization does not exist for mobile

traffic generated by apps, and this is what we set out to do in this thesis.

In this thesis, we attempt to make the mobile network activity more transparent to the

average user. We build on the AntMonitor[19] application and we extend it for visualizing

2

Figure 1.2: Sample visualization from LightBeam. The circles represent the web page user
intended to visit and the triangles represent the third party sites visited by the user in real-
time. Visualization similar to this did not exist for network activity by mobile applications
prior to this thesis.

mobile network traffic that provides the users with an insight into the applications running on

their device and the various servers they communicate with. We update the visualization on

the device in real-time and we provide the users with an opportunity to be able to take a look

at the historical data if they choose to upload the logs to our server. This application runs

on devices without requiring administrative privileges (rooting). We make the visualizations

dynamic, easy-to-understand and we provide descriptive statistics about the network activity

on the phone.

To achieve this objective, we use and build on the AntMonitor[19] - a system for monitoring

network traffic to intercept network packets. We then mine the intercepted packets for

the necessary information and provide the visualizations. AntMonitor also provides means

to upload the network packet logs to a remote server with the user’s permission. We use

these packet logs on the server to provide a historical perspective to the user through a web

3

application running on the server.

We develop two versions of the visualization on the phone: Online and Offline. The Offline

visualization is near-real-time where we visualize the network traffic after the packet has

been sent from the phone. The visualization lasts the duration of the current session, where

a session is defined as the time between opening and closing of the visualization screen. The

Online visualization is real-time i.e, we visualize the traffic as it is transmitted and intercepted

on the phone. This visualization gives the users a sense of when the connection between

an application and a server has ended as mobile applications open and close connections

with remote servers continuously. Online visualization is more dynamic i.e. is updated as

connections are created and teared-down on the phone, than the Offline visualization and

the users become more aware of the current active open TCP connections on the phone.

The rest of the thesis is structured as follows. Chapter 2 describes the related work including

a brief overview of the AntMonitor. Chapter 3 presents the visualization on the mobile

device, including offline and online visualizations. Chapter 4 presents the visualizations on

a web server. Chapter 5 concludes the thesis and outlines directions for future work.

4

Chapter 2

Related Work

2.1 Existing Applications

In this section, we take a look at some of the existing applications that provide network

activity visualizations.

Network Log[11] provides real time list of applications that have an open network con-

nection at any time instance and provides descriptive statistics. Contains a time line chart

where the number of packets sent by each application (y-axis) is plotted against time (x-

axis). Packet details of upto 48 hours can be visualized. This application, however violates

the SELinux policy and does not run in user space (needs administrative privilege).

Ghostery[7] is a browser that specifically caters to providing users information regarding

the trackers the user fell victim to.

Network Connection[10] displays a list of all the active network connections in the phone.

The application displays bytes sent and IPs contacted by each app in a list format. Geo-

graphical location of an IP is also provided along with the host name.

5

Lightbeam[8] is an add-on for the Firefox web browser that depicts the network activity

of the user on the web browser. Figure 1.2 is an example screen shot of the Lightbeam

page on the web. There is no such real-time representation of the network activity of mobile

applications. In this thesis, we set out to provide similar visualization for network activity

for the mobile device.

2.2 Visualization Approaches

To visualize network activity on the phone, the following steps take place: collecting the

traffic data, mining for the details of interest for visualizing and rendering the data. In this

section, we describe the various techniques available for achieving each of these steps and

outline our approach.

2.2.1 Data Collection and Mining

User space: Network traffic data can be collected inside or outside of the user space.

Collecting data outside of the user space requires the android device to be rooted. If an

application is collecting data using logcat or dumpsys, it runs outside of the user space.

Applications running outside of user space, though have access to fine-grained data, is not

suitable for all users. Network Connections[10] and Flowoid[15] are examples of applications

that work outside of the user space whereas Network Log[11] and Ghostery[7] work in the

user-space.

Data updating frequency: Since applications send network traffic while running in the

background and foreground, the traffic data is being collected continuously. This can be

updated in the visualization in real-time i.e. when the data is collected or in pseudo-real time

i.e. updating the visualization after a few minutes of data collection. Network Connection[10]

6

displays the collected data in real-time whereas Flowoid[15] updates the visualization in near-

real-time.

