
UCLA
UCLA Electronic Theses and Dissertations

Title
Quantitative Neurologic and Oncologic Positron Emission Tomography: Overcoming Practical 
and Structural Barriers

Permalink
https://escholarship.org/uc/item/95j5m19b

Author
Wilks, Moses Quinn

Publication Date
2014
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/95j5m19b
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA 

Los Angeles 

 

 

 

 

Quantitative Neurologic and Oncologic Positron Emission Tomography: 

Overcoming Practical and Structural Barriers 

 

 

 

 

 

A dissertation submitted in partial satisfaction of the 

requirements for the degree of Doctor of Philosophy 

in Biomathematics 

 

by 

 

Moses Quinn Wilks 

 

 

 

2014 

  



© Copyright by 

Moses Quinn Wilks 

2014



ii 
 

ABSTRACT OF THE DISSERTATION 

 

Quantitative Neurologic and Oncologic Positron Emission Tomography: 

Overcoming Practical and Structural Barriers 

 

by 

 

Moses Quinn Wilks 

Doctor of Philosophy in Biomathematics 

University of California, Los Angeles, 2014 

Professor Henry Huang, Chair 

 

 

 

Positron Emission Tomography (PET) is an inherently quantitative tool for measuring in vivo 

biological phenomena.  However, there are still many barriers, both practical and structural, to 

robust quantification of data in clinical and pre-clinical settings. 

First, I present methods for improving quantification of neurologic PET in Alzheimer's disease 

imaging. Due to the variability in patient anatomy and disease state, it is difficult to accurately 

compare homologous anatomy between subjects.  Here we examine methods of image 

normalization and automatic image analysis that allow for greatly reduced variance in data 

measurement.  We show that through these methods, both the diagnostic and prognostic utility of 

the data can be greatly improved. 
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Additionally, we address the structural barriers to quantification in oncologic PET in radio-

labeled custom antibodies.  These large, high-affinity tracers have been shown, both in silico and 

in vivo, to display high degrees of heterogeneous binding in target tissues.  Due to this 

phenomenon, classical ODE models of tracer kinetics are no longer valid.  We develop and test a 

new set of non-linear PDE models to accurately represent tracer activity in vivo.  We show that 

the use of classical ODE models will result in high levels of parameter estimate bias, and the new 

PDE models can accurately fit both in silico and in vivo data with the inclusion of Bayesian 

priors.  

  



iv 
 

The dissertation of Moses Quinn Wilks is approved. 

Jorge R. Barrio 

Elliot M. Landaw 

Kenneth Lange 

Anna M. Wu 

Henry Huang, Committee Chair 

 

 

 

University of California, Los Angeles 

2014



v 
 

To my friends and family,  

whose love and support was vital to my studies, 

 and to Wendy, without whom none of this would have been possible. 

 



vi 
 

Table of Contents 
 

ABSTRACT OF THE DISSERTATION...........................................................................ii 

Committee Page ...................................................................................................................iv 

Dedication........ .....................................................................................................................v 

Table of Contents .................................................................................................................vi 

List of Figures .......................................................................................................................x 

List of Tables ........................................................................................................................xv 

Acknowledgements ..............................................................................................................xix 

VITA ....................................................................................................................................xxii

CHAPTER 1- Introduction and Motivations ....................................................................1 

 1.1.0 Practical Barriers to Quantification ..................................................................1 

  1.1.1 Alzheimer's Disease ..............................................................................3 

  1.1.2 Molecular Imaging of Alzheimer's Disease ..........................................5 

  1.1.3 Image Normalization ............................................................................8 

 1.2.0 Structural Barriers to Quantification .................................................................11 

  1.2.1 Large Molecule Tracers ........................................................................12 

 References ..................................................................................................................17 

CHAPTER 2 - Automated VOI Analysis in FDDNP PET Using Structural Warping: 

Validation Through Classification of Alzheimer’s Disease Patients ...............................22 

 2.1 Introduction ..........................................................................................................22 

 2.2 Methods................................................................................................................26 

  2.2.1 Subjects .................................................................................................26 

  2.2.2 Imaging .................................................................................................26 



vii 
 

  2.2.3 Creation of VOIs ...................................................................................27 

  2.2.4 Creation of FDDNP-DVR Images ........................................................28 

  2.2.5 Image Warping......................................................................................28 

  2.2.6 Analysis.................................................................................................29 

 2.3 Results ..................................................................................................................31 

 2.4 Discussion ............................................................................................................32 

 2.5 Conclusion ...........................................................................................................36 

 References ..................................................................................................................38 

 Figures and Tables .....................................................................................................41 

CHAPTER 3 - Evaluation of the use of Voxel-Value Distributions in Target Regions for 

Prediction of Longitudinal FDDNP-PET Studies .............................................................44 

 3.1 Introduction ..........................................................................................................45 

 3.2 Methods................................................................................................................47 

  3.2.1 Subjects .................................................................................................47 

  3.2.2 Imaging .................................................................................................48 

  3.2.3 Image Normalization ............................................................................49 

  3.2.4 Creation of Parametric FDDNP Images ...............................................49 

  3.2.5 Data Measurement and Analysis ..........................................................50 

 3.3 Results ..................................................................................................................51 

 3.4 Discussion ............................................................................................................52  

 3.5 Conclusions ..........................................................................................................56 

 References ..................................................................................................................57 

 Figures and Tables .....................................................................................................60 



viii 
 

 Supplemental Data 1 ..................................................................................................64 

  S1.1 Admixture Distribution Modeling .........................................................64 

  S1.2 Regression Modeling .............................................................................65 

  S1.3 Regression Modeling Results ................................................................66 

 Supplemental Tables ..................................................................................................69 

CHAPTER 4 - Improved Modeling of in vivo Kinetics of Slowly Diffusing Radiotracers for 

Tumor Imaging ....................................................................................................................81 

 4.1 Introduction ..........................................................................................................82 

 4.2 Methods................................................................................................................85 

  4.2.1 Kinetic Models ......................................................................................85 

  4.2.2 Affinity Studies .....................................................................................87 

  3.2.3 Small Animal PET/CT ..........................................................................88 

 4.3 Results ..................................................................................................................89 

 4.4 Discussion ............................................................................................................90 

 4.5 Conclusion ...........................................................................................................94

 References ..................................................................................................................95

 Figures and Tables .....................................................................................................98 

 Supplemental Data 2 ..................................................................................................100 

CHAPTER 5 - Summary and Future Work......................................................................113 

 5.1 Neurologic PET ...................................................................................................113 

  5.1.1 Summary of Results  .............................................................................113 

  5.1.2 Future Expansions .................................................................................115 

  5.1.3 Future Extensions..................................................................................117 



ix 
 

 5.2 Oncologic PET .....................................................................................................118 

  5.2.1 Summary of Results ..............................................................................118 

  5.2.2 Future Expansions .................................................................................119 

  5.2.3 Future Extensions..................................................................................121 

 References ..................................................................................................................123 



x 
 

List of Figures 

1.1   FDDNP-DVR PET images from two AD subjects ..........................................................3 

1.2 .   Proposed pathological progression of amyloid plaques and NFTs in AD.  Adapted  

 from Braak and Braak [11].  ............................................................................................5 

1.3 First Steps of Cortical Surface Mapping.  A spherical mesh grid is progressively 

 deformed to match a target boundry intensity in the 3D-MRI (Top).  The  

 resulting 3D cortical surface (Bottom Left) is high-resolution mesh of triangular  

 elements (Bottom Right).  Adapted from Thompson et al. [29]. .....................................8 

1.4 Effects of deletion of constant domains on clearance rates of custom antibodies.   

 Adapted from Knowles and Wu  [39]. .............................................................................13 

1.5 Divergence of in vitro and in vivo antibody localization.  Images show  

 autoradiography of 125I-labeled antibody after in vitro incubation (A) and 4 (B),   

 24(C), or 120 (D) hours post-injection in vivo at 250x magnification.  Adapted  

 from Jones, Gallager, and Sands [38]. .............................................................................14 

1.6.   Heterogeneous localization of trastuzumab (a) and doxorubicin (b) in xenograft  

 tissue.  Capillaries are labeled red, drugs are labeled green (Scale bar =100um).   

 Reproduced from Thurber et. al [52]. ..............................................................................15 

2.1 (a) (Left) Warping Results: Average of 22 subjects MRIs after linear registration  

 only (Top); Average of 22 subjects after warping to common space. (Middle);  

 MRI of common space subject (Bottom).  (b) (Right) Absolute voxel-to-voxel  

 variance of unwarped (Top) and warped (Bottom) MRIs. Warping reduces  

 average in-brain variance by 54% from linear registration alone. ...................................41 

 



xi 
 

2.2 Overlap Statistic by Region. Data shown is average overlap, ± SD, between  

 common space regions and warped regions of remaining 22 subjects ............................41 

2.3 Generalized image of the VOIs used to extract FDDNP data *Reprinted from  

 Protas et al.2010 [2]. ........................................................................................................42 

2.4 Classification Percentages of Permutation Test.  Data shown are for the models  

 using  (a) unwarped data only, (b) unwarped data and MMSE, (c) warped data  

 only, and (d) warped data and MMSE.  The vertical line represents the score of  

 the true data. .....................................................................................................................42 

3.1  Illustration of cortical VOIs used in data extraction.  Reprinted from  Protas et  

 al.2010 [2] ........................................................................................................................60 

3.2 Example of automated registration of common space atlas and automated VOI  

 generation in subject Space.  (Left) Common space MRI with VOIs for posterior  

 frontal lobe and occipital-parietal regions. (Center) Common space MRI and  

 VOIs  warped to subject space. (Right) Subject MRI with automatically  

 generated VOIs composed with grey-matter segmentation. ............................................60 

3.3 Distribution of voxel Logan-DVR values in frontal lobe for a single MCI subject  

 at baseline and two-year follow-up.  Grey bars show measured data.  White shows  

 fitted distributions for healthy and diseased tissue, and blue admixture distribution  

 of whole VOI. The vertical green line shows the mean value of the VOI. ......................60 

 

 

 

 



xii 
 

3.4 Scatter plots of measured (whole VOI Mean) or Estimated (Admixture  

 parameters) vs. predicted (From OLS or PLS) rates of change (units/day) in the  

 occipital-parietal area of MCI subjects.  (A) Rate of change in VOI mean using  

 baseline VOI means as predictors. (B) Rate of change in healthy tissue mean (μ1)  

 using admixture parameters at baseline as predictors. (C) Rate of change in  

 diseased tissue mean (μ2) using admixture parameters at baseline as predictors.   

 Specific predictors and regression coefficients can be found in Supplemental  

 Data.  The y=x line is shown in green. ............................................................................61 

3.5  Scatter plots of measured vs. predicted rates of change (units/day) in the  

 Psychological Z-score for MCI subjects.  (A) Using mean RE-DVR measures  

 from VOIs at the baseline scan as predictors.  (B) Using admixture parameters   

 from RE-DVR images at  the baseline scan as predictors. Specific predictors and  

 regression coefficients can be found in Supplemental Data.  The y=x line is shown  

 in green.............................................................................................................................61 

4.1 Results of Simulated Diffusion-Limited Time Activity Curves (A) Effect of  

 diffusion rates on simulated TAC. (B) Fitting of in silico TAC (D=14 μm2s-1)  

 using a compartmental model (D = ∞ μm2s-1).  Data is normalized to steady-state  

 receptor concentration in tissue. ......................................................................................98 

4.2 Results of in vivo Imaging of A11 Minibody.  (A) PET-CT of mouse at 20h post 

 injection with 22rv1 tumor on left and 22rv1xPSCA on the right side.  Color bar  

 is in scanner units. (B) Measured TAC from  PSCA-positive tumor (green), and   

 from left ventricle with fitted curve (blue). .....................................................................98 

 



xiii 
 

4.3 Fitting Results of Diffusion-Limited Model.  Measured tumor activity fit using the 

 diffusion model is shown as a solid line.  A simulated TAC with parameters from  

 the diffusion model fit, but using infinite diffusion, is shown as the dotted line.............99 

S2.1 Effects of Diffusion on TACs and Dose-at-Depth in Linear Binding Models.     

 (A) Simulated TAC in response to unit impulse at different rates of diffusion.  

 Curves are normalized by the maximum simulated value from the infinite  

 diffusion curve.  (B) Ratio of simulated TACs at different diffusion rates to an  

 infinite diffusion model.  Even at biologically unreasonable rates (D=1μm2s-1),  

 differences are less than 5%. (C) Total dose at depth relative to dose at capillary  

 wall as a funciton of diffusion rates. ................................................................................110 

S2.2 Affinity Measurements of A11 Minibody:  Immobilized PSCA antigen as  

 measured by quartz crystal microbalance. Bold line is the mass transport limited  

 binding model fit from n = 3 measurements at each concentration (160-5 nM),  

 shown as dotted lines). .....................................................................................................111 

S2.3 Fitting of TAC Measured from 22Rv1xPSCA Tumor in Second Mouse Using  

 Diffusion-Limited Model with Bayesian Priors. .............................................................112 

S2.4 Illustration of Difference Between a Standard Compartmental Model and the  

 Diffusion-Limited Case. ..................................................................................................112 

 

 

 

 

 



xiv 
 

5.1 In vivo scanning of 89Zr-A11 minibody in PSCA expressing tumors.  (A) Fused  

 PET-CT of mouse implanted with 22rv1 (left) and 22rv1xPSCA (right) tumors 8  

 hours post injection. (B) Measured TACs of blood (blue), and transfected tumor  

 (green) activity. (C) Measured TAC(red) fit with the diffusion limited PDE model  

 with intracellular compartments (Blue), and an infinite diffusion compartmental  

 model with identical kinetic parameters (green). .............................................................120



xv 
 

List of Tables 

2.1 Best Discriminant Models. ...............................................................................................43 

3.1 Regression Results of Predicting Rate of Change in Logan-DVR by Initial Logan- 

 DVR Values.  Data shown are adjusted-R2 (mean ± SD) of optimal models of  

 parameters measured in each region. ...............................................................................62 

3.2 Regression Results of Predicting Rate of Change in RE-DVR by Initial RE-DVR  

 Values. Data shown are adjusted-R2 (mean ± SD) of optimal models of  

 parameters measured in each region. ...............................................................................62 

3.3 Regression Results of Predicting Rate of Change in Psychological Z-Scores by  

 Initial Logan-DVR Values.  Data shown are adjusted-R2 of optimal models for  

 each Z-score. ....................................................................................................................63 

3.4 Regression Results of Predicting Rate of Change in Psychological Z-Scores by  

 Initial RE-DVR Values.  Data shown are adjusted-R2 of optimal models for each  

 Z-score. ............................................................................................................................63 

S1.1 Median and Median Absolute Deviation of EM Parameter Estimates (Data shown  

 are percent values). ..........................................................................................................68 

S1.2 OLS Regression Model Details: Rates of change in the mean Logan (A) or 

  relative equilibrium (B) DVR measured in nine VOIs in Controls and MCIs.  NA  

 values represent VOIs in which no model with regression parameters significantly  

 different from zero could be found. .................................................................................69 

S1.3 Logan-DVR OLS Regression Model Details: Rates of change in the admixture  

 parameters μ1 (A), μ2 (B), and p (C), estimated from Logan-DVR images across  

 nine VOIs in Controls. .....................................................................................................70 



xvi 
 

S1.4 Logan-DVR OLS Regression Model Details: Rates of change in the admixture  

 parameters μ1 (A), μ2 (B), and p (C), estimated from Logan-DVR images across  

 nine VOIs in MCI subjects. .............................................................................................71 

S1.5 RE-DVR OLS Regression Model Details: Rates of change in the admixture  

 parameters μ1 (A), μ2(B), and p (C), estimated from RE-DVR images across nine  

 VOIs in Controls. .............................................................................................................72 

S1.6 RE-DVR OLS Regression Model Details: Rates of change in the admixture 

  parameters μ1 (A), μ2(B), and p (C), estimated from RE-DVR images across nine  

 VOIs in MCI subjects. .....................................................................................................73 

S1.7 Logan-DVR PLS Regression Model Details: Rates of change in the admixture  

 parameters μ1 (A), μ2 (B), and p (C), estimated from Logan-DVR images across  

 nine VOIs in Controls.  Predictors shown, (x{i,j,k,...}) are the estimated parameter x  

 from VOIs {i,j,k,...}. R2 value shown is percent-variance of dependant variables  

 explained by the model. ...................................................................................................74 

S1.8 Logan-DVR PLS Regression Model Details: Rates of change in the admixture 

 parameters μ1 (A), μ2 (B), and p (C), estimated from Logan-DVR images across  

 nine VOIs in MCI subjects.  Predictors shown, (x{i,j,k,...}) are the estimated  

 parameter x from VOIs {i,j,k,...}. R2 value shown is percent-variance of  

 dependant variables explained by the model. ..................................................................75 

 

 

 

 



xvii 
 

S1.9 RE-DVR PLS Regression Model Details: Rates of change in the admixture  

 parameters μ1 (A), μ2 (B), and p (C), estimated from RE-DVR images across nine  

 VOIs in Controls.  Predictors shown, (x{i,j,k,...}) are the estimated parameter x from  

 VOIs {i,j,k,...}. R2 value shown is percent-variance of dependant variables  

 explained by the model. ...................................................................................................76 

S1.10 RE-DVR PLS Regression Model Details: Rates of change in the admixture 

  parameters μ1 (A), μ2 (B), and p (C), estimated from RE-DVR images across nine  

 VOIs in MCI Subjects.  Predictors shown, (x{i,j,k,...}) are the estimated parameter x  

 from VOIs {i,j,k,...}. R2 value shown is percent-variance of dependant variables  

 explained by the model. ...................................................................................................77 

S1.11 OLS Regression Model Details: Rates of change in six psychological Z scores in  

 Controls and MCIs, using either Logan (A) or relative-equilibrium (B) DVR mean  

 values as predictors. NA values represent VOIs in which no model with  

 regression parameters significantly different from zero could be found. ........................78 

S1.12 OLS Regression Model Details: Rates of change in six psychological Z scores in 

 Controls and MCIs, using either Logan (A) or relative-equilibrium (B) DVR  

 admixture parameters as predictors. ................................................................................79 

S1.13 PLS Regression Model Details: Rates of change in six psychological Z scores in 

 controls and MCIs, using either Logan (A) or relative-equilibrium (B) DVR  

 admixture parameters as predictors. R2 value shown is percent-variance of  

 dependant variables explained by the model. ..................................................................80 

4.1 Mean Bias and Relative Standard Deviation (RSD) of Parameters Fit to Simulated  

 Diffusion-Limited Data. ...................................................................................................99 



xviii 
 

4.2 Parameter Values Estimated from Measured TACs. .......................................................99 

S2.1 Relative Standard Deviation of Parameter Estimates with Varying Levels of in 

  vitro Noise (Data shown is in percent values). ...............................................................109 

5.1 Parameter estimates from diffusion-limited PDE kinetic models as measured in 

  vivo with 124I and 89Zr-A11 minibodies.  Parameter estimates for 89Zr-A11 data  

 are from a model including an intracellular compartment. ..............................................120 

  



xix 
 

Acknowledgments 

Chapter 2 is reproduced from the article "Automated VOI Analysis in FDDNP PET Using 

Structural Warping: Validation Through Classification of Alzheimer’s Disease Patients," co-

authored with Hillary Protas, Mirwais Wardak, Vladimir Kepe, Gary W. Small, Jorge R. Barrio, 

and Sung-Cheng Huang.  This work was published in the International Journal of Alzheimer's 

Disease (http://dx.doi.org/10.1155/2012/512069), and is reprinted through the Creative 

Commons Attribution License. 

Chapter 3 is reproduced from a manuscript prepared for submission, co-authored with Mirwais 

Wardak, Vladimir Kepe, Jorge R. Barrio, Prabha Siddarth, and Sung-Cheng Huang. 

Chapter 4 is reproduced from the article "Improved modeling of in vivo kinetics of slowly 

diffusing radiotracers for tumor imaging," co-authored with Scott M. Knowles, Anna M. Wu, 

and Sung-Cheng Huang.  At the time of filing of this dissertation, the article is in press in the 

Journal of Nuclear Medicine, and is reprinted under the copyright agreement signed with the 

Journal of Nuclear Medicine. 

Figure 1.2 is adapted with the permission of Springer from: 

 Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta 
 Neuropathologica. 1991;82(4):239-259. 
 
 
Figure 1.3 is reproduced with the permission of Wolters Kluwer Health from: 

 Thompson PM, MacDonald D, Mega MS, Holmes CJ, Evans AC, Toga AW. Detection 
 and mapping of abnormal brain structure with a probabilistic atlas of cortical surfaces. 
 Journal of Computer Assisted Tomography. 1997;21(4):567-581 
 

 



xx 
 

Figure 1.4 is adapted with the permission of the American Society of Clinical Oncology from: 

 Knowles SM, Wu AM. Advances in Immuno–Positron Emission Tomography: 
 Antibodies for Molecular Imaging in Oncology. Journal of Clinical Oncology. 
 2012;30(31):3884-3892. 
 
 
Figure 1.5 is adapted with the permission of Springer from: 

 Jones PL, Gallagher BM, Sands H. Autoradiographic analysis of monoclonal antibody 
 distribution in human colon and breast tumor xenografts. Cancer Immunology, 
 Immunotherapy. 1986;22(2):139-143. 
 
 
Figure 1.6 is reproduced with the permission of Elsevier from: 

 Thurber GM, Schmidt MM, Wittrup KD. Factors determining antibody distribution in 
 tumors. Trends in pharmacological sciences. 2008;29(2):57-61. 
 
 
Figures 2.3 and 3.1, are adapted with permission of Elsevier from: 

 Protas HD, Huang S-C, Kepe V, et al. FDDNP binding using MR derived cortical surface 
 maps. NeuroImage 2010;49:240-8. 
 
 
The work in this dissertation was supported by the following sources: T32-GM008185, P01-

AG025831, M01-RR00865, CA092131, CA016042, CA086306, and EB001943 from the 

National Institutes of Health; DE-FC03-87-ER60615 From the Department of Energy; The 

General Clinical Research Centers Program; the Elizabeth and Thomas Plott Endowment in 

Gerontology; and GM008042 from the UCLA Caltech Medical Scientist Training Program. 

 
I would also like to acknowledge my doctoral committee (Dr. Henry (Sung-Cheng) Huang, Dr. 

Jorge R. Barrio, Dr. Elliot M. Landaw, Dr. Kenneth Lange, and Dr. Anna M. Wu), with their 

assistance and guidance, with special thanks to my advisor and committee chair Dr. Henry 

Huang.  I also acknowledge all the members of Huang lab, especially Dr. K.P. Wong, Dr. Hillary 



xxi 
 

Protas, and Dr. Mirwais Wardak for their assistance in the work presented here.  I also want to 

thank Dr. Scott M. Knowles for assistance in small animal imaging, Dr. Nagichettiar 

Satyamurthy and the UCLA Cyclotron Facility for synthesis of FDDNP, and Dr. David Stout at 

the Crump Small Animal Imaging Facility. 

  



xxii 
 

VITA 

 

 
2004   Undergraduate Researcher, Owens Lab, Department of Plant Biology,  

   Cornell University. 

2005-2007  Undergraduate Intern, Gene Network Sciences, Ithaca, NY. 

2006-2007  Undergraduate Researcher, Gilmour Lab, College of Veterinary Medicine, 

   Cornell University. 

2007   B.A. (Mathematics), and B.A. (Biology), Cornell University 

2007-2009  NIH Systems & Integrative Biology Training Grant, UCLA. 

2009   M.S. (Biomathematics), UCLA 

2009-2014  Graduate Student Researcher, Huang Lab, Department of Biomathematics, 

   UCLA. 

2013   Society of Nuclear Medicine Computer and Instrumentation Young  

   Investigator Award. 

  



xxiii 
 

PUBLICATIONS AND PRESENTATIONS 

Hirata K, Wong KP, Sha W, Ye H,  Iwamoto H, Wilks MQ, Stout D, McBride W, Tamaki N, 
and Huang S-C. "A new partial volume correction method for dynamic FDG images of 
heterogeneous tumor using factor analysis and stepwise procedure." J Nucl Med Meeting 
Abstracts. May 1, 2014; 55 (1: Meeting Abstracts):2068. 
Nathanson DA, Armijo AL, Tim M, Li Z, Dimitrova E, Austin WR, Nomme J, Campbell DO, Ta 
L, Le TM, Lee JT, Darvish R, Gordin A, Wei L, Liao H-I, Wilks MQ, Martin C, Sadeghi S, 
Murphy JM, Boulos N, Phelps ME, Faull KF, Herschman HR, Jung ME, Czernin J, Lavie A, and 
Radu CG. "Co-targeting of convergent nucleotide biosynthetic pathways for leukemia 
eradication." Journal of Experimental Medicine, 211:3 (2014), 473-486. 

Sha W, Ye H, Iwamoto KS, Wong KP, Wilks MQ, Stout D, McBride W, and Huang S-C. 
“Factors affecting tumor 18F-FDG uptake in longitudinal mouse PET studies." EJNMMI 
research 3:51 (2013): 1-11. 

Wilks MQ, Knowles SM, Wu AM, and Huang S-C. " Improved modeling of in vivo kinetics of 
slowly diffusing radiotracers for tumor imaging " Journal of Nuclear Medicine, 2014 in press. 

Wilks MQ, Knowles SM, Wu AM, and Huang S-C.  "Quantitative in vivo imaging of slowly 
diffusing radiotracers". J Nucl Med Meeting Abstracts. May 1,2013;54(2: Meeting Abstracts):48. 
 
Wilks MQ, Gary W. Small, Jorge R. Barrio, and Sung-Cheng Huang. "Evaluation of the use of 
voxel-value distribution in target regions in longitudinal FDDNP PET studies." J Nucl Med 
Meeting Abstracts. May 1, 2013;54(2: Meeting Abstracts):2066 

Wilks MQ, Protas H, Wardak M, Kepe V, Small GW, Barrio JR, and Huang S-C.  “Automated 
VOI analysis in FDDNP PET using structural warping: validation through classification of 
Alzheimer's disease patients,” International Journal of Alzheimer's Disease, vol. 2012, Article 
ID 512069, 8 pages, 2012. doi:10.1155/2012/512069 

Wilks MQ, Knowles SM, Wu AM, and Huang S-C. “Accurate quantitative imaging of slowly 
diffusing radiotracers." J Nucl Med Meeting Abstracts.May 1,2012;53(1:Meeting Abstracts):549. 

Wilks MQ, Siddarth P, Ercoli L, Kepe V, Small GW, Barrio JR, and Huang S-C. "Longitudinal 
study of changes in FDDNP-PET and neuropsychological scores." J Nucl Med Meeting 
Abstracts. May 1, 2011; 52(1: Meeting Abstracts):1266. 

Wilks MQ, Protas H, Wardak M, Small GW, Barrio JR, and Huang S-C. "Automated VOI 
analysis in 18 F-FDDNP PET using structural warping: Validation through classification of 
Alzheimer's disease patients." Paper presented at: Nuclear Science Symposium Conference 
Record (NSS/MIC), 2010 IEEE, 2010. 
 
Williams KJ, Argus JP, Zhu Y, Wilks MQ, Marbois BN, York AG, Kidani Y, Pourzia AL, 
Akhavan D, Lisiero DN, Komisopoulou E, Henkin AH, Soto H, Chamberlain BT, Vergnes L, 
Jung ME, Torres JZ, Liau LM, Christofk HR, Prins RM, Mischel PS, Reue K, Graeber TG, and 
Bensinger SJ.  “An essential requirement for the SCAP/SREBP signaling axis to protect cancer 
cells from lipotoxicity.” Cancer research, 73:9 (2013), 2850-2862. 



1 
 

CHAPTER 1 - Introduction and Motivations 

Abstract  

Positron Emission Tomography (PET) is an inherently quantitative tool for measuring in vivo 

biological phenomena.  The physics behind positron annihilation and coincidence detection lead 

to mathematical and statistical image reconstruction methods that allow for very accurate in vivo 

measurements of tracer concentration.  These measurements allow investigators to quantitatively 

assay a myriad of biological parameters and phenomena, such as antigen concentrations, cell 

division rates, or glucose utilization rates.  However, there are still many barriers to robust 

quantification of data in clinical and pre-clinical settings.  These barriers can largely be divided 

into two main categories: practical and structural.   Practical barriers are largely functions of 

inter- or intra-investigator variability in data extraction or analysis, or an investigator's inability 

to robustly analyze data in a feasible amount of time.  Structural barriers are those that are 

inherent to the PET imaging modality, such as photon scatter or partial volume effects.  In this 

work, solutions are presented and tested to overcome some of the practical barriers to 

quantification in neurologic applications, and to overcome structural barriers in oncologic 

applications. 

