
UC Irvine
Faculty Publications

Title
Development of a hydrometeorological forcing data set for global soil moisture 
estimation

Permalink
https://escholarship.org/uc/item/95m5351t

Journal
International Journal of Climatology, 25(13)

ISSN
0899-8418 1097-0088

Authors
Berg, A. A
Famiglietti, J. S
Rodell, M.
et al.

Publication Date
2005-11-15

DOI
10.1002/joc.1203

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
availalbe at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/95m5351t
https://escholarship.org/uc/item/95m5351t#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


INTERNATIONAL JOURNAL OF CLIMATOLOGY

Int. J. Climatol. 25: 1697–1714 (2005)

Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/joc.1203

DEVELOPMENT OF A HYDROMETEOROLOGICAL FORCING DATA SET
FOR GLOBAL SOIL MOISTURE ESTIMATION

A. A BERG,a,* J. S. FAMIGLIETTI,b M. RODELL,c R. H. REICHLE,d,e U. JAMBOR,c S. L. HOLLb and P. R. HOUSERc

a Department of Geography, University of Guelph, Guelph, Ontario, Canada
b Department of Earth System Science, University of California, Irvine, Irvine, California, USA

c Hydrological Sciences Branch, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
d Goddard Earth Sciences and Technology Center, University of Maryland, Baltimore, Maryland, USA

e Global Modeling and Assimilation Office NASA/Goddard Space Flight Center, Greenbelt Maryland, USA

Received 15 June 2004
Revised 24 December 2004
Accepted 29 March 2005

ABSTRACT

Off-line land surface modeling simulations require accurate meteorological forcing with consistent spatial and temporal
resolutions. Although reanalysis products present an attractive data source for these types of applications, bias to many of
the reanalysis fields limits their use for hydrological modeling. In this study, we develop a global 0.5° forcing data sets for
the time period 1979–1993 on a 6-hourly time step through application of a bias correction scheme to reanalysis products.
We then use this forcing data to drive a land surface model for global estimation of soil moisture and other hydrological
states and fluxes. The simulated soil moisture estimates are compared to in situ measurements, satellite observations and
to a modeled data set of root zone soil moisture produced within a separate land surface model, using a different data
set of hydrometeorological forcing. In general, there is good agreement between anomalies in modeled and observed
(in situ) root zone soil moisture. Similarly, for the surface soil wetness state, modeled estimates and satellite observations
are in general statistical agreement; however, correlations decline with increasing vegetation amount. Comparisons to a
modeled data set of soil moisture also demonstrates that both simulations present estimates that are well correlated for
the soil moisture in the anomaly time series, despite being derived from different land surface models, using different
data sources for meteorological forcing, and with different specifications of the land surfaces properties. Copyright 
2005 Royal Meteorological Society.
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1. INTRODUCTION AND BACKGROUND

Water held in the soil is critical to the hydrologic cycle. It is an important source of moisture for
evapotranspiration, it affects the physiology and distribution of vegetation, it recharges groundwater, controls
runoff distributions, and it is essential for the partitioning of the land surface heat flux between sensible
and latent heat components. In numerical climate simulations, numerous studies have demonstrated that soil
wetness is an important atmospheric boundary condition affecting the prediction of precipitation (Fennessy
and Shukla, 1999; Dirmeyer, 2000; Koster et al., 2000) and temperature (Koster and Suarez, 2003).

A complicating issue for studies that examine the impact of the initial soil moisture state on climate
prediction is obtaining realistic estimates from continental to global scales. To produce these estimates,
comprehensive sets of land surface and atmospheric information are necessary at consistent temporal and
spatial scales. Over many regions of the Earth, such information is only available from global reanalysis
products such as the National Center for Environmental Prediction/National Center for Atmospheric Research
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(NCEP/NCAR) 40-year reanalysis (Kalnay et al., 1996) (NRA), and the European Center for Medium Range
Weather Forecasts (ECMWF) (Gibson et al., 1997) (ERA-15) and ERA-40 (Simmons and Gibson, 2000).

Soil moisture and other hydrologic stocks are integrated states; thus, systematic bias in forcing products
is manifested in water storage estimates. Therefore, the use of meteorological forcing derived directly from
reanalysis products for driving uncoupled land surface model simulations is not recommended because of
bias in the reanalysis products. Bias in various reanalysis fields in the ERA and NRA has been the subject of
much research (e.g. Betts et al., 1996, 1998a, 1998b, 1998c; Maurer et al., 2001a, 2001b; Roads and Betts,
2000, Roads et al., 2003), and for this reason, studies that have incorporated reanalysis data sources have
also incorporated some degree of bias correction to the reanalysis fields (Dirmeyer et al., 1999; Arora et al.,
2000; Lenters et al., 2000).

The reanalysis products also include global estimates of the soil moisture state. However, a number of studies
have identified problems with methods implemented by the NRA and ERA-15 for soil water estimation (e.g.
Roads and Betts, 2000; Maurer et al., 2001a, 2001b). The NRA included an adjustment of the soil water cycle
toward the soil moisture climatology of Mintz and Serafini (1992). While this procedure prevents the NRA
from maintaining unrealistic soil moisture conditions, the values simulated are not always representative of
actual soil moisture state or tendency (Roads et al., 1999). Moreover, Robock et al. (1998) identify problems
and inconsistencies with the Mintz and Serafini (1992) climatology. In the ERA-15, a tendency for the
modeled soil moisture to become too dry was eliminated by systematically adding water to each of the soil
layers (Betts et al., 1999). Therefore, soil water properties derived from either of these sources, climatology
or initial conditions, are not likely to be representative of the true soil water state (e.g. Srinivasan et al.,
2000).