Our approach is to build an application that works in user space to collect network traffic.

We use the AntMonitor[19] to intercept the network traffic and collect the necessary data.

We describe the architecture of the AntMonitor system in section 2.3. In this thesis, we

develop a visualization module on top of the AntMonitor application to give the users better

insight into current network activities on their phone.

2.2.2 Techniques in Rendering

We represent the network traffic data as a sparse bipartite graph between the set of appli-

cations and the set of IPs. An edge between two nodes indicate the flow of traffic between

them. Figure 3.3 gives the structure of the information we collect. This information can be

visualized in many ways.

Pie Chart: Flowoid[15] uses pie-chart to display the applications and the servers they

contacted, and also the ports that were used for the connection. These charts are not trivial

to understand.

Time line charts: ToA[17] and Network Log[11] uses time line charts to display the number

of packets transferred over a period of time. This gives a historical insight into the network

traffic over the period of data collection.

Plainlist: Network Connections[10] displays the list of active connections as a plain list.

The meta-data for each of the connections, like geographical location of the remote server,

is displayed on selecting the particular network connection.

Force-directed graph drawing: In this thesis, we use the Force-directed graph drawing[14]

7

technique to represent the interaction between applications on the phone and the various

remote locations. Force-directed graph drawing is an aesthetically pleasing technique: the

graph is interpreted as a physical system with forces and try to minimize the energy of the

system to obtain a nice drawing[13]. These algorithms are generally used for graphs with

community structure and sparse graphs. This drawing technique is similar to the one that

is used in Lightbeam for displaying the network traffic in the current instance of browser

shown in Figure 1.2. Since our graph data structure is pretty sparse, we plan to use this

aesthetically pleasing algorithm to draw the graph for our visualization.

2.3 AntMonitor

In this section, we give an overview of AntMonitor[19] - the platform we use for intercepting

mobile network traffic. AntMonitor is a system for monitoring, collection and analysis of

fine-grained, large-scale packet measurements from mobile devices. AntMonitor is designed

as a VPN-based application that runs on the mobile, therefore the application can run on

user-space (non-rooted). AntMonitor is designed for efficient use of resources on the device.

AntMonitor can be used for a variety of passive performance monitoring applications like

real-time detection and prevention of privacy leaks from the device, passive performance

measurements and application classification based on TCP/IP header features. Throughout

this thesis, we show that the AntMonitor can also be used to increase transparency of network

activity to users by means of real-time or historical visualizations that provide useful insights.

We use the AntMonitor Library to intercept the network packets and extract the necessary

data from the packets. We add a component to the existing AntMonitor application to

visualize the network activity. Figure 3.1 shows the modified architecture diagram including

the visualization modules. We then use this data to visualize the network activity on the

8

device, as described in Chapter 3.

AntMonitor supports packet capture of both incoming and outgoing traffic. AntMonitor

provides the users with an option to upload the captured data for analysis on the server. The

packet traces are collected in PCAPNG format[4]. This format allows us to append arbitrary

information alongside the packet capture. This capability provides us with the opportunity

to add contextual information for every packet that can be later used for analysis. We append

the application name that sent/received the packet, to the packet trace. This information

helps us to provide historical visualizations of the network activity on the server.

To achieve this, we develop an interactive web application to give the users an insight of

how different applications have been using the network over a period of time. We extract

the data collected from the device and render the network activity for a particular device as

described in Chapter 4

9

Chapter 3

Visualization on the Mobile Device

3.1 Overview

We provide two types of visualization on the device - Offline, a near-real-time visualization

and Online, a real-time visualization. The two kinds of visualizations differ in terms of col-

lecting the network activity data. The Graphical User Interface for both Online and Offline

visualizations are the same. This means that we use the same graph drawing technique

for both Online and Offline visualizations. To the best of our knowledge, this is the first

application to visualize network activity on the mobile device in real-time.

Offline visualization is near-real time where the packet data is logged on the phone but

visualized after the packet is transmitted. Online visualization is real-time where the packet

data is visualized while the packet is on its way to transmission. Also, this visualization is

more dynamic i.e this visualization effectively depicts the opening and closing of a connection

hence giving the users an idea of the open at any instant of time.

