
UC Irvine
UC Irvine Previously Published Works

Title
Assessing Uncertainties and Approximations in Solar Heating of the Climate System

Permalink
https://escholarship.org/uc/item/95j9n2v7

Journal
Journal of Advances in Modeling Earth Systems, 13(1)

ISSN
1942-2466

Authors
Hsu, Juno C
Prather, Michael J

Publication Date
2021

DOI
10.1029/2020ms002131
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/95j9n2v7
https://escholarship.org
http://www.cdlib.org/


1.  Introduction
The heat from sunlight drives the weather and climate system, the energy in solar photons drives atmospheric 
chemistry, and the photosynthetically active radiation drives life. For Earth system models (ESMs), one needs 
to calculate the scattering, absorption, and reflection of solar radiation throughout the atmosphere, ocean, 
cryosphere, and land surface. The idealized radiative transfer (RT) problem is well known and in many cases 
has near-exact, but costly solutions; whereas the atmospheric physics of the problem involving gases, clouds, 
aerosols and surface properties includes unknowns that cause a fundamental uncertainty in the solution. One 
motivation for this study is to evaluate the potential improvements in solar heating rates if more accurate 
physics or RT codes are used, but the overriding motivation is to assess a wide range of approximations and un-
certainties within a single climate-relevant framework. Where more accurate physics or numerical solutions 
are known, we can estimate the error in current RT codes, and where there is fundamental uncertainty, we can 
estimate the potential for error using different methods for framing the problem.

The solar heating module Solar-J (Hsu et al., 2017; hence H2017) is embedded in our chemistry-transport 
model (CTM) and used to integrate climate-relevant heating rates using the European Center's Integrated 

Abstract  In calculating solar radiation, climate models make many simplifications, in part to reduce 
computational cost and enable climate modeling, and in part from lack of understanding of critical 
atmospheric information. Whether known errors or unknown errors, the community's concern is how 
these could impact the modeled climate. The simplifications are well known and most have published 
studies evaluating them, but with individual studies it is difficult to compare. Here, we collect a wide 
range of such simplifications in either radiative transfer modeling or atmospheric conditions and assess 
potential errors within a consistent framework on climate-relevant scales. We build benchmarking 
capability around a solar heating code (Solar-J) that doubles as a photolysis code for chemistry and can 
be readily adapted to consider other errors and uncertainties. The broad classes here include: use of 
broad wavelength bands to integrate over spectral features; scattering approximations that alter phase 
function and optical depths for clouds and gases; uncertainty in ice-cloud optics; treatment of fractional 
cloud cover including overlap; and variability of ocean surface albedo. We geographically map the errors 
in W m−2 using a full climate re-creation for January 2015 from a weather forecasting model. For many 
approximations assessed here, mean errors are ∼2 W m−2 with greater latitudinal biases and are likely to 
affect a model’s ability to match the current climate state. Combining this work with previous studies, we 
make priority recommendations for fixing these simplifications based on both the magnitude of error and 
the ease or computational cost of the fix.

Plain Language Summary  Solar heating of the climate system—the atmosphere, land 
surface, and ocean—drives the climate. Accurate numerical calculation of solar heating is a core 
component of the models we use to project and prepare for climate change. The community has identified 
many potential sources of error and published studies showing how to improve the solar heating codes 
used in climate models. Here, we assemble a wide range of these errors, either numerical approximations 
or uncertainties in defining atmospheric conditions, and put them through the same test: calculating 
the atmospheric and surface heating over a month of simulated climate conditions. Combining the new 
calculations here with previous work, we discuss more than a dozen specific areas where improvements 
could be made and identify high-priority actions.
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Forecast System meteorological data that drives the CTM simulation of atmospheric chemistry (M. J. Prath-
er et al., 2017; Szépszó et al., 2019). This CTM + Solar-J model quantified the errors related to spherical 
geometry of the atmosphere (M. J. Prather & Hsu, 2019; hence P2019). Here, we use that code and diagnos-
tic framework (i.e., January average of hourly global calculations at horizontal resolution of 1.1° including 
water vapor and ice-/liquid-water clouds) for an extensive set of case studies. In addition, we embed the 
AER RRTMG-SW version 4.0 (Clough et al., 2005; Mlawer et al., 1997) directly in the CTM, providing a plat-
form for parallel comparison of the two codes in a realistic climate. Combining solar heating and photolysis 
in one code is obvious as both solutions use the same atmospheric data and we move to ESMs that require 
both. Nevertheless, compromises between the two requirements, Watts versus photons s−1, are identified 
here.

In this study, we examine additional classes of approximations or uncertainties beyond P2019: examples of 
the historical improvement in infrared heating codes and the ongoing work at major climate centers (Sec-
tion 2); the use of bands to integrate over spectral features (Section 3); multiple-scattering approximations 
that alter the scattering phase function for clouds, aerosols, and gases (Section 4); uncertainty in ice-cloud 
optics (Section 5); treatment of fractional cloud cover including cloud overlap (Section 6); and approxima-
tion of ocean surface albedo (Section 7). Each one of these sections has been the focus of major research 
studies that we briefly review. Bringing these together with common climate metric allows for the broad 
comparison here. Section 8 reviews our findings from Sections 3 through 7 and makes priority recommen-
dations for improving climate models' solar heating codes.

For most cases here, we find global mean absolute errors, or uncertainties, ranging from 0.5 to 5 W m−2 
with larger systematic latitudinal or root-mean-square errors. Such error levels are likely to shift ESMs into 
different climate regimes for the current reference period as they are comparable to the changes in climate 
forcing by greenhouse gases from pre-industrial to present (Myhre et al., 2013). Such shifts are likely to force 
parametric retuning of other ESM processes to match observed surface temperatures. Either way, errors on 
this scale are important and must eventually be addressed.

2.  Evolving Solar RT Codes
Many of the case studies here follow the ongoing efforts of the scientific community to improve the solar 
heating codes in current climate models. Most of this work is occurring within the major climate modeling 
centers. For example, the U.S. Department of Energy's Energy Exascale Earth System Model (E3SM) is 
implementing a new toolbox that seeks to balance accuracy, efficiency, and flexibility in the solar RT code 
(Pincus et al., 2019). The Canadian Centre for Climate Modeling and Analysis (CCCma) examined the im-
portance of expanded scattering phase functions for clouds and aerosols possible with a 4-stream RT code 
(Li et al., 2015, hence LBYY) as well as the use of satellite-derived cloudy atmospheres to compare 3-D RT 
with the 1-D climate model codes (H. W. Barker et al., 2012; 2015, hence B2015). The Korean Integrated 
Model has updated their ice cloud treatment (Baek & Bae, 2018), as have also Zhao et al. (2018) for the 
Community Atmosphere Model Version 5. The European Centre for Medium-Range Weather Forecasts 
(ECMWF) now includes innovations such as horizontal and vertical cloud structures (R. J. Hogan & Boz-
zo, 2018; J. K. P. Shonk et al., 2010) based on Hogan et al.'s (2016, hence H2016) solar RT code that combines 
Tripleclouds and 3D effects in a 1D solution. The Australian Community Climate and Earth System Simu-
lator (ACCESS) has also adopted Tripleclouds (Franklin et al., 2013). The French ARPEGE-Climat model 
(Séférian et al., 2018) has adopted the Z. H. Jin et al. (2011) ocean surface albedo model. With variants of 
the Solar-J code we can compare many of these improvements including vertical cloud overlap, but the 3D 
effects of H2016 are outside of Solar-J's current capability.

To calibrate the climate metric used here to assess errors and uncertainties, we test a sequence of solar RT 
codes that represents successively improved spectroscopy and modeling of water vapor lines in the infrared. 
Our reference code, the standard Solar-J version (H2017, denoted SJ), uses Cloud-J (M. J. Prather, 2015) 
spectroscopic data for the ultraviolet and visible wavelengths (0.18–0.78 µm, bins #1–18) with a single val-
ue of solar flux (in both photons cm−2 s−1 and Watts m−2) and cross sections (cm2). SJ adds 9 broad infra-
red (IR) bands (0.78–12.2 μm, bins #19–27) taken directly from the RRTMG-SW version 4.0 code (Clough 
et al., 2005; Mlawer et al., 1997). These 9 IR bands plus the overlap bin #18 (0.485–0.778 µm) contain a total 
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of 78 + 5 g-points (sub-bins) for gas absorption. A 'high-accuracy' SJ version in terms of infrared gas absorp-
tion is derived from the benchmark code RRTM-SW with the same 9 IR broad bands, but 144 g-points, and 
is denoted SJ/RRX. We made Solar-J variants using water vapor absorption as parameterized by older codes. 
The oldest and least accurate LLNL code (Grant & Grossman, 1998) has three IR bands (0.69–3.85 μm) with 
21 sub-bins (denoted SJ/LLNL). The CLIRAD code (Chou & Suarez, 1999, revised with HITRAN 2012 data), 
used until recently by the Goddard Space Flight Center climate model, has three IR bands (0.70–10.0 μm) 
including a total of 30 sub-bins (denoted SJ/CLIRAD).

We compare these codes by running their SJ variants with only water vapor as an absorber in the IR and 
clear skies (no clouds or aerosols, see Figure 1a). Compared to SJ, SJ/CLIRAD, and SJ/LLNL have about 5 
and 7 W m−2 less atmospheric absorption, respectively, most of which is absorbed at the surface with small 
excess fraction (∼1 W m−2) being reflected (see Table 1/Rows 1 & 2, hence designated T1/R1&2). The more 
accurate SJ/RRX code has only ∼0.25 W m−2 less atmospheric absorption than SJ (T1/R3). Assuming that 
SJ/RRX is the most accurate code for water vapor absorption, we find that in terms of re-partitioning the 
solar heating between atmosphere and surface (5–7 W m−2) these historical improvements are greater than 
any of the next generation of errors assessed here. In terms of incident or reflected flux errors, however, 
they are smaller than the cloud uncertainties, spherical geometry, or even issues of wavelength resolution 
in the visible.
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Figure 1.  Monthly zonal mean flux differences (W m−2) as a function of latitude for January 2015 with three vertical panels showing reflected, atmospheric 
absorption, and net surface heating (top down). (a) Case study for H2O-gas absorption and clear sky, comparing models with different numbers of infrared 
sub-bins. Differences are relative to standard Solar-J (SJ). RRTM refers to the very high-resolution (SJ/RRX in Table S1); CLIRAD and LLNL, to the courser 
resolutions (SJ/CLIRAD and SJ/LLNL). (b) All sky with averaged clouds and no infrared (IR) gas absorption, emphasizing the resolution of cloud absorption. 
Differences are relative to SJ-66b (high-resolution infrared bins for clouds). SJ/noIR has the standard 9 IR RRTMG bands, and SJ/CLIRAD/noIR has 3. (c) 
Averaged liquid-only clouds shown for a range of re-scalings of the Mie scattering phase function (HG, δ-0, δ-1, δ-2). These are all evaluated within the 8-stream 
SJ code. Also shown is the difference RRTMG minus SJ/δ1, where much of the difference, especially in atmospheric heating, is due to the 2-stream minus 
8-stream difference. See Table S1 for a complete description of code versions.

(a) (b) (c)
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row Models Error being estimated

Mean difference (Wm−2) RMS difference (Wm−2)

refl. Atm. Surf. refl. Atm. Surf.