Given the above problems with reanalysis meteorological forcing and soil moisture, the Global Soil Wetness
Project (GSWP) (Dirmeyer et al., 1999) and Nijssen et al. (2001) have produced soil moisture data sets in
addition to those from the global reanalysis products. In the GSWP phase I, 11 different land surface models
(LSMs) were used to produce retrospective estimates of hydrological fluxes and the soil water state for the
years 1987 and 1988. The necessary meteorological forcing for this study was derived from a synthesis of
observations and the ERA-15 (Sellers et al., 1996). In the second phase of the GSWP, a hydrometeorological
forcing data set was developed for over 10 years by hybridizing the NCEP/DOE (Department of Energy)
reanalysis (Kanamitsu, et al., 2002) with global observations (Zhao and Dirmeyer, 2003). Estimates of initial
soil water field derived from the GSWP phase I have been used in a number of climate model studies (e.g.
Dirmeyer, 2000; Douville and Chavin, 2000) and hydrologic analyses (e.g. Rodell and Famiglietti, 1999).

The study of Nijssen et al. (2001) expands on the work of GSWP phase I by providing estimates of the
global root zone soil moisture storage for a 14-year period (1980–1993). To avoid previously identified errors
with reanalysis forcing (e.g. Maurer et al., 2000), an observation-based forcing product independent from
the reanalysis products (except for wind speed) was developed. Grids of daily precipitation and temperature
observations were produced using station observations together with monthly average temperature (Jones,
1994) and precipitation (Huffman et al., 1997) products. Other necessary forcing variables (e.g. radiation,
vapor pressure) were derived from relationships between the temperature and precipitation time series (e.g.
Thornton and Running, 1999). Using this meteorological forcing data, the variable infiltration capacity (VIC)
(Liang et al., 1994) land surface model was run to produce a long-term daily data set of hydrological states
and fluxes.

Recognizing the existence of errors in the reanalysis products and their potential to impact off-line land
surface model simulations, Berg et al. (2003) created a forcing data set for North America through bias
correction of the ERA and NRA reanalysis products. This bias-corrected reanalysis-based forcing was then
used to simulate hydrologic fluxes over the continent and to demonstrate the sensitivity of a land surface
model to the bias removal.

In the present study, we expand upon the techniques and methods presented in Berg et al. (2003) to develop
a 0.5° hydrometeorological forcing data set for the period 1979–1993 for global land surface modeling
applications. The techniques described in the Berg et al. (2003) study are adapted to enhance the spatial
resolution of the precipitation forcing, and also to improve the radiation estimates for periods outside of the
observed record. We then use this forcing data to drive a land surface parameterization scheme for global
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estimation of soil moisture and the other hydrological states and fluxes. Finally, we compare our modeled soil
moisture states to observations from the soil moisture data bank (Robock et al., 2000) to a satellite-derived
surface soil moisture product (Owe et al., 2001), and to the modeled soil moisture product of Nijssen et al.
(2001). Throughout this study, we limit our focus to descriptions of the soil water state. Analysis of other
aspects of the hydrological cycle is the subject of ongoing research.

2. MODEL AND FORCING DATA

In this section, we discuss the application of a bias correction method similar to that of Berg et al. (2003)
to the ERA-15 (Gibson et al., 1997) and to the NRA-40 (Kalnay et al., 1996) to produce a 0.5°, 6-hourly
forcing data set for the global land surface over the period 1979–1993. Recently, the ERA-15 has been
updated to the ERA-40 (Simmons and Gibson, 2000). The ERA-40 has numerous improvements to the ERA-
15 including higher spatial and temporal resolutions, an updated land surface parameterization scheme and
improvements to many of the errors and the bias identified in the ERA-15 (e.g. Betts et al., 1998 a, 1998
b, 1998 c). Work by Seneviratne et al. (2004) demonstrates that the improvements to the ERA-40 allow for
more accurate simulation of hydrological features such the seasonal soil moisture cycle and measures of
interannual variability over the Mississippi basin. However, similar comparisons over the Mackenzie basin
by CT Betts et al. (2003) demonstrate that precipitation bias remains an issue over some regions in the ERA-
40. Bias has also been identified in the update to the NCEP/NCAR reanalysis, the NCEP-DOE reanalysis
(e.g. Maurer et al., 2001a; Zhao and Dirmeyer, 2003), and thus the hydrometeorological forcing data set
created for the GSWP Phase II (Zhao and Dirmeyer, 2003) performs a hybridization strategy where global
observation products are merged with NCEP-DOE reanalysis data. Therefore, bias reduction procedures such
as those described in Berg et al. (2003) and in the discussion below will also be an appropriate strategy for
the reduction of bias in the updated reanalysis products for producing forcing for off-line simulations of land
surface models. Discussion in this section will focus on (1) updates to the bias correction described in the
Berg et al. (2003) study, (2) the modeling strategy, and (3) data sets used for comparison with simulation
results.

2.1. Bias correction and forcing data set development

The required climatic forcing for the majority of land surface schemes includes short- and longwave
downwelling radiation, precipitation, air and dew point temperatures, wind speed, and surface pressure. The
data products used in the correction procedure are summarized in Table I.

2.1.1. Downwelling short- and longwave radiation. Correction to the reanalysis (ERA and NRA) down-
welling of long- and shortwave radiation was completed following a ratio approach (Berg et al., 2003) to
match data from the Surface Radiation Budget (SRB) (Gupta et al., 1999) following:

cRi = Obs

R
× Ri (1)

where, cRi is the corrected reanalysis forcing for time i, Obs are the monthly SRB observations, R is the
raw monthly average radiation from the reanalysis, and Ri is the raw reanalysis also at time i.