The rest of this chapter is structured as follows. Section 3.2 outlines the design objectives

10

for the system. Section 3.3 provides a description for the methods used for extracting the

information from the packets. Section 3.4 describes the Graphical User Interface designed

for displaying the visualization. Section 3.5 outlines the steps taken to optimize the memory

usage for better usage of memory. Section 3.6 shows examples of visualization on the mobile

device. Section 3.7 reports performance metrics for the visualizations on the mobile.

3.2 Visualization objectives

Real-time packet interception: We would like to monitor and visualize the network traffic

in real-time. More specifically, we want to be able to intercept the traffic in real-time and

extract essential details pertaining to that packet without disrupting the flow of traffic or

introducing noticeable delay. We use the AntMonitor Library[19] to intercept the traffic in

real time. To achieve this, we extract the data from the packets when it is captured by the

VPN server and just before it is transmitted.

Easy to understand visualization: We would like to visualize the data in an easy-to-comprehend

way. In order to realize this, we use D3.js[1] to create a webview in android application that

would visualize the details of the network packets such as the application that is send-

ing/receiving it, the remote destination which has sent/received.

Real-time graph updating: Using the AntMonitor Library gives us the unique opportunity to

provide real-time insight to the users about the network activity on their phones. To fully

capitalize on this, we provide an interactive visualization that updates the force-graph every

time a new connection is opened or closed and keeps track of the amount of data that has

been transferred in the current transaction.

11

Figure 3.1: AntMonitor with offline and online visualization modules

3.3 System Design

We use the AntMonitor Library to collect the data necessary for visualizing the network

traffic in real time on a mobile phone. The network packets contain details including the

port the packet was sent from, the remote IP the packet was sent to, how much data was

sent. These details can be collected from the network packets during or after they have been

transmitted.

3.3.1 Offline Visualization

The AntMonitor mobile application gives an option for users to log network packet mea-

surements to a remote server. Only the packets from applications that have been selected

by the user to be logged, are sent to the remote server. Figure 3.1 shows the AntMonitor

12

architecture with the offline visualization. In this method, we intercept the packets before

they are filtered to be logged. If the visualization screen is opened, we mine the stream of

packets coming in to be logged. At this point, the packet is already transmitted. We mine

each packet to extract the port from which it was sent, the destination IP address, the source

IP address and the length of the packet. Using the AntMonitor Library, we also identify the

package name of the application that the packet is associated with. Once we have mapped

the application, we send this data to the Graphical User Interface for it to be rendered.

For every packet, the extracted data is bundled together and sent to the webview in the user

interface. The webview is synchronized to process this stream of data in a sequential order.

The visualization presents a bipartite graph with one set of nodes being the applications

that generate traffic, and another set being the destination IP the traffic goes to. Each node

also contains other meta-data like the icon associated with the application. An edge exists

between two nodes if the packet is transmitted between an application and a server.

3.3.2 Online Visualization

The AntMonitor Library uses a VPN service to intercept network packets on the mobile

device. The Forwarder module is responsible for routing network traffic on the device. For

each TCP connection made by the application on the device, an instance of the TCP For-

warder is created. When the connection is closed, the instance of the forwarder is destroyed.

The VPN service keeps track of the active Forwarders at any instance.

Figure 3.2 describes the visualization system. The following steps describes the series of

events that trigger the visualization:

1. When the Network Activity Screen is opened in the AntMonitor application on the

mobile device, PacketFilter.triggerOpenConnections() in the AntMonitor Library is

13

Figure 3.2: Online visualization with methods numbered according to the sequence of actions.

invoked to fetch the existing active connections. The existing active connections are

mapped by the ForwarderManager and can be accessed by the PacketFilter.

2. The active open TCP Connections are retrieved and for each of the open connections,

we extract the source IP, destination IP, source port and destination port. With this

information, we invoke PacketDetailsMiner.onTCPConnectionOpened(), which acts

as the interface between the Data Visualization module and the GUI.

3. When the AntMonitor Library intercepts network traffic, the ForwarderManager

creates an instance of TCPForwarder for every new TCP connection on the device.

