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Relativizing characterizations of Anosov subgroups, I

Michael Kapovich, Bernhard Leeb

June 30, 2018

Abstract

We propose several common extensions of the classes of Anosov subgroups and geo-

metrically finite Kleinian groups among discrete subgroups of semisimple Lie groups. We

relativize various dynamical and coarse geometric characterizations of Anosov subgroups

given in our earlier work, extending the class from intrinsically hyperbolic to relatively

hyperbolic subgroups. We prove implications and equivalences between the various rela-

tivizations.
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1 Introduction

The notion of geometric finiteness was first introduced by Ahlfors [Ah] in the context of Kleinian

group actions on hyperbolic 3-space H3. It was originally defined via the existence of finite-sided

convex fundamental polyhedra. A few years later, Beardon and Maskit [BM] gave a dynamical

characterization of geometrically finite groups in terms the action on the limit set, now called the

Beardon-Maskit condition. Subsequently, alternative characterizations were given by Marden

[Mar], Thurston [Th] and many others, see e.g. [Bo1] and [Ra].

While Ahlfors’ original definition turned out to be unsuitable for hyperbolic space of di-

mension ě 4, the Beardon-Maskit condition worked well in the context of discrete subgroups of

rank one Lie groups and, more generally, of discrete groups of isometries acting on negatively

pinched Hadamard manifolds [Bo2], and was shown to be equivalent to a variety of other prop-

erties. The Beardon-Maskit condition remains meaningful even in the purely dynamical setting

of convergence actions on topological spaces, something which we are exploiting in our work.

A particularly nice subclass of geometrically finite Kleinian groups is formed by convex

cocompact subgroups which are distinguished by the absence of parabolic elements. They are

intrinsically word hyperbolic, whereas a general geometrically finite Kleinian group inherits a

natural structure as a are relatively hyperbolic group, the peripheral structure given by the

collection of maximal parabolic subgroups.

The notion of convex cocompact Kleinian groups was extended to discrete subgroups of

higher rank Lie groups, starting with the notion of Anosov subgroups [La], see also [GW].

These were originally defined in terms of their dynamics on flag manifolds. We subsequently

gave various characterizations of Anosov subgroups in terms of their coarse geometry, dynamics

and topology along with a simplification of their original definition [KLP1, KLP2, KL1, KLP5],

see also [KLP3, KL2].

As convex cocompact subgroups, Anosov subgroups are intrinsically word hyperbolic, and

as the former contain no parabolics, the latter contain no strictly parabolic elements,1 e.g. no

unipotents. Our goal is to find a common extension of the classes of Anosov and geometrically

finite subgroups, that is, to complete the diagram:

1That is, non-elliptic elements with zero infimal displacement.
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convex cocompact
allow parabolics

- geometrically finite

Anosov

higher rank

?

- ?

higher rank

?

We consider subgroups which are relatively hyperbolic as abstract groups and extend to this

more general setting various characterizations of Anosov subgroups studied in our earlier papers.

The Beardon-Maskit condition has the most straightforward generalization, namely by re-

quiring that the discrete subgroup acts on its limit set like a relatively hyperbolic group. This

leads to the notions relatively asymptotically embedded and relatively RCA, see Definitions 7.1

and 7.6, which are equivalent in view of Yaman’s dynamical characterization of relatively hy-

perbolic groups. The intrinsic relatively hyperbolic structure of these discrete subgroups can

be read off the dynamics on the limit set and is therefore uniquely determined.

Also our coarse geometric characterization of Anosov subgroups as Morse subgroups, that

intrinsic geodesics in the subgroup are extrinsically perturbations of Finsler geodesics in the

symmetric space, generalizes naturally. This leads to the notions of relatively Morse and rela-

tively Finsler-straight, see Definitions 8.1 and 8.8.

All these relative notions agree in rank one with geometric finiteness (see Corollary 9.2).

The main result of the paper establishes relations (implications and equivalences) between them

in higher rank. It is summarized in Theorem 9.1 and the diagram:
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rel Morse

rel uniformly Finsler-straight -
�

rel Finsler-straight

-

rel asymptotically embedded

with uniformly regular

peripheral subgroups

?

6

- rel asymptotically

embedded

?

6

rel RCA

?

6

rel boundary embedded

?

if Zariski dense

6

The most difficult implications are between relatively Finsler straight and relatively asymp-

totically embedded, connecting coarse geometry and dynamics, and their analogues in the uni-

formly regular case. They are proven in section 8.2, which in turn relies on coarse geometric

results about general (non-equivariant) Finsler straight maps established in section 6.3.

Examples of classes of discrete subgroups satisfying the relative conditions discussed in the

paper are:

1. subgroups preserving a rank one symmetric subspace and acting on it in a geometrically

finite fashion (Theorem 8.5 and Example 8.7)

2. discrete groups of projective transformations acting with finite covolume on strictly convex

solids in Rn (studied in [CLT])

3. certain families of discrete subgroups of PGLp3,Rq not preserving properly convex do-

mains in RP 2 (described in [Sch] and [KiLe])

4. positive representations (into split semisimple Lie groups) of fundamental groups of punc-

tured surfaces (appearing in [FG])

5. certain free products of opposite unipotent subgroups (see [KL3])

6. small relative deformations (see [KL3])

The discussion of the relative notions introduced in this paper will be continued in [KL3].
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2 Preliminaries and notation

2.1 Metric spaces

We will be using the notation xy for a geodesic segment in a metric space connecting points

x and y. Similarly, in a geodesic metric space Y which is Gromov hyperbolic or CAT(0), we

will use the notation yξ for a geodesic ray in Y emanating from y and asymptotic to a point

ξ in the visual (ideal) boundary B8Y of Y . For two distinct ideal boundary points η˘ P B8Y

of a Gromov-hyperbolic space Y we will use the notation η´η` for a geodesic in Y asymptotic

to η˘. A similar notation will be used for Finsler geodesics in symmetric spaces: xτ , τ´τ` will

denote a Finsler geodesic ray/line; see section 4.2.

We will use the notation Bpa,Rq for the open R-ball with center a in a metric space, and

the notation NRpAq for the open R-neighborhood of subsets A, where R ą 0. The subsets

NRpAq are called tubular neighborhoods of A.

A metric space is called taut if every point lies at distance ď R from a geodesic line for some

uniform constant R.

Two subsets in a metric space are called D-separated if their infimal distance is ě D.

We call a subset of a metric space s-spaced if its distinct points have pairwise distance ě s,

and we call a map into a metric space s-spaced if it is injective and its image is s-spaced.

A sequence pxnq in a metric space is said to diverge to infinity if limnÑ8 dpx1, xnq “ 8; we

will refer to such pxnq as a divergent sequence.

A map between metric spaces is called metrically proper if it sends divergent sequences to

divergent sequences, equivalently, if the preimages of bounded subsets are bounded.

2.2 Group actions

For an action Γ ñ X of a group Γ on a set X we let Γx ă Γ denote the stabilizer of an element

x P X. The associated orbit map is defined by

ox : Γ Ñ X, γ ÞÑ γx.
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If Γ ñ Y is another Γ-action and y P Y is a point such that Γy ď Γx, then there is a well-defined

Γ-equivariant map of orbits

ox,y : Γy Ñ Γx, γy ÞÑ γx.

2.3 Convergence actions

A continuous action Γ ñ Z of a discrete group Γ on a compact metrizable topological space Z

is called a (discrete) convergence action if for each sequence pγnq of pairwise distinct elements

in Γ there exists a pair of points z´, z` P Z such that, after extraction, the sequence pγnq

converges to z` uniformly on compacts in Z ´ tz´u. Note that all actions on spaces with at

most two points are convergence, except actions of infinite groups on the empty space. Also,

all actions of finite groups are convergence.

The limit set Λ “ ΛpΓq Ď Z consists of all points which occur as such limits z`. The limit

set is Γ-invariant and compact. If |Λ| ě 3, then it is perfect and the action Γ ñ Λ has finite

kernel and is minimal.2 If |Γ| “ `8, then Λ ‰ H, and if |Γ| ă `8, then Λ “ H.

Elements of convergence groups fall into three classes: An element is called hyperbolic if it

has infinite order and exactly two fixed points, parabolic if it has infinite order and exactly one

fixed point, and elliptic if it has finite order.

A point z P Z is called a parabolic fixed point of Γ if it is the fixed point of some parabolic

element in Γ. It then is a limit point of its stabilizer Γz, and it turns out that in fact ΛpΓzq “ tzu,

see [Tu2, Lemma 2F].

The following types of limit points will be important for this paper (given the nature of the

actions of relatively hyperbolic groups on their ideal boundaries):

Definition 2.1. A point z P ΛpΓq is called a

(i) conical limit point for Γ if there exists a sequence pγnq of distinct elements in Γ and a

point w P Λ ´ tzu such that the sequence of pairs pγ´1
n z, γ´1

n wq does not accumulate at the

diagonal of Z ˆ Z.

(ii) bounded parabolic point of Γ if its stabilizer Γz ă Γ acts on ΛpΓq ´ tzu properly discon-

tinuously and cocompactly.

(ii’) bounded parabolic fixed point of Γ if it is both a bounded parabolic point and a parabolic

fixed point.

Note that the stabilizer of a bounded parabolic point z is necessarily infinite and ΛpΓzq “

tzu. Property (ii’) is strictly stronger than (ii) because the stabilizer of a bounded parabolic

point can be an infinite torsion group.

If |ΛpΓq| “ 1 and Γ is not a torsion group, then the limit point is a bounded parabolic fixed

point and not a conical limit point. If |ΛpΓq| “ 2, then both limit points are conical and not

bounded parabolic.

2I.e. every orbit is dense.
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The importance of convergence actions in our work is due primarily to two reasons:

• If Y is a proper geodesic Gromov-hyperbolic metric space and Γ is a discrete subgroup

of the isometry group of Y , then the natural action of Γ on the visual boundary B8Y of

Y is a convergence action, see [Tu2].

• If Γ is a τmod-regular antipodal subgroup of the isometry group of a symmetric space of

noncompact type, then the natural action of Γ on its τmod-limit set in the flag-manifold

Flagτmod
is a convergence action, see [KLP5].

We refer the reader to [Bo4, Tu2, Tu3] for in-depth discussions of convergence actions.

3 Some coarse hyperbolic geometry

3.1 Gromov hyperbolic spaces

Background material on hyperbolic spaces can be found in [BH], [Bo5], [Bou], [DK] and [V].

Let Y be a proper geodesic metric space which is δ-hyperbolic in the sense of Gromov for

some δ ě 0. We denote by Y “ Y \ B8Y its visual compactification.

Geodesics in Y are roughly unique in the sense that any two geodesic segments with the

same endpoints have Hausdorff distance ď Cδ, where C is a uniform constant (depending on

the definition of δ-hyperbolicity which is used). The same holds for any two asymptotic geodesic

rays with the same initial point, and for any two (at both ends) asymptotic geodesic lines.

A family of geodesics in Y is bounded if for some (any) point y P Y the distance of y to the

geodesics in this family is uniformly bounded. The pairs py, y1q of endpoints of geodesics yy1 in

Y lie in the set pY \ B8Y q
2 ´ ∆B8Y . The boundedness of a family of geodesics in a Gromov

hyperbolic space is an asymptotic property of its set of pairs of endpoints:

Lemma 3.1. Let EY Ă pY \ B8Y q
2 ´∆B8Y . Then the family of all geodesics in Y with pair

of endpoints in EY is bounded if and only if EY is relatively compact in pY \ B8Y q
2 ´∆B8Y .

Proof. Any bounded sequence of geodesics yny
1
n in Y subconverges to a geodesic yy1, and the

pairs of endpoints pyn, y
1
nq subconverge to py, y1q P pY \ B8Y q

2 ´∆B8Y . Thus the sequence of

pairs pyn, y
1
nq does not accumulate at ∆B8Y .

On the other hand, if a sequence of geodesics yny
1
n diverges, i.e. their distances from some

base point y P Y diverge to infinity, then δ-hyperbolicity implies that there exists points zn P yyn
and z1n P yy

1
n such that zn, z

1
n Ñ 8 and the segments yzn and yz1n are Cδ-Hausdorff close. It

follows that the pairs pyn, y
1
nq accumulate at ∆B8Y .

A sequence pynq in Y is said to converge to η P B8Y conically if yn Ñ η and pynq is contained

in a tubular neighborhood of a ray asymptotic to η. This is independent of the ray since any two

asymptotic rays have finite Hausdorff distance. For a subset A Ă Y , the conical accumulation

8



set Bcon8 A Ă B8Y consists of all points η P B8Y for which there exists a sequence panq in A

converging to η conically.

Given a discrete isometric group action Γ ñ Y , we define its limit set Λ “ ΛY as the

accumulation set B8pΓyq in B8Y of one (equivalently, every) Γ-orbit in Y . We will use the

notation Λcon “ Λcon
Y for the conical limit set of this action, i.e. the set Bcon8 pΓyq of conical limit

points of the group Γ.

Straight triples. We denote by T pY q :“ Y 3 the space of triples of points in Y and by

T pY, B8Y q :“ pY \ B8Y q ˆ Y ˆ pY \ B8Y q (3.2)

the space of ideal triples in the visual compactification Y “ Y \ B8Y with middle point in Y .

We first define straightness for (non-ideal) triples in Y :

Definition 3.3 (Straight triple). A triple py´, y, y`q P T pY q is called D-straight, D ě 0, if

the points y´, y and y` are D-close to points y1´, y
1 and y1`, respectively, which lie in this order

on a geodesic (segment).

This notion naturally extends to ideal triples in T pY, B8Y q: We say that a triple py´, y, η`q P

Y 2ˆB8Y is D-straight if the points y´ and y are D-close to points y1´ and y1, respectively, such

that y1 lies on a geodesic ray y1´η`. Analogously for triples pη´, y, y`q P B8Y ˆ Y 2. Similarly,

we say that a triple pη´, y, η`q P B8Y ˆ Y ˆ B8Y is D-straight if η´ ‰ η` and the point y lies

within distance D of a geodesic line η´η`.

Y is taut, if every point y is the middle point of a uniformly straight triple pη´, y, η`q.

Straight holey lines. We call a map q : H Ñ Y from an arbitrary (“holey”) subset of H Ă R
a holey line. If H has a minimal element, we also call q a holey ray. A sequence pynqnPN in Y

can be regarded as a holey ray NÑ Y .

We will consider extensions to infinity q̄ : H :“ H \ t˘8u Ñ Y “ Y \ B8Y of holey lines

q : H Ñ Y by sending ˘8 to ideal points η˘ P B8Y , and refer to q̄ as an extended holey line.

Similarly, for holey rays q : H0 Ñ Y , we will consider extensions q̄ : H0 :“ H0 \ t`8u Ñ Y by

sending `8 to an ideal point η P B8Y , and refer to q̄ as an extended holey ray.

We carry over the notion of straightness from triples to holey lines by requiring it for all

triples in the image:

Definition 3.4 (Straight holey line). A holey line q : H Ñ Y is called D-straight if the

triples pqph´q, qphq, qph`qq in Y are D-straight for all h´ ď h ď h` in H.

Similarly, we say that an extended holey line q̄ : H Ñ Y is D-straight if the triples

pqph´q, qphq, qph`qq in Y are D-straight for all h´ ď h ď h` in H with h P H, and analo-

gously in the ray case.

Straight holey lines are up to bounded perturbation monotonic maps into geodesics. More

precisely, for a D-straight holey line q : H Ñ Y there exists a geodesic c Ă Y and a monotonic

map q̄ : H Ñ c which is D1pDq-close to q. The holey line q̄ : H Ñ Y extended by q̄p˘8q “

9



η˘ :“ cp˘8q is then D1-straight. The ideal points η˘ are unique if q is biinfinite.

Let I Ď R be an interval. We say that a function f : I Ñ R

(i) has ε-coarsely slope s if

|fpt1q ´ fpt2q ´ spt1 ´ t2q| ď ε

for all t1, t2 P I.

(ii) is ε-coarsely convex if

µ1fpt1q ` µ2fpt2q ď fpµ1t1 ` µ2t2q ` ε

for all t1, t2 P I and all µ1, µ2 ě 0 with µ1 ` µ2 “ 1.

Note: If there exists t0 P I such that f |IXp´8,t0s has ε-coarsely slope ´1 and f |IXrt0,`8q has

ε-coarsely slope `1, then f is 2ε-coarsely convex.

Transferring these notions, we say that a function f : Y Ñ R has ε-coarsely slope s or is

ε-coarsely convex along a geodesic c : I Ñ Y if the composition f ˝ c has this property.

Horofunctions and horoballs. Horofunctions coarsely measure relative distances from points

at infinity. They arise most naturally as limits of normalized distance functions.

Fix an ideal point η P B8Y . Let pynq be a sequence in Y so that yn Ñ η. After passing to a

subsequence, the sequence of distance functions dp¨, ynq converges up to additive constants, i.e.

there exists a sequence an Ñ 8 of real numbers and a function h : Y Ñ R such that

dp¨, ynq ´ an Ñ h

locally uniformly. The function h has the following properties: It is 1-Lipschitz and for every

point y P Y there exists a ray ρy : r0,8q Ñ Y asymptotic to η with initial point y along which

h decays with slope ” ´1, i.e. h ˝ ρy|
t2
t1 “ t1 ´ t2 for all t1, t2 ě 0. (Such a ray ρy arises as a

sublimit of the segments yyn.) For an arbitrary ray ρ : r0,8q Ñ Y asymptotic to η, it follows

that
ˇ

ˇph ˝ ρ|t2t1q ´ pt1 ´ t2q
ˇ

ˇ ď Cδ (3.5)

for all t1, t2 ě 0 with a uniform constant C. We define a horofunction at η as a function

h : Y Ñ R which satisfies (3.5) for all rays ρ asymptotic to η. Any two horofunctions h, h1 at

η coarsely differ by an additive constant, i.e.

|phpyq ´ hpy1qq ´ ph1pyq ´ h1py1qq| “ |phpyq ´ h1pyqq ´ phpy1q ´ h1py1qq| ď Cδ (3.6)

for all y, y1 P Y (with a possibly different uniform constant C).3

Horofunctions are uniformly coarsely convex. This is a consequence of the following stronger

property: For any horofunction h and segment zz1 there exists a division point y0 P yy
1 such

3We will often use the same letter C for a constant with the understanding that the constant may vary from

inequality to inequality.
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that h has Cδ-coarsely slope 1 along the oriented segments y0y and y0y
1 with a uniform constant

C.