Spectroscopy errors for infrared and visible gas absorption with clear sky

R1 B1–B0 SJ/CLIRAD v. SJ +0.94 −5.68 +4.73 1.4 8.4 7.0

R2 B2–B0 SJ/LLNL v. SJ +0.53 −7.66 +7.13 1.2 12.0 11.0

R3 B3–B0 SJ/RRX v. SJ +0.03 −0.24 +0.21 0.0 0.4 0.3

R4 RR0–B0 AER4.0 v. SJ +1.30 −0.47 -0.82 1.9 0.8 1.4

R5 B4–B0 SJ/hrv v. SJ +0.34 −0.46 +0.12 - - -

R6 B5−B0 SJ/2S versus SJ +0.31 −0.53 +0.22 0.4 0.4 0.2

Wavelength resolution of cloud absorption (MAX-COR overlap and QCAs, no IR gas absorption)

R7 C1–C0 SJ/CLIRAD v. SJ/66b −2.14 +3.85 −1.70 8.7 10.4 3.1

R8 C2–C0 SJ/RRTM v. SJ/66b −1.14 +1.68 −0.51 2.2 3.2 1.1

Scattering phase function errors for HG and δ-scaling using grid-cell averaged only liquid water clouds. Also differences between RRTMG-SW v4.0 and 
Solar-J using δ-1 scaling. The sum of the 3 principal components may not equal zero because of round-off or small differences in incident flux (not 

shown) due to the vertical sub-layers for clouds in SJ. The Rayleigh case below R17 was done with clear sky.

R9 Mh–M0 SJ/HG v. SJ (Mie) −0.05 +0.14 −0.09 0.8 0.6 0.6

R10 M1–M0 SJ/δ0 v. SJ (Mie) −0.26 −0.22 +0.44 5.6 1.2 5.1

R11 M2–M0 SJ/δ1 v. SJ (Mie) −0.33 +0.23 +0.07 1.4 1.0 2.2

R12 M3–M0 SJ/δ2 v. SJ (Mie) −0.32 +0.05 +0.23 2.8 0.5 3.1

R13 M4–M0 SJ/δ1/2S v. SJ/δ1 −0.68 −1.74 +2.42 3.5 2.7 5.0

R14 RR2-M0 AER4.0 v SJ −1.14 −0.82 +1.88 3.0 1.7 4.1

R15 RR2-M2 AER4.0 v. SJ/δ1 −0.81 −1.05 +1.82 2.4 1.7 3.6

R16 RR2-M4 AER4.0 v. SJ/δ1/2S −0.13 +0.69 −0.61 3.3 1.4 3.2

R17 MR –B0 Isotropic Rayl. v. SJ −0.01 +0.01 0.00 0.0 0.1 0.0

R18 MI– D0 SJ/δ1ice v. SJ, QCA, 
MAX-COR overlap

−0.02 +0.01 +0.01 0.8 0.5 0.5

Cloud Overlap Algorithm. Solar-J with QCAs for both MAX-RAN and MAX-COR overlap. RRTMG-SW v4.0 run with McICA for MAX-RAN cloud overlap. 
See note above small differences in incident flux.

R19 D1 – D0 SJ: MAX-RAN v. MAX-
COR, both QCA

−1.35 −0.06 +1.41 7.9 1.0 8.6

R20 RR1-M5 AER4.0 v. SJ (avg cld 
w/ice)

−0.38 −2.67 +2.97 4.4 5.9 6.1

R21 RR3–D1 AER4.0 (McICA) v. 
SJ (QCA) (both 
MAX-RAN)

−2.10 −2.36 +4.41 18.5 5.9 20.5

Ocean Surface Albedo (Solar-J with MAX-COR overlap and QCAs)

R22 O1−O0 SJ:OSA constant v. angle 
dependent

+0.68 +0.16 −0.84 4.7 0.4 5.1

Spherical errors from M. J. Prather and Hsu (2019) include changes in incident flux, which was not included in the above comparisons that used the same 
model (spherical or flat) in each comparison. Comparisons R23−R25 use Solar-J with all clouds, MAX-COR overlap and QCAs.

incid. refl. atm. surf.

R23 - SJ: spherical v. flat +1.55 +0.68 +0.46 +0.41 - -

R24 - SJ: refraction v. flat +1.94 +0.83 +0.53 +0.58 - -

R25 - SJ: geometric v. flat +2.50 +1.02 +0.86 +0.62 - -

Note. See methods section Table S2 for description of each of the pairs of simulations noted in column two. Global-mean area-weighted differences are averaged 
over January 2015 (744 hourly data) with root mean square differences accumulated hourly. All results use the UCI CTM and the T159L60 (∼1.1 º × 1.1 º) 
ECMWF forecast fields developed by U. Oslo from the Open-IFS system (M. J. Prather et al., 2017; Søvde et al., 2012).

Table 1 
Errors in the Three Primary Components of the Solar Radiation Budget (Reflected Sunlight, Atmospheric Absorption, Surface Absorption in W m−2) for a Range of 
Approximations in the Radiative Transfer Models
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3.  Solar-J Spectral Model and Band Resolution
Practical RT solutions for the complex absorption features of atmospheric gases require selecting a limited 
number of representative wavelengths or wavelength bands for the calculation. Ideally, one picks as broad 
a band as possible that has nearly the same attenuation of sunlight across all wavelengths and can be accu-
rately represented with a single RT solution. In wavelength regions with many sharp absorption lines, such 
as the Schumann-Runge bands of O2 (177–202 nm), the opacity distribution method (Fang et al., 1974) sorts 
the lines into bins of non-contiguous wavelength micro-bands with similar opacity. In parallel, the calcu-
lation of heating rates uses the similar correlated-k distribution (Goody et al., 1989; Lacis & Oinas, 1991) 
to sort the near infrared and infrared absorption lines of water vapor and other greenhouse gases into bins 
of similar opacity, designated g-points in RRTMG. Both methods select broad wavelength bands where the 
opacities of more continuum absorbers like clouds and aerosols can be treated as a constant. The art here 
lies in selecting the minimum number of total bins, each requiring a separate RT calculation, which can still 
reproduce, within a specified error, results from spectrally resolved models using thousands of wavelength 
intervals and calculations.

Solar-J's underlying spectral model and scattering code is Fast-J, which is used for chemical photolysis 
rates and thus requires a reference solar spectrum in photons cm−2 s−1 and photon-weighted average cross 
sections. With the added capabilities for cloud overlap and solar heating, Fast-J has become Cloud-J (M. 
J. Prather, 2015), which has become the core of Solar-J. Fast-J developed optimized wavelength binning 
for the stratosphere (175–298 nm, bins #1–12, Bian & Prather, 2002) and the troposphere (298–800 nm, 
bins #13–18, Wild et al., 2000), and builds upon 4 decades of RT development for atmospheric chemistry 
(Logan et al., 1978; Olson et al., 1997; PhotoComp, 2010). The 8-stream Feautrier based scattering code 
(Prather, 1974; Wild et al., 2000) calculates mean specific intensities for the photolysis rates as well as flux 
divergence across each model layer. The cross sections used for atmospheric attenuation, photolysis rates, 
and absorption in bins #1–18 are photon-weighted. Heating rates use a reference solar table (Watts m−2) for 
each large bin. Atmospheric attenuation and absorption in IR bands #19–27 is calculated with the RRTMG 
spectral model; Solar-J extends its reference solar table (Watts m−2) to match RRTMG; and photon fluxes 
are not used since photolysis only occurs in bins #1–18. For the tropospheric wavelengths (#13–18), the bins 
are contiguous wavelength bands, and only ozone absorption and Rayleigh scattering affect the fluxes, see 
Figure 2.

3.1.  The Wavelength Region 290–778 nm

We expected a simple, or at least explicable comparison of SJ with the RRTMG-SW v4.0 standalone code 
(RRTMG) under clear skies because the codes are essentially identical for IR wavelengths >778 nm, and the 
UV and VIS region <778 nm consists of well quantified, continuous cross sections for ozone absorption and 
Rayleigh scattering. The primary differences in the codes are the wavelength bands and scattering: SJ uses 
Rayleigh-phase scattering with an 8-stream code while RRMTG uses isotropic scattering with a 2-stream 
code. The difference RRTMG minus SJ under clear sky gave a surprisingly large difference: (+1.3, −0.5, 
−0.8 W m−2) for the three primary globally averaged components (reflection, atmospheric absorption, and 
surface absorption), respectively (T1/R4). For the UV region <298 nm, the solar flux (13.6 out of 1360.8 W 
m−2) is absorbed in the stratosphere, and both SJ and RRTMG agree on this. So focusing on the 298–778 nm 
region that covers the visible, UVA, and part of UVB (for convenience designated as UV-VIS here) we try to 
understand these differences.

This UV-VIS region has the most solar flux (721 W m−2) and for the most part is optically thin. The primary 
attenuators (molecular Rayleigh, O3), solar flux, and wavelength bands used in RRTMG and SJ are shown 
in Figure 2. For 298–320 nm (13 W m−2) the O3 total optical depth is greater than about 0.5 (0.05 in the 
troposphere) and much is absorbed in the stratosphere. SJ uses 3 narrow bands to resolve the rapid changes 
in O3 optical depth and attenuation of sunlight as well as a fourth narrow band to 345 nm where transmis-
sion is controlled by Rayleigh scattering. This level of resolution is necessary to calculate photolysis rates. 
The Rayleigh optical depth (mostly tropospheric) drops rapidly from 1.0 at 300 nm to 0.04 at 700 nm. For 
wavelengths >345 nm, the optical depths of Rayleigh and ozone are relatively small, and accurate photol-
ysis rates need at most two bands if individual species' absorption cross sections are photon-weighted. O3 
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absorption in the Chappuis bands (450–800 nm) is not important for the photochemistry, but it is an impor-
tant source of atmospheric heating. Likewise, Rayleigh scattering in the visible plays a minor role in photol-
ysis rates but is an important source of reflected sunlight. A first-order estimate based simply on weighting 
tropospheric extinction with solar flux has Rayleigh scatter (forward and back) of 123 W m−2, O3 absorption 
of 2.7 W m−2, and surface reflection (ocean albedo = 0.05) of 36 W m−2. This should be a relatively easy 
wavelength region to model accurately.

To cover the 345–778 nm region, RRTMG has three broad bands and 20 total g-points (sub-bins) within 
them. Each g-point has its own Rayleigh cross section derived from the correlated-k distribution and its own 
O3 absorption cross section. Solar-J has only two broad bands with no sub-bins and clearly does not resolve 
the different patterns of Rayleigh and O3 extinction, see Figure 2. Thus, we built a high-resolution-visible 
Solar-J version (SJ/hrv), putting 18 bands in the UV-VIS region (black dots in Figure 2) to achieve resolution 
comparable to RRTMG. The SJ/hrv minus SJ differences, (+0.3, −0.5, +0.1 W m−2) (T1/R5), can explain the 
RRTMG v. SJ differences in atmospheric heating, but still leaves a large discrepancy in the reflected flux.

Is this difference caused by Solar-J's use of photon-, not Watt-weighted averages for these UV-VIS bands? In 
Table S3, we look at the average cross sections (Rayleigh scattering and O3 absorption) for the three largest 
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Figure 2.  (a) UV-Visible region for Solar-J (298–778 nm, 721 W m−2) showing (top) continuum spectra for Rayleigh 
scattering, O3 absorption, O1D production, and ocean surface albedo (OSA, high sun, low wind) plus schematic 
wavelength dependence (arbitrary cross sections) for clouds (dashed line) and typical aerosol (dotted). Rayleigh cross 
sections have scaled by 107 to be compared with those of O3, assuming tropospheric abundance of 100 ppb. Clouds have 
no wavelength dependence across this region and aerosols are shown for an Angstrom coefficient of 1. (b) The solar 
spectrum and the wavelength bands used in Solar-J (blue), RRTMG (red) plus the high-resolution-visible version of 
Solar-J/hrv (black dots).
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VIS bands in Solar-J using both photon and Watt weighting derived from the same high-resolution solar 
spectrum. When the bands are narrow (e.g., 320–345 nm) the difference between these two averaging meth-
ods in negligible, but for the two broad VIS bands, the Watt-averaged Rayleigh cross sections are 4%–7% 
larger, and would result in greater reflected flux as seen in RRTMG and SJ/hrv. Thus Solar-J's requirement 
for calculating both photolysis and heating rates from the same calculation points out a fundamental con-
flict in the case of broad bands. For the narrow tropospheric UV (298–345) the current SJ bands are fine, 
but for the VIS we must increase the number of bands beyond 2, and look at Watt-weighting of Rayleigh 
and O3 cross sections but not the photolyzed species. We expect that accurate clear-sky solar heating can be 
computed with 5–10 broad bands and probably does not need the 20 g-points of RRTMG. One must remem-
ber that clouds and aerosols are also important for the 721 W m−2 in the UV-VIS. Clouds have little spectral 
dependence in the UV-VIS and can thus be calculated accurately with very broad bands. Aerosols extinction 
often scales inversely with wavelength (see Figure 2) and thus aerosol radiative forcing of climate needs to 
be resolved by the broad band structure and not with g-points.