TCPForwarder.initializeTCPForwarder() notifies the PacketFilter in the AntClient

of the new TCP connection.

4. The PacketFilter extracts the destination IP, source port and destination port from

the instance of the TCPForwarder. These details are then sent to PacketDe-

14

Figure 3.3: Representation of the graph data structure containing the network activity data.
The bipartite graph depicts the set of applications connected to the set of servers. An
edge indicates an open connection between an application and a destination IP and an edge
appears as long as the connection is active.

tailsMiner.onTCPConnectionOpened(). Again, this method acts as the interface be-

tween the Data Visualization module and the GUI.

5. The PacketDetailsMiner uses the AntMonitor Library, destination IP, source port

and destination port to identify the name of the package the packet is associated with.

The package name and destination IP are then broadcast to the Real-Time Frag-

ment.

15

Algorithm 1 Pseudo-code for adding a link to the existing Network Activity Graph

addLink(sourceId, targetId):

sourceNode = findNode(sourceId)

targetNode = findNode(targetId)

while i < links.length do

if links[i].source == sourceNode and links[i].target == targetNode then

links[i].byteCount += byteCount

return

else

i++

end if

end while

if sourceNode not undefined and targetNode not undefined then

links.push(”source”:sourceNode, ”target”:targetNode)

end if

6. The Real-Time Fragment receives the package name and destination IP and uses

the package name to fetch the icon and name associated with the package. The de-

tails - (package name, destination IP, icon and length) are then sent to the Network

Activity Screen. The Network Activity Screen is a webview where the network

activity is represented and rendered. The network activity is stored for the current

session in the webview. The network activity is stored as a Network Activity Graph as

represented in Figure 3.3. Algorithms 1 and 2 describe the pseudo-code for adding a

new connection to the Network Activity Graph. To add a new edge to the graph, we

check if the package and remote server already exist in the Network Activity Graph. If

the nodes do not exist in the graph, we add the nodes to the graph. If the nodes exist

in the graph, we check if there exists an edge between the package and remote server

and if there is none, we add an edge between the two nodes.

16

Algorithm 2 Pseudo-code for adding a new network connection into the Network Activity
Graph

addConnection(package− name, ip, image):

if findNode(package− name) == undefined then

addNode(package-name,image)

end if

if findNode(ip) == undefined then

addNode(ip)

end if

addLink(package-name,ip)

7. When a TCP connection is closed, the corresponding instance of TCPForwarder

is destroyed. TCPForwarder.destroy() notifies the PacketFilter of the connection

that is closed.

8. The PacketFilter extracts the source IP, destination IP, source port and destination

port from the instance of the TCPForwarder that is being destroyed. These details

are then sent to PacketDetailsMiner.onTCPConnectionClosed() which acts as an

interface between the AntClient and the GUI. The PacketDetailsMiner uses the

AntMonitor Library, destination IP, source port and destination port to identify the

name of the package the packet is associated with. The package name and destination

IP are then broadcast to the Real-Time Fragment.

17

Algorithm 3 Pseudo-code for removing connection from Network Activity Graph

removeConnection(sourceNode, targetNode):

linkExists = false

i=0

for i = 0 to i < links.length do

if links[i].source == sourceNode and links[i].target == targetNode then

links.remove(i)

linkExists = true

end if

end for

if linkExists then

isApp=false

isIp=false

for i = 0 to i < links.length do

if links[i].source == sourceNode then

isApp = true

end if

if links[i].target == targetNode then

isIp = true

end if

end for

if isApp == false then

nodes.remove(sourceNode)

end if

if isIp == false then

nodes.remove(targetNode)

end if

end if

18

9. The Real-Time Fragment receives the package name and destination IP from the

broadcast by PacketDetailsMiner. The details - package name, destination IP are

then sent to the Network Activity Screen. Algorithm 3 describes the pseudo-code

for removing an existing connection from the Network Activity Graph. We check if

there exists a link between the application and the remote server in the connection

that is being close. If the link exists, we remove the edge from the Network Activity

Graph. Once the edge is removed, we check if the package and remote server has other

edges associated with them. If either or both of them has no edges associated with it,

we remove the node(s) from the graph.