1.1.0 Practical Barriers to Quantification 

In quantitative imaging, the creation of accurate volumes of interest (VOIs) is often of utmost 

importance.  In most scenarios, VOIs are drawn manually by expertly trained investigators, 

which can be a very time-consuming and tedious process.  Additionally, hand-drawing VOIs is 

known to introduce measurement variance on both inter- and intra-investigator levels.  A further 

problem with manually defined VOIs, is that to extract data from a subject population in a timely 
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fashion, investigators are usually limited to defining relatively small VOIs on only a single slice 

of an image.  This opens many possibilities for the introduction of noise in data measurement, 

either through the small sampling size, or through sampling bias where the investigator is 

looking for regions with either high or low levels of activity.  These problems are further inflated 

in large-population studies, and even more so in multi-center studies. 

In addition to increasing noise in data measurement, manual definition of VOIs can introduce 

noise in data analysis as well.  In many quantitative imaging applications, some form of 

graphical image analysis will be employed to estimate biologically important parameters, such as 

Logan analysis to determine distribution volume ratios (DVR) or Patlak analysis to determine the 

influx rate constant Ki  of the tracer [1,2].  In both these scenarios, the activity within both the 

target region and a reference region is necessary.  However, manual definition of a reference 

region is subjected to the same constraints discussed above. 

Manually defining VOIs can introduce small amounts of noise to oncologic applications, where 

small differences in VOI boundaries can lead to measurement differences caused either by partial 

volume effects or by tissue heterogeneity due to necrosis.  However, the noise introduced from 

manually defined VOIs is much greater in neurologic applications.  This is due to the increased 

difficulty in defining structural boundaries, and to matching homologous structures between 

multiple subjects.  This problem is further complicated by the fact that in many applications of 

neurological imaging, the disease or disorder being investigated presents with structural 

pathologies, such as cortical degeneration, making the comparison of homologous structure more 

difficult, or even impossible, through manual measurements.  
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These limitations to PET quantification are exemplified by Alzheimer's disease (AD) imaging, 

where DVR images are often employed to examine pathology densities in specific anatomical 

locations, with differing levels of neuro-degeneration seen across subject populations.   As can 

be seen in Figure 1.1, manual definitions of homologous structures between multiple AD 

subjects will be extremely difficult.  In Chapters 2&3 of this work, we examine methods for 

overcoming these barriers to quantification in AD. 

 

 
FIGURE 1.1:  FDDNP-DVR PET images from two AD subjects. 

 
1.1.1 Alzheimer's Disease 

Alzheimer's disease is the most common form of dementia, and is characterized by gradual 

progression of clinical symptoms and neurological pathologies, including misfolded protein 

aggregates and cortical degeneration [3,4].  Although AD is clinically recognizable at late stages 

due to characteristic dementia and decline in cognitive abilities, current clinical diagnosis 

standards do not yet produce definitive differentiation between AD and non-Alzheimer’s 

dementias (e.g., frontotemporal dementia) [5,6].  Additionally, previous work has shown that 

there can be large numbers of false-negatives in AD diagnosis, with cognitive decline being 
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attributed to normal senescence [7,8].   Further complications in diagnosis stem from the 

occurrence of intermediate conditions, such as mild cognitive impairment (MCI). Patients 

classified as MCI display greater cognitive decline, especially in measures of memory, than 

would be expected through healthy aging alone, but do not show any clinical signs of dementia 

[9].  While MCI patients do not always progress to a demented state, they do show a greatly 

increased risk for developing dementias (including AD), over the non-MCI population [10].  As 

a result of these complications, the current gold-standard for AD diagnosis remains post-mortem 

inspection of cortical tissue, with histopathological staining for the hallmark pathologies of AD: 

β-amyloid plaques and neurofibrillary tangles (NFTs).   It has long been known that in AD, the 

progression of these misfolded protein aggregates follows a well defined spatial pattern, 

originally described by Braak and Braak [11]. 

Braak and Braak proposed three stages (A-C) for the deposition of β-amyloid, and six stages (I-

VI) for the pattern of deposition of NFTs.  The β-amyloid plaques begin to accumulate in the 

basal temporal isocortex (stage A) and as the disease progresses, plaques spread to the frontal 

lobe and the cortical association regions of the occipital and parietal lobes (stage B).  In the final 

stages, plaque is present throughout all isocortical regions (stage C).  The accumulation of NFTs 

follows its own pattern: first accumulating in the entorhinal cortex (stages I/II) and then over 

spreading through the limbic areas (stages III/IV), to finally cover almost all of isocortex (stages 

V/VI), leaving only the primary motor strip relatively unscathed (Fig 1.2). 

While there are no robust mappings between the pathological stages described by Braak and 

Braak and specific clinical symptoms, current evidence does show that the accumulation of these 

neuropathological markers begins long before the onset of clinically recognizable symptoms, 

occurring in both healthy controls and MCI subjects [12].  Post-mortem examinations have 
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revealed that cognitively normal controls can have similar distributions of β-amyloid plaques  

and NFTs in mildly demented patients, with NFT progression spanning Braak stages 0-V 

[13,14].  Although this shows that AD pathology can predate clinical symptoms, these studies 

also show that once clinical symptoms are present, they do correlate with Braak defined NFT 

stages.  A majority of MCI patients examined (80%) displayed NFT density and distribution 

consistent with Braak stages II-IV, and almost all AD patients examined (91%) displayed 

pathologies consistent with stages IV-VI  [14]. 

 

FIGURE 1.2.  Proposed pathological progression of amyloid plaques and NFTs in AD.  Adapted from Braak and 
Braak [11]. 

 
1.1.2 Molecular Imaging of Alzheimer's Disease 

As discussed above, AD and its precursor conditions, such as MCI, are difficult to diagnose 

through clinical examination alone.  Because AD is well defined by spatial progression of 

pathology, which appears to correlate to clinical disease state, AD is an ideal candidate for 

diagnosis and staging through non-invasive molecular imaging.  If Alzheimer's pathologies can 

be accurately measured through molecular imaging, not only would it be possible to supplant the 
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current gold standard of post-mortem examination for diagnosis, it would also be possible to 

non-invasively stage disease state, possibly detecting it before clinical symptoms present.  

Several families of positron-emitting tracers are currently at various stages of development, for 

imaging either or both of the AD pathologies.  The first attempt at amyloid imaging employed 

99Tc-labeled Fab fragments specific to β-amyloid proteins for SPECT imaging, however these 

antibodies were unable to penetrate the blood-brain barrier, leading to the development of 

smaller tracer compounds [12]. One of the first such compounds was the thioflavin T derivative 

11C-6-OH-BTA-1 (11C-PIB), which was shown to have in vitro affinity to β-amyloid complexes.  

In initial investigations, and in subsequent independent studies, investigators found strong 

delineations between mean cortical binding rates of controls and AD.  However, there were often 

significant outliers, showing some AD subjects with extremely low levels of 11C-PIB activity, 

and some controls with AD levels of activity [15-17].  Also, 11C has a half-life of only 20 

minutes, too short to be used by centers without on-site cyclotrons.  This led to the development 

of similar 18F-labeled amyloid imaging agents such as Florbetapir (AV-45) and Florbetaben 

(BAY 94-9172) [18,19].  These compounds showed similar results to 11C-PIB, with some group 

discrimination, but with many group outliers [20].   

These compounds also exhibit several shortcomings in quantitative AD imaging.  First, although 

control subjects do usually exhibit lower cortical binding rates with these compounds, they also 

exhibit strong white-matter activity uncharacteristic of amyloid deposition in vivo [12].  

Furthermore, these compounds usually exhibit a binary response in subjects, with "controls" 

showing little to no cortical activity and high white-matter activity, and "AD" subjects showing 

high global cortical uptake of tracer.  This leads many investigators to use global averages of 

tracer activity to classify subjects with their imaging protocols [21,22].  While this "on/off" 
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phenomena makes visual classification of images relatively simple (though not very accurate), it 

is complicated by the fact that it is not in line with the known gradual progression of amyloid 

pathology seen in post-mortem examinations, and as described by Braak and Braak.  This 

disagreement between imaging and in vivo pathology could explain the difficulty seen in 

measuring longitudinal changes in binding of these amyloid-binding tracers [23].  Lastly, these 

compounds do not show binding to the NFTs that are characteristic of Alzheimer's disease, 

limiting their ability to stage the progression of disease in vivo. Recently, new radio-labeled 

tracers have been developed for imaging of only the NFTs associated with AD [24].  While these 

compounds have shown initial promise in vitro, much future work is required to verify their 

utility for in vivo clinical imaging. 

Some of the limitations of these single-target tracers can be overcome through the use another 

imaging agent, 2-(1-6-[(2-[18F]fluoroethyl)(methyl)amino]-2-naphthylethylidene)malononitrile  

(FDDNP), which was the first PET imaging agent developed for visualization of both amyloid 

plaques and NFTs [25-27].  In addition to binding to both AD pathologies, FDDNP has shown in 

vivo distributions in line with the Braak and Braak progression, without white matter uptake in 

controls [12].  Initial studies showed that AD subjects displayed significantly higher residence 

times of FDDNP in the medial temporal lobe, an area closely associated with early disease 

progression, and that these residence times closely correlated with mini-mental state examination 

(MMSE) scores [27].  Recent work has also shown that regional FDDNP DVR values can be 

used to accurately discriminate between controls, MCIs, and ADs, with binding patterns 

resembling Braak pathologies [28].  While there have been some longitudinal studies showing 

limited results in predictive capacity of FDDNP in AD, it is possible that the limitation is 

because global, instead of regional, activity was used as a predictor [23].  In Chapters 2&3, we 
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use 18F-FDDNP as an imaging agent for quantitative AD PET to show the enhanced value of 

using the improved quantitative methodologies developed in this dissertation. 

1.1.3 Image Normalization 

As discussed above, a major barrier to accurate quantification of PET imaging across multiple 

subjects is the creation of accurate VOIs.  Consequently, there have been many previous efforts 

to minimize investigator induced variance through automatic generation of VOIs.  These 

methods often work by normalizing each of the functional images (e.g. PET) to a common 

structural image (e.g. MRI), where a single set of anatomically based VOIs can be created and 

used for different subject’s scans. 

 
Figure 1.3: First Steps of Cortical Surface Mapping.  A spherical mesh grid is progressively deformed to match a 
target boundry intensity in the 3D-MRI (Top).  The resulting 3D cortical surface (Bottom Left) is high-resolution 
mesh of triangular elements (Bottom Right).  Adapted from Thompson et al. [29]. 
 

One such method that has previously been shown to be effective in normalizing PET images is 

the process of hemispheric cortical surface mapping (CSM) [28,29]. In this process, a high 

resolution 3D map of a subject's cortex is extracted from a T1-wieghted MRI, by "shrink-

wrapping" a fine mesh grid over the surface of MRI (Fig 1.3).  The 3D surface is then "unfolded" 
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to create a 2D cortical surface map of sulci and gyri.  Investigators then manually define 36 

specific major sulci and fissures (central, lateral, intraparietal, etc.), as a definition of each 

subject's topography.  These sulcal maps are then fluidly deformed to match a common space 

image for which CSM has already been completed, in this case the International Consortium for 

Brain Mapping common space (ICBM53) [30].  In this method, regions of interest can be drawn 

directly on the 2D cortical surface map, defining specific cortical regions bounded by sulci, and 

then projected to the desired depth into tissue to create VOIs.  Although this method has been 

successful in matching homologous structure, the process is complex and labor intensive, 

limiting its utility in large-scale studies.   

Another probabilistic mapping method is the DARTEL algorithm as implemented in SPM8, 

which performs two simultaneous 3D deformations (one for a subject's gray matter and one for 

white matter) to a common-space average brain under maximum likelihood constraints [31].  

Although this method significantly simplifies the image normalization process, it requires high 

accuracy T1-weighted MRI scans to be completed, so that accurate segmentation of white and 

gray matter can be accomplished.    One other significant drawback of using CSM or DARTEL, 

is that they match images to an average brain atlas, in which it can be difficult to define 

anatomically specific VOIs.  Additionally, in such atlases, significant anatomical structures can 

be blurred due to population variance, causing errors in image matching algorithms. 

As an alternative to the probabilistic methods discussed above, one can instead use deformation 

algorithms that compute a single 3D mapping between two individual images, one of which can 

be a common-space atlas.  The most computationally simple of these image matching use a set of 

smooth basis functions to define image deformations, such as the SPM2 algorithm which uses 

the discrete cosine transform (DCT) to parameterize the deformation [32].   To allow for 
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reasonable computational time, the basis functions are limited to only low-frequency DCT, 

limiting matching accuracy when higher-frequency deformations are needed.  A more versatile 

approach is through the use of constrained fluid deformation models, using various forms of 

image matching metrics and penalties, some of which include "landmark" conditions which force 

two anatomical features to map to one another [33-35].   

Recently, a large-scale comparison of such methods was performed by Klein et al., where 

fourteen image normalization algorithms were compared in their ability to normalize 80 

manually segmented MRI brain images [36].  This comparison did not include any landmark 

based algorithms, however they do have the significant drawback of requiring manually defined 

homologous points across wide populations, limiting their utility in large-scale quantitative 

investigations.  A top performer across all normalization metrics tested by Klein et al. was the 

symmetric image normalization (SyN) algorithm, as developed by Avants et al., which differs 

from most algorithms in several important ways [33,37].  In the SyN algorithm, image 

deformation is reformulated as an attempt to find a diffeomorphic mapping between two spaces.  

This mapping is also reformulated to compute two sub-deformations, which by constraint are 

both diffeomorphic, to a theoretical "average" of the two input images. Additional constraints are 

imposed to ensure that the magnitudes of these sub-deformations are identical.  These 

formulations lead to several desirable properties of the resulting 3D mapping.  Firstly, these 

constraints ensure that SyN will report identical results regardless of which image is designated 

as the "target" space, and that the deformation is guaranteed to be invertible with sub-voxel 

accuracy everywhere.  This differs from other fluid deformation methods in which inverses are 

estimated, and therefore mappings are not guaranteed to be truly invertible [37].  Because the 
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SyN algorithm returns a mapping that is guaranteed to be diffeomorphic, deformations never 

result in shearing or tearing, preserving the topology of each individual's brain. 

For the reasons state above, we use the SyN algorithm to compute image matching between 

subjects and a common space in Chapters 2&3 of this work.  To further eliminate investigator-

induced variability, we use the CSM technique to robustly define cortical VOIs on the common 

space image.  In Chapter 2, we test the reliability of these automated measurement techniques 

through diagnostic accuracy of disease state (AD, MCI, or healthy control).  In Chapter 3, we 

apply this method to improving prognostic accuracy of disease progression over a two-year 

follow-up study of MCI patients and age-matched healthy controls.  

1.2.0 Structural Barriers to Quantification 

A common structural barrier to quantification in PET is the noise introduced through partial 

volume effects.  Due to the image resolution inherent to PET scanners, there will be slight 3D 

blurring of measured data, resulting in spillover between adjacent regions.  When tissue 

heterogeneity on the supra-voxel level occurs at high enough spatial frequency, this will lead to 

under-, or over-estimates of tissue activity along the borders of a region with otherwise 

homogeneous activity.  A similar, but much less investigated, phenomena is errors induced by 

tracer heterogeneity on the sub-voxel level. 

Most quantitative analysis of PET imaging is done through the use of kinetic, or quasi-kinetic, 

modeling of tracer activity, and is performed with ODE pharmacokinetic models or with a 

graphical technique such as Logan or Patlak analysis [1,2].  Inherent to these models, however, is 

the assumption that tracers are well-mixed, such that within any given voxel all molecules of the 

tracers within a single compartment (e.g. extracellular or intracellular space) are kinetically 
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identical.  This assumption leads to a system of ODEs that describe the biological kinetics, and 

are relatively simple to solve.  However, these models cease to be valid as soon as there is sub-

voxel heterogeneity.  This problem arises with the use of new large-molecule tracers that display 

slow diffusion through tissue, resulting in spatial heterogeneity in the micrometer scale [38].  In 

Chapter 4 of this work, we examine the effects of ignoring this spatial heterogeneity in kinetic 

modeling, and methods to accurately compensate for it. 

1.2.1 Large Molecule Tracers 

Custom antibodies are a new and promising class of molecules that can be used for imaging or 

therapeutics [39-43].  These compounds allow for high-specificity binding to target tissues, with 

very little background activity, effectively allowing for in vivo immunohistochemical staining. A 

significant difference between custom antibodies and standard small-molecule tracers such as 

FDG are their much longer biological half-lives, which are on the order of days, instead of hours.  

Additionally, these large-molecule compounds show much slower capillary permeability, 

resulting in slower uptake into target tissues.  As a result, these compounds must be labeled with 

slower decaying isotopes such as 89Zr (half-life = 78.4 hours), or 124I (half-life 100.2 hours) in 

order to fully capture the time course activity of the tracer within the subject.   

The extreme half-lives of these compounds is a double-edged sword for quantitative imaging, as 

the long residence times allows for high levels of tracer to build up in target tissues. However, 

because clearance from the blood compartment is also slow, a long waiting period between tracer 

injection and scanning is required to achieve good signal to background ratios [39]. Recent work 

has been performed to compensate for these shortcomings by reducing the size of these tracers 

through the deletion of constant, non-binding domains of these antibodies.  These engineered 
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compounds can be a third of the weight (50kDa) of intact antibodies (150kDa), and show 

markedly different in vivo kinetics [39]. 

 
FIGURE 1.4. Effects of deletion of constant domains on clearance rates of custom antibodies.  Adapted from 
Knowles and Wu  [39]. 

 
As can be seen in Figure 1.4, the removal of constant domains leads to much faster clearance of 

tracer from the blood pool, which also results in lower levels of target-tissue labeling.  While the 

diabody molecule shows extremely fast clearance, labeling of target-tissues is limited, likely due 

to the low capillary permeability.  The minibody tracer however, shows strong labeling (30% 

ID/g), with a time course activity that can be completely examined over a reasonable time scale 

of a few days. 

It has long been established that although antibody tracers show high target specificity, there is a 

divergence between their spatial localization in vitro and in vivo.  As early as the 1980's, 

autoradiographic studies showed markedly different distributions of these molecules between in 

vitro incubation and in vivo injection, as can be seen in Figure 1.5 [38]. 

Early in silico studies explained this divergence, by showing that the slow diffusivity of these 

compounds in vivo would lead to steep concentration gradients of tracer on the sub-voxel level 
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[44].  This slower diffusivity is likely a result of their size (~150 kDa), as opposed to traditional 

small-molecule tracers (usually <1 kDa), which also explains their lower levels of capillary 

permeability [45].   

 
FIGURE 1.5.  Divergence of in vitro and in vivo antibody localization.  Images show autoradiography of 125I-labeled 
antibody after in vitro incubation (A), and 4 (B), 24(C), or 120 (D) hours post-injection in vivo at 250x 
magnification.  Adapted from Jones, Gallager, and Sands [38]. 
 
 
Compounding the effect of their size, is the high affinity to target tissue displayed by custom 

antibodies, which can range from low nanomolar to even picomolar values.  This leads to further 

tissue heterogeneity, with tracers binding to target antigens very quickly, and leading to almost 

all of injected tracer localizing around the capillary wall [46-49].  This effect of binding affinity 

is so strong that heterogeneous localization is seen with even relatively small (25 kDa) single-

chain variable fragments (scFvs), and the smaller doxorubicin (.5 kDa) [50,51]. More recent 

studies have shown the extent of this localization in vivo through imaging of ex vivo slices of 

xenograft tissue, as can be seen in Figure 1.6. 

Despite these complications, custom antibodies show great promise for use in quantitative 

imaging. With few exceptions (like anti-HER2 probes), there will be little to no uptake in 
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myocardial tissue, allowing for accurate measurements of image derived input functions from the 

left ventricle, and the high target specificity allows for high signal to noise ratios. Additionally, 

quantitative imaging of these compounds allows investigators to assay in vivo levels of protein 

expression, which can be an important biomarker.  In the case of prostate stem cell antigen 

(PSCA), which is expressed in most local and metastasized prostate cancers, expression levels 

correlate to Gleason score, allowing for non-invasive imaging-based disease staging [54-56].  In 

order to extract this type of information, however, robust mathematical models that account for 

tissue heterogeneity are required. 

 
FIGURE 1.6.  Heterogeneous localization of trastuzumab (a) and doxorubicin (b) in xenograft tissue.  Capillaries are 
labeled red, drugs are labeled green (Scale bar =100um).  Reproduced from Thurber et. al [52]. 
 

Previous work has been performed to investigate the effect that the tissue heterogeneity 

displayed by these large-molecule tracers will have on whole-tumor activity over time, although 

there has yet to be work published on the extraction of whole kinetic information from imaging 

such systems  [48, 57].    To fully and accurately extract biologically important information from 

in vivo imaging of these systems, a physically accurate mathematical model must be developed 

to account for sub-voxel tissue heterogeneity.  Furthermore, in therapeutic uses of these large 

molecule tracers, such as trastuzumab or doxorubicin, the doses given to tumors will be depth-

dependant, with large volumes of the tumor far away from capillary walls receiving little or no 
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treatment [52].  Therefore, in order to develop effective treatment protocols that allow for needed 

drug dosages across all depths of target tissue, the kinetics and diffusion of these drugs must be 

accurately understood.  In Chapter 4 of this work, we examine the effects of slow diffusion on 

measured time activity curves of in vivo  imaging with radio-labeled custom antibodies.  Further, 

we show the effects of ignoring diffusion on estimating important biological parameters, and 

develop and test a method of extracting those parameters by taking spatial heterogeneity into 

account. 
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CHAPTER 2 - Automated VOI Analysis in FDDNP PET Using Structural Warping: 
Validation Through Classification of Alzheimer’s Disease Patients. 
 

Abstract 

In this paper we evaluate an automated approach to the cortical surface mapping (CSM) method 

of VOI analysis in PET.  Although CSM has been previously shown to be successful, the process 

can be long and tedious.  Here we present an approach that removes these difficulties through the 

use of 3D image warping to a common space.  We test this automated method using studies of 

FDDNP PET in Alzheimer’s disease and mild cognitive impairment.  For each subject, VOIs 

were created, through CSM, to extract regional PET data.  After warping to the common space, a 

single set of CSM-generated VOIs was used to extract PET data from all subjects.  The data 

extracted using a single set of VOIs outperformed the manual approach in classifying AD 

patients from MCIs and controls. This suggests that this automated method can remove variance 

in measurements of PET data, and can facilitate accurate, high-throughput image analysis. 

2.1. Introduction 

In the field of quantitative imaging, the creation of accurate volumes of interest (VOIs) is often 

of central importance.  This process, however, can be time-consuming and is known to have 

variance introduced on inter- and intra-investigator levels.  Various approaches have been 

employed to reduce the time and labor involved and the noise variance in the definition of VOIs 

[1, 2] .  Most of these approaches try to map the images of individuals to a reference image in a 

common space.  They vary on the mapping methods and on the selection of the common space 

and the reference image.  A discussion of various methods and approaches is provided later in 

this section [2-4].  The choice of approach depends on the type of images (i.e., MRI or PET) and 
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the desired VOIs one is considering.  An approach that has been previously shown to be effective 

in accomplishing the spatial normalization of PET images is the use of hemispheric cortical 

surface mapping [2, 5].  However, the process involved is complex and labor intensive.  An 

improved procedure suited for automated and streamlined operation is thus warranted.  In this 

paper, we introduce a modified method that can reduce the variance in VOI analysis by warping 

structural and functional images to a common space in which valid VOIs already exist. This 

method is also easily adaptable to an automated approach to VOI analysis. 

There have been previous attempts at similar methods, by creating maximum likelihood 

estimates (MLEs) of VOIs in a stereotaxic space [1].  In these methods, VOIs are manually 

drawn on several brains, which are normalized to a stereotaxic brain space such as the 

International Consortium for Brain Mapping (ICBM53) average space [6].  After a subject’s 

brain image has been normalized to this space, MLEs can be used to create an individualized 

VOI based on the population of manually drawn VOIs.  One drawback to using these methods is 

that when normalizing a subject’s brain to the common stereotaxic space, it is difficult to balance 

how closely to match the target and template images.  If the images are not matched closely 

enough, the MLEs for creating individualized VOIs lose their validity.  However, if images are 

matched too closely to an average image of multiple brains, the structure of the subject’s brain 

image can be lost when the normalization algorithm mistakes noise in the common space 

population as actual structural information.  To reduce as much of the investigator-based 

variance as possible, it would seem ideal to use a library of previously created VOIs in a high-

resolution single brain common space.  There have been efforts to create such libraries [7], 

however the problem then becomes finding a way to closely normalize a subject’s image to this 

single common space while maintaining its structural integrity. 
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Currently, there are many non-linear methods available for spatial normalization that use a wide 

array of image matching methods.  Some of these methods use a set of smooth basis functions 

[3], while another large algorithm family contains the non-parametric methods such as 

Diffeomorphic Demons [8], ART [9], or SyN [4].  Additionally, there are methods such as the 

DARTEL algorithm in SPM8 [10]  that use a fluid deformation model that simultaneously 

matches gray matter to gray matter, and white matter to white matter.  Recently, fourteen such 

algorithms were tested against one another in MRI brain registration by Klein et al. [11].  The 

evaluation was done using 80 manually labeled MRI brain images, and eight separate measures 

of performance, in which the SyN algorithm was ranked the overall best.   The rankings of each 

algorithm were relatively consistent across image sets, labeling protocols, and image matching 

metrics.  Klein et al. believe this is strong evidence that these rankings can be generalized to 

other sets of subjects and labels.  The SyN algorithm has the benefit of creating diffeomorphic 

deformations, so that there is no shearing or tearing of the image being deformed.  Additionally, 

the SyN algorithm is not limited to imaging modalities that can be accurately segmented into 

gray and white matter, so it can be used in studies using non-T1-weighted MRIs. Therefore, we 

opted to use the SyN algorithm in our investigation of automated VOI analysis.  

We apply this method to a set of MRI images that have corresponding PET images of the tracer, 

2-(1-6-[(2-[18F]fluoroethyl)(methyl)amino]-2-naphthylethylidene)malononitrile (FDDNP), which 

can bind to the cerebral β-amyloid plaques and neurofibrillary tangles (NFTs) characteristic of 

Alzheimer’s disease (AD).  The FDDNP PET images were obtained from a study in AD and 

mild cognitive impairment (MCI) patients.  Patients classified as MCI do typically have a larger 

decline in cognitive function than normal aging, especially in memory, but do not show clinical 

signs of dementia [12].  Moreover, MCI patients do have a greatly increased chance of 
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developing dementias such as AD over the non-MCI population [13].  The primary 

neuropathological characteristic of AD is accumulation of β-amyloid plaques and NFTs across 

numerous cortical regions.  This accumulation of these misfolded protein aggregates follows a 

pattern of deposition described by Braak and Braak [14] , in which different cortical regions are 

affected at varying severity throughout the progression of the disease.  Braak and Braak 

proposed three stages (A-C) for the deposition of β-amyloid, and six stages (I-VI) for the pattern 

of deposition of NFTs. 

Although AD is clinically recognizable at late stages due to characteristic dementia and decline 

in cognitive abilities, current clinical diagnosis standards do not yet produce definitive 

differentiation between AD and non-Alzheimer’s dementias (e.g., frontotemporal dementia)  [15-

16].  However, current evidence shows that the accumulation of the neuropathological markers 

begins long before the onset of clinically recognizable symptoms [17].  In post-mortem studies, 

cognitively normal controls (clinical dementia rating (CDR) 0) have been shown to display 

density and distribution of β-amyloid and NFTs similar to mildly demented (CDR 0.5) patients 

[18].  In another post-mortem study, Peterson et al. reported clinically healthy controls whose 

NFT distribution spanned stages 0-V in the Braak and Braak progression, with 25% of these 

controls presenting NFTs consistent with at least stage III [19].  In the same study, Peterson et al. 

showed that once clinical symptoms are present, the Braak pathology stages do show correlation 

with the severity of symptoms.  Of the MCI patients studied, 80% presented with Braak NFT 

stages II-IV and 91% of the AD patients presented with stages IV-VI [19]. 