Unfortunately, the SRB product was available only for the period 07/1983–06/1991. Therefore we expand
upon the Berg et al. (2003) study to correct the reanalysis products outside of this 8-year period by correcting
the ratio between the observations and reanalysis products (Obs/R in Equation 1) using a regression based
approach. Assuming that differences between observations and the reanalysis are systematic, then removal of
bias from the reanalysis products using regression equations between monthly observations and the reanalyses
is valid. To this end, we calculate monthly anomalies for both the reanalysis products and the SRB monthly
data for the period July 1983–June 1991. A regression analysis was then performed between the SRB and
reanalysis anomalies for each grid cell; the statistical significance of each equation was evaluated using

Copyright  2005 Royal Meteorological Society Int. J. Climatol. 25: 1697–1714 (2005)
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Table I. Observational data sets used to perform bias correction to the ERA and NRA (the time frames given here reflect
those used in the bias correction and are not necessarily those of the actual data set)

Data sets used for bias correction of the reanalysis

Reanalysis field Observed data set used Resolution

Temporal Spatial

2 m air temperature Climate Research Unit
(New et al., 2000)

Monthly 1979–1993 0.5° × 0.5°

Center for Climatic
Research (Willmott and
Matsuura, 2001)

Monthly 1979–1993 0.5° × 0.5°

2 m dew point temperatures Climate Research Unit
(New et al., 2000)

Monthly 1979–1993 0.5° × 0.5°

Precipitation Global Precipitation
Climatology Project
Version 2 (Adler et al.,
2003)

Monthly 1979–1993 2.5° × 2.5°

Climate Research Unit
(New et al., 2000)

Monthly 1979–1993 0.5° × 0.5°

Center for Climatic
Research (Willmott and
Matsuura, 2001)

Monthly 1979–1993 0.5° × 0.5°

Long- and Shortwave radiation Langley Eight Year
Shortwave and
Longwave Surface
Radiation Budget CT
(Gupta et al., 2000)

Monthly 1983–1991 1.0° × 1.0°

a Student’s t test assuming a 0.05 confidence level (p < 0.05). Where the relationship between SRB and
reanalysis anomalies was found to be statistically significant, the regression equation was then used to forecast
the anomaly departure from the mean monthly SRB value. The anomaly forecast from the regression was
added to the monthly mean SRB value to evaluate the value of Obs in Equation 1.

To ensure that any seasonal differences to the relationship between the reanalysis and SRB data are
represented, each regression equation was evaluated separately over each of December–February (DJF),
March–May (MAM), June–August (JJA), and September–November (SON). After the value of Obs was
determined, the corrected value of the reanalysis radiation, both for long- and shortwave, was evaluated
according to Equation 1. Overall, the regression equations were found to be statistically significant over
much of the global land surface in both the reanalysis products. Table II documents the applicability of the
regression equation approach for each period for correction of both the ERA and NRA.

For grid cells without a statistically significant regression relationship, a standardized anomaly calculated
from the reanalysis relative to period July 1983–June 1991 was used to adjust the SRB mean (Obs) relative to
the mean and standard deviation of the SRB observations. This procedure was repeated for both the shortwave
and longwave radiation data for the time periods outside of July 1983–June 1991 on the monthly timescale.

The goal of the bias correction for the radiation data sets was to ensure that the monthly mean matches that
of the SRB. However, by making this correction the diurnal cycle of radiation as forecast by the reanalysis
has been impacted. At the time the radiation data sets were processed, data sets for the diurnal range were not
available and thus were not included in the bias correction. Therefore, updates to this procedure must make
use of these updated data sets and constrain the application of Equation 1 to within the observed diurnal range
(e.g. Zhao and Dirmeyer, 2003). Despite this issue, sensitivity experiments that compare between off-line land
surface model simulations using the corrected radiation fields and the raw ERA-15 reanalysis data demonstrate
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Table II. Percentage of the global land area over which regression equations between
anomalies to the SRB and the reanalysis products were found to be statistically

significant

Month ERA NRA

Shortwave Longwave Shortwave Longwave

DJF 0.71 0.94 0.68 0.78
MAM 0.99 0.99 0.99 0.99
JJA 0.99 0.99 0.71 0.98
SON 0.99 0.99 0.99 0.99

that the correction procedure results in the improved simulation of runoff and snow depth, particularly over
midlatitudes drainage basins (Holl, 2004).

2.1.2. Air and dew point temperature. Production of the 2 m air and dew point temperature data closely
follows Berg et al. (2003). For air temperature, the two reanalysis products (ERA-15 and NRA-40) were
corrected to an average obtained from the products produced by CT New et al. (2000) and Willmott and
Matsuura (2001). The globally averaged mean absolute monthly temperature difference between the two
temperature observation data sets was found to be slightly over 1°, and because we cannot make an argument
toward which data set is preferable we have decided to average the two data sets in this analysis. The key
distinction between the methods used in this study and that of Berg et al. (2003) was interpolation to 0.5°

grids (using inverse distance squares) rather than to a catchment-based resolution.

2.1.3. Precipitation. Precipitation was corrected in the Berg et al. (2003) study according to Equation 1,
using the Global Precipitation Climatology Project GPCP version 2 observations (Adler et al., 2003). For this
analysis, we use a similar approach but only disaggregate the GPCP totals spatially. The monthly precipitation
rate over each of the GPCP 2.5° × 2.5° grids was spatially distributed using the 0.5° degree data sets of
Climate Research Unit (CRU) (CT New et al., 2000) and the Center for Climatic Research (CCR) Monthly
Precipitation time series (version 1.02) (Willmott and Matsuura, 2001). To spatially distribute the GPCP
precipitation rates, first, the average of the CRU and CCR estimates were determined at the 0.5° resolution.
An average between the two data sets was taken for reasons identical to those discussed above for temperature
(the global mean absolute difference between the data sets was found to be approximately 91 mm (Fekete
et al., 2004)). From this combined 0.5° precipitation data set, the average monthly precipitation rate was
determined for a grid size identical to that of the GPCP grid (2.5°). In the next step, the ratio of the GPCP
estimate to the combined CRU and CCR estimate at 2.5° was multiplied by each of the combined 0.5° grid
estimates to produce a precipitation data set where the total precipitation rate of each 2.5° grid cell was similar
to the GPCP estimate; however, the spatial distribution of rainfall within that 2.5° grid is determined by the
estimates of the CRU and CCR. In the final step, the reanalysis products were interpolated to a 0.5° grid
using inverse distance squares and a ratio-based correction was applied to reanalysis following Equation 1
where Obs is the combined GPCP, CRU, and CCR precipitation estimate.