We define horoballs as coarse sublevel sets of horofunctions. We say that a subset Hb Ă Y

is a horoball at η P B8Y if there exists a horofunction h at η such that

th ď 0u Ď Hb Ď th ď 10Cδu

with the constant C from formula (3.5). Horoballs are uniformly quasiconvex; in particular,

for every y P Hb, the ray yη is contained in NrpHbq for some uniform constant r. a Moreover,

the visual boundary of a horoball at η equals tηu. It is mostly these two properties of horoballs

which will be used in this paper.

We will call the space Y itself a horoball if B8Y consists of a single point and the horofunc-

tions are bounded above.

Quasiconvex subsets and hulls. We recall that the quasiconvex hull QCHpAq Ă Y of a subset

A Ă Y is the union of all geodesic segments with endpoints in A. The subset A is called r-

quasiconvex if QCHpAq Ă NrpAq and quasiconvex if this holds for some r ą 0. Note that pairs

of points in a quasiconvex subset can be connected by uniform quasigeodesics inside it.

As a consequence of the δ-hyperbolicity of Y , quasiconvex hulls are Cδ-quasiconvex subsets,

and B8 QCHpAq “ B8A. Both properties follow from the fact that any geodesic segment with

endpoints in QCHpAq is contained in the tubular C 1δ-neighborhood of a geodesic segment with

endpoints in A. This in turn reduces to the case when A is (at most) a quadruple and follows

from the thinness of triangles.

The quasiconvex hull QCHpBq Ă Y of a subset B Ă B8Y at infinity is defined accordingly

as the union of all geodesic lines l Ă Y asymptotic to (points in) B, B8l Ă B. It is nonempty

unless |B| ď 1, and then again it is Cδ-quasiconvex and B8 QCHpBq “ B, which follows from

the fact that any geodesic segment with endpoints in QCHpBq is contained in the tubular C 1δ-

neighborhood of a geodesic line asymptotic to B. An analogous property holds for rays yη with

y P QCHpBq and η P B.

3.2 Isometries

For (proper geodesic) Gromov hyperbolic spaces there is a rough classification of isometries

into three types (elliptic, parabolic and hyperbolic) as in the case of CAT(0) spaces.

For an isometry φ of a Gromov hyperbolic space Y consider the orbit maps ZÑ Y, n ÞÑ φny

of the cyclic group xφy generated by φ. The isometry φ is called

elliptic if the orbits are bounded;

hyperbolic if the orbits are quasigeodesics;

parabolic if the orbits are unbounded and distorted.4

4i.e. the orbit map n ÞÑ φny is not a quasiisometric embedding ZÑ Y
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The asymptotic displacement number of an isometry φ is defined as

τφ :“ lim
nÑ8

1

n
dpy, φnyq.

The limit exists (due to the subadditivity of n ÞÑ dpy, φnyq) and is independent of y P Y . Note

that τφ ą 0 if φ is hyperbolic and τφ “ 0 otherwise.

Non-elliptic isometries have unbounded orbits. In particular, they have infinite order and

no fixed points in Y . They do have fixed points at infinity:

Proposition 3.7. (i) If φ is hyperbolic, then it has exactly two fixed points on B8Y , an at-

tractive fixed point η` and a repulsive fixed point η´. It holds that for y P Y , φny Ñ η˘ as

nÑ ˘8.

(ii) If φ is parabolic, then it has exactly one fixed point η on B8Y and φny Ñ η as nÑ ˘8.

Proof. Suppose that φ is not elliptic. Then the sublevel subsets tδφ ď cu of the displacement

function δφpyq “ dpy, φyq are unbounded if non-empty, because they are φ-invariant. Their

visual boundary is therefore non-empty, B8tδφ ď cu ‰ H. On the other hand, it is fixed point-

wise by φ and therefore can contain at most two ideal points (because φ is non-elliptic). The

two point case corresponds to φ being hyperbolic. Hence, if φ is parabolic, then it has a unique

fixed point η in B8Y . Furthermore, the orbits of φ are contained in sublevel sets of δφ and

therefore must accumulate at η.

As a consequence, parabolic and hyperbolic isometries can be characterized in terms of their

action at infinity and in terms of the accumulation of their orbits at infinity.

We turn our attention to the stabilizers of points at infinity. The non-hyperbolic isometries

in the stabilizers can shift horofunctions only by a bounded amount:

Lemma 3.8. Let φ be a non-hyperbolic isometry fixing η P B8Y and let h be a horofunction at

η. Then |h´ h ˝ φ| ď Cδ.

Proof. Fix ε ą 0. Suppose there exists a point y P Y such that |hpyq ´ h ˝ φpyq| ě p1 ` εqCδ.

We may assume that hpyq ´ h ˝ φpyq ě p1` εqCδ. (Otherwise, we replace φ with φ´1.) In view

of (3.6), it follows that h´h˝φ ě εCδ on all of Y . This implies that the orbit path n ÞÑ φny is

a quasigeodesic and hence φ must be hyperbolic, a contradiction. Letting ε Œ 0 the assertion

follows.

As a consequence, if P ă IsompY q is a subgroup fixing η P B8Y which contains no hyperbolic

isometry, then P quasi-preserves the horoballs at η. In fact, every horoball at η is uniformly

Hausdorff close to a P -invariant one.

A horoball cannot be preserved by a hyperbolic isometry since it contains no quasigeodesic.

Remark 3.9. By [Tu2, Thm. 2G], a discrete group of isometries of Y fixing a point in B8Y

cannot contain both hyperbolic and parabolic isometries. Hence, the stabilizer of an ideal point

then consists either only of non-hyperbolic isometries or only of non-parabolic isometries.
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3.3 Relatively hyperbolic groups

3.3.1 Gromov’s definition

Since the geometrically finite subgroups and their generalizations considered in this paper will

be relatively hyperbolic as abstract groups, we need to review the notion of relative hyperbolicity.

There are various ways of defining relatively hyperbolic groups (see [O, DS, Hr, Bo5, F, GP1,

GP2, Y]). We will work essentially with Gromov’s original definition [G, §8.6] in terms of

actions on hyperbolic spaces. Motivating examples are non-uniform lattices acting on rank one

symmetric spaces and, more generally, geometrically finite Kleinian groups.

Definition 3.10. A relatively hyperbolic (RH) group is a pair pΓ,Pq consisting of a group Γ

and a conjugation invariant collection P of subgroups Πi ă Γ, i P I, such that there exists

a properly discontinuous isometric action Γ ñ Y on a δ-hyperbolic proper geodesic space Y

satisfying the following:

(i) Y is either taut or a horoball.

(ii) Y is equipped with a Γ-invariant collection B “ pBiqiPI of disjoint open horoballs such

that the stabilizer of each Bi in Γ is Πi.

(iii) The action Γ ñ Y th :“ Y ´
Ť

iPI Bi is cocompact.

(iv) The subgroups Πi are infinite.

(v) The subgroups Πi are finitely generated.

The subgroups Πi in this definition are called the peripheral subgroups of Γ and their col-

lection P the peripheral structure on Γ; the pair pY,Bq or simply the hyperbolic space Y ,

respectively, the Γ-action on it is called a Gromov model for pΓ,Pq; the horoballs Bi are called

the peripheral horoballs, the truncated hyperbolic space Y th is called the thick part of Y , and

the horospheres Σi :“ BBi are called the boundary or peripheral horospheres of Y th.

Figure 1: A Gromov model.

For instance, in the case of nonuniform lattices acting on rank one symmetric spaces, the

natural Gromov model is the symmetric space itself. For geometrically finite Kleinian groups,
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it is the closed convex hull of the limit set.5

We call a Gromov model faithful if there exists a point y P Y th with trivial stabilizer in Γ, i.e.

so that the action Γ ñ Γy is faithful. Every Gromov model can be modified to a faithful one

by a slight enlargement, e.g. by choosing a point y P Y th and passing to the mapping cone Y 1

of the orbit map oy : Γ Ñ Y, γ ÞÑ γy. The geodesic segments rγ, γpyqs in Y 1 are equipped with

metrics as intervals of some fixed length λ ą 0; combined with the original path-metric on Y ,

this defines a path-metric on Y 1 such that the natural inclusion map Y Ñ Y 1 is a quasiisometry.

The system of horoballs is kept the same.

Remark 3.11. 1. When the peripheral structure is trivial, P “ H, then Γ is word hyperbolic.

2. Y is a horoball if and only if |P | “ 1. Then the unique peripheral subgroup is Γ itself.

3. If |B8Y | “ 2, then Γ is virtually cyclic and P “ H. Indeed, by tautness Y is then

quasiisometric to a line and, in view of the infiniteness of peripheral subgroups, Γ must be

infinite, hence virtually cyclic, and no infinite subgroup preserves a horoball.

4. By passing to subhoroballs, the peripheral horoballs can be made r-separated for arbitrary

r ą 0, i.e. we may assume that any two distinct peripheral horoballs have distance ě r.

5. In some treatments of the theory of RH groups, the peripheral subgroups Πi are not

required to be infinite. However, if one omits this condition, then the peripheral horospheres

BBi with finite stabilizers Πi are compact, the horoballs Bi bounded by them are ends of Y

Hausdorff close to rays and their centers are isolated points of B8Y which do not belong to the

limit set of Γ, compare Lemma 3.12 below whose proof uses only properties (i)-(iii) from our

definition of RH groups. We do not want to allow this possibility.

6. Gromov’s original definition did not require the finite generation condition (v), only

conditions (i-iv), while other definitions discussed in the literature do require finite generation.

We added condition (v) because under this assumption all known definitions of RH are equiv-

alent (see [Bo5, Bu, Hr] for proofs of the equivalences).6 Furthermore, finite generation of the

peripheral subgroups is a natural assumption in view of Theorem 10.1.

Several finiteness properties can be readily derived from the RH axioms:

The family B of peripheral horoballs is locally finite, i.e. every compact subset of Y is

intersected by only finitely many horoballs Bi. This follows from the local compactness of Y

and since we can assume the peripheral horoballs to be r-separated for some r ą 0.

The cocompactness of the action Γ ñ Y th further implies that there are finitely many

Γ-orbits of peripheral horoballs Bi, respectively, conjugacy classes of peripheral subgroups Πi.

Lemma 3.12. The actions Πi ñ BBi are cocompact.

5With two elementary exceptions: For finite groups the Gromov model is a singleton, while for Kleinian

groups whose limit set is a single point ζ at infinity, the Gromov model is the intersection of a horoball with a

certain convex subset, see the proof of Theorem 8.5.
6Specifically, Propositions 6.12 and 6.13 in Bowditch’s paper [Bo5] prove that Definition 3.10 is equivalent

to Definition 1 (and, hence, Definition 2) in [Bo5].

14



Proof. Fix a base point y P Y . Since the action Γ ñ Y th is cocompact, there exists a subset

S Ă Γ such that the subset Sy Ă Γy is Hausdorff close to the horosphere BBi. Then the

horoballs γ´1Bi for γ P S intersect a compact subset and, by the local finiteness of B, only

finitely many of them are different. It follows that S is contained in a finite union of right

cosets of Πi, and hence that Πiy and BBi have finite Hausdorff distance.

Together with the finite generation of the peripheral subgroups this further implies:

Lemma 3.13. Γ is finitely generated.

Proof. The previous lemma, together with the finite generation of the peripheral subgroups Πi,

implies that the peripheral horospheres BBi are coarsely connected (see [DK]). Since Y is path

connected, it follows that the thick part Y th is coarsely connected. The cocompactness of the

action Γ ñ Y th now implies that Γ is finitely generated.

We describe next the dynamics at infinity. The action Γ ñ B8Y is a convergence action

with certain characteristic features:

Since the horoballs Bi are disjoint and form a Γ-invariant family, the stabilizers in Γ of the

centers ηi P B8Y of the horoballs Bi are precisely the peripheral subgroups Πi. We can regard

P as a subset of B8Y via the natural embedding Πi ÞÑ ηi. The points ηi are limit points of Γ

due to our condition (iv) that the Πi are infinite, however they are not conical. They are called

the parabolic points of Γ in B8Y and their stabilizers Πi the maximal parabolic subgroups of Γ.

All other points in B8Y are conical limit points of Γ as a consequence of the cocompactness

of the action Γ ñ Y th. (Recall that an ideal point η P B8Y is a conical limit point in the

dynamical sense of Definition 2.1 if and only if the following geometric property is satisfied:

A(ny) geodesic ray in Y asymptotic to η has a tubular neighborhood which contains infinitely

many points of a Γ-orbit.) In particular, the limit set of Γ ñ Y is the entire B8Y .

Note that the peripheral structure P can be read off the action Γ ñ B8Y as the set of

non-conical limit points and their stabilizers.

If |B8Y | ě 3, then B8Y is a perfect metrizable compact topological space and the action

Γ ñ B8Y is a minimal convergence action.

The cocompactness of the actions Πi ñ BBi implies that also the actions Πi ñ B8Y ´

tηiu are properly discontinuous and cocompact, i.e. the ηi are bounded parabolic points, cf.

Definition 2.1. Thus, the convergence action Γ ñ B8Y is geometrically finite in the dynamical

sense of Beardon-Maskit:

Proposition 3.14. All points in B8Y are either conical limit points or bounded parabolic points

for the action of Γ.

In particular, Γ is relatively hyperbolic in the sense of Bowditch’s first definition in [Bo5]

which is formulated in terms of the dynamics at infinity of a properly discontinuous isometric

action on a Gromov hyperbolic space.

The Gromov model Y is not canonical in the sense that its quasiisometry type is not
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determined by the pair pΓ,Pq. This is because the action Γ ñ Y is cocompact only on the

thick part Y th and the geometry of the peripheral horoballs is not controlled by the group.

Nevertheless, the asymptotic geometry of the Gromov models is determined. By a remarkable

result due to Bowditch [Bo5, Thm. 9.4], for any two Gromov models Γ ñ Y1 and Γ ñ Y2

there is a Γ-equivariant homeomorphism B8Y1
–
Ñ B8Y2. If |B8Y1| ě 3, since the Γ-actions on

B8Y1, B8Y2 are minimal, this homeomorphism is necessarily unique.

It follows that if the Gromov model Y1 is faithful and the point y1 P Y1 has trivial stabilizer

in Γ, then the Γ-equivariant map of orbits Γy1 Ñ Γy2, γy1 ÞÑ γy2 extends, by a homeomorphism

at infinity, to an equivariant continuous map

Γy1 \ B8Y1
–
ÝÑ Γy2 \ B8Y2 (3.15)

of the orbit closures inside the visual compactifications of the Gromov models. Indeed, it can

be read off the convergence dynamics of the action Γ ñ B8Yi whether a sequence pγnyiq in the

orbit Γyi converges in Y i and, if yes, to which ideal point in B8Yi. If also the point y2 has

trivial stabilizer in Γ, then (3.15) is a homeomorphism.

This enables one to define a boundary at infinity and a compactification of an RH group:

Definition 3.16 (Ideal boundary). The ideal boundary B8Γ of an RH group pΓ,Pq is defined

as the visual boundary B8Y of a Gromov model Y . The compactification

Γ “ Γ\ B8Γ

of Γ is topologized at infinity by embedding it into the visual compactification Y “ Y \ B8Y

using an injective orbit map Γ Ñ Y , after enlarging Y to a faithful Gromov model.

Both B8Γ and Γ do not depend on the choice of the Gromov model and the orbit inside it.

To simplify notation, we will suppress the peripheral structure.

Remark 3.17. Bowditch also constructed in [Bo5] a “canonical” Gromov model, unique up

to (equivariant) quasiisometry, with uniform strict exponential distortion of the peripheral

horospheres.

The natural action Γ ñ B8Γ at infinity for an RH group Γ is a minimal convergence action

with finite kernel (unless 1 ď |B8Γ| ď 2) satisfying the Beardon-Maskit condition that every

point η P B8Γ is either a conical limit point or a bounded parabolic fixed point. The stabilizers

of the latter ones are the peripheral subgroups of Γ.

Yaman showed that, conversely, the existence of an action with this kind of dynamics charac-

terizes RH groups, thereby generalizing Bowditch’s dynamical characterization of (absolutely)

hyperbolic groups:

Theorem 3.18 (Yaman [Y]). Let Γ ñ Z be a convergence action on a nonempty perfect

metrizable compact topological space Z. Suppose that

(i) each point in Z is either a conical limit point or a bounded parabolic fixed point;
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(ii) there are finitely many Γ-orbits of bounded parabolic fixed points and their Γ-stabilizers

are finitely generated.

Then the family P of these stabilizers forms an RH structure on Γ, and Z is equivariantly

homeomorphic to B8pΓ,Pq.

Remark 3.19. 1. As Yaman points out herself [Y, pp. 41-42], the assumption that there are

finitely many Γ-orbits of bounded parabolic fixed points can be dropped as a consequence of a

result by Tukia [Tu3, Thm 1B].

2. The finite generation of the Γ-stabilizers of bounded parabolic fixed points is needed in

Yaman’s paper [Y] only indirectly, namely, because she verifies Definition 2 in [Bo5] and the

latter requires finite generation of peripheral subgroups.

The following result on peripheral subgroups is also relevant for our paper. Here, a space

is said to have coarsely bounded geometry if there exists a scale R0 ą 0 and a function ψ :

rR0,8q Ñ N such that for all R ě R0 every R-ball in the space can be covered by at most

ψpRq R0-balls.

Theorem 3.20 (Dahmani, Yaman [DY]). If an RH group admits a Gromov model with

coarsely bounded geometry, then all peripheral subgroups have polynomial growth.

Consequently, by Gromov’s theorem, the peripheral subgroups then are virtually nilpotent.

Remark 3.21. Dahmani and Yaman work with a stricter notion of bounded geometry: They

put R0 “ 1 and also require on the small scale that every 1-ball can be covered by at most

ψpRq balls of the radius 1
R

. However, their proof only uses the assumption of coarsely bounded

geometry.

We observe that the property of coarsely bounded geometry behaves well under quasiiso-

metric embeddings: A space has coarsely bounded geometry as soon as it quasiisometrically

embeds into a space with this property, for instance, into a symmetric space. Therefore:

Corollary 3.22. If an RH group admits a Gromov model which quasiisometrically embeds into

a symmetric space, then all peripheral subgroups are virtually nilpotent.

3.3.2 Straight triples

We carry over the notion of straightness of triples (defined in section 3.1) from Gromov hyper-

bolic spaces to RH groups as follows.

For an RH group pΓ,Pq we consider the spaces of pairs

pΓ\ B8Γq2 ´∆B8Γ Ă pΓ\ B8Γq2

and triples

T pΓ, B8Γq :“ pΓ\ B8Γq ˆ Γˆ pΓ\ B8Γq
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in Γ, compare (3.2). If pY,Bq is a Gromov model for pΓ,Pq and y P Y is a point, then the

orbit map oy induces natural continuous maps Γ
2
Ñ Y

2
and Γ

3
Ñ Y

3
of pairs and triples

which restrict to maps pΓ\B8Γq2´∆B8Γ Ñ pY \B8Y q
2´∆B8Y and T pΓ, B8Γq Ñ T pY, B8Y q.