3.2.  Cloud Absorption in the IR

The accuracy of the calculated cloud absorption is determined by the number and spacing of the IR broad 
bands, not the number of sub-bins or g-points in each, because models assume constant cloud optics across 
each band. Edwards and Slingo (1996) recognized this problem and devised an ingenious spectral averaging 
of the single-scattering albedo (SSA) of ice- and liquid-water clouds over the broad infrared bands. Their 
thick-cloud averaging enabled the UK climate model to run successfully with four broad bands for solar 
RT, but that model and a 24-band model still had large errors compared to their 220-band reference model. 
How does this problem look with the RRTMG bands? Figures 3a and 3b shows the SSA of typical ice- and 
liquid-water clouds over the infrared spectrum. The refractive indices for ice and liquid water are similar but 
with distinct wavelength shifts: the second deep SSA minimum for liquid occurs about 1.9 µm, while that 
for ice occurs about 2.0 µm. The largest differences in the liquid versus ice curves here are caused by particle 
size, with smaller particles having larger SSA. The 9 infrared bands (#19–#27 in Figure 3) are denoted with 
the vertical dashed lines. The average cloud SSA in each bin is shown by the horizontal bar with a circle.

To resolve the variation in cloud absorption within the broad bands, we recalculated a set of narrow bands 
(0.05–0.10 μm wide), yielding 66 IR bands shown as black squares. The Solar-J cloud optics are calculated 
using a flux-weighted refractive index for liquid or ice water and Mie theory for a wide range of effective 
radii (Reff) and a dispersion of spherical particles similar to stratus clouds. The Mie calculation returns 
SSA, extinction coefficient (Q), and seven Legendre coefficients of the scattering phase function (g1:7, see 
Table 2). For ice clouds, a non-Mie scattering phase function is used and examined in Sections 4 and 5. 
The Mie calculation of SSA and Q is surprisingly accurate. In the top panel of Figure 3 we compare our 
narrow-band Mie-ice SSA results with values taken from Ping Yang's library (Bi & Yang, 2017) of ice crystal 
optics: the four thin colored lines represent four crystal habits (droxtals, 8-columns, 10-plates, small bullet 
rosettes, all with roughness value of 003) that have a wide range of geometries (maximum to effective diam-
eter ratios of 1.2, 3.3, 7.6 and 2.5 respectively). The SSA is primarily a function of Reff and refractive index, 
and the Mie approach fits within the range of crystal habits.

The standard Solar-J cloud optics, based on average refractive indices (H2017), should probably be re-cal-
culated with the Mie calculation at fine wavelength intervals and then with flux-averaging of SSA, Q, and 
g1:7, as in Edwards and Slingo (1996). Looking forward, however, we should not have bands or sub-bins with 
such large variations in refractive index. The narrow bands have smaller changes in refractive index across 
each band and will be minorly affected by the method of averaging. SJ/66b is the Solar-J variant using these 
66 narrow bands.

Lu et al. (2011: LZL) noted that RRTM's wide infrared bands average over both reflecting and absorbing 
wavelengths in clouds. LZL use a correlated k-distribution that combines the line-by-line water vapor with 
the continuum liquid-water cloud optical properties to produce a set of sorted cloud + vapor bins within 
each wide band. LZL apply this new hybrid model to a sample column of liquid cloud layers and show that 
including variable cloud absorption within the broad RRTM bands results in more scattering, less atmos-
pheric heating with both more reflected flux and more surface heating. They attribute these errors to the 
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Figure 3.  (a and b) Single scattering albedo (SSA, dimensionless) for water clouds versus wavelength (µm), including 
both (a) ice and (b) liquid water (bottom). The RRTMG infrared (IR) bins, designated #18 through #27 are demarcated 
by dashed vertical lines with average SSA denoted (large circle with cross bar and light-colored fill). The solar energy 
(W m−2) in each bin is denoted, and the reflected flux (%, red, above flux) for overhead sun, zero surface albedo, and an 
optically thick ice-water cloud is also given. Average SSA is calculated from a flux-weighted refractive index for each 
bin assuming spherical (Mie) particles, including for ice-water. The liquid particles have an effective radius of 12 µm; 
and the ice particles, 48 µm. The black squares show values used in SJ/66b, where the resolution ranges from 0.05 µm 
(0.7–2.4 µm) to 0.10 µm (2.5 µm–4.0 µm). Four thin colored lines plotted on top of the ice cloud data are taken from 
Ping Yang's library (Bi & Yang, 2017) of ice crystal optics for droxtals, 8-columns, 10-plates, and small bullet rosettes, all 
with roughness value of 003). The Reff values of 48 µm correspond to maximum diameters of 112, 312, 738, and 238 µm, 
respectively. The Zhao et al. (2018) new derivation of ice-cloud single scattering albedo for the RRTMG bands is shown 
as a light cross (X) to compare with the pink/red circles. (c) Profile of in-cloud rates for stratus (optical depth OD = 12, 
liquid water) and cirrus (OD = 2, ice water) from SJ/noIR and SJ/66b (also no IR gas absorption by design) for overhead 
sun and surface albedo of 0.05.
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spectral correlation of gas and cloud absorption and make the case for including ice clouds in a three-pa-
rameter correlated k-distribution as the path forward.

We extend the LZL work with SJ/66b by evaluating the RRTM-band cloud errors in a climate-relevant 
framework and including ice clouds. We do not have the capability to generate correlated-k sub-bins for 
the 66 IR bands and thus cannot include infrared (IR) gas absorption. In a single column model like LZL, 
we calculate cloud heating rate profiles for sample stratus and cirrus clouds at high sun (Figure 3c) using 
SJ/66b and compare it with Solar-J without IR absorption (SJ/noIR). For stratus clouds, the excess heating 
using SJ/noIR ranges from +5% (bottom) to +25% (top), with similar values for cirrus ice clouds. At the top 
of a stratus cloud, SJ/66b heating rates are 1.8 K per day, while SJ/noIR calculates 2.3 K per day (both are 
without IR gas absorption). We can include IR gas absorption in SJ and find that heating rates in the upper 
layers of the stratus cloud are reduced by about a third because of the absorption by water vapor above the 
cloud deck; this difference is much less with high cirrus clouds. The relative differences between 9 bins and 
66 infrared bands (i.e., 5%–25%) should remain. Cloud heating errors at this level are likely to affect the 
lifetime and stability of clouds (Wood, 2012). Overall these results are similar to LZL's liquid clouds and 
confirm that ice clouds also need to be corrected.

In terms of our climate metrics (e.g., global zonal-mean heating rates for January in Figure 1b), SJ/noIR 
has 1.7 W m−2 more atmospheric heating than SJ/66b, while SJ/CLIRAD/noIR, with only three IR bands, 
has 3.8 W m−2 more (T1/R7&8). Coarse wavelength resolution of cloud absorption clearly results in more 
in-cloud heating balanced almost equally by less reflection and surface absorption. Our global monthly val-
ues are about 20 times lower than LZL's case study of a very thick low cloud with overhead sun, and this is 
probably not inconsistent. LZL attribute these errors to the correlation of gas and cloud absorption, but our 
results show that a significant component of the error is simply the failure to separate the highly scattering 
wavelengths from the partly absorbing wavelengths and is not tied to water vapor absorption. This informa-
tion may help in the development of a combined gas-liquid-ice model. Improving the accuracy of the gase-
ous absorption is an ongoing effort (Etminan et al., 2016; Mlawer et al., 2012; Paynter & Ramaswamy, 2014; 
Pincus et al., 2015; Radel et al., 2015), but parallel efforts on cloud absorption are limited.

4.  Scattering Phase Functions and Multiple Scattering
Ideally, the sunlight scattered by clouds, aerosols and gases is resolved semi-continuously in all directions 
within the atmosphere, but in practice, RT solutions for solar heating keep track of a limited number of 
angles (streams) in upward and downward directions and average over the azimuth angle. Solar-J uses eight 
streams (four up, four down) to resolve multiple scattering and this RT solution is implemented in many 
global chemistry models (M. J. Prather, 2015). RRTM (Mlawer et al., 1997) uses 16-stream scattering but is 
not implemented in global models; instead, RRTMG (Clough et al., 2005) with 2-stream scattering is used 
in many climate models. The Geophysical Fluid Dynamics Laboratory (AM3) and the Canadian Center for 
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P(Θ) = 1 + g1 × 3 P1 (cos[Θ]) + g2 x 5 P2 (cos[Θ]) + g3 × 7 P3 (cos[Θ]) + … + g7 x15 P7 (cos[Θ])

PMie(Θ) = 1 + 0.865 × 3 P1 (cos[Θ]) + 0.795 × 5 P2 (cos[Θ]) + … + 0.507 × 15 P7 (cos[Θ])

PHG(Θ) = 1 + 0.865 × 3 P1 (cos[Θ]) + 0.748 × 5 P2 (cos[Θ]) + … + 0.362 × 15 P7 (cos[Θ])

Method f g* = (g1–f)/(1–f) τ*sca/τsca = 1–f Notes

δ-0 (isotropic) g1 = 0.865 0 0.135 gn = 0, n ≥ 1

δ-1 g1 2 = 0.748 0.464 0.253 gn = 0, n ≥ 2

δ-2 g2 = 0.795 0.342 0.205 gn = 0, n ≥ 2

Note. This example assumes liquid water cloud (Reff = 12 μm, wavelength = 600 nm, ω0 = 0.99999). The Mie phase 
function is truncated after P7. The Henyey-Greenstein phase function is expanded to P7 is using only the first asymmetry 
term of the Mie phase function. The δ-0, δ-1 and δ-2 phase functions include at most P0 and P1. All of these SJ variants 
use 8-stream scattering.

Table 2 
Parameters (Scaling Factor f, Asymmetry Factor g*, Scattering Optical Depth τ*sca) for Different Delta-M Scaling Methods
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Climate Modeling and Analysis (CanAM4) with 4-stream RT (Li & Ramaswamy, 1996; LBYY) appear to be 
the most accurate scattering codes currently used in climate models.

The number of scattering angles determines how well the scattering phase function, P(Θ), is resolved, where 
Θ is the angle between incident and scattered light. Nominally, these phase functions are calculated using 
Mie theory for spherical droplets or other approximations for aspherical ice or dust particles (Mishchenko 
et al., 2016; Yang et al., 2018) and expanded in Legendre polynomials, PL(Θ), where the first two terms are 
P0 ≡ 1 and P1 ≡ cos(Θ). See Figure 1 of LBYY for the Legendre coefficients for water clouds and dust. Del-
ta-Eddington methods for solving the RT problem (Joseph et al., 1976) approximate this phase function as 
a forward delta function plus a two-term expansion of the phase function, P0 and P1, see Table 2. M-stream 
RT methods (Lin et al., 2018; W. J. Wiscombe, 1977) extend this to include the first M terms in the Legendre 
expansion. All of these methods reduce the coefficient of P1 from 3g1 to a lesser value 3g* (g* is often called 
the asymmetry factor, see Table 2), and likewise reduce the scattering optical depth. The reduction in cloud 
optical depth applies only to the scattering optical depth τsca, while the absorbing τabs is unchanged. These 
δ-scaling methods are chosen to avoid the unphysical negative phase functions that result from truncation 
of the Legendre series. The 8-stream in Solar-J does not use delta-M scaling because early tests showed that 
simply truncating the phase function for liquid water clouds at P7 (giving a phase function that oscillates in 
sign) still produced accurate, non-negative fluxes and mean intensities compared to 160-stream solutions 
expanded to P159. In these tests, the mean intensity differed by 1% throughout most of the atmosphere, with 
a worst case of 8% in the uppermost layers of an optically thick cloud and overhead sun (Wild et al., 2000). 
A major difference between these methods is that Solar-J retains the correct direct flux at the surface while 
δ-scaling methods can greatly exaggerate it.