In both living patients, as well as in post-mortem determinations, FDDNP signal has been shown 

to reside in areas with high β-amyloid plaque and NFT loads [2].  Along with the known spatial 

and temporal pattern of deposition, this suggests that molecular imaging using FDDNP PET may 
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be a powerful tool in early detection and diagnosis of AD.  For these same reasons, this 

compound is a good candidate for the evaluation of automated regional VOI analysis.  In this 

work we validated the method of structural warping by examining the spatial overlap between 

the common space image and the warped MRIs in specific structures and regions.  Furthermore, 

we validate the automated approach by comparing the efficacy of VOI data extracted from 

warped and unwarped functional images to create discriminant models classifying subjects as 

normal controls, MCI, or AD. 

 
2.2 Methods 

2.2.1 Subjects 

The study group was comprised of 7 AD (76±10 years, 4:3 female/male), 6 MCI (73±13 years, 

4:2 female/male) and 10 control (71±10 years, 7:3 female/male) subjects.  Subjects were 

classified into groups using the diagnostic criteria for AD and amnestic MCI [2]. Subjects who 

had some memory symptoms but did not meet the diagnostic criteria for either disease group 

were classified as controls.  No subject included in this study had a history of stroke, head injury, 

or non-Alzheimer’s disease which would affect cognitive function.  All subjects (n=23) were 

given mini-mental state examinations (MMSE) to assess cognitive abilities.  AD patients had an 

average MMSE score of 23±2, MCIs had an average score of 27±1, and controls had an average 

score of 29±1.  This subject population has been previously described by Protas et al. [2]. 

 
2.2.2 Imaging 

 
A T1-weighted gradient echo (MP-RAGE) image was taken for each subject with a 3T Siemens 

Allegra MRI scanner (sagittal plane; repetition time (TR) 2300 ms; echo time (TE) 2.93 ms; 160 

slices; slice thickness 1 mm; in-plane voxel size 1.3×1.3 mm; field of view 256×256; flip angle 
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8°)  [2].  FDDNP was produced as described elsewhere [20], and each subject was given a bolus 

injection of FDDNP (320-550 MBq).  A dynamic PET scan was taken for up to 125 min. (six 30s 

frames; four 180s frames; five 600s frames; and three 1200s frames).  Imaging was performed 

using an ECAT EXACT HR+ scanner (Siemens Corp.).   The images were reconstructed using 

filtered back-projection with attenuation correction.  After the initial reconstruction, a movement 

correction algorithm was applied [21, 22].  This algorithm corrects for motion artifacts 

introduced during the 125 minute scan.  Each emission frame is aligned with the transmission 

frame, and then reconstructed using the proper attenuation coefficients.   

 
2.2.3 Creation of VOIs 

 
All MRIs were normalized using the cortical surface mapping method.  By this method, a 9-

parameter linear registration is applied to bring all subjects into rough alignment with a common 

space, in this case the International Consortium for Brain Mapping (ICBM53) common space 

[6].  A 3D model of each subject’s cortical surface (in the ICBM space) was extracted from their 

respective MRIs through the use of a method previously described by Thompson et al. [5].  On 

this model, 36 sulci major sulci and fissures were manually identified on each cortical surface, 

after which the surface was flattened to a 2D cortical surface map.  The previously identified 

sulci and fissures were then redrawn on the flat map.  These sulci were matched to an average 

2D sulcal map through a nonlinear deformation.  Inverting the flattening procedure and applying 

this deformation brought the 3D cortical surfaces of all subjects into close alignment.  On the 

average cortical surface, nine ROIs were drawn bilaterally over the following regions: upper 

parietal lobe, posterior frontal lobe, prefrontal lobe, occipital-parietal lobes, posterior temporal 

lobe, upper temporal lobe, lower temporal lobe, medial temporal lobe, and the posterior-
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cingulate gyrus.  These ROIs were projected into 3D VOIs by including each voxel within 9mm 

of the originally drawn voxels on the cortical surface.  The inverse of the cortical surface 

mapping method for each subject was applied to these VOIs, such that each subject’s MRI 

aligned to the ICBM space had an individualized set of these VOIs [2].  In addition, MRIs in the 

ICBM space were segmented into white and gray matter using the automated segmentation 

algorithm in SPM8 [23]. 

 
2.2.4 Creation of FDDNP-DVR Images 

 
Logan analysis was performed on the movement corrected PET images to create FDDNP 

distribution volume ratio (DVR) images [21].  Following the procedure described previously by 

Kepe et al. [24]  and Small et al. [25] , the cerebellar cortex was used as a reference region to 

approximate an input function.  The first six minutes of the FDDNP scan – representing a 

perfusion image - were summed (frames 1-7), and a ROI was drawn over cerebellar cortex in 

that summed image.  This ROI was then used to extract data from each individual frame, creating 

a time activity curve (TAC).  Using this TAC as the input function for Logan analysis [26], the 

DVR value for each voxel was set to the slope of the respective Logan plot over the frames from 

15 minutes to the end of the scan [2].   A rigid, linear transformation was calculated using SPM2 

[23], to align the early summed FDDNP frames (0-6 minutes), to the MP-RAGE image.  This 

transformation was then applied to DVR images, to bring it into alignment with the MRI [2]. 

2.2.5 Image Warping 

Central to the method of automated VOI analysis is the ability to bring the imaging data of all 

subjects in close alignment with a common space.  To accomplish this goal, we used the 

symmetric image normalization method (SyN) described by Avants et al. [4], as implemented in 
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the software package ANTs [27].  The SyN algorithm creates a diffeomorphic mapping (that is, 

one that is both invertible and differentiable) along a geodesic path between a target image I and 

a template image J.  SyN takes advantage of the fact that such diffeomorphisms can be 

decomposed into two parts, φ1 and φ2, such that the mapping φ(I)=φ2
-1 (φ1(I))= J.   This allows 

for the symmetry of the algorithm so that regardless of whether the image is the “target” or 

“template,” the same deformation is computed.  The sub-functions are defined such that the 

magnitudes of the deformations they define are equal, and that I and J contributed equally to the 

deformation.  The SyN algorithm can create such a mapping with several different optimization 

metrics, but for our purposes, images were matched using localized cross-correlation (CC).  This 

metric is a measure of local image mean and variance.  It is computed over 3D windows, on the 

order of 53 voxels.  Briefly, the algorithm sets up a global maximization of CC, which is 

translated into a series of Euler-Langrage equations which are then solved subject to several 

constraints.  As stated above, the two sub-deformations must contribute equally and be both 

invertible and differentiable.  The solutions are solved iteratively.  These iterations are carried 

out at multiple levels of resolution. At each level, computation continues until convergence or a 

maximum number of iterations is reached.   

2.2.6. Analysis 

One control subject was designated as the common space (Fig. 1a bottom), to which all other 

subjects would be warped.  For each remaining subject’s MRI scan, a three-dimensional 

diffeomorphic warp was calculated to normalize it to the common space.  This warp was 

computed to maximize cross-correlation in windows of size 43 voxels, between the common 

space and subject images.  The software ANTs employs a multi-scale resolution approach to 

image warping.  We chose to use four levels of resolution with scaling factors [8, 4, 2, 1], with 
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the maximum iteration number set for each level as [100, 100, 50, 20].  This warp was applied to 

all previously drawn VOIs, segmentation images, and co-registered FDDNP-DVR images for 

that subject.  For each subject, the average FDDNP-DVR values in each of the nine VOIs were 

measured.  This measurement was first performed using a subject’s VOI to extract data from the 

respective unwarped PET image (unwarped data).  Next, average DVR values were extracted 

from warped PET images using VOIs created for the common space MRI (warped data).  The 

warping algorithm was evaluated using the Dice overlap statistic, , calculated between the 

regions of the common space image and the regions of subjects warped into the common space. 

                                                                         Eq.1  

This measure has a range of [0,1], and captures the overlap between two regions, A and B.  The 

#(X) operator returns the number of voxels contained in region X.  Although there is no way to 

determine statistical significance of this measure in this context, some investigators consider 

good results to be > 0.6 for smaller structures and > 0.8 for larger structures [4].   

Using the statistical software SPSS (SPSS 15.0 for Windows), discriminant analysis was 

performed to classify subjects into three groups (control, MCI, or AD).  In addition to classifying 

subjects solely on MMSE scores, an exhaustive search of two classes of models was performed.  

In the first class, models were built using unwarped FDDNP-DVR data extracted from all 

possible combinations of VOIs; the second was built similarly, except using warped FDDNP-

DVR data extracted using the common space VOIs.  In both classes, models were built with and 

without the use of MMSE as a predictor variable.  Models in all categories were ranked by 

classification ability and leave-one-out cross validation.  It is possible that the exhaustive search 

for best discriminant models led to some survivorship bias.  To correct for this possible artifact, 

we performed a permutation test on the best models found.  In this test, the null hypothesis is that 
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there is no underlying structure to the data and permuting the data labels (control, AD, or MCI) 

would have no effect on the ability to classify subjects into their respective groups.  The group 

labels were randomized, keeping the distribution of groups the same (10 control, 7 AD, 6 MCI).  

For each randomization, linear discriminant analysis was performed on the permuted data, and 

the correct classification percentage was calculated.  This was repeated 100,000 times for each of 

the best models initially discovered.  The significance level is then determined as the percentage 

of randomized models that performed as well or better than the correctly labeled data [28]. 

2.3 Results 

Figure 1a shows results of the SyN warping algorithm.  The average of 22 subject MRIs 

registered to common space with nine parameter linear registration alone (top), and with the SyN 

algorithm (middle) are shown alongside the common space (23rd subject’s) MRI (bottom).  

Images warped to the common space showed a 54% reduction in average absolute voxel-to-

voxel variance within the brain (excluding skull and scalp) as compared to variance measured 

after a nine parameter linear registration alone (Fig. 1b). The average (±SD) overlap ratio, , 

measured between structures in the common space, and those of the 22 remaining subjects 

warped into the common space are shown in Fig. 2.  In addition to those for the nine VOIs, 

overlap between subjects and the common space was also measured for white matter, gray 

matter, and whole brain structures.  In this case, the whole brain is defined as all voxels 

contained within the cortical surface, as calculated by Protas et al. [2]. 

Table 1 shows the best results of the discriminant analysis carried out in SPSS. The models 

shown are those that had the highest leave-one-out cross validation scores of all the possible 

discriminant models in their respective classes.  The table shows the classification performance 

using the original sample (n=23), and with leave-one-out cross validation.  The numbered 



32 
 

regions indicated in Table 1 and Fig. 2 correspond to those represented in Fig. 3.  All models 

shown use FDDNP-DVR data from the occipital-parietal region, the posterior temporal lobe, and 

the posterior cingulate gyrus.  FDDNP-DVR data from the medial temporal lobe is also used in 

all but one of the models shown.  Histograms of the classification percentage of models yielded 

by the permutation test are shown in Fig. 4.  Each histogram in Fig. 4 also shows the 

classification percentage of the true, non-permuted data. 

2.4 Discussion 

As can be seen in Fig. 1, the SyN algorithm is a powerful tool in normalizing a set of structural 

images.  The set of brains, including some with severe cortical degeneration, were mapped 

almost exactly to a common space, with the borders between sulci and gyri very clearly 

maintained. The strength of this method is reinforced by the overlap data shown in Fig. 2.   

Although there is no way of describing statistical significance of the overlap statistic in this 

particular situation, we do see average >0.7 for each of the VOIs, which are relatively small 

structures, and only project 9mm deep into cortex.  It is also conceivable that some of the 

variation is due to the original creation of the VOIs.  Although the VOIs were created from a 

single set drawn on the average cortical surface map, the registration of MRIs to that space was 

still dependent on manual steps where inter- or intra-investigator variation could have been 

introduced.  Therefore, it is possible that some of the missed overlap in these VOIs is due to the 

imperfect nature of the original cortical surface mapping.  In addition, the fact that we see > 0.9 

for white and gray matter is especially noteworthy, as we are warping the MRIs of some AD 

patients with severe cortical degeneration.  It is non-trivial that a mapping that preserved 

sulcus/gyrus boundaries would also maintain cortical gray/white matter boundaries.  It is likely 
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that the preservation of these boundaries is due to the use of CC metric.  Since the metric is 

based on matching local variances, as long as tissue types are distinguished by the imaging 

modalities used, the boundaries between these tissues are likely to be very strictly maintained.  

Thus, not only does SyN successfully match images visually, but micro- and macro-structures 

are preserved and matched as well.  These results show that the SyN algorithm is an excellent 

tool for this specific task of image matching.  It requires minimal user input, which allows for 

high-throughput automation, as well as minimizes variance introduced by the investigator.  Also, 

in investigations where one needs to measure the exact spatial distribution of a tracer, an 

algorithm such as SyN performs quite well because images are matched while maintaining 

structural boundaries without shearing or tearing. 

Table 1 shows that data extracted from FDDNP-DVR images using a single set of VOIs in a 

common space outperforms data extracted using individual VOIs for each subject in classifying 

subjects as control, MCI, or AD.  Table 1 also shows that the use of FDDNP-DVR can improve 

classification over using MMSE alone.  In addition, the models using warped data use fewer 

predictor variables than those using unwarped data.  Table 1 and Fig. 4 show that discrimination 

between subject classes is likely not a result of survivorship bias, as the p-value for all models is 

very low, and for the model using warped data and MMSE, not one of the 100,000 permutations 

of data labels resulted in a model performing as well as the true data.  It is possible that this is a 

result of decreased noise in measurement of PET data due to standardization of VOI analysis, as 

with fewer predictor variables we are fitting less noise.  There is a reduction in the performance 

of models when looking at cross-validation scores compared to simple classification, although 

this could likely be a result of the sample size of this study.  Here we had a sample of 23 

subjects, so for cross-validation the models are built with 22 subjects classified into three sub-
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populations.  In this situation a small amount of misclassification can lead to a large percentage 

drop in accuracy.  It should also be noted that all the discriminant models shown in Table 1 use 

FDDNP-DVR information from similar regions and from those closely associated with the 

classical pathological progression of AD, as described by Braak and Braak [14].   All models use 

data from the occipital-parietal region, the posterior temporal lobe and the posterior cingulate 

gyrus.  The occipital-parietal VOI includes regions of the basal isocortex where initial deposits 

of amyloid plaques are found, with increasing deposition in stages B and C.  This region also 

shows large amounts of NFTs in late stages of the disease.  The posterior temporal lobe and 

posterior cingulate gyrus both see initial amyloid deposition in stage B with increasing 

deposition in stage C.  Like the occipital-parietal region, these areas also show large amounts of 

NFT deposition in late stages of the disease.  Many of the models also use data from the medial 

temporal lobe, which is the major site of accumulation for NFTs [14].  Although this is a region 

canonically associated with the pathological markers of AD, it is possible that it was replaced by 

MMSE as a predictor variable because FDDNP binding and MMSE share predictive strength for 

disease state.  Giannakopoulos et al. [29] have described that NFT density in the entorhinal 

cortex is a strong predictor of MMSE in elderly subjects.  Thus it is possible that for this VOI, 

MMSE and DVR values supply redundant information.  As discussed previously, deposition of 

plaques and NFTs in the medial temporal lobe occurs quite early in the progression of the 

disease, even before the appearance of clinical symptoms.  Therefore, it is also possible that this 

region might be a weaker predictor of discrimination between non-control states (AD and MCI), 

as elevated FDDNP-DVR values in the medial temporal lobe are present in control subjects and 

plateau for these non-control subjects.  It should also be noted that no special weighting was put 

on any regions in the search for the best discriminant models. 
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Central to the utility of this method for further study is the ability to create meaningful and 

accurate VOIs in a common space for use across data sets.  In this paper we have only used VOIs 

created via cortical surface mapping, and projection into cortex.  This procedure has the benefit 

of creating VOIs that adhere strictly to well-defined cortical regions, and can also be tailored to 

different studies by projecting different depths into cortex depending on the desired application.  

This method also gains strength when combined with a tool such as the SyN algorithm which, as 

shown above, strongly matches tissue morphology between subjects.  An obvious drawback to 

this method is its inability to define VOIs over non-cortical regions, such as the amygdala or 

thalamus.  However, for well-defined neurological structures such as those, manual creation of 

such VOIs can be carried out with relative ease, and added to a library of VOIs covering a high-

resolution common space MRI. 

Given the success of this warping method with respect to the classification of subjects with 

neurological disease, we believe that this can be expanded to a wide variety of applications.  First 

and foremost, it can be used to facilitate accurate high-throughput PET image analysis, by 

greatly reducing the time needed to extract regional information, while removing several sources 

of experimental variance.  In these applications, almost the entire process of data collection can 

be streamlined into an automated procedure for clinical applications.  Given predefined reference 

region VOIs, methods such as Patlak or Logan analysis can by automated and normalized, 

reducing the manual work load required for such methods, and removing variance caused by ad 

hoc definitions of reference regions.  In a similar fashion, such a method could be applied to 

facilitate the use of image-derived input functions for kinetic PET imaging.  Once experimentally 

appropriate analysis has been performed on the raw PET data, the process of regional data 

extraction can be automated entirely, as shown above.  Moreover, this method can be used to 
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facilitate multi-center trials, by using identical image analysis and data extraction across many 

subjects, investigators and locations. 

2.5 Conclusions 

We have shown that the use of the SyN algorithm is a powerful tool for automated image 

normalization that maintains good alignment of biologically important structures of the warped 

images. We have also shown that by normalizing data to a common space and using a set of 

VOIs pre-drawn in that space, one can actually improve the predictive quality of data extracted 

from functional images. In addition to being able to better classify subjects into their diagnostic 

groups, we can do so using fewer predictor variables. This is perhaps due to an elimination of 

intra-investigator, and inter-subject variability by using a single set of VOIs.  These results seem 

to suggest that with a larger sample of subjects with AD and non-Alzheimer’s dementias, a 

protocol could be developed to greatly increase the ability to clinically diagnose patients into 

their proper groups based on differences in the binding patterns.  These results also suggest that 

automation of VOI analysis through spatial normalization to a single common space brain image 

can be used to streamline accurate, high-throughput PET image analysis for use in clinical 

settings.  This method is expected to be applicable to longitudinal studies of cognitive 

impairment as well as to other PET tracers (e.g., other probes for AD imaging), but further study 

is warranted. 
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Figures and Tables 
 

 

FIGURE 1. (a) (Left) Warping Results: Average of 22 subjects MRIs after linear registration only (Top); Average of 
22 subjects after warping to common space. (Middle); MRI of common space subject (Bottom).  (b) (Right) 
Absolute voxel-to-voxel variance of unwarped (Top) and warped (Bottom) MRIs. Warping reduces average in-brain 
variance by 54% from linear registration alone. 
 

 

FIGURE 2. Overlap Statistic by Region. Data shown is average overlap, ± SD, between common space regions and 
warped regions of remaining 22 subjects 
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FIGURE  3.  Generalized image of the VOIs used to extract FDDNP data *Reprinted from Protas et al.2010 [2] 
 
 

 

FIGURE  4.  Classification Percentages of Permutation Test.  Data shown are for the models using (a) unwarped 
data only, (b) unwarped data and MMSE, (c) warped data only, and (d) warped data and MMSE.  The vertical line 
represents the score of the true data. 
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TABLE I: Best Discriminant Models 
Model Classification 

(%) 
Cross-Validation 

(%) 
Regions 

Used 
Permutation 
Significance 

MMSE Only 77.3 77.3 N/A N/A 
Unwarped PET Data Only 82.6 73.9 2,4,5,8,9 p = 3.42*10-3

Warped PET Data Only 87 73.9 4,5,8,9 p = 1.3*10-4 
Unwarped PET Data & 
MMSE 

91.3 87 4,5,8,9 p = 8.6*10-4 

Warped PET Data & MMSE 100 95.7 4,5,8 P<10-5   † 
† (None of the 100,000 permutations resulted in a model that performed as well as the true data) 
 



44 
 

CHAPTER 3 - Evaluation of the use of Voxel-Value Distribution in Target Regions for 
Prediction of Changes in Longitudinal FDDNP-PET Studies  
 

Abstract 
 

When using mean values of target regions, heterogeneous tracer localization leads to decreased 

signal-to-noise ratios, as true signal is masked by background values. This study proposes a 

method for modeling the statistical distribution of voxel values within a given volume of interest 

(VOI).We examined longitudinal imaging of the tracer FDDNP in control and mild cognitive 

impairment (MCI) subjects, as heterogeneously localized amyloid plaques and tau protein are 

involved in MCI.  Subjects (16 Control and 18 MCI) underwent an initial dynamic FDDNP scan 

and a follow-up scan after 2 years. Subjects also underwent a battery of psychological tests at 

baseline and follow-up examinations.   

Logan and relative equilibrium analysis was performed on all scans to create distribution volume 

ratio (DVR) images. The distributions of voxel DVRs in 9 VOIs canonically associated with the 

pathological progression of Alzheimer’s disease were obtained. Each distribution was modeled 

as a sampling from a statistical admixture of “healthy” and “diseased” tissue.  Means, variances, 

and admixture proportions for these distributions were fit using an EM optimization algorithm. 

Regression models were built to predict the rate of change in the admixture parameters between 

baseline and follow-up scans, using admixture parameters from the baseline scan as the 

independent variables.  Regression models were also used to predict the rate of change in 

psychological scores between examinations using admixture parameters from the baseline PET 

scan as a predictors.  Separate models were built for controls and MCI subjects   
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Models built using statistical parameters greatly outperformed those based on mean VOI values 

in predicting the rate of amyloid accumulation and cognitive decline.  In models predicting rates 

of pathological progression, mean adjusted-R2 was 0.42 ± 0.17 when using mean-VOI measures 

as predictors, and improved to 0.79 ± 0.09 when using statistical parameters.  Similarly, in 

models predicting rates of cognitive decline, using mean-VOI measures at predictors resulted in 

mean adjusted-R2 of 0.38± 0.16, which improved to 0.75 ± 0.10 when using statistical parameters 

from the initial scan instead.  Accounting for non-Gaussian distributions of tracer in target VOIs 

can greatly increase the predictive quality of data, with trivial increases in data processing time. 

Although the method was used on FDDNP, it is highly applicable to other amyloid-binding 

tracers such as 11C-PIB, as well as to other dementias and diseases. 

3.1 Introduction 

The creation of accurate volumes of interest (VOIs) can be a major barrier in quantitative brain 

imaging, especially in large scale studies involving subjects with a wide range of pathological 

conditions, including cortical degeneration.  We have previously shown that through a 

combination of cortical surface mapping and structural warping, VOIs can be robustly and 

automatically generated, improving the diagnostic utility of PET data in classifying between 

healthy controls, mild cognitive impairment (MCI), and Alzheimer's disease (AD) patients [1, 2].  

In addition to removing variance introduced through inter- or intra-investigator variability, the 

number and size of VOIs generated by this method can be much larger than what would be 

generated by through manual definitions, giving a more complete representation of the biological 

phenomena being assayed. 
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In most VOI analyses in PET, only the mean activity (or some biologically relevant parametric 

value) is measured, even when large VOIs are created from a previously existing atlas, which 

assumes normality of tracer distribution in tissue [3].  However, there are many cases in which 

this will likely not be the case, such as the distribution of β-amyloid plaques and neurofibrillary 

tangles of tau protein (NFTs), characteristic of Alzheimer’s disease (AD).  In AD, the 

accumulation of these misfolded protein aggregates follows a well established pattern described 

by Braak and Braak, with three stages (A-C) of amyloid deposition, and six stages (I-VI) of NFT 

deposition [4].  However, this deposition begins long before clinical symptoms are recognizable, 

with post-mortem studies of cognitively normal controls showing β-amyloid and NFT  

distribution similar to mildly demented subjects, and having NFT distributions spanning Braak 

and Braak stages 0-V [ 5-7].  Furthermore, previous work has shown that within a single subject, 

the density of amyloid plaques and NFTs may not be uniformly distributed, meaning simple 

mean-value measures in PET may be insufficient to accurately describe pathology [7].  Work by 

Petersen et al. has shown that increases in Braak pathology stages correlate with increases in 

severity of clinical symptoms, meaning that accurate in vivo measurement of pathology through 

PET can be central in staging and predicting progression of disease [6]. 

In this work, we examine longitudinal changes in pathology and clinical symptoms in healthy 

controls and MCIs, using both mean-value measures and voxel-distribution measures, as made 

possible by the automated creation of large, structurally consistent VOIs.  Subjects who have 

been diagnosed with MCI have a larger decline in cognitive function than expected by healthy 

aging, and although they do not show signs of dementia, they do have a greatly increased risk for 

developing AD and other dementias over the normal population [8-9].  In post-mortem studies, it 

has been shown that 80% of amnestic-MCI patients present brain pathologies similar with Braak 
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NFT stages II-IV, implying that this study population should show substantial binding of AD 

tracers with sensitivity for tau aggregates[6]. 

There are currently many PET tracers that bind to either amyloid plaques or NFTs, but in this 

study we use the tracer, 2-(1-6-[(2-[18F]fluoroethyl)(methyl)amino]-2-naphthylethylidene) 

malononitrile (FDDNP) which has been shown to bind to both pathological proteins [2, 10-12]. 

To measure amyloid and NFT intensity in images, we created distribution volume ratio (DVR) 

images using both Logan graphical analysis and relative equilibrium (RE) analysis, as previous 

work has demonstrated that RE has shown some improvement over Logan in FDDNP [13-15].  

Additionally, we created SUVr parametric images for all subjects, as it has been previously 

shown that SUVr can provide similar information to DVR images without a full dynamic scan, 

and which is also commonly used for other AD tracers [16-18].  In this work, we validate the use 

of voxel-value distribution data over mean-value measures in predicting longitudinal changes in 

both pathological progression of protein deposition and cognitive decline, based on initial 

FDDNP-PET imaging. 

3.2 Methods 

3.2.1 Subjects 

The final study group was comprised of 18 MCI (64±9 years, 11:7 female/male) and 16 control 

(63±12 years, 10:6 female/male) subjects.  Originally 22 MCI and 22 control subjects were 

retrospectively enrolled for this study, however 10 subjects had to be removed due to missing or 

corrupted imaging data.  All subjects were given a battery of psychological exams including 

mini–mental state examination (MMSE) and the Hamilton Rating Scale for Depression.  Exams 

were also given to test language (Animal Naming Test), executive functioning (Stroop 
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Interference and Trail making B), visuo-spatial (Block Design), information processing (WAIS-

III Digit Symbol), and memory (Rey-Osterrieth Complex Figure Recall) abilities.  The time 

(μ±SD) between examinations was 2.1±0.6 years for MCI subjects and 2.3±1.5 years for control 

subjects.  For all subjects, psychological Z-scores were created for performance in specific areas 

of brain function [19]. 

3.2.2 Imaging 

MRI - A T1-weighted gradient echo (MP-RAGE) image was taken for each subject with a 3T 

Siemens Allegra MRI scanner (sagittal plane; repetition time (TR) 2300 ms; echo time (TE) 2.93 

ms; 160 slices; slice thickness 1 mm; in-plane voxel size 1.3×1.3 mm; field of view 256×256; 

flip angle 8°).  Each MRI was segmented into grey matter, white matter, and cerebrospinal fluid 

using SPM8.  All MRIs were non-linearly normalized to a high resolution control MRI, through 

a method described below.  A library of VOIs was previously defined on this control brain 

through cortical surface mapping [20]. 

PET - At both the initial and follow-up visit each subject underwent a dynamic FDDNP PET 

scan.  FDDNP was produced as described elsewhere [21], and each subject was given a bolus 

injection of FDDNP (210-440 MBq).  A dynamic PET scan was taken for up to 125 min. (six 30s 

frames; four 180s frames; five 600s frames; and three 1200s frames).  All imaging was 

performed using an ECAT EXACT HR+ or ECAT EXACT HR scanner (Siemens Corp.).   The 

images were reconstructed using filtered back-projection with attenuation correction.  After the 

initial reconstruction, movement correction was applied [22, 23].  This corrected the motion 

artifacts introduced during the 125 minute scan.  Each emission frame was aligned with the 

transmission frame, and then reconstructed using the proper attenuation coefficients.   
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3.2.3 Image Normalization 

For each MRI, a non-linear diffeomorphic mapping was computed to normalize the image to a 

common space atlas.  This mapping was computed, as described before [1], using the software 

package Advanced Normalization Tools (ANTS), as described by Avants et al. [24, 25].  This 

mapping was applied to the previously defined library of VOIs (including 9 cortical regions, 

subcortical white matter, and cerebellum), to bring them into each patient's MRI space.  MRIs, 

along with the segmentation images and normalized VOIs, were rigidly co-registered to their 

respective PET images, and down-resolved into PET resolution. 