Whether a family of triples in Γ projects to a uniformly straight (in the sense of Definition 3.3)

family of triples in Y , depends only on its asymptotics at infinity and is therefore independent

of the Gromov model Y and the point y:

Lemma 3.23 (Straightness is independent of Gromov model). The image in T pY, B8Y q

of a subset T Ă T pΓ, B8Γq consists of D-straight triples for some uniform D ě 0 if and only

if the subset of pairs tpγ´1
2 γ1, γ

´1
2 γ3q : pγ1, γ2, γ3q P T u is contained in pΓ\ B8Γq2 ´∆B8Γ as a

relatively compact subset.

Proof. By Γ-equivariance, the triples in the image of T in T pY, B8Y q are D-straight if and only

if the triples in the image of the family E :“ tpγ´1
2 γ1, e, γ

´1
2 γ3q : pγ1, γ2, γ3q P T u are. The

latter holds for some uniform D ě 0 if and only if the family of all geodesics in Y with pair of

endpoints in the image EY of E under the natural map pΓ\B8Γq2´∆B8Γ Ñ pY \B8Y q
2´∆B8Y

is bounded (in the sense defined in section 3.1). This condition (by Lemma 3.1) holds if and

only if EY is relatively compact in pY \B8Y q
2´∆B8Y , so in view of the continuity of the map

Γ
2
Ñ Y

2
, if and only if E is relatively compact in pΓ\ B8Γq2 ´∆B8Γ.

It therefore makes sense to call a family of triples in T pΓ, B8Γq straight if its image in

T pY, B8Y q consists of D-straight triples for some fixed data pD, Y, yq.

Note that straightness is a useful concept for triples in RH groups Γ only if |B8Γ| ą 1.

If B8Γ is a singleton, then a family of triples pγ1, γ2, γ3q in Γ3 is straight if and only if the

corresponding subsets tγ´1
2 γ1, γ

´1
2 γ3u intersect some finite subset of Γ.

4 Some geometry of higher rank symmetric spaces

4.1 Basic notions and standing notation

In this section we briefly discuss some basic definitions pertaining to symmetric spaces X of

noncompact type. (We will call them simply symmetric spaces.) We refer the reader to the

books [He, E] and to [Le] for the foundational material, and to our earlier papers [KLP1, KLP2,

KLP4, KLP5, KL1, KL2] for more specialized aspects of the theory, developed specifically to

study the asymptotic geometry and discrete isometry groups of symmetric spaces.

The visual boundary B8X of a symmetric space X admits a structure as a thick spherical

building (the Tits building of X). Throughout the paper we will use the notation σmod for the

model spherical chamber of this building, ∆ for the model euclidean Weyl chamber of X and

θ : B8X Ñ σmod for the type projection. The full isometry group of X acts on σmod isometrically;

the map θ is equivariant with respect to this action. We will denote by G ă IsompXq the kernel

of this action, i.e. the subgroup of type preserving isometries. It is a semisimple Lie group and

has finite index in IsompXq.
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We will freely use the notions introduced in our earlier papers, such as the opposition invo-

lution ι of σmod, a type θ̄ P σmod, the face types τmod Ď σmod [KLP5, §2.2.2], the associated τmod-

flag manifolds Flagτmod
[KLP5, §2.2.2, 2.2.3], the open Schubert cells Cpτq Ă Flagτmod

[KLP5,

§2.4], the τmod-boundary Bτmod∆ of ∆ [KLP5, §2.5.2], the ∆-valued distance d∆ on X [KLP5,

§2.6], Θ-regular geodesic segments [KLP5, §2.5.3], parallel sets P pτ´, τ`q, stars stpτq, open stars

ostpτq, Θ-stars stΘpτq, Weyl cones V px, stpτqq and Θ-cones V px, stΘpτqq, diamonds ♦τmodpx, yq
and Θ-diamonds ♦Θpx, yq [KLP5, §2.5], τmod-regular sequences and subgroups [KLP5, §4.2]),

uniformly τmod-regular sequences and subgroups [KLP5, §4.6], τmod-convergence subgroups, flag-

convergence, the Finsler interpretation of flag-convergence, see [KL1, §4.5 and 5.2] and [KLP5],

τmod-limit sets ΛX,τmod “ Λτmod “ ΛτmodpΓq Ă Flagτmod
[KLP5, §4.5], visual limit sets [KLP5, p.

4], Morse subgroups [KLP5, §5.4], Morse quasigeodesics and Morse maps [KLP2, Defs. 5.31,

5.33], antipodal limit sets [KLP5, Def. 5.1] and antipodal maps to flag manifolds [KLP2, Def.

6.11], to name a few. We review some of this material in sections 4.2 and ??.

We will use the following conventions and standing notation.

Throughout the paper, X will denote a symmetric space of noncompact type. We will

denote by Θ an ι-invariant, compact, Weyl-convex (see [KLP5, Def. 2.7]) subset of the open

star ostpτmodq Ă σmod. For pairs Θ,Θ1 Ă ostpτmodq of such subsets, we will always assume that

Θ Ă intpΘ1q. Similarly, for pairs of positive constants d, d1 we will always assume that d ă d1.

Note that, when X has rank one, the data τmod,Θ are obsolete. In this case, we also have that

Bσmod “ H and Θ “ intpσmodq “ σmod is clopen; in particular, Θ1 “ intpΘq “ Θ.

4.2 Finsler geometric notions

In [KL1], see also [KLP5], we considered a certain class of G-invariant “polyhedral” Finsler

metrics on X. Their geometric and asymptotic properties turned out to be well adapted to

the study of geometric and dynamical properties of regular subgroups. They provide a Finsler

geodesic combing of X which is, in many ways, more suitable for analyzing the asymptotic

geometry of X than the geodesic combing given by the standard Riemannian metric on X.

These Finsler metrics also play a basic role in the present paper. We briefly recall their definition

and some basic properties, and refer to [KL1, §5.1] for more details.

Let θ̄ P intpτmodq be a type spanning the face type τmod. The θ̄-Finsler distance dθ̄ on X is

the G-invariant pseudo-metric defined by

dθ̄px, yq :“ max
θpξq“θ̄

`

bξpxq ´ bξpyq
˘

for x, y P X, where the maximum is taken over all ideal points ξ P B8X with type θpξq “ θ̄.

It is positive, i.e. a (non-symmetric) metric, if and only if the radius of σmod with respect to θ̄

is ă π
2
. This is in turn equivalent to θ̄ not being contained in a factor of a nontrivial spherical

join decomposition of σmod, and is always satisfied e.g. if X is irreducible.

If dθ̄ is positive, it is equivalent to the Riemannian metric. In general, if it is only a pseudo-

metric, it is still equivalent to the Riemannian metric d on uniformly regular pairs of points.
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More precisely, if the pair of points x, y is Θ-regular, then

L´1dpx, yq ď dθ̄px, yq ď Ldpx, yq

with a constant L “ LpΘq ě 1.

Regarding symmetry of the Finsler distance, one has the identity

dιθ̄py, xq “ dθ̄px, yq

and hence dθ̄ is symmetric if and only if ιθ̄ “ θ̄. We refer to dθ̄ as a Finsler metric of type τmod.

The dθ̄-balls in X are convex but not strictly convex. (Their intersections with flats through

their centers are polyhedra.) Accordingly, dθ̄-geodesics connecting two given points x, y are not

unique. To simplify notation, xy will stand for some dθ̄-geodesic connecting x and y. The union

of all dθ̄-geodesic xy equals the τmod-diamond ♦τmodpx, yq, that is, a point lies on a dθ̄-geodesic

xy if and only if it is contained in ♦τmodpx, yq, see [KLP5]. Finsler geometry thus provides an

alternative description of diamonds. Note that with this description, the diamond ♦τmodpx, yq
is also defined when the segment xy is not τmod-regular. Such a degenerate τmod-diamond is

contained in a smaller totally-geodesic subspace, namely in the intersection of all τmod-parallel

sets containing the points x, y. The description of geodesics and diamonds also implies that the

unparameterized dθ̄-geodesics depend only on the face type τmod, and not on θ̄. We will refer to

dθ̄-geodesics as τmod-Finsler geodesics. Note that Riemannian geodesics are Finsler geodesics.

We will call a Θ-regular τmod-Finsler geodesic a Θ-Finsler geodesic. If xy is a Θ-regular (Rie-

mannian) segment, then the union of Θ-Finsler geodesics xy equals the Θ-diamond ♦Θpx, yq.

Every τmod-Finsler ray in X is contained in a τmod-Weyl cone, and we will use the notation

xτ for a τmod-Finsler ray contained V px, stpτqq. Similarly, every τmod-Finsler line is contained

in a τmod-parallel set, and we denote by τ´τ` an oriented τmod-Finsler line forward/backward

asymptotic to two antipodal simplices τ˘ P Flagτmod
and contained in P pτ´, τ`q.

4.3 Types of isometries

Let g P IsompXq. The function δgpxq “ dpx, gxq on X is called the displacement function of g

and the number

mg :“ inf
X
δg

is called the infimal displacement or translation number of g.

The isometry g is called semisimple if δg attains its infimum. The semisimple isometries

split into two subclasses: A semisimple isometry g is called

(i) elliptic if mg “ 0, i.e. if it fixes a point in X. Equivalently, the orbits in X of the cyclic

group xgy are bounded.

(ii) axial or hyperbolic if mg ą 0. In this case, the minimum set Minpgq of δg is the union of

the axes of g, i.e. of the g-invariant geodesic lines. On each axis, g acts as a translation by mg.

The subset Minpgq is a symmetric subspace of X and splits metrically as Minpgq – R ˆ CS,

the lines Rˆ pt being the axes of g and the cross section CS being a symmetric (sub)space.
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A hyperbolic isometry g is a transvection if it preserves the parallel vector fields along some

(and hence any) axis. Then every line parallel to an axis of g is itself an axis, i.e. the minimum

set is the full parallel set of a line. The transvections are the isometries of X which can be

written as the product of two distinct point reflections.

The isometries g for which δg does not attain its infimum are called parabolic. A parabolic

isometry g has at least one fixed point in the visual boundary. To see this, consider a sequence

pxnq in X such that δgpxnq Œ mg. Then xn Ñ 8 and the accumulation points of pxnq in B8X

are fixed by g. Moreover, at some of the fixed points at infinity also the horoballs are preserved

by g. Namely, choose a sequence pxnq more carefully, by picking a base point o P X and a

sequence εn Œ 0 and letting xn be the nearest point projection of o to tδg ď εnu. Then for any

accumulation point ξ P B8X of pxnq the horoballs centered at ξ are g-invariant, see e.g. [Ba].

The parabolic isometries break up into several subclasses. We will call a parabolic isometry g

strictly parabolic if mg “ 0 and non-strictly parabolic otherwise. If rankX “ 1 then all parabolic

isometries are strictly parabolic, but non-strictly parabolic isometries occur if rankX ě 2.

An isometry g ‰ idX is called unipotent if the closure of its conjugacy class in IsompXq

contains idX , i.e. if there exists a sequence of isometries hn Ñ 8 such that hngh
´1
n Ñ idX . In

this case, there exists a transvection h such that

lim
nÑ8

hngh´n “ idX .

Unipotent isometries are strictly parabolic.

Every isometry g of X has a unique Jordan decomposition

g “ gsgu “ gtgegu (4.1)

where gs “ gtge and gt, ge, gu are commuting isometries which are, respectively, a transvection,

elliptic and unipotent. The factor gs is semisimple. Note that

mg “ mgs “ mgt

and Minpgsq is preserved by gu.

If g is non-strictly parabolic, equivalently, if gt and gu are nontrivial, then gu preserves the

cross sections ttuˆCS of Minpgtq – RˆCS and acts on them as a strictly parabolic isometry.

We refer the reader to [E] for further discussion.

If u P G is a unipotent isometry, then it is of the form u “ exppnq with n P g nilpotent. (Here

g is the Lie algebra of G.) According to the Morozov-Jacobson theorem regarding nilpotent

elements in semisimple Lie algebras, see [J], n belongs to a 3-dimensional simple Lie subalgebra

g1 – slp2,Rq. Correspondingly, u lies in a rank one Lie subgroup G1 ă G locally isomorphic to

SLp2,Rq. The subgroup G1 preserves a totally-geodesic hyperbolic plane X 1 Ă X and u acts on

it as a parabolic element. Consequently, u fixes a unique ideal point ξ P B8X
1 and preserves the

horocycles in X 1 centered at ξ. It follows that its orbits accumulate in X at ξ, Λpxuyq “ tξu.
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More generally, if g P G is strictly parabolic, then gs is elliptic, gt “ idX , and g has the

Jordan decomposition g “ gegu with gu ‰ idX . The latter implies that the gu-invariant fixed

subspace Fixpgeq Ă X is noncompact. As above, it contains a gu-invariant hyperbolic plane X 1

on which gu acts as a parabolic isometry. The g-orbits in X have bounded distance from the gu-

orbits, and it follows that they accumulate in X at a unique ideal point ξ P B8X
1 Ď B8 Fixpgeq,

Λpxgyq “ tξu. (4.2)

The hyperbolic plane X 1 and the horocycles in it centered at ξ are g-invariant.

We define the type of the strictly parabolic isometry g as θpgq :“ θpξq P σmod and its face

type τmodpgq Ď σmod as the face of σmod spanned by its type. Note that both are ι-invariant

because the points in the visual boundary of a rank one symmetric subspace of X (such as X 1)

are pairwise antipodal and therefore have the same ι-invariant type.

Let g be an isometry which fixes an ideal point ξ P B8X. Then g induces an isometry gξ
on the space Xξ of strong asymptote classes at ξ, cf. e.g. [Le, KL1]. If g preserves also the

horoballs at ξ, then

mgξ “ mg (4.3)

For every isometry g of X it holds that

mgn “ nmg (4.4)

for n P N0. This is clear for semisimple isometries. If g is parabolic, it follows by induction on

the rank of X using (4.3), or from the Jordan decomposition.

As in the case of Gromov hyperbolic spaces, one can relate the rough classification of

isometries to the distortion of their orbit paths. For an isometry g of X consider the orbit paths

ZÑ X,n ÞÑ gnx of the cyclic group xgy generated by it. One has the following:

If mg “ 0, equivalently, if g is elliptic or strictly parabolic, then n ÞÑ δgnpxq grows sublin-

earily as n Ñ 8 and the orbit paths are distorted (not quasiisometrically embedded). On the

other hand, if mg ą 0, equivalently, if g is hyperbolic or non-strictly parabolic, then (4.4) or

the Jordan decomposition implies that the orbit paths are undistorted. Thus the orbits of g

are undistorted if and only if mg ą 0.

We obtain a more precise picture by applying the Jordan decomposition:

If g is a strictly parabolic isometry, then, as we noted earlier, g preserves a hyperbolic plane

X 1 Ă X and acts on X 1 as a parabolic isometry. In particular, the orbits of xgy in X are

logarithmically distorted, δgnpxq “ Oplog |n|q.

It follows for an arbitrary isometry g that its orbit paths deviate sublinearily, in fact loga-

rithmically, from the orbit paths of its semisimple part gs,

dpgnx, gns xq “ Oplog |n|q (4.5)

Thus, if mg ą 0 and l is an oriented axis of gs, then

gnxÑ lp˘8q P B8X
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in the visual compactification as nÑ ˘8.

We conclude:

Proposition 4.6 (Distortion of orbits of isometries). Let g be an isometry of X.

If g is elliptic, then its orbits are bounded.

If g is strictly parabolic, then its orbits are unbounded, but logarithmically distorted. They

accumulate in X at a single ideal point in B8X. (It lies in the visual boundary of a gu-invariant

totally geodesic hyperbolic plane.)

If g is hyperbolic, then its orbits are undistorted. They are Hausdorff close to an(y) axis l

of g and accumulate in X at the pair of antipodes B8l Ă B8X.

If g is non-strictly parabolic, then its orbits are undistorted. They deviate sublinearily, in

fact, logarithmically, from an(y) axis l of the semisimple part gs but they are not Hausdorff

close to any line. They accumulate in X at the pair of antipodes B8l Ă B8X.

In particular, the vanishing resp. positivity of mg can be read off coarse properties of the

xgy-orbits: mg ą 0 if and only if each xgy-orbit is undistorted in X.

4.4 Regularity

4.4.1 Notions of regularity and limit sets

As in our earlier papers, we will be imposing certain regularity assumptions on discrete sub-

groups Γ ă G. In this section, we go through some variations of the notion of regularity.

Remark 4.7. It is imperative to note here that notions of τmod-regularity and τmod-limit sets,

as well as the relation to convergence-type dynamics and many other indispensable related

concepts and theorems have their origin in the foundational paper by Yves Benoist [Be], in

fact, even earlier in the work of Tits [Ti] and Guivarc’h [Gui].

A subset of X is called τmod-regular if all divergent sequences in it are τmod-regular. A map

into X is called τmod-regular if its image is τmod-regular.

The following strengthening of regularity occurs naturally in equivariant settings:

Definition 4.8 (Weakly uniformly regular). We say that an (unbounded) subset W Ă X

is pτmod, φq-regular if for x, x1 P W

dpd∆px, x
1
q, Bτmod∆q ě φpdpx, x1qq

where φ : r0,`8q Ñ R is a monotonic function with limdÑ`8 φpdq “ `8. We say that a subset

W Ă X is weakly uniformly τmod-regular if it is pτmod, φq-regular for some φ.

Accordingly, we say that a map into X is pτmod, φq-regular or weakly uniformly τmod-regular

if its image in X is.

The orbits Γx Ă X of τmod-regular actions Γ ñ X are weakly uniformly τmod-regular subsets.
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Weak uniform regularity is stable under bounded perturbation: If W 1 Ă X is d-Hausdorff

close to W Ă X and W is pτmod, φq-regular, then W 1 is pτmod, φp¨ ´ 2dq ´ 2dq-regular, as follows

from the ∆-triangle inequality.

Note that a subset of X is uniformly τmod-regular (see [KLP5, §4.6]) if and only if it is

pτmod, φq-regular for some (affine) linear function φ.

For a τmod-regular subset W Ă X, we define Bτmod8 W Ă Flagτmod
as its τmod-accumulation

set. Similarly, we define the τmod-conical accumulation set Bτmod,con8 W Ă Flagτmod
as the set of

conical τmod-limits of sequences in W (see [KLP5, Def. 5.33]).

