UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Modularization of C++ Applications Based on C++ 20 Modules

Permalink
https://escholarship.org/uc/item/95k3094gf

Author
Shi, Canyang

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/95k309gf
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Modularization of C4++ Applications Based on C++ 20 Modules

THESIS

submitted in partial satisfaction of the requirements
for the degree of

MASTER OF SCIENCE

in Software Engineering

by

Canyang Shi

Thesis Committee:

Assistant Professor Joshua Garcia, Chair
Professor Crista Lopes

Professor Sam Malek

2022

(©) 2022 Canyang Shi

TABLE OF CONTENTS

LIST OF FIGURES

LIST OF TABLES

ACKNOWLEDGMENTS

ABSTRACT OF THE THESIS

1

Introduction

1.1 Background
1.2 Organization of the Thesis

Java Platform Module System

2.1 Overview of Java Platform Module System
2.2 Comparison between C++ 20 Modules and JPMS

C++ 20 Modules

3.1 Shortcomings of Traditional Header Files
3.2 Benefits of C++ 20 Modules
3.3 Usage of C++ 20 Modules

Approach for Modularization

4.1 Step 1: Candidate Determination
4.2 Step 2: File Bundling L.

4.2.1 Dependency-similarity

4.2.2 Algorithm of File Bundling
4.3 Step 3: Dependency Identification
4.4 Step 4: Code Migration. L.
4.5 Analysis of the Module-based App

Empirical Studies

5.1 C++ 20 Modules’ Influences on Compile Time
5.2 Feasibility of Code Migration for Simple Projects
5.3 Effectivenessof H2M L.
5.4 H2M’s Influences on Compiling Performance
5.5 Threats to Validity

i

Page

iv

vi

vii

6 Discussion
7 Related Work
8 Conclusion

Bibliography

il

30

32

33

34

2.1

3.1
3.2
3.3

4.1
4.2
4.3
4.4

0.1
5.2
5.3

LIST OF FIGURES

An example of module-info.java with three modules.

A typical application making the compiler perform redundant work.
An example of using modules in C++420.
An example of importing header files in C++20.

Overview of H2M.
An illustrative example of candidate determination.
An illustrative example of file bundling.
Overview of the modularization.

The evaluating framework for the comparison of header files and modules.

The header-based file (left) and the module-based file (right).
The structure of TextBasedAdventure.

v

Page

LIST OF TABLES

2.1 Comparison between C++ 20 modules and JPMS.

5.1 Compile time of the header-based program and the module-based program .

5.2 Compile time before and after modularization

ACKNOWLEDGMENTS

I would like to extend my sincere gratitude to Professor Joshua Garcia, Professor Crista
Lopes, Professor Sam Malek, and all the professors and friends that helped me during my
master’s years.

vi

ABSTRACT OF THE THESIS
Modularization of C4++ Applications Based on C++ 20 Modules
By
Canyang Shi
Master of Science in Software Engineering
University of California, Irvine, 2022

Assistant Professor Joshua Garcia, Chair

As one of the most popular programming languages, C++ is characterized by its unique
header-file mechanism that provides an effective way to access the interface of a library.
However, this header-based mechanism also has its weaknesses. For instance, compilers have
to perform redundant work which leads to poor compiling performance, developers should
write their code carefully to avoid macro collisions, declarations and implementations are
separated into multiple files which increase the complexity of the project, etc. To mitigate
these challenges, the C++ standards committee proposed the modules feature of C+420
in 2020, which is introduced as an improvement of the traditional header file mechanism.
C++420 modules provide a better way to encapsulate codes and address most deficiencies of
header files. However, since the module feature is quite new, its advantages and potential
challenges are not well-understood. On the other hand, most existing C++ applications are
still based on header files and the include model, and there are not enough instructions on how
to modularize a header-based app into a module-based app. To bridge these gaps, the paper
discusses the influence of C+4-20 modules and proposes H2M, a new approach for conversion
of a header-based C++ app to a module-based C++ app with better compiling performance.
H2M starts by determining candidate source files for modularization. Next, it bundles
up similar candidate source files and identifies appropriate dependencies. Finally, H2M

generates the corresponding module-based app of the given header-based app. Our empirical

vil

studies verify the effectiveness of C++ 20 modules in improving compiling performance and
the feasibility of code migration. Besides, the empirical studies on several header-based C++

applications demonstrate the effectiveness of H2M.

viii

Chapter 1

Introduction

1.1 Background

Most software is based upon a number of external or internal libraries. In C and C++, a
library is accessed by a file with an #include directive that includes the appropriate header
files. However, because this header-based mechanism needs the compiler to preprocess the
content of the header files transitively, it shows some significant weaknesses when getting
access to the interface of a library. These weaknesses include low compile-time scalability,
fragility, ambiguous interfaces, etc. To address these issues, an improvement or replacement

for header files is an extreme necessity.

In 2020, the C++ standards committee proposed the Draft International Standards (DIS) of
C-++ 20 [10], one of the biggest updates of this thirty-seven-year-old programming language.
A lot of new features were introduced in this new version, such as coroutines, ranges, modules,
constraints and concepts. Among these new features, the modules feature stands out because
it is designed as an improvement and eventual substitution of the traditional header-based

model. In the C4++ 20 module system, each file can be exported as a module with an ezport

directive and then accessed by other files with an mport directive. Since each module is
compiled as a separate, standalone entity, this semantic import model overcomes many of the
defects inherent to using traditional #include directives to access a library. According to the
official documents of GCC and Clang [1] [5] [6], modules (1) reduce compile time significantly,
(2) provide proper isolations between interfaces and implementations, (3) provide a new way

to encapsulate codes that makes programs more comprehensible.