To examine how well this method improves the representation of precipitation, in Figure 1 we compare
correlations between corrected data and the raw reanalysis with the Climate Prediction Center 0.25 × 0.25
Daily US Unified Precipitation data set (Higgins et al., 2000) averaged to the 0.5° resolution used in this
study. Comparisons were completed for the daily, pentad (5 day) and monthly time periods. Unfortunately,
few data sets are available for global comparisons on the daily time frame; therefore, we limit this comparison
to the continental United States where reliable daily gauge-based precipitation products are available. The
Higgins et al. (2000) data set is available daily from 1948 to 1998 at a spatial resolution of 0.25 × 0.25°

for the continental United States. In Figure 1, we illustrate correlations between the gauge-based product and
the raw reanalysis products (NRA, ERA; right column) and the bias-corrected (C) data (CNRA and CERA;
left column) for each of the three time periods. In general, correlations between the raw reanalysis products

Copyright  2005 Royal Meteorological Society Int. J. Climatol. 25: 1697–1714 (2005)
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and Higgins et al. (2000) are best over the western coast of the continental United States, and improve with
increasing amount of time considered (monthly vs daily). The well documented problem with precipitation
in the NRA over the southeast of the United States (e.g. Roads and Betts, 2000) is evident in correlations
between the gauge-based data set and the NRA for time periods greater than one day. As illustrated in
Figure 1, the corrected products have higher correlations and lower root mean square errors (RMSE) and
mean bias errors (MBE) when compared to the gauge-based product over all three time periods. A MBE
calculated over the entire domain was found to be positive for all cases indicating that both the reanalysis
and the corrected forcing are wetter than observations; however, in all cases the MBE falls very close to
zero (not shown). Although the correction is applied only at the monthly time frame, improvements to the
correlations between the gauge and corrected reanalysis product are observable particularly at the pentad time
frame (improvement observed at the monthly scale represent the correlation between corrected data set and
Higgins et al., data (2000)). For both the corrected reanalysis products (CERA and CNRA), improvements
to the correlations over the monthly time frame are best over the central and eastern United States. Over the
Rocky Mountains correlations between Higgins et al. (2000) and the corrected reanalysis products are much
lower than elsewhere in the United States. Over regions of high topographic complexity, approaches similar
to that of Daly et al. (1994) maybe appropriate for further bias reduction.

2.1.4. Unmodified reanalysis fields. Identical to the Berg et al. (2003) study, no modifications were made
to reanalysis wind speed. For surface pressure, the only correction made to the reanalysis product involves
adjusting the surface pressure from the reanalysis surface height to the elevation of the 0.5° grid (Row et al.,
1995) following the hypsometric equation.

2.2. Modeling strategy

In this study, we utilize the Mosaic land surface modeling scheme (Koster and Suarez, 1992, 1996).
Mosaic is a well-established land surface modeling scheme and a participant in a number of intercomparison
studies including the Project for Intercomparison of Landsurface Parameterization Schemes (PILPS), the
atmospheric model intercomparison project (for a recent discussion see Henderson–Sellers et al., 2003) the
GSWP (Dirmeyer et al., 1999), the North American Land Data Assimilation System (NLDAS) (Mitchell
et al., 2004), and is one of the land surface models included in the GLDAS (Rodell et al., 2004). Robock
et al. (2003) and Schaake et al. (2004) present recent evaluations of energy and water balance of the Mosaic
land surface model over the NLDAS study area.

An important attribute of the Mosaic model is its parameterization of subgrid scale variability by partitioning
the land surface into a series of tiles based on vegetation type. The required land surface parameters, soil
hydrologic properties and depths, vegetation type and leaf area index, and their specification within the Mosaic
model are described in Rodell et al. (2004).

The modeling results discussed in this paper were performed as part of a retrospective simulation produced
as part of the GLDAS. The modeling resolution for this simulation was fixed to 2° North/South ×2.5°

East/West. Unfortunately, this required that the forcing fields also be scaled-up from the 0.5° × 0.5° to the
modeling resolution through a simple arithmetic average. Therefore, we limit further discussion to features
observed at the coarser modeled resolution. A separate simulation at the resolution of the forcing product
(0.5°) is underway as part of the GLDAS (see Rodell et al., 2004). The reader should also note that a recent
study by Reichle et al. (2004) has produced similar results to those reported here using the described forcing
product near the 0.5° resolution in a different land parameterization scheme.

Model spin-up was performed by driving the land surface model repetitively with the forcing produced for
1979 over a 45 year spin-up period; the extended spin-up period was completed as part of a separate analysis
and is not critical for the present analysis. For the root zone and profile soil moisture analysis, simulations
for 1979 were discarded for subsequent study to reduce the effects of model spin-up on the analysis. For
comparisons with satellite-based observations, surface soil moisture observations, over the top 2 cm, from
1979 were included in the analysis because we expected little spin-up effects on surface fluctuations.

Copyright  2005 Royal Meteorological Society Int. J. Climatol. 25: 1697–1714 (2005)
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Figure 1. Correlations between the corrected ERA (CERA), the raw ERA, the corrected NRA (CNRA), and the raw NRA with the
Higgins et al. (2000) daily gauge-based precipitation for the period 1985–1993
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2.3. Data sets used for comparisons with simulation results

2.3.1. In situ soil moisture observations. For validation of modeled soil moisture, we use soil moisture
observations obtained from the Soil Moisture Data Bank (SMDB) (Robock et al., 2000). From the SMDB,
we compare our simulated 1 m soil moisture estimates with observations (also from 1 m depth) from Iowa,
Illinois, Russia, Mongolia, and China. To compare the SMDB observations with the Mosaic simulation, we
interpolated the observed data to the identical grid resolution used in Mosaic. The search radius was set at
2° from each grid node, and the interpolation method was inverse distance squared. For each site, we record
data only if observations are available from two or more soil moisture stations within the search window.
While this approach does not consider the affect of covariance between the observations sites (e.g. Entin
et al., 1999; Vinnikov et al., 1999), the size of the search radius window is conservative to spatial scales of
soil moisture covariance dominated by the atmosphere (large-scale patterns of precipitation and evaporation)
as identified in Entin et al. (2000).

