
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Controlled mobility in sensor networks

Permalink
https://escholarship.org/uc/item/95j2p3m0

Author
Sugihara, Ryo

Publication Date
2009
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/95j2p3m0
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA, SAN DIEGO

Controlled Mobility in Sensor Networks

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Ryo Sugihara

Committee in charge:

Professor Rajesh K. Gupta, Chair
Professor Sanjoy Dasgupta
Professor Massimo Franceschetti
Professor William Hodgkiss
Professor George Varghese

2009



Copyright

Ryo Sugihara, 2009

All rights reserved.



The dissertation of Ryo Sugihara is approved, and it is

acceptable in quality and form for publication on micro-

film and electronically:

Chair

University of California, San Diego

2009

iii



DEDICATION

To my wife and two daughters

iv



TABLE OF CONTENTS

Signature Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

Vita and Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

Abstract of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Emerging Sensor Network Applications . . . . . . . . . . . . . . 1

1.1.1 Application Examples . . . . . . . . . . . . . . . . . . . 1
1.1.2 Approaches for Data Collection and Their Issues . . . . 2

1.2 Use of Controlled Mobility in Sensor Networks . . . . . . . . . 3
1.2.1 Data Mule Approaches for Data Collection . . . . . . . 3
1.2.2 Need for Optimizing the Motion . . . . . . . . . . . . . 4
1.2.3 Issues in Previous Approaches . . . . . . . . . . . . . . . 5

1.3 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Organization of the Dissertation . . . . . . . . . . . . . . . . . 6

Chapter 2 Problem Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1 Mobility in Sensor Networks . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Random Mobility . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Predictable Mobility . . . . . . . . . . . . . . . . . . . . 10
2.1.3 Controlled Mobility . . . . . . . . . . . . . . . . . . . . 11

2.2 Related Work on Data Mule Approaches . . . . . . . . . . . . . 12
2.2.1 Application Example: Structural Health Monitoring . . 12
2.2.2 Systems and Algorithms for Data Mule Approaches . . 13

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Chapter 3 Problem Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1 Need for a Problem Framework . . . . . . . . . . . . . . . . . . 17
3.2 Application Model and Assumptions . . . . . . . . . . . . . . . 18

3.2.1 Application Model . . . . . . . . . . . . . . . . . . . . . 19
3.2.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Data Mule Scheduling (DMS) Problem . . . . . . . . . . . . . . 20
3.4 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

v



Chapter 4 Motion Planning on Fixed Path: Basic Cases . . . . . . . . . . . . . 24
4.1 1-D DMS Problem . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1.1 Terminology, Definitions, and Assumptions . . . . . . . 24
4.1.2 Mobility Models . . . . . . . . . . . . . . . . . . . . . . 26
4.1.3 Problem Definition . . . . . . . . . . . . . . . . . . . . . 27

4.2 Related Job Scheduling Problems . . . . . . . . . . . . . . . . . 28
4.2.1 Offline Scheduling Algorithms . . . . . . . . . . . . . . . 28
4.2.2 Non-Existence of Optimal Online Scheduling Algorithm 29

4.3 Constant Speed 1-D DMS Problem . . . . . . . . . . . . . . . . 30
4.3.1 Simple Location Jobs . . . . . . . . . . . . . . . . . . . 31
4.3.2 General Location Jobs . . . . . . . . . . . . . . . . . . . 33

4.4 Variable Speed 1-D DMS Problem . . . . . . . . . . . . . . . . 33
4.4.1 Simple Location Jobs . . . . . . . . . . . . . . . . . . . 34
4.4.2 General Location Jobs . . . . . . . . . . . . . . . . . . . 38

4.5 Periodic Data Generation Case . . . . . . . . . . . . . . . . . . 39
4.5.1 Problem Description . . . . . . . . . . . . . . . . . . . . 40
4.5.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.6 Connections with Speed Scaling Problems . . . . . . . . . . . . 42
4.6.1 Problem Definition of Speed Scaling Problems . . . . . 42
4.6.2 Constant Speed 1-D DMS and Static Speed Scaling . . 43
4.6.3 Variable Speed 1-D DMS and Dynamic Speed Scaling . 44

4.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.7.1 Job Scheduling . . . . . . . . . . . . . . . . . . . . . . . 45
4.7.2 Speed Scaling . . . . . . . . . . . . . . . . . . . . . . . . 46

4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Chapter 5 Motion Planning on Fixed Path: General Case . . . . . . . . . . . . 48
5.1 Generalized 1-D DMS Problem . . . . . . . . . . . . . . . . . . 48
5.2 NP-Hardness for General Location Jobs Case . . . . . . . . . . 49

5.2.1 Proof of Theorem 5.2.1 . . . . . . . . . . . . . . . . . . 50
5.2.2 Proof of Theorem 5.2.2 . . . . . . . . . . . . . . . . . . 55

5.3 Approximation Scheme for Simple Location Jobs Case . . . . . 57
5.3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . 59
5.3.2 Slower Trajectory . . . . . . . . . . . . . . . . . . . . . . 65
5.3.3 Speed Quantization . . . . . . . . . . . . . . . . . . . . 65
5.3.4 Time Quantization . . . . . . . . . . . . . . . . . . . . . 73
5.3.5 Dynamic Programming . . . . . . . . . . . . . . . . . . 74
5.3.6 Proof of Theorem 5.3.1 . . . . . . . . . . . . . . . . . . 75

5.4 Heuristic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 76
5.4.1 Overview of Approach . . . . . . . . . . . . . . . . . . . 76
5.4.2 Algorithm Details . . . . . . . . . . . . . . . . . . . . . 77
5.4.3 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.4.4 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.5 Analysis of Lower Bound . . . . . . . . . . . . . . . . . . . . . 87
5.5.1 Lower Bound for Simple Location Jobs Case . . . . . . 88
5.5.2 Lower Bound based on Quadratic Programming . . . . 90

vi



5.6 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . 94
5.6.1 Comparison with Multihop Forwarding . . . . . . . . . 94
5.6.2 Comparison with Lower Bounds . . . . . . . . . . . . . 96

5.7 Connections with Speed Scaling Problems . . . . . . . . . . . . 100
5.7.1 Rate-constrained Speed Scaling Problem . . . . . . . . . 100
5.7.2 Energy-minimizing Speed Function . . . . . . . . . . . . 101
5.7.3 Necessary Changes in the Approximation Scheme . . . . 104

5.8 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Chapter 6 Path Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.1 Label-Covering Tour Problem . . . . . . . . . . . . . . . . . . . 107

6.1.1 Idea of Formulation . . . . . . . . . . . . . . . . . . . . 107
6.1.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . 108
6.1.3 Other Formulations of Path Selection . . . . . . . . . . 109

6.2 Choice of Cost Metric . . . . . . . . . . . . . . . . . . . . . . . 110
6.2.1 Experimental Methods . . . . . . . . . . . . . . . . . . . 111
6.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.3 Approximation Algorithm . . . . . . . . . . . . . . . . . . . . . 112
6.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . 114

6.4.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.4.2 Effect of Node Density and Network Size . . . . . . . . 115
6.4.3 Comparison with Other Strategies . . . . . . . . . . . . 116

6.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Chapter 7 Hybrid Approach with Multihop Forwarding . . . . . . . . . . . . . 120
7.1 Forwarding Problem . . . . . . . . . . . . . . . . . . . . . . . . 120

7.1.1 Problem Description . . . . . . . . . . . . . . . . . . . . 121
7.2 Centralized Algorithm by Linear Programming . . . . . . . . . 121
7.3 Distributed Algorithm . . . . . . . . . . . . . . . . . . . . . . . 122

7.3.1 Clustering and Constructing Routing Trees . . . . . . . 123
7.3.2 Planning the Forwarding Rate . . . . . . . . . . . . . . 123

7.4 Implementing Hybrid Communication Model . . . . . . . . . . 125
7.4.1 Node-to-Node Communication . . . . . . . . . . . . . . 125
7.4.2 Communication with the Data Mule . . . . . . . . . . . 126

7.5 Simulation Experiments . . . . . . . . . . . . . . . . . . . . . . 126
7.5.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
7.5.3 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Chapter 8 Extended DMS: Multiple Data Mules Case . . . . . . . . . . . . . . 133
8.1 1-D DMS for Multiple Data Mules . . . . . . . . . . . . . . . . 133

8.1.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . 133
8.1.2 Basic Cases . . . . . . . . . . . . . . . . . . . . . . . . . 134

vii



8.1.3 General Case . . . . . . . . . . . . . . . . . . . . . . . . 136
8.2 Path Selection for Multiple Data Mules . . . . . . . . . . . . . 138

8.2.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . 138
8.2.2 Approximation Algorithm . . . . . . . . . . . . . . . . . 138
8.2.3 Integer Linear Program Formulations . . . . . . . . . . 140
8.2.4 Obtaining Lower Bounds . . . . . . . . . . . . . . . . . 141

8.3 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . 143
8.3.1 1-D DMS . . . . . . . . . . . . . . . . . . . . . . . . . . 143
8.3.2 Path Selection . . . . . . . . . . . . . . . . . . . . . . . 144

8.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
8.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

Chapter 9 Extended DMS: Partially-known Communication Ranges . . . . . . 151
9.1 Hybrid Connectivity Model . . . . . . . . . . . . . . . . . . . . 151
9.2 Semi-Online Scheduling: Non-Periodic Case . . . . . . . . . . . 153

9.2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . 153
9.2.2 1-D Semi-Online Algorithm . . . . . . . . . . . . . . . . 154
9.2.3 2-D Semi-Online Algorithm . . . . . . . . . . . . . . . . 155
9.2.4 Numerical Experiments . . . . . . . . . . . . . . . . . . 157

9.3 Semi-Online Scheduling: Periodic Case . . . . . . . . . . . . . . 159
9.4 Communication Protocol . . . . . . . . . . . . . . . . . . . . . . 161

9.4.1 Basic Operation . . . . . . . . . . . . . . . . . . . . . . 161
9.4.2 Scheduled Data Collection . . . . . . . . . . . . . . . . . 161
9.4.3 Opportunistic Data Collection . . . . . . . . . . . . . . 162

9.5 Simulation Experiments . . . . . . . . . . . . . . . . . . . . . . 162
9.5.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
9.5.2 Main Results . . . . . . . . . . . . . . . . . . . . . . . . 163
9.5.3 Effects of Inaccurate Parameters . . . . . . . . . . . . . 164

9.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
9.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

Chapter 10 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . 169

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

viii



LIST OF FIGURES

Figure 1.1: Organization of the dissertation . . . . . . . . . . . . . . . . . . . . . 7

Figure 2.1: Basic communication pattern in wireless networks . . . . . . . . . . . 9

Figure 3.1: Application model and assumptions . . . . . . . . . . . . . . . . . . . 18
Figure 3.2: Subproblems of the Data Mule Scheduling (DMS) problem . . . . . . 21
Figure 3.3: Relation between speed control and job scheduling subproblems . . . 22

Figure 4.1: Terminology for job scheduling and the 1-D DMS problem: Newly
introduced terms are shown in italic. . . . . . . . . . . . . . . . . . . . 25

Figure 4.2: Mobility models of data mule . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 4.3: Counterexample for showing non-existence of optimal online schedul-

ing algorithm for Preemptive Scheduling for General Jobs. . . . . . . 29
Figure 4.4: Counterexample for showing non-existence of optimal online schedul-

ing algorithm for Variable Speed 1-D DMS for simple location jobs
when vmin > 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Figure 4.5: Counterexample for showing non-existence of optimal online schedul-
ing algorithm for Variable Speed 1-D DMS for general location jobs. . 39