For a τmod-regular subgroup Γ ă G, besides the limit set Λτmod “ ΛX,τmod “ B
τmod
8 pΓxq we

will also consider the conical τmod-limit set

Λcon
X,τmod

:“ Bτmod,con8 pΓxq Ă ΛX,τmod .

A τmod-regular subgroup Γ ă G is said to be τmod-antipodal if its limit set Λτmod is antipodal,

i.e. if any two distinct points in Λτmod are antipodal. A τmod-regular subgroup Γ ă G is called

τmod-elementary if |Λτmod | ď 2.

It is a basic fact connecting the theory of regular discrete subgroups of G to the classical

theory of Kleinian groups, that each τmod-regular antipodal subgroup Γ ă G acts as a conver-

gence group on its τmod-limit set, see [KLP5, §5.1] or [KL2, Corollary 3.16]. In particular, for

a nonelementary τmod-regular antipodal subgroup Γ ă G, its τmod-limit set Λτmod is perfect and

every Γ-orbit is dense in Λτmod .

Example 4.9. Let G1 ă G be a connected rank one simple Lie subgroup. By the Karpelevich-

Mostow theorem, there exists a rank one symmetric subspace X1 Ă X which is a G1-orbit. Its

visual boundary B8X1 Ă B8X is an antipodal subset. Hence, it consists of ideal points of the

same ι-invariant type ξ̄ P σmod, θpB8X1q “ tξ̄u. We call θpB8X1q :“ ξ̄ the type of the rank one

subspace X1, and the ι-invariant face τmodpX1q :“ τmodpξ̄q Ď σmod spanned by ξ̄ its face type.

All non-degenerate segments in X1 have type ξ̄. We thus have a map

B8X1 Ñ FlagτmodpX1q
pXq

sending ξ1 P B8X1 to the simplex τξ1 P FlagτmodpX1q
spanned by ξ1. Also, for every ι-invariant

face τmod Ď τmodpX1q, by composing this map with the projection FlagτmodpX1q
Ñ Flagτmod

, one

obtains a natural antipodal embedding β : B8X1 Ñ Flagτmod
. All divergent sequences in X1

are uniformly τmod-regular and the τmod-accumulation set of X1 in Flagτmod
equals βpB8X1q.

Every discrete subgroup Γ1 ă G1 is uniformly τmod-regular as a subgroup of G. Moreover,

ΛτmodpΓ1q “ βpΛpΓ1qq, where ΛpΓ1q Ă B8X1 is the visual limit set of Γ1.

4.4.2 Zariski dense subgroups

In general, verifying the (uniform) regularity of a subgroup is not an easy task. However, it is

simpler for Zariski dense subgroups (see our paper [KL1, Theorem 9.6]):
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Theorem 4.10. Let Γ ă G be Zariski dense. Suppose that Z is a compact metrizable space,

Γ ñ Z is a convergence action and β : Z Ñ Flagτmod
is a Γ-equivariant antipodal continuous

map. Then Γ is τmod-regular.

Moreover, we can say about the relation of the image to the limit set of Γ:

Addendum 4.11. If, in addition, the action Γ ñ Z is minimal, then βpZq “ Λτmod.

Proof. Let λ` P Λτmod . Then, since regular subgroups act on flag manifolds as discrete con-

vergence groups (see [KLP5, Lemma 4.19]), there exist a sequence pγnq in Γ and a point

λ´ P Flagτmod
such that γn|Cpλ´q Ñ λ` uniformly on compacts (Cpλ´q Ă Flagτmod

being the

open Schubert cell). The complement Flagτmod
´Cpλ´q is a proper subvariety of Flagτmod

.

Hence, by the Zariski density, βpZq X Cpλ´q ‰ H. For any point τ in the intersection, it

holds that γnpτq Ñ λ`. Since βpZq is closed and Γ-invariant, it follows that λ` P βpZq. Thus

Λτmod Ď βpZq. The minimality of the action Γ ñ Z implies equality.

4.4.3 Accumulation sets of regular sequences

We collect some facts needed later in the paper.

Lemma 4.12. Suppose that pxnq and pynq are uniformly τmod-regular sequences in X such

that dpxn,ynq
dpxn,oq

Ñ 0, where o P X is a base point. Then their τmod-accumulation sets in Flagτmod

coincide.

Proof. It suffices to consider the case when pxnq τmod-flag converges, xn Ñ τ P Flagτmod
, and to

show that then also yn Ñ τ .

We extend the Riemannian segments oxn and oyn to Riemannian rays oξn and oηn. By

uniform regularity, we may assume that the types θpξnq, θpηnq of the ideal points ξn, ηn P B8X

are contained in a compact subset Θ Ă ostpτmodq. Let τξn , τηn P Flagτmod
denote the simplices

in B8X spanned by them. Then τξn Ñ τ in Flagτmod
and we must show that also τηn Ñ τ .

After extraction, we may assume that also pξnq converges in B8X, ξn Ñ ξ. Then ξ P τ . By

our assumption, =opξn, ηnq “ =opxn, ynq Ñ 0. It follows that also ηn Ñ ξ. In view of uniform

regularity, θpηnq P Θ, this implies that τηn Ñ τ .

Let K ă G denote a maximal compact subgroup. We denote by o P X its fixed point.

Lemma 4.13. Let xn Ñ 8 be a uniformly τmod-regular sequence in X which flag converges,

xn Ñ τ P Flagτmod
. Let pknq be a sequence in K such that dpxn, knxnq is uniformly bounded.

Then pknq accumulates at StabKpτq ă K.

Proof. Let o P X be the fixed point of K. After passing to a subsequence, we may assume that

the Riemannian segments oxn converge to a Θ-regular ray oξ, ξ P ostpτq, and that kn Ñ k.

Since dpxn, knxnq is uniformly bounded, k fixes ρ and hence τ . (Compare Lemma 4.12.)

The visual and flag accumulation sets of regular sequences are related as follows:
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Lemma 4.14. Let pxnq be a τmod-regular sequence in X which accumulates in X at the (com-

pact) subset A Ď B8X. Then the accumulation set of pxnq in Flagτmod
consists only of simplices

which are faces of chambers containing a point of A.

Proof. We may assume that A consists only of one ideal point ξ. We fix a base point o P X

and extend the segments oxn to rays oξn. Then ξn Ñ ξ in B8X. Let σn Ă B8X be chambers

containing the ideal points ξn and let τn P Flagτmod
be their faces of type τmod. By the definition

of flag convergence, the accumulation set of the τmod-regular sequence pxnq in Flagτmod
equals the

accumulation set of the sequence pτnq. Its elements are faces of chambers in the accumulation

set of the sequence pσnq in Flagσmod
. The chambers in the latter accumulation set contain ξ.

4.4.4 A continuity property for Weyl cones

From Lemma 4.13, we deduce a continuity property for Weyl cones. Let again K ă G denote

a maximal compact subgroup and o P X its fixed point.

Lemma 4.15. For Θ, d, r, ε there exists R such that the following holds.

Let τ, τ 1 P Flagτmod
and let x P V po, stpτqq and x1 P V po, stpτ 1qq be points such that the pairs

po, xq and po, x1q are Θ-regular with distance ě R. Suppose that dpx, x1q ď d.

Then V po, stpτqq XBpo, rq and V po, stpτ 1qq XBpo, rq have Hausdorff distance ď ε.

Proof. We can write τ 1 “ kτ with k P K so that the points kx and x1 lie in the same euclidean

Weyl chamber with tip at o. Then dpkx, x1q ď dpx, x1q ď d and hence dpx, kxq ď 2d.

The elements k̃ P K, for which V po, stpτqqXBpo, rq and V po, stpk̃τqqXBpo, rq have Hausdorff

distance ď ε, form a neighborhood U of StabKpτq. Lemma 4.13 implies that, if R is sufficiently

large, k must lie in U .

5 Elementary and unipotent subgroups

In our relativizations of the Anosov condition a prominent role is played by the stabilizers of

bounded parabolic limit points. They are the peripheral subgroups for an induced relatively

hyperbolic structure. It is the presence of such subgroups that distinguishes the relative from

the absolute case. They are regular subgroups with a unique limit point.

In this section we collect geometric and algebraic information about and discuss some exam-

ples of subgroups with a unique limit point. We will see that they tend to consist of elements

with zero infimal displacement. This leads us to also discussing subgroups with zero infimal

displacement, in particular unipotent subgroups.

5.1 Cyclic subgroups

We first establish some properties of cyclic subgroups and their limit sets.
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Let g P G be non-elliptic and consider the (discrete and free) cyclic subgroup xgy ă G.

We first look at the case mg ą 0 and let l be an oriented axis of the semisimple part gs
(see section 4.3). The orbits of xgy deviate sublinearily from l and their visual limit set is

Λpxgyq “ B8l, cf. (4.5) and Proposition 4.6. If l is τmod-regular, then lp˘8q P ostpτ˘q for a pair

of antipodal simplices τ˘ P Flagτmod
and Bτmod8 l “ tτ´, τ`u.

Lemma 5.1. Suppose that mg ą 0 and l is an axis of gs. Then:

(i) xgy is uniformly τmod-regular if and only if l is τmod-regular. In this case, Λτmodpxgyq “

Bτmod8 l is a pair of antipodes.

(ii) If g is hyperbolic and xgy is τmod-regular, then xgy is uniformly τmod-regular.

Proof. (i) The equivalence follows from (4.5), since l contains gs-orbits. If the g- and gs-orbits

are uniformly τmod-regular, then in view of Lemma 4.12 they have the same τmod-flag limits,

g˘n Ñ τ˘ and g˘ns Ñ τ˘, and thus Λτmodpxgyq “ Λτmodpxgsyq “ B
τmod
8 l.

(ii) If g is hyperbolic, then l is an axis of g. Hence, if xgy is τmod-regular, then so is l.

If g is non-strictly parabolic, τmod-regularity of xgy does not imply uniform τmod-regularity.

If xgy is non-uniformly τmod-regular, then the axis l of gs is not τmod-regular. By Lemma 4.14,

the limit set Λτmodpxgyq then consists of simplices τ in Flagτmod
which are faces of chambers

containing one of the ideal points lp˘8q; both points lp˘8q must be covered.

In the σmod-regular case we obtain, supplementing the previous lemma:

Lemma 5.2. If g is non-strictly parabolic and xgy is σmod-regular, then |Λσmodpxgyq| ě 2.

Proof. By Lemma 4.14, both ideal points lp˘8q lie in a chamber contained in Λσmodpxgyq.

We are left with the case when mg “ 0 and g is strictly parabolic. Then, according to the

discussion in section 4.3 leading to (4.2), the orbits of xgy are Hausdorff close to horocycles in

a totally-geodesic hyperbolic plane X 1 Ă X and |Λpxgyq| “ 1. We also had defined there the

type θpgq P σmod and the face type τmodpgq of g; both are ι-invariant.

Lemma 5.3. If g P G is strictly parabolic, then the subgroup xgy is uniformly τmod-regular

precisely for the face types τmod Ď τmodpgq, and |Λτmodpxgyq| “ 1 for these τmod.

Proof. The unique visual limit point ξ of xgy spans a simplex τpgq of type τmodpgq and therefore

is τmod-regular if and only if τmod Ď τmodpgq. Hence xgy is uniformly τmod-regular precisely for

these τmod. From the definition of flag convergence it follows that Λτmodpxgyq consists of the

type τmod face of τpgq.

5.2 Elementary subgroups

Recall that an antipodal τmod-regular subgroup Γ ă G is τmod-elementary if |ΛτmodpΓq| ď 2.

Since Γ is discrete, it holds that ΛτmodpΓq “ H if and only if Γ is finite.

For cyclic subgroups, we saw in section 5.1:
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Example 5.4. Uniformly τmod-regular cyclic subgroups xgy ă G are τmod-antipodal elementary.

Moreover, |Λτmodpxgyq| “ 1 if and only if g is strictly parabolic.

Further examples are provided by rank one symmetric subspaces and products of rank one

symmetric spaces:

Example 5.5. Let G1 ă G and X1 Ă X be as in Example 4.9. Suppose that Γ1 ă G1 is a

discrete subgroup which consists entirely of parabolic and elliptic elements, equivalently, which

preserves a horosphere Hs1 Ă X1, whose center we denote by ζ1 P B8X1 Ă B8X. Then Γ1 has

visual limit set ΛpΓ1q “ tζ1u and is uniformly τmod-regular with ΛτmodpΓq “ tτζ1u for the face

types τmod Ď τmodpX1q.

Example 5.6. Consider the product space X “ X1 ˆ X2 “ H2 ˆ H2. In this case, σmod is

an arc of length π
2
, and we denote by τ imod the vertex of σmod corresponding to the hyperbolic

plane factor Xi. Then Flagσmod
– Flagτ1mod ˆFlagτ2mod with Flagτ imod “ B8Xi – S1.

A non-strictly parabolic isometry of X has, up to switching the factors, the form g “ pg1, g2q

with g1 P IsompX1q hyperbolic (with two ideal fixed points λ˘ P B8X1) and g2 P IsompX2q

parabolic (with unique ideal fixed point µ P B8X2). The subgroup xgy ă G is τmod-regular and

τmod-elementary for all face types τmod Ď σmod, but its uniformity and antipodality depend on

τmod: It is non-uniformly σmod-regular with Λσmodpxgyq “ tpλ´, µq, pλ`, µqu and hence not σmod-

antipodal. It is uniformly τ 1
mod-regular with Λτ1mod

pxgyq “ tλ´, λ`u and hence τ 1
mod-antipodal.

And it is non-uniformly τ 2
mod-regular with Λτ2mod

pxgyq “ tµu and hence also τ 2
mod-antipodal.

In the case of two antipodal limit points and τmod “ σmod, we can say in general:

Proposition 5.7. If Γ ă G is σmod-regular antipodal with |Λσmod | “ 2. Then Γ is virtually

cyclic and contains only semisimple elements.

Proof. There exists a Γ-invariant maximal flat F Ă X on which Γ acts by translations. Since

|Λσmod | “ 2, Γ must be virtually cyclic.

In the τmod-regular case, the algebraic conclusion (virtually cyclic) still holds and Γ must

be uniformly τmod-regular, see [KLP5, Lemma 5.45].

We now turn to discussing subgroups with a unique limit point.

5.3 Unique limit point versus zero infimal displacement

We begin with a geometric property of subgroups with a unique limit point:

Lemma 5.8. (i) If Γ ă G is σmod-regular and |ΛσmodpΓq| “ 1, then all elements of Γ are have

zero infimal displacement number, equivalently, are elliptic or strictly parabolic.

(ii) If Γ ă G is uniformly τmod-regular and |ΛτmodpΓq| “ 1, then the same conclusion holds.

Proof. This is a direct consequence of Lemmas 5.1 and 5.2.
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We now discuss consequences of zero infimal displacement.

For arbitrary subgroups with a fixed point on Flagσmod
, we can say the following. We recall

that the stabilizer of a chamber σ P Flagσmod
is a minimal parabolic subgroup Pσ ă G.

Proposition 5.9. If a (not necessarily discrete) subgroup Γ ă Pσ consists of elements with

zero infimal displacement, then it preserves every horocycle based at σ, i.e. Γ ă Nσ.

We note that the common stabilizer of all horocycles at σ is the horocyclic subgroup NσŸPσ.

It decomposes as the semidirect product Nσ “ Uσ¸Kσ,σ̂, where UσŸPσ is the unipotent radical

of Pσ, σ̂ is a chamber opposite to σ, and Kσ,σ̂ is the pointwise stabilizer in G of the maximal

flat F Ă X spanned by (asymptotic to) σ and σ̂. (Compare e.g. the discussion in [KLP5, secs

2.10 and 2.11, rem 2.42].)

Proof. Pσ preserves the (transversely Riemannian) foliation of X by horocycles based at σ.

Every maximal flat F Ă X asymptotic to σ is a cross section to this foliation and hence is

naturally isometric to the leaf space. The action of Pσ on the leaf space is by translations. It

follows that elements with zero infimal displacement number act trivially on it, i.e. preserve

every horocycle at σ.

This has the following algebraic consequence for discrete subgroups:

Corollary 5.10. If in addition Γ is discrete, then it is finitely generated and virtually nilpotent.

Proof. This follows from Auslander’s theorem (see Theorem 10.1 in the appendix).

We conclude for σmod-regular subgroups with unique limit point:

Corollary 5.11. If Γ ă G is σmod-regular and ΛσmodpΓq “ tσu, then Γ ă Nσ and therefore Γ

is finitely generated and virtually nilpotent.

More generally, without a fixed point assumption, one can deduce from the work of Prasad

[Pr] or already from Tits [Ti]:

Theorem 5.12. Suppose that Γ ă G is a subgroup consisting only of elements with zero infimal

displacement. Then there exists a unipotent Lie subgroup N ă G and a compact subgroup

KN ă G normalizing N , such that Γ is contained in N ¸KN .

Proof. To relate our condition of zero infimal displacement to the one used by Prasad, we note

that mg “ 0 for g P G if and only if the transvection component gt in the Jordan decomposition

(4.1) is trivial, equivalently, if the adjoint action of g has all eigenvalues in S1.

Consider now the Zariski closure Γ ă G of Γ. Let N denote the unipotent radical of the

identity component Γ0 of Γ. Then the projection Γ1 of Γ to G1 “ Γ{N still consists only of

elements of zero displacement and is Zariski dense in G1.

We claim that G1 is compact. If not, then a theorem by Prasad [Pr] implies that Γ1 contains

elements g whose adjoint action has eigenvalues outside the unit circle, a contradiction.
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Hence, G1 is compact and we obtain that Γ ă N ¸KN with KN – G1.

We conclude for uniformly τmod-regular subgroups with unique limit point:

Corollary 5.13. If Γ ă G is τmod-uniformly regular and |ΛτmodpΓq| “ 1, then there exists a

unipotent Lie subgroup N ă G and a compact subgroup KN ă G normalizing N , such that Γ is

contained in N ¸KN . In particular, Γ is finitely generated and virtually nilpotent.

5.4 Unipotent subgroups

A natural class of zero displacement subgroups is provided by unipotent subgroups. We now

look at their limit sets in some examples.

In rank one, unipotent subgroups always have a unique limit point. We also know that, in

higher rank, unipotent one-parameter subgroups are τmod-regular7 for some type τmod depending

on the subgroup and have a single τmod-limit point. In contrast, as we will see, unipotent

subgroups of dimension ě 2 in higher rank are not necessarily τmod-regular for any τmod, and

even if they are uniformly τmod-regular, they may fail to be τmod-elementary.

We now discuss this in the case of G “ SLp3,Rq.