3.4 Graphical User Interface

The data mined from the stream of network packets are sent to the webview in the android

application to be visualized to the users. The webview presents the stream of data into

a bipartite graph. For every addition of edge, we draw the same in our visualization and

similarly, for every connection that is closed, we visualize the removal of an edge.

We want to present the users with the data extracted from network packets - AppName, Re-

mote IP, time the connection opened, time the connection closed. To visualize this continuous

stream of data, we store this data in a dynamic graph where we add/remove nodes/edges.

Figure 3.3 shows a sample network traffic graph. We can see from the figure that it is a

bipartite graph with applications on the device as one set of nodes and the remote servers

being the other set. An edge exists between two nodes if there is an active TCP connection

between an application and a remote server. Each node representing an application contains

the package name, application name and application icon while each remote server contains

IP address of the server and host name.

19

We use a force-directed graph to visualize the network traffic. We use the D3.js[1] implemen-

tation of the force-directed graph to realize the visualization on a web view in an Android

application running on the phone. We use the force-directed graph so that all the edges in

the graph are almost the same distance. Force-directed graphs are also aesthetically pleasing

and present the data in a meaningful and easy-to-understand format to the users.

3.5 Performance Optimization

Data mining and rendering the visualization can be very CPU and memory intensive. As

the visualization runs along with AntMonitor, we need to optimize the visualization in order

to optimize the use of resources without draining the user’s battery.

Mining data requires CPU resources to process the data and also memory to store the

mined data. In order to optimize resources, we maintain the data structure to store the

network traffic data in the web view, and we avoid creating any additional data structures.

The web view is destroyed when the visualization screen is closed and this helps in destroying

the data collected for the current session. Using a dynamic graph helps in restricting the

size of the graph structure to the number of active TCP connections.

Rendering the visualization requires extensive CPU processing. The real time visualization

is updated on every opening and closing of TCP connections. Since, the rate of updating is

very high, the CPU requirements for this case is high too. To save the mobile device from

battery drain due to excessive CPU usage, we only process the data, store it and render the

visualization when the screen is on the foreground.

20

Figure 3.4: Screen shot of Online visualization on the mobile device

3.6 Example Visualizations

Figure 3.4 is a screen capture of the Online Visualization of network traffic on the mobile

device of one user. The screen shot shows the various applications that have open TCP

connections while this was captured. This makes the users aware of what applications are

communicating over the network at the current time. This also gives users an idea of the

different applications that talk to the same server.

3.7 Performance Evaluation

Setup: When the visualization screen is opened in the device, we visualize the existing open

TCP connections. The existing number of connections could be as small as 1 or 2, if the

21

Figure 3.5: Time taken for loading initial connections

phone is not currently being used for network heavy applications, or it can be in the order

of hundreds if the phone is using the network extensively. We simulate conditions similar to

an idle phone (5 open connections) to busy phone (250 open connections) to evaluate how

the number of connections varies the initial loading time.

Results:From Figure 3.5, we see that the time taken to render the connections increases

with the number of open connections. We see that this initial wait could go up to 1 second

in case of busy network activity in the phone.

This wait is only during the initial loading of the visualization screen. Once the initial open

connection is rendered, we see that the visualization screen continues to draw and remove

TCP connections as they are being opened and closed. Addition and removal of edges in

the existing graph occurs with minimal time, averaging to about 0.1 milliseconds after the

initial load.

22

Chapter 4

Visualizations on the Web

4.1 Overview

AntMonitor provides the users with an option to upload their logs to the logserver as shown

in Figure 3.1. This provides us with an opportunity to visualize historical information on

the server and to correlate the information collected from different users. In this thesis, we

used AntMonitor to collect network traffic measurements from a pilot study conducted at

UCI for over a year. The data is collected in the PCAPNG[4] format from the phone and is

securely uploaded to a server. We want to use this data and re-create the network activity

visualizations. To do this, we create a web application on the log server which the users can

interface with to view the historical visualizations of their own network traffic.

The visualization on the server can be more powerful than on the mobile device and can

provide visualizations with richer meta-data and can be used to identify labeled groups of

servers like Adservers, blacklists, DNS Servers. In addition to re-creating the visualization

similar to the one on the mobile, we also use the data available to identify if the servers the

applications are communicating with belong to any known labeled sets. We show that this

23

can also be extended to any labeled sets we might want to identify.