Figure 5.1: Reduction from PARTITION: Each row represents one location job.
For type-I and type-II jobs, all feasible location intervals are zero-length. 51

Figure 5.2: Possible travels and corresponding choices for i-th variable of PARTI-
TION. The values of pi, qi are determined such that one short jump
plus one mid jump (zS,i + zM,i) take longer than one long jump (zL,i)
exactly by ai seconds, excluding the time the data mule is stopping
to execute jobs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Figure 5.3: Reduction from 3-PARTITION: Each row represents one location job.
For type-I and type-II jobs, all feasible location intervals are zero-length. 56

Figure 5.4: Idea for constructing trajectories with (a) arbitrary travel distance
(Lemma 5.3.7) and (b) arbitrary travel time (Lemma 5.3.8). The
small figures show the shapes of trajectory for different vb’s. . . . . . 61

Figure 5.5: Time-speed profiles for the trajectories from (l, v) = (0, v0) to (l, v1). . 63
Figure 5.6: Time-speed profiles for the trajectories with maximum travel distance:

(a) v′(t) < vmax, (b) v′(t) = vmax for some t . . . . . . . . . . . . . . . 67
Figure 5.7: Example of consecutive short intervals and transitions to/from normal

intervals: Bold lines show the speed range that a speed-quantized
trajectory can take. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Figure 5.8: Idea of the proposed heuristic algorithm: (a) Increase the plateau
speed. Two dotted curves show the acceleration/deceleration for the
fastest possible travel covering the whole interval. Bold lines and thin
lines mean fixed intervals and free intervals, respectively. (b) A tight
interval is found. New terms are shown in italic. (c) Recursively
maximize the speed for the remaining free intervals. . . . . . . . . . . 76

ix



Figure 5.9: Determining maximum plateau speed: v1, v2 are the maximum possi-
ble speed at l[I], h[I] that are determined by the accel/decel curves.
We define va = min{v1, v2}, vb = max{v1, v2}, and vm as the max-
imum possible speed within interval I assuming no feasibility con-
straints. Only the case of v1 < v2 is shown, but the same equations
hold for v1 ≥ v2 case as well. . . . . . . . . . . . . . . . . . . . . . . . 79

Figure 5.10: Trimming feasible location intervals: accel, decel, and tight intervals
are trimmed off from the feasible location interval of each location
job. Execution time is shown on the right of each interval. . . . . . . 81

Figure 5.11: Possible cases of recursive maximization: the number of recursions
differs according to the orientation of the tight interval. Sets of loca-
tion jobs J ′, J1, and J2 are determined by the trimming procedure. 83

Figure 5.12: Maximum speed at the edge of each location interval as determined
by the processor demand . . . . . . . . . . . . . . . . . . . . . . . . . 86

Figure 5.13: Upper bound of the maximum speed at each xi . . . . . . . . . . . . . 89
Figure 5.14: Time and speed under constrained acceleration: All possible transi-

tions from point C (ti, vi) to D (ti+1, vi+1) are confined in the par-
allelogram CFDE in Case (a) or the pentagon C’F’D’H’G’ in Case
2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Figure 5.15: Randomly generating test cases: Fixed nodes are aligned on line SS′;
(b) For multiple data mules case. An example with two data mules is
shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Figure 5.16: Randomly generating test cases: two location jobs; each has two fea-
sible location intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Figure 5.17: Comparison of lower bounds . . . . . . . . . . . . . . . . . . . . . . . 97
Figure 5.18: Effect of number of location jobs . . . . . . . . . . . . . . . . . . . . . 98
Figure 5.19: Effect of density: node density is less for larger length factor . . . . . 98
Figure 5.20: Effect of number of feasible location intervals . . . . . . . . . . . . . . 99
Figure 5.21: Computation time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Figure 5.22: Shape of the energy-minimizing speed function . . . . . . . . . . . . . 102
Figure 5.23: Energy-minimizing speed function: s(t) and s∗(t) process the same

workload in [t0, t1], but s(t) consumes more energy than s∗(t). . . . . 103

Figure 6.1: Simplifying the path selection problem using a labeled graph repre-
sentation: (a) Instance of path selection problem. (b) Corresponding
labeled graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Figure 6.2: Approximation algorithm for Label-Covering Tour: T (i) is the i-th
vertex that the tour T visits. T (0) is the starting vertex. . . . . . . . 113

Figure 6.3: Constructing a TSP tour from the optimal label-covering tour TOPT :
every non-visited point is within distance r from TOPT . . . . . . . . . 114

Figure 6.4: Label-covering tours for different communication ranges: 40 nodes,
d = 500; Path of data mule is shown in bold line. . . . . . . . . . . . . 115

Figure 6.5: Comparison of total travel time for (a) different node density (40
nodes) and (b) different number of nodes (d = 500 for 20 nodes):
amax = 1, vmax = 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

x



Figure 6.6: Comparison of total travel time for different path selection algorithms:
40 nodes, d = 500, amax = +∞, vmax = 10. . . . . . . . . . . . . . . . 117

Figure 7.1: Combined data mule and forwarding communications . . . . . . . . . 126
Figure 7.2: Network topology: (a) Connected network; (b) Disconnected network.

White circle is the base station. Line between two circles represents
that they are within the communication range. Grid size g is set to
0.8r, where r is the radius of communication range, and a uniformly
random disturbance of [−0.025r, 0.025r] is added to the position of
each node. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Figure 7.3: Example of forwarding plan and calculated path: Connected network,
Elimit = 10E, centralized forwarding algorithm. Nodes in white for-
ward all data and the data mule does not collect data directly from
them. Path is shown in bold line. . . . . . . . . . . . . . . . . . . . . 128

Figure 7.4: Data delivery latency for varying energy consumption limit: (top)
connected network, (bottom) disconnected network. The centralized
forwarding algorithm is used. . . . . . . . . . . . . . . . . . . . . . . . 129

Figure 7.5: Average data delivery latency for different forwarding algorithms:
(top) connected network, (bottom) disconnected network. . . . . . . . 130

Figure 7.6: Histogram of data delivery latency: For the connected network, gray
bars are for the data delivered to the base station from neighboring
nodes, and black bars are for the data delivered via the data mule.
The centralized forwarding algorithm is used. . . . . . . . . . . . . . . 132

Figure 8.1: Example of non-optimal symmetric schedule (with acceleration con-
straint): Two location jobs have zero-length feasible location intervals
with execution time e. . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Figure 8.2: Heuristic algorithm for k-DM 1-D DMS problem with acceleration
constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Figure 8.3: Approximation algorithm for k-LCT problem . . . . . . . . . . . . . . 139
Figure 8.4: Randomly generating test cases: An example with two data mules is

shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Figure 8.5: Example of speed control plans (Number of data mules k = 2): (a)

Node placement. Filled circles are the node locations and large cir-
cles represent communication ranges. Two dotted lines correspond to
the trajectories of two data mules; (b) Speed control plans from the
heuristic algorithms; (c) Speed control plans from the naive method. . 145

Figure 8.6: Travel time for multiple data mules case: Maximum of all data mules.
Average of 10 experiments. . . . . . . . . . . . . . . . . . . . . . . . . 146

Figure 8.7: Maximum path length: (left) For different k. Communication range
is fixed to r = 100; (right) For different r. Number of data mules is
k = 2. Data for ILPcover (k = 2, 3, 4) and LPCP (k = 3, 4) are due
to the scaling of k = 1 case. . . . . . . . . . . . . . . . . . . . . . . . . 147

Figure 8.8: Maximum travel time when execution time e = {10, 30, 60}. (left)
For different k. Communication range is fixed to r = 100; (right) For
different r. Number of data mules is k = 2. . . . . . . . . . . . . . . . 148

xi



Figure 9.1: Hybrid connectivity model . . . . . . . . . . . . . . . . . . . . . . . . 152
Figure 9.2: 2-D semi-online algorithm: If the data collection from Node 1 fin-

ishes at P, the data mule directly heads for D, where the next offline
schedule entry starts. . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Figure 9.3: Example of data mule’s path: 20 nodes, rK = 50m, and rU = 150m.
The polygon with thin lines is the offline path that the offline and the
1-D semi-online algorithms choose. The path by the 2-D semi-online
algorithm is shown in bold lines. . . . . . . . . . . . . . . . . . . . . 158

Figure 9.4: Results of numerical experiments: 50 nodes, rU is fixed to 150m and
rK is varied from 0 to 150m. Travel time is lower-bounded by the
total of the execution time of all 50 nodes, which is 500 sec (e = 10
case) and 1500 sec (e = 30 case). . . . . . . . . . . . . . . . . . . . . . 159

Figure 9.5: Simulation results: Average data delivery latency: 50 nodes, average
of 10 experiments for each case. . . . . . . . . . . . . . . . . . . . . . 164

Figure 9.6: Simulation results: Effect of overestimating rK (size of known com-
munication range). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

Figure 9.7: Simulation results: Effect of overestimating the effective bandwidth. . 167

xii



LIST OF TABLES

Table 2.1: Communication in wireless networks classified by the type of mobility 9
Table 2.2: Summary of related work on data mule approaches . . . . . . . . . . . 16

Table 5.1: Comparison with multihop forwarding: Amount of transmission is rel-
ative to the minimum possible amount. . . . . . . . . . . . . . . . . . . 95

Table 6.1: Correlation coefficients between total cost and total travel time for
different cost metrics: 20 nodes, amax = 1, vmax = 10. . . . . . . . . . . 112

Table 10.1: Summary of complexity results for the 1-D DMS problem . . . . . . . 170

xiii



ACKNOWLEDGEMENTS

First of all, I would like to thank my advisor, Professor Rajesh Gupta, for his

guidance, support, encouragements, and patience. His deep insight brought me a lot of

ideas that were invaluable for all of my work.

I am also grateful for Professors Sanjoy Dasgupta, Massimo Franceschetti, William

Hodgkiss, and George Varghese for serving on my doctoral committee and giving me valu-

able feedbacks. Especially for Professor Varghese, I was fortunate to have an opportunity

to work as the TA for his class, from which I have learned many things about teaching.

I also would like to thank my former advisor Professor Andrew Chien, who rec-

ommended me to pursue the research on sensor networks.

I have learned a lot from my fellow students at Microelectronics Embedded Sys-

tems Lab. My appreciation goes to Yuvraj Agarwal, Joel Coburn, Arup De, Frederic

Doucet, Zhong-Yi Jin, Sudipta Kundu, Kaisen Lin, and Thomas Weng. I also thank all

the people at the old Concurrent Systems Architecture Group, especially to Jerry Chou,

Dionysious Logothesis, and Han Suk Kim, all of whom have been great friends of mine.

I would like to thank IBM Tokyo Research Laboratory for the financial support

that made my graduate study at UCSD possible. I also thank the former director, Dr.

Hiroshi Maruyama, for his understanding and continuous encouragements.

I would like to thank Professor Minming Li at City University of Hong Kong for

various suggestions on my early work during his visit to UCSD in 2008.

Last, but not least, I would like to thank my family. My wife, Chiaki, and my

daughters, Hana and Aya, have been a great comfort for me when I was stressed out. I

also thank my parents in Japan who have supported me all the time.

Papers included in this dissertation

Chapter 4 and 5, in part, have been submitted for publication as “Complexity

of Motion Planning of Data Mule for Data Collection in Wireless Sensor Networks” by

Ryo Sugihara and Rajesh K. Gupta in Theoretical Computer Science [SG09a]. The

dissertation author was the primary investigator and author of this paper.