We begin with one-parameter unipotent subgroups. There are two conjugacy classes of such

subgroups. Each subgroup of either type is contained in a Lie subgroup locally isomorphic to

SLp2,Rq and preserves a totally geodesic hyperbolic plane of θ-type equal to the midpoint µ̄

of the Weyl arc σmod. The subgroups conjugate to the group U1 consisting of the elements

¨

˝

1 t

1

1

˛

‚

are contained in SLp2,Rq Ă SLp3,Rq (reducibly embedded). The subgroups conjugate to the

group V1 consisting of the elements
¨

˚

˝

1 t t2

2

1 t

1

˛

‹

‚

are contained in SOp2, 1q Ă SLp3,Rq (irreducibly embedded).

The unique limit flags of these subgroups can be determined as follows. Consider the

unipotent subgroup exppR ¨ nq for a nilpotent element n P slp3,Rq. If rankpnq “ 1, then the

limit flag equals impnq Ă kerpnq, and if rankpnq “ 2, it equals impn2q Ă kerpn2q.

The geometry of the U1-orbit foliation of X is particularly nice: Since the normalizer of U1

contains a minimal parabolic subgroup and therefore acts transitively on X, this foliation is

homogeneous, i.e. any two U1-orbits are congruent. As a consequence, the ∆-distance of any

pair of points in any U1-orbit has type µ̄, i.e. lies on the bisector of ∆. The V1-orbit foliation

does not have either of these properties.

7I.e. their orbits are τmod-regular subsets.
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Now we turn to two-parameter unipotent subgroups. There are three conjugacy classes

represented by the subgroups U˘2 and V2 consisting of the elements
¨

˝

1 ‹ ‹

1

1

˛

‚ ,

¨

˝

1 ‹

1 ‹

1

˛

‚ and

¨

˝

1 t s

1 t

1

˛

‚,

respectively. Note that U˘2 are conjugate inside the full isometry group of X.

Again the foliations of X by U˘2 -orbits have nice geometry, even though they are no longer

homogeneous: Since all one-parameter subgroups of U˘2 are conjugate to U1, the ∆-distance of

any pair of points in any U˘2 -orbit still has type µ̄. In particular, U˘2 is uniformly σmod-regular.

However, the subgroups U˘2 have large limit sets: One verifies that they consist of the limit

points of their one-parameter subgroups. In the case of U`2 these are the flags of the form

xe1y Ă E2, and in the case of U´2 the flags of the form L1 Ă xe1, e2y.

We note that the same discussion applies to unipotent subgroups of SLpn,Rq of the form
¨

˚

˚

˚

˝

1 ‹ . . . ‹
. . .

1

1

˛

‹

‹

‹

‚

and

¨

˚

˚

˚

˝

1 ‹

. . .
...

1 ‹

1

˛

‹

‹

‹

‚

.

Returning to SLp3,Rq, in contrast, the subgroup V2 is not σmod-regular (and hence neither

are its lattices). This is a consequence of the following fact about the non-regularity of sequences

in the full horocyclic subgroup: Any diverging sequence of elements
¨

˝

1 xn
1 yn

1

˛

‚

where 0 ă c ď |xn|
|yn|

ď C is not σmod-regular, as one can see from its dynamics on RP 2.

In conclusion, SLp3,Rq contains no non-cyclic discrete σmod-regular elementary unipotent

subgroups.

6 Finsler-straight paths and maps in symmetric spaces

In this section we introduce a notion of Finsler-straightness which adapts the notion of straight-

ness in Gromov hyperbolic spaces discussed earlier in section 3.1 to the geometry of higher rank

symmetric spaces. This notion of straightness can be regarded as a regularity condition and is

implicit in our earlier work on Morse quasigeodesics [KLP1]. We will use it later on to define

relative versions of our notions of Morse (equivalently, Anosov) subgroups, namely the notions

of relatively Morse, see section 8.1, and relatively straight subgroups, see section 8.2.

The main results of this sections are Propositions 6.23 and 6.25 dealing with extensions of

straight maps to infinity. They will be used in section 8.2.1 to construct boundary embeddings

for straight subgroups.
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6.1 Triples

We denote by T pXq :“ X3 the space of triples of points in X and by

T pX,Flagτmod
q :“ pX \ Flagτmod

q ˆX ˆ pX \ Flagτmod
q

the space of ideal triples in the Finsler bordification X \ Flagτmod
with middle point in X.

We first define straightness for (non-ideal) triples in X:

Definition 6.1 (Finsler-straight triple). A triple px´, x, x`q P T pXq is called

(i) pΘ, dq-straight, d ě 0, if the points x´, x and x` are d-close to points x1´, x
1 and x1`,

respectively, which lie in this order on a Θ-Finsler geodesic.

(ii) pτmod, dq-straight if the same property holds with Θ replaced by τmod.

In particular, a triple px´, x, x`q is pΘ, 0q-straight if and only if the points x´, x, x` lie in

this order on a Θ-Finsler geodesic.

Finsler-straightness is stable under perturbation: Any triple px̂´, x̂, x̂`q which is r-close to

a pΘ, dq-straight triple px´, x, x`q, i.e. dpx´, x̂´q, dpx, x̂q, dpx`, x̂`q ď r, is pΘ, d` rq-straight.

It is useful to note that (modulo doubling the constant d) the nearby Finsler geodesic in

the definition can be chosen through one of the endpoints of the triple:

Lemma 6.2. If px´, x, x`q is pΘ, dq-straight, then the points x and x` are 2d-close to points

x2 and x2`, respectively, so that x´, x
2 and x2` lie in this order on a Θ-Finsler geodesic.

The same assertion holds with Θ replaced by τmod.

Proof: The points x1 and x1` in the definition of Finsler-straightness are contained in a τmod-

Weyl cone V px1´, stpτ`qq. The Weyl cone V px´, stpτ`qq asymptotic to it has Hausdorff distance

ď dpx´, x
1
´q ď d. It can be represented as the image V px´, stpτ`qq “ gV px1´, stpτ`qq by an

isometry g P G fixing τ at infinity and mapping x1´ ÞÑ x´. The isometry g has displacement

ď d on the entire cone V px1´, stpτ`qq. We put x2 “ gx1, x2` “ gx1` and choose the Θ-Finsler

geodesic through x´ as the g-image of the one through x1´ given by the definition.8

Note that the Finsler geodesic in the conclusion of the lemma can be chosen as a Finsler

segment x´x
2
` through x2 and is then contained in a Weyl cone V px´, stpτ`qq, τ` P Flagτmod

.

To show that the nearby Finsler geodesic can be chosen through both endpoints of the triple

and to control its distance from the middle point, takes more effort.9

The notion of Finsler-straightness naturally extends to ideal triples in T pX,Flagτmod
q:

We say that a triple px´, x, τ`q P X
2 ˆFlagτmod

is pΘ, dq-straight if the points x´ and x are

d-close to points x1´ and x1, respectively, such that x1 lies on a Θ-Finsler ray x1´τ`. This ray

8The points x2 and x2` can also be described as follows: The point x1 lies on a Riemannian ray x1´ξ asymptotic

to ξ P stpτ`q. We choose x2 P x´ξ with dpx´, x
2q “ dpx1´, x

1q. The point x2` is constructed similarly.
9Weyl cones vary 1-Lipschitz continuously with their tips, whereas we do not have such a result for diamonds

at our disposal in full generality.
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is then d-Hausdorff close to a Θ-Finsler ray x´τ`, compare the proof of Lemma 6.2, and the

latter passes within distance 2d from x. We say that px´, x, τ`q is pτmod, dq-straight if the same

property holds with Θ replaced by τmod. Analogously for triples pτ´, x, x`q P Flagτmod
ˆX2.

Similarly, we say that a triple pτ´, x, τ`q P Flagτmod
ˆX ˆFlagτmod

is pτmod, dq-straight if the

simplices τ˘ are antipodal and x lies within distance d of a τmod-Finsler line τ´τ`. Note that

pΘ, dq-straightness would be an equivalent property for triples pτ´, x, τ`q, because τ´τ` can be

chosen Θ-regular, which is why we do not introduce it.

6.2 Paths

6.2.1 Holey rays and lines

As for Gromov hyperbolic spaces, we call a map q : H Ñ X from a subset of H Ă R a holey

line. If H has a minimal element, we also call q a holey ray. (The domains of holey rays will

usually be denoted H0 below). A sequence pxnqnPN in X can be regarded as a holey ray NÑ X.

We will consider extensions to infinity

q : H :“ H \ t˘8u Ñ X \ Flagτmod

of holey lines q : H Ñ X by sending ˘8 to simplices τ˘ P Flagτmod
, and refer to q as an

extended holey line. In the case of holey rays q : H0 Ñ X, we consider extensions q : H0 :“

H0 \ t`8u Ñ X \ Flagτmod
by sending `8 to a simplex τ P Flagτmod

, and refer to q as an

extended holey ray.

We carry over the notion of Finsler-straightness from triples to holey lines by requiring it

for all triples in the image:

Definition 6.3 (Finsler-straight holey line). A holey line q : H Ñ X is called

(i) pΘ, dq-straight if the triples pqph´q, qphq, qph`qq are pΘ, dq-straight for all h´ ď h ď h`.

(ii) pτmod, dq-straight if the same property holds with Θ replaced by τmod.

We say that q is Θ-straight if it is pΘ, dq-straight for some d, analogously for τmod-straight,

and that q is uniformly τmod-straight if it is Θ-straight for some Θ.

Remark 6.4. (i) Finsler-straightness is preserved under restriction to subsets of H.

(ii) Finsler-straightness is stable under perturbation: If two holey lines q, q1 : H Ñ X are

r-close, dpqphq, q1phqq ď r for all h P H, and q is pΘ, dq-straight, then q1 is pΘ, d` rq-straight.

(iii) A holey line q : H Ñ X is pΘ, 0q-straight if and only if q maps monotonically into a

Θ-Finsler geodesic.

Similarly, we say that an extended holey line q : H Ñ X \ Flagτmod
is pΘ, dq-straight if all

triples pqph´q, qphq, qph`qq in X \ Flagτmod
for ´8 ď h´ ď h ď h` ď `8 in H with h P H are

pΘ, dq-straight, and analogously in the ray case. The properties pτmod, dq-straight, Θ-straight,

τmod-straight and uniformly τmod-straight are then defined in the obvious way.
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The (τmod-)straightness of an extended holey ray q : H0 Ñ X \Flagτmod
implies that qpH0q

lies within distance 2d of the Weyl cone V px´, stpτ`qq with x´ “ qpminH0q and τ` “ qp`8q,

however it does not imply flag-convergence qphq Ñ τ` as h Ñ supH0 due to possible lack of

regularity. If also q is τmod-regular, then qphq Ñ τ` conically. The straightness of an extended

holey line q : H Ñ X\Flagτmod
implies that the simplices τ˘ “ qp˘8q P Flagτmod

are antipodal

and the image qpHq lies within distance d from the parallel set P pτ´, τ`q.

6.2.2 Asymptotics at infinity

We now discuss the convergence at infinity of Finsler straight holey rays.

To obtain flag-convergence, one needs to impose in addition regularity.

Lemma 6.5. Let xn, x
1
n Ñ 8 be τmod-regular sequences in X so that the triples px, xn, x

1
nq are

pτmod, dq-straight for some base point x P X and d ě 0.

Then the sequences pxnq and px1nq have the same accumulation set in Flagτmod
.

Proof. By straightness, there exists a sequence pτnq in Flagτmod
so that the points xn, x

1
n are

contained in the 2d-neighborhood of the Weyl cone V px, stpτnqq for all n, see Lemma 6.2. It

follows that the τmod-flag accumulation sets of both sequences pxnq and px1nq in Flagτmod
coincide

with the accumulation set of pτnq.

It follows that regular Finsler-straight holey rays converge at infinity, as long as they are

unbounded. (Note that we allow “infinite holes” and put no restriction on the “speed”.) Here,

we call a holey ray or line τmod-regular if its image in X is a τmod-regular subset.

Corollary 6.6. If q : H0 Ñ X is a τmod-regular τmod-straight holey ray with unbounded image

qpH0q, then it τmod-flag converges at infinity, qphq Ñ τ P Flagτmod
as hÑ supH0.

Proof. Since qpH0q is unbounded, there exists a sequence hn Õ supH0 in H0 so that the

sequence pqphnqq in X diverges and hence is τmod-regular. By the compactness of Flagτmod
, after

passing to a subsequence, it flag converges, qphnq Ñ τ P Flagτmod
.

If h1n Ñ supH0 is another sequence in H0, there exists a sequence of indices mn Ñ `8 in

N growing slowly enough so that hmn ď h1n for large n. The triples px, qphmnq, qph
1
nqq are then

pτmod, dq-straight for some base point x P X and d ą 0. By Lemma 6.5, also qph1nq Ñ τ .

In the uniformly regular case, we can show that the flag-convergence is conical:

Lemma 6.7. If q : H0 Ñ X is a pΘ, dq-straight holey ray with unbounded image qpH0q, then

it conically τmod-flag converges at infinity, qphq Ñ τ P Flagτmod
as hÑ supH0. More precisely,

the extended holey ray q : H0 Ñ X \ Flagτmod
with qp`8q “ τ is still pΘ, 2dq-straight.

Proof. Let h0 “ minH0 and o “ qph0q.

By straightness, for any h ă h1 in H0 there exists a τmod-Weyl cone with tip at o which

intersects both balls Bpqphq, 2dq and Bpqph1q, 2dq.
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With Lemma 4.15 it follows that for every ε ą 0 and every h1 P H0 there exists h2 ą h1

in H0 with the property: If h ď h1 ă h2 ď h1, then every τmod-Weyl cone with tip at o, which

intersects Bpqph1q, 2dq, also intersects Bpqphq, 2d` εq.

Now we take a sequence h1n Ñ supH0 and let τn P Flagτmod
so that qph1nq P V po, stpτnqq.

Then for every h P H0 and ε ą 0 the Weyl cone V po, stpτnqq intersects Bpqphq, 2d ` εq for

all sufficiently large n. It follows that pτnq converges, τn Ñ τ P Flagτmod
, and that qpH0q is

contained in N2dpV po, stpτqqq.

For extended Finsler-straight holey rays, already a weaker uniformity assumption implies

conical flag-convergence, more precisely, closeness to a Finsler geodesic:

Claim 6.8. For d, φ there exists r such that:

If q : H0 Ñ X is a holey ray which admits a pτmod, dq-straight extension q and is pτmod, φq-

regular, then there exists a τmod-Finsler ray qp0qτ and a monotonic map q1 : H0 Ñ qp0qτ which

is r-close to q, where τ “ qp`8q.

Proof. By straightness, qpH0q Ă N2dpV pqp0q, stpτqqq.

Let q2 : H0 Ñ V pqp0q, stpτqq be a map 2d-Hausdorff close to q, e.g. the nearest point

projection to the Weyl cone. We extend q2 to infinity by q2p`8q :“ τ . Then q2 is pτmod, 3dq-

straight and pτmod, φ´ 4dq-regular.

The straightness of q2 implies that, for h1 ă h2 in H0, the point q2ph2q lies within distance

6d of the subcone V pq2ph1q, stpτqq Ă V pqp0q, stpτqq. We wish to show that it is contained in the

subcone, provided that its distance from the tip q2ph1q is sufficiently large. To do so, let s ą 0

so that φpsq ą 10d. Then, if dpqph1q, qph2qq ą s, it holds that dpd∆pq
2ph1q, q

2ph2qq, B
τmod
8 ∆q ě

φpsq ´ 4d ą 6d. It follows that q2ph2q has distance ą 6d from the boundary of the cone

V pq2ph1q, stpτqq which forces it to lie inside it,

q2ph2q P V pq
2
ph1q, stpτqq.

Now let Hs
0 Ă H0 be a maximal subset containing 0 so that qpHs

0q is s-spaced. Then

qpH0q is s-Hausdorff close to qpHs
0q. By the above, for h1 ă h2 in Hs

0 , it holds that q2ph2q P

V pq2ph1q, stpτqq. It follows that q2|Hs
0

maps monotonically into some τmod-Finsler ray qp0qτ Ă

V pqp0q, stpτqq. By interpolation, it can be extended to a monotonic map q1 : H0 Ñ qp0qτ which

is p2d` sq-close to q. Thus, the assertion holds with r “ 2d` s.

A corresponding result for holey lines q : H Ñ X is readily derived:

Addendum 6.9. For d, φ there exists r such that:

If q : H Ñ X is a holey line which admits a pτmod, dq-straight extension q and is pτmod, φq-

regular, then there exists a τmod-Finsler line τ´τ` and a monotonic map q1 : H Ñ τ´τ` which

is r-close to q, where τ˘ “ qp˘8q.

Proof. Pick some h0 P H and a point q1ph0q P P pτ´, τ`q within distance d from qph0q. Applying

Claim 6.8 to the two holey subrays of q starting in qph0q yields monotonic maps into suitable
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τmod-Finsler rays qph0qτ˘. The latter are d-Hausdorff close to two τmod-Finsler rays q1ph0qτ˘
which together form a τmod-Finsler line τ´τ` with the desired property.

When there are no arbitrarily large holes, regularity can be promoted to uniform regularity.

We say that a holey line q : H Ñ X is coarsely l-connected, l ě 0, if for any h ă h̃ in H

there exists a sequence h0 “ h ă h1 ă . . . ă hn “ h̃ in H so that dpqphi´1q, qphiqq ď l for all i.

Claim 6.10. For d, φ, l there exist Θ, r such that:

If q is as in Addendum 6.9 and moreover coarsely l-connected, then the τmod-Finsler line

τ´τ` can be chosen to be Θ-regular.

Proof. Take r “ rpd, φq as in Addendum 6.9, and choose s, a ą 0 so that φpsq ě 2r ` a. Then

for h ă h̃ in H with dpqphq, qph̃qq ě s, the vector d∆pq
1phq, q1ph̃qq has distance ě a from Bτmod8 ∆.

Let Hs Ă H be maximal so that qpHsq is s-spaced. Then q|Hs is coarsely p2s` lq-connected,

and consequently q1|Hs is coarsely p2s` l`2rq-connected. It follows that any pair of consecutive

points in q1pHsq is Θ-regular for some Θ “ Θpd, φ, lq. Since q1 maps monotonically into a τmod-

Finsler line τ´τ` as in Addendum 6.9, it follows further that q1|Hs maps monotonically into a

(different) Θ-Finsler line τ´τ`. The map q1|Hs can, by interpolation, be extended to a monotonic

map q1 : H Ñ τ´τ` which, after suitably increasing r “ rpd, φ, lq, is r-close to q.

If one allows arbitrarily large holes, one needs an extra assumption to ensure uniform reg-

ularity. We will consider the following condition:

Definition 6.11 (Uniformly regular large holes). A holey line q : H Ñ X with H Ă R
closed and discrete is said to have pΘ̂, lq-regular large holes if for any two consecutive elements

h ă h̃ in H with dpqphq, qph̃qq ą l, the pair pqphq, qph̃qq is Θ̂-regular. We say that q has

uniformly τmod-regular large holes if it has pΘ̂, lq-regular large holes for some data Θ̂, l.