The results of numerous PILPS studies and those of Entin et al. (1999) demonstrate that modeled mean
soil moisture states will vary dramatically between observations and between different models because of
different parameterizations schemes even if physical parameters such as soil texture and vegetation type are
kept constant. Despite this issue, different models should still adequately capture the phase and amplitude
of the observed soil moisture cycle. To address some of the discrepancies between observed and simulated
soil moisture cycles, Maurer et al. (2000) proposed normalizing the soil moisture observations and modeling
results by subtracting from each observation, or modeled value, the minimum data value during the selected
period. This procedure, which was also described and implemented as part of the Nijssen et al. (2001) study,
is adopted for the display of modeled and observed soil moisture in this study. We present the results of this
analysis in Section 3.1.

For calculating correlations between the modeled and simulated soil moisture, we attempt to remove the
seasonal cycle by converting both modeled and observed data to anomaly departures from their seasonal mean
state (DJF, MAM, JJA, and SON).

2.3.2. Satellite soil moisture observations. We compared modeled estimates of the surface soil water content
(top 2 cm in Mosaic) with observations from Owe et al. (2001) and de Jeu (2003). They describe the
production of a surface soil moisture data set derived from Scanning Multichannel Microwave Radiometer
(SMMR) satellite observations (1978–1987) (similar data sets can be derived using the current AMSR-E
observations (Njoku and Li, 1999)). The soil moisture product is available for the global land surface with
a resolution of 140 km although the final product was interpolated to a 1/4° grid (de Jeu, 2003). The depth
of the SMMR-derived observations are dependent upon the thermal sampling depth which at 6.6 GHz is
typically less than 2 cm (Schmugge, 1983). No data is observed over regions where the retrieval of soil
moisture is impacted by high vegetation water contents, or by the presence of ice, snow, and frozen soils. We
have completed further screening of the Owe et al. (2001) data set by removing observations over regions
with high vegetation optical depth, and over regions where the Mosaic land surface model simulation predicts
snow cover.

To compare the Mosaic simulations completed with the corrected forcing data set, the SMMR-based soil
moisture observations were scaled-up to a resolution that corresponds to the Mosaic grid (2.5 °E–W × 2 °N–S).
The scaling-up procedure is necessary for two reasons; firstly, it was completed to match resolutions between
the satellite observations and modeled soil moisture and secondly for reducing the noise to the instantaneous
SMMR-based soil moisture retrievals (see Reichle et al., 2004). The scaling-up procedure uses a quadrant
approach for determining the average moisture content of the larger Mosaic grid cell. Briefly, this approach
derives average soil moisture content for the Mosaic grid on the basis of information from each of four
quadrants. The average for the larger grid cell is then determined on the basis of the four subquadrants.
Where one quadrant is not represented, because of no available data, the average for the entire cell was not
considered. We adopted the quadrant approach to prevent bias due to unequal satellite coverage, where a
satellite overpass retrieves information for half of the larger grid, and because of a sampling bias, where part
of the larger grid cell is sampled at a higher rate because of more optimal soil moisture retrieval conditions.
Results of this comparison are presented in Section 3.2.
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In a related paper, Reichle et al. (2004) compare modeled and the SMMR-derived soil moisture to the
SMDB observations. An important result of this study demonstrates that the satellite-derived soil moisture
does not agree well with absolute soil moisture values obtained from the SMDB. However, with respect to
the time series and anomaly correlation, agreements between the data sets (SMMR-based and SMDB) were
found to be statistically significant. Therefore, in the present study we limit the majority of our analysis to
the congruent features between the SMDB and SMMR data sets, namely, the time series correlation.

2.3.3. Intermodel comparison. We compare our modeled soil moisture results with those of Nijssen et al.
(2001) (hereafter also referred to as the VIC simulation). Through comparison with the VIC simulation results
we intend to highlight key similarities and differences between these soil moisture data sets. Numerous studies
completed as part of GSWP (e.g. Entin et al., 1999) and in the NLDAS (e.g. Schaake et al., 2004) clearly
demonstrate that despite tight control over the forcing and other parameters (e.g. soil type and vegetation
cover) the mean soil moisture produced in varying LSMs are dramatically different. Therefore, we should
expect that any comparison between two different models where the forcing and other modeling parameters
are not identical will vary significantly for the mean soil moisture states. Despite these concerns, we hope
that the different simulations should compare well for other soil water features, namely, the correlation
between standardized anomaly departures from the modeled mean monthly soil moisture state, and the range
or amplitude of the annual soil moisture cycle. Therefore, in this study we will limit our comparison between
the VIC and Mosaic simulations to these features.

We examined differences between the amplitude of seasonal soil moisture cycle in both models by
subtracting the maximum root zone soil water content (top 1 m in both models) by the minimum value for each
year over the 14-year period (1980–1993). We evaluate the statistical significance of the differences observed
using the nonparametric Wilcoxon signed-ranks test. Nonparametric statistical tests were used because of the
limited size of the data set (14 years).

To simplify comparisons between the two data sets, we interpolated the VIC simulations from the 2° grids
that were used the in Nijssen et al. (2001) study to match the 2° × 2.5° resolution used in this study using a
simple areal weighting approach.