Chapter 4, 8, and 9, in part, have been submitted for publication as “Speed

Control and Scheduling of Data Mules in Sensor Networks” by Ryo Sugihara and Rajesh

K. Gupta in ACM Transactions on Sensor Networks [SG09e]. The dissertation author

was the primary investigator and author of this paper.

xiv



Chapter 5, in part, has been accepted for publication as “Optimal Speed Control

of Mobile Node for Data Collection in Sensor Networks” by Ryo Sugihara and Rajesh

K. Gupta in IEEE Transactions on Mobile Computing [SG09b]. The dissertation author

was the primary investigator and author of this paper.

Chapter 6, in part, has been published as “Improving the Data Delivery Latency

in Sensor Networks with Controlled Mobility” by Ryo Sugihara and Rajesh K. Gupta in

the proceedings of the 4th IEEE International Conference on Distributed Computing in

Sensor Systems (DCOSS) [SG08a]. The dissertation author was the primary investigator

and author of this paper.

Chapter 6, 8, and 9, in part, have been submitted for publication as “Path

Planning of Data Mules in Sensor Networks” by Ryo Sugihara and Rajesh K. Gupta

in ACM Transactions on Sensor Networks [SG09d]. The dissertation author was the

primary investigator and author of this paper.

Chapter 7, in part, has been published as “Optimizing Energy-Latency Trade-off

in Sensor Networks with Controlled Mobility” by Ryo Sugihara and Rajesh K. Gupta

in the proceedings of the 28th Annual Conference of the IEEE Communications So-

ciety (INFOCOM) Mini-conference [SG09c]. The dissertation author was the primary

investigator and author of this paper.

xv



VITA

1997 Bachelor of Engineering,
University of Tokyo, Japan

1999 Master of Engineering,
University of Tokyo, Japan

2009 Doctor of Philosophy,
University of California, San Diego, USA

PUBLICATIONS

Ryo Sugihara and Rajesh K. Gupta, “Path Planning of Data Mules in Sensor Networks”
under submission to ACM Transactions on Sensor Networks

Ryo Sugihara and Rajesh K. Gupta, “Complexity of Motion Planning of Data Mule for
Data Collection in Wireless Sensor Networks” under submission to Theoretical Computer
Science

Ryo Sugihara and Rajesh K. Gupta, “Speed Control and Scheduling of Data Mules in
Sensor Networks” under submission to ACM Transactions on Sensor Networks

Ryo Sugihara and Rajesh K. Gupta, “Optimal Speed Control of Mobile Node for Data
Collection in Sensor Networks” accepted for publication in IEEE Transactions on Mobile
Computing

Ryo Sugihara and Rajesh K. Gupta, “Optimizing Energy-Latency Trade-off in Sensor
Networks with Controlled Mobility” in Proceedings of the 28th Annual Conference of the
IEEE Communications Society (INFOCOM) Mini-conference, Apr. 2009.

Ryo Sugihara and Rajesh K. Gupta, “Improving the Data Delivery Latency in Sensor
Networks with Controlled Mobility” in Proceedings of the 4th IEEE International Con-
ference on Distributed Computing in Sensor Systems (DCOSS), Jun. 2008. Best Paper
Award in Systems Track

Ryo Sugihara and Rajesh K. Gupta, “Programming Models for Sensor Networks: A
Survey” ACM Transactions on Sensor Networks, vol.4, issue 2, Mar. 2008.

xvi



ABSTRACT OF THE DISSERTATION

Controlled Mobility in Sensor Networks

by
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We consider the problem of collecting data from stationary sensor nodes using

controllable mobile nodes (“data mules”) via wireless communication. Whereas the use of

data mules can significantly reduce the energy consumption at sensor nodes, a drawback

is an increased data delivery latency. Reducing the latency through optimizing the

motion of data mules is critical for this approach to be useful.

Since optimizing the motion of data mules is a hard problem in general, previous

studies simplified the problem by using basic models for mobility and communications.

These simplifications often lead to suboptimal solutions and also to algorithms that are

only applicable to limited scenarios.

To address these limitations, in this dissertation we present a problem framework

that we call the Data Mule Scheduling (DMS) problem. The DMS problem captures the

motion planning problem as the one composed of loosely connected subproblems.

We first study the one dimensional case of the DMS (1-D DMS) problem, repre-

senting the speed control of data mule and the scheduling of data collection jobs. For

different mobility models, we present optimal algorithms or non-existence of them, prove

NP-hardness, and design an approximation algorithm to determine speed control and

job schedule. We also design a heuristic algorithm for hard cases and demonstrate the
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good performance through simulation experiments by comparing with theoretical lower

bounds. Furthermore, we show how the mathematical formulation of the 1-D DMS

problem can be used as a proxy to solve speed scaling problems for dynamic power

management of processors.

For the two dimensional case that includes the planning of data mule’s path, we

formulate the path selection problem as a graph problem and design an approximation

algorithm. We also explore the combination of data mule and multihop forwarding and

demonstrate how this hybrid approach enable a flexible trade-off between node energy

consumption and data delivery latency.

In the end, we present some extensions of the DMS problem framework for the

cases of multiple data mules and partially-known communication range. These cases

allow the DMS framework to be applied to larger range of application scenarios under

realistic radio environments.
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Chapter 1

Introduction

Sensor networks refer to a network of small devices that are equipped with sensors

and with communication and processing capabilities. Technology advances have made

it possible to make sensor nodes small enough to be embedded in the environments for

in situ measurements. Sensor networks are rapidly growing for their large potential in

various application areas including environmental monitoring, target tracking, structural

health monitoring, and so on.

Majority of sensor network applications are data-collection applications, in which

the objective is to collect the data from sensor nodes to a base station. The base station

serves as a gateway for the sensor nodes and may represent a central server where the

end application resides or an embedded processing node in a hierarchically organized

network.

1.1 Emerging Sensor Network Applications

We first introduce actual application examples and show the data-collection ap-

plications are a majority of sensor network applications. Then we describe that multihop

forwarding is a commonly-used approach for data collection in these applications, and

further examine important issues in using multihop forwarding for data collection.

1.1.1 Application Examples

Habitat monitoring is one of the earliest applications of sensor networks. In

Great Duck Island [SOP+04], researchers monitored the behavior of petrels, especially

1
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about how they use burrows both in short-term and long-term periods. They also mon-

itored the environmental parameters inside and outside of burrows. Another example is

the ZebraNet project [JOW+02], in which the behavior of zebras including long-range

migration, inter-species interactions, and nocturnal behavior is monitored using tracking

collars. Such monitoring applications yield valuable data for the field researchers.

Environmental monitoring is another area that sensor networks have been widely

used. Examples include meteorological and hydrologic processes at high altitudes [LCD03],

long-term glacial movement [MHO04], temperature and humidity in the forest [BRY+04,

TPS+05], and volcanic activities [WALR+06]. Structural monitoring [XRC+04] is to

collect and to analyze structural response to ambient or forced excitation by using ac-

celerometer.

A characteristic application is target tracking, in which the objective is to localize

a target by trilateration and other techniques using multiple sensors capable of measur-

ing distance or bearing angle of the target (e.g., [CHZ02, PPK03, HKS+04, SML+04]).

As we have pointed out in our earlier survey [SG08b], target tracking applications are

qualitatively different from habitat/environmental monitoring applications in the sense

that it intrinsically requires collaborative information processing among sensors.

In all of these applications, we can observe that the high-level objective is to

bring the sensor data from a distributed field of sensors to a base station. In habi-

tat/environmental monitoring, it is for domain-specific researchers to further analyze

the data, and in target tracking, it is for the users to take appropriate actions using

the information on the detected target. For this reason, we call them data-collection

applications.

1.1.2 Approaches for Data Collection and Their Issues

Traditionally, data collection has been done using multihop forwarding among

the sensor nodes. This is because the wireless communication range of each node is not

long enough to send the data directly to the base station. Another reason is that, even

if it is possible for a node to send the data directly to the base station, it is often more

energy efficient to use multihop communications instead, which is derived by the convex

relation between the wireless range and the energy consumption (e.g., [HY05]). The

energy issue is very important for sensor networks, since they are usually deployed in

remote areas where wire power is hard to obtain. As a result, sensor nodes are usually
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driven by batteries and they need to avoid energy dissipation as much as possible to

realize long-term monitoring of phenomena of interest.

Although multihop forwarding is more energy-efficient than long range commu-

nications, there are some issues. The first is that multihop forwarding cannot be used

when the network is disconnected, i.e., there is no multihop route to the base station. In

addition for sparse networks, even if the network is not disconnected, energy consump-

tion is high because the distance of each hop tends to be long. A possible workaround for

these cases is to deploy additional nodes to maintain the connectivity and reduce each

hop distance, but this may not always be possible.

The second issue is that energy consumption tends to be unbalanced among the

nodes. This is caused by the fact that the nodes near the base station need to forward

a large amount of data received from the ones farther than them. Even if we use duty-

cycling, the nodes near the base station need to be more active than others. Since the

communication is one of the most power-consuming operation for a node, these nodes

tend to run out of battery sooner than other nodes. Then, even if most of the nodes

are still active, the application is inoperable because the network is disconnected. Some

techniques try to balance the energy consumption by randomly rotating the clusterhead

[HCB00, LR02, BC03, YF04], but the overall tendency of unbalance does not change.

Finally, the nodes need to be capable enough to be able to handle multihop com-

munication pattern. This becomes a problem for some applications such as [TMF+07],

which uses RFID-based sensor nodes.

1.2 Use of Controlled Mobility in Sensor Networks

An alternative and relatively new approach for data collection from sensor net-

works is to exploit mobility. There are several types of mobility, but our focus in this

dissertation is on controlled mobility, where the users can determine the motion of mobile

nodes. Among possible usage of controlled mobility, we discuss data mule approaches

for data collection.

1.2.1 Data Mule Approaches for Data Collection

Suppose, in the network, there are one or more mobile agents that are capable

of communicating with sensor nodes and carrying data. The basic idea of data mule

approaches is to use these mobile agents as routers from sensor nodes to the base station.
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More specifically, a mobile node (“data mule”) starts from the base station, travels across

the sensor field while collecting data from sensor nodes, and comes back to the base

station to deposit the data.

Note that we focus on the case that the data mules are controllable. Accordingly

we use the term data mule solely to refer to controllable mobile nodes for data collection.

Just as a reference, similar approach is possible without controlled mobility: in fact the

term “data mules” was coined by Shah et al. [SRJB03] to refer to randomly mobile

nodes used for data collection.

Data mule approaches have several benefits that overcome the issues in the tra-

ditional sensor networks. For example, in data mule approaches each sensor node can

conserve a significant amount of energy, since a node can send the data to the data mule

when it is traveling nearby and also there is no need to forward other nodes’ data. Dis-

connected networks or sparse networks are not an issue for data mule approaches, since

the communications among nodes are not necessary. Furthermore, by eliminating the

need for multihop forwarding, data mule approaches can be applicable to the application

scenarios where the sensor nodes do not have enough computation resources.

Some recent sensor network applications use such data mules for data collection,

e.g., a robot in underwater environmental monitoring [VKR+05] and a UAV (unmanned

aerial vehicle) in structural health monitoring [TMF+07].

1.2.2 Need for Optimizing the Motion

A drawback in data mule approaches is an increased data delivery latency, i.e.,

the latency from the data is generated at a sensor until it is delivered to the base station.

This is because the latency is mostly governed by the physical motion of data mule, which

is relatively slow compared to the speed of data transmitted in multihop forwarding.