Nevertheless, since C++ 20 is a quite new version, the module system has not been discussed
and analyzed in depth. Some questions may pop up in people’s minds. What are the
similarities and differences between C++ 20 modules and other module systems such as the
Java Platform Module System (JPMS), a similar module system in Java? What benefits
can C++ 20 modules bring to software and software developers? What potential challenges
we may encounter when using C++ 20 modules? To answer these questions, this paper (1)
gives a brief introduction of JPMS and compares it with C++ 20 modules, and (2) discusses
the benefits and challenges of C++ 20 modules. On the other hand, converting a traditional
header-based C++ application to a well-structured, module-based application is a tedious
and error-prone work, while there is no existing approach or tool assisting developers with
modularization. To bridge the gap, I have proposed H2M, an approach aiming to support

developers to modularize header-based C++ apps.

More precisely, for a C++ header-based app, H2M (1) helps developers to determine can-
didate source files for modularization, (2) checks similarities among candidate source files
and bundles up similar files, (3) adds appropriate dependencies. Finally, H2M generates the
corresponding module-based C++ app. I have conducted an empirical study evaluating the
effectiveness of this approach, including the ability of H2M in reducing compile time and

increasing compile-time scalability.

1.2 Organization of the Thesis

The remainder of the paper is organized as follows. Chapter 2 introduces the similar module
system in Java, the Java Platform Module System (JPMS), and compares it with C++
20 modules. Chapter 3 analyzes some shortcomings of the existing header-based model in
comparison to the benefits of C++ 20 modules, and then presents the usage of modules.
Chapter 4 describes the modularizing approach in detail and explains the reason why it can
reduce compile time and improve scalability. Chapter 5 shows the empirical evaluations and
results. Chapter 6 presents further discussions about our findings. Chapter 7 presents some

related work. Chapter 8 concludes the paper.

Chapter 2

Java Platform Module System

2.1 Overview of Java Platform Module System

Some other programming languages have already supported modularization since several
years ago. For instance, a similar module system, Java Platform Module System (JPMS), was
introduced in Java 9 [20]. JPMS aims to support architecture-based software development
[2] [17]. Specifically, it enables Java developers to design a series of architectural constructs
including modules, module directives and interfaces, which (1) provide better encapsulation
of software, (2) improve maintainability of software, and (3) improve security by reducing

attack surfaces.

In JPMS, Java applications can be organized in modules. A module is a higher level of
abstraction containing a uniquely named group of packages with some other resources [15].
Each application has an extra configuration file called module-info.java which contains mod-
ule declarations specifying module dependencies and exposed resources. Specifically, those
relationships are depicted by a set of directives: requires, exports, opens, provides, uses. The

requires directive specifies dependencies on other modules. Both exports and opens specify

module alice{
requires service;
exports com.example.alice.utils;
opens com.example.alice.network;
uses com.example.service.Srv;

module bob{
requires service;
provides com.example.service.Srv with com.example.bob.impl.ImplService;

module service{
exports com.example.service;

Figure 2.1: An example of module-info.java with three modules.

the exposed packages. The difference is that an exported package is accessible at both run-
time and compile time, while an opened package is only accessible at runtime. The provides
directive specifies that a certain interface or abstract class is provided by this module as a
service, and wuses specifies the service object of an interface or abstract class used by the

module.

Figure 2.1 shows some examples of module declarations in module-info.java. Three modules,
alice, bob and service, are declared. Module alice has a dependency on module service. It
exports the package utils and opens another package network. Besides, module alice uses
the service object of class Srv provided by module bob. Module bob also has a dependency
on module service. It provides Srv as a service with an implementation ImplService. Finally,

module service exports the abstract class Srv to the public.

Table 2.1: Comparison between C++ 20 modules and JPMS.

System C++420 Module System JPMS
. Provides better encapsulation. Provides better encapsulation.
Similarities e C e
Improves maintainability. Improves maintainability.
Provides a replacement for header Provides a higher level of abstrac-
. files. tion.
Differences

Does not involve any extra file.
Supports one type of module de-
pendency.

Reduces the redundant work per-
formed by the preprocessor.

Involves a configuration file.
Supports five types of module de-
pendencies.

Reduces the size of codes loaded
at runtime.

2.2 Comparison between C++ 20 Modules and JPMS

There are some similarities between JPMS and the module system of C++ 20. For example,
both of them can provide better encapsulation and improve software maintainability to a
large extent. However, the main goals of these two module systems are different. JPMS is
proposed in order to provide a better way to encapsulate codes in terms of architecturally
significant elements, while C++ 20 modules are proposed as an improvement and eventual
replacement for traditional header files. Due to the different goals, these two systems differ
in various aspects. Table 2.1 lists the similarities as well as the differences between JPMS

and the module system of C++ 20.

(1) In JPMS, a module is not a specific file but a higher level of abstraction containing a
group of packages. Each module describes a software component. In comparison, a C+-+ 20
module is a standalone entity compiled from a single file. Each module serves as an interface

of a library which can be accessed by other files.

(2) JPMS involves an extra configuration file, module-info.java, which specifies module de-
pendencies and exposed resources. As a system evolves, architectural inconsistencies may

occur since the as-conceived architecture specified by module-info.java may not match the

as-implemented architecture of the software [7]. Therefore, architectural recovery plays an
important role in preventing architectural decay [3] [11] [16]. For the C++ 20 module sys-
tem, on the other hand, there is no extra file needed. Module declarations and dependencies

are included at the beginning of a file.