3. VALIDATION OF THE MOSAIC SOIL MOISTURE SIMULATIONS

For the evaluation of the Mosaic soil moisture simulations, we limit our comparisons to the soil moisture
simulations produced from the bias-corrected ERA (CERA) simulations (1980–1993). Although there are
some important differences between the CERA and CNRA simulations (e.g. Berg and Famiglietti, 2003) for
the general features of the soil water cycle described above (e.g. anomaly correlation and amplitude of the
yearly cycle), the CERA and CNRA simulations are similar. Therefore, we chose to limit the focus of this
section to comparisons only between the CERA simulation and the observed data. The sensitivity of the bias
correction for modeling components of the water budget was included as part of the Berg et al. (2003) study,
where it was shown to dramatically improve hydrologic simulation, and is not repeated here.

3.1. Comparisons to soil moisture data bank observations

Correlations between simulated and observed soil moisture at 1-m depth are displayed in Figure 2(a)
(also see, Entin et al. (1999) and Nijssen et al. (2001)). As discussed above, for both the modeled and
simulated data, the seasonal cycle was removed by converting each estimate and data value to anomaly
departures from their seasonal mean state (DFJ, MAM, JJA, SON) prior to calculation of the correlation
statistic (seasons are used instead of months because of a lack of data at a number of points over some
months). The black dots in Figure 2(a) represent the soil moisture stations of the SMDB, and the shaded
circles represent correlations between the modeled and observed anomaly departures from the mean seasonal
state (observations interpolated to the Mosaic grid center). Crosses through a shaded data point identify
locations where the correlations shown are not statistically significant (p < 0.05), and open circles identify
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locations where observations are available for 8 months or more of a given year. The mean level of correlation
between simulated and observed root zone soil moisture (top 1 m) shown in Figure 2(a) was 0.38, with
statistically significant correlations observed at more than 60% of stations shown. In general, correlations
between modeled soil moisture and observations are marginally higher over regions with wetter mean soil
moisture conditions (r = 0.40, p < 0.01), including the regions of North America, western Russia, and eastern
China. Weak relationships between modeled and observed soil moisture data occur over the dry regions of
western Mongolia and Russia north of Mongolian–Russian boundary where yearly precipitation totals less
than 40 cm, and over regions where few observations are available. Over all the sites shown in Figure 2(a),
the Mosaic simulation is slightly drier than observations (MBE is −0.5 mm) with a root mean square error
(RMSE) of 5 cm.

In Figure 2(b), line graphs of the observed and modeled mean soil moisture seasonal cycle are plotted for
a number of the sites numbered in Figure 2(a). The outer tick marks surrounding the observation data points
depict one standard deviation estimate from the mean. We have screened the sites selected for further analysis
to contain available soil moisture data for eight or more months of the year (open circles as identified in
Figure 2(a)) with low frequencies of missing monthly data (which allowed for a more reliable estimate of the
mean and standard deviation). As previously addressed, the data presented in Figure 2(b) was ‘normalized’
by subtracting the minimum water content to show the active soil water range for both modeled and observed
data.

In Figure 2(b.1–3) observations from Iowa and Illinois are shown together with simulated soil moisture
estimates. In Figure 2(b.1) (Iowa) and 2(b.2) (northern Illinois), the modeled soil moisture cycle corresponds
very closely to the observed cycle. In Figure 2(b.3) (over southern Illinois), the amplitude of the observed
cycle is well simulated despite the presence of low bias to the normalized soil moisture.

For a number of the Russian sites, especially sites north of 53°, and specifically at sites 4 and 10–14 the
vegetation type specified in the Mosaic simulation does not match the vegetation type from which observations
were obtained. This discrepancy may explain some of the inconsistencies between observed and simulated
soil moisture for various locations in Russia and China in Figures 2(b).4–16. Over sites 5, 8–10, 15, and
16, the range of soil moisture cycle (top 1 m) is well simulated, although location 8 exhibits a wet bias to
the normalized soil moisture volume. At sites 4, 6, 7, and 11–14, there are some inconsistencies between
the modeled and observed cycle especially apparent during the late winter and spring (sites 4, 7, 11, 12–14).
After this period, the observed cycles are better approximated in the simulation. At the very dry sites over
central Russia (sites 13 and 14) there is little range in the observed soil moisture cycle, while in the simulation
there is a wet bias to the soil moisture estimates. The simulated soil moisture over eastern China (sites 15
and 16) illustrates better correspondence to the observed mean annual cycle.

3.2. Comparisons to satellite observations

In Figure 3, we present correlations between the Mosaic surface soil moistures and Owe et al. (2001)
SMMR-based soil moisture observations taken during the evening overpass (near midnight in local time)
1979–1987. Correlations over the regions in grey scale in Figure 3 are statically significant (p < 0.05), while
the regions blacked out are not. Over the regions in the lightest shade of grey the correlations were not
shown because the standard deviation in soil moisture values is less than the approximate noise level in the
SMMR observations (Reichle et al., 2004). For observable locations on the Earth’s surface, the mean level of
correlation between the SMMR observations and the Mosaic simulation was 0.43 and 0.56 for daytime (not
shown) and nighttime observations respectively. Overall, the results of Figure 3 are encouraging because they
represent correlations between daily observations and modeled output for the same 6-h period. Therefore,
over many regions of the globe, aspects of daily precipitation and soil moisture cycle are being captured
correctly by the Mosaic simulation. In a related paper, Reichle et al. (2004) present similar correlation values,
despite using a separate land surface model (catchment, Koster et al., (2000)) and averaging both data sets
to monthly means. It is important to note that both studies use the forcing data described in this study.