For this reason, optimizing the motion of data mules is important. For the appli-

cations that multihop forwarding is also an option, data mule approaches give another

design choice that has a different characteristic in energy-latency trade-off. Improving

the latency through the motion optimization leads to a better energy-latency trade-off.

Optimizing the data mules’ motion is even more important for the applications in which

multihop forwarding approach is not possible, since data mule approaches are the only

choice for this case.
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1.2.3 Issues in Previous Approaches

Optimizing the motion of data mule is a hard problem in general, since we need to

find a trajectory satisfying both spatial constraints (i.e., wireless communication range)

and temporal constraints (i.e., time required for data collection). The hardness is in-

dicated by the simple case where the communication range is zero and data collection

time at each node is negligible is equivalent to the Traveling Salesman Problem (TSP),

which is an NP-hard problem.

To deal with the hardness, previous studies on data mule approaches [KSJ+04,

SRS04, MY06, XWXJ07] simplified the problem by using simple models for mobility

and communications. Some examples include zero communication range (e.g., [SRS04,

SRS07]) and constant speed data mules (e.g., [MY06, MY07, XWXJ07]). These simpli-

fications result in loss of opportunity for further optimization when the data mule can

communicate with nodes remotely or can change the speed.

Furthermore, the algorithms presented in these studies are often tailored for

specific settings: e.g., certain node deployments [MY06, MY07] or existence of forwarding

nodes [XWXJ07]. This makes it hard to use these algorithms for similar but different

application scenarios.

1.3 Our Contributions

This dissertation investigates the use of controlled mobility in sensor networks,

specifically on how to optimize the motion of data mules to improve the data delivery

latency. While the overall nature of our contribution is mostly formal, focused on the

combinatoric nature of the problem, we provide a framework that allows us to system-

atically remove simplifying assumptions as needed and to derive solutions that apply to

practical scenarios for using data mules.

Our first contribution is the problem framework for optimizing the motion of data

mules. We have designed the problem framework so that it is comprehensive enough to

express many different problem settings and allows problem formulations in a tractable

way. We call this problem framework the Data Mule Scheduling (DMS) problem. A key

idea of the DMS problem is to divide the original problem into a set of loosely connected

subproblems so that they can be solved independently. Another key idea is to cast the

problem as a generalized scheduling problem. The scheduling problem is unique in the
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sense that each job has location constraints as well as time constraints. We also show how

the DMS framework can be extended for several different cases including hybrid case with

multihop forwarding, multiple data mules, and partially-known communication ranges.

The second contribution is building a theoretical foundation of the DMS problem.

For one dimensional case of the DMS problem, we have done a thorough analysis on

computational complexity of the problem for different motion constraints. The analysis

includes designing several optimal algorithms, proving NP-hardness for important cases,

and designing an approximation algorithm for these cases. Further we show an interesting

connection with speed scaling problems for dynamic power management of processors

and also present how an algorithm for the DMS problem can be applied to speed scaling

problems. For the two dimensional case, we formulate the path selection problem as

a graph problem called Label-Covering Tour, prove the NP-hardness, and design an

approximation algorithm.

Our third contribution is on performance evaluations through realistic scenarios.

We have implemented our algorithms on MATLAB and ns2 network simulator [ns2].

We also analyze the lower bounds of the problems through the relaxations to linear

programming (LP) and semidefinite programming (SDP) and compare the simulation

results with these lower bounds to evaluate the performance.

1.4 Organization of the Dissertation

Figure 1.1 shows the organization of this dissertation. Chapter 2 discusses the

background of the research and introduces related work. In Chapter 3, we introduce the

Data Mule Scheduling (DMS) problem as a problem framework for optimally controlling

a data mule. We discuss one dimensional case of the problem (1-D DMS) first in Chapter

4 and 5. Specifically, the basic cases with simple mobility models are discussed in Chapter

4 and more general case with acceleration constraint is discussed in Chapter 5. The path

selection subproblem is discussed in Chapter 6. In Chapter 7, the hybrid approach of

data mule and multihop forwarding is discussed In Chapter 8 and 9, we explore several

extensions of the DMS framework. These extensions include the case of multiple data

mules and the case when the communication range is known only partially. Finally,

Chapter 10 concludes the dissertation.
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Chapter 2

Problem Background

In this chapter we first look into the mobility in sensor networks, particularly

about how different types of mobility are handled and also exploited in previous studies.

Then we present related work on data mule approaches. We introduce a structural

health monitoring application as an application example that uses a data mule for data

collection. Finally we analyze previously proposed systems and algorithms for data mule

approaches, specifically about their application models and assumptions.

2.1 Mobility in Sensor Networks

We first classify the mobility and discuss the effect on wireless networking. Con-

sider a sensor network in which a source node S needs to send data to a target destination

node D, as shown in Figure 2.1. Although the communication may be direct from S to

D, there are usually one or more intermediary nodes I. Based on the classification in

[KSJ+04], we can treat node mobility as one of the four basic types:

Stationary A node does not move from its original location.

Random A node moves in a random fashion. The motion may follow a probabilistic

model characterized by some parameters.

Predictable A node’s future position is known but cannot be changed.

Controlled A node can be controlled by a user. There may be constraints on the

motion such as maximum speed and maximum acceleration.

8
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S

Source

I

Intermediary

D

Destination

Figure 2.1: Basic communication pattern in wireless networks

Table 2.1: Communication in wireless networks classified by the type of mobility

Source Intermediary Destination Approach

0 stationary stationary stationary Multihop forwarding

1 random random random Epidemic Routing [VB00]

2 random random controlled ZebraNet [JOW+02]

3 random random stationary SWIM [SH03]

4 stationary random stationary DataMULEs [SRJB03], SENMA
[TZA03]

5 stationary predictable stationary Chakrabarti et al. [CSA03], Bri-
Mon [CRM+08]

6 stationary stationary controlled Mobile base station [GDPV03,
LH05]

7 stationary controlled stationary Pure data mule approach
[ZA03, SRS04, ZAZ05, GBBE06]

In this dissertation: Chapter 4-6

8 stationary stationary +
controlled

stationary Hybrid data mule approach
[KSJ+04, MY06, MY07, JSS05,
XWXJ07, XWJL08]

In this dissertation: Chapter 7

Referring to Figure 2.1, in a sensor network application, any of the source, desti-

nation, and intermediary nodes can be mobile, leading to various different possibilities.

Of these, the most interesting are listed in Table 2.1. We have organized this table to

indicate how previous work in this area relates to the work presented in this dissertation.

Let us now examine the previous related work in depth.

2.1.1 Random Mobility

Random mobility has been extensively studied in the context of mobile ad hoc

networks (MANETs) rather than sensor networks. A general problem is to how to deliver

the data from the source to the destination when we need to make use of intermediary
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nodes that are randomly moving (Table 2.1, Case 1). A natural approach is flooding,

in which a node that received the data tries to forward that to whoever it encounters,

hoping that the data is eventually delivered to the destination. This idea is used in

Epidemic Routing [VB00]. In this case, mobility is mostly a nuisance that hampers

efficient data transmission.

On the other hand, even random mobility can be exploited for improving the

network performance. Theoretically, Grossglauser and Tse [GT02] showed the network

capacity is increased by having randomly moving mobile nodes compared to the static

network case discussed by Gupta and Kumar [GK00].

In sensor network scenarios, there are some studies on collecting data from ran-

domly mobile sources (Table 2.1, Case 2). ZebraNet [JOW+02] builds upon a similar

idea as Epidemic Routing to improve the rate of successfully collected data in a habitat

monitoring application. Specifically, a sensor node is attached to a zebra and collected

data is copied to another zebra when they encounter, so that the researchers can collect

the data for many zebras when they encounter a zebra. The Shared Wireless Infostation

Model (SWIM) [SH03] is an architecture with a similar objective as ZebraNet but uses

stationary nodes for the destination (Table 2.1, Case 3). In their scenario, sensor nodes

move randomly while copying their data among them and the stationary node gets the

data when a sensor node approaches it.

Closer to our work is the case with stationary sources and randomly mobile

intermediaries (Table 2.1, Case 4). Shah et al. [SRJB03] proposed a network architecture

for data collection using random mobility. They proposed a three-tier architecture having

mobile entities called Data MULEs (Mobile Ubiquitous LAN Extensions) in the middle

tier on top of stationary sensors under wired access points. Similarly as the data mule

approaches with controlled mobility, Data MULEs collect data from sensor nodes when

they are in close proximity and deposit it at the wired access points. A difference is that

their scheme is rather optimistic, since they assume random mobility. SENMA [TZA03]

is a similar architecture but the focus is more on PHY and MAC layer designs.

2.1.2 Predictable Mobility

Predictable mobility refers to the case when the motion is known but cannot

be changed. A representative case is the intermediary with predictable mobility, which

applies to the case in which public transportation such as train or bus is used for a
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vehicle for data.

Chakrabarti et al. [CSA03] studied the case of an intermediary with predictable

mobility (Table 2.1, Case 5). They analyzed the gain in power consumption of sensor

nodes by modeling the data collection process as a queueing system. BriMon [CRM+08]

is an application example that uses predictable mobility. The objective is BriMon is to

monitor the structural health of the train bridges. Sensor nodes are attached to a bridge

to measure vibrations after a train passes on the bridge, and the data is collected by the

next train.

2.1.3 Controlled Mobility

Ekici et al. [EGB06] classified the approaches of exploiting controlled mobility

into the following three types:

• MBS (Mobile base station)-based solutions

• MDC (Mobile data collector)-based solutions

• Rendezvous-based solutions

where the latter two are called data mule approaches in our terminology.

In MBS-based solutions, there is a mobile sink that can change the position

(Table 2.1, Case 6). The data is delivered to the mobile sink using multihop forwarding

among stationary nodes. The problem is mostly about finding the optimal motion of the

mobile sink to balance the energy consumption.

MDC-based solutions are equal to data mule approaches: using a single hop

communication to a data mule (Table 2.1, Case 7). Rendezvous-based solutions are a

hybrid of multihop forwarding and data mule approaches (Table 2.1, Case 8). In this

case the intermediary is stationary for multihop forwarding among nodes and controlled

as for data mule. We also treat this case as data mule approaches, but to distinguish it

from MDC-based solutions, we call MDC-based solutions “pure” data mule approaches,

whereas Rendezvous-based solutions are called “hybrid” data mule approaches. Previous

work in these approaches are discussed in detail in the next section.
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2.2 Related Work on Data Mule Approaches

2.2.1 Application Example: Structural Health Monitoring

Our problem formulation is based on our experience with the example applica-

tion described in [TMF+07]. It is a structural health monitoring (SHM) application to

do post-event (e.g., earthquakes) assessments for large-scale civil infrastructure such as

bridges. Automated damage assessment using sensor systems is much more efficient and

reliable than human visual inspections.

In this application, the sensor nodes operate completely passively and do not

carry batteries, for the sake of long-term measurement and higher maintainability. Upon

data collection, an external mobile intermediary provides energy to each node via mi-

crowave transmission, wakes it up, and collects data from it. The prototype system uses

a radio-controlled helicopter as the mobile intermediary that is either remotely-piloted or

GPS-programmed. Each sensor node is equipped with ATmega128L microcontroller, a

2.4GHz XBee radio, antennas for transmission/reception, and a supercapacitor to store

the energy. Each node has two types of sensors. One is a piezoelectric sensing ele-

ment integrated with nuts and washers to check if the bolt has loosened. The other

is capacitive-based sensors for measuring peak displacement and bolt preload. Since

the size of data from these sensors are small, communication time is almost negligible;

however, it takes a few minutes to charge a supercapacitor through microwave transmis-

sion. In their latest prototype, the charging time is reduced to 95 seconds in the lab

experiments and 270 seconds in the field experiments [MFL+08].