(3) JPMS supports five types of module dependencies, while in the module system of C++ 20,
only the import dependency is supported. Because of the limited type of module dependency
supported in C++ 20, developers may meet challenges during the code migration process of

complex C++ projects with complicated file dependencies.

(4) JPMS can mitigate software bloat by reducing the size of codes loaded at runtime.
For example, Java 9 itself is modularized, therefore, software developers can only require
insignificant part of the Java Runtime Environment system modules. For C++ 20 modules,
compile time is reduced due to the reduction of the amount of work performed by the

preprocessor.

Chapter 3

C++ 20 Modules

3.1 Shortcomings of Traditional Header Files

Before modules were introduced in C++ 20, the C family of languages did not support
modularization. The traditional way of getting access to a certain library is by using the
#include directives, i.e., including the corresponding header files at the very beginning of
the program. However, the header file mechanism provides an extremely poor way to access

the API of a library due to the following reasons.

(1) Poor Compiling Performance: When a header is included, the compiler not only
preprocesses and parses the text in that header, but also deals with every header it includes
in the same way recursively. This process is repeated for every translation unit of the
application, which involves a huge amount of redundant work. Figure 3.1 shows a typical
application that makes the compiler perform redundant work. Specifically, the main program
contains three header files, all of which include three shared header files. When building the
application, the compiler must deal with each #include directive, so a great deal of time is

wasted on unnecessary, repetitive work. Generally speaking, for a project with N translation

-
/fa.h

#include “d.h"”
#include “e.h”

#include “f.h”
//main.cc //b.h
#include “a.h” #include “d.h”
#include “b.h” #include “e.h”
#include “c.h” #include “f.h"”
/! C.h

#include “d.h™

#include “e.h”

#include “f.h"”
N vy

Figure 3.1: A typical application making the compiler perform redundant work.

units, each of which has M header files, the workload of the compiler is M x N even if most

headers are shared by different translation units.

(2) Macro Collisions: Each #include directive is considered as a textual inclusion by the
preprocessor, so it is subject to active macro definitions. When an active macro definition
collides with another definition in the library by coincidence, it may lead to the failure of
compilation or even severer problems. A more common case is that the headers of multiple
libraries interact due to macro collisions. In that case, developers have to add extra #undef

directives or reorder the existing #include directives to avoid collisions.

(3) Ambiguous Libraries: In a C-based language, the boundaries of software libraries are
ambiguous, bringing challenges to developers who want to build software tools that work
well with libraries. For example, it is hard to match a particular library with the header
files that belong to it. In addition, it is hard to identify the declarations in headers that are

actually designed as a part of the API rather than just a necessary part of the header file.

(4) Code Duplication: In the inclusion model, developers need to provide both the header

files (zzz.h) and their implementations (zzz.cpp). The former contains the declarations and
the latter contains the corresponding definitions. As a result, there are lots of unnecessary

repeats and redundancies which increase the complexity of the application.

3.2 Benetfits of C++4 20 Modules

Modules provide an improved way to access the interface of software libraries by replacing
the traditional inclusion model with a more efficient, more robust, more compact semantic
model. Unlike a header file, a module is compiled as a separate and independent entity.
Specifically, in the module system of C++ 20, the compiler loads a binary representation of
the module, which is called a binary module interface (BMI), and then makes it accessible

by the application directly. In this way, many defects of the inclusion model are eliminated.

(1) Compiling Performance: Compiling performance is improved due to the fact that
each module is only compiled once. Importing an existing module to a translation unit is
a constant-time operation which does not involve recursive procedures. As a result, the

workload of the compiler is reduced from M x N to M + N.

(2) Macro Collisions: Each module is compiled as a separate entity that cannot affect the

compilation of other modules. Thus, macro collisions are fundamentally avoided.

(3) Ambiguous Libraries: Modules serve as descriptions of the interface of software li-
braries, so software tools can just provide a module as a representation of the interface. On
the other hand, because each module has its consistent preprocessor environment and can be
compiled separately, software tools can ensure that they get the complete API of the library

by importing the corresponding module.

(4) Code Duplication: Since declarations and definitions are both written in a single file,

10

redundant codes are removed. In this way, applications are simplified and the comprehensi-

bility is largely increased.

3.3 Usage of C++ 20 Modules

The C++ 20 module system only has two kinds of directives so far, i.e., export and import.
The export directive is used for a module declaration that specifies the name as well as the
exposed contents. On the other hand, modules can be imported to other files with the import

directive.

Figure 3.2 shows an example of using modules in C++ 20. A module is exported by adding
the directive export module followed by its name (line 4), and the contents of a module are
exported by adding the export directive before declarations (line 5). On the other hand,
other files can import a module with the import directive followed by the name (line 10).
For GCC, the example can be compiled with the command “g++ -std=c++20 -fmodules-ts

hello.cc main.cc”.

Traditional header files can still be accessed in a module through the global module fragment,
which is a prefix of the module unit (line 2 and line 3 in Figure 3.2). Global module fragment
enables developers to include header files when it is not possible to import them, especially

when a header file uses preprocessing macros as a form of configuration.

Besides, a traditional header file can be imported into a module unit as a header unit (line
2 and line 3 in Figure 3.3). A header unit is, like a module, built in advance separately with
a special flag (for example, ”-fmodule-header” in GCC). It also produces a BMI and can be

imported into both module and non-module files with the import directive.