3.2.4 Creation of Parametric FDDNP Images 

For each subject and time point, several different parametric images were generated from the 

dynamic FDDNP scan.  Distribution volume ratio (DVR) images were generated using both 

Logan graphical analysis, and relative equilibrium (RE) analysis [13, 14].  Additionally, SUVr 

was calculated using the frames from 35-45 minutes, as described by Wong et al. [16].   For all 

of these parametric images, cerebellar grey matter was originally used as a reference region, but 

there was evidence of increased signal in cerebellum between initial and follow-up scans in some 

subjects, which is in alignment with existing literature showing deposition of both β-amyloid and 

tau protein in the cerebellum [26,27].   Therefore, we instead used subcortical white matter, as 

described by Wong et al., as a reference region [28].  All parametric images were computed 

using reference region VOIs that were generated automatically from the image normalization 

algorithm.   
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3.2.5 Data Measurement and Analysis 

For each parametric image (SUVr, Logan-DVR, and RE-DVR), grey matter activity was 

measured bilaterally across nine cortical regions (Fig. 3.1) using the VOIs that were 

automatically generated from the common space atlas, combined with the MR-derived gray 

matter mask of each individual subject.  The extracted data was recorded either as a mean of the 

whole-VOI (mean-value data), or as a vector of all voxel-values within that VOI (distribution-

value data).  Voxel-value data was modeled statistically as an admixture of two normal 

distributions, representing healthy and diseased tissue (Eq. 1).  This model was fit using an 

iterative EM algorithm [29] to maximize likelihood for values of mean (μ1, μ2), variance (σ2
1, 

σ2
2), and admixture percentage (p) for both tissue types.  Without loss of generality, the model 

was constrained (μ1 ≤ μ2 ) so that distribution 1 represented healthy tissue.  The EM algorithm 

used to fit these parameters, and a discussion of its accuracy can be found in the supplemental 

data section of this chapter. 

ݕݐ݅ݒ݅ݐܿܣ݀݁ݎݑݏܽ݁ܯ                                            ൌ ሺ1 െ ,ଵߤሻܰሺ ଵሻߪ  ,ଶߤሺܰ                Eq.1				ଶሻߪ

For each VOI measured, linear regression models were built to predict the rate of change 

(units/day) in the measured (whole-VOI mean), and estimated (μ1, μ2,etc.) parameters, from the  

initial to follow-up scan. In models predicting changes in VOI means, the measured mean 

activity in all VOIs in the baseline scan were included as possible predictors.  In models 

predicting changes in estimated admixture parameters, all estimated parameters from all VOIs in 

the baseline scan were included as possible predictors.   In both cases, models were limited to a 

maximum of 3 predictor variables, as sample sizes were relatively small.  Models were built 

using both zero and non-zero intercepts for regression.  Optimal models in all cases were chosen 

on the basis of adjusted-R2 under the requirement that all regression parameters were 
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significantly different from zero. Similarly, regression model selection for the rates of change in 

psychological Z-scores were built using either VOI means or admixture parameters from all nine 

VOIs in the initial scan as possible predictors. A more complete description of the regression 

models can be found in the supplemental data section of this chapter. 

Because of the large number of possible predictors in distribution-value models and the complex 

nature of β-amyloid and tau progression in the brain, partial least squares regression (PLS) [30] 

was also used in the case of admixture parameter regression.  The method of PLS regression 

involves projecting the matrix of observations, X , into a smaller dimensional set of factors X', 

that is used as the regressor for the response variable Y.  PLS regression thus works well in cases 

where there are more variables than observations, and when there is multicollinearity or error in 

the original observations.  These improvements make PLS an ideal tool for modeling a cortically 

global and interconnected disease such as AD.  The number of factors used in PLS modeling was 

chosen using Wold's R criterion through leave-one-out cross-validation [30]. Weak predictors 

(those with low PLS-weightings and small regression coefficients) were iteratively trimmed from 

the model, as suggested previously [30,31], to reduce the total number of predictors used.  All 

PLS processing was performed using SAS 9.4.  In all cases, separate models were built for MCI 

and control subjects. 

3.3  Results 

All subjects were successfully aligned with the common space atlas through structural warping.  

Representative images from warping the common space atlas to a single subject are shown in 

Figure 3.2.  In all regions, there was a negative correlation between mean DVR values at 
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baseline and the rate of change in mean DVRs over time ( p = -0.64±0.12 (μ±SD) for MCIs and 

p = -0.44±0.07 (μ±SD) for controls).  

For both Logan and RE-generated DVR images, distribution-data was fit well by admixture 

modeling, showing non-normal distributions of voxel-values within VOIs throughout the cortex 

in both controls and MCIs. Voxel-value distributions of SUVr, while non-normal, showed 

reduction in mean activity in both whole-VOI and admixture distributions in approximately 40% 

of the VOIs measured, thus disallowing reasonable models of disease progression.  A 

representative graph of Logan-DVR distribution-value data and the admixture fit for a single 

subject and single VOI is shown in Fig. 3.3.  Distributions of RE-DVR show similar admixture 

fits to those of Logan-based graphical analysis.  

Regression results predicting rates of change in pathological progression of the disease are 

shown in Tables 3.1 and 3.2. Data shown is the adjusted-R2 values from the best regression 

model found for each VOI and data measurement technique.  For models using distribution-value 

measures, data shown is mean ± SD of adjusted-R2 values of regression models for distribution 

parameters in that region.  Similar results for predicting the rate of change in psychological 

scores based on initial Logan and RE DVR data is presented in Tables 3.3 and 3.4.  Full 

regression model details can be found in the Supplemental Data section.  Representative scatter 

plots of regression results can be seen in Figures 3.4 and 3.5. 

 
3.4 Discussion 

As can be seen in Figure 3.2, and as shown previously [1], the warping algorithm results in 

highly accurate structural matching between subjects of varying degrees of cortical degeneration.  

Therefore, this matching facilitates accurate automated data extraction from a wide range of 
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subjects without the introduction of inter- or intra-investigator variance.  Because two brain 

images are never going to be perfectly matched to one-another on a voxel-by-voxel basis, it is 

possible that automatically generated VOIs will not perfectly match homologous structures 

between patients, due to either warping or interpolation artifacts.  However, when combined with 

a grey-matter segmentation of the subject's MR, these small errors can be substantially 

minimized. Additionally, with automated VOI generation, it is possible to measure regions 

covered by thousands of voxels, much larger than would normally be feasible with manually 

defined regions.  This allows for accurate modeling of the distribution of activity in VOIs, as 

opposed to simple mean-value measurements.  

As shown in Figure 3.3, DVR values across regions were non-normal, and were fit well by an 

admixture of two normal distributions.  It should be noted that as the VOIs used for measurement 

in this case were combined with gray-matter masks of each individual subject, this admixture 

distribution is likely not a result of heterogeneity in binding between white and grey matter.  

Instead, this is representative of the known heterogeneous nature of amyloid and tau protein 

deposition within cortical regions in AD and other dementias: some regions mostly devoid of 

protein aggregates (modeled by N(μ1, σ1)), and regions infiltrated by the disease (modeled by 

N(μ2, σ2)).  Additionally, as can be seen in Figure 3.3, much information about the pathological 

progression of the disease can be lost when using only mean-value measurements. 

We found that although distributions of FDDNP-SUVr values were also non-normal and could 

be fit by a bi-normal admixture, there was actually a decrease in measured activity in a large 

proportion of subjects.  Previous studies have also shown longitudinal reductions in SUVr 

measures in PiB, possibly indicating that SUVr measures are insufficient to fully capture 

longitudinal changes in amyloid burden [32]. 
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Also in alignment with previous studies is our finding of negative correlation of the rate of 

disease progression with baseline amyloid burden, providing evidence of a plateauing effect of 

tau and amyloid deposition. 

As shown in Tables 3.1and 3.2, models predicting the progression of AD pathology show large 

improvements when switching from mean-value measures to distribution-value measures.  This 

is particularly noticeable in the case of Logan-DVR, where mean adjusted-R2 of the best OLS 

models is only 0.30.  The inability of mean-value DVR measures to predict longitudinal changes 

in amyloid load may explain the under-performance of FDDNP in previous longitudinal studies 

[3].  Tables 3.1 and 3.2 also show a marked improvement of predictive ability in using RE-based 

DVR values in place of Logan graphical analysis.  This improvement is further shown in that 

PLS models using Logan based measures used an average of 10.1 ± 4.1 predictors across 3 latent 

variables, while PLS models using RE-based measures used only 7.1 ± 1.6 predictors across 3 

latent variables.  Furthermore, paired-difference tests show a significant improvement of RE over 

Logan in OLS model strength for controls (p = 0.0014), and significant improvement in PLS 

models for MCIs (p=0.005).  There was a strong, but not significant (p=0.053) improvement in 

OLS models for MCIs, and PLS models in controls (p=0.051) when using RE instead of Logan-

based DVR.  This improvement is consistent with previous findings indicating improvements of 

RE-DVR over Logan-DVR in FDDNP [15] 

A similar improvement is found in predicting longitudinal changes in psychological scores based 

on the initial scan, as shown in Tables 3.3 and 3.4.  In the case of both Logan and RE-based 

DVR measures, models were greatly improved with the introduction of distribution data.  

Although RE-based models did not show a significant improvement over Logan-DVR models in 

control subjects, there was a significant improvement in both OLS (p=0.003) and PLS (p=0.02) 
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models for MCIs.  The significant improvement in using distribution-value data, and in using 

RE-based DVR measures, may explain previous difficulties in using amyloid imaging agents to 

predict longitudinal changes in pathology and symptoms [3].  

As shown above, use of voxel-value distribution can be a powerful tool in improving the 

quantitative utility of PET in evaluating diffuse bio-markers.  In combination with automatic 

generation of large anatomically specific VOIs, this methodology allows for increased signal-to-

noise measurement of tracer activity across multiple subjects.  This increase could be due to 

reductions in noise introduced through inter- or intra-investigator variability, small voxel-sample 

size, and non-normality of tracer activity.  Given the known heterogeneous localization of 

amyloid and tau pathology in dementias, and the improvement shown in this work, it is likely 

that the predictive capability of imaging data in AD and other dementias could be greatly 

improved through the use of this method as well. 

While subjects in this study were limited to healthy controls and MCI subjects, future studies of 

the methodology are warranted for studying changes over a longer time scale, as well as changes 

in FDDNP binding in subjects with more severe disease states such as amnestic-MCI and AD.  

Although this work has centered on the use of FDDNP in the context of dementia, its methods 

are easily adaptable to other tracers for AD, as well as to other disorders and diseases that show 

diffuse localization of target in tissue such as progressive supranuclear palsy [33], Down 

syndrome [34], or chronic traumatic encephalopathy [35].  In addition to improving the 

predictive capability of the imaging data, this method allows for more accurate measurement of 

disease pathology, and facilitates robust high-throughput image analysis, reducing many sources 

of noise. 
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3.5 Conclusions 

We have shown that the use of voxel value distribution data is a powerful tool in increasing the 

quantitative strength of PET data in amyloid and tau imaging, by accounting for non-normal 

distributions of parametric values due to heterogeneous density of pathological bio-markers in 

tissue.  Additionally, RE-DVR appears to be a more robust measure of amyloid binding than 

Logan-based graphical analysis for FDDNP. These results suggest that with a sample of subjects 

across a more diverse range of disease states, a more complete imaging-based model for disease 

staging and progression could be built.  This method is applicable to studies involving other AD 

tracers that bind amyloid or tau, as well as other imaging studies with heterogeneous localization 

of tracer in tissue.  Future studies are planned to compare the effect of this method in data 

already collected from subjects serially scanned with PiB and FDDNP. 
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 Figures and Tables 
 

 
FIGURE 3.1. Illustration of cortical VOIs used in data extraction.  Reprinted from Protas et al.2010 [2] 
 

 
FIGURE 3.2.  Example of automated registration of common space atlas and automated VOI generation in subject 
Space.  (Left) Common space MRI with VOIs for posterior frontal lobe and occipital-parietal regions. (Center) 
Common space MRI and VOIs warped to subject space. (Right) Subject MRI with automatically generated VOIs 
composed with grey-matter segmentation. 

 
FIGURE 3.3. Distribution of voxel Logan-DVR values in frontal lobe for a single MCI subject at baseline and two-
year follow-up.  Grey bars show measured data.  White shows fitted distributions for healthy and diseased tissue, 
and blue shows admixture distribution of whole VOI. The vertical green line shows the mean value of the VOI.  
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FIGURE  3.4.  Scatter plots of measured (whole VOI Mean) or estimated (Admixture parameters) vs. predicted 
(From OLS or PLS) rates of change (units/day) in the occipital-parietal area of MCI subjects.  (A) Rate of change in 
VOI mean using baseline VOI means as predictors. (B) Rate of change in healthy tissue mean (μ1) using admixture 
parameters at baseline as predictors. (C) Rate of change in diseased tissue mean (μ2) using admixture parameters at 
baseline as predictors.  Specific predictors and regression coefficients can be found in Supplemental Data 1.  The 
y=x line is shown in green. 
 

 
FIGURE 3.5.  Scatter plots of measured vs. predicted rates of change (units/day) in the visual processing Z-score for 
MCI subjects.  (A) Using mean RE-DVR measures from VOIs at the baseline scan as predictors.  (B) Using 
admixture parameters  from RE-DVR images at  the baseline scan as predictors. Specific predictors and regression 
coefficients can be found in Supplemental Data 1.  The y=x line is shown in green. 
 
 
 
 
 
 
 
 
 
 
 
 
 



62 
 

Table 3.1: Regression Results of Predicting Rate of Change in Logan-DVR by Initial Logan-
DVR Values.  Data shown are adjusted-R2 (mean ± SD) of optimal models of parameters 
measured in each region. 
Region Control (adjusted-R2) MCI (adjusted-R2) 

Mean Distribution 
(OLS) 

Distribution 
(PLS*) 

Mean Distribution 
(OLS) 

Distribution 
(PLS*) 

Upper Parietal 0.32 0.65 ±.06 0.77 ± .06 0.34 0.64 ± .03 0.79 ± .05 
Posterior Frontal 0.29 0.57±.11 0.74 ±.09 0.34 0.58 ±.13 0.69 ± .11 
Prefrontal 0.23 0.68±.09 0.77 ±.08 0.32 0.65±.06 0.82 ± .06 
Occipital-Parietal 0.20 0.51±.05 0.76 ± .08 0.35 0.66 ± .07 0.72 ±.04 
Posterior Temporal 0.25 0.51±.02 0.77 ±.11 0.25 0.66 ± .08 0.79 ±.05 
Lower Temporal ** 0.67±.08 0.75 ± .05 0.21 0.62 ± .20 0.72 ± .14 
Upper Temporal ** 0.64 ±.13 0.83±.06 0.22 0.60 ±.22 0.75 ±.11 

Posterior 
Cingulate 0.20 0.67±.10 0.80 ±.06 0.41 0.55 ±.11 0.68 ±.15 

Medial Temporal ** 0.72±.09 0.80 ±.04 0.55 0.69 ± .10 0.81 ± .10 

* For PLS models, data shown is percent-variance of dependant variables explained by the model. 
** No significant model with adjusted-R2 >0 was found. 
 
Table 3.2: Regression Results of Predicting Rate of Change in RE-DVR by Initial RE-DVR 
Values.  Data shown are adjusted-R2 (mean ± SD) of optimal models of parameters measured in 
each region.  
Region Control (adjusted-R2) MCI (adjusted-R2) 

Mean Distribution 
(OLS) 

Distribution 
(PLS*) 

Mean Distribution 
(OLS) 

Distribution 
(PLS*) 

Upper Parietal 0.50 0.80 ± .04 0.87 ±.03 0.69 0.69 ± .08 0.88 ± .02 
Posterior 
Frontal 0.71 0.72 ±.13 0.76 ±.08 0.64 0.74 ± .13 0.84 ± .09 

Prefrontal 0.58 0.76 ±.06 0.85 ±.10 ** 0.73 ± .05 0.89 ± .05 
Occipital-
Parietal 0.40 0.69 ± .12 0.74 ± .09 0.58 0.81 ± .01 0.88 ± .02 

Posterior 
Temporal 0.72 0.64 ±.30 0.70 ±.25 0.68 0.58 ±.18 0.68 ±.14 

Lower 
Temporal 0.41 0.72 ±.24 0.86 ±.05 0.55 0.65 ±.05 0.79 ± .05 

Upper 
Temporal 0.58 0.85 ±.08 0.89 ±.03 0.59 0.68 ± .10 0.79 ± .11 

Posterior 
Cingulate 0.43 0.70 ±.08 0.76 ±.05 0.52 0.59 ± .19 0.76±.07 

Medial 
Temporal 0.31 0.85 ±.05 0.90 ±.03 0.32 0.73 ±.08 0.87 ±.03 

* For PLS models, data shown is percent-variance of dependant variables explained by the model. 
** No significant model with adjusted-R2 >0 was found. 
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Table 3.3: Regression Results of Predicting Rate of Change in Psychological Z-Scores by Initial 
Logan-DVR values.  Data shown are adjusted-R2 of optimal models for each Z-score.  
Z-Score Control (adjusted-R2) MCI (adjusted-R2) 

Mean Distribution 
(OLS) 

Distribution 
(PLS*) 

Mean Distribution 
(OLS) 

Distribution 
(PLS*) 

Executive Function 0.46 0.86 0.87 ** 0.62 0.71 
Language ** 0.45 0.77 0.31 0.54 0.69 
Visuo-spatial 0.40 0.85 0.86 0.19 0.57 0.72 
Psychomotor 0.70 0.78 0.85 0.22 0.22 0.55 
Neuropsychological 0.39 0.57 0.81 ** 0.59 0.66 
Memory ** 0.42 0.53 ** 0.48 0.74 

* For PLS models, data shown is percent-variance of dependant variables explained by the model. 
** No significant model with adjusted-R2 >0 was found. 
 
Table 3.4: Regression Results of Predicting Rate of Change in Psychological Z-Scores by Initial 
RE-DVR values.  Data shown are adjusted-R2 of optimal models for each Z-score.  
Z-Score Control (adjusted-R2) MCI (adjusted-R2) 

Mean Distribution 
(OLS) 

Distribution 
(PLS*) 

Mean Distribution 
(OLS) 

Distribution 
(PLS*) 

Executive Function 0.58 0.83 0.90 ** 0.80 0.85 
Language 0.30 0.64 0.70 0.24 0.60 0.69 
Visuo-spatial 0.47 0.68 0.91 0.18 0.75 0.77 
Psychomotor 0.62 0.76 0.84 0.22 0.48 0.60 
Neuropsychological 0.39 0.69 0.82 ** 0.72 0.79 
Memory ** 0.44 0.69 ** 0.60 0.79 

* For PLS models, data shown is percent-variance of dependant variables explained by the model. 
** No significant model with adjusted-R2 >0 was found. 
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S1.1 Admixture Distribution Modeling

We let x⃗ be an nx1 vector of the DVR values measured from each voxel within a single VOI. We

treat each xi as independent and identically distributed observation from a mixture of two normal

densities, Mix(µ1, µ2, σ 2
1 , σ 2

2 , p).

Mix(µ1 , µ2 , σ1 , σ2 , p) = (1 − p) ∗ N1(µ1 , σ 2
1 ) + p ∗ N2(µ2 , σ 2

2 ) (S1.1)

The values for µ1, µ2, σ 2
1 , σ 2

2 , andp can be estimated iteratively through an EM algorithm. At the jth

iterative step, we first compute the posterior mixture probability (Mi , j) that each of the n observa-

tions (i.e. voxel measurements) xi(i ∈ [1, n]) from a single VOI is drawn from the distribution N2,

based on the parameter estimates from the previous iterative step, or the initial parameter estimates

(Eq. S1.2). The parameter estimates are then updated according to Eqs. S1.3. This process is

repeated until convergence. For the work here, the EM algorithm was allowed to continue until the

net-magnitude of parameter estimate change became less than 10−4.

M i , j+1 =

p j√
2πσ 2

2, j
exp −(x i−µ2, j)

2

2σ 2
2, j

1−p j√
2πσ 2

1, j
exp −(x i−µ1, j)

2

2σ 2
1, j

+ p j√
2πσ 2

2, j
exp −(x i−µ2, j)

2

2σ 2
2, j

(S1.2)

p j+1 =
1
n

n
∑
i=1

M i , j+1 (S1.3a)

µ1, j+1 =

n
∑
i=1
(1 −M i , j+1)x i
n
∑
i=1
(1 −M i , j+1)

(S1.3b)

µ2, j+1 =

n
∑
i=1

M i , j+1x i

n
∑
i=1

M i , j+1

(S1.3c)

σ 2
1, j+1 =

1
n
∑
i=1
(1 −M i , j+1)

n
∑
i=1
(1 −M i , j+1)(x i − µ1, j+1)2 (S1.3d)
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σ 2
2, j+1 =

1
n
∑
i=1

M i , j+1

n
∑
i=1

M i , j+1(x i − µ2, j+1)2 (S1.3e)

Because it is know that the EM algorithm for normal admixtures can result in noisy estimates

(especially without constraints on the relationship between σ 2
1 and σ 2

2 ), bootstrapping was employed

to obtain approximations of the variance of each parameter estimate. For each subject and VOI,

the EM algorithm employed in Equations (S1.2, S1.3) was applied to 1000 bootstrap samples ˆ⃗x of

the originally measured data, x⃗. The sample relative standard deviation (RSD) of each parameter

was computed from the bootstrapping results. These estimated RSDs are shown in Table S1.1.

Because the distribution of RSDs was highly non-normal in all cases, data shown in Table S1.1 are

the median and median absolute deviation (MAD) of the parameter estimates.

S1.2 Regression Modeling

From each of the nine VOIs in which we measure the voxel distribution x⃗v (v ∈ [1, 2, ..., 9]), we

derive four parameters at both the initial (t1) and follow-up (t2) scan, to be used in the regression

modeling. Along with the means and admixture percentage obtained from the EM algorithm above

(µ1,v(t), µ2,v(t), pv(t)), we also have the whole-VOI mean, x̄v(t). We calculate the rate of change

(in days−1) in these parameters over time as in Equation (S1.4). We then build regression models of

the types described in Equations (S1.5) and (S1.6) for each VOI v. In Equation (S1.5), the rows of

the independent data matrix Xv are a combination of up to three of parameters drawn from {x̄v ∣∀v}.

In Equations (S1.6), the rows of the independent data matrix Pv are a combination of up to three

parameters drawn from {µ1,v , µ2,v , pv ∣∀v}.

d
dt

µ1,v =
µ1,v(t2) − µ1,v(t1)

t2 − t1
(S1.4)

d
dt

x̄ i = b0 + Xv b⃗ + є (S1.5)
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d
dt

µ1, i = b0 + Pv b⃗ + є

d
dt

µ2, i = b0 + Pv b⃗ + є

d
dt

p i = b0 + Pv b⃗ + є

(S1.6)

The regressions computed in Eq. (S1.6) are complicated by the addition of measurement error

as introduced through EM parameter estimation. With a median RSD of less than 1 percent, the

measurement error in the parameters µ1 and µ2 are likely smaller than the error introduced by bi-

ological noise and PET reconstruction. For these parameters error in measurement is not likely to

cause large deleterious effects in the linear regression. The larger relative error in the admixture

parameter p will result in regression coefficients biased towards zero (when p is a independent

variable) and larger standard errors in the estimated regression coefficients (when p is the depen-

dant variable). However, both of these limitations will yield more conservative regression results

than in a situation free of measurement error. The effects of the measurement error in p will be

complicated further by the possibility of correlated measurement error in the the dependant in in-

dependent variables (e.g. when pi is one of the predictors of d
dt pi). These complications can all

be overcome fairly easily with the use of partial least squares (PLS) regression, however. Because

PLS regression models the covariance structure of the independent and dependent variables, and

does not assume that they are independent, correlated and uncorrelated errors in measurement are

robustly handled.

S1.3 Regression Modeling Results

The results from the regression modeling described above are reported in Tables S1.2-S1.13.

Table S1.2 Shows regression results for models of d
dt x̄i as described in Eq S1.5, using VOI means

at the initial scan to predict rates of change in VOI means between scans. These table show results

for controls and MCIs, using both Logan and RE-DVR measures. Data shown is adjusted-R2, R2,

predictor variables (x1, x2, x3), and their associated regression parameters (b1, b2, b3) of the optimal

model found. Models with no b0 reported were built without a y-intercept parameter.
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Tables S1.3 - S1.6 show regression results using models of sort in Eqs. S1.6, using estimated

admixture parameters from the baseline scan as predictors for the rate of change in admixture pa-

rameters for controls and MCIs. Tables S1.3 and S1.4 show results using Logan DVR values, and

Tables S1.5 and S1.6 show results using RE-DVR values. Data shown is adjusted-R2, R2, predic-

tor variables (x1, x2, x3), and their associated regression parameters (b1, b2, b3) of the optimal model

found. Models with no b0 reported were built without a y-intercept parameter.

Tables S1.7 - S1.10 show PLS regression results using Logan and relative equilibrium DVR

values, to predict the rate of change in estimated admixture parameters for controls andMCIs. Data

shown is percent variance of the dependant variables explained by the model (R2), the number of

latent variables (LVs), and which predictor variables were used. Data shown as param{a,b,c,...}, refers

to the admixture parameter "param" as estimated for the VOIs a,b,c,... .

Table S1.11 Shows regression results for models described in Eq S1.5, using VOI means at the

initial scan to predict rates of change in psychological Z-scores between examinations. These ta-

ble show results for controls and MCIs, using both Logan and RE-DVR measures. Data shown is

adjusted-R2, R2, predictor variables (x1, x2, x3), and their associated regression parameters (b1, b2, b3)

of the optimal model found. Models with no b0 reported were built without a y-intercept parameter.

Table S1.12 shows regression results using models of sort in Eqs. S1.6, using estimated admix-

ture parameters (of Logan and RE-DVR images) from the baseline scan as predictors for the rate

of change of psychological z-scores in controls and MCIs. Data shown is adjusted-R2, R2, predic-

tor variables (x1, x2, x3), and their associated regression parameters (b1, b2, b3) of the optimal model

found. Models with no b0 reported were built without a y-intercept parameter.

Table S1.13 shows PLS regression results using Logan and relative equilibrium DVR values, to

predict the rate of change in psychological z-scores. Data shown is percent variance of the depen-

dant variables explained by the model (R2), the number of latent variables (LVs), and which pre-

dictor variables were used. Data shown as param{a,b,c,...}, refers to the admixture parameter "param"

as estimated for the VOIs a,b,c,... .
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Table S1.1 Median and Median Absolute Deviation of EM Parameter Estimates. (Data shown are percent values)
Logan DVR RE DVR

Controls MCIs Controls MCIs
Median MAD Median MAD Median MAD Median MAD

RSD(µ) 0.813 0.372 0.888 0.430 0.786 0.395 0.891 0.436
RSD(p) 10.0 4.60 11.1 5.17 10.0 4.55 12.1 5.65
RSD(σ 2) 9.65 3.83 10.6 4.54 9.84 4.14 10.4 4.32
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Table S1.2:  OLS Regression Model Details: Rates of change in the mean Logan (A) or relative 
equilibrium (B) DVR measured in nine VOIs in Controls and MCIs.  NA values represent VOIs 
in which no model with regression parameters significantly different from zero could be found. 