Then a very similar argument as for Claim 6.10 yields that uniformly regular large holes

imply uniform regularity for the holey lines under consideration:

Claim 6.12. For d, φ, l, Θ̂ there exist Θ, r such that:

Let q be as in Addendum 6.9 and suppose moreover that it has pΘ̂, lq-regular large holes.

Then the τmod-Finsler line τ´τ` can be chosen to be Θ-regular.

6.2.3 Morse quasigeodesics

Morse quasigeodesics are a particular class of uniformly Finsler-straight holey lines (with

“bounded holes”) which play a prominent role in our earlier work, see [KLP1, KLP2, KLP5].

Definition 6.13 (Morse quasigeodesic). A pΘ, d, L,Aq-Morse quasigeodesic in X is a pΘ, dq-

straight holey line q : I Ñ X which is defined on an interval I Ď R and is an pL,Aq-quasiiso-

metric embedding.

We will call a pΘ, d, L,Aq-Morse quasigeodesic also briefly a τmod-Morse quasigeodesic.
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One can show that τmod-Morse quasigeodesics are, up to quasiisometric reparameterization,

uniformly close to τmod-Finsler geodesics. For quasirays and quasilines, this is a consequence of

Claim 6.8 and Addendum 6.9. The definition therefore agrees with the definition given in our

earlier papers.

The main result of [KLP2] is that uniformly τmod-regular quasigeodesics are τmod-Morse.

(Note that the converse holds trivially.)

6.3 Maps

6.3.1 Straight maps

We now generalize the notion of Finsler-straight holey line and introduce and study a class of

maps from subsets of Gromov hyperbolic spaces into symmetric spaces which preserve straight-

ness. Here we use in the hyperbolic spaces the notion of straightness in terms of closeness to

geodesics (cf. Definition 3.3) and in the symmetric spaces the notion of straightness in terms of

closeness to Finsler geodesics (cf. Definition 6.1) which is well-adapted to the higher rank ge-

ometry. Straight maps are coarse analogues of projective maps in Riemannian geometry which

are smooth maps sending unparameterized geodesics to unparameterized geodesics.

Let Y be a δ-hyperbolic proper geodesic space and X a symmetric space. In the following,

f : AÑ X

will always denote a metrically proper map defined on a subset A Ă Y .

Definition 6.14 (Finsler-straight map). The map f : AÑ X is called

(i) Θ-straight if for every D there exists d “ dpΘ, Dq such that f sends D-straight triples in

A to pΘ, dq-straight triples in X.

(ii) τmod-straight if the same property holds with Θ replaced by τmod.

(iii) uniformly τmod-straight if it is Θ-straight for some Θ.

Note that uniform Finsler-straightness implies (coarse) uniform regularity.

Finsler-straight maps carry straight holey lines to Finsler-straight holey lines.

Uniformly regular quasiisometric embeddings Y Ñ X are uniformly straight [KLP2].

We will use the notion of straightness also for extensions of maps to infinity: If β : B Ñ

Flagτmod
is a map defined on a subset B Ă B8A, we say that the combined map

f̄ “ f \ β : A\B Ñ X \ Flagτmod

is Θ-straight if for every D there exists d “ dpΘ, Dq such that the induced map on triples

T pf \ βq : T pA,Bq Ñ T pX,Flagτmod
q

sends D-straight triples to pΘ, dq-straight triples, where we use the notation (cf. section 3.1)

T pA,Bq :“ pA\Bq ˆ Aˆ pA\Bq.
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The properties τmod-straight and uniformly τmod-straight are defined accordingly.

6.3.2 Morse quasiisometric embeddings

Especially important are straight maps which are quasiisometric embeddings.

Definition 6.15 (Morse quasiisometric embedding). A map Y Ñ X from a Gromov

hyperbolic geodesic metric space Y is called a τmod-Morse quasiisometric embedding if it sends

geodesics to uniform τmod-Morse quasigeodesics.

This is equivalent to the definitions given in our earlier papers (see [KLP1, Def. 7.23] and

[KLP2, Def. 5.29]). Note that there we allowed more generally for quasigeodesic metric spaces

as domains. However, we showed in [KLP2, Thm. 6.13] that such domains are necessarily

Gromov hyperbolic.

Reformulating the above definition, a quasiisometric embedding Y Ñ X is τmod-Morse if

and only if it is uniformly τmod-straight.

The main result of [KLP2] implies that a quasiisometric embedding Y Ñ X is τmod-Morse

if and only if it is uniformly τmod-regular.

6.3.3 Asymptotics at infinity

It is plausible that straightness is related to good asymptotic behavior and the existence of

boundary maps.

We first address continuity at infinity. We assume in the following that the map f : AÑ X

is τmod-regular and τmod-straight. Our tool is the following direct consequence of Lemma 6.5:

Lemma 6.16. Suppose that yn, y
1
n Ñ 8 are divergent sequences contained in A so that the

triples py, y1n, ynq are D-straight for some base point y P Y and D ě 0.

Then the sequences pfpynqq and pfpy1nqq in X have the same accumulation set in Flagτmod
.

Definition 6.17 (Shadowing). A subset S Ă A is shadowing a subset Σ Ă B8A at infinity

(in A) if for every sequence yn Ñ 8 in A accumulating at Σ there exists a sequence y1n Ñ 8 in

S such that the triples py, y1n, ynq are D-straight for some base point y P Y and D ě 0.

The last lemma immediately yields:

Lemma 6.18. Suppose that S Ă A is shadowing Σ Ă B8A in A. Then for every subset W Ă A

with B8W Ă Σ it holds that Bτmod8 pfpW qq Ď Bτmod8 pfpSqq.

In particular:

Corollary 6.19. Suppose that S, S 1 Ă A have the same visual accumulation set Σ Ă B8A, and

they are both shadowing Σ in A, then Bτmod8 pfpSqq “ Bτmod8 pfpS 1qq.
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We will apply the last lemma in the following way:

Corollary 6.20. If S Ă A is shadowing the ideal point η P B8A in A and Bτmod8 pfpSqq consists

of a single simplex τ , then f is continuously extended to η by mapping η ÞÑ τ .

Example 6.21. (i) A conical accumulation point η P Bcon8 A is shadowed (in Y ) by a sequence

in A conically converging to it.

(ii) Suppose that A is disjoint from a horoball B Ă Y centered at ζ P B8Y and contains

a subset S which has finite Hausdorff distance from the horosphere BB. Then ζ P B8A is

shadowed (in A) by S.

Our second observation concerns antipodality at infinity.

Lemma 6.22. Suppose that y˘n Ñ 8 are sequences in A whose accumulation sets in B8A are

disjoint. Then the accumulation sets of the sequences pfpy˘n qq in Flagτmod
are antipodal.10

Proof. We may assume that the sequences pfpy`n qq τmod-converge, pfpy`n qq Ñ τ˘. Let y P A be

a base point. The assumption implies that the triples py´n , y, y
`
n q in Y are D-straight for some

D, cf. Lemma 3.1. By the Finsler-straightness of f , the triples pfpy´n q, fpyq, fpy
`
n qq in X are

then pτmod, dq-straight for some d. This means that there exists a bounded sequence of τmod-

parallel sets P pτ´n , τ
`
n q such that fpy˘n q has uniformly bounded distance from V pfpyq, stpτ˘n qq.

Then τ˘n Ñ τ˘ by the definition of flag convergence. The antipodality of τ˘ follows from the

boundedness of the sequence of parallel sets.

We next apply these observations to show the existence of a partial boundary map at infinity.

For a map β : B Ñ Flagτmod
defined on a subset B Ď B8A we say that the combined map

f \ β : A\B Ñ X \ Flagτmod

is continuous at infinity if for every sequence pynq in A with yn Ñ η P B it holds that fpynq Ñ

βpηq in the sense of flag convergence. Note that then β must necessarily be continuous.

We obtain that the map f : AÑ X extends continuously to the conical accumulation set:

Proposition 6.23. There exists an antipodal continuous map Bcon8 f : Bcon8 A Ñ Bτmod8 pfpAqq Ă

Flagτmod
such that the extended map

f \ Bcon8 f : A\ Bcon8 AÑ X \ Flagτmod

is continuous at infinity.

If f is uniformly τmod-straight, then Bcon8 fpBcon8 Aq Ď Bτmod,con8 pfpAqq.

Proof. Given a point η P Bcon8 A, we pick a sequence pynq in A converging to η conically. After

extraction, this sequence moves to infinity “monotonically” in the sense that it is D-straight

for some D. Hence, the image sequence pfpynqq in X is pτmod, dq-straight for some d. (It is also

10I.e. every accumulation point of pfpy`n qq is antipodal to every accumulation point of pfpy´n qq.
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τmod-regular due to our assumption that f is τmod-regular.) By Corollary 6.6, it τmod-converges

at infinity,

fpynq Ñ τ P Bτmod8 pfpAqq Ă Flagτmod
.

Since the sequence pynq converges to η conically, it is shadowing η (in Y ). Corollary 6.20

therefore implies that f is continuously extended to η by mapping η ÞÑ τ . This shows that

there exists a well-defined map at infinity Bcon8 f : Bcon8 A Ñ Bτmod8 pfpAqq Ă Flagτmod
so that the

extension f \ Bcon8 f is continuous at infinity.

The antipodality of Bcon8 f is a consequence of Lemma 6.22.

The last part follows from Lemma 6.7.

In particular, we recover:

Corollary 6.24 (see [KLP2, Theorem 6.14]). For every Morse quasiisometric embedding

f : Y Ñ X there exists an antipodal continuous map B8f : B8Y Ñ B
τmod,con
8 pfpY qq Ă Flagτmod

such that the extended map

f \ B8f : Y \ B8Y Ñ X \ Flagτmod

is continuous at infinity.

We now specialize the discussion to a setting motivated by RH groups. Here we can show

the existence of full boundary maps:

Proposition 6.25. Suppose that

(i) A Ă Y has finite Hausdorff distance from the complement of a family B “ pBiqiPI of

disjoint open horoballs;

(ii) for some, equivalently, every subset Si Ă A which has finite Hausdorff distance from a

horosphere BBi, the τmod-accumulation set Bτmod8 pfpSiqq consists of a single simplex τi.

Then there exists an antipodal continuous map B8f : B8A Ñ Bτmod8 pfpAqq Ă Flagτmod
,

sending the center ζi P B8A of each horoball Bi to τi, such that the combined map

f \ B8f : A\ B8AÑ X \ Flagτmod

is continuous at infinity.

If f is uniformly τmod-straight, then B8fpB
con
8 Aq Ď Bτmod,con8 pfpAqq.

Regarding condition (ii), note that according to Corollary 6.19 the simplex τi is independent

of the choice of Si.

Proof. We continue the argument in the proof of the last proposition.

In order to further extend the boundary map Bcon8 f to the non-conical part pB8 ´ B
con
8 qA of

the accumulation set, we note that the latter consists of the centers ζi of the horoballs Bi P B.
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Subsets Si Ă A as in hypothesis (ii) exist by hypothesis (i). Each subset Si is shadowing

the ideal point ζi (in A). We can therefore apply Corollary 6.20 again to obtain the desired

continuous extension B8f of Bcon8 f by mapping ζi ÞÑ τi for all i P I.

The antipodality of B8f follows again from Lemma 6.22.

7 Asymptotic conditions for subgroups

7.1 Relative asymptotic and boundary embeddedness

We start with characterizations of Anosov subgroups in terms of their topological dynamics

on associated flag manifolds. The first such notion given in [KLP5, Def. 5.12] is asymptotic

embeddedness. The relative version is as follows:11

Definition 7.1 (Relatively asymptotically embedded). A subgroup Γ ă G is called rel-

atively τmod-asymptotically embedded if it is τmod-regular, antipodal and admits a structure as

a relatively hyperbolic group pΓ,Pq such that there exist a Γ-equivariant homeomorphism

α : B8Γ
–
ÝÑ Λτmod Ă Flagτmod

from its ideal boundary to its τmod-limit set.

The definition can be phrased purely dynamically in terms of the Γ-action on Flagτmod
by

replacing the τmod-regularity with the τmod-convergence condition, see [KLP5]. Note that the

peripheral structure is uniquely determined because it can be read off the dynamics on the limit

set; the peripheral subgroups are the maximal ones with exactly one limit point in Λτmod .

Since relatively hyperbolic groups act as convergence groups on their ideal boundaries, so do

asymptotically embedded subgroups on their limit sets, and notions from the theory of abstract

convergence groups apply to our setting, such as conical limit points, bounded parabolic points

and bounded parabolic fixed points, see Definition 2.1. As explained in section 3.3.1, every

limit point is either conical or bounded parabolic. The peripheral subgroups Πi ă Γ are

precisely the stabilizers of the bounded parabolic points τi, and ΛpΠiq “ tτiu. For general

relatively hyperbolic groups, the Πi can be infinite torsion groups, however for asymptotically

embedded subgroups this cannot occur, because they are linear, as follows from Schur’s theorem

or Selberg’s lemma. Thus all bounded parabolic points are bounded parabolic fixed points.

Remark 7.2. For antipodal τmod-regular subgroups Γ ă G with at least two limit points,

intrinsic conicality (defined in terms of the dynamics of Γ ñ Λτmod) is equivalent to extrinsic

conicality (defined in terms of the conical convergence of sequences in Γx Ă X), see [KLP5,

Proposition 5.41 and Lemma 5.38].

For relatively asymptotically embedded subgroups, the orbit maps extend continuously to

infinity by an asymptotic embedding (which is unique if the limit set has at least three points):

11It will be extended further beyond geometrically finite subgroups in Definition 7.9.
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Lemma 7.3. If Γ ă G is relatively τmod-asymptotically embedded and x P X, then there is a

continuous extension

ōx “ ox \ α : Γ “ Γ\ B8Γ ÝÑ X \ Λτmod

of the orbit map ox by an asymptotic embedding α.

Proof. Suppose first that |B8Γ| ě 3. Let pγnq be a sequence in Γ converging to ξ` P B8Γ in Γ.

It follows that there exists a point ξ´ P B8Γ such that pγnq converges, as a sequence of maps, to

ξ` uniformly on compacts in B8Γ´ tξ´u. We claim that pγnq flag-converges to αpξ`q. Assume

that this is not the case: In view of the τmod-regularity of Γ, there exist λ˘ P Λτmod such that,

after extraction, pγnq converges to λ` uniformly on compacts in the open Schubert cell Cpλ´q,

where λ` ‰ αpξ`q. Since Λτmod is antipodal, it follows that pγnq flag-converges to λ` uniformly

on compacts in Λτmod ´ tλ´u. Since the limit set contains a third point beyond αpξ´q and λ´,

we conclude that τ “ λ`, a contradiction.

If |B8Γ| ď 1, there is nothing to prove. If |B8Γ| “ 2 then P “ H, Γ is virtually cyclic (see

Remark 3.11) and the claim follows from [KLP5, Lemma 5.38].

The following related condition is weaker than relative asymptotic embeddedness, but easier

to verify, since there is no need to check regularity and to identify the limit set:

Definition 7.4 (Relatively boundary embedded). A discrete subgroup Γ ă G is called

relatively τmod-boundary embedded if it admits a structure as a relatively hyperbolic group pΓ,Pq
such that there exist an antipodal Γ-equivariant embedding

β : B8Γ ÝÑ Flagτmod

called a boundary embedding.

In the Zariski dense case, relative boundary embeddedness implies relative asymptotic

boundary embeddedness (see [KLP5, Corollary 5.14] for the absolute case):

Theorem 7.5. If Γ ă G is relatively τmod-boundary embedded and Zariski dense, then it is

relatively τmod-asymptotically embedded.

Proof. By Zariski density, B8Γ is infinite and hence the action Γ ñ B8Γ is minimal. Applying

Theorem 4.10 and Addendum 4.11 to the given boundary embedding, it follows that Γ is

τmod-regular and Λτmod “ βpB8Γq.

7.2 A higher rank Beardon-Maskit condition

The actions of relatively hyperbolic groups on their ideal boundaries are convergence actions

characterized by the Beardon-Maskit property [Y]. We use this characterization to translate

relative asymptotic embeddedness into a higher rank Beardon-Maskit condition for the action

on the limit set. We formulate this condition for antipodal regular subgroups because their

actions on the limit set are convergence:
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Definition 7.6 (Relatively RCA). An antipodal τmod-regular subgroup Γ ă G is called

relatively τmod-RCA if each τmod-limit point is either a conical limit point or a bounded parabolic

point (for the action Γ ñ Λτmod) and, moreover, the stabilizers of the bounded parabolic points

are finitely generated.

We recall, see section 2.3, that for the stabilizer Γτ ă Γ of a bounded parabolic point

τ P ΛτmodpΓq it holds that ΛτmodpΓτ q “ tτu.

All finitely generated regular subgroups with one point limit set are relatively RCA. In

general, we know little about the structure of such subgroups. On the other hand, for uniformly

regular subgroups with one point limit set we have the following information on their geometric

and algebraic properties, which are well-known in rank one:

Lemma 7.7. A uniformly τmod-regular subgroup of G with one point τmod-limit set consists of

elements with zero translation number, is finitely generated and virtually nilpotent.

Proof. This follows from Lemma 5.1 and Corollary 5.13.

Clearly, relative asymptotic embeddedness implies relatively RCA. The converse is a conse-

quence of Yaman’s theorem. Thus:

Theorem 7.8. A subgroup Γ ă G is relatively τmod-RCA if and only if it is relatively τmod-

asymptotically embedded.

In fact, Yaman’s theorem applies only if |Λτmod | ě 3. If |Λτmod | “ 2, then P “ H and Γ is

(absolutely) τmod-asymptotically embedded by [KLP5, Lemma 5.38].

7.3 More general relative settings

Let Γ ă G be a discrete subgroup. We equip Γ as an abstract discrete group with an additional

intrinsic geometric structure in the form of a properly discontinuous isometric action Γ ñ Y

on a Gromov hyperbolic proper geodesic space Y . This action is not required to be cocompact.

(If it is cocompact or, more generally, undistorted, then Γ is word hyperbolic and the additional

intrinsic structure amounts to the choice of a word metric. This is the context in which we

mostly worked in our earlier papers.) We are interested in geometric and dynamical properties

of the action Γ ñ X relative to the action Γ ñ Y .

To relate the actions Γ ñ X and Γ ñ Y , we fix base points x P X and y P Y so that

Γy ď Γx and consider the Γ-equivariant map of orbits

ox,y : Γy Ñ Γx, γy ÞÑ γx.