11

© 00 NO O W N =

e e
S W N - O

N O O WN e

//hello.cc
module;
#include <iostream>
export module hello;
export void say_hello(){
std::cout << "Hello!" << std::endl;
}

//main.cc

import hello;

int main(){
say_hello();
return O;

Figure 3.2: An example of using modules in C++ 20.

//main.cc

import <iostream>;

import "otherheader.h";

int main(){
std::cout << "Hello World!" << std::endl;
return O;

Figure 3.3: An example of importing header files in C++ 20.

12

Chapter 4

Approach for Modularization

This chapter presents further details of the modularizing approach, H2M, and explains the
reason why it can reduce compile time and improve compile-time scalability to a large extent.
The goal of H2M is to assist software developers to modularize a header-based application
to a module-based application with better compiling performance and better encapsulation.
As depicted in Figure 4.1, for a given header-based application as the input, H2M generates
the corresponding module-based application as the output. Specifically, H2M consists of
four steps including candidate determination, file bundling, dependency identification, and

code migration. The rest of this chapter describes each step in depth.

4.1 Step 1: Candidate Determination

It is not always feasible or necessary to modularize all the source files of a header-based
app. For example, for large and complex C++ apps, full modularization may be impossible
because it is either too expensive or time-consuming, while modularizing only a part of

the project can still bring enough benefits such as a significant reduction in compile time.

13

y

a

b

Header-based L. Canc.lida.te
Application Determination

(©] J

2. File Bundling

(@

3. Dependency 4. Code Migration Module-based
Identification Application

&

Figure 4.1: Overview of H2M.

14

Therefore, the first step to build a module-based app is determining the candidate source
files that need to be modularized. Specifically, H2M determines a subset of source files
based on a given threshold ¢; that limits its size. These candidate files are the output and
they will be passed to the second step for further modularization. The routine of candidate

determination is presented in Algorithm 1.

Algorithm 1: Candidate Determination
input : a header-based app and a threshold

output: a set of candidate source files

1 let s denote the set of files of the header-based app and let t; denote the threshold;

while less than |s| x ty files are marked do

N

3 find the file f in s which is dependent by most files;

4 mark f as a candidate source file;
5 remove f from s;
6 end

In each iteration, H2M looks for the file with most dependencies and marks it as a candidate
source file that needs to be modularized. Transitive dependencies are also taken into account.
For example, if file a depends on file b, and file b depends on file ¢, then file ¢ is considered
dependent by both a and b. The threshold t; describes the percentage of files which devel-
opers hope to modularize, and the selection of t; is based on experience. Larger thresholds
result in more thorough modularization. In particular, the application is fully-modularized

for t; = 100%.

Figure 4.2 provides an illustrative example of the candidate determination process with the
threshold t; = 60%. Figure 4.2(a) shows the structure of the header-based app. Each node
represents a single file and each arrow represents a file dependency, i.e., include dependency.
Because the app consists of eight files and the threshold is 60%, the algorithm will terminate

after five files are marked. At the very beginning, we have s = {a,b,¢,d, e, f, g, h}. In the first

15

Candidate
Determination

D O I
/// \\ [/ \\\
£ N v \\\
) m b N
(@) (b)

Figure 4.2: An illustrative example of candidate determination.

iteration, file f is marked as a candidate source file because it is used by most files {a, b, ¢, d},
including one direct dependency from file d and three transitive dependencies from file a, file
b and file c. Then, after removing f from set s, we have s = {a, b, ¢, d, e, g,h}. Similarly, in
the next four iterations, file d, g, h, and e are marked as candidates successively. In the end,
we obtain a subset of files, {d, e, f, g, h}, which is determined as the set of candidate source

files. These files will be passed to the file bundling step for further modularization.

4.2 Step 2: File Bundling

In this step, H2M determines module contents by clustering the candidate source files. To
achieve this, H2M checks the dependency-similarities among the candidate files determined
in Step 1, and then bundles up source files with similar file dependencies. These bundled

files are passed to the following step for further modularization.

16

4.2.1 Dependency-similarity

In order to quantify the dependency-similarity between two files, I introduce the Jaccard
similarity coefficient. Specifically, each file can be represented by a set containing itself as
well as all the files that depends on it (including transitive dependencies). For instance, if
file a depends on file b, and file b depends on file ¢, then file ¢ can be represented by the set
{a,b,c}. In this way, the similarity between two files can be quantified by calculating the
Jaccard similarity coefficient:

similarity(fi, fa) = iﬁgﬁ}

For example, if file f; is represented by the set {a, b, c,d, e} and file f; is represented by the
set {a,c, e, f, g}, then the dependency-similarity between f; and f; is

T _ANfl — Hacel 3
similarity(f1, f2) = (05 = Tabederg = 7

A threshold t, should be provided as a standard determining whether two files are similar
enough. If the similarity between two files is greater than t,, then they are considered as

similar files and are bundled together.

4.2.2 Algorithm of File Bundling

Based on the aforementioned dependency-similarity quantification, the routine of file bundling

is presented in Algorithm 2.

17

Algorithm 2: File Bundling
input : a set of candidate source files and a threshold

output: a set of merged candidate source files

1 let s denote the set of candidate source files and let ¢, denote the threshold;

2 while s is not empty do

3 select a file f from s, check if the dependency-similarity between file f and

another file in s is greater than t;
4 if a qualified file g is found then
5 bundle up f and ¢ into a new file fg;
6 remove f and g from s;
7 add fg into s;
8 else
9 remove f from s;
10 end
11 end

In each iteration, H2M checks if two candidate source files are similar enough, i.e., the
dependency-similarity is greater than the threshold ¢,. The threshold reflects how similar two
files should be if they need to be merged, and the selection of it is also based on experience.
Therefore, a smaller threshold results in fewer but larger modules, while a larger threshold
results in more but smaller modules. Then, for similar candidate files, H2M bundles them
up. To achieve this, H2M obtains the set representations of the two files, and replaces them

with their union.