The data collected by the UAV is brought back to the base station and analyzed

by researchers using statistical techniques for damage existence and its location/type.

Since the primary purpose of this application is to assess the safety of large civil struc-

tures after a disaster such as an earthquake, every process including data collection and

analysis needs to be as quick as possible for prompt recovery. Furthermore, shorter travel

time is required in view of the limited fuel on the helicopter.

Thus the goal of our formulation is to achieve data collection from spatially dis-

tributed wireless sensors in the minimum amount of time. It also provides another reason

for using controlled mobility instead of multihop forwarding approach: simply because

the SHM sensors are not capable of doing multihop communication. Furthermore, use of

UAVs implies the need for more precise mobility model that takes acceleration constraint
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into consideration, as opposed to the simple “move or stop“ model used in majority of

the related work.

2.2.2 Systems and Algorithms for Data Mule Approaches

We introduce previously proposed systems and algorithms for data mule ap-

proaches. Following the classification in Table 2.1, we first discuss pure data mule ap-

proaches and then discuss hybrid data mule approaches.

Pure Data Mule Approaches

Zhao and Ammar [ZA03] study the use of controlled mobility in mobile ad hoc

networks. They assume a controllable mobile node (called “ferry”) that mediates com-

munications between sparsely deployed stationary nodes. They considered the extent

of wireless communication range to optimize the movement, but the path selection is

done based on TSP-like formulation and thus a ferry visits the exact locations of all

nodes. The speed of ferry is basically constant but can be reduced when it is necessary

to communicate more data with a node. They have formulated the problem of minimiz-

ing message delivery delay as a linear programming problem. They extended their work

to multiple data mules case in [ZAZ05] and presented heuristic algorithms.

Somasundara et al. [SRS04] studied the problem of choosing the path of a data

mule that traverses through a sensor field where sensors generate data at a given rate.

In their formulation, the data mule moves at a constant speed. Their formulation also

requires the data mule to visit the exact location of each sensor to collect data. They

designed heuristic algorithms to find a path that minimizes the buffer overflow at each

sensor node. Gu et al. [GBBE06] presented an improved algorithm for the same problem

settings as [SRS04].

For multiple data mules case, Somasundara et al. [SRS07] studied the path

selection problem in a similar setting as [SRS04]. Speed control is not discussed and

they proposed a heuristic algorithm based on the formulation as the Vehicle Routing

Problem (VRP).

Hybrid Data Mule Approaches

Kansal et al. [KSJ+04] presented an algorithm for controlling the speed of a data

mule. Assuming that the data mule periodically travels across the sensor field along a
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fixed path, they presented an adaptive algorithm. The objective was to maximize the

amount of collected data under the constraint of maximum latency (i.e. travel time for

one period). A notable thing is that they made no assumption about the communication

range, since their focus was on designing a robust communication infrastructure. Instead,

the data mule dynamically finds the nodes from which it can collect data. To improve

the data collection performance, the data mule changes the behavior based on the past

performance. Specifically, the data mule slows down when it encounters the nodes from

which data collection has not been very successful in the previous period. They also

designed a communication protocol based on directed diffusion [IGE00], in which the

data mule issues interest messages to nodes and nodes try to forward the data toward

the source of the interest message. In this way the data mule can collect data from the

nodes that are not in the direct communication range. They evaluated their algorithm

on a prototype system consists of a mobile robot and motes. In some simple topologies,

they showed the adaptive algorithm collects more data than the one that uses constant

speed.

Ma and Yang [MY06, MY07] studied the path selection problem. Their objective

was to maximize the network lifetime, which is defined as the time until the first node dies

(i.e. minimum of the lifetime of all nodes). Speed control was not their focus and they

just used a constant speed mobility model. They have presented a heuristic path selection

algorithm that is based on divide and conquer approach and finds a near-optimal path for

each part of the nodes. When the path of data mule is given, they showed the problem of

maximizing the network lifetime is formulated as a flow maximization problem that has a

polynomial time algorithm. One limitation is that, they avoid the problem of scheduling

issue by assuming either that data communication time is negligible (in [MY06]) or that

the data mule stops while communicating with sensor nodes (in [MY07]). However, the

former assumption does not apply when data size is big and communication is slow, and

the latter results in inefficiency when the data mule can actually communicate while it

is moving. Another problem in their algorithm is that it is applicable only to special

configurations in which a data mule starts from the left end of the area, travels toward

the right end and then comes back to the left end. Hence, for example, it is not clear

how to use the algorithm for circular area having the base station in the center.

Xing et al. [XWXJ07, XWJL08] designed path selection algorithms when each

node can forward data toward the base station along a routing tree constructed in ad-



15

vance. Their formulation is also similar to TSP and also assumed the existence of

forwarding nodes that do not generate data by themselves, in order to make the network

connected and enable the construction of routing tree rooted at the base station. Al-

though these assumptions allow the fail-over mechanism that improves the data delivery

rate, they also limit the applicability of the technique.

For multiple data mules case, Jea et al. [JSS05] studied the case of multiple data

mules move on fixed paths. In their settings, the speed of data mules are also fixed.

Instead, their focus was on a distributed coordination scheme for allocating sensor nodes

to each data mule to achieve a good distribution of communications load among the data

mules.

2.3 Summary

Mobility has been studied in earlier works for the purpose of improving commu-

nication performance in wireless networks. In a common communication pattern where

there are one or more intermediary nodes between source and destination nodes, each

of the participants can be mobile. We have classified the mobility model into station-

ary, random, predictable, and controlled, and reviewed the literature depending on the

mobility models for source, destination, and intermediary nodes. Our focus is on data

mule approaches, which are expressed as stationary source and destination nodes with

controllably mobile intermediaries.

For data mule approaches we have reviewed the literature more in depth. Table

2.2 compares these approaches in terms of addressed problems, assumed mobility model

of data mules, communication model, and so on. Note that, since each work has different

objective and focus, this cannot serve as a fair comparison of the overall quality of work.

Rather, our intention is to analyze the variety of application models and assumptions

that these works have used. Based on this, our problem framework presented in the next

chapter is general enough to incorporate most of these varieties, as shown in the bottom

of the table.
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Chapter 3

Problem Framework

This chapter discusses how we formulate the motion planning problem of data

mules. We first identify a common application model for data collection using data

mules and introduce the Data Mule Scheduling (DMS) as the problem framework that

is sufficiently general.

3.1 Need for a Problem Framework

Optimizing the motion of data mules is an important problem for data mule

approaches to be useful. However, this is a hard problem since there are a large degree

of freedom in choosing the path and speed of the data mules while satisfying both spatial

and temporal constraints on communications and data mules’ movements. The hardness

is also depicted by a simple example with zero communication range, where the problem

essentially becomes equivalent to the traveling salesman problem, which is NP-hard.

Due to the hardness, previous studies have simplified the problem in various

ways, as we have summarized in Chapter 2. As a result, the proposed algorithms often

require specific settings such as the zero communication range (i.e., data mule needs to

go to the exact node location to communicate with it) and the constant speed movement

of data mule. These assumptions narrow the range of scenarios that these algorithms

can be applied.

On the other hand, actual application scenarios such as [VKR+05] and [TMF+07]

often have large variety of settings. For example, a data mule can be an underwater

vehicle, a ground vehicle like Packbot, and a helicopter. Similarly, sensor nodes can be

17
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Base station

• Circular communication range
(Relaxed in Chapter 9)

• Known constant bandwidth

Communication

• Circular communication range
(Relaxed in Chapter 9)

• Known constant bandwidth

Communication

• Stationary
• Known location
• Have known amount of data

Sensor nodes

• Stationary
• Known location
• Have known amount of data

Sensor nodes

• One data mule (Relaxed in Chapter 8)
• Starts from and comes back to the base station
• Known location and direction

Data mule

• One data mule (Relaxed in Chapter 8)
• Starts from and comes back to the base station
• Known location and direction

Data mule

• Data-collection application
• Data delivery latency should be minimized

Application

• Data-collection application
• Data delivery latency should be minimized

Application

Figure 3.1: Application model and assumptions

Berkeley Motes or RFID-based ones, and communication can be via 802.15.4, optical

and acoustic signals.

From these observations, instead of presenting a single problem formulation, we

reached a conclusion that we need a problem framework that is general enough to capture

the problem space. In such a problem framework, we provide multiple different problem

formulations appropriate for each application scenario.

3.2 Application Model and Assumptions

Here we describe the application model for which we design a problem framework

and also the assumptions. Figure 3.1 shows the summary. The model is simple and

general enough to apply to many of the data-collection application scenarios.
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3.2.1 Application Model

Application

• Data-collection application. The objective is to move the data from each sensor

node to the base station. As we have discussed in Chapter 1, this is a generic form

of majority of sensor network applications.

• Data delivery latency should be minimized. Data delivery latency is defined as the

latency from the time data is generated at a sensor node until the time it is delivered

to the base station. This is a common requirement for sensor network applications,

though the priority may differ. In the structural health monitoring application

presented in Section 2.2.1, the priority is high since the safety of the structure

needs to be verified as soon as possible after an earthquake. In environmental

monitoring applications, the requirement for the minimum data delivery latency

may not be very strong from the applications’ perspectives. However, the situation

is different when a data mule can be active only for a short time due to the limited

fuel, which is often the case. To collect the data from all the sensor nodes in the

limited amount of time, we need to optimize the motion of the data mule.

Sensor Nodes

• Stationary sensor nodes. Nodes do not move from their original locations. This is

a common assumption for sensor network applications and reasonable for majority

of applications.

• Sensor nodes have known amount of data (non-periodic case) or generate data at

known rate (periodic case).

Data Mule

• There is only one data mule. This assumption is relaxed in Chapter 8 when we

consider the multiple data mules case.

• Data mule starts from and comes back to the base station. The base station serves

as a gateway to other hosts and thus the most appropriate place to deposit the

collected data. It is also reasonable to assume that we can refuel the data mule
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at the base station when the data mule needs to collect data periodically, as we

consider later.

3.2.2 Assumptions

• Nodes are stationary and their locations are known. Sometimes locations are known

by the geometry of the structure to be monitored, or through the use of the sensor

network topologies. In other cases, nodes may be localized using various ranging

techniques including GPS. The actual process of localization – the participants and

the domain where it is done – are out of the scope of this dissertation. For more

details on the topic, refer to the survey by Mao et al. [MFA07].

• Known location and direction (data mule). Similarly as the sensor nodes, the data

mule knows its current location and the direction it is heading in.

• Circular communication range with known radius. Wireless communication range

is circular and the radius is a constant value. Communication within the range is

always successful. This assumption is relaxed in Chapter 9 when we discuss the

case of partially-known communication range.

• The bandwidth of communication between a node and the data mule is constant.

This also applies to the communications between nodes when we discuss a combi-

nation with multihop forwarding in Chapter 7.

3.3 Data Mule Scheduling (DMS) Problem

In this section we present the data mule scheduling (DMS) problem framework

for optimizing the motion of data mule. As we have discussed earlier, motion planning

of data mule is a hard problem. To deal with that, in the DMS problem framework, we

decompose the problem into the following four subproblems as shown in Figure 3.2:

1. Forwarding: how each node sends the data to neighboring nodes

2. Path selection: which trajectory the data mule follows

3. Speed control: how the data mule changes the speed while moving along the path

4. Job scheduling: from which sensor the data mule collects data at each time point
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Figure 3.2: Subproblems of the Data Mule Scheduling (DMS) problem

Forwarding subproblem is for a combined approach of data mule and multihop

forwarding. The problem to determine the amount that each node forwards its data

to neighboring nodes within the communication range. For each node, the difference

between incoming data (including generated data at the node) and outgoing data is the

amount that needs to be collected by the data mule. An important point is that, when

the difference is zero, the data mule does not need to collect any data from this node.