Studies to assess the biases of radiative fluxes using 2-stream approximations are historical and exten-
sive (e.g., Chandrasekhar, 1950; Coakley & Chylek, 1975; Harshvardhan & King 1993; King & Harshvard-
han, 1986; Liou, 1974; Meador & Weaver, 1980; Räisänen, 2002; W. J. Wiscombe and Grams, 1976). Two 
modern studies have carried this further with extensive analysis of 2-stream versus exact solutions, using 
a 128-stream RT code (LBYY) and Monte Carlo simulations (B2015), and we use them in our evaluation of 
2-stream versus 8-stream solutions and errors in δ-scaling.

4.1.  Phase Function Approximations for 2-Stream Assessed With 8-Stream Scattering

The method designated δ-1 here adopts the commonly used Henyey-Greenstein (HG) phase function 
(Boucher, 1998) to estimate the Legendre coefficient 5g2 (i.e., g2 = g1

2), see Table 2. This coefficient becomes 
the scaling factor f = g1

2 and is used to calculate a reduced asymmetry factor g* = (g1 – f)/(1 – f) and reduced 
τ*sca = (1 – f) τsca. This scaling, for example, is applied in the Mie expansion for liquid-water clouds of RRT-
MG code used here. Another alternative, designated δ-2 (δ-M method with M = 2), uses the Mie phase func-
tion's second term, f = g2 and the revised g* and τ*sca are calculated as for δ-1. For comparison, an isotrop-
ic-equivalent method, designated δ-0 here, drops the asymmetry factor in the phase function and calculates 
a reduced τ*sca using f = g1 and the above formulae. From the example in Table 2, δ-0 is the least forward 
scattering with the largest reduction in τsca (1–f = 0.14); δ-2 has the next largest reduction (1–f = 0.20); while 
δ-1 has the least (1–f = 0.25), reducing τsca by only a factor of 4. SJ versions have been coded that rewrite the 
cloud optical depth and scattering phase function in accord with δ scaling and are designated eponymously 
as SJ/δ0, SJ/δ1, and SJ/δ2. In addition, version SJ/HG uses 8-stream scattering and an 8-term HG expansion 
based only on the first term of the Mie phase function: PHG(Θ) = 1 + ΣL=1:7 (2L + 1) (g1)L PL (cos[Θ]). Ray-
leigh scattering by air (an important component in the visible region, see above) must also be approximated 
in 2-stream codes, truncated from PRay = ¾(1 +cos2[Θ]) to PRay = 1, removing the forward-backward scat-
tering lobe of the phase function to make it isotropic; this is implemented here as version SJ/Ray. All these 
versions use the standard 8-stream scattering code. The δ-scaling and HG approximation tests here are run 
without ice clouds to aid in comparisons with RRTMG.

Approximating Rayleigh scattering as isotropic, required in all 2-stream codes, fortunately has inconse-
quential errors: all three global mean error metrics (reflection, atmospheric absorption, surface heating) are 
measurable but within ±0.01 W m−2 (T1/R17). There is little systematic geographic or zenith angle errors 
since the root-mean-square (rms) errors are ≤0.1 W m−2. This test was done with the 8-stream code.
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For clouds, the δ-scaling errors are modest in terms of global mean, within ±0.4 W m−2 for any of the three 
primary components (T1/R10-11–12). The pattern is interesting in that all three methods show a similar 
−0.3 W m−2 error in reflected flux, but the surface absorption error shifts from +0.07 to +0.23 to +0.44 W 
m−2 in the order δ-1 to δ-2 to δ-0, being caused by the successively greater reductions in τsca by the scaling 
factors of 0.25, 0.20, and 0.14. Thus in δ-1 the reduction in reflected flux goes into atmospheric heating; 
while in δ-2 and δ-0, it goes into surface heating. Global mean HG errors are (−0.05, 0.14, −0.09 W m−2) 
for the three primary components (T1/R9). This pattern--less reflection and less forward scattering to the 
surface—is caused by the weaker forward and backward scattering peaks in the HG phase function. Al-
though these mean errors are modest, there is no basis and no cost advantage to using an 8-term HG phase 
functions. For a complete analysis on the radiative flux biases due to HG approximations on the clouds and 
dust aerosols, see LBYY.

The δ-scaling 2-stream models are optimized to give reasonable averages, but with large opposite-sign errors 
at different SZA (Joseph et al., 1976; W. J. Wiscombe, 1977). Thus, we examine the geographic pattern of 
δ-scaling errors for fixed sun (00Z) in Figure 4 and find that SZA ∼ 40° (green dashed oval) is the zero-error 
point for all three δ-scaling methods. Figures 4a–4c columns show the three primary components: reflected 
flux, atmospheric absorption, and surface absorption, respectively. The first three rows (i)–(iii) show the se-
quence δ-0 to δ-2 to δ-1, respectively, in order of decreasing scaling factors. Looking at the region with SZA < 
40° (inside the green oval), we see that the error in reflected flux is positive and greatest for δ-0 and decreas-
es along the sequence. Similar dipole patterns as a function of zenith angle can be seen in Figure 2 of LBYY 
with the relative errors about 20% for thin liquid clouds (optical depth, τ < 1) to about 5% for thicker clouds 
(τ ∼ 10). The zero-error point moves from SZA of about 60° at τ ∼ 0.01 toward smaller SZAs with increasing 
τ up to 10. For thick clouds (τ > 10), the relative errors and the dipole patterns are comparatively minor. 
Similar patterns are also shown in Figures 2c and 5a of B2015 for the visible band and the near-infrared 
band respectively. However, the zero-error point in B2015 stays in the SZA = 40–50° range.

The vertical profiles of the atmospheric absorption errors in Figure 4 are shown in Figure S1. The error at 
high sun (i.e., inside the oval SZA < 40°) goes from overall negative for δ-0 (-2.7 W m−2), to small positive for 
δ-2 (+0.8 W m−2), to strongly positive for δ-1 (+2.9 W m−2), and the profiles are consistent with the means. 
This sequence is similar to the sequence for global mean atmospheric heating, +0.07 to +0.23 to +0.44 W 
m−2. When we mix 2-stream versus 8-stream (RRTMG vs. SJ/Mie, red line in Figure S1), the profile errors 
are large and oscillate. While the column mean difference is small in this case, the rms difference is as large 
as the worst case δ-0. In high solar latitudes (50°S–70°S and 30°N–50°N in January) where SZA remains 
large at all hours, the monthly mean averages have consistent errors of 1–2 W m−2 at the surface (Figure 1c). 
The δ-scaling approximations studied here have largest impact on the reflected and surface fluxes rather 
than atmospheric absorption.

4.2.  2-Stream versus 8-Stream and Exact Scattering Solutions

Here we assess the errors in 2-stream scattering by comparing with 8-stream solutions standard in So-
lar-J using our metric. Fortunately, two key studies have carried this further with exact solutions, using 
a 128-stream RT code (LBYY) and Monte Carlo simulations (B2015). Räisänen's  (2002) work on tuning 
2-stream approximations used comparisons similar to ours with a 16-stream discrete ordinate method. For 
Solar-J, we coded a 2-stream RT solver based on the Feautrier method using δ-1 scaling, and this version is 
designated SJ/2S. With this we have a clean, bias-free comparison of 2-stream versus 8-stream under clear 
skies (T1/R6) and with liquid clouds using δ-1 scaling for both models (T1/R13).

Under clear sky conditions (no clouds, no aerosols) the only scaling in SJ/2s is to make Rayleigh scattering 
isotropic, which has negligible effects as noted above (T1/R17). The pattern of 2-stream errors (Figure S2, 
left column) is unusual, with reflected flux being much larger in regions with high surface albedo (Antarc-
tica, dry sub-tropics). The enhanced reflection is matched by reduced atmospheric absorption. Our surface 
reflection is Lambertian (isotropic), and it is clear that having only a single zenith angle of 55° for the 
reflected light reduces the average path length through the atmosphere for the reflected flux and results in 
a shift from absorbed to reflected. There is also a slight increase in the downward scattered light reaching 
the surface with only one angle. We looked at the B2015 case studies, but could find no corroboration since 
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they used black surfaces. We did find this pattern in the direct comparison of SJ/δ1with RRTMG (Figure 4, 
row iv) where RRTMG's 2-stream code also picks out the high albedo land masses with enhanced reflection. 
Unfortunately, we cannot compare with the LBYY climate model results (their Figure 6) because their 'clear 
sky' includes, and clearly shows, the importance of northern continental pollution and southern ocean sea 
salt aerosols in their 2-stream errors.

Trying to separate the effects of δ-scaling errors from 2-stream errors for clouds, SJ/2S experiments (T1/
R13) are carried out extending the phase-function scaling exercises (T1/R9-R12 and Figure 4). The dipole 
picture of atmospheric reflection caused by δ-1 scaling of liquid clouds (Figure 4aiii) is consistent with 
LBYY's Figure 2 row iii, which shows a large shift from increased reflection (high sun) to reduced (low sun), 
as does (Räisänen's [2002], Figure 2). The LBYY examples in their Figures 2 and 3 are quite informative: For 
the 4 cases (liquid & ice, reflection & atmospheric absorption), only liquid-reflection shows a distinct pat-
tern change from δ-Eddington (2-stream) to δ-4SHE (4-stream), while the other three show a pattern indic-
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Figure 4.  Geographic map of model differences in solar heating terms (W m−2) averaged over 31 days in January at 00Z (sun over the Dateline), with columns 
show (a) reflected flux, (b) atmospheric absorption and (c) surface absorption. Rows (i), (ii), and (iii) show the errors for δ-0, δ-2, and δ-1, respectively, calculated 
with Solar-J 8-stream scattering relative to the standard Mie phase function, see Table 2. Row (iv) shows the difference, RRTMG minus SJ/δ1. All calculations 
use grid-cell averaged liquid clouds only. The green dashed line encloses the region with SZA < 40o.
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Figure 5.  (a) Zonal mean heating rates (black contour lines, 0.5, 1.0, 1.5 K per day) as a function of latitude and height for January 2015 using Solar-J with 
averaged clouds and no ice water clouds. Color fill (−0.5 to +0.5 K per day color bar, with ±0.025 as white) show the difference RRTMG-SW v4.0 minus Solar-J. 
(b) Same as (a) except that ice water clouds are included. (c) Same as (b) except that MAX-RAN cloud overlap is used to generate ICAs; and RRTMG uses 
McICA to sample the ICAs, while Solar-J uses QCAs (see text).
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ative of the convergent error reduction from 2-stream to 4-stream. If we extrapolate to 8-stream, we would 
see the errors in δ-4SHE drop by a factor of 2–4. We looked separately at the error caused by δ-1 scaling of 
ice clouds only and found it to be surprisingly small with global mean differences of < ±0.02 W m−2. So 
straightforward δ-M scaling of ice clouds, here and in LBYY, does not seem to cause much error, but we can-
not easily judge the other more parameterized polynomial fits for 2-stream use (Fu, 1996; Zhao et al., 2018).