Figure 4.3 shows an illustrative example of the file bundling process with the threshold
t, = 50%. Figure 4.3(a) presents the output of candidate determination. There are five
candidate source files at first, i.e., s = {d, e, f,g,h}. In the first iteration, for example, file

d is selected, and H2M checks the dependency similarities between d and each of the other

18

N\

- Bundljng [:] [;]
;_. e
AN df egh
by
f g h

(a) (b)

Figure 4.3: An illustrative example of file bundling.

candidate file. Since d and e are not similar enough, i.e., similarity(d,e) = 40% < t;, they
should not be bundled together. However, we have similarity(d, f) = 80% > t;, so d and
f are merged into a larger file represented by df. At this time, we have s = {df,e, g, h}.
Similarly, g and h are bundled up as gh in the second iteration, then e and gh are bundled
up as egh in the third iteration (as shown in Figure 4.3(b)). At this time, s = {df, egh} and
similarity(df,egh) = 40% < t,. As a result, there is no bundling operation and file df is
removed from s in the fourth iteration. Finally, the only element egh is also removed in the
fifth iteration and the algorithm terminates. In the end, H2M bundles up the five candidate

source files into two files, df and egh.

4.3 Step 3: Dependency Identification

After obtaining the set of bundled candidates, H2M identifies file dependencies related to

them. For each file, H2M checks all the headers it includes according to the header-based

19

app. If the file includes a candidate source file, then H2M replaces the include dependency
with an import dependency upon the corresponding bundled candidate. For instance, in
Figure 4.3(b), file a includes file b and file ¢, both of which are not candidates, therefore, no
file dependency of a needs to be modified. For file b, H2M identifies its import dependency
upon file df because it includes file d in the header-based app. Also, H2M identifies the
dependencies of file ¢ upon df and egh. Finally, both module contents and dependencies

have already been determined after this step.

4.4 Step 4: Code Migration

Based on the bundled candidates determined in Step 2 and the file dependencies identified
in Step 3, the module-based app can be generated. Specifically, each bundled candidate file
is exported as a module by adding the corresponding module declaration statements in it.
Header-only files are exported as header units. On the other hand, import directives are
added to files that depend upon modules. Finally, the given header-based app is converted

to a module-based app (Figure 4.4).

4.5 Analysis of the Module-based App

The module-based app generated by H2M not only takes less time to build, but also shows
better compile-time scalability. The reason is that for each header included in the header-
based app, the C++ compiler needs to preprocess and parse the text in that header as well as
all the headers it includes. For the header-based app, a lot of redundant work is performed
by the compiler which takes a large amount of time, especially when many large headers
are included in lower-layer files. On the contrary, importing a module is almost free in a

module-based app. As depicted in Figure 4.4, each bold arrow describes an expensive include

20

<+«——— Expensive

D — Almost free

Module-based App
Header-based App

Figure 4.4: Overview of the modularization.

21

operation, and each dashed arrow describes a cheap import operation. After modularization,
the number of bold arrows is reduced from eight to two, resulting in a significant decrease

in build time.

On the other hand, for a header-based application, modification of a single file leads to
recompilation of all the files that depend on it. For instance, if file h in Figure 4.4 is
modified, then a set of files, {a, ¢, e, h}, needs to be rebuilt. In comparison, for the module-
based application, only the corresponding module, egh, needs to be recompiled. Besides, as
software evolves, more files may be added to the project. For each new file, it will not bring
a significant increase to the total compile time if it can be built as a new module or merged
into an existing module. Another case is that the new file itself is not built as a module, but
it may depend on one or more existing modules, so compared with the header-based app,
fewer expensive include operations are introduced to the module-based app. In both cases,
the compile time of the module-based app grows much slower. As a result, the module-based

app generated by H2M has better compile-time scalability.

22

Chapter 5

Empirical Studies

This chapter presents the results of empirical studies evaluating the module system of C++
20 and the modularization approach H2M. For the C++ 20 module system, I have measured
its influences on compile time, and the feasibility of code migration for simple projects. For
H2M, 1 evaluated its effectiveness in converting header-based apps to module-based apps.
I also evaluated how H2M can reduce compile time and improve compile-time scalability.

Specifically, I focus on the following research questions.

RQ1: How is compile time affected when header files are replaced by C++ 20 modules?

RQ2: How feasible it is to migrate existing, simple C++ projects?

RQ3: How effective is H2M in successfully converting header-based apps to module-

based apps?

RQ4: To what degree can H2M’s modularization reduce compile time and improve

compile-time scalability?

23

Translation Units

The shared Translation Unit

Shared File

<iostream>, <string>, <algorithm>, ...

Figure 5.1: The evaluating framework for the comparison of header files and modules.

5.1 C++4 20 Modules’ Influences on Compile Time

To evaluate how compile time is affected when replacing header files with C++ 20 modules, I
designed a demo project to compare the build time of a header-based program and a module-
based program with respect to different numbers of translation units and shared header files.

Figure 5.1 presents the structure of the demo project.