Path selection subproblem is to determine the trajectory of the data mule in

the sensor field. To collect data from each particular sensor, the data mule needs to go

within the sensor’s communication range at least once. Depending on the capability of

data mule, there may be some constraints on path selection, such as minimum turning

radius.

Speed control subproblem is to determine how the data mule changes its speed

along the chosen path. The data mule needs to change the speed so that it stays within

each sensor’s communication range long enough to collect all the data from it.
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Figure 3.3: Relation between speed control and job scheduling subproblems

The final subproblem is job scheduling. Once the time-speed profile is deter-

mined, we get a mapping from each location to a time point, as shown in Figure 3.3.

Thus we get a job scheduling problem by regarding data collection from each sensor as a

job. Each job has one or more intervals in which it can be executed. Job scheduling sub-

problem is to determine the allocation of time to jobs so that all jobs can be completed

before their deadlines.

3.4 Discussions

One of the biggest benefits of the DMS problem framework is that it allows us a

systematic treatment of the motion planning problem of a data mule. The DMS problem

enables us to identify the cases of the problem that we can optimally solve, as well as

the hard cases that we explore approximation and heuristic algorithms.
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Another benefit is that the DMS problem is general and can be used to express

several earlier problems in the area. For instance, the assumption of zero communication

range (as in [SRS04, SRS07]) is easily expressed by setting the communication range to

zero in the path selection subproblem. The constant speed assumption (as in [MY06,

MY07, XWXJ07]) and variable speed assumption (as in [ZA03, KSJ+04]) are handled

in the speed control subproblem. Further, the framework can easily accommodate new

settings such as acceleration constrained case, which we discuss later in Chapter 5, and

also different ways of problem formulation, as we discuss in Chapter 6.

In contrast to these benefits, one of the limitations of the DMS problem is that

there is a lost opportunity of further improvements by dividing the original problem

into mostly independent subproblems. For example, we solve the two dimensional case

of the problem by solving the path selection subproblem first and reducing it to the

one dimensional problem. Nevertheless, the DMS problem framework is useful because

it facilitates fundamental understanding of the problem in many ways by providing a

unified treatment of the 1-D and 2-D problems. Furthermore, it allows multiple different

formulations of each subproblems, and thereby provides a variety of choices in balancing

the optimality of solutions and tractability of the problem.

3.5 Summary

In this chapter we have presented the Data Mule Scheduling (DMS) problem

as a problem framework for motion planning of a data mule. For the framework to

be broadly applicable, we have designed a simple application model that captures the

common features of data-collection applications that use controlled mobility. The key

idea for the DMS problem framework is that we split the problem into the subproblems of

forwarding, path selection, speed control, and job scheduling. Each subproblem is much

simpler than the original joint optimization problem and thereby enables a systematic

treatment of the motion planning problem. Furthermore, the DMS problem framework

is general enough to be capable of expressing the assumptions used in the previous

literature.



Chapter 4

Motion Planning on Fixed Path:

Basic Cases

A basic case of the DMS problem framework is when the path of the data mule

is fixed. This is called the 1-D DMS problem and requires determination of the speed

change and the schedule of communication with the sensor nodes. We consider three

different mobility models of the data mule: Constant speed, Variable speed, and Gener-

alized. We call the first two models the basic cases, which are the focus of this chapter.

Generalized model is discussed in the next chapter. We formally define the 1-D DMS

problem for each mobility model and present either optimal algorithms or non-existence

proofs of such algorithms. Later in the chapter we discuss the case of periodic data

generation and also the connections with speed scaling problems.

4.1 1-D DMS Problem

4.1.1 Terminology, Definitions, and Assumptions

A job τi has an execution time ei and a set Ii of feasible intervals. A feasible

interval I ∈ Ii is a time interval [r(I), d(I)], where r(I) is a release time and d(I) is a

deadline. A job can be executed only within its feasible intervals. A simple job is a job

with one feasible interval, whereas a general job can have multiple feasible intervals. For

instance, in Figure 4.1(a), jobs A’ and B’ are simple jobs and jobs C’ and D’ are general

jobs.

Similarly for the speed control subproblem, a location job τi has an execution

24
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D' eD

General jobs

D eD

Execution time

Release location Deadline location
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Figure 4.1: Terminology for job scheduling and the 1-D DMS problem: Newly introduced
terms are shown in italic.

time ei and a set Ii of feasible location intervals. A feasible location interval I ∈ Ii
is a location interval [r(I), d(I)], where r(I) is a release location and d(I) is a deadline

location. A location job can be executed only within its feasible location intervals. A

simple location job is a location job with one feasible location interval, whereas a general

location job can have multiple feasible location intervals. In Figure 4.1(b), location jobs

A and B are simple location jobs and location jobs C and D are general location jobs.

We may omit “location” unless it is ambiguous.

An important observation is that, as shown in Figure 3.3, a location job is mapped

to a job when the time-speed profile is given. Furthermore, the reason why we consider

general (location) jobs is that the path may intersect with the communication range of

a node multiple times (e.g., node A in Figure 3.2).

For an interval I = [r, d] (also for a location interval), |I| denotes the length d−r.

We also define containment as follows: I ⊆ I ′ if and only if r′ ≤ r and d ≤ d′ where

I ′ = [r′, d′].

Following the definitions in [Liu00], we use the term offline scheduling algorithm

when a scheduling algorithm computes a schedule based on the complete knowledge of

all the jobs for all times. On the other hand, an online scheduling algorithm computes
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Figure 4.2: Mobility models of data mule

a schedule without knowledge about the jobs that will be released in the future. In this

case, the parameters of each job become known to the online scheduler when the job is

first released.

With slight extensions for general jobs, we also define validity, feasibility, and

optimality based on [Liu00]. A schedule is valid when it satisfies 1) every processor

executes at most one job at any time; 2) no job is scheduled other than in one of its

feasible intervals; 3) total amount of processor time assigned to every job is equal to its

execution time. A valid schedule is feasible when every job completes by the deadline of

its final feasible interval. Finally, a scheduling algorithm is optimal when it always finds

a feasible schedule if the given set of jobs has a feasible feasible.

The definitions of offline/online scheduling algorithms, validity, feasibility, and

optimality are extended for the 1-D DMS problem as well.

The assumptions are as follows. Each sensor node is stationary. Communica-

tion range and execution time are known. Communication is always successful in the

communication range. All location jobs are preemptible without any cost incurred and

can be executed over multiple feasible location intervals. There is no dependency among

the location jobs. Data mule can communicate with one node at a time. Depending on

the dynamics constraint, data mule may have constraints on the maximum speed and

maximum acceleration.

4.1.2 Mobility Models

We consider the following three mobility models with different dynamics con-

straints:

Constant speed v(t) = v0 for some constant v0
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Variable speed vmin ≤ v(t) ≤ vmax for given vmin, vmax (0 ≤ vmin ≤ vmax)

Generalized v(0) = v(T ) = 0, 0 ≤ v(t) ≤ vmax, |dv(t)/dt| ≤ amax for given vmax > 0,

amax > 0

Figure 4.2 shows the difference of these models.

Constant speed model represents the case where the data mule cannot change the

speed after it starts to move. Variable speed model represents the case where the data

mule can instantaneously change the speed within a given speed range. It also captures

the case where the data mule stops at each node for communication. Generalized model

is with an acceleration constraint. In this model, the data mule can change the speed,

but the rate of change is within a given maximum absolute acceleration. This model is

called “generalized” in the sense that the former two cases are roughly the special cases

of this case when amax = 0 and amax = +∞, respectively.

The constant speed and variable speed models apply to ground vehicles such as

Packbot1, which is commonly used as a data mule in actual deployments. The generalized

model captures mobility more precisely and is most appropriate when we cannot ignore

the inertia, for example in case that a helicopter is used as a data mule as in [TMF+07].

4.1.3 Problem Definition

An instance of the 1-D DMS problem is (L,J ), where

• [0, L]: total travel interval of the data mule on the location axis

• J : set of location jobs; i-th location job τi is characterized by

– Ii: set of feasible location intervals

– ei: execution time

A solution to the problem is a pair of time-speed profile v(t) and a job schedule.

Let T denote the total travel time. Then the constraints on the motion of data mule are
∫ T

0 v(t) = L and the dynamics constraints according to each mobility model. After v(t)

is determined, we can define a function f(x) that maps location x to time t. Using f(x),

we obtain a job scheduling problem, which we call an induced job scheduling problem.

This mapping is shown in Figure 3.3. We need to determine v(t) such that the induced

1http://www.irobot.com/
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job scheduling problem has a feasible schedule. The objective of the 1-D DMS problem

is to find a solution that minimizes the travel time T .

4.2 Related Job Scheduling Problems

The 1-D DMS problem is transformed to a job scheduling problem once we de-

termine a speed control plan of the data mule. Here we discuss some related issues in

job scheduling problems.

We extend the definition of normal scheduling problem to general jobs, i.e., jobs

with multiple feasible intervals. Preemptive Scheduling for General Jobs is defined as

follows: Given a set J of jobs, for each job τ ∈ J , an execution time e(τ) and a set

I(τ) of feasible intervals, for each feasible interval I ∈ I(τ), a release time r(I) and a

deadline d(I), is there a feasible schedule for J ?

4.2.1 Offline Scheduling Algorithms

For the simple jobs case, we can use the Earliest Due Date (EDD) algorithm as

an offline scheduling algorithm and it is optimal [Jac55, LL73, SSNB95]. In the EDD

algorithm, a job with the earliest deadline among all available jobs is executed at any

time slice.

For the general jobs case, however, the EDD algorithm is not well-defined, since

each job has multiple deadlines. Instead, we can design an optimal offline algorithm by

linear programming, which can be solved efficiently by using any LP solver. Without

losing generality, assume the earliest release time of all jobs is at time 0 and the latest

deadline is at time T . We split the time interval [0, T ] into (2m+1) intervals [t0(= 0), t1],

[t1, t2], ..., [t2m, t2m+1(= T )], where ti ∈ Pr∪Pd, ti ≤ ti+1 and Pr, Pd are the set of release

time and deadline for all the jobs, respectively. For every job τ ∈ J , consider variables

p0(τ), ..., p2m(τ), in which pi(τ) represents the time allocated to job τ during the interval

[ti, ti+1].

We construct a linear programming problem to find a feasible solution of pi(τ)

satisfying following constraints:

• 0 ≤ ∀i ≤ 2m,∀τ ∈ J , pi(τ) ≥ 0,

• (Feasible interval) ∀τ ∈ J , if [ti, ti+1] 6∈ I(τ), pi(τ) = 0,
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Figure 4.3: Counterexample for showing non-existence of optimal online scheduling al-
gorithm for Preemptive Scheduling for General Jobs.

• (Job completion) ∀τ ∈ J ,
∑2m

i=0 pi(τ) = e(τ),

• (Processor demand) 0 ≤ ∀i ≤ 2m,
∑

τ∈J pi(τ) ≤ ti+1 − ti.

Note that ti’s are given constants and thus this is a linear programming problem. After

obtaining a feasible solution, we divide each interval [ti−1, ti] to each job τ such that τ

is allocated for time pi(τ) within the interval. The order of jobs within each interval is

arbitrary.