Similar to the Reichle et al., (2004) study, modeled soil moisture is drier than the satellite-derived
observations. RMSE (MBE) between the SMMR-based observations and the Mosaic simulation are 0.11
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Figure 2. (a) Correlations between simulated and observed root zone soil moisture (observation locations are black dots). Open circles
identify locations where observations are available for 8 months or more, and crosses identify locations where the correlations shown are
not statistically significant. (b) Mean seasonal-simulated (dashed line) and observed soil moisture conditions for a number of locations

identified in (a); outer tick marks identify one standard deviation from the mean observations

(0.072) and 0.10 (0.079) m3/m3 for noon and midnight observations respectively. RMSE (correlations) are
highest (lowest) for in the day and lowest (highest) in the evening, and increase (decrease) with increasing
soil moisture. This is largely affected by accuracy of the simultaneously estimated ground temperature, which
were found to be more stable at night (Owe et al., 2001); however, the length of time over which the modeled
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Figure 3. Correlations between the Mosaic simulation and midnight SMMR-based observations; grey scaled regions are statistically
significant (p < 0.05) while over the regions in black are not. Over the regions in the lightest shade of grey the standard deviation in
soil moisture or values are less than the approximate noise level in SMMR observations (Reichle et al., 2004). No data is observed
over regions where the retrieval of soil moisture is impacted by high vegetation water contents, or by the presence of ice, snow, and

frozen soils

data is averaged may also have some effect. The SMMR observations, although interpolated to the larger
Mosaic grid, can be regarded as instantaneous measurements, whereas the Mosaic output is averaged over the
6-h period that corresponds to the SMMR overpass time either at noon or midnight local time at the equator.
Therefore, the evening observations may have lower RMSE and higher correlations due to lower evaporation
rates from the surface, which allow wet surface soils to persist for longer periods.

In general, correlations between Mosaic simulation and the SMMR observations are highest over the
semiarid regions of Australia, the Middle East, southwestern North America, Mongolia/northern China, and
North Africa. High correlations are also observed over regions such as the Indian subcontinent. Negative,
weak and statically nonsignificant correlations between the Mosaic output and the SMMR observations are
observed over much of northern Russia, and Canada (black regions of Figure 3).

Regions that show weak, negative, or statistically insignificant correlations between modeled and observed
surface soil moisture generally have high vegetation cover. Although we attempted to remove areas covered
with high vegetation (this was completed as part of the Owe et al. (2001) product, and additional processing
carried out as part of this study), clear boundaries of low to nonsignificant correlations are evident along the
boundaries between the highly vegetated regions, where observations are not possible, and the observable
semiarid regions. Over these areas, the failure of the model to accurately reproduce features of the daily
surface soil type is likely related to a combination of factors including modeling and sampling scale issues,
especially considering the large grid cells used in this analysis. However, the increased RMSE and lower
correlations between observations and the Mosaic simulation are statistically related (as evaluated by Students
t tests) to increased vegetation optical depth (r = 0.39, p < 0.01).

3.3. Comparisons with the results of Nijssen et al. (2001)

We present correlations between monthly standardized anomalies in root zone soil moisture in the Mosaic
and VIC simulations in Figure 4(a). The regions not colored were omitted from the analysis because of the
presence of significant snow cover throughout much of the year (10 months or more). Over the stippled
regions, apparent over the Himalayas and eastern China, the anomaly correlation between the two simulations
was not statistically significant (p < 0.05). In general, standardized anomalies between the two simulations
are well correlated over much of the global land surface. Locations where correlations are not statistically
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Figure 4. (a) Correlations between monthly standardized anomalies in root zone soil moisture for the Mosaic and VIC (Nijssen et al.,
2001) simulations. Over the stippled regions, the anomaly correlation was not statistically significant. (b) Identical to (a) except for

precipitation

significant are observed over tropical Africa (extending to the Sahel), central South America, and eastern
China.

Given the number of factors that can contribute to the differences observed between these simulations (e.g.
differences to forcing, model parameterization, specification of land surface characteristics), identifying and
controlling all this variability becomes exceedingly difficult. However, when a map identical to Figure 4(a)
is developed for precipitation (Figure 4(b)) some important similarities between Figures 4(a) and 4(b) are
apparent (correlation between the two maps is 0.39, p < 0.01). Although this result maybe anticipated, it is
of interest because both of the precipitation data sets were scaled to GPCP observations. At the time when the
Nijssen et al. (2001) data set was developed, GPCP observations were available for the period 1987–1993
(GPCP version 1a). Therefore, to supplement this data source for the period 1979–1986 they used the Hulme
(1995) precipitation data set. To prevent a change in the precipitation statistics for the earlier (1979–1986)
period, this data was then scaled to be consistent with the 1987–1993 GPCP climatology. The globally
averaged correlation coefficient between this and Nijssen et al. (2001) precipitation forcing (between standard
anomalies) is 0.73 for the 1987–1993 period and 0.54 for the period 1980–1986 due to the change in data
sets. Correlations between the two data sets 1987–1993 are not closer to 1 because of multiple interpolations,
merging the GPCP product with other data sets, and because of the use of different versions of the GPCP.
Specifically, GPCP version 1a (Huffman et al., 1997) was later superceded by GPCP versions 1c and most
recently by version 2 (Adler et al., 2003) because of changes in methods. For root zone soil moisture, similar
differences to the relationship between the two data occur when we compare the correlations to standardized
anomalies over these two time frames (the globally averaged correlation coefficient is 0.55 for the 1980–1986
period and 0.62 for the 1987–1993 period). Although this issue was unavoidable in the case of Nijssen et al.
(2001) study, it underscores the necessity of a long, consistent time series for deriving the precipitation forcing.
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Because of the differences identified between the precipitation data sets used in this study and in Nijssen
et al. (2001), comparison to other soil water characteristics such as the yearly range of soil moisture is
not as informative for understanding parameterization differences between the two models as studies where
some of the sources of variability are controlled. However, for researchers using these soil moisture data
sets for estimation of initial soil moisture states, or for large-scale water flux estimates, some discussion of
differences between these simulations is necessary. In Figure 5, we compare the absolute bias between the
VIC and Mosaic simulation for the annual range of soil water stored in the top 1 m. Globally averaged RMSE
(MBE) between the two simulations is 12 (5.7) mm. In general, the VIC simulation estimates larger annual
soil moisture ranges. This feature maybe related to the relatively shallow soil column used in the version of
the VIC simulations analyzed here (1 m) (Nijssen et al., 2001) versus the much deeper soil column specified
in the Mosaic simulation (2.5 m). The differences shown are statically significant (p < 0.05), as evaluated
with the nonparametric Wilcoxon signed-ranks tests, over approximately 50% of the Earth’s surface shown
in the stippled regions of Figure 5. Differences to the annual range of soil moisture are greatest over Europe,
and South America, and are more closely associated with yearly total precipitation (r = 0.25, p < 0.01) than
the differences between precipitation data sets (r = 0.12, p < 0.01). Although this relationship suggests the
importance of parameterization differences or specification of soil moisture depth between the models, we had
to limit our investigation into this matter due the amount of variability from other sources including the other
forcing fields and specification of land surface hydrologic characteristics and vegetation types and amount.