(A) 
d/dt Logan‐DVR 

Controls 
Adj‐R2  R2  x1  x2  x3  b0  b1  b2  b3 

(1) Upper Parietal  0.315  0.361   ଷݔ̅ ‐  ‐  1.0x10‐3  ‐8.6x10‐4  ‐  ‐ 

(2) Posterior Frontal  0.294  0.341  ଷݔ̅ ‐  ‐  1.1x10‐3  ‐9.6x10‐4  ‐  ‐ 

(3) Prefrontal  0.228  0.279  ସݔ̅ ‐  ‐  1.7x10‐3  ‐1.5x10‐3  ‐  ‐ 

(4) Occipital‐Parietal  0.203  0.256  ଷݔ̅ ‐  ‐  8.4x10‐4  ‐6.9x10‐4  ‐  ‐ 

(5) Posterior Temporal  0.253  0.303  ݔ̅ ‐  ‐  2.0x10‐3  ‐1.6x10‐3  ‐  ‐ 

(6) Lower Temporal  NA  NA  ‐  ‐  ‐  ‐  ‐  ‐  ‐ 

(7) Upper Temporal  NA  NA  ‐  ‐  ‐  ‐  ‐  ‐  ‐ 

(8) Posterior Cingulate  0.200  0.252  ଼ݔ̅ ‐  ‐  1.5x10‐3  ‐1.2x10‐3  ‐  ‐ 

(9) Medial Temporal  NA  NA  ‐  ‐  ‐  ‐  ‐  ‐  ‐ 

  MCIs 
Adj‐R2  R2  x1  x2  x3  b0  b1  b2  b3 

(1) Upper Parietal  0.336  0.375  ସݔ̅ ‐  ‐  1.3x10‐3  ‐1.1x10‐3  ‐  ‐ 

(2) Posterior Frontal  0.339  0.455  ଼ݔ̅ ‐  ‐  1.5x10‐3  ‐1.2x10‐3  ‐  ‐ 

(3) Prefrontal  0.323  0.363  ଼ݔ̅ ‐  ‐  1.4x10‐3  ‐1.1x10‐3  ‐  ‐ 

(4) Occipital‐Parietal  0.353  0.391  ସݔ̅ ‐  ‐  1.7x10‐3  ‐1.5x10‐3  ‐  ‐ 

(5) Posterior Temporal  0.205  0.252  ସݔ̅ ‐  ‐  1.7x10‐3  ‐1.4x10‐3  ‐  ‐ 

(6) Lower Temporal  0.120  0.247  ଶݔ̅ ‐  ‐  1.7x10‐3  ‐1.5x10‐3  ‐  ‐ 

(7) Upper Temporal  0.223  0.272  ଶݔ̅ ‐  ‐  1.2x10‐3  ‐1.0x10‐3  ‐  ‐ 

(8) Posterior Cingulate  0.413  0.520  ଷݔ̅ ଼ݔ̅ ଽݔ̅ 1.5x10‐3  2.2x10‐3  ‐2.1x10‐3  ‐1.2x10‐3 

(9) Medial Temporal  0.548  0.628  ଵݔ̅ ଷݔ̅ ଽݔ̅ 1.7x10‐3  ‐2.6x10‐3  3.0x10‐3  ‐2.0x10‐3 

(B) 
d/dt RE‐DVR 

Controls 
Adj‐R2  R2  x1  x2  x3  b0  b1  b2  b3 

(1) Upper Parietal  0.498  0.531  ଵݔ̅ ‐  ‐  8.9x10‐4  ‐8.7x10‐3  ‐  ‐ 

(2) Posterior Frontal  0.707  0.765  ସݔ̅ ହݔ̅ ଼ݔ̅ 1.7x10‐3  ‐2.2x10‐3  1.8x10‐3  ‐1.3x10‐3 

(3) Prefrontal  0.584  0.667  ସݔ̅ ହݔ̅ ଼ݔ̅ 2.5x10‐3  ‐4.4x10‐3  3.1x10‐3  ‐1.2x10‐3 

(4) Occipital‐Parietal  0.403  0.522  ଵݔ̅ ଶݔ̅ ݔ̅ 9.3x10‐4  1.4‐x10‐3  1.8x10‐3  ‐1.3x10‐3 

(5) Posterior Temporal  0.719  0.775  ଵݔ̅ ଶݔ̅ ݔ̅ 1.9x10‐3  ‐1.3x10‐3  1.7x10‐3  ‐2.1x10‐3 

(6) Lower Temporal  0.406  0.446  ݔ̅ ‐  ‐  1.6x10‐3  ‐1.5x10‐3  ‐  ‐ 

(7) Upper Temporal  0.582  0.666  ସݔ̅ ହݔ̅ ଼ݔ̅ 2.0x10‐3  ‐3.2x10‐3  2.4x10‐3  ‐1.2x10‐3 

(8) Posterior Cingulate  0.426  0.464  ଼ݔ̅ ‐  ‐  1.3x10‐3  ‐1.2x10‐3  ‐  ‐ 

(9) Medial Temporal  0.312  0.450  ସݔ̅ ହݔ̅ ଼ݔ̅ 2.6x10‐3  ‐5.1x10‐3  4.4x10‐3  ‐1.9x10‐3 

  MCIs 
Adj‐R2  R2  x1  x2  x3  b0  b1  b2  b3 

(1) Upper Parietal  0.688  0.743  ଷݔ̅ ݔ̅ ଼ݔ̅ 1.9x10‐3  1.2x10‐3  ‐1.4x10‐3  ‐1.4x10‐3 

(2) Posterior Frontal  0.637  0.573  ଷݔ̅ ݔ̅ ଼ݔ̅ 1.9x10‐3  1.2x10‐3  ‐1.6x10‐3  ‐1.3x10‐3 

(3) Prefrontal  NA  NA  ‐  ‐  ‐  ‐  ‐  ‐  ‐ 

(4) Occipital‐Parietal  0.575  0.650  ଷݔ̅ ݔ̅ ଼ݔ̅ 2.1x10‐3  1.4x10‐3  ‐2.0x10‐3  ‐1.2x10‐3 

(5) Posterior Temporal  0.680  0.737  ଷݔ̅ ݔ̅ ଼ݔ̅ 2.0x10‐3  1.6x10‐3  ‐1.7x10‐3  ‐1.6x10‐3 

(6) Lower Temporal  0.550  0.629  ଷݔ̅ ݔ̅ ଼ݔ̅ 2.0x10‐3  1.3x10‐3  ‐1.8x10‐3  ‐1.2x10‐3 

(7) Upper Temporal  0.594  0.666  ଷݔ̅ ݔ̅ ଼ݔ̅ 1.7x10‐3  1.1x10‐3  ‐1.6x10‐3  ‐1.1x10‐3 

(8) Posterior Cingulate  0.518  0.603  ଷݔ̅ ସݔ̅ ଼ݔ̅ 1.1x10‐3  1.4x10‐3  ‐1.1x10‐3  ‐1.2x10‐3 

(9) Medial Temporal  0.318  0.358  ݔ̅ ‐  ‐  1.9x10‐3  ‐1.7x10‐3  ‐  ‐ 
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Table S1.3:  Logan-DVR OLS Regression Model Details: Rates of change in the admixture 
parameters μ1 (A), μ2 (B), and p (C), estimated from Logan-DVR images across nine VOIs in 
Controls. 

(A) 
d/dt μ1 

Controls 

Adj‐R2  R2  x1  x2  x3  b0  b1  b2  b3 

(1) Upper Parietal  0.698  0.759  μ1,3  μ2,7  p9  ‐2.0x10‐4  9.4x10‐4  3.3x10‐4  ‐9.7x10‐4 

(2) Posterior Frontal  0.619  0.695  μ1,4  p2  p4  3.1x10‐4  ‐8.9x10‐4  6.0x10‐4  6.0x10‐4 

(3) Prefrontal  0.676  0.741  μ1,3  μ2,3  μ2,8  ‐8.4x10‐4  ‐4.0x10‐3  2.9x10‐3  1.3x10‐3 

(4) Occipital‐Parietal  0.562  0.649  μ1,7  μ2,2  μ2,3  5.8x10‐4  ‐2.0x10‐3  3.1x10‐3  ‐1.6x10‐3 

(5) Posterior Temporal  0.666  0.733  μ1,3  μ2,2  p9  1.5x10‐4  ‐1.9x10‐3  1.5x10‐3  3.5x10‐4 

(6) Lower Temporal  0.634  0.707  μ1,3  μ2,1  p2  ‐5.9x10‐4  ‐3.4x10‐3  3.1x10‐3  1.1x10‐3 

(7) Upper Temporal  0.766  0.813  μ1,3  μ1,9  μ2,5  8.6x10‐4  ‐1.4x10‐3  ‐9.6x10‐4  1.3x10‐3 

(8) Posterior Cingulate  0.610  0.688  μ1,3  μ2,1  p2  ‐6.0x10‐4  ‐3.1x10‐3  2.9x10‐3  9.5x10‐4 

(9) Medial Temporal  0.818  0.842  μ1,9  p3  ‐  2.6x10‐3  ‐2.9x10‐3  6.5x10‐4  ‐ 

(B)  
d/dt μ2 

 
Adj‐R

2
  R

2
  x1  x2  x3  b0  b1  b2  b3 

(1) Upper Parietal  0.659  0.727  p3  p9  μ2,7  1.5x10‐4  ‐6.6x10‐4  1.8x10‐3  ‐1.4x10‐3 

(2) Posterior Frontal  0.643  0.715  μ1,3  μ2,3  p2  3.9x10‐4  ‐2.1x10‐3  1.5x10‐3  3.2x10‐4 

(3) Prefrontal  0.591  0.673  μ1,2  μ2,2  μ2,4  2.4x10‐3  ‐3.1x10‐3  4.4x10‐3  ‐3.7x10‐3 

(4) Occipital‐Parietal  0.460  0.568  μ1,2  μ2,2  μ2,4  2.2x10‐3  ‐2.9x10‐3  3.4x10‐3  ‐2.7x10‐3 

(5) Posterior Temporal  0.650  0.720  μ1,2  μ2,2  μ2,4  2.9x10‐3  ‐3.3x10‐3  4.0x10‐3  ‐3.6x10‐3 

(6) Lower Temporal  0.525  0.620  μ1,4  p3  p5  2.1x10‐3  ‐1.8x10‐3  8.0x10‐3  ‐9.5x10‐4 

(7) Upper Temporal  0.516  0.613  μ1,1  μ1,3  p5  4.1x10‐4  1.8x10‐3  ‐1.8x10‐3  ‐4.7x10‐4 

(8) Posterior Cingulate  0.622  0.698  μ1,2  μ1,9  μ2,2  1.8x10‐3  ‐3.0x10‐3  ‐1.0x10‐3  2.1x10‐3 

(9) Medial Temporal  0.651  0.721  μ1,9  p3  p4  2.3x10‐3  ‐2.0x10‐3  5.7x10‐4  ‐9.0x10‐4 

(C)  
d/dt p 

 

Adj‐R2  R2  x1  x2  x3  b0  b1  b2  b3 

(1) Upper Parietal  0.584  0.668  μ2,1  μ2,7  p9  1.2x10‐3  2.9x10‐3  ‐3.6x10‐3  ‐7.4x10‐4 

(2) Posterior Frontal  0.437  0.549  μ1,7  μ2,6  p7  ‐2.8x10‐4  ‐3.4x10‐3  3.8x10‐3  ‐8.0x10‐4 

(3) Prefrontal  0.771  0.801  p3  p4  ‐  1.4x10‐4  ‐1.5x10‐3  1.2x10‐3  ‐ 

(4) Occipital‐Parietal  0.508  0.606  μ2,3  μ2,7  p7  ‐6.2x10‐4  ‐1.5x10‐3  2.4x10‐3  ‐7.5x10‐4 

(5) Posterior Temporal  0.682  0.746  μ1,3  μ1,7  p8  3.1x10‐3  1.9x10‐3  ‐4.1x10‐3  ‐1.0x10‐3 

(6) Lower Temporal  0.691  0.732  p5  p7  ‐  1.6x10‐3  ‐9.1x10‐4  ‐1.9x10‐3  ‐ 

(7) Upper Temporal  0.649  0.719  μ1,7  μ2,7  p9  ‐6.6x10‐4  4.6x10‐3  ‐3.4x10‐3  ‐6.9x10‐4 

(8) Posterior Cingulate  0.784  0.827  μ1,1  μ2,5  p8  1.6x10‐3  ‐5.2x10‐3  4.0x10‐3  ‐2.1x10‐3 

(9) Medial Temporal  0.680  0.744  μ1,9  μ2,2  μ2,7  ‐3.1x10‐3  4.1x10‐3  4.6x10‐3  ‐5.1x10‐3 
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Table S1.4:  Logan-DVR OLS Regression Model Details: Rates of change in the admixture 
parameters μ1 (A), μ2 (B), and p (C), estimated from Logan-DVR images across nine VOIs in 
MCI subjects. 

(A) 
d/dt μ1 

MCIs 

Adj‐R2  R2  x1  x2  x3  b0  b1  b2  b3 

(1) Upper Parietal  0.622  0.689  μ1,1  p2  p5  1.8x10‐3  ‐1.2x10‐3  ‐4.2x10‐4  ‐4.2x10‐4 

(2) Posterior Frontal  0.425  0.526  μ2,9  p3  p6  7.4x10‐4  ‐4.6x10‐4  4.3x10‐4  ‐4.2x10‐4 

(3) Prefrontal  0.648  0.689  μ1,7  μ2,1  p3  ‐  ‐1.5x10‐3  1.1x10‐3  8.4x10‐4 

(4) Occipital‐Parietal  0.588  0.665  μ1,1  p3  p6  1.4x10‐3  ‐1.2x10‐3  7.5x10‐4  ‐6.5x10‐4 

(5) Posterior Temporal  0.680  0.737  μ1,1  p7  p8  3.7x10‐3  ‐2.6x10‐3  ‐9.0x10‐4  ‐7.6x10‐4 

(6) Lower Temporal  0.541  0.595  μ2,2  μ2,3  p3  ‐  ‐2.2x10‐3  1.7x10‐3  1.0x10‐3 

(7) Upper Temporal  0.612  0.680  μ2,2  p3  p6  1.3x10‐3  ‐1.0x10‐3  6.8x10‐4  ‐5.9x10‐4 

(8) Posterior Cingulate  0.615  0.695  μ2,2  p3  p6  6.9x10‐4  ‐5.9x10‐4  6.7x10‐4  ‐3.9x10‐4 

(9) Medial Temporal  0.691  0.727  p3  p6  ‐  1.2x10‐3  ‐1.7x10‐3  1.2x10‐3  ‐ 

(B)  
d/dt μ2 

 
Adj‐R

2
  R

2
  x1  x2  x3  b0  b1  b2  b3 

(1) Upper Parietal  0.632  0.697  μ2,4  μ2,5  p6  1.1x10‐3  ‐3.5x10‐3  2.8x10‐3  ‐4.8x10‐4 

(2) Posterior Frontal  0.647  0.709  μ2,4  μ2,5  p6  1.5x10‐3  ‐4.5x10‐3  3.6x10‐3  ‐5.9x10‐4 

(3) Prefrontal  0.597  0.668  μ2,4  μ2,5  p6  1.5x10‐3  ‐4.4x10‐3  3.4x10‐3  ‐4.5x10‐4 

(4) Occipital‐Parietal  0.725  0.774  μ2,4  μ2,5  p6  2.1x10‐3  ‐5.4x10‐3  4.1x10‐3  ‐8.2x10‐4 

(5) Posterior Temporal  0.577  0.652  μ2,4  μ2,5  p6  1.6x10‐3  ‐2.7x10‐3  1.7x10‐3  ‐6.8x10‐4 

(6) Lower Temporal  0.473  0.566  μ2,4  μ2,5  p6  9.8x10‐4  ‐3.3x10‐3  2.8x10‐3  ‐5.0x10‐4 

(7) Upper Temporal  0.376  0.486  μ2,4  μ2,5  p6  9.9x10‐4  ‐2.5x10‐3  2.0x10‐3  ‐4.5x10‐4 

(8) Posterior Cingulate  0.602  0.659  μ2,6  μ2,8  p3  ‐  9.9x10‐4  ‐1.2x10‐3  7.4x10‐4 

(9) Medial Temporal  0.785  0.823  μ1,9  p3  p5  1.0x10‐3  9.7x10‐4  ‐5.5x10‐4  ‐1.1x10‐3 

(C)  
d/dt p 

 
Adj‐R2  R2  x1  x2  x3  b0  b1  b2  b3 

(1) Upper Parietal  0.670  0.728  μ1,1  μ2,3  μ2,4  1.1x10‐3  ‐3.1x10‐3  3.8x10‐3  ‐2.1x10‐3 

(2) Posterior Frontal  0.657  0.697  μ1,7  μ2,2  μ2,3  ‐  ‐1.6x10‐3  5.3x10‐3  ‐3.4x10‐3 

(3) Prefrontal  0.708  0.742  p3  p7  p8  ‐  ‐9.8x10‐4  4.0x10‐4  6.0x10‐4 

(4) Occipital‐Parietal  0.674  0.732  μ2,3  p8  p9  ‐8.9x10‐4  7.2x10‐4  4.3x10‐4  ‐3.8x10‐4 

(5) Posterior Temporal  0.732  0.763  μ2,3  μ2,3  p5  ‐  ‐2.7x10‐3  3.5x10‐3  ‐1.5x10‐3 

(6) Lower Temporal  0.851  0.877  μ1,4  p6  p8  3.6x10‐3  ‐2.6x10‐3  ‐2.0x10‐3  5.2x10‐4 

(7) Upper Temporal  0.817  0.851  p3  p6  p7  ‐9.2x10‐4  1.5x10‐3  8.1x10‐4  ‐7.9x10‐4 

(8) Posterior Cingulate  0.420  0.455  μ2,1  p8  ‐  ‐  7.8x10‐4  ‐1.3x10‐3  ‐ 

(9) Medial Temporal  0.585  0.658  μ1,1  μ2,9  p7  ‐3.1x10‐3  ‐3.9x10‐3  5.3x10‐3  1.1x10‐3 
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Table S1.5:  RE-DVR OLS Regression Model Details: Rates of change in the admixture 
parameters μ1 (A), μ2(B), and p (C), estimated from RE-DVR images across nine VOIs in 
Controls. 

(A)  
d/dt μ1 

Controls 
Adj‐R2  R2  x1  x2  x3  b0  b1  b2  b3 

(1) Upper Parietal  0.769  0.815  μ1,7  μ2,4  μ2,8  1.5x10‐3  1.4x10‐3  ‐1.8x10‐3  ‐8.0x10‐4 

(2) Posterior Frontal  0.602  0.655  μ1,1  p2  p3  ‐  ‐3.2x10‐4  3.2x10‐4  2.1x10‐4 

(3) Prefrontal  0.693  0.755  μ1,4  p6  p8  1.8x10‐3  ‐1.8x10‐3  ‐3.5x10‐4  2.1x10‐4 

(4) Occipital‐Parietal  0.656  0.725  μ1,7  μ2,3  p8  ‐4.7x10‐4  8.5x10‐4  ‐5.5x10‐4  3.1x10‐4 

(5) Posterior Temporal  0.728  0.782  μ1,7  μ1,4  p8  9.6x10‐4  1.1x10‐3  ‐2.1x10‐3  4.8x10‐4 

(6) Lower Temporal  0.865  0.883  μ1,2  μ2,7  p8  ‐  1.8x10‐3  ‐1.7x10‐3  4.0x10‐4 

(7) Upper Temporal  0.762  0.810  μ2,2  μ2,4  p8  9.7x10‐4  1.1x10‐3  ‐2.0x10‐3  2.4x10‐4 

(8) Posterior Cingulate  0.778  0.808  μ1,5  μ2,1  p8  ‐  1.0x10‐3  ‐1.3x10‐3  5.5x10‐4 

(9) Medial Temporal  0.872  0.889  μ2,6  μ2,7  p7  ‐  5.5x10‐3  ‐6.0x10‐3  7.4x10‐3 

(B)  
d/dt μ2 

 
Adj‐R2  R2  x1  x2  x3  b0  b1  b2  b3 

(1) Upper Parietal  0.781  0.824  μ2,1  μ2,2  μ2,8  1.4x10‐3  ‐2.2x10‐3  1.6x10‐3  ‐6.7x10‐4 

(2) Posterior Frontal  0.860  0.888  μ1,1 μ1,9  p9  1.5x10‐3  ‐1.0x10‐3  ‐5.0x10‐4  ‐1.5x10‐4 

(3) Prefrontal  0.805  0.844  μ2,4 μ2,6  p8  1.1x10‐3  ‐4.1x10‐3  2.8x10‐3  3.9x10‐4 

(4) Occipital‐Parietal  0.817  0.854  μ1,3 μ2,4  p8  2.6x10‐3  1.2x10‐3  ‐3.6x10‐3  2.3x10‐4 

(5) Posterior Temporal  0.890  0.912  μ1,3 μ2,4  p8  3.1x10‐3  1.2x10‐3  ‐3.9x10‐3  2.1x10‐4 

(6) Lower Temporal  0.856  0.884  μ2,2 μ2,4  p8  1.1x10‐3  1.5x10‐3  ‐2.5x10‐3  2.7x10‐4 

(7) Upper Temporal  0.893  0.914  μ1,3 μ2,4  p7  2.6x10‐3  1.0x10‐3  ‐3.5x10‐3  4.8x10‐4 

(8) Posterior Cingulate  0.615  0.666  μ2,6  μ2,7  p8  ‐  2.3x10‐3  ‐2.4x10‐3  2.5x10‐4 

(9) Medial Temporal  0.793  0.834  μ2,2 μ2,4  μ2,8  4.8x10‐3  3.4x10‐3  ‐5.4x10‐3  ‐2.2x10‐3 

(C)  
d/dt p 

 
Adj‐R2  R2  x1  x2  x3  b0  b1  b2  b3 

(1) Upper Parietal  0.841  0.872  μ2,1  μ2,3  p9  ‐2.6x10‐3  9.6x10‐3  ‐6.9x10‐3  ‐6.0x10‐4 

(2) Posterior Frontal  0.692  0.733  μ2,3 μ2,4  p1  ‐  1.2x10‐3  ‐7.7x10‐4  ‐7.1x10‐4 

(3) Prefrontal  0.774  0.820  μ1,5 μ2,6  p3  4.0x10‐3  3.3x10‐3  ‐5.8x10‐3  ‐1.6x10‐3 

(4) Occipital‐Parietal  0.594  0.648  μ2,5 μ2,8  p1  ‐  ‐1.1x10‐3  1.0x10‐3  2.5x10‐4 

(5) Posterior Temporal  0.304  0.397  μ1,6 μ2,4  p6  ‐  ‐3.1x10‐3  3.5x10‐3  ‐1.1x10‐3 

(6) Lower Temporal  0.449  0.560  μ2,3 μ2,5    p2  2.4x10‐3  4.4x10‐3  ‐6.1x10‐3  ‐9.4x10‐4 

(7) Upper Temporal  0.891  0.906  μ1,9 μ2,9    p7  ‐  ‐4.6x10‐3  4.5x10‐3  ‐1.3x10‐3 

(8) Posterior Cingulate  0.713  0.770  μ2,8  μ2,9    p3  ‐3.6x10‐3  6.3x10‐3  ‐2.4x10‐3  ‐1.4x10‐3 

(9) Medial Temporal  0.881  0.905  μ1,1 p7    p8  ‐4.1x10‐3  4.9x10‐3  ‐2.1x10‐3  1.1x10‐3 
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Table S1.6:  RE-DVR OLS Regression Model Details: Rates of change in the admixture 
parameters μ1 (A), μ2(B), and p (C), estimated from RE-DVR images across nine VOIs in MCI 
subjects. 

(A)  
d/dt μ1 

MCIs 
Adj‐R2  R2  x1  x2  x3  b0  b1  b2  b3 

(1) Upper Parietal  0.769  0.796  μ1,1  μ1,2  p5  ‐  ‐1.8x10‐3  2.1x10‐3  ‐3.3x10‐4 

(2) Posterior Frontal  0.607  0.676  μ1,4 p3  p5  1.0x10‐3  ‐4.9x10‐4  ‐4.2x10‐4  ‐3.7x10‐4 

(3) Prefrontal  0.752  0.795  μ1,2 μ1,3  μ1,7  8.5x10‐4  1.4x10‐3  ‐9.6x10‐4  ‐1.2x10‐3 

(4) Occipital‐Parietal  0.820  0.850  μ1,4 μ2,9  μ1,5  7.8x10‐4  ‐1.3x10‐3  7.7x10‐4  ‐5.1x10‐4 

(5) Posterior Temporal  0.685  0.741  μ2,8 p3  p9  1.2x10‐3  ‐6.4x10‐4  ‐4.8x10‐4  ‐2.6x10‐4 

(6) Lower Temporal  0.704  0.756  μ1,1 p5  p6  1.0x10‐3  ‐7.3x10‐4  ‐6.0x10‐4  3.1x10‐4 

(7) Upper Temporal  0.744  0.789  μ1,5 μ2,3  p5  1.6x10‐3  ‐1.9x10‐3  8.0x10‐4  ‐7.7x10‐4 

(8) Posterior Cingulate  0.680  0.718  μ1,2  μ2,2  p8  ‐  2.3x10‐3  ‐2.2x10‐3  3.0x10‐4 

(9) Medial Temporal  0.795  0.831  μ1,9 μ2,3  μ2,9  1.1x10‐3  ‐2.2x10‐3  ‐2.4x10‐3  3.3x10‐3 

(B)  
d/dt μ2 

 
Adj‐R2  R2  x1  x2  x3  b0  b1  b2  b3 

(1) Upper Parietal  0.677  0.734  μ1,8  μ2,4  μ2,5  8.0x10‐4  ‐8.1x10‐4  ‐2.2x10‐3  2.3x10‐3 

(2) Posterior Frontal  0.859  0.884  μ2,4 μ2,5  p5  8.2x10‐4  ‐2.7x10‐3  2.2x10‐3  ‐3.7x10‐4 

(3) Prefrontal  0.770  0.811  μ1,4 p5  p9  1.4x10‐3  ‐8.1x10‐4  ‐5.2x10‐4  ‐2.8x10‐4 

(4) Occipital‐Parietal  0.811  0.844  μ1,4 μ1,9 p5  1.6x10‐3  ‐1.6x10‐3  4.2x10‐4  ‐5.8x10‐4 

(5) Posterior Temporal  0.680  0.736  μ1,4 p5  p9  1.3x10‐3  ‐8.1x10‐4  ‐4.0x10‐4  ‐2.7x10‐4 

(6) Lower Temporal  0.610  0.656  μ1,8 p5  ‐  1.4x10‐3  ‐9.7x10‐4  ‐5.0x10‐4  ‐ 

(7) Upper Temporal  0.575  0.650  μ1,2 μ1,5 p5  1.2x10‐3  9.1x10‐4  ‐1.5x10‐3  ‐6.9x10‐4 

(8) Posterior Cingulate  0.720  0.753  μ2,4  μ2,5  ‐  5.0x10‐4  ‐3.4x10‐3  2.9x10‐3  ‐ 

(9) Medial Temporal  0.741  0.787  p3  p5  p6  4.9x10‐4  5.4x10‐4  ‐8.7x10‐4  ‐2.6x10‐4 

(C)  
d/dt p 

 
Adj‐R2  R2  x1  x2  x3  b0  b1  b2  b3 

(1) Upper Parietal  0.618  0.663  μ1,6  μ1,7  p9  ‐  3.8x10‐3  ‐3.3x10‐3  ‐6.6x10‐4 

(2) Posterior Frontal  0.755  0.784  μ2,2 μ2,3 p9  ‐  3.2x10‐3  ‐2.8x10‐3  ‐8.2x10‐4 

(3) Prefrontal  0.677  0.734  μ1,3 μ2,2 μ2,5 1.2x10‐3   2.7x10‐3  ‐5.3x10‐3  1.7x10‐3 

(4) Occipital‐Parietal  0.806  0.840  μ1,1 μ1,3 p4 1.1x10‐3  ‐1.1x10‐3  7.2x10‐4  ‐1.2x10‐3 

(5) Posterior Temporal  0.378  0.414  μ1,2 p5 ‐ ‐  8.2x10‐4  ‐1.3x10‐3  ‐ 

(6) Lower Temporal  0.637  0.659  μ1,7 p6 ‐  ‐  1.1x10‐3  ‐2.0x10‐3  ‐ 

(7) Upper Temporal  0.730  0.761  μ1,7 μ2,3 p7 ‐  4.1x10‐3  ‐3.3x10‐3  ‐1.3x10‐3 

(8) Posterior Cingulate  0.369  0.406  μ1,8  p5  ‐  ‐  1.5x10‐3  ‐2.2x10‐3  ‐ 

(9) Medial Temporal  0.644  0.707  μ1,8 μ2,3 μ2,9 5.6x10‐3  ‐7.4x10‐3  5.6x10‐3  ‐3.6x10‐3 
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Table S1.7:  Logan-DVR PLS Regression Model Details: Rates of change in the admixture 
parameters μ1 (A), μ2 (B), and p (C), estimated from Logan-DVR images across nine VOIs in 
Controls.  Predictors shown, (x{i,j,k,...}) are the estimated parameter x from VOIs {i,j,k,...}. R2 
value shown is percent-variance of dependant variables explained by the model. 