In terms of atmospheric heating by clouds, LBYY's parametric study (their Figure 3) shows reduced values 
over most ranges of optical depth and sun angle, and this error is clearly associated with the number of 
streams. Similar results are shown in B2015 Figures 5c and 5f. B2015 evaluated 2-stream δ-Eddington errors 
for a typical mixed-cloud atmosphere derived from high-resolution satellite observations (see their Fig-
ures 7 and 8). The atmospheric absorption error is typically 0 to −5 W m−2, while the surface heating error 
is 0 to +8 W m−2. These errors are similar to our 2-stream minus 8-stream differences (both δ-1 scaling, T1/
R13) shown in Figure S2 (middle column).

Atmospheric heating rates by clouds are driven predominantly in the IR region (>778 nm) where SJ and 
RRTMG have identical bands and atmospheric properties (unlike the UV-VIS region discussed above). 
The geographic pattern of atmospheric absorption at 00Z for RRTMG minus SJ/δ1(liquid-only) (T1/R15, 
Figure 4iv) is consistent and uniformly negative. Since both use δ-1 scaling, this supports the result that 
2-stream scattering consistently underestimates the atmospheric absorption by clouds. The RRTMG(δ-scal-
ing, 2-stream) minus SJ(8-term Mie or ice scattering phase function, 8-stream) comparison clearly show less 
heating by liquid clouds below 6 km altitude (Figure 5a), Results in Figure 5a used the full-phase-function 
SJ (T1/R14), and if we use SJ/δ1 (T1/R15) as the reference, differences are similar. But if we go to our 
2-stream, δ1-scaling code (SJ/δ1/2S, T1/R16), the differences with RRTMG are greatly reduced. When we 
add ice clouds, the difference is much larger, from −0.05 to −0.1 K per day throughout most of the tropo-
sphere (Figures 5b and 5c). With ice clouds, there is some reversal of differences in the lower mid-tropo-
sphere presumably due to cloud overlap. In terms of global mean, atmospheric heating error jumps from 
about −1 W m−2 to −2 or −3 W m2 (T1/R14&15 v. T1/R20&21).

A clear result from B2015, LBYY, Räisänen (2002) and this study is that 2-stream RT codes systematically 
underestimate the atmospheric absorption by all clouds, and for ice clouds the error is larger in absolute 
amount. They also overestimate the surface flux, and in all of Räisänen's efforts to tune a 2-stream code, 
these fundamental errors remain. The ability to resolve the scattered light across multiple zenith angles is 
critical in calculating heating rates. With only a 55° zenith angle path, the 2-stream scattered light escapes 
from liquid clouds more easily. Ice cloud errors, however, either reflection or absorption, are not driven 
by δ-M scaling but by the more parameterized non-δ-Eddington scaling used in many 2-stream codes. Re-
flection errors for liquid clouds are different and appear to result primarily from δ-Eddington scaling, and 
in this case expansion to 4-stream or above significantly improves the accuracy (Räisänen, 2002; LBYY) 
because a more accurate scattering phase function can be used.
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Figure 7.  Zonal mean error (mean and rms in W m-2) for fixed ocean surface albedo (OSA) versus interactive OSA  
that depends on wavelength, incident angle and wind.
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5.  Ice Cloud Optics
Ice particles in cirrus or mixed-phase clouds come in a wide range of sizes and crystal habits (Kärcher 
et al., 2014; Platt & Martin, 1997) with a dizzying array of optical properties (Mishchenko et al., 2016; Yang 
et al., 2018). In part because of their importance in climate and remote sensing, ice clouds are an intense re-
search area (Baum et al., 2005; Heymsfield et al., 2017; Holz et al., 2016; Platnick et al., 2017). The accurate 
treatment of ice clouds in climate models remains a fundamental uncertainty because—like the case with 
aerosol size and chemical composition affecting RT—we can observe, but not accurately characterize the 
full mix of size and crystal habits within ice clouds (Bailey & Hallett, 2009).

Even when the ice cloud is fully characterized, the RT solution remains difficult and approximations are 
numerous, for example, RRTMG primarily uses a Fu (1996) parameterization for optical depth, single scat-
tering albedo, and asymmetry parameter. Solar-J inherited the Cloud-J photolysis method for ice clouds in-
cluding effective diameters (Heymsfield et al., 2003) and T-matrix scattering phase functions (Mishchenko 
et al., 2004) for the visible (∼600 nm) using two cloud types (pure hexagonal crystals used for T ≤ −40°C, 
and irregular crystals used for warmer ice clouds). Solar-J's use of a scattering phase function across all 
wavelengths has minimal error for highly scattering wavelengths (SSA > 0.9) because the ice crystal effec-
tive diameters are much larger than the wavelength, and thus the asymmetry parameter g is nearly constant 
at ∼0.8 in agreement with Bi and Yang (2017). When we compared atmospheric heating rates between RRT-
MG and SJ for our January climate simulation (averaged clouds, no overlap model used), the importance of 
ice clouds stands out. Both models can use the same optical properties for liquid clouds (with RRTMG using 
δ-1 scaling), and thus the differences in tropospheric heating rates are systematic but modest (±0.05 K per 
day, Figure 5a, also see case study Figure 4 in H2017). When ice clouds are included, the two models clearly 
diverge (Figure 5b). Unlike for liquid clouds, SJ cannot simply match the RRTMG's ice-cloud parameter-
ization (Fu, 1996), because it is not a δ-M scaling. RRTMG heating rates are 0.1–0.2 K per day (10%–20%) 
less than those in SJ throughout the middle-upper troposphere, with the pattern reversed for liquid water 
clouds in the tropics (2–6 km) presumably due to less shielding by ice clouds. Running both models with 
fractional clouds assuming MAX-RAN overlap, gives similar results (Figure 5c). While errors in the param-
eterization of ice optics will contribute to this error, it is most likely caused by 2-stream models as discussed 
in Section 4.2.

The ice-cloud phase functions shown in Figure 6a show the coefficients of the Legendre expansion to L = 7 
scaled by 1/(2L+1) for Mie, T-matrix, Bi-Yang and some HG expansions. Where possible, values are calcu-
lated for Reff = 48 µm and 600 nm. In the Mie calculation, the difference between liquid and ice water is 
small as expected, but the T-matrix coefficient drops quickly (becoming more isotropic), but then levels off, 
becoming more forward peaked than the Mie at L > 5 for hexagonal ice and L > 7 for irregular ice. The HG 
phase function matches the Mie out to L = 5 before becoming more isotropic. For ice clouds (T-matrix), the 
HG diverges by L = 2 and this is why LBYY show a pronounced error in HG versus their 4-stream RT that 
uses the L = 2 & three terms. The divergence of the ice-cloud phase function from any HG-like extrapola-
tion becomes even greater for L = 4–7, which can be included in the 8-stream calculation here. We com-
pare in Figure 6b our T-matrix expansion with those calculated from the Bi-Yang database used in LBYY. 
Our hexagonal T-matrix fits within the class of ice crystals from Bi-Yang except for the extremely forward 
peaked 10-plates example, which has the greatest difference from a sphere: the ratio of maximum diameter 
to effective diameter is 7.5 versus 1.2 for droxtals. As expected, our irregular T-matrix phase function has a 
larger fraction of isotropic-equivalent scattering, similar to what happens with increased roughness in the 
Bi-Yang crystals. All of these phase functions have similar asymptotic behavior. The Solar-J treatment of ice 
clouds certainly needs to be updated (e.g., Bi & Yang, 2017; Heymsfield et al., 2013), but is solidly linked to 
the optical properties of ice clouds, and is adequate for the comparisons here.

Some recent efforts have updated the RRTMG options for ice clouds. Zhao et al. (2018) combined more real-
istic mixtures of ice crystals (Baum et al., 2011) with the Yang library of optical properties for a wide range 
of wavelengths, sizes and habits (Bi & Yang, 2017; Yang et al., 2013) to create a new Baum-Yang ice cloud 
model for RRTMG(BY). We checked our ice cloud optics against Zhao et al.'s tables and found consistent 
values in the scattering regions (VIS and IR bands #S19-22) for SSA (Figure 3a) and g, but we calculate about 
10% more extinction for the same effective diameter and ice water content. We were not able to implement 
the new RRTMG(BY) code in Solar-J and can only assess their published results: RRTMG(BY) has weaker 
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in-cloud heating than RRTMG(Fu) (their Figures 2d−f). As shown in LBYY, this is a standing problem with 
all 2-stream codes, and the new ice optics appear to have made this error worse.

Baek and Bae (2018) updated the Korean Integrated Model (KIM) radiation code based on RRTMG using 
the Yang et al (2013) ice optics library and tested with the KIM forecasting system. They show that use of 
the updated ice optics versus the RRTMG(Fu) parameterization leads to more in-cloud heating by about 
0.1 K per day and less reflection by about 3 W m−2 (their Figure 8). These results appear to correct much of 
the error in ice-cloud heating found here and in LBYY and B2015, but they are difficult to understand or 
consolidate with RRTMG simulations here because KIM uses their adaptation of RRTMG's 2-stream solver. 
We find that the large error in ice cloud heating is due to 2-stream methods and not scaling methods. When 
we truncate the ice-cloud phase function with δ-1 scaling (SJ/δ1ice vs. SJ, T1/R18) we find very small differ-
ences in reflection or atmospheric heating (Figure S2, right column). The SJ ice-cloud phase functions are 
consistent with the Y2013 library, and so if Baek and Bae are to correct much of the ice-cloud errors within 
a 2-stream solution then we need to understand how these new ice-cloud optics are implemented.

The treatment of ice-water clouds remains a large source of uncertain error in solar-heating codes. A more 
accurate treatment of ice water clouds will combine the physics of individual particles (e.g., Mishchenko 
et al, 2016; Yang et al., 2018) with the actual mix of such particles observed in the atmosphere (Heyms-
field et al., 2017; Thornberry et al., 2017). We concur with LBYY that multi-stream scattering codes, such 
as CCCma's 4-stream or Solar-J's 8-stream, will become more essential for accuracy and also more cost 
effective in climate models. They are also necessary to assess ice cloud optics since the 2-stream problems 
obscure such improvements.

6.  Cloud overlap
Treatment of overlapping clouds provides a challenge for climate models in solving the RT problem as well 
as other physical processes such and precipitation and scavenging of trace species (e.g., Neu & Prather, 
2012). If we can specify the cloud overlap in terms of separated independent column atmospheres (ICAs, 
with multiple 1-D RT solutions) or in terms of 3-D cloud fields (a 3-D RT problem) then we can evaluate the 
errors of different RT methods for case studies using highly accurate methods. One challenge lies in devel-
oping an RT solution that works efficiently in climate models, but a greater uncertainty lies the specification 
of cloud structures. Fortunately, with modern observing systems and cloud resolving models, this problem 
is becoming less of an unknown (H. W. Barker & Li, 2019; B2015).

6.1.  One-Dimensional ICAs

When grid-cell layers specify cloud fraction (presumably in terms of areal coverage), explicit information 
or an algorithm is needed to describe exactly how the cloud is distributed within the grid cell and how the 
cells overlap. Most climate models do not resolve the horizontal scale of clouds and simply report a cloud 
water column and fractional coverage in the cell. A typical algorithm is MAX-RAN (Briegleb, 1992): the 
cloud is assumed to be uniform in the cloudy fraction of the cell; when two adjacent vertical layers have 
clouds, they are maximally overlapped; but when two cloudy layers, or two groups of contiguous (maximal-
ly) overlapped clouds, are separated by a clear layer, they are randomly overlapped (e.g., see figures in Neu 
et al., 2007). More realistic cloud-overlap algorithms have been developed based on observations showing 
that cloud overlap has a vertical decorrelation length (H. W. Barker,  2008; Bergman & Rasch,  2002; Di 
Giuseppe & Tompkins, 2015; R. J. Hogan & Illingworth, 2000; A. M. Tompkins & Di Giuseppe, 2015). This 
EXP-RAN method assumes an exponential decorrelation length for connected cloud layers but random 
overlap across clear layers (A. M. Tompkins & Di Giuseppe, 2007).