The rest of the section is structured as follows. Section 4.2 gives an overview of the database

that has the network packet measurements collected from the users of the pilot study at

UCI. Section 4.3 describes the structure and implementation of the web application that

visualizes the network data. Section 4.4 outlines the steps taken to improve performance

of the web application. Section 4.5 shows sample visualizations on the server. Section 4.6

provides a performance evaluation of the web application rendering the visualization.

4.2 Data Collection and Parsing

AntMonitor allows the users to upload the network traffic measurements collected on their

device to a remote server. If the user chooses to upload logs, the traffic data is collected in

pcapng format. We have data collected from a pilot study at UCI for over a year. These traffic

measurements, are then processed by the log server and the network packet features are

extracted. From each packet, approximately 66 features are extracted which can be roughly

classified as packet length statistics, payload length statistics, inter-arrival time statistics,

distribution of pairs of traffic bursts, general summary statistics and TCP flags. All the

above mentioned features are bundled into a tuple of the MySQL relation for later access.

Each tuple in the MySQL relation is uniquely identified by unique user id provided by

AntMonitor mobile application. AntMonitor provides a way to map the network packets

to applications on the phone. AntMonitor maps each packet to the application that sent

it before it is converted into pcapng format. We store the AntMonitor User ID and the

application package name along with network packet features in the MySQL relation.

24

Figure 4.1: Server-side Visualizations with methods numbered according to sequence of
actions

4.3 System Design

Figure 4.1 provides a block diagram representation of the AntMonitor website. The data

collected from mobile devices are uploaded to the log server and are entered in the MySQL

Database. We use this database for retrieving user data for visualization.

The following steps outlines the series of events that occur for loading the network activity

visualization in the AntMonitor website:

1. The user logs in the website with their AntMonitor id and password and can see a

screen similar to Figure 4.2. This is the base of Network Traffic Graph UI and

it provides the users with an option to select the time period for which they want to

view the network traffic activity of their device. When the users select the time period,

25

Figure 4.2: Screenshot of the AntMonitor Web. Users can select time period for viewing
visualization

TrafficDetailFetchService.fetchUserData() is invoked for fetching the details for the

user given the time period.

2. The TrafficDetailFetchService queries the MySQL database for the user data in the

time period specified. The database returns a set of tuples in the chronological order.

Each tuple consists of time when first packet was sent, time when last packet was sent,

total number of bytes transferred, package name and IP address of remote server.

3. For every application in the result, fetchAppDetails() looks up for the image and devel-

oper details associated with it in the App Details Cache. Once we have the details

of the application, we proceed to finding information regarding the remote server.

4. Once every day, we poll the web for a list of adservers[3]. We store the AdServer

List on the LogServer. We identify the IP addresses on our result that are present in

the Adserver List. We do a subnet matching against our list to increase the adserver

identification. The results are then mapped for each network connection.

5. We query the DNSBL[2] and Spamhaus[5] services to check if the IP address of the

26

Figure 4.3: Representation of the graph data structure containing the network activity data.
The bipartite graph contains set of applications connected to set of remote servers. Remote
servers are colored depending the labeled group they belong to.

remote server is blacklisted. For every IP address we have in the result of our query,

we identify if it is blacklisted and add it to the results.

6. Once the necessary information for creating the traffic graph is extracted, we send this

data back to the Network Traffic Graph UI where the graph will be rendered in

a force-directed format. Figure 4.3 describes the structure of a sample network traffic

graph along with the meta-data of the nodes.

Suspicious overlaps: Applications tend to communicate with multiple remote servers at

any point of time.Sometimes, different applications may talk to the same server(s), some of

which can be ad servers, spam, or DNS servers. We indicate such remote servers that have

been contacted by applications from different developers by marking them green.

27

Figure 4.4: Visualization on the Antmonitor Website

4.4 Performance Optimization

Rendering of web applications becomes challenging with multiple network calls to fetch

other details. In our case, to render the visualization, we get the details of the application

from the Google Play Store and we also use querying services like DNSBL[2] to check if a

server is blacklisted. These network calls combined with drawing the force-directed graph,

could increase the wait time for users to see the visualization. To improve this, we do some

improvements to the code as stated below.