(A) 
d/dt μ1 

Controls 
R2  LVs  Predictors 

(1) Upper Parietal  0.801  3  μ1,{3,9},  μ2,{7,8,9},  p{3,6,9} 
(2) Posterior Frontal  0.736  3  μ1,{3,6},  μ2,{3},  p{6} 
(3) Prefrontal  0.717  3  μ1,{3,4,5,7},  μ2,{2,3,4,5,6},  p{3,4,5,7} 
(4)Occipital‐Parietal  0.760  3  μ1,{2,3,7,8,9},  μ2,{1,4,5,6,9},  p{2,4,8} 
(5) Posterior Temporal  0.714  3  μ1,{3,5,9},  μ2,{1,3,4,5,6},  p{3,8} 
(6) Lower Temporal  0.770  3  μ1,{2,6,9},  μ2,{1},  p{3,6,9} 
(7) Upper Temporal  0.890  3  μ1,{3,7,9},  μ2,{2,5,6,9},  p{4,9} 
(8) Posterior Cingulate  0.737  3  μ1,{3,6,8},  μ2,{6},  p{3,6,8,9} 
(9) Medial Temporal  0.837  3  μ1,{6,9},  μ2,{9},  p{6,7,9} 

(B) 
d/dt μ2 

 
R2  LVs  Predictors 

(1) Upper Parietal  0.813  3  μ1,{1,3,7,9},  μ2,{1,2,3,4,6,7,9},  p{3,9} 
(2) Posterior Frontal  0.836  2  μ1,{1,2,3,4,9},  μ2,{1,2,3,4,5,6,7},  p{3,4,5} 

(3) Prefrontal  0.719  3  μ1,{3,4},  μ2,{2},  p{4} 
(4)Occipital‐Parietal  0.835  3  μ1,{1,2,3,8,9},  μ2,{1,2,4,5,6},  p{1,3,4,5} 

(5) Posterior Temporal  0.891  3  μ1,{2,3,5,9},  μ2,{2,3,4,5,6,7},  p{3,4} 
(6) Lower Temporal  0.781  3  μ1,{2,3,9},  μ2,{1,5,6,7},  p{4,5} 
(7) Upper Temporal  0.820  3  μ1,{1,2,3,9},  μ2,{2,7},  p{1,4,5} 

(8) Posterior Cingulate  0.812  3  μ1,{2,3,8,9},  μ2,{2,7,8},  p{5} 
(9) Medial Temporal  0.801  3  μ1,{2,3,9},  μ2,{1,2,5,6,9},  p{4,9} 

(C) 
d/dt p 

 
R2  LVs  Predictors 

(1) Upper Parietal  0.701  3  μ1,{9},  μ2,{7,9},  p{1,2,4,6,9} 
(2) Posterior Frontal  0.648  3  μ1,{7,9},  μ2,{9},  p{1,2,4,7} 

(3) Prefrontal  0.859  3  μ1,{9},  p{3,4,5,7} 
(4)Occipital‐Parietal  0.678  3  μ1,{4,9},  p{3,4,5,7} 

(5) Posterior Temporal  0.703  3  μ1,{3,7},  μ2,{8},  p{3,5,7,8} 
(6) Lower Temporal  0.686  2  μ1,{9},  p{4,6,7,9} 
(7) Upper Temporal  0.777  2  μ1,{7,8,9},  μ2,{8,9},  p{4,5,6,7,9} 

(8) Posterior Cingulate  0.855  3  μ1,{1,6},  p{3,5,6,8} 
(9) Medial Temporal  0.750  3  μ1,{9},  μ2,{1,9},  p{6,7,9} 
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Table S1.8:  Logan-DVR PLS Regression Model Details: Rates of change in the admixture 
parameters μ1 (A), μ2 (B), and p (C), estimated from Logan-DVR images across nine VOIs in 
MCI subjects.  Predictors shown, (x{i,j,k,...}) are the estimated parameter x from VOIs {i,j,k,...}. R2 
value shown is percent-variance of dependant variables explained by the model. 

(A) 
d/dt μ1 

MCIs 
R2  LVs  Predictors 

(1) Upper Parietal  0.839  3  μ1,{3,4,5,7,8,9},  μ2,{3,4,5,7,8,9},  p{2,3,5,9} 
(2) Posterior Frontal  0.577  3  μ1,{1,2,3,5,7},  μ2,{1,2,3,8,9},  p{3,6} 
(3) Prefrontal  0.749  3  μ1,{1,3,4,7},  μ2,{1,3,9},  p{2,3,5,9} 
(4)Occipital‐Parietal  0.690  3  μ1,{1,2,4,7,8},  μ2,{1,2,3,4,8},  p{1,2} 
(5) Posterior Temporal  0.795  3  μ1,{1,2,5,7,8},  μ2,{1,2,3,4,5,6,7,8,9},  p{1,2,6,8} 
(6) Lower Temporal  0.610  3  μ1,{6,7},  μ2,{2},  p{9} 
(7) Upper Temporal  0.740  3  μ1,{3,7,8},  μ2,{1,2,5,6,7},  p{1} 
(8) Posterior Cingulate  0.720  3  μ1,{1,2,3,8},  μ2,{3,4,8,9},  p{2,3,5} 
(9) Medial Temporal  0.697  3  μ1,{1,2,3,4,5,7,9},  μ2,{2,3,6,9},  p{3} 

(B) 
d/dt μ2 

 

R2  LVs  Predictors 

(1) Upper Parietal  0.737  3  μ1,{3,7},  μ2,{3,4,8},  p{2,3,5,9} 
(2) Posterior Frontal  0.713  3  μ1,{1,2,3,4,7}, μ2,{1,3,4,5,7,8,9}, p{1,2,3,5,7,9} 

(3) Prefrontal  0.842  3  μ1,{1,3,4,7},  μ2,{1,3,4,7,8,9},  p{2,3,5,6,7,9} 
(4)Occipital‐Parietal  0.760  3  μ1,{2,4},  μ2,{2,3,4},  p{2,3,5,7,8} 

(5) Posterior Temporal  0.734  3  μ1,{1,2,5,6,7},  μ2,{1,2,4,5,6,7,8,9},  p{1,2,6,7,8} 
(6) Lower Temporal  0.678  3  μ1,{3,7},  μ2,{3,8},  p{2,3,5,9} 
(7) Upper Temporal  0.646  3  μ1,{1,3,5,7,8},  μ2,{2,3,5,7,8},  p{2,3,5,6} 

(8) Posterior Cingulate  0.812  3  μ1,{1,3,4,6,7},  μ2,{1,3,4,7,8,9},  p{2,3,5} 
(9) Medial Temporal  0.888  3  μ1,{1,3,4,5,7,9}, μ2,{1,2,3,5,7,8,9}, p{3,5,6,7,9} 

(C) 
d/dt p 

 

R2  LVs  Predictors 

(1) Upper Parietal  0.797  3  μ1,{1,2,3,5,6,8,9}, μ2,{1,2,3,5,6,7,8}, p{1,3,6,9} 
(2) Posterior Frontal  0.786  2  μ1,{2,4},  μ2,{3,4},  p{2,3,8} 

(3) Prefrontal  0.865  3  μ1,{1,3,8},  μ2,{1,2,3,5,7},  p{2,3,6,8,9} 
(4)Occipital‐Parietal  0.708  3  μ1,{1,2,5},  μ2,{1,2,4,5,6,7},  p{5,8,9} 

(5) Posterior Temporal  0.832  3  μ1,{5,8},  μ2,{1,5,7},  p{3,5,9} 
(6) Lower Temporal  0.877  3  μ1,{6,8},  μ2,{2,3,5,8,9},  p{6} 
(7) Upper Temporal  0.864  3  p{2,3,6,7,9} 

(8) Posterior Cingulate  0.519  3  μ1,{8},  μ2,{1,6},  p{8} 
(9) Medial Temporal  0.858  3  μ1,{1,6,8,9},  μ2,{1,2,3,6,7,9},  p{5,6,7,9} 
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Table S1.9:  RE-DVR PLS Regression Model Details: Rates of change in the admixture 
parameters μ1 (A), μ2 (B), and p (C), estimated from RE-DVR images across nine VOIs in 
Controls.  Predictors shown, (x{i,j,k,...}) are the estimated parameter x from VOIs {i,j,k,...}. R2 
value shown is percent-variance of dependant variables explained by the model. 

(A) 
d/dt μ1 

Controls 
R2  LVs  Predictors 

(1) Upper Parietal  0.869  3  μ1,{1,7},  μ2,{1,7,8},  p{6,9} 
(2) Posterior Frontal  0.698  2  μ1,{1,3,8},  μ2,{1,9},  p{1,2} 
(3) Prefrontal  0.740  2  μ1,{1,4,5},  μ2,{4},  p{6,9} 
(4)Occipital‐Parietal  0.675  3  μ1,{4,6,7},  μ2,{2,3,8},  p{8}
(5) Posterior Temporal  0.776  3  μ1,{4,7},  μ2,{3,4,5},  p{5,7,8} 
(6) Lower Temporal  0.910  3  μ1,{6,9},  μ2,{2,4},  p{3,8} 
(7) Upper Temporal  0.856  3  μ1,{1,6},  μ2,{2,3,4,6},  p{7,8} 
(8) Posterior Cingulate  0.816  2  μ1,{1,2,8},  μ2,{8},  p{8} 
(9) Medial Temporal  0.916  3  μ1,{6,9},  μ2,{6,7,9},  p{6,7} 

(B) 
d/dt μ2 

 
R2  LVs  Predictors 

(1) Upper Parietal  0.897  3  μ1,{6,7},  μ2,{4,7,8},  p{1,6,7} 
(2) Posterior Frontal  0.852  3  μ1,{1,8},  μ2,{1,4,6,8 } 

(3) Prefrontal  0.875  3  μ1,{ 4,5,7},  μ2,{2,4,6,9 },  p{8} 
(4)Occipital‐Parietal  0.840  3  μ1,{3,4,6 },  μ2,{2,4,6 },  p{6,8} 

(5) Posterior Temporal  0.891  3  μ1,{ 3,4,7,9},  μ2,{1,2,3,4,7 },  p{7,8} 
(6) Lower Temporal  0.856  3  μ1,{ 2,4,7,8},  μ2,{2,4 },  p{2,6,7,8} 
(7) Upper Temporal  0.914  3  μ1,{3},  μ2,{1,3,4,7,9},  p{6,7} 

(8) Posterior Cingulate  0.718  2  μ1,{8,9},  μ2,{6,8,9},  p{8} 
(9) Medial Temporal  0.858  2  μ1,{4,6,9},  μ2,{2,4,8,9},  p{7} 

(C) 
d/dt p 

 
R2  LVs  Predictors 

(1) Upper Parietal  0.845  3  μ1,{1,7},  μ2,{1,3,5,7,9},  p{1,4,6,9} 
(2) Posterior Frontal  0.737  2  μ1,{1,5},  μ2,{1,5},  p{1,2} 

(3) Prefrontal  0.932  3  μ1,{1,4,9},  μ2,{4,5},  p{3} 
(4)Occipital‐Parietal  0.700  3  μ1,{5,6},  μ2,{1,4,5,8},  p{1,4} 

(5) Posterior Temporal  0.420  2  μ1,{6,8},  μ2,{1,3,4},  p{1,2,5,6} 
(6) Lower Temporal  0.808  3  μ1,{6},  μ2,{5},  p{2,3,6,8} 
(7) Upper Temporal  0.911  3  μ1,{9},  μ2,{8,9},  p{5,6,7} 

(8) Posterior Cingulate  0.751  2  μ1,{1,2,8,9},  μ2,{8},  p{8} 
(9) Medial Temporal  0.919  3  μ1,{7},  μ2,{1,5,7,9},  p{1,7} 
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Table S1.10:  RE-DVR PLS Regression Model Details: Rates of change in the admixture 
parameters μ1 (A), μ2 (B), and p (C), estimated from RE-DVR images across nine VOIs in MCI 
Subjects.  Predictors shown, (x{i,j,k,...}) are the estimated parameter x from VOIs {i,j,k,...}. R2 
value shown is percent-variance of dependant variables explained by the model. 

(A) 
d/dt μ1 

MCIs 
R2  LVs  Predictors 

(1) Upper Parietal  0.893  3  μ1,{1,2,4,8},  μ2,{2},  p{5} 
(2) Posterior Frontal  0.743  2  μ1,{3,7},  μ2,{7},  p{3,5,6} 
(3) Prefrontal  0.840  3  μ1,{2,3,5,7},  μ2,{2,9},  p{4} 
(4)Occipital‐Parietal  0.870  3  μ1,{3,4},  μ2,{4,7,9},  p{5,7}
(5) Posterior Temporal  0.796  2  μ1,{3,5,6,7,8},  μ2,{2},  p{2,3,9} 
(6) Lower Temporal  0.847  3  μ1,{1,6,8},  μ2,{4,5},  p{5} 
(7) Upper Temporal  0.852  3  μ1,{1,2,7,8},  μ2,{3,7},  p{2,5} 
(8) Posterior Cingulate  0.732  2  μ1,{2,8},  μ2,{4},  p{4,8} 
(9) Medial Temporal  0.896  3  μ1,{9},  μ2,{3,5,9},  p{5} 

(B) 
d/dt μ2 

 
R2  LVs  Predictors 

(1) Upper Parietal  0.890  3  μ1,{2,4,5,8},  μ2,{2,3,7,8},  p{5,7} 
(2) Posterior Frontal  0.917  3  μ1,{2,4},  μ2,{4},  p{5,7,9} 

(3) Prefrontal  0.929  3  μ1,{1,2,4},  μ2,{4,6,8},  p{5,7,9} 
(4)Occipital‐Parietal  0.907  2  μ1,{2,4},  μ2,{4},  p{5,7,9} 

(5) Posterior Temporal  0.737  2  μ1,{4,8},  μ2,{4},  p{2,5,9} 
(6) Lower Temporal  0.790  3  μ1,{2,4,8},  μ2,{3,8},  p{5} 
(7) Upper Temporal  0.660  2  μ1,{2,4,8},  μ2,{2,7},  p{5} 

(8) Posterior Cingulate  0.840  2  μ1,{2,4},  μ2,{3,4,7,8,9},  p{5,7} 
(9) Medial Temporal  0.854  3  μ1,{4,9},  μ2,{3,8},  p{2,3,5,7} 

(C) 
d/dt p 

 
R2  LVs  Predictors 

(1) Upper Parietal  0.862  3  μ1,{4,6,7,9},  p{1,6,8,9} 
(2) Posterior Frontal  0.861  3  μ1,{3,7,9},  μ2,{3,5},  p{2,9} 

(3) Prefrontal  0.903  3  μ1,{1,2,3,5},  μ2,{2,9},  p{2,3} 
(4)Occipital‐Parietal  0.861  2  μ1,{1,2,3},  p{4} 

(5) Posterior Temporal  0.522  2  μ1,{2,6}, p{2,3,5,8} 
(6) Lower Temporal  0.744  2  μ1,{2,4,6},  p{6} 
(7) Upper Temporal  0.860  2  μ1,{7,9},  μ2,{3},  p{2,7} 

(8) Posterior Cingulate  0.709  2  μ1,{4},  μ2,{3},  p{3,5,7,8} 
(9) Medial Temporal  0.850  3  μ1,{6,7,8,9},  μ2,{3,9},  p{3,5,9} 
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Table S1.11:  OLS Regression Model Details: Rates of change in six psychological Z scores in 
Controls and MCIs, using either Logan (A) or relative-equilibrium (B) DVR mean values as 
predictors. NA values represent VOIs in which no model with regression parameters 
significantly different from zero could be found. 

(A) 
d/dt Z‐score 
Logan‐DVR 

Controls 

Adj‐R2  R2  x1  x2  x3  b0  b1  b2  b3 

Executive Function  0.457  0.530  ݔ̅ ଽݔ̅ ‐  1.8x10‐3  1.4x10‐2  ‐1.5x10‐2  ‐ 

Language  NA  NA  ‐  ‐  ‐  ‐  ‐  ‐  ‐ 

Visuo‐spatial  0.396  0.436  ଵݔ̅ ଶݔ̅ ‐  ‐  2.0x10‐2  ‐2.0x10‐2  ‐ 

Psychomotor  0.701  0.761  ଶݔ̅ ଷݔ̅ ଽݔ̅ 1.4x10‐2  ‐1.7x10‐2  2.0x10‐2  ‐1.6x10‐2 

Neuropsychological  0.390  0.437  ସݔ̅ ଽݔ̅ ‐  ‐  8.9x10‐3  ‐8.6x10‐3  ‐ 

Memory  NA  NA  ‐  ‐  ‐  ‐  ‐  ‐  ‐ 

  MCIs 
Adj‐R2  R2  x1  x2  x3  b0  b1  b2  b3 

Executive Function  NA  NA  ‐  ‐  ‐  ‐  ‐  ‐  ‐ 

Language  0.306  0.388  ଵݔ̅ ସݔ̅ ‐  ‐2.5x10‐3  ‐1.3x10‐2  1.5x10‐2  ‐ 

Visuo‐spatial  0.187  0.235  ଼ݔ̅ ‐  ‐  ‐6.9x10‐3  5.7x10‐3  ‐  ‐ 

Psychomotor  0.224  0.315  ହݔ̅ ݔ̅ ‐  ‐6.2x10‐3  ‐1.4x10‐2  1.9x10‐3   

Neuropsychological  NA  NA  ‐  ‐  ‐  ‐  ‐  ‐  ‐ 

Memory  NA  NA  ‐  ‐  ‐  ‐  ‐  ‐  ‐ 

(B) 
d/dt Z‐score 
RE‐DVR 

Controls 
Adj‐R2  R2  x1  x2  x3  b0  b1  b2  b3 

Executive Function  0.576  0.661  ଵݔ̅ ଷݔ̅ ଽݔ̅ 2.1x10‐2  ‐2.3x10‐2  2.2x10‐2  ‐2.0x10‐2 

Language  0.302  0.348  ݔ̅ ଼ݔ̅ ‐  ‐  8.2x10‐3  ‐8.0x10‐3  ‐ 

Visuo‐spatial  0.469  0.501  ସݔ̅ ݔ̅ ‐  ‐  1.5x10‐2  ‐1.5x10‐2  ‐ 

Psychomotor  0.624  0.700  ଷݔ̅ ଼ݔ̅ ଽݔ̅ 1.2x10‐2  1.2x10‐2  ‐1.4x10‐2  ‐8.4x10‐3 

Neuropsychological  0.393  0.433  ଼ݔ̅ ‐  ‐  8.7x10‐2  ‐8.0x10‐2  ‐  ‐ 

Memory  NA  NA  ‐  ‐  ‐  ‐  ‐  ‐  ‐ 

  MCIs 
Adj‐R2  R2  x1  x2  x3  b0  b1  b2  b3 

Executive Function  NA  NA  ‐  ‐  ‐  ‐  ‐  ‐  ‐ 

Language  0.243  0.287  ଵݔ̅ ସݔ̅ ‐  ‐  ‐1.4x10‐2  1.4x10‐2  ‐ 

Visuo‐spatial  0.184  0.232  ଷݔ̅ ଼ݔ̅ ‐  ‐  ‐1.4x10
‐2
  1.4x10

‐2
  ‐ 

Psychomotor  0.222  0.267  ହݔ̅ ݔ̅ ‐  ‐  ‐1.5x10‐2  1.5x10‐2   

Neuropsychological  NA  NA  ‐  ‐  ‐  ‐  ‐  ‐  ‐ 

Memory  NA  NA  ‐  ‐  ‐  ‐  ‐  ‐  ‐ 
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Table S1.12:  OLS Regression Model Details: Rates of change in six psychological Z scores in 
Controls and MCIs, using either Logan (A) or relative-equilibrium (B) DVR admixture 
parameters as predictors. 

(A) 
d/dt Z‐score 
Logan‐DVR 

Controls 

Adj‐R2  R2  x1  x2  x3  b0  b1  b2  b3 

Executive Function  0.858  0.887  p1  p5  p9  2.7x10‐3  5.9x10‐3  ‐3.3x10‐3  3.5x10‐3 

Language  0.449  0.522  μ1,5  μ1,9 p3  ‐  ‐7.4x10‐3  5.4x10‐3  4.6x10‐3 

Visuo‐spatial  0.850  0.880  μ1,5  μ2,7 p6  4.1x10‐3  ‐1.4x10‐2  1.1x10‐2  ‐2.5x10‐3 

Psychomotor  0.783  0.826  μ2,4  μ2,9 p9  6.2x10‐3  7.1x10‐3  ‐1.2x10‐2  ‐2.4x10‐3 

Neuropsychological  0.570  0.623  p1  p5  p9  ‐  2.6x10‐3  ‐2.8x10‐3  1.3x10‐3 

Memory  0.423  0.461  p1  p5  ‐  ‐  5.2x10‐3  ‐3.9x10‐3  ‐ 

  MCIs 
Adj‐R2  R2  x1  x2  x3  b0  b1  b2  b3 

Executive Function  0.616  0.684  μ1,1 μ1,5 p6  ‐1.1x10‐2  ‐1.3x10‐2  1.7x10‐2  9.1x10‐3 

Language  0.544  0.625  μ1,5 μ2,1 p3  8.4x10‐3  1.3x10‐2  ‐1.7x10‐2  ‐5.5x10‐3 

Visuo‐spatial  0.571  0.623  μ1,2 μ2,8 p1  ‐  ‐1.3x10‐2  7.6x10‐3  6.6x10‐3 

Psychomotor  0.222  0.36  μ1,7 μ2,5 p7  ‐4.9x10‐3  1.2x10‐2  ‐8.4x10‐3  3.0x10‐3 

Neuropsychological  0.594  0.667  μ1,1 μ1,4 p6  ‐4.6x10‐3  ‐9.8x10‐3  1.1x10‐2  4.1x10‐3 

Memory  0.476  0.568  μ2,2  p1  p5  ‐9.3x10‐3  ‐9.9x10‐3  5.8x10‐3  ‐2.3x10‐3 

(B) 
d/dt Z‐score 
RE‐DVR 

Controls 

Adj‐R2  R2  x1  x2  x3  b0  b1  b2  b3 

Executive Function  0.828  0.863  μ2,3  μ2,7 μ2,9 9.9x10‐3  1.3x10‐2  ‐1.4x10‐2  ‐6.8x10‐3 

Language  0.641  0.713  μ2,2  μ2,3 p5  4.1x10‐3  ‐1.5x10‐2  9.6x10‐3  3.0x10‐3 

Visuo‐spatial  0.678  0.742  μ1,8 p1  p3  9.1x10‐3  ‐6.4x10‐3  ‐2.7x10‐3  ‐1.9x10‐3 

Psychomotor  0.756  0.788  μ1,4 μ1,6 μ1,9 ‐  1.3x10‐2  ‐8.3x10‐3  ‐4.1x10‐3 

Neuropsychological  0.686  0.728  μ1,4 μ1,8 p9  ‐  4.1x10‐3  ‐4.6x10‐3  1.7x10‐3 

Memory  0.435  0.510  μ2,4  μ2,9 p6  ‐  1.4x10‐2  ‐1.1x10‐2  ‐4.6x10‐3 

  MCIs 
Adj‐R2  R2  x1  x2  x3  b0  b1  b2  b3 

Executive Function  0.802  0.825  μ1,1 p1  p5  ‐  ‐7.0x10‐3  8.3x10‐3  2.9x10‐3 

Language  0.597  0.645  μ1,4 μ2,2 p1  ‐  1.0x10‐2  ‐1.1x10‐2  2.5x10‐3 

Visuo‐spatial  0.751  0.795  μ1,1 μ1,8 p7  ‐9.5x10‐3  ‐1.3x10‐2  1.9x10‐2  3.4x10‐3 

Psychomotor  0.477  0.539  μ2,4 μ2,5 p3  ‐  2.9x10‐2  ‐3.2x10‐2  6.2x10‐3 

Neuropsychological  0.721  0.754  μ1,2 p1  p7  ‐  ‐3.4x10‐2  3.5x10‐2  1.9x10‐3 

Memory  0.598  0.669  μ1,2 p1  p8  7.6x10‐3  ‐8.4x10‐3  2.7x10‐3  ‐1.9x10‐3 
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Table S1.13:  PLS Regression Model Details: Rates of change in six psychological Z scores in 
controls and MCIs, using either Logan (A) or relative-equilibrium (B) DVR admixture 
parameters as predictors. R2 value shown is percent-variance of dependant variables explained 
by the model. 

(A) 
d/dt Z‐score 
Logan‐DVR 

Controls  MCI 

R2  LVs  Predictors  R2  LVs  Predictors 

Executive Function  0.87  3  μ1,{9},  μ2,{1,7,9},  p{1,2,4,6,9}  0.71  2  μ1,{1,3,4,5},  μ2,{8},  p{5,6,7} 
Language  0.77  3  μ1,{1,3,8},  μ2,{1,3,4,5,8,9},  p{1,4,6,7}  0.69  3  μ1,{5,8},  μ2,{2},  p{2,7,8} 
Visuo‐spatial  0.86  3  μ1,{6,7,8},  μ2,{8},  p{1,3,5,6,7}  0.72  3  μ1,{1,2,6,9},  μ2,{4,8},  p{1,2,3,7} 
Psychomotor  0.85  3  μ1,{2,7,8,9},  μ2,{7,8,9},  p{4,6,7} 0.55  2  μ2,{4,5,7},  p{1,2,7,8} 
Neuropsychological  0.81  3  μ1,{6,8,9},  p{1,4,5,6,7,9}  0.66  1  μ1,{2,6},  p{1,2,6,7,8} 
Memory  0.53  3  μ1,{1,9},  μ2,{4,7,9},  p{1,2,4,6,9}  0.74  3  μ1,{1,2,3,6},  μ2,{2},  p{1,4,6,9} 

(B) 
d/dt Z‐score 
RE‐DVR 

Controls  MCI 

R2  LVs  Predictors  R2  LVs  Predictors 

Executive Function  0.90  3  μ1,{6,7,9},  μ2,{9},  p{2,6,7,9} 0.85  2  μ1,{1},  μ2,{8},  p{1,7}
Language  0.70  2  μ1,{1,8},  μ2,{8},  p{2,5,7,8}  0.69  2  μ1,{1,2,4},  p{1,6,7} 
Visuo‐spatial  0.91  3  μ1,{4,8},  p{1,3,5,6,8,9}  0.77  2  μ1,{2,8,9},  μ2,{4},  p{1,3,7} 
Psychomotor  0.84  2  μ1,{1,4,6,9},  μ2,{8},   0.60  2  μ1,{4},  μ2,{5,7,9},  p{1,3,5,7,8}
Neuropsychological  0.82  3  μ1,{4,8,9},  μ2,{3,7,8,9},  p{6,9}  0.79  2  μ1,{1},  p{1,4,7,9} 
Memory  0.69  3  μ1,{1,4,7,8},  μ2,{3,7,9},  p{6,9}  0.79  3  μ1,{2,3},  μ2,{7,9},  p{1,8} 
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CHAPTER 4 - Improved Modeling of in vivo Kinetics of Slowly Diffusing Radiotracers for 
Tumor Imaging 

 

Abstract 

Large-molecule tracers, such as labeled antibodies, have shown success in immunoPET for 

imaging of specific cell-surface biomarkers.  However, previous work has shown that 

localization of such tracers shows high levels of heterogeneity in target tissues, due to both the 

slow diffusion and high affinity of these compounds. In this work we investigate the effects of 

sub-voxel spatial heterogeneity on measured time activity curves (TACs) in PET imaging, and 

the effects of ignoring diffusion-limitation on parameter estimates from kinetic modeling.   

Partial differential equations (PDE) were built to model a radially symmetric reaction-diffusion 

equation describing activity of immunoPET tracers.  Effects of slower diffusion on measured 

TACs and parameter estimates were measured in silico, and a modified Levenberg-Marquardt 

algorithm with Bayesian priors was developed to accurately estimate parameters from diffusion-

limited data.  This algorithm was applied to immunoPET data of mice implanted with prostate 

stem cell antigen (PSCA) over-expressing tumors and injected with 124I-labeled A11 anti-PSCA 

minibody. 

Slow diffusion of tracers in linear binding models resulted in heterogeneous localization in silico, 

but no measurable differences in TACs.  For more realistic saturable binding models, measured 

TACs were strongly dependent on diffusion rates of the tracers.  Fitting diffusion-limited data 

with regular compartmental models led to parameter estimate bias in excess of 1000% of true 

values, where the new model and fitting protocol could accurately measure kinetics in silico.  In 

vivo imaging data was also fit well by the new PDE model, with estimates of Kd and receptor 
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density close to in vitro measurements and with order of magnitude differences from a regular 

compartmental model ignoring tracer diffusion-limitation.  

Heterogeneous localization of large, high-affinity compounds can lead to large differences in 

measured TACs in immunoPET imaging, and ignoring diffusion-limitations can lead to large 

errors in kinetic parameter estimates.  Modeling of these systems with PDE models with 

Bayesian priors is necessary for quantitative in vivo measurements of kinetics of slow diffusion 

tracers. 