In a manner similar to Hogan and Bozzo's (2018) deterministic cloud-cover generator that goes from MAX-
RAN to EXP-RAN, Cloud-J developed a deterministic ICA generator for MAX-RAN and then adapted it to 
use vertical decorrelation lengths in its MAX-COR algorithm (M. J. Prather, 2015). Chemistry models need 
the selection of ICAs for any overlap method to be deterministic because many critical applications require 
perturbation-control pairs without stochastic noise (e.g., M. J. Prather & Hsu, 2010). Thus Solar-J cannot 
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use a stochastic cloud generator (e.g., Räisänen et al., 2004), and this drove the structure of our cloud over-
lap algorithm. MAX-COR was designed to be (i) deterministic, (ii) linear in cost with increasing numbers 
of layers, and (iii) robust when cloud data are averaged in time or space, because such averaging tends to 
eliminate cloud-free layers and revert to MAX overlap. Based on observations of decorrelation length (Kato 
et al., 2010; Naud et al., 2008; Oreopoulos et al., 2012; Pincus et al., 2005), MAX-COR defines 6-layer group-
ings by altitude range. Because decorrelation is small across the vertical range of each group, we assume 
MAX overlap within each group and a decorrelation of the overlap of each MAX group with its neighbor. 
Adopting terminology of climate community, MAX-COR is effectively a MAX-EXP algorithm. By quantiz-
ing the cloud fraction to the nearest 10% and allowing an independent cirrus shield at the top, the absolute 
maximum number of ICAs under MAX-EXP is <5 × 106 and thus ICAs can be rapidly defined and binned 
with low computational overhead. Deterministic EXP-EXP or EXP-RAN models in our code would have to 
enumerate up to 233 ICAs for our model that has potentially 33 cloudy layers, which is truly prohibitive and 
not linearly scalable with resolution. We believe that a MAX-COR or MAX-EXP algorithm is likely the most 
stable and scalable deterministic ICA generator for vertical cloud decorrelation algorithms. The RRTMG 
v4.0 code available at the time of this study uses primarily MAX-RAN cloud overlap, but the new v5.0 code 
includes an EXP-RAN option. Thus, our comparisons of cloud-overlap results with the RRTMG code are 
limited to MAX-RAN. Within Solar-J we can run both MAX-RAN (SJ/RAN) and the standard MAX-COR 
(SJ) and thus compare with J. K. P. Shonk and Hogan (2010), as discussed below.

Let us accept that ICAs generated by cloud overlap algorithms can be solved with 1D RT as horizontally 
homogeneous plane parallel layers, then the next step is how to solve the RT problem for all ICAs and av-
erage the results. The number of ICAs are often numerous enough that no practical climate RT code can 
solve them all, and most codes do not even count them all (Räisänen et al., 2004). RRTMG randomly selects 
an ICA for each wavelength bin in the RT solution, a method designated Monte Carlo ICA (McICA, Pincus 
et al., 2003). McICA has errors at each time step by mixing ICAs across wavelengths and by not accurately 
sampling the average of ICAs (e.g., average cloud optical depth) in that time step. McICA is intended to de-
liver the correct mean when averaged enough times over the same cloud system, but it has hourly grid-cell 
rms errors of 40 W m−2 (H. W. Barker et al., 2008; Pincus et al., 2003). A key underlying premise is that solar 
heating errors propagate symmetrically and linearly in the climate system and average out, as was found 
for simple forecast models. Assessing net bias errors caused by noisy heating rates would need to examine 
nonlinear processes in hydrology, cloud systems, ecosystem productivity, and air quality in Earth system 
models (e.g., Pincus & Stevens, 2013).

With a deterministic ICA generator, we can calculate an "exact" non-stochastic answer as was done for 
limited test cases in M. J. Prather (2015), but we could not afford to do this for our January climate met-
ric. Solar-J identifies and sorts all ICAs by cloud optical depth and then selects up to four representative 
quadrature column atmospheres (QCAs) each with a fractional area to represent the distribution of ICAs. 
The full-wavelength RT solutions are completed for each QCA (Neu et al., 2007). See Figure S3 for a global 
picture of the average frequency of occurrence of the 4 QCA bins for January 2015. Cloud quadrature does 
a very good job of averaging over the ICAs with net bias errors of ∼1% in solar intensity and rms errors of 
2%–4%. To reach equivalent accuracy for a single time step using random selection would require about 50 
ICAs each with full wavelength calculation (not as in McICA) versus an average of 2.8 QCAs (many grid 
cells have less than 4 QCAs).

The binary cloudy-or-clear within a grid cell fails to account for varying cloud thickness, and J. K. P. Shonk 
and Hogan  (2008) invented the Tripleclouds algorithm to represent in-cloud heterogeneity with a thick 
homogeneous core cloud surrounded by a thinner homogeneous edge cloud. In the binary cloudy-clear 
approach, two layers can generate 22 ICAs from their overlap combinations, but in the Tripleclouds system, 
it is 32. Tripleclouds address a significant source of error in solar heating calculations, but there is consider-
able uncertainty in partitioning the cloud water path into thick and thin regions (J. K. P. Shonk et al., 2010). 
Tripleclouds has not been implemented in Solar-J, and its primary use is in the RT codes of the ECMWF (R. 
J. Hogan & Bozzo, 2018) and ACCESS (Franklin et al., 2013).

The cloud overlap assumption is clearly an important source of error. Shonk and Hogan  (2010, hence 
SH2010) demonstrated this using 4 months of ERA-40 data and cloud optics similar to the January IFS cloud 
data used in Solar-J here. SH2010s calculation using Tripleclouds showed that EXP-RAN produced about 
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+4 W m−2 more reflected sunlight than MAX-RAN, as expected because EXP-RAN has greater global cloud 
cover. Similarly, our calculation (using binary clouds) shows MAX-COR has +1.4 W m−2 more reflection 
and similar reduction in surface heating versus MAX-RAN (T1/R19). This reduced effect is understandable 
because MAX-COR does not shift to random overlap if there is a gap in one layer. Both models show that 
increased reflection is balanced by reduced surface heating, with little change in atmospheric heating. A 
direct comparison is not possible since SH2010 did not calculate EXP-RAN for binary clouds. SH2010s EXP-
RAN appears to separate cloud layers more than the MAX-COR sub-groups, but their Tripleclouds may also 
affect the EXP-RAN results. SH2010 find that the Tripleclouds versus binary clouds is a larger effect (−6 W 
m2). We support the SH2010 results that cloud overlap is major uncertainty in current models.

Unfortunately, Solar-J coding is not flexible enough to run RRTMG-style, McICA-like calculations. Thus 
we compare the two codes, each using their best simulation of MAX-RAN clouds: RRTMG v4.0 (MAX-RAN 
overlap, McICA, 2-stream, and δ-1 scaling) minus SJ/RAN (MAX-RAN, QCA, 8-stream, Mie/T-matrix phase 
functions). The primary global-mean component differences are (−2.1, −2.4, +4.4 W m−2) (T1/R21), among 
the largest found in our range of case studies. If we remove the McICA sampling issues by specifying aver-
aged clouds, the RRTMG minus Solar-J difference is (−0.4, −2.7, +3.0 W m−2) (T1R20). These differences 
are due in large part to 2-stream errors (−0.7, −1.7, +2.4 W m−2) (T1R13) noted in Section 3, but clear-sky 
differences (T1/R4) make the comparison worse. It is encouraging that the profiles of heating rates in Fig-
ures 5b and 5c show that McICA-QCA differences are less than the errors we can associate with 2-stream 
RT. The averaged cloud (Figure 4b) does produce different mean heating rate contours (solid lines) than 
does MAX-RAN (Figure 4c), and with that there is some shift in the RRTMG-SJ difference pattern in the 
lower tropical troposphere.

6.2.  Three-Dimensional Cloud Fields

How will the next generation of solar heating codes deal with cloud structures, both vertically and horizon-
tally? The vertical coherence of clouds has become standard in RT codes; and the horizontal coherence, in-
cluding the variations in cloud water path within a cell is now being modeled explicitly with Tripleclouds (J. 
K. P. Shonk & Hogan, 2008). This work points toward new approaches for understanding how ICAs within 
a grid cell column interact with each other. As the horizontal resolution in climate models drops to cloud-re-
solving scales then it is obvious that neighboring column atmospheres are not independent. B2015 used 
3D coherent clouds fields from the NASA A-train (MODIS, CloudSat, CALIPSO) with 3D Monte Carlo RT 
codes to show that 1D minus 3D RT errors in heating and reflection were as large as 2-stream minus exact 
multi-stream errors. Recent comparison of chemistry models with aircraft measurements (Hall et al., 2018) 
showed that scattered light from neighboring clouds alters photolysis rates in clear-sky ICAs.

While 3D RT codes are beyond reach for climate models, R. J. Hogan et al. (2016) developed the Speedy 
Algorithm for Radiative Transfer through Cloud Sides code as a new operational 2-stream RT code for the 
ECMWF models (R. J. Hogan & Bozzo, 2018). This code includes first-order 3D elements by coupling the 
2-stream column solutions across the three elements in each layer. H. W. Barker and Li (2019) investigate 
how to average the solar heating over a domain consisting of many columns by using more frequent RT cal-
culations but for an objectively selected sub-sample of the atmospheres therein based on the cloud distribu-
tions (Partitioned Gauss–Legendre Quadrature). This exciting approach shares many features with Solar-J 
QCAs (used for ICAs within a single cell), such as producing small rms errors relative to random sampling.

7.  Ocean Surface Albedo
Climate models often assume that the ocean surface albedo (OSA) is constant in the visible, typically 0.06 
for all incident solar direct and diffuse radiation. OSA varies greatly with incident angle and somewhat 
with wavelength, wind speed, and chlorophyll concentrations (Z. Jin et al., 2004; 2011; Li et al., 2006; Taylor 
et al., 1996 and see Figure S4). Recently, this interactive parameterization of OSA (Z. H. Jin et al., 2011) has 
been implemented in two Earth system models (Séférian et al., 2018) and shown to better match satellite 
derived OSA. Here we take the FORTRAN module directly from Séférian with only minor modifications. 
Because Solar-J resolves the downward diffuse radiation with four angles, we calculate the albedo specifi-
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cally for those four angles plus the direct solar beam, and do not use the OSA averaged albedo for "diffuse 
radiation," which is necessary when using 2-stream RT codes.

Solar-J lower boundary condition is 2nd-order in finite-difference RT solution and has not changed since 
the original Fast-J documentation (Wild et al., 2000). The interactive OSA requirement that each angle has 
a different albedo required a rewrite of the 2nd-order lower boundary condition. The Fast-J Feautrier solver 
for scattered light (see Equations 9 & 19 of Wild et al., 2000) uses odd-even (leap-frog) first-order finite-dif-
ference equations, solving at the lower boundary for jn.

   up down up down½ ½ ,n
n n n nj I u I u I I           � (1)

where un (n = 1:4) are the cosines of the zenith angles for the scattered intensity (I). The angles are Gauss 
points with weights wn. We assume a Lambertian reflective surface, and hence Iup(+un) is isotropic and de-
noted simply as Iup. The solution requires a linear equation relating Iup to the intensities at the four angles 
jn=1:4. For notation below, we use Σ to denote the sum over the quadrature angles n = 1:4. The upward flux 
from the lower boundary is the cosine-weighted sum of the specific intensity

up up up2 ,where ½n n n nF I u w I u w    � (2)

The upward flux can also be calculated in terms of the downward incident fluxes at the four quadrature 
angles and direct beam, but with angle-specific albedos An and A0.

up down solar
0 02 An ¼n n nF I u w A u F  � (3)

Substituting Idown
n = 2 jn – Iup from Equation (1), we get

 up up solar up solar
0 0 0 02 2 ¼ 4 2 ¼n n up n n n n n n n n nI F A j I u w A u F j A u w I A u w A u F         � (4)

If A is a constant, this reduces to Equation 19 of Wild et al. (2000).

   up solar
0 04 / 1 / 1n n nI A A j u w A A A u F          � (5)

With An depending on un, we derive the new lower boundary condition for Iup.

 up solar
0 04 / 1 2 ¼n n n n n n nI A u w j A u w A u F         � (6)

Evaluation of interactive OSA (SJ minus SJ/OSA) uses the full spherical geometric atmosphere with MAX-
COR cloud overlap. The global mean errors with fixed OSA are (+0.7, +0.2, −0.8 W m−2) for (reflection, 
atmospheric absorption, and surface absorption), respectively (T1/R22). The global mean error, fixed minus 
interactive, can be adjusted to near zero by selecting the fixed OSA, but there remains a strong latitudinal 
error of 3 W m−2 in ocean heating associated with high sun, see Figure 7. The zonal rms errors are large, 
2–8 W m−2, because of the wide diurnal range of solar zenith angles over the day, but given the thermal 
inertia of the upper ocean layers, this probably averages out. Overall, these results are similar to those found 
in Séférian et al. (2018).