Note that for any point y P Y there exists a point x P X fixed by Γy, because Γy is finite and

finite groups acting isometrically on symmetric spaces have fixed points.

We further extend the relative versions of asymptotic and boundary embeddedness (see

Definitions 7.1 and 7.4) to our present more general setting.

43



Definition 7.9 (Relatively boundary and asymptotically embedded II). A discrete

subgroup Γ ă G is called

(i) τmod-boundary embedded relative Γ ñ Y if there exists a Γ-equivariant antipodal embed-

ding, called a boundary embedding,

β : ΛY Ñ Flagτmod
.

(ii) τmod-asymptotically embedded relative Γ ñ Y if it is τmod-regular, antipodal and there

exists a Γ-equivariant homeomorphism, called an asymptotic embedding,

α : ΛY
–
Ñ ΛX,τmod Ă Flagτmod

.

As before, in the non-degenerate case when |ΛY | ě 3, an asymptotic embedding continuously

extends the maps of orbits to infinity. Lemma 7.3 and its proof directly generalize:

Lemma 7.10. If Γ ă G is τmod-asymptotically embedded relative Γ ñ Y and if |ΛY | ě 3, then

the combined map

ōx,y “ ox,y \ α : Γy “ Γy \ ΛY Ñ Γx
τmod

“ Γx\ ΛX,τmod Ă X \ Flagτmod

is continuous.

The continuity on the orbit Γy is trivial by discreteness.

8 Coarse geometric conditions for subgroups

We introduce two coarse geometric conditions which are a priori stronger than the asymptotic

conditions discussed above. The advantage of these coarse geometric properties is that they

allow for a local-to-global principle similar to the one for Morse subgroups (cf. [KLP1, §7])

and hence define classes of discrete subgroups which are structurally stable. These conditions

are also sometimes easier to verify in concrete situations. These aspects will be discussed else-

where. The main results in this section compare the coarse geometric conditions to asymptotic

embeddedness (see Theorems 8.3, 8.5, 8.12 and 8.25).

8.1 Relatively Morse subgroups

In our earlier paper [KLP1] we defined Morse subgroups as finitely generated word-hyperbolic

subgroups whose orbit maps are Morse quasiisometric embeddings. We relativize this as follows:

Definition 8.1 (Relatively Morse). A subgroup Γ ă G is called relatively τmod-Morse if

there exists a relatively hyperbolic structure P on Γ with a Gromov model Y and a Γ-equivariant

τmod-Morse quasiisometric embedding f : Y Ñ X.
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The peripheral subgroups have to be virtually nilpotent, as follows from Corollary 3.22. We

will see that the peripheral structure P is uniquely determined because relatively Morse implies

relatively asymptotically embedded (see Corollary 8.4).

Relatively Morse subgroups are uniformly regular, since Morse quasiisometric embeddings

are. The latter continuously extend to infinity (see Corollary 6.24).

In the equivariant situation (for general discrete subgroups which need not be relatively

Morse) one can relate the limit sets:

Lemma 8.2. Let Γ ă G be a discrete subgroup. Suppose that Γ ñ Y is a properly discontinuous

isometric action on a proper geodesic hyperbolic space Y and that f : Y Ñ X is a Γ-equivariant

τmod-Morse quasiisometric embedding.

Then Γ is τmod-uniformly regular and ΛX,τmod “ B8fpΛY q is antipodal.

Proof. This follows from the uniform regularity of Morse quasiisometric embeddings, the con-

tinuity of f \ B8f at B8Y and the antipodality of B8f .

In the relatively Morse setting, we obtain:

Theorem 8.3. Every relatively τmod-Morse subgroup Γ ă G is relatively τmod-asymptotically

embedded. If f : Y Ñ X is an equivariant τmod-Morse quasiisometric embedding as in the

definition of relatively Morse subgroups, then B8f is an asymptotic embedding.

Proof. In this situation ΛY “ B8Y and the lemma yields the assertion.

Corollary 8.4. The relatively hyperbolic structure on a relatively Morse subgroup is unique.

Proof. This follows from the uniqueness of the relatively hyperbolic structure on relatively

asymptotically embedded subgroups.

Theorem 8.5. If X has rank one, then relatively Morse is equivalent to geometrically finite.

Proof. According to Theorem 8.3, a relatively Morse subgroup is relatively asymptotically

embedded and hence its action on its limit set satisfies the Beardon-Maskit condition. In rank

one, this is classically known to be equivalent to geometric finiteness (see [Bo2]).

Conversely, let Γ ă G be geometrically finite.

If |Λ| ě 2, the closed convex hull of the limit set serves as a Gromov model, Y :“ CHpΛq.

The subgroups Πi are the stabilizers of the bounded parabolic fixed points of Γ. There exists

a Γ-invariant family of pairwise disjoint horoballs Bi in X such that Γ acts cocompactly on

Y th
“ Y ´

ď

i

Bi,

and we use this as a Gromov model of pΓ,Pq. The Morse quasiisometric embedding is the

inclusion Y ãÑ X, and we see that Γ ă G is a relatively Morse subgroup.

If Λ consists of a single ideal point λ, we equip it with the trivial relatively hyperbolic

structure P “ tΓu. Let B Ă X be a horoball centered at λ. It is preserved by Γ, and according
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to [Bo2, sect. 4] there exists a Γ-invariant closed convex subset C Ď X such that the action

Γ ñ BB X C is cocompact. (C can be obtained as the closed convex hull of a Γ-orbit in

B8X ´ tλu.) One can then take B X C as a Gromov model.

Corollary 8.6. In rank one, relatively Morse is equivalent to relatively asymptotically embed-

ded.

Example 8.7. Let rankpXq ě 2 and let X1 Ă X be a totally geodesic subspace of rank 1.

It is τmod-regular for ι-invariant face-types τmod Ă τmodpX1q, see Example 4.9. Let Γ ă G

be a subgroup which preserves X1 and acts on it as a geometrically finite group. Then Γ

is τmod-Morse, the Gromov model being a convex subset of X1 as described in the proof of

Theorem 8.5.

8.2 Relatively Finsler-straight subgroups

This section is the heart of the paper. We define the notion of relatively Finsler-straight groups

of isometries of symmetric spaces. For actions of relatively hyperbolic groups, we prove its

equivalence to relative asymptotic embeddedness.

8.2.1 From straightness to boundary maps

We take up the discussion of Finsler-straight maps in an equivariant situation. We deduce from

the results in section 6.3.3 that Finsler-straightness of maps of orbits implies the existence of

partial and, under suitable assumptions, of full boundary maps.

We work in the general relative setting of section 7.3. The notion of Finsler-straightness for

maps (see Definition 6.14) carries over to subgroups:

Definition 8.8 (Finsler-straight subgroup). A discrete subgroup Γ ă G is said to be

(i) τmod-straight rel Γ ñ Y if the map ox,y is τmod-straight.

(ii) uniformly τmod-straight rel Γ ñ Y if ox,y is uniformly τmod-straight.

Note that a τmod-straight subgroup Γ ă G is uniformly τmod-straight if and only if it is

uniformly τmod-regular.

We will consider the notion of relative straightness only in the context of regular subgroups.

Now we use the results from section 6.3.3 in order to obtain boundary maps for Finsler-

straight subgroups. Proposition 6.23, applied to the maps of orbits ox,y, yields a partial asymp-

totic embedding:

Corollary 8.9. If Γ ă G is τmod-straight relative Γ ñ Y , then there exists an antipodal map

Bcon8 ox,y : Λcon
Y Ñ ΛX,τmod Ă Flagτmod

such that the extended map

ox,y \ B
con
8 ox,y : Γy \ Λcon

Y Ñ Γx\ ΛX,τmod Ă X \ Flagτmod

is continuous (at infinity).
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If Γ ă G is uniformly τmod-straight relative Γ ñ Y , then Bcon8 ox,ypΛ
con
Y q Ď Λcon

X,τmod
.

Note that the boundary map Bcon8 ox,y is independent of the choice of the base points y, x.

Note also that, if |ΛY | ě 2, then Λcon
Y is nonempty [Tu2, Thm. 2R] and hence dense in ΛY .

In the relatively hyperbolic setting, i.e. when Γ ñ Y is the action on a Gromov model,

we obtain a full asymptotic embedding under an additional assumption on the actions of the

peripheral subgroups. Namely, we consider the following condition:

Definition 8.10 (Tied-up horospheres). A τmod-regular subgroup Γ ă G is said to have tied-

up horospheres with respect to a relatively hyperbolic structure P if the limit set ΛX,τmodpΠiq Ă

Flagτmod
of each peripheral subgroup Πi ă Γ is a singleton.

We adapt Finsler-straightness as follows to relatively hyperbolic subgroups:

Definition 8.11 (Relatively Finsler-straight). A τmod-regular subgroup Γ ă G is called

(i) relatively τmod-straight if there exists a relatively hyperbolic structure P on Γ with a

Gromov model Y such that Γ is τmod-straight relative Γ ñ Y and has tied-up horospheres.

(ii) relatively uniformly τmod-straight if in addition Γ is uniformly τmod-regular.

In view of Lemma 3.23, relative Finsler-straightness does not depend on the choice of the

Gromov model Y .

Applying Proposition 6.25 now yields:

Theorem 8.12. If Γ ă G is relatively τmod-straight, then it is relatively τmod-asymptotically

embedded.

Proof. We apply Proposition 6.25 with A “ Γy and f “ ox,y. Hypothesis (i) of the proposition

is satisfied, because Γ acts cocompactly on the thick part Y th Ă Y of the Gromov model,

which equals the complement of the family of peripheral horoballs Bi. In hypothesis (ii) we

can take Si “ Πiy, because Πi acts cocompactly on horospheres at ζi (cf. Lemma 3.12), and

the condition is satisfied because Γ has tied-up horospheres. Since B8A “ B8pΓyq “ B8Y

and Bτmod8 pfpAqq “ Bτmod8 pΓxq “ ΛX,τmod , the proposition yields an antipodal continuous map

B8ox,y : B8Y Ñ ΛX,τmod sending ζi ÞÑ τi so that the extension ōx,y “ ox,y \ B8ox,y is continuous

at infinity. The latter implies that the image of B8ox,y equals ΛX,τmod .

Note that, as a consequence of the theorem, the relatively hyperbolic structure in the defi-

nition of relative Finsler-straightness is unique.

8.2.2 From boundary maps to straightness

We now, conversely, explore what the existence of boundary maps implies for the orbit geometry

of actions Γ ñ X. We show that asymptotic embeddedness implies Finsler-straightness. Our

discussion follows [KLP5, §5.3], generalizing it.
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Suppose first that β : ΛY Ñ Flagτmod
is a boundary embedding relative Γ ñ Y .

Our preliminary step concerns the position of the Γ-orbits in X relative to the parallel sets

spanned by pairs of simplices in the image of β (cf. [KLP5, Lemma 5.3]):

Lemma 8.13. For every D there exists d (also depending on the Γ-actions and -orbits) so that:

If a triple pη´, γy, η`q with η˘ P ΛY is D-straight, then the triple pβpη´q, γx, βpη`qq is

pτmod, dq-straight.

Proof. By equivariance, we may assume that γ “ e.

The set of pairs pη´, η`q P pB8Y ˆ B8Y q ´ ∆B8Y , for which the triple pη´, y, η`q is D-

straight, is compact. It follows that the set C of their images pβpη´q, βpη`qq in the space

pFlagτmod
ˆFlagτmod

qopp Ă Flagτmod
ˆFlagτmod

is also compact. Since pFlagτmod
ˆFlagτmod

qopp is a

homogeneous G-space, it is of the form C “ C 1¨pτ´0 , τ
`
0 q with a compact subset C 1 Ă G and some

antipodal pair pτ´0 , τ
`
0 q. The set of triples pβpη´q, x, βpη`qq “ pgτ

´
0 , x, gτ

`
0 q “ gpτ´0 , g

´1x, τ`0 q

for g P C 1 is pτmod, dq-straight for some d “ dpDq, because the set C 1´1x Ă X is compact and

depends on D.

The conclusion can be rephrased as follows: If γy lies within distance D of a line η´η` Ă Y ,

η˘ P ΛY , then γx lies within distance dpDq of the parallel set P pβpη´q, βpη`qq Ă X.

In order to get more control, we strengthen our assumptions for the rest of this section:

Assumption 8.14. Γ ă G is τmod-asymptotically embedded relative Γ ñ Y with asymptotic

embedding α : ΛY
–
Ñ ΛX,τmod and |ΛY | ě 3.

Then Γ ă G is τmod-regular and α continuously extends the map of orbits ox,y (Lemma 7.10).

Now we can relate the position of the Γ-orbits in X to Weyl cones:

Lemma 8.15. For every D there exists d such that:

If a triple pγ´y, γy, η`q, η` P ΛY , is D-straight, then pγ´x, γx, αpη`qq is pτmod, dq-straight.

Proof. Let

R :“ dpy,QCHpΛY qq.

We may assume that γ´ “ e, and denote η` “: η.

Suppose that the triple py, γy, ηq with η P ΛY is D-straight. Due to the quasiconvexity of

QCHpΛY q, the ray yη lies within distance R ` Cδ of a geodesic line η̂η Ă Y with η̂ P ΛY , and

it follows that the triple pη̂, γy, ηq is pD `R ` Cδq-straight.

By Lemma 8.13, the triple pαpη̂q, γx, αpηqq is d-straight for some d “ dpD `R` Cδq. This

means that γx lies within distance d of the parallel set P pαpη̂q, αpηqq. It applies in particular

to x “ ex. It follows (compare [KLP5, Dichotomy Lemma 5.5 and Proposition 5.16]) that γx

lies within distance d of a Weyl cone V px̄, stpτ 1qq for a point x̄ P P pαpη̂q, αpηqq with dpx, x̄q ď d

and a type τmod simplex τ 1 Ă B8P pαpη̂q, αpηqq, that is, the triple px, γx, τ 1q is pτmod, dq-straight.
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It is important to note that αpηq is the only simplex contained in B8P pαpη̂q, αpηqq which is

antipodal to αpη̂q. Hence either τ 1 “ αpηq or τ 1 is not antipodal to αpη̂q.

Consider a sequence of D-straight triples py, γny, ηnq with ηn P ΛY and γn Ñ 8 in Γ, and

corresponding sequences of ideal points η̂n P ΛY , points x̄n P P pαpη̂nq, αpηnqq and simplices τ 1n Ă

B8P pαpη̂nq, αpηnqq as above. Then γnx lies within distance d of the Weyl cone V px̄n, stpτ
1
nqq.

Suppose that the simplices τ 1n are not antipodal to the simplices αpη̂nq for all n. After

extraction, we may assume that ηn Ñ η, η̂n Ñ η̂, x̄n Ñ x̄ and τ 1n Ñ τ 1. Then αpηnq Ñ αpηq,

αpη̂nq Ñ αpη̂q, γnx Ñ τ 1 and τ 1 Ă B8P pαpη̂q, αpηqq. Moreover, since the relation of being

non-antipodal is closed with respect to the visual topology, τ 1 is not antipodal to αpη̂q, and

hence τ 1 ‰ αpηq. On the other hand, γny Ñ η and hence γnx Ñ αpηq due to the continuity of

ōx,y, a contradiction.

It follows that, for all γ P Γ outside a finite subset of Γ depending on D, a triple px, γx, αpηqq

is pτmod, dq-straight whenever the triple py, γy, ηq with η P ΛY is D-straight. After suitably

enlarging d, the implication holds for all γ P Γ.

We rephrase the conclusion: If γy lies within controlled distance of a ray pγ´yqη` Ă Y ,

η` P ΛY , then γx lies within controlled distance of the Weyl cone V pγ´x, αpη`qq Ă X.

In the next step, we control the straightness of triples in Γ-orbits:

Lemma 8.16. For every D there exists d such that:

If a triple pγ´y, γy, γ`yq is D-straight, then pγ´x, γx, γ`xq is pτmod, dq-straight.

Proof. Suppose that the triple pγ´y, γy, γ`yq is D-straight. By the quasiconvexity of QCHpΛY q,

it is C ¨ pD `R` δq-Hausdorff close to a triple of points lying in the same order on a geodesic

line η´η` Ă Y with η˘ P ΛY . Hence its middle point γy lies within distance C 1 ¨ pD ` R ` δq

of geodesic rays pγ¯yqη˘.

By Lemmas 8.13 and 8.15, the points γ˘x, γx lie within distance d from the parallel set P “

P pαpη´q, αpη`qq, and γx lies within distance d from the two Weyl cones V˘ “ V pγ¯x, stpαpη˘qqq

for some d “ dpDq. (We suppress the dependence on the actions and orbits.)

Let x̄˘, x̄ P P denote the nearest-point projections of γ˘x, γx. Then the Weyl cones V˘ and

V ˘ “ V px̄¯, stpαpη˘qqq Ă P have Hausdorff distance ď dpγ¯x, x̄¯q ď d. Hence γx lies within

distance 2d from both Weyl cones V ˘, and x̄ lies within distance 3d from them.

Now we invoke again the τmod-regularity of Γ. It implies the existence of a finite subset F Ă Γ

depending on D such that: If γ´1γ¯ R F , then x̄ P V ˘. If both conditions are satisfied, then x̄

lies on a τmod-Finsler geodesic x̄´x̄`, and hence the triple pγ´x, γx, γ`xq is pτmod, dq-straight.

If one of the elements γ´1γ¯ lies in F , then the corresponding distance dpγ¯x, γxq is bounded

and the conclusion holds trivially after increasing d sufficiently.

Lemmas 8.13, 8.15 and 8.16 yield together:

Proposition 8.17. The extension ox,y “ ox,y \ α of the map of orbits ox,y is τmod-straight.
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Specializing to the relatively hyperbolic setting, we obtain the converse to Theorem 8.12:

Theorem 8.18. If Γ ă G is relatively τmod-asymptotically embedded, then it is relatively τmod-

straight.

Proof. In the case when |B8Y | ě 3, i.e. when Assumption 8.14 is satisfied, the straightness of

Γ relative to the action on the Gromov model is the content of the proposition. That Γ has

tied-up horospheres is immediate from asymptotic embeddedness.

If |B8Y | “ 2, then P “ H and we are in the absolute case. There, asymptotic embeddedness

implies Morse, and this in turn straightness [KLP5].

If |B8Y | “ 1, then P “ tΓu and relative straightness amounts to the τmod-regularity of Γ

and |ΛX,τmod | “ 1. Both properties follow from asymptotic embeddedness.

8.2.3 Further to uniform straightness

We return to the more general setting of a subgroup Γ ă G which is asymptotically embedded

relative to an action Γ ñ Y as in Assumption 8.14. We show that under suitable assumptions

the subgroup Γ is uniformly regular.