4.1 Introduction 

Radiolabeled antibodies have shown great utility in both imaging and therapeutics, but there are 

obstacles to accurate quantification of these compounds in vivo [1-5].  There are many antibodies 

approved for clinical use, with even more in phase I-III trials, however the full kinetic activity of 

these compounds has yet to be completely understood quantitatively [1,6].  It has long been 

known that although monoclonal antibodies show high specificity in target tissues, there is a 

divergence in spatial localization between in vivo and in vitro studies [7].  Early in silico work 

showed that slow diffusivity of these molecules in target tissues can lead to steep concentration 

gradients of tracers in tissue on the sub-voxel level [8]. Intact antibodies (~150 kDa), are orders 

of magnitude larger than traditional small molecule tracers (usually <1 kDa), and their larger size 

results in both reduced capillary permeability and slower rates of diffusion in tissues [9]. 

Another major factor leading to heterogeneous localization of these molecules is their high 

affinity in target tissues [10-12]. Due to their high affinity, heterogeneous localization is 

observed even with relatively small (25 kDa) single-chain variable fragments (scFvs) and with 

small micrometastases, [13-14].  Understanding the simultaneous effects of imaging agent size 
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and affinity has been further complicated by studies showing variable tumor penetration of 

several trastuzumab (146 kDa) derivatives, and limited tumor penetration of the much smaller (.5 

kDa) doxorubicin [15,16]. 

These complications necessitate a new class of kinetic models which will allow for improved 

PET quantitation and therapeutic planning.  When using these molecules as therapeutics, spatial 

heterogeneity on length scales less than 100μm leads to large volumes of target tumors being 

completely devoid of treatment, with almost all localization close to the capillary wall [17].  The 

ability to robustly plan treatment protocols with these compounds, with appropriate dose at all 

depths in tissue, is contingent upon knowledge of biological parameters such as receptor density 

in target tumors and full kinetic knowledge of the probes.  Previously, however, in order to 

accurately measure these necessary parameters, investigators would need to employ some 

combination of compartmental kinetic modeling or Scatchard analysis, which both assume well-

mixed or uniform compartmental activity on the sub-voxel level [18].  As described above, in the 

case of large high-affinity compounds, such as labeled antibodies, these assumptions are 

violated.  Despite these deviations from standard assumptions, some properties of labeled 

antibodies confer advantages and simplifications to quantification of immunoPET.  With few 

exceptions (e.g. anti-HER2 antibodies), due to the high specificity of antibody based imaging 

agents there will be little to no uptake in myocardial tissue, allowing for accurate measurements 

of image derived input functions from the left ventricle.  Additionally, the high specificity of 

tracers will lead to high signal-to-noise ratios and low background activity.  Therefore, in this 

work we propose, implement, and test a method for accurately measuring the kinetic activity of 

such compounds in vivo, through a set of partial differential equations (PDEs) describing the 

reaction-diffusion equations governing this system.  Although previous work has investigated the 
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effect that this tissue heterogeneity will have on whole-tumor activity over time, until now there 

has yet to be work published on the accurate extraction of kinetic parameters from PET imaging 

in such situations, and determining the true dose-at-depth in therapeutics for such systems 

[11,19]. 

In addition to simulation studies, we apply the results of the in silico work to in vivo imaging of 

the 124I-labeled A11 (124I-A11) minibody in prostate cancer xenografts.  The minibody (scFv-

CH3, homodimer, 80 kDa) is an antibody fragment that helps to address the long uptake time and 

slow blood clearance kinetics of intact antibodies (150 kDa, t1/2= days to weeks) by deleting the 

CH1 and CH2 domains to created a fragment that retains the binding strength and specificity of 

whole antibodies but exhibits faster blood clearance (t1/2= 6-8 hours), allowing for high-contrast 

imaging at earlier time-points [20-22].  The reduced size of these compounds likely contributes 

to increased penetration into tumors, however they are still large enough to show depth-

dependant concentration effects [13,16]. 

The A11 minibody is engineered for imaging prostate stem cell antigen (PSCA)-expressing 

tumors [23].  The PSCA antigen is cell surface protein with little normal expression throughout 

the body, limited to low-level expression in normal prostate, bladder, and stomach [24].  

However, it is highly expressed in most local and metastatic prostate cancers with expression 

levels correlating to Gleason score, tumor invasion, and a poor prognosis [24-27].  The ability to 

obtain accurate measures of anti-PSCA tracer kinetics could thus be an important tool in staging 

and monitoring treatment response in prostate cancer. PSCA is additionally over-expressed in 

bladder and pancreatic cancers. Although previous work has shown that 124I-labeled anti-PSCA 

minibodies exhibit high-contrast images of PSCA-expressing targets at relatively early time 

points (6-44 hours), no work has yet been done to quantify the kinetics of these systems [28,29]. 
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In this work, we examine theoretical models of both linear and saturable binding kinetics of 

large-molecule tracers, and the effect of diffusion rates on measured time activity curves (TACs) 

from target regions.  Next, we investigate the effects of naively fitting diffusion-limited data with 

regular compartmental models assuming infinitely fast diffusion (i.e. well-mixed compartments), 

and effective methods for accurately measuring kinetics from such systems.  Finally, we apply 

the previously discovered fitting methods to an in vivo investigation of 124I-labeled A11 

minibody in xenografts overexpressing PSCA in mice. 

4.2 Methods: 

4.2.1 Kinetic Models  

PDE models were built to simulate the kinetics of a slowly diffusing radiotracer.  Tissue was 

modeled as a non-overlapping composite of radially-symmetric cylinders with radius R.  At each 

radius r, away from the capillary wall at r0, tracer kinetics were modeled as a compartmental 

system specific to that radius, leading to a system of radially symmetric, reaction-diffusion 

equations.  Two sets of models were built: a simpler PDE model of linear binding kinetics, and a 

more complex non-linear PDE model of saturable binding kinetics (Eqs. 1&2, respectively).   

Both sets of reaction-diffusion equations modeled concentration of tracer in interstitial space, 

bound to surface receptors, and internalized into the cell (u,v, and w, respectively).  In the case of 

saturable binding, the concentration of unbound receptor sites at each radius (x(r,t)) was modeled 

as well.  Both linear and nonlinear PDE models were subject to the same Neumann boundary 

conditions (Eq. 3).  These boundary conditions ensure that there is no leak from the system due 

to diffusion deep in tissue (r>R), as that loss will be reciprocally matched by leaks into the 

system from adjacent regions.  Initial conditions for all models had zero tracer in tissue, and for 

nonlinear models initial unbound antigen sites were at steady-state values (dens0).  A more 
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complete derivation and explanation of these equations can be found in the supplementary 

materials. 
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The model governing linear binding kinetics was solved analytically in Laplace space, and 

numerically inverted into the time domain.  The non-linear model cannot be solved analytically, 

and therefore was solved numerically through a combination of 4th-order Runge-Kutta and 

method of lines algorithms.  Solutions were integrated across all radii (including the plasma 

compartment), to simulate TACs from the modeled tissue.  For both the linear- and saturable-

binding kinetic models, ordinary differential equation (ODE) models were built for these systems 

assuming infinitely fast diffusion (i.e. regular compartmental models), which were solved using 

4th order Runge-Kutta numerical analysis. 
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For non-saturable binding kinetics, the effects of slower diffusion were examined by comparing 

responses of ODE and PDE models (differing only in rates of diffusion) to a unit impulse.  

Simulated TACs of saturable-binding ODEs and PDEs were similarly compared, however their 

simulated TACs were in response to a tri-exponential input function as a unit impulse response 

would not be sufficient to describe these non-linear systems.    

In cases where finite diffusion rates led to measurable differences in TACs, simulated diffusion-

limited data with Gaussian noise was fit repeatedly with both finite and infinite diffusion models 

using standard Levenberg-Marquardt optimization.  To overcome possible problems of 

parameter identifiability, this simulated data was also repeatedly fit using a modified Levenberg-

Marquardt algorithm, incorporating weak Baysian priors on binding and disassociate rates, kon 

and koff, assuming a priori in vitro measurements.  Priors for kinetic parameters were formulated 

as log-normal with mean of the true parameter value, and standard deviation equal to .5*ln(10).  

A more complete description of the objection function can be found in the supplemental 

materials. 

4.2.2 Affinity Studies 

The apparent affinity of the unmodified A11 minibody was measured by quartz crystal 

microbalance (QCM) using an Attana Cell A200.  Human PSCA-mFc antigen (40μg/mL) was 

immobilized on a LNB-carboxyl sensor chip by amine coupling. Binding experiments were 

performed in HBS 0.005% Tween 20 (25μL/min, 22◦C). Five serial dilutions (160 -5 nM) of the 

construct were run in triplicate in random order. The chip was regenerated using 0.1 M Glycine 

pH 2.5 between each sample. Buffer injections were performed prior to each sample injection to 
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use as a reference in integrated Attester Evaluation software where the binding curves were fit 

using a mass transport limited binding model. 

4.2.3 Small Animal PET/CT  

Two mice were implanted with a control 22Rv1 tumor, a prostate epithelial cell line, expressing 

almost no PSCA (369 ± 486 antigens/cell) and a contralateral 22Rv1 tumor transfected to over-

express PSCA  (2.2x106 antigens/cell ), as described previously [24].  Approximately 25 μg (4 

MBq) of 124I-A11 with a purity of 98% or more was administered to tumor-bearing mice via tail 

vein injection. The iodination of the minibody was performed as described previously, with 

immunoreactivity of 124I-A11 found to be 76% ± 9.7% [24,30]. Before 124I-A11 administration, 

thyroid and stomach uptake of radioiodine was blocked, respectively, with Lugol’s iodine and 

potassium perchlorate as previously described [23]. Mice were given an initial 2 h dynamic 

small-animal PET scan at the time of injection. At 20 and 44 h after injection, mice were 

anesthetized with 1.5% isoflurane anesthesia and imaged with 10-min acquisitions on an Inveon 

small-animal PET scanner (Siemens Preclinical Solutions), followed by a micro-CT scan 

(microCAT II; Siemens Preclinical Solutions) [31].  One mouse was also given 10-minute static 

scans at 4, 6, 8, and 12 h post injection. All animal experiments were conducted in compliance 

with a protocol approved by the Institutional Animal Care and Use Committee of the University 

of California, Los Angeles. 

Small-animal PET images were reconstructed by non-attenuation or scatter-corrected filtered 

backprojection and were analyzed and displayed using AMIDE [32].   Plasma activity was 

described by an image-derived input function, measured using a cylindrical volume-of-interest 

(~3 mm3 in size) covering the left ventricle.  Tumor activity was measured using elliptical VOIs 
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covering the tumor.  Tissue activity was converted from scanner units to Molar concentration 

using known specific activity of injected doses, and whole-body activity in the first frame of the 

dynamic scan.  Measured activity was modeled using both ODE and PDE models of saturable 

binding kinetics.  For both models, no intracellular compartment was included, as previous work 

has shown that intracellular metabolism of 124I-A11 results in very fast cleavage of the PET 

tracer isotope which is subsequently free to diffuse from the tissue and is then rapidly renally 

excreted [33]. 

4.3 Results 

Solving the PDE system of linear binding kinetics showed only minor differences (<1%) in 

simulated unit impulse responses over a range of biologically feasible diffusion parameters (D > 

10μm2s-1), and less than 4% difference from a regular compartmental model at very slow 

diffusion rates (D=1 μm2s-1).  In the linear binding model, slower diffusion rates did lead to large 

concentration gradients in tissue, such that for biologically reasonable diffusion rates the total 

dose at the deepest points in tissue were 50% of regions closest to the capillary wall 

(Supplemental Figure S2.1). 

Simulated TACs from the non-linear model governing saturable binding kinetics were much 

more sensitive to changes in diffusion rates (Figure 1A).  As can be seen in Table 1 and Figure 

1B, although in silico diffusion-limited TACs (D=14 μm2s-1) could be fit well using a regular 

compartmental model  (i.e. D = ∞ μm2s-1), parameters obtained with this fitting showed large 

levels of bias, in excess in 1000% of true values for some parameters. 

With the inclusion of Bayesian priors on both the binding and unbinding rates (k1,k2), bias rates 

for both compartmental and diffusion models were reduced.  However, for compartmental model 
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fits, mean bias for some parameters without priors were increased (Table 1).  Therefore, fitting 

with Bayesian priors, as opposed to a standard least-squares algorithm was used for in vivo data. 

Input functions, as measured by tracer activity in left ventricle, were well fit by a standard tri-

exponential decay (Figure 2). Measured TACs from PSCA-overexpressing tumors were fit with 

compartmental and diffusion-limited models.  In both cases Bayesian priors for k1 and k2 were 

incorporated into the fitting, as determined by QCM (1.21*105 (M·s)-1 and 4.95*10-4 s-1, 

respectively) (Supplemental Figure S2.2).  As in in silico studies, priors were formulated as log-

normal distributions.  Both models successfully reproduced the measured TACs for the mouse 

with six static scan time points (mouse 1), but with large differences in fitted kinetic and 

biological parameters between the diffusion-limited and compartmental models (Table 2).  For 

the mouse with two static scan time points (mouse 2), only the diffusion-limited model was able 

to reproduce the measured TAC.  Results of fitting with the diffusion-limited model, and the 

effects of diffusion rate on the measured TAC can be seen in Figure 3. Fitted TAC from the 

second mouse can be seen in supplemental data (Supplemental Figure S2.3). 

4.4 Discussion 

The results of in silico studies suggest that, in the case of linear binding kinetics, there will likely 

not be any measurable difference in TACs of large molecule imaging agents as differences from 

an infinite diffusion model were less than 5% even at diffusion rates an order of magnitude 

smaller than those likely for antibodies [11].  Although slow diffusion of molecules does not 

appear to have an effect on the measured activity of imaging agents, slow diffusion does result in 

a steep concentration gradient of the compound in tissue, with in silico results showing that 

differences in dosages can be two-fold across tissue depths.  This has important ramifications in 

the planning of treatment protocols, particularly because the majority of tumor volume is located 
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farther away from the capillary wall where dosage will be lower.  However, there are many 

reasons why the kinetics of the compound in vivo would deviate from the linear-binding regime, 

such as the case of targets with low antigen expression, low specific activity imaging agents, 

blocking or co-injection studies or large-dosage therapeutic treatments where receptor saturation 

is often the goal [34].  Furthermore, as shown above (Figure 1A), even in cases of relatively low 

saturation of available receptors, slow diffusion can result in large and measurable differences in 

TACs.  Therefore, it is likely that for most in vivo applications the usage of non-linear saturable 

binding models will be necessary and the non-diffusion-limited linear model will show 

considerable error for estimates of biological parameters despite good appearing fits of the in 

vivo data. 

While diffusion-limited data can be fit well with either a compartmental or diffusion model 

(Figure 1B), the large differences in fitted parameters reveal the problem of parameter 

identifiability in this case.  The results of the in silico fitting results shown in Table 1 also show 

that naively fitting TACs of slowly diffusing compounds with high target affinity can lead to 

large errors ( >1000%) in important kinetic parameters.  These results all suggest that while a 

non-compartmental model incorporating rates of diffusion is necessary to accurately model in 

vivo kinetics of large-molecule tracers, standard fitting techniques will not be sufficient.  Adding 

Bayesian priors to parameters that can be measured in vitro before scanning is shown to be a 

viable approach in overcoming problems of parameter identifiability.  Although there are still 

large errors in some parameter estimates when using a regular compartmental model with 

Bayesian priors, some parameters not constrained by a priori measurements can have low bias, 

such as capillary permeability and tumor blood volume.   
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Results of fitting in vivo imaging data of the A11 minibody largely confirm results from the 

initial in silico simulations.  It can be seen that while TACs can be fit (in terms of sum of squared 

errors) with a regular compartmental model, parameter estimates vary greatly from both 

Bayesian priors and results of diffusion-limited fitting, but with only small differences in fitted 

values of capillary permeability and blood volume.  Most notably is the divergence in predicted 

receptor density when ignoring diffusion limitations, with more than a 600% difference in model 

predictions.  As receptor density can be an important factor in staging tumor progression and 

evaluating the response of the tumor to therapeutic interventions, accurate estimates of this 

parameter is incredibly important for the utility of quantitative immunoPET [25]. 

Parameters yielded from diffusion-limited models showed strong agreement between both mice 

scanned, even with one mouse having four fewer static scans.  Additionally, parameter estimates 

for capillary permeability were similar to previously estimated results (3-5*10-9 m/s) [11].  There 

was likewise excellent agreement between Kd as measured with QCM (4.1 nM) and as measured 

by kinetic modeling (1.3 nM and 2.4 nM).  While there were small differences, these are likely 

explained by differing microenvironments between in vivo studies and the in vitro QCM 

experiment.  Although the a priori measurements were performed on unlabeled compounds, 

previous work has shown that the iodination of the minibody will not result in changes to Kd 

[24].  With in vivo studies, there can be a multitude of binding co-factors that could reduce the 

dissociation constant that would not be present in vitro, leading to larger Kd measures in 

experiments such as QCM.  

The results shown here, from both in silico and in vivo studies, reveal the importance of 

considering diffusion in the quantification of high-affinity compounds in both imaging and 

therapeutic planning.  Fitting results demonstrate that biological and kinetic information can be 



93 
 

successfully extracted from immunoPET data with the use of physically accurate diffusion-

limited models, while data naively fit with regular compartmental models can lead to very large 

errors.  This has important repercussions in both therapeutic planning, where proper dosages 

need to be delivered to the entire tumor volume, as well as in immunoPET applications for 

staging disease progression. 

There are still some limitations in transitioning quantitative immunoPET modeling into clinical 

usage.  Firstly, in this work we have presented fitting data of a tracer with a radioisotope that is 

rapidly cleaved and excreted after internalization.  This phenomenon alleviates the need for an 

intra-cellular compartment and reduces the number of parameters needed for fitting.  Tracers 

with radioisotopes that are not rapidly cleared after endocytosis (such as A11 conjugated with 

89Zr), will require more complicated models that may be more difficult to fit than those described 

above [35].  Future work is in progress to model TACs measured from mice implanted with 

22rv1xPSCA tumors scanned with 89Zr-A11 to confirm the utility of this model in more complex 

systems. 

An additional barrier to this quantitative analysis in clinical use is the repeated scan times and 

long biological half-life of these tracers.  The minibodies used in this work show a substantial 

improvement over whole-antibodies in biological half-life and reduce the time over which TACs 

need to be measured, thus lessening this barrier.  However the protocol used in this study, with 7 

scans over the period of 44 hours, is still much more than would be viable in clinical usage.  

Therefore, future work is planned on optimizing dosage and scan protocols to minimize scan 

numbers and durations, while maintaining parameter identifiability in kinetic analysis. 
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4.5 Conclusion 

This work shows that slow diffusion of high-affinity compounds will have little effect on 

measured TACs in immunoPET for linear binding kinetics.  However, in the likely case of 

saturable binding (due to low receptor expression, low labeling efficiency, blocking/co-injection 

studies, or therapeutic antibody doses) slow diffusion will have a strong effect on measured 

TACs.  Using regular compartmental models to estimate biological and kinetic parameters of 

such diffusion-limited data can lead to large errors, which can be alleviated through the use of 

non-linear PDE models and the incorporation of Bayesian priors.  Future work is planned to 

validate the use of this fitting technique in intracellularly retained tracers, such as 89Zr-A11, and 

to optimize imaging protocols for such tracers to minimize scan time and retain parameter 

identifiability. 
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Figures and Tables 
 

 

FIGURE 1. Results of Simulated Diffusion-Limited Time Activity Curves (A) Effect of diffusion rates on simulated 
TAC. (B) Fitting of in silico TAC (D=14 μm2s-1) using a compartmental model (D = ∞ μm2s-1).  Data is normalized 
to steady-state receptor concentration in tissue. 
 
 

 

FIGURE 2. Results of in vivo Imaging of A11 Minibody.  (A) PET-CT of mouse at 20h post injection with 22rv1 
tumor on left and 22rv1xPSCA on the right side.  Color bar is in scanner units. (B) Measured TAC from  PSCA-
positive tumor (green), and  from left ventricle with fitted curve (blue). 
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FIGURE 3 Fitting Results of Diffusion-Limited Model.  Measured tumor activity fit using the diffusion model is 
shown as a solid line.  A simulated TAC with parameters from the diffusion model fit, but using infinite diffusion, is 
shown as the dotted line. 
 
TABLE 1 : Mean Bias and Relative Standard Deviation (RSD) of Parameters Fit to Simulated Diffusion-Limited 
Data. 

Fitting Model k1 (kon) k2 (koff) k3  k4 P Vb 

Compartmental 
(No Priors) 

μ 3100% 1*106% 2090% 1660% 63% 13% 

RSD 76% 180% 910% 860% 61% 28% 

Compartmental 
(With Priors) 

μ 
210% 470% 1.5*104% 1.7*103% -7% 6% 

RSD 
100% 200% 340% 500% 16% 42% 

Diffusion 
(No Priors) 

μ 31% -30% 290% 10% 25% 8% 

RSD 150% 140% 180% 16% 110% 25% 

Diffusion 
(With Priors) 

μ 
1% -20% 210% 4% 6% -6% 

RSD 
46% 110% 170% 8% 18% 3% 

 
TABLE 2:  Parameter Values Estimated from Measured TACs. 

Model kon 
(M·s)-1 

koff 
(s)-1 

k3 
(s)-1 

k4 
(s)-1 

P 
(m/s) 

Vb [Ag] 
(nM) 

D 
(µm2/s) 

Compartmental (Mouse1) 4.1*104 5.3*10-4 7.7*10-6 5.1*10-6 4.4 *10-9 .17 1031 NA 

Diffusion (Mouse1) 1.6*105 2.1*10-4 1.1*10-5 6.9*10-6 3.7*10-9 .16 140 9 
Diffusion (Mouse2) 1.8*105 4.4*10-4 2.6*10-5 8.1*10-6 3.7*10-9 .10 161 10 
% Difference between 

compartmental and 
diffusion models 

-74% 152% -30% -26% 19% 6% 646% N/A 
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Derivation of Kinetic Models

Motivation

In a standard compartmental model, transport of a tracer between well-mixed compartment is mod-

eled as a series of ordinary differential equations (ODEs). However, in the case of heterogeneously

localized tracers, these compartments are no longer well-mixed, and the spatial concentration of

the tracer must be modeling within each compartment. This effectively leads to a set of linked

compartmental models at each location in tissue (Supplemental Figure S2.4). In the case of tracer

kinetics within tumors, it is natural to model this heterogeneous localization as diffusion of tracer

away from the capillary wall into tissue in a radially symmetric fashion. Therefore, in the case of

diffusion-limited tracers, we model tissue as a collection of identical cylinders, each with a central

capillary enervating the tissue within that cylinder. The problem can be further simplified, by only

examining 2-D slices if tissue (orthogonal to the capillary), as there will be no net diffusion be-

tween such slices. By converting equations to a radially symmetric geometry, we can thus reduce

the system to a single spatial dimension.

1 - General Model Form - Linear Binding Kinetics

We examine radially symmetric diffusion of our compound. Let u(r, t) = unbound compound,

v(r, t) = bound compound, and w(r, t) = compound internalized into the cell. We then assume the

following about our system:

(i) Plasma concentration of the compound is Cp(t).

(ii) Compound moves reversibly into/out of the tissue at a rate defined by the capillary

permeability, P.

(iii) The compound binds/unbinds to surface receptors at rates k1, k2, respectfully.

(iv) The bound compound is reversibly endo/exocytosed at rates k3, k4.

(v) The internalized compound is irreversibly metabolized out of the system at rate k5.

(vi) Lastly, the compound diffuses linearly through tissue at rate D.
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In the case of infinitely fast diffusion (i.e. classical compartmental model), we can the describe the

system with the following set of ODEs.

d
dt

u(t) = PCp(t) − (k1 + P)u(t) + k2v(t)

d
dt

v(t) = k1u(r, t) + k4w(t) − (k2 + k3)v(t)

d
dt

w(t) = k3v(r, t) − (k4 + k5)w(t)

(S2.1)

In the case of finite diffusion rates, the following set of PDEs describe the system.

δ
δt

u(r, t) = D[ δ
2

δr2
u(r, t) + 1

r
δ
δr

u(r, t)] − k1u(r, t) + k2v(r, t)

δ
δt
v(r, t) = k1u(r, t) + k4w(r, t) − (k2 + k3)v(r, t)

δ
δt
w(r, t) = k3v(r, t) − (k4 + k5)w(r, t)

(S2.2)

For the PDE system, two Neumann boundary conditions are required:

−D δ
δr

u(r, t)] r=r0 = PCp(t) − Pu(r0 , t)

δ
δr

u(R, t) = 0
(S2.3)

The first corrects for the rate of influx/eflux of tracer from the capillaries which are centered at

r = 0 and have radius r0. The second corrects for diffusion of tracer out of the radius r = R disc.

Mathematically this actuallymanifests as a "reflective boundary" but we can think of it as correcting

for influx from adjacent discs. This is not exactly correct as not all points on the discs are radius

r = R from two capillaries. However, this should still give the analytically correct result as we

integrate over the disc because diffusion and compartmental transport are constant over radii, so

in this formulation we are doing the same thing as integrating over all r > r0 with no boundary

condition on the outer radius.
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2 - Solving the General Form

No analytical solution to the PDEs described above in equation S2.2 exist in the time domain.

However, by applying a Laplace transform, an analytical solution is yielded.

Applying the Laplace transform yields the following differential equations.

sû(r, s) = D[ δ
2

δr2
û(r, s) + 1

r
δ
δr

û(r, s)] − k1û(r, s) + k2v̂(r, s)

sv̂(r, s) = k1û(r, s) + k4ŵ(r, s) − (k2 + k3)v̂(r, s)

sŵ(r, s) = k3v̂(r, s) − (k4 + k5)ŵ(r, s)

(S2.4)

We begin our solution by simplifying the algebraic relation between û(r, s), v̂(r, s), andŵ(r, s)

ŵ(r, s) = k3
s + k4 + k5

v̂(r, s) = Cw v̂(r, s)

→ sv̂(r, s) = k1û(r, s) + k4Cw v̂(r, s) − (k2 + k3)v̂(r, s)

→ v̂(r, s)[s + k2 + k3 − k4Cw] = k1û(r, s)

→ v̂(r, s) = k1
s + k2 + k3 − k4Cw

û(r, s) = Cv û(r, s)

D[ δ
2

δr2
û(r, s) + 1

r
δ
δr

û(r, s)] − (s + k1 − k2Cv)û(r, s) = 0

→ r2
δ2

δr2
û(r, s) + r δ

δr
û(r, s) − r2C2

s û(r, s) = 0

Where C2
s =

1
D
(s + k1 − k2Cv) (S2.5)

The resulting simplified equation can be solved more easily after applying a change a variables:

ρ = rCs
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ρ2
1
C2
s

δ2

δr2
û(ρ, s) + ρ 1

Cs

δ
δr

û(ρ, s) − ρ2û(ρ, s) = 0

→ ρ2( dr
dρ
)2 δ2

δr2
û(ρ, s) + ρ dr

dρ
δ
δr

û(ρ, s) − ρ2û(ρ, s) = 0

→ ρ2
δ2

δρ2
û(ρ, s) + ρ δ

δρ
û(ρ, s) − ρ2û(ρ, s) = 0

→ û(r, s) = α(s)I0(rCs) + β(s)K0(rCs) (S2.6)

As shown in equations S2.6, û(ρ, s) is a sum of modified Bessel functions of order zero :

û(ρ, s) = α(s)I0(ρ) + β(s)K0(ρ), where α(s), β(s) are constant in r and will be defined by our

boundary conditions.

3 - Solving the Boundary Conditions

At the r = R boundary, the Laplace transform yields:

δ
δr

u(R, t) = 0→ α(s)Cs I1(RCs) − β(s)CsK1(RCs) = 0

→ β(s) = α(s) I1(RCs)
K1(RCs)

= α(s)IK

Where IK =
I1(RCs)
K1(RCs)

(S2.7)

Taking the Laplace transform of the r = r0 boundary condition yields the following:

−D δ
δr

û(r, t) r=r0 = PĈp(t) − Pû(r0 , s)

d
dr

I0(rCs) = Cs I1(rCs)
d
dr

K0(rCs) = −CsK1(rCs)

→ Dα(s)Cs[IKK1(r0Cs) − I1(r0Cs)] = PĈp(s) − Pα(s)[I0(r0Cs) + K0(r0Cs)]

α(s) =
PĈp(s)

DCs[IKK1(r0Cs) − I1(r0Cs)] + P[I0(r0Cs) + IKK0(r0Cs)]
(S2.8)
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4 - Infinite Diffusion Limit

Wewant tomake sure this correctlymodel behavior in the infinitely fast diffusion limit (the standard

compartmental model). In Laplace space, the solution to the comparable compartmental model

is,trivially, as follows:

ŵ(s) = Cwv(s)

v̂(s) = Cvu(s)

û(s) =
P̃Ĉp(s)

s + P̃ + k1 − Cvk2

P̃ = (2πr0)
P

π(R2 − r20)
(S2.9)

With Cw ,Cv defined as above. Here P̃is modified to correct for the differences between this "com-

partmental" model and the radially symmetric "Diffusion Model". The 1
π(R2−r20)

term is to correct

for the fact that with infinite diffusion, transport in/out of tissue to/from capillaries is placed evenly

across all radii, so influx and efflux are reduced by a factor proportional to the area enervated by

the capillary in question. The (2πr0) is to correct for the fact that in the "Diffusion" model, P is

a measure of flux across an infinitesimal point on the capillary wall, but in the "Compartmental"

model it refers to the net-flux across the entire circumference of the capillary.