Global Cache of Application Details: We use BeautifulSoup[18] package for scraping

web pages. To get the details of various application, we scrape the Google Play Store web

page. This action is expensive in time and takes approximately 4.41 seconds to get the details

of one application. To reduce the amount of time spent on retrieving data, we create a global

cache where data related to an application are stored on the server if it was accessed at least

once by any user. This brings down the time taken to fetch the details of an application to

0.1 seconds.

28

(a) Time-taken in milliseconds to fetch the net-
work traffic data from the database

(b) Time-taken in milliseconds to render the
number of edges

Figure 4.5: Graphs showing the time taken to load the visualizations on the server for various
simulated conditions

4.5 Example Visualizations

Figure 4.4 is the screen capture of a visualization on the website. This visualization shows

the interaction between applications run on the mobile device of a particular user and the

remote servers it contacted over the network. As can be seen from the screen shot, this

visualization provides the descriptive statistics on how much data was transferred over the

network during the requested period of time. Also, this gives the users an insight into how

many of the contacted servers were Adservers or trackers. The Adservers or trackers are

indicated by a blue circle. The blacklisted servers are indicated by red circles and those

servers that are contacted by applications of multiple developers are represented by green

ones. This gives users an idea of how much of their data was sent to trackers, Adservers and

blacklisted servers.

4.6 Performance Evaluation

Setup: To load the visualizations on the web, the two expensive parts of loading the page

are fetching the data and rendering the data. We evaluate the time taken to load different

29

amounts of data and we also evaluate the time taken to draw the visualizations.

Results: Figure 4.5(a) plots the time taken to draw various amounts of data. As expected,

the amount of data increases the time taken increases, which could increase the loading

time of the web page rendering the visualizations. From Figure 4.5(b), we see that when

the amount of edges to draw increases, for example to approximately 35000, the time taken

increases to about 34 seconds.

30

Chapter 5

Conclusion

In this thesis, we presented a system to visualize network traffic data - for the first time, in

real-time - and to make the network activity on the phone more transparent. We provided

a mobile application that builds on and runs along with AntMonitor and provides network

traffic visualizations on the mobile device in real-time and with negligible delay. We use

the data collected from a pilot study to showcase visualization on a web application. We

provide insights into the remote servers accessed by mobile application and also indicate

remote servers that are accessed by multiple different applications. Table 5.1 summarizes

the functionality provided in our visualization on the mobile devices and on the web.

In future work, we would like to be able to identify applications as running in background

or foreground and also to visualize PII leaks. We would like to use the visualization to learn

user behaviour and for detecting anomalies. Finally, we would like to utilize the power of

crowd-sourcing and provide insights and visualizations across multiple users.

31

Table 5.1: Summary of Visualization Capabilities

Functionality Mobile
Online

Mobile
Offline

Web/Server
Offline

Real-time Visualization Yes No No

Ad-server identification No No Yes

Blacklist membership No No Yes

Suspicious servers contacted
by multiple applications

No No Yes

Application icons Yes Yes Yes

Force-directed graph Yes Yes Yes

Historical data No No Yes

Statistics on total data
transferred

No Yes Yes

Statistics on the amount of
data transferred to Labeled
nodes

No No Yes

Removal of edges on closing
connection

Yes No No

32

Bibliography

[1] D3js. https://d3js.org/.

[2] DNSBL. http://www.dnsbl.info/.

[3] List of ad server hostnames. http://pgl.yoyo.org/as/.

[4] PCAPNG File Format. http://goo.gl/y89d9U.

[5] Spamhaus. https://www.spamhaus.org/.

[6] Flashlight. https://play.google.com/store/apps/details?id=com.peacock.
flashlight&rdid=com.peacock.flashlight, 2016.

[7] Ghostery. https:
//play.google.com/store/apps/details?id=com.ghostery.android.ghostery,
2016.

[8] Lightbeam. https://addons.mozilla.org/en-US/firefox/addon/lightbeam, 2016.