We continue the discussion of the previous section and further promote the control on the

position of triples in orbits of Γ ñ X to control on the position of holey lines. By Proposition

8.17, we know that straight holey lines q : H Ñ Γy go to Finsler-straight holey lines ox,y ˝ q :

H Ñ Γx. We establish next that the latter lie near Finsler geodesics in X. To achieve this,

we use that the holey lines ox,y ˝ q are asymptotically embedded and satisfy, as parts of orbits

of the regular action Γ ñ X, a weak form of uniform regularity. This allows us to apply

Addendum 6.9, and we obtain:

Proposition 8.19. For D there exists d such that:

If q : H Ñ Γy is a D-straight holey line, then there exists a τmod-Finsler line τ´τ`, τ˘ P

ΛX,τmod, and a monotonic map q1 : H Ñ τ´τ` which is d-close to the holey line ox,y˝q : H Ñ Γx.

Proof. By straightness, qpHq lies within distance D1 “ D1pDq of a line in Y , and within

distance D2 “ D2pD,Rq of a line η´η` Ă Y asymptotic to ΛY , η˘ P ΛY . The extended holey

line q̄ : H “ H \ t˘8u Ñ Y “ Γy \ ΛY with q̄p˘8q “ η˘ is D2-straight.

Since ōx,y “ ox,y \α is τmod-straight by Proposition 8.17, it follows that the extended holey

line ox,y ˝ q “ ōx,y ˝ q̄ : H Ñ Γx\ ΛX,τmod mapping ˘8 ÞÑ αpη˘q “: τ˘ is pτmod, dq-straight for

some d “ dpDq. Furthermore, the holey lines ox,y ˝ q are weakly uniformly τmod-regular as a

consequence of the τmod-regularity of the action Γ ñ X. Applying Addendum 6.9 yields the

assertion.

Since the image holey lines ox,y˝q inX follow Finsler geodesics, their weak uniform regularity

turns into (strong) uniform regularity when there are no arbitrarily large holes, i.e. when the

holey lines ox,y ˝ q, equivalently, the straight holey lines q are coarsely connected:

50



Claim 8.20. For D,L there exist Θ, d such that:

If q : H Ñ Γy is a D-straight holey line which is coarsely L-connected, then the τmod-Finsler

line τ´τ` in Proposition 8.19 can be chosen to be Θ-regular.

Proof. The holey line ox,y ˝ q : H Ñ Γx is then coarsely l-connected with l “ lpLq and the

assertion is a consequence of Claim 6.10.

Straight holey lines in Γy with holes of bounded size are, up to reparameterization, quasi-

geodesics. We conclude that ox,y sends uniform quasigeodesics in Γy to uniformly τmod-regular

uniform quasigeodesics in Γx:

Theorem 8.21. Suppose that Γ ă G is τmod-asymptotically embedded rel Γ ñ Y . Then for

L,A there exist l, a,Θ, d such that:

If q : I Ñ Γy Ă Y is an pL,Aq-quasigeodesic, then ox,y ˝ q : I Ñ Γx Ă X is an pl, aq-

quasigeodesic which is contained in the d-neighborhood of a Θ-Finsler geodesic.

Remark 8.22. In the “absolute” case, that is, when Γ ñ Y is cocompact (or undistorted)

and hence Γ is Gromov hyperbolic, this recovers our earlier result that τmod-asymptotically

embedded subgroups Γ ă G are τmod-Morse [KLP5].

The theorem yields some partial uniform regularity for the map of orbits ox,y. In order to

obtain full uniform regularity, we impose an additional assumption, cf. Definition 6.11. We

then can extend Claim 8.20 as follows:

Claim 8.23. For D, Θ̂, l there exist Θ, d such that:

If q : H Ñ Γy is a D-straight holey line and ox,y ˝ q : H Ñ Γx has pΘ̂, lq-regular large holes,

then the τmod-Finsler line τ´τ` in Proposition 8.19 can be chosen to be Θ-regular.

Proof. The assertion follows from Claim 6.12.

If any two orbit points can be connected by such a holey line, we obtain uniform regularity:

Corollary 8.24. Let Γ ă G be τmod-asymptotically embedded rel Γ ñ Y . Suppose that there

exist data D, Θ̂, l and y P Y such that for each γ P Γ the points y and γy can be connected by

a D-straight holey line q : H Ñ Γy so that ox,y ˝ q : H Ñ Γx has pΘ̂, lq-regular large holes.

Then Γ is uniformly τmod-regular and hence uniformly τmod-straight rel Γ ñ Y .

Proof. The uniform straightness follows from uniform regularity together with the straightness

proven earlier in Proposition 8.17.

In the next section, we will apply this result in the relatively hyperbolic setting.

8.2.4 Relatively hyperbolic subgroups

We now restrict to relatively hyperbolic subgroups Γ ă G and the case when Γ ñ Y is the action

on a Gromov model. In this setting we obtain the following criterion for uniform regularity:
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Theorem 8.25. Suppose that Γ ă G is relatively τmod-asymptotically embedded and that each

peripheral subgroup Πi ă Γ is uniformly τmod-regular.

Then Γ ă G is uniformly τmod-regular and hence relatively uniformly τmod-straight.

Proof. First consider the case when |B8Y | ě 3, i.e. when Assumption 8.14 is satisfied. In order

to apply Corollary 8.24, we need to check the connectability condition there for the orbits of

the action Γ ñ Y on a Gromov model pY,Bq of pΓ,Pq.
We may assume that y P Y th. Given γ P Γ, we connect y and γy by a geodesic in Y . Along

this geodesic, we choose a monotonic sequence of points y0 “ y, y1, . . . , yn “ γy in Y th so that

any two successive points yk´1 and yk have distance ď d0 for some fixed constant d0 ą 0 or lie

on the same peripheral horosphere BB, B P B.

Since the action Γ ñ Y th is cocompact, we may choose orbit points γky at uniformly

bounded distance from the points yk. The sequence pγkyq, viewed as a holey line q : H “

t0, . . . , nu Ñ Γy, is D-straight with a constant D independent of γ.

Since also the actions Πi ñ BBi of the peripheral subgroups on the corresponding horo-

spheres are cocompact, and since there are finitely many conjugacy classes of peripheral sub-

groups, there exists a finite subset Φ Ă Γ independent of γ such that

γ´1
k´1γk P Φp

ď

i

ΠiqΦ

for all k.

Due to our assumption that the subgroups Πi ă G are uniformly τmod-regular, there exist Θ̂

and another finite subset Φ1 Ă Γ, both independent of γ, such that the pair of points pγ1x, γ2xq

in Γx is Θ̂-regular whenever γ1´1γ2 P Φp
Ť

i ΠiqΦ ´ Φ1. This means that the holey line ox,y ˝ q,

which corresponds to the sequence pγkxq in Γx, has pΘ̂, lq-large holes for a sufficiently large

constant l independent of γ. Hence Corollary 8.24 implies the assertion.

If |B8Y | “ 2, then P “ H and we are in the absolute case. There, asymptotic embeddedness

implies Morse, and this in turn uniform regularity [KLP5].

If |B8Y | “ 1, then P “ tΓu and the hypothesis of the theorem implies that Γ is uniformly

τmod-regular.

9 Comparing conditions for subgroups

The following is the main theorem. It summarizes the relation between different conditions on

relatively hyperbolic subgroups established in the paper:

Theorem 9.1. For subgroups Γ ă G, the following implications hold:

(i) relatively Morse ñ relatively uniformly Finsler-straight

(ii) relatively Finsler-straight ô relatively asymptotically embedded ô relatively RCA

(iii) relatively asymptotically embedded with uniformly regular peripheral subgroups ñ rela-

tively uniformly Finsler-straight
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(iv) relatively boundary embedded and Zariski dense ñ relatively asymptotically embedded

Proof. (i) The maps of orbits are uniformly straight because Morse quasiisometric embeddings

are. Furthermore, since relatively Morse implies relatively asymptotically embedded, see The-

orem 8.3, Γ has tied-up horospheres.

(ii) The first equivalence is the combination of Theorems 8.12 and 8.18. The second equiv-

alence is Yaman’s theorem, see Theorem 7.8.

(iii) is Theorem 8.25.

(iv) is Theorem 7.5.

In rank one, all conditions become equivalent:

Corollary 9.2. If the symmetric space X has rank one, then the following properties are

equivalent for discrete subgroups Γ ă G:

(i) relatively Morse

(ii) relatively straight

(iii) relatively asymptotically embedded

(iv) relatively RCA

(v) relatively boundary embedded

(vi) geometrically finite

Proof. The implications (i)ñ(ii)ô(iii)ô(iv)ñ(v) hold in arbitrary rank. In rank one, relative

RCA amounts to the usual Beardon-Maskit condition which is equivalent to geometric finiteness

(see [Bo2]), thus (iv)ô(vi). Furthermore, (vi)ô(i), see Theorem 8.5.

To get from (v) to the other conditions, we observe that for non-elementary subgroups

(v)ñ(iii) holds because the limit set is the unique minimal nonempty Γ-invariant closed subset

of B8X and hence must equal the image of the boundary embedding. In the elementary case, we

have (v)ñ(vi) since in rank one all elementary discrete subgroups are geometrically finite.

10 Appendix (by Grisha Soifer): Auslander’s Theorem

Theorem 10.1. Let G be a Lie group which splits as a semidirect product G “ N ¸K where

N is connected nilpotent and K is compact. Then each discrete subgroup Γ ă G is finitely

generated and virtually nilpotent.

Proof. This theorem first appeared in Auslander’s paper [Au1], but its proof was flawed. The

theorem can be derived from a more general result [BK] (in the torsion-free case). Notice that

in the paper we are only interested in subgroups of finitely generated subgroups linear groups,

which are virtually torsion-free by the Selberg Lemma. Hence, in this setting, Auslander’s

Theorem can be viewed as a corollary of [BK]. If Γ is assumed to be finitely generated then
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Auslander’s Theorem can be viewed as a corollary of Gromov’s Polynomial Growth Theorem

(which is much easier in this setting since Γ is already assumed to be a subgroup of a connected

Lie group).

Nevertheless, for the sake of completeness, we present a direct and self-contained proof,

which is well-known to experts, but which we could not find in the literature.

Step 1. Let us show that, after passing to a finite index subgroup in Γ, we can assume

that Γ is a discrete subgroup of a closed connected solvable subgroup of G. Indeed, since K

is compact, the quotient K{K0 is compact, where K0 is the identity component of K; hence

ΓXNK0 is a finite index subgroup in Γ. Therefore we can assume that K is a connected com-

pact Lie group. Let R be the solvable radical of G. Obviously, R “ NL, where L is an abelian

normal compact subgroup of K. Let π : GÑ G{R be the quotient homomorphism. By another

Auslander theorem, [R, Theorem 8.24], the connected component of the closure πpΓq in G{R

is an abelian group. Since G{N is compact, G{R is compact as well. Let Γ “ π´1pπpΓq
0
q X Γ.

Clearly, Γ is a finite index subgroup of Γ and Γ is a subgroup of the solvable group π´1pπpΓq
0
q.

Step 2. From now on, we will assume that G is a solvable connected group, G “ N ¸K,

where N is a connected nilpotent group and K is a compact abelian group.

Let us show that we can assume that N is simply connected.

Lemma 10.2. For every connected nilpotent group Lie N there exists a maximal compact

subgroup T ă N which is characteristic in N , such that the quotient N{T is a simply connected

nilpotent Lie group.

Proof. Consider a compact subgroup C ă N and the adjoint representation AdN : N Ñ GLpnq,

where n is the Lie algebra of N . Since C is a compact group, for every c P C we have that

AdNpcq is a semisimple linear transformation. On the other hand, AdNpcq is nilpotent since the

group N is nilpotent. Therefore AdNpcq “ 1, hence, C Ď ZpNq. Thus, each compact subgroup

of N is contained in the center ZpNq of N and, by commutativity, the union of all compact

subgroups of ZpNq forms a compact subgroup T ă ZpNq. Since the center is a characteristic

subgroup and each automorphism of N sends compact subgroups to compact subgroups, T is

a characteristic subgroup of N .

In our setting, the maximal compact subgroup T ă N will be a normal subgroup of G. By

the compactness of T and discreteness of Γ, the intersection Γ X T is a finite subgroup of Γ.

Consider the quotient homomorphism π : GÑ G1 “ G{T . The kernel of π|Γ is a finite normal

subgroup of Γ. The quotient Γ2 “ πpΓq is a discrete subgroup of the group G1 “ N1K1, where

K1 “ πpKq and N1 “ πpNq is a simply connected nilpotent group. We will work with the

subgroup Γ1 :“ πpΓq of G1. Once we know that Γ1 is virtually a uniform lattice in a connected

nilpotent Lie group, it is finitely generated and, hence, polycyclic. It then will follow that the

group Γ itself is residually finite according to [Hi]; cf. Lemma 11.77 in [DK]. Thus, Γ contains

a finite index subgroup Γ̃1 such that π : Γ̃1 Ñ Γ1 is injective. This reduces the problem to the

case when N is simply connected and K is compact abelian.
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Since G is a connected solvable group with simply connected nilpotent radical N , there

exists a faithful linear representation ρ : G Ñ GLpd,Rq such that ρpnq is a unipotent matrix

for every n P N ; see e.g. [Ho] and also [S]. We will identity G with ρpGq. Then N is an

algebraic subgroup of GLpd,Rq (since N is unipotent, both the exponential and logarithmic

maps of N are polynomial).

Step 3. This is the key step in the proof. Let N2 ă N be the Zariski closure of ΓXN . Since

K is abelian, we have rΓ,Γs ă N ; since N is normal in G, Γ normalizes N2.

Recall that a discrete subgroup of a simply connected (algebraic) nilpotent group H is

Zariski dense in H if and only if it is a cocompact lattice in H, see [R, Theorem 2.3, page

30]. Therefore, in our case, Γ X N “ Γ X N2 is a cocompact lattice in N2. In particular, this

intersection is finitely generated. As we noted above, the subgroup Γ normalizes N2. Our next

goal is to prove that N2Γ “ N2 ¸ Γ is a closed subgroup of G. This will be a corollary of a

more general lemma about Lie groups:

Lemma 10.3. Let H,N be closed subgroups of a Lie group G, such that the intersection NXH

is a cocompact subgroup of N and H normalizes N . Then the subgroup NH is closed in G.

Proof. Let K Ă H be a compact such that HK “ N . Consider a convergent sequence pgiq

in NH. Then every gi can be written as gi “ kihi, ki P K Ă N, hi P H. After extraction,

ki Ñ k P K Ă N , hence, hi Ñ h and, since H is closed, h is in H. Therefore,

gi Ñ kh P NH.

Specializing to our situation, where the role of the closed subgroup H is played by Γ, and

taking into account that N2 is normalized by Γ, we obtain

Corollary 10.4. ΓN2 ă G is a closed Lie subgroup in G (in the classical topology).

Corollary 10.5. The identity component of ΓN2 coincides with that of N2.

Proof. This follows from countability of Γ.

Let n2 be the Lie algebra of N2. By the above observation about the identity component,

the Lie algebra of ΓN2 coincides with n2. Let Ad : ΓN2 Ñ GLpn2q be the adjoint representation.

We will use the following idea due to Margulis: There exists a full-rank lattice ∆ in the vector

space n2 such that expp∆q is a finite index subgroup of ΓXN2; see e.g. [M, sect. 3.1].

The number of subgroups of the given index in a finitely generated group, such as ΓXN , is

finite. Therefore, taking into account the fact that ΓXN is normal in Γ, there exists a subgroup

of finite index Γ of Γ such that exp ∆ is Γ-invariant. Since | Γ : Γ |ă 8 we can and will assume

that exp ∆ is Γ–invariant, i.e. is invariant under the action of Γ by conjugation on N . Thus

∆ is AdpΓq-invariant, and, by identifying ∆ with Zm, m “ dim n2, we have Adγ P GLpm,Zq
for each γ P Γ. After passing to a further finite index subgroup of Γ, we can assume that

AdpΓq ă SLpm,Zq.
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Consider the Jordan decomposition Adγ “ γsγu of Adγ, γ P Γ, where γs is the semisimple

and γu is the unipotent part of the decomposition. Since the maps Adγ ÞÑ γu and Adγ ÞÑ γs
are restrictions of Q–rational maps GLpm,Rq Ñ GLpm,Rq we have γu P SLpn,Qq and γs P

SLpm,Qq. (See [AM, p. 158].)

Lemma 10.6. For each unipotent element u P GLpm,Qq, there exists q “ qu P N such that

uq P GLpm,Zq.

Proof. There exists q1 “ q1pmq such that for each unipotent element u P GLpm,Rq,

p1´ uqq1`1
“ 0.

Assume now that u P GLpm,Qq; let M denote the product of denominators of all matrix

entries of u1, . . . , u
n1
1 and set q2 :“M ¨ q1!, u1 :“ 1´ u. Then

uq2 “
q2
ÿ

k“0

ˆ

q2

k

˙

uk1 “
q1
ÿ

k“0

ˆ

q2

k

˙

uk1.

Clearly,
ˆ

q2

k

˙

uk1 PMatpm,Zq

for all k ď n1. Hence, for q “ q2, uq P GLpm,Zq.

In our case, given that γu P SLpm,Qq, we conclude that there exists a positive integer qγ
such that γ

qγ
u P SLpm,Zq. Since γsγu “ γuγs and Adγ P SLpm,Zq, we have γ

qγ
s P SLpm,Zq.

On the other hand, every γ P Γ is the product γ “ nk where n P N, k P K. As we noted above,

Adpnq is unipotent; by compactness of K, for every eigenvalue λ of γs we have |λ| “ 1. Hence

γ
qγ
s is a finite order element of the discrete group SLpm,Zq. Thus there exists pγ such that

γ
pγ
s “ 1. From this it follows that γpγ P N .

Lemma 10.7. Γ is finitely generated.

Proof. The subgroup Γ X N2 is finitely generated because it is a cocompact lattice. For the

same reason, the projection of Γ to the connected abelian group G{N2 is discrete. Therefore,

this projection is finitely generated as well. It follows that Γ itself is finitely generated.

Therefore, since the projection of Γ to G{N2 is a finitely generated torsion group, this

projection has to be finite. In particular, Γ X N2 has finite index in Γ. Since Γ X N2 is a

cocompact lattice, Theorem 10.1 follows.
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[G] M. Gromov, Hyperbolic groups, In: “Essays in group theory,” Math. Sci. Res. Inst.

Publ. 8, Springer, New York (1987) pp. 75–263.

[GW] O. Guichard, A. Wienhard, Anosov representations: Domains of discontinuity and

applications, Invent. Math. 190 (2012) no. 2, pp. 357–438.
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