4.2.2 Non-Existence of Optimal Online Scheduling Algorithm

To be more practical, it would be preferable if we have an online scheduling

algorithm. An online scheduling algorithm determines the schedule solely based on the

information of the jobs that are already released. We assume the information of a job,

including its execution time and all feasible intervals, becomes available to the scheduler

when the job is first released. For simple jobs, the EDD algorithm is an optimal online

scheduling algorithm. For general jobs, the following theorem gives a negative result:

Theorem 4.2.1. There is no optimal online scheduling algorithm for Preemptive Schedul-

ing for General Jobs.

Proof. Assume there exists an optimal online scheduling algorithm. We give an example

set of general jobs to show that, for any schedule until a certain time, an adversary can

issue a job that leads to a scheduling failure, yet the set of jobs as a whole remains to

have a feasible schedule.

Figure 4.3 is a counterexample consisting of three general jobs, although job τ2

is the only one having multiple feasible intervals. Suppose an optimal online scheduling

algorithm allocates time p and q (0 ≤ p, q ≤ 1, p + q ≤ 1) to jobs τ1 and τ2, respectively,
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in the interval [0, 1]. We assume q = 1− p since the algorithm is optimal. Note that, at

time 1, the algorithm has no information about job τ3, which is released later. Assume

job τ3 has a feasible interval [1 + α, 2 + α] and the execution time is one. Since the

length of the feasible interval equals to the execution time, the interval [1 + α, 2 + α]

needs to be allocated solely to job τ3 to finish it. When 0 ≤ p < 1, the adversary chooses

α = 1−p−ε, where ε is a small constant satisfying ε > 0, p+ε < 1. Then, job τ1 cannot

be finished because it can be allocated up to 1− p− ε within the interval [1, 2] and the

total allocation to job τ1 is 1− ε, which is smaller than its execution time. When p = 1,

the adversary chooses α = ε and then job τ2 cannot be finished for a similar reason.

Clearly, the set of jobs has a feasible schedule: allocating [0, α] to job τ2, [α, 1 + α] to

job τ1 to finish, [1 + α, 2 + α] to job τ3 to finish, and [2 + α, 3] to job τ2 to finish. This

is a contradiction to the assumption that the algorithm is optimal.

4.3 Constant Speed 1-D DMS Problem

One of the simplest forms of the 1-D DMS problem is the constant speed case,

where a data mule moves at a constant speed from the start to the destination. Constant

Speed 1-D DMS problem is defined by adding the constant movement constraint to the 1-

D DMS problem. Specifically, the question for the decision version is to ask the feasibility

when the data mule moves at the constant speed v0 = L/T , where L is the total travel

length on the location axis and T is the total travel time. The optimization version of the

problem is defined by changing the question to finding the minimum T , or equivalently

to finding the maximum v0. In this section, we give algorithms for the optimization

version of the problem.

When we assume the data mule cannot change the speed once it starts to move,

it is easy to show that there is no optimal online scheduling algorithm. Suppose, for the

sake of contradiction, such an algorithm exists and determines the optimal speed v0 for a

certain set of location jobs. Then, since the algorithm by definition does not know about

the jobs released (for the first time) in the future, it cannot complete a job released in

the future that has an execution time e and a feasible location interval of length (v0−ε)e

(ε > 0), which contradicts the assumption.

In the rest of the section, we present an optimal offline algorithm for simple

location jobs and a linear program formulation for general location jobs.
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4.3.1 Simple Location Jobs

When each location job has one feasible location interval, we can use a processor-

demand based feasibility testing to find the optimum (i.e., maximum) v0 such that all

location jobs can be completed. Processor demand g in interval [t1, t2] is the sum of

the execution time of the tasks whose feasible interval is completely contained in the

interval, and is defined as

g(t1, t2) =
∑

τ :τ∈J ,
I(τ)∈[t1,t2]

e(τ).

In real time scheduling, the following theorem holds for periodic tasks with arbi-

trary relative deadline (i.e., relative deadline of each task can be smaller than its period):

Theorem 4.3.1 (Baruah et al. [BHR93]). Let τ = {T1, ..., Tn} be a task system. τ is

not feasible iff there exist natural numbers t1 < t2 such that g(t1, t2) > t2 − t1

Using the theorem, we can show that testing at each release time and deadline

is sufficient to guarantee the feasibility. In other words,

Theorem 4.3.2. Task system is feasible iff g(t′1, t
′
2) ≤ t′2− t′1 for any t′1 ∈ {ri}, t′2 ∈ {di}

satisfying t′1 < t′2.

To prove Theorem 4.3.2, we first show that, for any arbitrary interval, there

exists a pair of release time and deadline that has the same processor demand, as per

the following lemma:

Lemma 4.3.3. For any t1, t2 satisfying t1 < t2 and g(t1, t2) > 0, there exist t′1 ∈ {ri}
and t′2 ∈ {di} such that t1 ≤ t′1 < t′2 ≤ t2, g(t1, t2) = g(t′1, t

′
2) .

Proof. Choose t′1, t
′
2 as follows:

t′1 = min
i:τi∈T,ri≥t1

{ri}

t′2 = max
i:τi∈T,di≤t2

{di}

Since there is no task released in interval [t1, t
′
1), g(t1, t2) = g(t′1, t2). Similarly, since

there is no task having a deadline in interval (t′2, t2], g(t′1, t2) = g(t′1, t
′
2). Therefore,

g(t1, t2) = g(t′1, t
′
2) for these t′1, t

′
2. Further, since g(t1, t2) > 0, [t1, t2] contains at least

one task, and thus t1 ≤ t′1 < t′2 ≤ t2.
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Lemma 4.3.4. g(t1, t2) ≤ t2− t1 for any t1, t2 satisfying t1 < t2 if and only if g(t′1, t
′
2) ≤

t′2 − t′1 for any t′1 ∈ {ri}, t′2 ∈ {di} satisfying t′1 < t′2.

Proof. “Only if” part is obvious, and we show “if” part with a proof by contrapositive.

We first assume ∃t1 < t2, g(t1, t2) > t2 − t1 and prove ∃t′1 ∈ {ri},∃t′2 ∈ {di}, (t′1 ≤
t′2) ∧ (g(t′1, t

′
2) > t′2 − t′1). By Lemma 4.3.3, there exist t′1 ∈ {ri} and t′2 ∈ {di} such that

g(t′1, t
′
2) = g(t1, t2) > t2 − t1. Choose t′1 = mini:ri≥t1{ri} and t′2 = maxi:di≤t1{di}. Since

t2− t1 > 0, g(t1, t2) > 0 and there is at least one task contained in interval [t1, t2]. Thus

t′2− t′1 > 0 and t2− t1 ≥ t′2− t′1. Therefore, ∃t′1 ∈ {ri},∃t′2 ∈ {di}, (t′1 ≤ t′2)∧ (g(t′1, t
′
2) >

t′2 − t′1).

Theorem 4.3.2 follows from Theorem 4.3.1 and Lemma 4.3.4.

This feasibility testing is for periodic task system in real time scheduling, but

we can apply it for our case. Specifically, we can determine the speed for each location

interval so that the processor demand for the interval is at most the time that the data

mule stays in the interval.

When each location job has one feasible location interval, the following simple

algorithm in Algorithm 1 finds the maximum possible v0 such that all location jobs can

be completed. It applies the processor-demand based feasibility test (Theorem 4.3.2) for

all possible pairs of a release location and a deadline location.

Algorithm 1 Find-Min-MaxSpeed

1: for each location interval I = [r(τ ′), d(τ ′′)] s.t. τ ′, τ ′′ ∈ J , r(τ ′) ≤ d(τ ′′) do

2: d =
∑

τ :τ∈J ,
I(τ)∈I

e(τ) ⊲ Processor demand for I

3: u[I]← |I|
d

⊲ Maximum speed allowed for I

4: end for

5: return minI u[I]

This algorithm runs in O(n3) time where n is the number of location jobs in

a naive implementation, but we can improve it to O(n2) by computing the processor

demand incrementally. Specifically, for each starting location, by having a list of jobs

sorted by their deadline locations, we can incrementally extend the interval and calculate

the processor demand in O(1) time. Then it takes O(n) time for each starting location,

and since there are at most n starting locations, it takes O(n2) as a whole.
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This algorithm is correct and optimal for the following reasons. For correctness,

Theorem 4.3.2 guarantees the feasibility iff, for all possible pairs of release time and

deadline, the processor demand for the interval is equal to or less than the length of the

interval. In the algorithm, this condition is satisfied since we choose the minimum of

maximum possible speed for all pairs of release and deadline locations. Optimality is

shown from the same argument: as the processor demand condition above is both neces-

sary and sufficient condition for feasibility, v0 chosen by the algorithm is the maximum

possible speed such that the corresponding set of jobs remains feasible.

4.3.2 General Location Jobs

For the general location jobs case where each job may have multiple feasible loca-

tion intervals, we treat execution time for each feasible location interval as a parameter

and formulate the problem as a linear program. We solve the optimization version of

the problem by regarding the speed of data mule v0 as a variable to maximize.

The formulation is almost the same as the one for Preemptive Scheduling for Gen-

eral Jobs (in Section 4.2.1), except that now we map location to time. We split the total

travel interval [0, L] into (2m + 1) location intervals [l0(= 0), l1], [l1, l2], ..., [l2m, l2m+1(=

L)] (li ≤ li+1), where m is the number of feasible location intervals of all location jobs,

and each li is either a release location or a deadline location. For each location job

τ ∈ J , we consider variables p0(τ), ..., p2m(τ), in which pi(τ) represents the time allo-

cated to job τ within the location interval [li, li+1]. Then the objective of linear program

is to maximize v0, and the constraints are the same as in Section 4.2.1 except that the

processor demand constraint is replaced by

• (Processor demand) 0 ≤ ∀i ≤ 2m,
∑

τ∈J pi(τ) ≤ (li+1 − li)/v0.

Note that this constraint becomes a linear constraint by introducing a new variable

u0 = 1/v0 and changing the objective to the minimization of u0.

4.4 Variable Speed 1-D DMS Problem

Another simple form of the 1-D DMS problem is the variable speed case, where

a data mule can change the speed. In this section, we discuss the case in which speed

changes can be instantaneous. Variable Speed 1-D DMS problem is defined by adding

the speed range [vmin, vmax] (0 ≤ vmin ≤ vmax) to the input of 1-D DMS and allowing
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the speed change within the range2. The optimization version is defined similarly as

the constant speed case. Without loss of generality, we can restrict the speed control

plan to be a piecewise constant function. We can assume this because the feasibility of

the corresponding job scheduling problem is solely determined by how the release and

deadline locations are mapped onto the time axis.

4.4.1 Simple Location Jobs

For simple location jobs case, we have the following optimal offline algorithm,

which is based on Yao et al.’s algorithm [YDS95] for processor speed scaling. The algo-

rithm is based on processor-demand analysis and uses Find-Min-MaxSpeed internally.

Algorithm 2 Sequential-Find-Min-MaxSpeed

1: loop

2: vc ← Find-Min-MaxSpeed

3: if vc < vmin then return INFEASIBLE

4: else if vc > vmax then

5: Set vmax for all remaining intervals and finish

6: else

7: Set vc for the current tight interval

8: Remove jobs within the tight interval

9: “Compress” remaining jobs

10: end if

11: end loop

Here is how this algorithm works. For the set of location jobs, Find-Min-

MaxSpeed finds a tight interval and the corresponding speed vc. It is the minimum

speed that makes the processor demand for each location interval equal or less than the

time allocated to it. In other words, if the data mule moves at the speed faster than vc,

there is at least one interval in which the allotted time is less than the processor demand

(thus violates the feasibility). Therefore, if vc < vmin (Line 3), it is infeasible. “Com-

press” (Line 9) is an operation used in [YDS95], which is to remove the tight interval

from the feasible intervals of all jobs and to connect the remaining two intervals together

2Without a speed range, the problem is trivial because a data mule can alternate moving at
infinite speed and stopping to execute a job.
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to construct a new set of jobs. In each iteration, vc is nondecreasing. This is shown by

the same reasoning in [YDS95]. When vc reaches vmax, we cannot increase the speed of

any remaining location intervals. Thus we set the speed to vmax for all these intervals

(Line 5).