4. SUMMARY AND CONCLUSIONS

Off-line land surface modeling simulations require accurate meteorological forcing with consistent spatial and
temporal resolutions. For this reason, reanalysis products have been an attractive data source for numerous
researchers. However, a number of studies have identified bias to many of the reanalysis fields, and therefore
the use of raw reanalysis forcing is not recommended for water and energy balance simulations. Recognizing
the existence of these errors, previous works (Berg et al., 2003) have created hydrometeorological forcing data
sets for the North America continent through implementation of a relatively simple bias correction procedure
applied to the ECMWF and NCEP/NCAR reanalysis products. In this study, we expand upon this work to
develop a global 0.5° forcing data sets for the time period 1979–1993 on a 6-hourly time step). We then
use our forcing data to drive the Mosaic (Koster and Suarez, 1992) land surface process model for global
estimation of soil moisture and other hydrological states and fluxes. The simulated soil moisture results are
compared to observations obtained from the soil moisture data bank (Robock et al., 2000) to satellite-derived
surface soil moisture (Owe et al., 2001), and to the modeled soil moisture product of Nijssen et al. (2001).

50
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−150 −100 −50 0 50 100 150
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15 – 40
>40

Figure 5. Absolute bias (in millimeters) between the VIC and Mosaic simulation for the annual range of soil water stored in the top
1 m. Over the stippled regions, differences shown are statistically significant (p < 0.05)
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Observations from the global soil moisture data bank were compared to simulated results for a number of
locations in the United States, Russia, China and Mongolia. Overall, statistically significant correlations are
observed at a majority of these sites, and the seasonal cycle of water storage in the root zone is generally
well represented. Weak relationships between modeled and observed soil moisture are generally limited to
drier regions and are especially evident over western Mongolia.

Simulated soil moisture in the top 2 cm was compared to satellite observations derived from the SMMR
(Owe et al., 2001). Correlations were found to be strongest for data derived from the midnight overpass of
the SMMR satellite (r = 0.56) than observations obtained during midday (r = 0.43). Statistical relationships
between modeled and observed surface soil moisture weaken with increasing vegetation (as evaluated by
vegetation optical depths). Agreement between simulated and observed surface soil moisture demonstrates
that aspects of the daily soil water cycle (precipitation and soil drying) are captured in the reanalysis-derived
precipitation and are correctly simulated within the Mosaic land surface model; however, similar to the
analysis by Reichle et al. (2004), we observe high RMSE and MBE between the SMMR-based observations
and the modeled results with the modeled soil moisture values drier than observations.

In addition to comparisons with observations, we also compare the soil moisture estimates of this study
to those of Nijssen et al. (2001) for the period 1980–1993. In general, both data sets are well correlated in
their prediction of wet and dry anomalies to root zone soil moisture, despite being derived from different
land surface models, using different data sources for meteorological forcing, and with different specifications
of the land surfaces properties. However, when we compare features such as the annual range of root zone
soil moisture we find that the two simulations are not in general agreement, a result that complicates the
transferability of soil moisture characteristics between separate models beyond the anomaly time series (also
see Schaake et al., 2004 and Reichle et al., 2004). Further investigation into the causes of the differences
between model simulations must follow a strategy where parameters such as hydrometeorological forcing and
land surface characterization are more tightly constrained.

The soil moisture estimates produced as part of this analysis are available to other researchers for providing
initial soil water estimates, or for understanding soil moisture variability over this 14-year time frame. We
anticipate that this data can be used independently or as a companion product to similar data sets (e.g. Nijssen
et al., 2001). When used in combination with other data sets, we expect that this data set could provide some
further information regarding the range in a given soil moisture estimate. Users combining estimates should
be aware of the difficulties of applying soil moisture estimates across different models (e.g. Pittman et al.,
1999; Reichle et al., 2004; Schaake et al., 2004), and the uncertainty of given soil moisture value due to
differences in parameterization (e.g. Entin et al., 1999), in global forcing estimates (e.g. Fekete et al., 2004),
and in the specification of the land surface states (e.g. soil and vegetation types). In addition to the forcing
data sets described above and in Nijssen et al. (2001), Zhao and Dirmeyer (2003) have recently developed
a forcing data set for forcing off-line land surface models as part of the second phase of the global soil
wetness project. There are several distinctions between these data sets, most notably due to differences, in
the observations and reanalysis products used to create the forcing data sets, methods employed in their
development, and to the temporal and spatial resolutions in all three data sets. Therefore, each of these
forcing data sets could be used to further evaluate uncertainty of modeled soil moisture estimates due to
differences in global forcing estimates (e.g. Berg and Famiglietti, 2003; Fekete et al., 2004). At the time of
writing, the results of these soil moisture simulations, including the forcing data and other hydrological flux
data were available by request through the Global Land Data Assimilation System (GLDAS) (Rodell et al.,
2004) website (http://www.ldas.gsfc.nasa.gov).
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