In the D →∞,Cs → 0 limit, the solution from part 3 (Eqs. S2.6-S2.8) should simplify to the above

solution (Eqs. S2.9).

In the large D, small Cs limit, we have the following asymptotic approximations for the modified

bessel functions:

lim
z→0

I0(z) ∼ 1

lim
z→0

I1(x) ∼
z
2

lim
z→0

K0(z) ∼ −ln(z)

lim
z→0

K1(z) ∼
1
z
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→ lim
Cs→0

IK = lim
Cs→0

I1(RCs)
K1(RCs)

= RCs

2(RCs)−1
= (RCs)2

2

We can then use this information to get an asymptotic estimate of α(s) is in the large D limit:

lim
Cs→0

α(s) = lim
Cs→0

PĈp(s)
DCs[ (RCs)2

2
1

r0Cs
− r0Cs

2 ] + P[1 −
(RCs)2

2 ln(r0Cs)]
=

PĈp(s)
DC2

s
2r0
[R2 − r20] + P

→ lim
Cs→0

α(s) =
P

[R2−r20]
Ĉp(s)

1
2r0
(s + k1 − k2Cv) + P

[R2−r20]
=

P̃Ĉp(s)
s + P̃ + k1 − k2Cv

→ lim
D→∞

û(r, s) = lim
D→∞

α(s)[I0(rCs) + IKK0(rCs)] = lim
D→∞

α(s)[1 − (RCs)2

2
ln(rCs)] = lim

D→∞
α(s)

lim
D→∞

α(s) = lim
Cs→∞

α(s) =
P̃Ĉp(s)

(s + P̃ + k1 − k2Cv)

Thus, the model specified by Eqs. S2.2-S2.3 converges to the standard compartmental model (Eqs.

S2.1) in the infinite diffusion limit, as specified by Eqs. S2.9.

5 - General Model Form - Nonlinear Binding Kinetics

As mentioned in the main body, linear binding kinetics will not always be sufficient for describing

the system in vivo. To describe such a system, we build equations with assumptions similar to those

specified in section 1. However, in addition to modeling the concentrations of tracer in extracellular

space (u(r, t)), bound to the surface (v(r, t)), and internalized within the cell (w(r, t)), we now also

track the concentration of open binding sites on the cell surface (x(r, t)). In this system we make

the following assumptions, which result in Eqs. S2.10 & S2.11.

(i) Plasma concentration of the compound is Cp(t).

(ii) Compound moves reversibly into/out of the tissue at a rate defined by the capillary

permeability, P.

(iii) The compound binds/unbinds nonlinearly to surface receptors at rates k1, k2, respectfully.

(iv) Surface receptors have a steady state concentration of dens0.

(v) The concentration of open receptors returns asymptotically to steady state at maximum rate

of kregen (at complete saturation), such that the steady state regeneration (in absence of ligands)

will be: δ
δt x(r, t) = kregen(dens0 − x(r, t)).
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(vi) The bound compound/receptor complex is reversibly endo/exocytosed at rates k3, k4.

(vi) The internalized compound is irreversibly metabolized out of the system at rate k5.

(vii) Lastly, the compound diffuses linearly through tissue at rate D.

In the case of infinitely fast diffusion (i.e. classical compartmental model), we can the describe the

system with the following set of non-linear ODEs.

d
dt

u(t) = PCp(t) − Pu(t) − k1u(t)x(t) + k2v(t)

d
dt

v(t) = k1u(t)x(t) + k4w(t) − (k2 + k3)v(t)

d
dt

x(t) = −k1u(t)x(t) + k2v(t) + kre gen(dens0 − x(t))

d
dt

w(t) = k3v(t) − (k4 + k5)w(t)

(S2.10)

In the case of finite diffusion rates, the following set of non-linear PDEs describe the system.

δ
δt

u(r, t) = D[ δ
2

δr2
u(r, t) + 1

r
δ
δr

u(r, t)] − k1u(r, t)x(r, t) + k2v(r, t)

δ
δt
v(r, t) = k1u(r, t)x(r, t) − (k2 + k3)v(r, t)

δ
δt

x(r, t) = −k1u(r, t)x(r, t) + kre gen(dens0 − x(r, t)) + k2v(r, t)

δ
δt
w(r, t) = k3v(r, t) − (k4 + k5)w(r, t)

(S2.11)

The model described in Eqs. S2.11 is subject to the same Neumann boundary constraints described

in Eq. S2.3 for the linear binding-kinetic model. Unlike the linear-binding scenario, the inclusion

of nonlinear binding kinetics precludes analytical solutions in both the time and Laplace domain.

Therefore, all solutions to these equations must be computed numerically.

6 - Computing Numerical Solutions

As analytical solutions to the linear binding model are readily available in the Laplace domain,

solutions to these equations were computed using a numerical Laplace inversion. The solutions

described in section 3 were inverted using De Hoog's numerical Laplace inversion [1], as imple-

mented for MATLAB by Hollenbeck [2]. Time activity curves were simulated by numerically
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inverting solutions to the Eqs. S2.2, and integrating the activities across radii. Solutions to Eqs.

S2.11 were computed by applying the method of lines to discretize the spatial dimension, and nu-

merically solving the resulting system with Runge-Kutta methods as implemented in MATLAB.

7 - Optimization Algorithm

In kinetic modeling, the goal is often to obtain a non-linear regression fit f (t∣θ) of the measured

time activity curve y(t). This is usually computed by minimizing a weighted sum of squares, as de-

fined in (S2.12), where the weightingsw2
i are proportional to the variance (σ 2

i ) of each measurement

y(ti). If these y(ti)'s are distributed as members of exponential families (under mild assumptions),

then this minimized sum of squared errors is directly equivalent to a maximum likelihood fit, with

the weights wi described by the standard deviation of those distributions [3].

min
θ

n
∑
i=1

[y(t i) − f (t i ∣θ)]2

w2
i

(S2.12)

In the optimization used in this work, we also add two new terms to the sum in (S2.12) to account

for prior information measured in vitro (k̄on and k̄o f f ), as shown in (S2.13). In the optimization

performed in this work, both won and wo f f are set to ln(10)
2 , such that log(kon/o f f ) are normally

distributed with 95 percent of the probability density function contained within 1 order of magni-

tude above and below the mean. Although we are able to obtain far greater confidence in a priori

measurements of these parameters, weak priors were used to avoid over-constraining the model fit.

min
θ
(

n
∑
i=1

[y(t i) − f (t i ∣θ)]2

w2
i

) +
[ln(k̄on) − ln(θkon)]2

w2
on

+
[ln(k̄o f f ) − ln(θko f f )]2

w2
o f f

(S2.13)

This penalizedweighted sumof squares (equivalent to amaximum likelihood estimatewith Bayesian

priors) was solved using the Levenberg-Marquardt optimization method. The weightings for PET

measurements wi were defined as in (S2.14), with the standard deviation of the measurements at

time ti proportional to the inverse of the duration of the relevant PET frame. The parameter α

(identical for all wi) was chosen experimentally to reproduce the level of noise seen in the data.

In many PET applications, this weighting parameter is also defined to be proportional to the true
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data at time ti. However, that correction is more applicable in cases where images have been re-

constructed iteratively, as opposed to the filtered back projection used in this case.

w2
i =

α
duration2i

(S2.14)

8 - Confidence Intervals of Parameter Estimates

In optimization methods such as Levenberg-Marquardt, confidence intervals for parameter esti-

mates can be obtained from the parameter covariance matrix Vθ , which is a function of the Jacobian

(J) of the regression function ( f (t, ∣θ)), and the diagonal weighting matrix (W) (Eq. S2.15).

Vθ = [JTWJ]−1 (S2.15)

These estimates will be highly dependant on the weighting matrix W , and although we can make

robust estimates on the variance of measured time activity curve, the true variance of the a priori

measurements are more difficult to define. Without the priors (won/o f f = 0), the confidence intervals

of the fitted parameters will clearly be quite large (in line with the lack of parameter identifiability

without priors in fitting). Therefor we report the CIs of the fitted parameters at several levels of

theoretical variance for the in vitro measurements.

In all cases we assume that distribution of the a priori parameter measurements are log-Normal,

varying only in standard deviation. While a weighting of ln(10)
2 was used in fitting to avoid over-

constraining the fitting algorithm, clearly there is stronger confidence in the in vitromeasurements.

Therefor, we report RSD estimates using standard deviations down to ln(2)
4 , relating to a prior prob-

ability density function with ~95% if its mass between 70% and 140% of the mean. In Table S2.1

the relative standard deviation of the parameter fits from "mouse 1" in the work above are shown

as functions of the confidence placed in the a priori measurements.

While the confidence of most parameter estimates can be greatly increased through more realistic

bounds on the accuracy of a priori in vitromeasurements, we see little improvement in confidence

of the fitted values for kregen, P or R. In the case of capillary permeability,P, and blood volume, 1
R2 ,
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this small change in improvement is likely due to the small covariance between these parameters

and the binding/unbinding rates of the minibody. This is in alignment with in silico and in vivo

fitting results showing relatively small differences in those estimates when fitting data with com-

partmental vs. diffusion-limited models. In the case of kregen, it is possible that this confidence

could be increased through experiments specifically designed to reach higher levels of receptor

saturations, where the net regeneration rate is farther away from its asymptotic value as described

by Eq. S2.11.

Table S2.1 Relative Standard Deviation of Parameter Estimates with Varying Levels of in vitro Noise. (Data shown is
in percent values).

√
Prior weights kon ko f f kre gen kendo P D dens0 R

1
∞ 7980 6370 3720 2410 35.6 6.125 618 2.82

l n(10)
2 115 115 2220 206 12.5 2.82 26.3 2.39

l n(10)
4 57.6 57.6 2220 205 12.5 2.81 25.5 2.39

l n(2)
2 34.7 34.7 2220 205 12.5 2.81 25.3 2.39

l n(2)
4 17.3 17.3 2220 204 12.5 2.81 25.2 2.39
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Supplemental Figures 

  

SUPPLEMENTAL FIGURE S2.1.   Effects of Diffusion on TACs and Dose-at-Depth in Linear 
Binding Models.    (A) Simulated TAC in response to unit impulse at different rates of diffusion. 
Curves are normalized by the maximum simulated value from the infinite diffusion curve.  (B) 
Ratio of simulated TACs at different diffusion rates to an infinite diffusion model.  Even at 
biologically unreasonable rates (D=1μm2s-1), differences are less than 5%. (C) Total dose at 
depth relative to dose at capillary wall as a funciton of diffusion rates. 
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SUPPLEMENTAL FIGURE S2.2.  Affinity Measurements of A11 minibody: Immobilized 
PSCA antigen as measured by quartz crystal microbalance. Bold line is the mass transport 
limited binding model fit from n = 3 measurements at each concentration (160-5 nM), shown as 
dotted lines). 
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SUPPLEMENTAL FIGURE S2.3.  Fitting of TAC Measured from 22Rv1xPSCA Tumor in Second 
Mouse Using Diffusion-Limited Model with Bayesian Priors. 

 

SUPPLEMENTAL FIGURE S2.4.  Illustration of Difference Between a Standard Compartmental Model 
and the Diffusion-Limited Case. 
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CHAPTER 5 - Summary and Future Work 

Abstract 

The work presented in this dissertation represents solutions to overcoming barriers to 

quantification in positron emission tomography.  This work in Chapters 2&3 has shown that 

automated image measurement and analysis can greatly increase the quantitative utility of 

neurologic PET data in Alzheimer's disease (AD) for both diagnostic and prognostic purposes.  

Future work should be performed to further validate these methods with respect to a larger and 

more diverse subject population.  These methods can also be extended upon in further 

improvements to Alzheimer's imaging for both FDDNP and other β-amyloid and NFT tracers.  

Lastly, there are a multitude of non-Alzheimer dementias and other neurological conditions 

which could be investigated with improved quantitatively with the methods presented here.  In 

Chapter 4, we have shown that more rigorous mathematical techniques are needed for accurate 

quantification of the pharmacokinetics of large-molecule PET tracers such as labeled-antibodies.  

Many future studies can be performed to extend this work, namely in developing shorter scan 

protocols that can be more easily adapted to clinical investigations.  In a similar vein, in silico 

simulation studies can be performed to rigorously play drug treatment protocols to assure needed 

dosages at all depths within target tissues. 

5.1 Neurologic PET 

5.1.1  Summary of  Results  

In Chapter 2 of this dissertation, we showed that through automated VOI generation, the 

diagnostic utility of PET in AD can be greatly improved.  Additionally, the regional data used for 

classification was highly conserved and related to early stages of pathological progression AD 
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(the medial temporal lobe, posterior cingulate gyrus, and the occipital lobe) [1].  This provides 

initial evidence that quantitative PET can be used for non-invasive staging of AD in vivo.  

Extensions of this work are presented in Chapter 3, where we show that this automated data 

measurement can be improved in several ways.  First, we can automatically perform parametric 

graphical methods, such as Logan or relative equilibrium analysis, removing more sources of 

possible inter- and intra-investigator variability and avoiding errors due to under sampling of 

reference regions [2-3].  We also show that quantification of AD-PET can be increased through 

more rigorous analysis of extracted data.  Through automated VOI generation, we are able to 

robustly measure much larger regions than would be feasible through manual VOI definition.  

With larger VOIs, we are able to model extracted data more carefully and are not limited to 

assumptions of normally distributed tracer activity within a given region.  In fact, modeling each 

region as an admixture distribution of healthy and diseased tissue greatly improves the predictive 

utility of the data, allowing for accurate models to be built for predicting the rate of pathological 

progression and cognitive decline over a two year period.  The relatively poor performance seen 

by using mean-value measures to predict longitudinal changes perhaps explains the difficulty in 

creating predictive models, as previously described by other investigators in follow-up studies of 

FDDNP and 11C-PIB [4].  Another advantage the analysis reported in Chapter 3 may have over 

previous AD-PET studies is the use of subcortical white matter as a reference [5].  We found 

evidence of increased binding of FDDNP in cerebellar cortex over the two year follow-up 

period, with some AD and MCI subjects showing large reductions in regional DVR values 

between initial and follow-up scans, which disappeared when using white-matter as a reference 

region instead, as described by Wong et al. [5].  This growth of amyloid deposition in the 

cerebellar gray matter has been previously found in post mortem examinations as well [6-7].  It 
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is possible that a similar longitudinal increase in amyloid load in the cerebellar cortex explains 

the longitudinal decline in parametric image intensity seen in some subjects by Ossenkoppele et 

al. and Jack et al., as well as lack of strong correlation between regional image intensity and 

psychological scores such as the mini-mental-state examination (MMSE) [4,8]. 

5.1.2  Future Expansions   

As discussed above, significant improvements can be made to AD-PET through more rigorous 

and quantitative analysis of data.  However, there are still limitations of the techniques as 

presented in Chapters 2&3, and many possible extensions in imaging both AD, and non-

Alzheimer dementias and disorders.  Perhaps the largest current limitation to the methodology 

presented thus far, is that partial volume correction (PVC) was not performed.  In our image 

analysis presented in Chapter 3, very conservative grey-matter masks were applied to our 

automatically generated VOIs, such that partial-volume effects should be minimized.  However, 

in neurdegenerative diseases like AD, we will be measuring ever thinner anatomical regions, 

especially as disease progresses to late stages, increasing the likelihood of spill-over induced 

partial-volume errors and significant underestimation of amyloid and NFT load.   

The importance of PVC in AD-PET has been previously described, and initial work has been 

published to perform PVC in FDDNP [9,10].  It is possible that any partial-volume effects are 

being absorbed by the admixture modeling described in Chapter 3, with spillover into white-

matter being accounted for in the "healthy" tissue distribution.  This possibility would explain 

the consistently higher variance seen in "healthy" vs. "diseased" tissue distributions found in the 

admixture modeling.  If this is the case, PVC would likely improve discrimination between the 

distributions modeling the admixture analysis and perhaps further improve the longitudinal 



116 
 

predictive utility of FDDNP PET in AD.  To test for this possibility, future work will be 

performed to examine the sensitivity of the admixture modeling to cortical thickness in digital 

phantoms.  If significant changes are measured across biologically reasonable levels of cortical 

degeneration, the current set of longitudinal data will be reanalyzed using PVC to account for 

these spill-over events.  Because the automated protocol described in Chapters 2&3 requires a 

structural image of each subject, creating smoothed partial-volume effect masks should prove to 

be a very simple extension of the automation procedure. 

Another area where this methodology can be expanded is with increased population sizes across 

a wider spectrum of disease states.  As previously discussed, AD is a slowly progressing disease 

with pathological symptoms initiating long before clinically detectable symptoms present 

[1,11,12].   While we showed preliminarily promising results in longitudinal prediction and 

disease staging, a more complete model of disease progression could be built with long term data 

across more disease states than MCIs and age-matched controls.  Therefore, an expanded study 

group and imaging protocol is proposed here.  A population of clinically diagnosed AD, MCI, 

and age-matched controls would undergo annual examinations of mental state, as described by 

Small et al., over a period of 2-4 years [13].  Further, at each of these examinations, subjects 

would undergo dynamic-FDDNP scanning, as described previously, as well as a T1-weighted 

(MPRage) MRI scan, so that cortical loss could be accounted for in VOI generation [10].  For all 

subjects, parametric FDDNP-DVR images would be automatically generated through relative 

equilibrium analysis, subjected to PVC [3].  These parametric images would then be measured 

and analyzed as described in Chapter 3 of this work, allowing for a more complete view of 

disease progression to be examined.  This study could be further improved with the inclusion of 

young healthy controls (around 40 years old), with and without familial histories of dementia, in 
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an attempt to view the progression on β-amyloid and NFTs in early disease state as well as in 

normal aging. 

5.1.3 Future Extensions  

As mentioned previously, there are currently various AD-PET tracers (for both amyloid and NFT 

imaging) being investigated, and it is possible that by extending the methods discussed here they 

would also show improved diagnostic and prognostic capabilities.  An initial test of this 

hypothesis would be direct comparisons of 18FDDNP scans with 11C-PIB scans of the same 

subject population, to see if PIB shows the same admixture distribution of tracer activity seen in 

FDDNP.  A significant complication to this study stems from the appearance in amyloid in the 

cerebellar cortex, as discussed above, making it an inappropriate reference region for generating 

parametric images such as DVR or SUVr [6,7].  While we have shown that using subcortical 

white matter is a solution to this problem, it has been noted that PIB, as well as other amyloid-

only binding tracers such as AV-45 and BAY-94, exhibit increased localization in white matter 

as well[11,14,15].  This phenomenom limits the quantifiability of these tracers until a more 

robust reference region is found. 

The methods described here can also be extended to non-Alzheimer's dementias and diseases, 

that are currently being investigated with FDDNP.  In addition to AD, there are other dementias 

with characteristic amyloid accumulation, such as frontotemporal dementia (FTD), that could 

also be visualized with FDDNP [16].  Because clinical misdiagnosis of dementias is relatively 

common, in vivo assays of amyloid distributions via PET could allow for a significant 

improvement to clincial discrimination [17].  Additionally, the methods described here can be 

extended to visualization of amyloid or NFT in other degenerative diseases such as progressive 
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supranuclear palsy, genetic conditions such as Down syndrome, or environmental conditions 

such as chronic traumatic brain injury [18-21]. 

5.2 Oncologic PET 

5.2.1  Summary of  Results  

In Chapter 4, we presented work examining the limitations of using traditional ODE 

compartmental models to extract kinetic information about large, slowly diffusing radiotracers 

such as labeled antibodies.  We showed that in a linear binding regime, measured TACs will not 

be significantly affected by biologically reasonable diffusion rates.  However, even in the case of 

linear binding kinetics, non-infinite diffusion rates will lead to high levels of tissue 

heterogeneity, which will cause significant complications to immunotherapy protocols, with 

large volumes of target tissue being devoid of therapeutic effects [22].   Practical situations will 

likely diverge from the linear binding regime, due either to blocking or co-injection studies, low 

labeling efficiencies, or planned receptor saturation in the case of immunotherapy [23].  When 

binding deviates from linear to Michaelis-Menten kinetic regimes, we find that simulated TACs 

will be far more sensitive to slower diffusion rates of tracer compounds.  Furthermore, we find 

that there are cases when these simulated TACs can be reasonably reproduced with infinite-

diffusion (i.e. classic compartmental) models, leading to large parameter estimate bias.  We also 

show that the resulting problem of parameter identifiability can be overcome by the inclusion of 

Bayesian priors on parameters that can be accurately measured in vitro before scanning. 

Extending this in silico work to in vivo scanning of mice, we show that a diffusion-limited non-

linear PDE model of tracer kinetics can accurately reproduce measured TACs of the 124I-A11 

minibody in tumors over-expressing the PSCA antigen [24].  Further mirroring the preliminary 
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in silico simulations, we find that fitting these TACs with regular compartmental models can 

result in order-of-magnitude differences in parameter estimates from the diffusion limited model.  

In these cases, the diffusion-limited PDE models much more closely resembles the a priori 

parameter measurements performed in vitro. 

5.2.2  Future Expansions  

Although promising, the work presented in Chapter 4 is preliminary and requires to be expanded 

in several ways.  First, the radiotracer discussed in Chapter 4, 124I-A11, shows faster in vivo 

clearance times from target tissues.  This is thought to be caused by the rapid cleavage and 

excretion of the 124I tracer molecule once the bound minibody-receptor complex is internalized to 

the cell [25].  As a result, we presented a simplified model of A11 kinetics in which there is no 

intracellular compartment, and internalization is modeled as a leak from the system.   While this 

has proven accurate thus far, there are other immunotracers and even forms of A11, such as 89Zr-

A11 for which the assumption of infinitely fast metabolism will not hold [26].  Therefore, the 

identifiability of diffusion limited models with intracellular compartments must be verified. 

We have performed initial tests of this expanded model for in vivo imaging of the 89Zr-A11 

minibody.  One mouse was implanted with a 22rv1 control tumor, and contralaterally with a 

22rv1 tumor transfected to over-express PSCA, as described previously and in Chapter 4[27].  

The mouse underwent a similar scanning protocol of an initiation 2h dynamic scan, followed by 

10 minute static scans taken at 4, 6, 8, 12, 21, and 45 hours post injection.  Using the same priors 

as the fittings in Chapter 4, the diffusion-limited PDE model was used to fit the extracted TAC 

from the transfected tumor (Figure 5.1). Parameter estimates from this model, as compared to the 

mice scanned in Chapter 4 are shown in Table 5.1. As can be seen in Figure 5.1 and Table 5.1, 
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the diffusion limited model appears to be robust in its ability to reproduce more complicated 

kinetic models including intracellular compartments, with most of the parameter estimates being 

in close alignment with those found in vitro and vivo. 

FIGURE 5.1: In vivo Scanning of 89Zr-A11 Minibody in PSCA Expressing Tumors.  (A) Fused PET-CT of mouse 
implanted with 22rv1 (left) and 22rv1xPSCA (right) tumors 8 hours post injection. (B) Measured TACs of blood 
(blue), and transfected tumor (green) activity. (C) Measured TAC(red) fit with the diffusion limited PDE model with 
intracellular compartments (Blue), and an infinite diffusion compartmental model with identical kinetic parameters 
(green). 

TABLE 5.1  Parameter Estimates from Diffusion-Limited PDE Kinetic Models as Measured in vivo with 124I and 
89Zr-A11 Minibodies.  Parameter estimates for 89Zr-A11 data are from a model including an intracellular 
compartment. 

Model 
Kd 

(nM) 
k

on
 

(M s)-1 

k
off

 

(s-1) 

K
regen

 

(s-1) 

K
endo

 

(s-1) 

K
metab

 

(s-1) 
P 

(m/s) 
Vb 

[Ag] 
nM 

D 
(µm2/s) 

Prior 4.14 1.2*10
5
 4.95*10

-4
 - - - - - -  - 

124
I – 

Mouse 1 
1.3 1.6*10

5
 2.1*10

-4
 1.1*10

-5
 6.9*10

-6
 - 3.7*10

-9
 0.16 140 9 

124
I – 

Mouse 2 
2.4 1.8*10

5
 4.4*10

-4
 2.6*10

-5
 8.1*10

-6
 - 3.7*10

-9
 0.10 161 10 

89
Zr – 

Mouse 1 
8.7 9.3*10

4
 8.1*10

-4
 3.2*10

-5
 3.1*10

-5
 1.6*10

-6
 2.5*10

-8
 0.04 95 7 

 

While this data shows strong preliminary agreement between models and imaging agents, this 

methodology still requires further testing.  Specifically, repeated study with largely expanded 

data sets can help to verify these initial results.  In these expanded studies, it is proposed to 

repeat the scanning protocol using 124I-A11 described in Chapter 4, but repeated with 
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subcutaneous xenografts of cancer lines which express PSCA at differing concentrations, such as 

Capan1 (30K PSCA/cell),  LAPC-9 (72K PSCA/cell), and the 22rv1xPSCA line used above and 

in Chapter 4 (3*106 PSCA/cell).  This expansion will help verify the parameter estimates 

acquired using the diffusion limited model.  This methodology can expanded for more robust 

quantification in a larger study in several ways.  First, the imaging data shown above and in 

Chapter 4 was performed without attenuation correction.  This was done primarily to keep in line 

with a proposed longitudinal treatment study, where repeated CT imaging would confound 

treatment effects.  Additionally, in larger scale studies PVC should be performed to assure clean 

measurement of the input function.  In this specific case, partial-volume effects are likely to be 

minimal due to the lack of PSCA expressed in cardiac tissue, but developing these methods for 

other tracers which do not share that property is an important extension of this methodology.  

Lastly, this model can be verified through comparisons to α-camera imaging of ex vivo 

cryosections of tissues labeled with an α-emitting minibodies.  These α-camera images can have 

spatial resolution up to 35 μm, and initial studies have been performed with an α-emitting 211At-

A11 minibody showing heterogeneous localization[28,29].  These α-camera images can be used 

to verify the spatial heterogeneity predicted by the diffusion-limited kinetic model. 

5.2.3  Future Extensions  

One of the largest limitations of translating the small animal PET work shown here to clinical 

usage is the number and duration of PET scans currently required.  However, in Chapter 4 we 

show that we can obtain similar parameter estimates using four fewer followup time points, 

suggesting that it is possible to extract the desired biological parameters using limited scan 

protocols.  Once the optimization model is verified as discussed above, we plan to evaluate the 

identifiability of biological parameters under various study protocols.  Time activity curves will 
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be simulated (with noise added) using kinetic parameters acquired from in vivo imaging, for a 

variety of study protocols, varying in scan number and duration.   Performance of these protocols 

will be evaluated on the basis of estimated parameter bias and variance.  Initially, only protocols 

with a single dynamic scan taken immediately after injection will be analyzed.  Afterward, we 

will progressively add simulated static followup scans, to determine performance gains. These 

simulated studies could also be used to help in the development of new custom engineered 

immunoPET probes.  It is possible that under different combinations of kinetic parameters (such 

as binding affinity capillary permeability, etc.), more reliable parameter estimates could be 

extracted from dynamic PET imaging. 

It is possible that no practical clinical protocol for kinetic PET imaging could be established for 

these tracers.  However, this diffusion-limited model will still have utility in designing dosage 

protocols for immunotherapy.  In future studies, we plan to simulate the kinetic activity of 

immunotherapeutics in tissue under a variety of dosage protocols.  Similar to the in silico 

experiments discussed above, these simulations will be performed with kinetic parameters 

measured a priori using the diffusion limited kinetic model.  These protocols will then be 

optimized such that they can deliver effective dosages to all depths within tumors, as well as 

minimizing dosages to background non-target tissues such as the liver and kidney. 
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