[9] Mobile and tablet internet usage surpasses desktop for first time.
http://www.zdnet.com/article/

mobile-and-tablet-internet-usage-exceeds-desktop-for-first-time-statcounter/,
2016.

[10] Network connections. https:
//play.google.com/store/apps/details?id=com.antispycell.connmonitor,
2016.

[11] Network log.
https://play.google.com/store/apps/details?id=com.googlecode.networklog,
2016.

[12] E. Finickel, A. Lahmadi, F. Beck, and O. Festor. Empirical analysis of android logs
using self-organizing maps. In 2014 IEEE International Conference on
Communications (ICC), pages 1802–1807, June 2014.

[13] M. Kaufmann and D. Wagner. Drawing graphs: methods and models, volume 2025.
Springer, 2003.

33

https://d3js.org/
http://www.dnsbl.info/
http://pgl.yoyo.org/as/
http://goo.gl/y89d9U
https://www.spamhaus.org/
https://play.google.com/store/apps/details?id=com.peacock.flashlight&rdid=com.peacock.flashlight
https://play.google.com/store/apps/details?id=com.peacock.flashlight&rdid=com.peacock.flashlight
https://play.google.com/store/apps/details?id=com.ghostery.android.ghostery
https://play.google.com/store/apps/details?id=com.ghostery.android.ghostery
https://addons.mozilla.org/en-US/firefox/addon/lightbeam
http://www.zdnet.com/article/mobile-and-tablet-internet-usage-exceeds-desktop-for-first-time-statcounter/
http://www.zdnet.com/article/mobile-and-tablet-internet-usage-exceeds-desktop-for-first-time-statcounter/
https://play.google.com/store/apps/details?id=com.antispycell.connmonitor
https://play.google.com/store/apps/details?id=com.antispycell.connmonitor
https://play.google.com/store/apps/details?id=com.googlecode.networklog

[14] S. G. Kobourov. Force-directed drawing algorithms. In Handbook of Graph Drawing
and Visualization (Discrete Mathematics and Its Applications. 2013.

[15] A. Lahmadi, F. Beck, E. Finickel, and O. Festor. A platform for the analysis and
visualization of network flow data of android environments. In 2015 IFIP/IEEE
International Symposium on Integrated Network Management (IM), pages 1129–1130,
May 2015.

[16] I. News. Mobile subscriptions near the 7 billion mark. https://itunews.itu.int/en/
3741-Mobile-subscriptions-near-the-78209billion-markbrDoes-almost-everyone-have-a-phone.

note.aspx.

[17] J. Ortiz-Ubarri, H. Ortiz-Zuazaga, A. Maldonado, E. Santos, and J. Grulln. Toa: A
web based network flow data monitoring system at scale. In 2015 IEEE International
Congress on Big Data, pages 438–443, June 2015.

[18] L. Richardson. Beautiful soup documentation, 2015.

[19] A. Shuba, A. Le, E. Alimpertis, M. Gjoka, and A. Markopoulou. Antmonitor: System
and applications. arXiv preprint arXiv:1611.04268, 2016.

34

https://itunews.itu.int/en/3741-Mobile-subscriptions-near-the-78209billion-markbrDoes-almost-everyone-have-a-phone.note.aspx
https://itunews.itu.int/en/3741-Mobile-subscriptions-near-the-78209billion-markbrDoes-almost-everyone-have-a-phone.note.aspx
https://itunews.itu.int/en/3741-Mobile-subscriptions-near-the-78209billion-markbrDoes-almost-everyone-have-a-phone.note.aspx

	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ALGORITHMS
	ACKNOWLEDGMENTS
	ABSTRACT OF THE THESIS
	Introduction
	Related Work
	Existing Applications
	Visualization Approaches
	Data Collection and Mining
	Techniques in Rendering

	AntMonitor

	Visualization on the Mobile Device
	Overview
	Visualization objectives
	System Design
	Offline Visualization
	Online Visualization

	Graphical User Interface
	Performance Optimization
	Example Visualizations
	Performance Evaluation

	Visualizations on the Web
	Overview
	Data Collection and Parsing
	System Design
	Performance Optimization
	Example Visualizations
	Performance Evaluation

	Conclusion
	Bibliography