More precisely, the project contains a main file, a set of middle-layer translation units, and
a shared translation unit. The arrows represent file dependencies, i.e., include dependencies
in a header-based program and import dependencies in a module-based program. The main
file depends on the middle-layer translation units, and the latter depends on the shared

translation unit. Besides, a set of C++ standard headers are included in the shared file.

24

Table 5.1: Compile time of the header-based program and the module-based program

H Shared \ File O \ Main \ Total

header 0.26 0.26 0.25 | 0.77
module 0.31 0.01 0.01 0.33

Header File x # Translation Unit =1 X 1 (Seconds)

H Shared \ File O \ Main \ Total

header 0.43 0.42 0.43 1.28
module 0.47 0.02 0.02 0.51

Header File x # Translation Unit = 6 X 1 (Seconds)

H Shared ‘ File O ‘ File 1 ‘ File 2 ‘ File 3 ‘ File 4 ‘ File 5 ‘ Main ‘ Total
header 0.26 0.26 0.26 0.25 0.25 0.26 0.26 0.25 2.05
module 0.29 0.01 0.02 0.02 0.02 0.02 0.01 0.01 0.40

Header File X # Translation Unit = 1 X 6 (Seconds)

Based on this demo project, I compared the build time between a header-based program
and a module-based program. The build time of each file can be obtained by adding an
extra flag in the compiling command, for example, ”-ftime-report” in GCC. The results are

presented in Table 5.1.

As the standard, the original project contains only one middle-layer translation unit (File 0),
and one standard header is included in the shared file. In this case, the total compile time
of the header-based program and the module-based program is 0.77s and 0.33s, respectively.
Therefore, even for this pretty simple project, compilation takes less time when header files

are replaced by C++ 20 modules.

When the number of standard header files included in the shared unit increases from one to
six, the increase of compile time of the header-based program is 0.51s (1.28s in total), while
the increase is only 0.18s for the module version (0.51s in total). The main cause of this
difference is that the C+4 compiler has to preprocess more header files when dealing with
each source file (as described in Chapter 2). However, to build the module-based program,

the compiler just spends little more time building the module based on the shared file, while

25

importing the module in other files takes a constant amount of time. Therefore, the time of

compiling File 0 and the main file remains almost unchanged.

On the other hand, after increasing the number of middle-layer translation units from one
to six, there is also a huger gap of compile time between these two programs. The total
compile time of the header-based program and the module-based program is 2.05s and 0.40s,
respectively. The reason is similar: the C++ compiler preprocesses and parses headers
recursively but imports a module within constant time. Actually, for the header model,
most time is spent on building translation units, while for the module model, most work is

already finished after compiling the module.

In sum, for RQ1, the results of the empirical studies show that the module system of C+420
can reduce compile time to a large degree. The reduction of compile time is largely affected

by the number of shared header files as well as the number of translation units.

5.2 Feasibility of Code Migration for Simple Projects

To evaluate the feasibility of code migration for real-world simple projects, I conducted a
case study based on an open-source project on GitHub [18] and replaced its header files with
modules by adding appropriate module directives. The project is an encryption framework
with a pretty simple structure: the main file includes some C++ standard libraries together
with a header file called encrypt.h, in which two other header files, vigenere.h and b64.h, are

included. Both of the latter two header files only include C++ standard libraries.

In order for code migration, I exported wvigenere and encrypt as two modules. In addition,
module vigenere is imported in module encrypt, and the latter is imported in the main file.
The #include directives of C++4 standard libraries are preserved with the use of the Global

Module Fragment. Figure 5.2 shows the code migration of vigenere as an example. Finally,

26

1 //vigenere.h 1 //module vigenere.cpp

2 #include <stdioc.h> 2 module;

3 #include <string.h> 3 #include <stdio.h>

% FlREIpEN SEEcIngs 4 #include <string.h>

5 #include <iostream> 5 #include <string>

5 #%nClUdE Xt -he & #include <iostream>

¥ Rl tctap. 7 #include <stdio.h>

? z 8 #include <ctype.h>

9 using namespace std;

10 9 export module vigenere;

11 std::string AVAILABLE CHARS = ...; 10

12 11 wusing namespace std;

13 int index(...) {...} 12

14 13 export std::string AVAILABLE_CHARS = ...;
14

15 export int index{...) {...}
16

Figure 5.2: The header-based file (left) and the module-based file (right).

the module-based project can be compiled and executed successfully, so for RQ2, the answer

is that code migration is feasible for simple projects.

5.3 Effectiveness of H2M

This research question measures the effectiveness of H2M in modularizing a header-based
app. To answer this question, I ran the approach on a real-world open-source project called
TextBasedAdventure [22]. T modularized both the first commit and the latest commit, and
checked if both module-based versions of these two commits can be compiled and executed
successfully. As shown in Figure 5.3, TextBased Adventure has two files, Utilities and Globals,
which are used by almost all the other files in both commits. I set the thresholds t4; = 88%
and t, = 50%. According to H2M, I bundled up these two files and exported them as a
single module named GlobalModule. For both module-based versions, I can build and run
them successfully. In sum, for RQ3, the empirical studies show that H2M is able to convert

a header-based app to a module-based app successfully.

27

First Commit (Header-based) Latest Commit (Header-based)

Locations

[{itilities]—-[Globals] [Utilities]—-[Glbals]

Figure 5.3: The structure of TextBasedAdventure.

5.4 H2M’s Influences on Compiling Performance

To evaluate how H2M’s modularization can reduce compile time and improve scalability, I
measured the compile time of the first commit and the latest commit of TextBased Adventure

[22], including both the header version and the module version (Table 5.2).