8.  Findings and Recommendations
Our goal here is to provide an extensive analysis of the many uncertainties or known errors in our climate 
model calculations of solar heating rates, and to do this in a consistent framework with climate-relevant 
diagnostics. We wanted to review as many of the uncertainties/errors as we could, from the mundane (Ray-
leigh scattering) to the formidable (cloud overlap), so that we could assess priorities for improving the accu-
racy of solar radiation in climate models. We began this study with the hope of comparing Solar-J directly 
to AER's RRTMG version 4.0 code, and thus we ran both codes within our chemistry-transport model to 
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integrate over forecast modeled atmospheres. We became quickly humbled when even the clear-sky differ-
ences in the two, at the 1 W m−2 level, could not be fully resolved without a complete rewrite of one code or 
the other. Nevertheless, the parallel simulations with RRTMG were informative (e.g., 2-stream problems) 
and helped our analysis here. These findings are based primarily on the extensive variants and adaptations 
made to the Solar-J RT code. In some cases, our comparisons with other published work has provided in-
sight and allowed us to draw insight beyond our own simulations.

Here, we make recommendations based on the magnitude of error and the difficulty or extra computational 
cost in improving the models. The levels of ranking include 0 (inconsequential errors), 1 (modest errors and 
easy/cost-effective fix, or significant errors but hard to fix), 2 (significant errors and ready/cost-effective fix).

1.	 �Spherical, refracting atmosphere, level 2. Flat-atmosphere models have 1.9 W m−2 less incident sun-
light and 1.1  W m−2 less heating of the climate system (atmosphere and surface) than do spherical, 
refracting atmospheres (T1/R23&24). Errors can reach 4 W m−2 (monthly averages) at high latitudes. 
Spherical solar ray-tracing with refraction can and should be readily implemented with simple ray trac-
ing code (P2019) and incorporated in standard 2-stream codes (Spurr & Natraj,  2011). There will be 
minor costs in that about 56% of the Earth, rather than 50%, will require radiation calls every time step.

2.	 �Geometrical, expanding atmosphere, level 1. Shifting from geopotential to geometric coordinates 
is a conceptual change and will need more thought on how to account for the extra mass in the upper 
layers as well as the extra solar heating (P2019) (T1/R25).

3.	 �Stratospheric heating, level 1. Differences in stratospheric heating rates between RRTMG-SW and 
Solar-J are large (∼10%, see Figure 2 of H2017). These are likely caused by the different cross section 
for O3 absorption and the lack of O2 absorption in RRTMG (significant in the mid stratosphere). These 
differences can and should be readily resolved with some group efforts like PhotoComp (2010) but with 
diagnosed heating rates, and with the inclusion of O2 photolysis as heating. (probably no impact on 
overall cost).

4.	 �Resolving UV-VIS absorption and scattering, level 1. The 300–700 nm sunlight that reaches the 
surface interacts primarily with broad band features of O3 absorption (Hartley-Huggins and Chappuis 
bands) and Rayleigh scattering that vary differently and widely across these wavelengths. The RRTM-
based codes accurately resolve the O3 and Rayleigh features with g-points. Solar-J bands are optimized 
for photolysis but not heating rates. Its number of visible broad bands needs to be expanded beyond 2, 
and those cross section adjusted to Watts weighting. Aerosol extinction, but not clouds, also varies widely 
across visible wavelengths, and all solar RT codes may consider testing aerosol wavelength dependence 
across their broad bands. (important, not too difficult, but limited to Solar-J, hence level 1).

5.	 �Resolving IR cloud absorption, level 2. The infrared wavelength bands (#19 through #27 in RRTM) 
need to be reformulated to more accurately account for the absorption spectrum of liquid and ice water. 
The error is great in terms of atmospheric absorption (global average of ∼2 W m−2 excess heating) and 
cloud top heating (25% too great), likely affecting the life cycle of clouds. The LZL approach of doing a 
double correlated-K for water vapor and liquid water within the RRTM bands may be difficult when ice 
water is added (which it must be) since the absorption features are shifted in wavelength from those of 
liquid water. Our finding like Edwards and Slingo (1996) is that most of this error is simply failure to 
resolve the widely different SSA within each broad RRTM band. We suggest it is time to drop the RRTM 
band structure and re-group a set of non-contiguous narrower bands into a single group with similar 
cloud SSA, and then redo the correlated-K for water vapor within that new group. This would probably 
not increase the computational cost of the RT code, but does involve substantial new research.

6.	 �Rayleigh scattering, level 0. Forcing Rayleigh scattering to be isotropic, as required in current 2-stream 
codes, is inconsequential.

7.	 �δ-scaling of the cloud scattering phase function, no assessment. The errors caused by δ-Edding-
ton and other scaling methods are significant, causing systematic errors at the 1–2 W m−2 level across 
latitudes. Because of the large reduction (factors of 4–7) in liquid cloud optical depths, these scaling 
methods project much greater solar flux impacting the surface at the SZA rather than as diffuse, scat-
tered light. In terms of reflected light, LBYY show large dipole errors with SZA in reflected flux for δ-Ed-
dington scaling. Fortunately, δ-scaling appears to have little impact on atmospheric heating. There is no 
assessment here because any solution requires multi-stream scattering, a more formidable task.
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8.	 �Multi-stream scattering, level 2. From the experiments here and the careful error analysis of B2015 
and LBYY, it is clear that 2-stream scattering is a major source of error in many codes, including RRT-
MG-SW. 2-Stream RT codes uniformly underestimate atmospheric heating rates by more than 2 W m−2. 
They appear to have bias errors in reflected flux that depend on surface albedo. 2-stream requires some 
δ-scaling method with its own source of errors (vii above). In terms of solar heating errors, the 2-stream 
errors are comparable to the errors in moving from 1D to 3D RT (B2015). While full 3D RT is beyond the 
capabilities of climate models, multi-stream is clearly not. The GFDL and CCCma models can currently 
use 4-stream RT, and it is likely that 6- or 8-stream RT could be optimized for modern processors and 
software so as to be affordable. For example, the 8-stream Fast-J code is being implemented in E3SM for 
chemistry-climate modeling. Based on B2015, any of these options would be a significant improvement 
for climate modeling.

9.	 �Ice clouds, level 1. The range of approaches to parameterizing ice clouds in current solar RT codes 
reflects both the lack of multi-stream capability to resolve the ice crystal scattering and the fundamen-
tal uncertainty in prescribing the mix of crystal habits over the wide atmospheric range of ice clouds. 
With the recent work by Yang and colleagues (e.g., 2013, 2018) quantifying the scattering, and the better 
atmospheric data from Heymsfield and colleagues (e.g., 2017), we are in a position to remove ice-cloud 
parameterizations and apply the ice-cloud physics directly to solar RT codes. Two recent efforts to do this 
have been restricted to RRTMG-like codes and thus resorted to polynomial fits for a 2-stream code. It is 
clear that we need a good database for typical ice clouds that includes the basic physics, like the phase 
function needed for 4-stream and higher codes.

10.	�Cloud overlap, level 2. The representation of sub-grid unresolved cloud overlap is critical in solar heat-
ing. The simplistic averaging of clouds over the grid cell produced huge errors (+20 W m−2 in reflected 
flux in our case) and was quickly dropped in favor of more realistic cloud overlap models such as MAX-
RAN. The latest type of cloud schemes includes the successive decorrelation with altitude separation 
and include EXP-RAN, EXP, and MAX-COR (used here). All of these decorrelation methods increase the 
effective cloud cover and the reflected solar flux. In our case, MAX-COR has on average 1.4 W m−2 great-
er reflection and less surface absorption, similar to other approaches, including more exotic approaches 
(J. K. P. Shonk & Hogan, 2008) that add a second, thinner extension around the primary cloud. The range 
of approaches reflects the basic uncertainty in mapping climate model cloud data (cloud fraction and 
cloud water content) into 3D fields of clouds. For the 1D, or quasi-1D (R. J. Hogan & Bozzo, 2018) RT 
codes in climate models, it would be useful to establish some standard, community-wide, satellite-based 
cloud overlap models (H. W. Barker, 2008; Bankert et al., 2015; Ham et al., 2015; Kato et al., 2010; Tomp-
kins & Giuseppe, 2015) along with a simple ICA generator (e.g., M. J. Prather, 2015) to provide a basis 
for comparisons.

11.	�Monte Carlo or other ICA averaging, level 1. Using cloud quadrature QCAs to average over ICAs 
would greatly reduce the numerical noise generated by McICA random selection. It is easy to implement 
in any code, but would increase the computational costs by a factor of 2.8. There is a broad interest 
reducing the stochastic noise in heating rates, particularly at high resolution (H. W. Barker & Li, 2019).

12.	�Ocean surface albedo, level 2. Use of an interactive ocean surface albedo that depends on SZA, wind 
and wavelength would eliminate a latitudinal mean bias of 3 W m−2 in surface absorption. This easy fix, 
can be used in RRTMG, and has already been implemented in the ARPEGE and LMDZ models (Séférian 
et al., 2018).

13.	�Photosynthetically Active Radiation, no assessment. PAR is calculated in Solar-J with 4 downward 
diffuse streams and no δ-scaling of cloud optical depth, which is notably more accurate than 2-stream 
codes where much of the diffuse light is reported as direct beam. Thus, 2-stream methods have large 
errors in the diffuse:direct ratio of PAR under clouds or aerosols. We estimate that PAR errors are level 2, 
but a more thorough analysis would need to couple the direct and diffuse PAR to a land biosphere model 
to evaluate the errors in primary productivity (equivalent of W m−2).

Data Availability Statement
Dataset, Solar-J source code, and scripts for generating figures and tables are concurrently available to DRY-
AD University of California, Irvine with DOI https://doi.org/10.7280/D1PQ3W.
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Methods 

 
Solar-J is based on Cloud-J (Prather, 2015) and has a long history of modeling and testing 
photolysis rates) for wavelengths 180-800 nm, which includes photolysis of O3 and NO3 
in the 400-800 nm range (e.g., Olson et al, 1997; Photo Comp, 2010).  For Solar-J, we 
adjusted the visible wavelength bands and adopted the RRTMG-SW spectral code for the 
infrared (see H2017).  For wavelengths > 778 nm SJ simply takes the RR model.  Since 
v7.5, SJ has shifted a wavelength boundary, 345-412-778 nm to 345-485-778 nm, to 
better separate the Rayleigh scattering region (345-485 nm) from the Chappuis ozone 
absorption (485-778 nm).  We use the g-point sub-bins as specified for the 9 IR bands 
and as adapted to our last visible band (485-778 nm). In some test cases using alternative 
spectral models LLNL and CLIRAD, we have further reduced this latter band to 485-700 
nm to match the IR bands of these two models.  
 