As shown in the table, the compile time of both versions increases more or less as the
application evolves. More precisely, for the header-based version, the build time of the first
commit is 3.09s, while it takes 4.18s to build the latest commit, and the increase of build
time is 1.09s. As for the module-based project, the total compile time grows from 1.82s to
2.22s and the increase of build time is only 0.4s. In summary, after modularization, the total
compile time is reduced by about 41%, and the increase of compile time is reduced by about
63%. Therefore, for RQ4, we can conclude that H2M can both reduce compile time and

improve compile-time scalability to a large extent.

28

Table 5.2: Compile time before and after modularization

H Ut\Pl\Me\Wo\Ac\Lo\Los\Ga\Ma\Total

first 0.42
latest 0.48
difference || 0.06

0.50
0.56
0.06

044 / | / [o044
0.49 | 0.47 | 0.50 | 0.57
0.05 | 0.47 | 0.50 | 0.13

0.44

/
-0.44

0.44
0.59
0.15

0.41
0.52
0.11

3.09
4.18
1.09

Header-based Project (Seconds)

HM\Ut\Pl\Me\Wo\Ac\Lo\Los\Ga\Ma\Total

first 0.85 | 0.13
latest 0.94 | 0.14
difference || 0.09 | 0.01

0.19 | 0.13
0.22 | 0.15
0.03 | 0.02

/
0.11

0.11

/ 1014 0.14 | 0.14 | 0.10 | 1.82
0.15] 0.18 0.21] 0.12 | 2.22
0.15] 0.04 | -0.14 | 0.07 | 0.02 | 0.40

Module-based Project (Seconds)

5.5 Threats to Validity

The main threat to the external validity of the evaluations is the projects I selected. All the
experiments are based on relatively small projects, so H2M is not well-evaluated on large
applications. I do not run the approach on sizable, real-world applications because the code
migration process of such applications is challenging and time-consuming for people who do
not maintain it. However, the conclusions based on small projects can be generalized. The
reason is that the key idea of the modularization of H2M is reducing the amount of work
performed by the compiler. For sizable, real-world applications, H2M can still determine
the files that are mostly shared and export them into modules. Since the compiler does not

need to preprocess shared header files multiple times any more, the compiling performance

of large applications can also be improved.

29

Chapter 6

Discussion

As one of the new features of C++ 20, it is obvious that the module system brings a lot
of benefits and possibilities such as better encapsulation, less compile time, better compile-
time scalability, etc. In this paper, the influences of C++ 20 modules on compile time are

evaluated and the feasibility of code migration is verified, and the results are both exciting.

However, on the other hand, C++ 20 modules bring us challenges as well. As the official
document of Clang says [1], C++ modules are not designed to rewrite the world’s codes,
and it is not feasible to completely eliminate header files in the world. Actually, one big
challenge is that the code migration process of complex projects may be difficult, especially
for people who do not maintain them. Some existing projects can only be built in the context
of a specific version of C+4 and compatibility issues may occur if we simply replace some
headers with modules. Besides, because the module system is a quite new feature of C++

20, some existing tools or frameworks do not support it well.

Another challenge is that security issues may occur when C++ 20 modules are used improp-
erly. Unlike some other existing module systems, this system does not involve any protection

mechanism. For example, in the Android platform, permissions can be used to restrict access

30

to a certain API. However, in the C++ 20 module system, the only thing developers can do is
to decide whether a declaration should be exported. Therefore, when a module-based C++
application exports its internals excessively or imports external modules without verifying
the authorities, malicious applications may access the private data, resulting in leakages of

privacy or even some severer problems [12] [13] [14].

Despite the aforementioned engineering and security issues, the approach proposed in this
paper can still benefit C++ developers to a large degree. Not only does it provide an effective
way of modularization that reduces compile time and improves scalability significantly, but
it also presents insights and instructions on the way to build new applications with modules.
For now, C++ modules must interoperate with existing software libraries, but a gradual
transition may occur in the future when H2M can assist software developers to build module-

based applications.

31

Chapter 7

Related Work

A number of previous research work proposed different approaches or tools supporting soft-
ware developers to determine software components from source codes. Tzerpos and Holt
[21] proposed a clustering-based software recovery approach named ACDC' that utilizes a
system’s structural characteristics to determine architectural components. Garcia et al. [4]
proposed an architectural recovery tool, ARC, which groups entities based on system con-
cerns. Gholam et al. [19] proposed a method to identify software components and their

responsibilities based on the clustering of use cases.

A group of studies focuses on the detection and prevention of software inconsistencies. Some
of them identify software inconsistencies by reverse engineering the descriptive architecture
from the source code followed by comparing it with the prescriptive architecture. Ghorbani
et al. [7] proposed DARCY, an approach that automatically detects and repairs inconsistent
dependencies within Java applications based on static analysis. The work of Hammad et al.

[8] [9] determines and enforces the least-privilege architecture in Android.

Unlike the aforementioned approaches and tools, H2M is the only approach for modulariza-

tion of C++ header-based apps that focuses on improving compiling performance.

32

Chapter 8

Conclusion

There is no denying that the release of C++ 20 shows the vigor and popularity of this
thirty-seven-year-old programming language. In particular, as one of the new features of
C++ 20, the module system provides a new way to encapsulate codes and make header files
unnecessary. This paper presents an overview of C++ 20 modules and proposes H2M, an
approach of modularizing a header-based app. For C++ 20 modules, our empirical studies
confirm their benefits of improving compiling performance, as well as the feasibility of code
migration for simple projects. Besides, our experiment on a real-world project shows the
effectiveness of H2M in successfully modularizing a header-based app to a module-based app
with less compile time and better scalability. Specifically, H2M achieves a 41% reduction
of compile time and a 63% reduction of compile time increment. Despite the fact that
migrating complex projects may be hard and some tools do not support C++ modules well,
it is true that the module system of C4++ will become better and bring more convenience to

developers in the short future.