The solar heating codes Solar-J and RRTMG-SW are included as modules within the UC 
Irvine chemistry-transport model (UCI CTM, Prather et al., 2017).  The UCI CTM is 
coupled with meteorological fields from the European Centre Integrated Forecast System, 
open IFS cycle 38r1 run at T159N80L60 using the native Gaussian grid for atmospheric 
physics (about 1.1° horizontal with 60 layers).  We take the archived 3-hour averages of 
the atmospheric column data: pressure on the layer edges; temperature, water vapor, 
cloud fraction, cloud liquid water content, cloud ice water content in each layer.  A 
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standard ozone climatology is used.  Cloud effective radii (liquid and ice) and scattering 
phase function are as specified in the CTM photolysis code Cloud-J (Neu et al., 2007; 
Prather, 2015).  The heating rates reported here are calculated for the IFS fields of 
January 2015.  Cloud fields change every 3 hours, and the solar zenith changes every 
hour, giving 744 hourly data for January.  The OSA code generously provided by 
Séférian was modified slightly:  the diffuse albedo was not used as Solar-J calculates 
albedos specifically for each scattered stream; the albedo goes to a constant for SZA > 
90° in spherical atmospheres; and the parameter table for the white-cap variable 'XRWC' 
was reset from 0.0 to 0.2 for wavelengths <400 nm. 
 
 

 

 
 
Figure S1.  (left) January atmospheric absorption profiles (W m-2 hPa-1) over the Pacific Ocean 
at high sun (SZA > 40° at 00Z, area within green oval in Figure 4).  Liquid-water, but not ice-
water clouds are included.  The total heating rates (W m-2) for Solar-J with standard Mie phase 
function, Solar-J using a Henyey-Greenstein (HG) phase function, and RRTMG (standard δ-1 
scaling) are shown in the legend.  These values are averaged only over high sun.  (right) Profiles 
of the errors in atmospheric absorption caused by δ-scaling (0, 1, 2) and HG phase function for 
liquid-water clouds.  Same conditions as for left panel.  Total heating-rate and rms differences 
(both W m-2) are given in the legend. Also shown is the difference, RRTMG (δ-1) minus Solar-J 
(Mie).   
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           (a) SJ/2s–SJ(8s) clear sky        (b) SJ/2s/δ1–SJ/δ1  liq cld       (c) SJ/δ1ice–SJ  all+QCA 

 
Figure S2. Geographic map of model differences in solar radiative budget (W m-2) averaged over 
January, columns show (a) Solar-J’s 2-stream minus 8-stream under clear sky, (b) Solar-J’s 2-
stream minus 8-stream with averaged liquid-only clouds and δ-1 scaling for both, and (c) Solar-J 
with δ-1 scaling of ice clouds minus the standard SJ where both calculations use ICAs sorted by 
cloud quadrature (QCA) and MAX-COR cloud overlap scheme.  All calculations in this paper are 
aerosol-free.  The small wave-24 noise seen in many of these panels results from calling the 
radiation code every hour.    
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Figure S3. Frequency of occurrence for each of the four QCA bins using MAX-COR 
overlap for the January 2015 case study here. The QCAs are binned by 600 nm total 
cloud optical depth (liquid+ ice water: 0 – ½; ½ – 4; 4 – 30; >30.  For each time step, the 
fractional area assigned to each QCA is calculated and then averaged over the month to 
give a frequency that sums to 1.00 over the 4 QCAs.  
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Figure S4.  Ocean surface albedo (OSA, dimensionless) as a function of wavelength, shown for 
different incident angles (colors) and different wind speeds (solid, dashed or dotted).  Four 
different incident zenith angles used in Solar-J's 8-stream scattering code are identified by their 
cosine values, mu:  0.931 (orange), 0.670 (green), 0.330 (red), 0.069 (blue).  Three different wind 
speeds are shown: 0 m/s (solid), 10 m/s (dotted), 20 m/s (dashed). 
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Table S1.  Versions of Solar-J and RRTMG-SW codes used here.  
notation code description 
SJ The standard version of Solar-J version 7.6d as published here. It is a minor update of 

7.6c published in Prather and Hsu (2019, doi.org/10.7280/D1096P) to make the MAX-
RAN consistent with 7.6c changes.  SJ uses a standard 8-stream Feautrier RT solver.  
Solar-J uses Cloud-J data tables for heating by O2 (bins 1:11, <291 nm) & O3 (bins 1:18, 
<778 nm) and RRTMG-SW tables for other gas-phase absorption (H2O, CO2, CH4, O2) 
in IR bands 18:27 (83 sub-bin g-points with 5 in visible and 78 in IR).  Full cloud 
treatment includes vertical decorrelation length for cloud overlap (MAX-COR) to 
generate independent column atmospheres (ICAs) and then 4 cloud quadrature 
atmospheres (QCAs) to average over the ICAs.  SJ can also be run with clear-sky or 
averaged cloud (full cloud cover in each cell as the average of cloudy and clear 
fractions), which does not invoke cloud-overlap and ICAs.   SJ can be run in flat, 
spherical, refractive, and geometric options.  SJ by default uses a constant ocean surface 
albedo (OSA = 0.06) but can invoke OSA to be of function of wavelength, incident 
angle (including scattered light) and surface wind.   

SJ/RAN SJ run with MAX-RAN cloud overlap. 
SJ/RRX The 78 IR sub-bins are replaced with the RRTM-SW benchmark code’s 144 sub-bins. 
SJ/CLIRAD Solar-J with IR bands replaced with CLIRAD model: 0.70-1.22, 1.22-2.27, and 2.27-

10.0 µm, each with 10 absorption sub-bins for each band (Chou and Suarez, 1996).  The 
edge of the IR transition is shifted from 778 to 700 nm and cross section in bin 18 are 
adjusted.  Only water vapor is included in the IR bands. 

SJ/LLNL The IR bands are replaced by the 3 large LLNL bands: 0.69–0.86, 0.86–2.27, and 2.27–
3.85 µm, which include a total of 21 sub-bins.  The edge of the IR transition is shifted 
from 778 to 700 nm and cross section in bin 18 are adjusted.  Only water vapor is 
included in the IR bands.  (Chou, 1992; Grant & Grossman, 1998).  

SJ/hrv SJ with high-resolution-visible version (SJ/hrv), putting 18 bands in the VIS region. 
SJ/2S SJ with 2-stream RT solver. 
SJ/66b SJ with a very high wavelength resolution in the IR used to resolve ice- and liquid-water 

cloud absorption.  It is constructed using 0.05 to 0.10 μm wide bands, yielding 66 IR 
bands instead of the 9 in SJ.  Without sub-bins, it cannot calculate any IR gas absorption. 

SJ/Ray SJ with the standard Rayleigh gas scattering phase function (1 + cos2(Θ)) changed to 
isotropic (1). 

SJ/δ0 SJ with all cloud optical depths and phase functions changed to δ-0 scaling, see text and 
Table 2. 

SJ/δ1 SJ with all cloud optical depths and phase functions changed to δ-1 scaling, see text and 
Table 2. 

SJ/δ1/2S SJ/δ1 with 2-stream RT solver. 
SJ/δ1ice SJ standard, but with δ-1 scaling of ice clouds only. 
SJ/δ2 SJ with all cloud optical depths and phase functions changed to δ-2 scaling, see text and 

Table 2. 
SJ/HG SJ with all cloud phase functions changed to Henyey-Greenstein, see text and Table 2. 
SJ/OSA SJ with OSA a function of wavelength, incident angle (including scattered light) and 

surface wind.   
AER4.0 The standard RRTMG-SW version 4.0 code.  If there are fractional clouds, this code 

uses MAX-RAN cloud overlap and McICA sampling of the ICAs. 
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Table S2.  Global monthly mean SW radiation budget for labeled experiments in Table 1.  See Table 
S1 for the model version.  
name Table 1 

row 
code version conditions. Incident Reflected Atmos. Surface 

B0 1-6, 17 SJ (std) flat-atmosphere, clear sky 351.37 49.92 70.71 230.74 
B1 1 SJ/CLIRAD flat-atmosphere, clear sky 351.37 50.86 65.03 235.47 
B2 2 SJ/LLNL flat-atmosphere, clear sky 351.37 50.46 63.05 237.87 
B3 3 SJ/RRX flat-atmosphere, clear sky 351.37 49.95 70.47 230.95 
B4 5 SJ/hrv flat-atmosphere, clear sky 351.37 50.25 70.25 230.86 
B5 6 SJ/2S flat-atmosphere, clear sky 351.37 50.23 70.18 230.96 
MR 17 SJ/Ray flat-atmosphere, clear sky 

isotropic Rayleigh scattering 
351.37 49.91 70.72 230.74 

C0 7-8 SJ/66b sphere, QCA/MAX-COR 
overlap, no IR gases 

352.85 127.37 28.96 196.53 

C1 7 SJ/CLIRAD sphere, QCA/MAX-COR 
overlap, no IR gases 

352.86 125.23 32.80 194.83 

C2 8 SJ sphere, QCA/MAX-COR 
overlap, no IR gases 

352.89 126.23 30.64 196.02 

Mh 9 SJ/HG flat-atmosphere, averaged 
clouds, no ice clouds 

351.45 127.26 78.31 145.88 

M0 9-14 SJ flat-atmosphere, averaged 
clouds, no ice clouds 

351.45 127.31 78.17 145.97 

M1 10 SJ/δ0 flat-atmosphere, averaged 
clouds, no ice clouds  

351.41 127.04 77.95 146.41 

M2 11,15 SJ/δ1 flat-atmosphere, averaged 
clouds, no ice clouds  

351.42 126.98 78.40 146.04 

M3 12 SJ/δ2 flat-atmosphere, averaged 
clouds, no ice clouds  

351.42 126.99 78.22 146.20 

M4 13,16 SJ/δ1/2S flat-atmosphere, averaged 
clouds, no ice clouds 

351.42 126.30 76.66 148.46 

M5 20 SJ flat-atmosphere, averaged 
clouds (all) 

351.46 131.19   78.49 141.77 

MI 18 
 

SJ/δ1ice flat-atmosphere, QCA/MAX-
COR overlap 

351.43 111.57 76.88 162.98 

D0 18,19 SJ flat-atmosphere, QCA/MAX-
COR cloud overlap  

351.43 111.59 76.87 162.97 

D1 19,21 SJ/RAN flat-atmosphere, QCA/MAX-
RAN overlap 

351.43 110.24 76.81 164.38 

O0 22 SJ/OSA sphere, varied OSA 352.98 111.72 76.77 164.49 
O1 22 SJ sphere, fixed OSA at 0.06 352.98 112.40 76.93 163.65 
 
RR0 4 AER4.0 clear sky 351.38     51.22 70.24 229.92 
RR1 20 AER4.0 averaged clouds 351.38 130.82 75.82 144.74 
RR2 14-16 AER4.0 averaged clouds, liquid only   351.38 126.17 77.35 147.86 
RR3 21 AER4.0 McICA 351.38 108.14 74.45 168.79 
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Table S3.  Cross sections for ozone absorption and Rayleigh scattering in the 3 visible bands 
with different weighting functions 
 weighting 320-345 nm 345-485 nm 485-778 nm 
σRayleigh (cm2) Photons 3.644e-26 1.387e-26 3.136e-27 

Watts 3.645e-26  (+0%) 1.436e-26  (+4%) 3.367e-27   (+7%) 
τRayleigh  0.73 0.29 0.07 
 
σO3 (cm2, 298 K) Photons 6.520e-21 2.125e-22 2.325e-21 

Watts 6.522e-21  (+0%) 1.984e-22 2.427e-21   (+4%) 
τO3 (troposphere)  0.005 0.0002 0.002 
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