33

Bibliography

1]
2]

[3]

[10]

[11]

Clang. Official Documents. https://clang.1llvm.org/docs/Modules.html, 2020.

P. Deitel. Understanding Java 9 Modules. https://www.oracle.com/corporate/
features/understanding-java-9-modules.html, 2017.

J. Garcia, I. Ivkovic, and N. Medvidovic. A comparative analysis of software architecture
recovery techniques. IFEFE, 2014.

J. Garcia, D. Popescu, C. Mattmann, N. Medvidovic, and Y. Cai. Enhancing architec-
tural recovery using concerns. In 26th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE 2011), Lawrence, KS, USA, November 6-10, 2011,
2011.

GCC. Official Documents. https://gcc.gnu.org/onlinedocs/gcc/C_002b_
002b-Modules.html, 2020.

GCC. Wiki. https://gcc.gnu.org/wiki/cxx-modules, 2020.

N. Ghorbani, J. Garcia, and S. Malek. Detection and repair of architectural inconsisten-
cies in java. In 2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE), 2019.

M. Hammad, H. Bagheri, and S. Malek. Determination and enforcement of least-
privilege architecture in android. In IEEE International Conference on Software Archi-
tecture, 2017.

M. Hammad, H. Bagheri, and S. Malek. Deldroid : An automated approach for deter-
mination and enforcement of least-privilege architecture in android. Journal of Systems

and Software, 149(MAR.):83-100, 2019.

ISO/IEC. ISO/IEC 14882:2020 Programming Languages - C++. https://www.iso.
org/standard/79358.html, 2020.

T. Lutellier, D. Chollack, J. Garcia, L. Tan, and R. Kroeger. Comparing software
architecture recovery techniques using accurate dependencies. In 37th International
Conference on Software Engineering (Software Engineering in Practice). ICSE-SEIP,
2015.

34

https://clang.llvm.org/docs/Modules.html
https://www.oracle.com/corporate/features/understanding-java-9-modules.html
https://www.oracle.com/corporate/features/understanding-java-9-modules.html
https://gcc.gnu.org/onlinedocs/gcc/C_002b_002b-Modules.html
https://gcc.gnu.org/onlinedocs/gcc/C_002b_002b-Modules.html
https://gcc.gnu.org/wiki/cxx-modules
https://www.iso.org/standard/79358.html
https://www.iso.org/standard/79358.html

[12]

[13]

[14]

[15]
[16]

[17]

18]

[19]

[20]
[21]

[22]

P. Manadhata and J. M. Wing. Measuring a system’s attack surface. advances in
information security, 2004.

P. K. Manadhata, K. Tan, and R. A. Maxion. An approach to measuring a system’s
attack surface. 2007.

P. K. Manadhata and J. M. Wing. An attack surface metric. IEEFE Transactions on
Software Engineering, 37(3):371-386, 2011.

OpenJDK. Project Jigsaw. http://openjdk. java.net/projects/jigsaw/, 2017.

D. E. Perry and A. L. Wolf. Foundations for the study of software architecture. ACM
SIGSOFT Software Engineering Notes, 17(4):40-52, 2000.

M. Reinhold. JSR 376: Java Platform Module System. http://cr.openjdk.java.
net/mr/jigsaw/spec/, 2014.

P. Remy. Easy-encription. https://github.com/philipperemy/easy-encryption,
2017.

G. Shahmohammadi, S. Jalili, and S. M. H. Hasheminejad. Identification of system
software components using clustering approach. Journal of Object Technology, 9(6):77—
98, 2010.

K. Sharan. The Module System. Java 9 Revealed, 2017.

V. Tzerpos and R. C. Holt. Acdc: An algorithm for comprehension-driven clustering. In
Proceedings of the Seventh Working Conference on Reverse Engineering (WCRE’00),
2000.

O. Welsh. TextBased Adventure. https://github.com/0OwenWelsh/
TextBasedAdventure, 2013.

35

http://openjdk.java.net/projects/jigsaw/
http://cr.openjdk.java.net/mr/jigsaw/spec/
http://cr.openjdk.java.net/mr/jigsaw/spec/
https://github.com/philipperemy/easy-encryption
https://github.com/OwenWelsh/TextBasedAdventure
https://github.com/OwenWelsh/TextBasedAdventure

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	ABSTRACT OF THE Thesis
	Introduction
	Background
	Organization of the Thesis

	Java Platform Module System
	Overview of Java Platform Module System
	Comparison between C++ 20 Modules and JPMS

	C++ 20 Modules
	Shortcomings of Traditional Header Files
	Benefits of C++ 20 Modules
	Usage of C++ 20 Modules

	Approach for Modularization
	Step 1: Candidate Determination
	Step 2: File Bundling
	Dependency-similarity
	Algorithm of File Bundling

	Step 3: Dependency Identification
	Step 4: Code Migration
	Analysis of the Module-based App

	Empirical Studies
	C++ 20 Modules’ Influences on Compile Time
	Feasibility of Code Migration for Simple Projects
	Effectiveness of H2M
	H2M's Influences on Compiling Performance
	Threats to Validity

	Discussion
	Related Work
	Conclusion
	Bibliography