This algorithm runs in O(n3) time, since each iteration takes O(n2) time by using

the improved implementation of Find-Min-MaxSpeed and at least one job is removed

at each iteration.

As for an online scheduling algorithm, we need to consider vmin = 0 and vmin > 0

cases separately. When vmin = 0, the following algorithm is an optimal online algorithm

that minimizes the total travel time. In the algorithm, EDD-with-Stop, the data mule

moves at vmax while executing a job having the earliest deadline, just in the same way

as ordinary Earliest Due Date algorithm. However, when a job is not completed at its

deadline, the data mule stops until the job is completed and moves at vmax again.

We have a following theorem about the optimality of EDD-with-Stop.

Theorem 4.4.1. EDD-with-Stop is optimal for Variable Speed 1-D DMS problem for

simple location jobs when vmin = 0

Proof. Every feasible schedule that uses the speed other than 0 and vmax can be converted

to one that only uses 0 and vmax. Thus, for a feasible schedule, the total time duration

to use the speed 0 (i.e., stop) is minimized if and only if the schedule is optimal. Further,

for a feasible schedule that does not have idle time while stopping, the idle time while

moving at vmax is minimized if and only if the schedule is optimal.

We consider another job scheduling problem in which we want to maximize the

allocated time, or equivalently to minimize the idle time. A job cannot be executed

after its deadline, but non-standard assumptions are that the system may be overloaded

and that partial job execution counts in this problem. We claim the following algorithm

similar to the EDD algorithm is optimal for the problem:

Algorithm A: At any time, execute a job with the earliest deadline among
executable jobs.

Note that this algorithm is identical to the EDD algorithm when the system is un-

derloaded. We show this algorithm minimizes the idle time by converting an optimal

schedule to it. Let AA and Aopt denote the allocation by the algorithm and the optimal

schedule, respectively. Allocation during time interval [ta, tb] is denoted as A(ta, tb). We
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Algorithm 3 EDD-with-Stop

Init JP : set of “pending” location jobs, i.e., the location jobs that are currently exe-

cutable and not finished yet; initialize with ∅
v: data mule’s speed; initialize with vmax

a(τ): time allocated to job τ ; initialize with 0

xc: current location; initialize with 0

On ∃τ ∈ JP , xc = d(τ) ⊲ When a job is unfinished at its deadline location

1: Ju ← {τ |τ ∈ JP , d(τ) = xc} ⊲ Set of jobs that needs to be finished here

2: v ← 0 ⊲ Data mule stops

3: Complete each job in Ju

4: JP ← JP \ Ju

5: v ← vmax ⊲ Move at vmax again

6: τed ← arg minτ∈JP
d(τ) ⊲ Job with the earliest deadline location

7: Execute τed

On ∃τ ∈ J , xc = r(τ) ⊲ When a job is released

8: JP ← JP ∪ {τ |r(τ) = xc}
9: τed ← arg minτ∈JP

d(τ)

10: Execute τed

On ∃τ ∈ JP , a(τ) = e(τ) ⊲ When a job is finished

11: JP ← JP \ τ

12: τed ← arg minτ∈JP
d(τ)

13: if τed 6= ∅ then Execute τed

14: end if
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compare AA and Aopt from the beginning and swap allocations in Aopt as follows when

they differ:

• Case 1: Aopt(ta, tb) = τ1, AA(ta, tb) = τ2, τ1 6= τ2

In this case, there exists a pair (t′a, t
′
b) such that t′a ≥ tb and Aopt(t

′
a, t

′
b) = τ2, since

the time allocated to τ2 by the time ta in Aopt is shorter by (tb − ta) than that

in AA, and thus τ2 is not finished yet in Aopt. Accordingly, we can make a list of

pairs L = {(t′a, t′b)} such that Aopt(t
′
a, t

′
b) = τ2 and

∑

(t′a,t′
b
)∈L(t′b − t′a) = tb − ta.

For all pairs (t′a, t
′
b) in L, we swap the allocation and obtain Aopt(t

′
a, t

′
b) = τ1 and

Aopt(ta, tb) = τ2, which makes the allocation in (ta, tb) identical to AA. It is possible

because any t′b is before the deadline of τ1, since t′b ≤ d(τ2) ≤ d(τ1) (because of

EDD-based allocation in AA).

• Case 2: Aopt(ta, tb) = ∅, AA(ta, tb) = τ

From the same argument as Case 1, job τ is not finished in Aopt at ta, and we can

swap the allocation to obtain Aopt(t
′
a, t

′
b) = ∅ and Aopt(ta, tb) = τ for a list of pairs

L = {(t′a, t′b)} such that t′a ≥ tb, Aopt(t
′
a, t

′
b) = τ , and

∑

(t′a,t′
b
)∈L(t′b − t′a) = tb − ta.

• Case 3: Aopt(ta, tb) = τ , AA(ta, tb) = ∅
This does not happen for the following reason. Since the allocation up to time ta

is identical, τ is not finished yet in AA at ta. However, it is a contradiction, since

τ is executable at ta and the algorithm A allocates time to a job whenever there

are any available jobs.

EDD-with-Stop allocates exactly the same way as this algorithm A when the data

mule is moving (at vmax), thus minimizes the idle time while moving. Therefore, EDD-

with-Stop minimizes the total travel time.

When vmin > 0, the following theorem states that there is no optimal online

scheduling algorithm.

Theorem 4.4.2. There is no optimal online scheduling algorithm for Variable Speed

1-D DMS for simple location jobs when vmin > 0.

Proof. When vmin = vmax, it is equivalent to the constant speed case and we have

shown that there is no optimal online scheduling algorithm. Thus we consider the case

of vmin < vmax. Figure 4.4 shows the counterexample we use. We set the total travel
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Figure 4.4: Counterexample for showing non-existence of optimal online scheduling al-
gorithm for Variable Speed 1-D DMS for simple location jobs when vmin > 0.

interval to [0, vmax]. Let p denote the time the optimal algorithm spent on moving from

location 0 to vmin. Since the range of speed is [vmin, vmax] and vmin < vmax, we have

vmin/vmax < p ≤ 1. Since location job τ1 is the only available job in this interval, the

optimal algorithm spends time p on executing it.

When p < 1, an adversary releases location job τ2, which has feasible location

interval [vmin, vmax] and execution time (vmax − vmin)/vmin. Since the data mule can

spend at most (vmax − vmin)/vmin to move from vmin to vmax, it needs to execute location

job τ2 for the whole time to finish it, and thus it is impossible to finish both τ1 and τ2.

The set of location jobs is schedulable by the following offline algorithm: moving at vmin

all the time, first execute τ1 (finish at location vmin) and then τ2.

When p = 1, the adversary does not release location job τ2. Then the total travel

time is at least 1 + (vmax − vmin)/vmax, which is strictly larger than 1. However, it is

not optimal, since an optimal offline schedule can reduce the total travel time to 1, by

moving at vmax all the time and finishing location job τ1.

4.4.2 General Location Jobs

For general location jobs, the following theorem states that there is no optimal

online scheduling algorithm:

Theorem 4.4.3. There is no optimal online scheduling algorithm for Variable Speed

1-D DMS for general location jobs.

Proof. For the example in Figure 4.5, by a similar adversary argument as in the proof

of Theorem 4.2.1.

For general location jobs, we design an offline algorithm by linear programming

formulation. The formulation is similar to the one in constant speed case, but we have
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Figure 4.5: Counterexample for showing non-existence of optimal online scheduling al-
gorithm for Variable Speed 1-D DMS for general location jobs.

additional variable zi for each location interval [li, li+1] to represent the time that the

data mule spends in the interval. The linear program is as follows:

Minimize
∑2m

i=0 zi

Subject to

• 0 ≤ ∀i ≤ 2m,∀τ ∈ J , pi(τ) ≥ 0, zi ≥ 0

• (Feasible intervals) 0 ≤ ∀i ≤ 2m,∀τ ∈ J , if [li, li+1] 6∈ I(τ), pi(τ) = 0

• (Job completion) ∀τ ∈ J ,
∑2m

i=0 pi(τ) = e(τ)

• (Processor demand) 0 ≤ ∀i ≤ 2m,
∑

τ∈J pi(τ) ≤ zi

• (Max/min speed) 0 ≤ ∀i ≤ 2m, if li 6= li+1, (li+1− li)/vmax ≤ zi ≤ (li+1− li)/vmin.

Remove the right inequality when vmin = 0.

4.5 Periodic Data Generation Case

So far we have discussed the non-periodic case, where each of the sensor nodes

have fixed amount of data and the data mule travels across the sensor field only once.

On the other hand, in applications that require long-term continuous monitoring, it may

be more appropriate to assume that the data is generated periodically at a certain rate.

In this section we present algorithms for the constant speed and variable speed

1-D DMS problems under the periodic data generation case.
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4.5.1 Problem Description

In the periodic data generation case, each sensor node generates data at a given

rate and a data mule travels across the sensor field periodically. The data generation

rate may differ among the sensor nodes. After each travel, the data mule needs to stop

at the base station for a constant amount of time (called “stop time”) to account for

depositing the collected data and for refueling etc. The objective is to minimize the

period, i.e., the time the data mule takes for each travel, since it largely affects the data

delivery latency.

We introduce some notations for the periodic case. Let Tt denote the travel time

of one period and Tb denote the stop time. Thus the length of one period is Tt + Tb. For

the system to be stable, in each period of travel, the data mule needs to collect the data

generated in one period. Otherwise data is accumulated at nodes, resulting in overflow

of data.

4.5.2 Algorithms

Processor Demand Analysis

First we present an algorithm based on processor demand analysis. This algo-

rithm applies to the constant speed model with simple location jobs, i.e., each location

job has only one feasible location interval.

Let e(τ) denote the execution time of location job τ for one period. It is defined

as follows:

e(τ) ≡ λ(τ)

R
(Tt + Tb), (4.1)

where λ(τ) is the data generation rate of the node represented by τ and R is the band-

width, both of which are known constants.

Processor demand g(I) for location interval I for one period is defined as g(I) ≡
∑

τ :I(τ)⊆I e(τ), where I(τ) is the feasible location interval of location job τ . Let g′(I)

denote the processor demand for I for unit time, which is defined as follows:

g′(I) ≡ g(I)

Tt + Tb

=
∑

τ :I(τ)⊆I

λ(τ)

R
. (4.2)

The set of location jobs is feasible if and only if the speed v of data mule satisfies

v ≤ min
I⊆I0

|I|
g(I)

=
1

Tt + Tb

min
I⊆I0

|I|
g′(I)

, (4.3)



41

where I0 is the total travel interval.

When Tb > 0, we obtain the following constraint using Tt = |I0|/v:

v ≤
(

min
I⊆I0

|I|
g′(I)

− |I0|
)

1

Tb

. (4.4)

For a feasible solution to exist, the following must be satisfied:

|I0| < min
I⊆I0

|I|
g′(I)

. (4.5)

When this is satisfied, the maximum speed is the right hand side of (4.4). When this is

not satisfied, it is not possible to collect data without loss.

When Tb = 0, we obtain the following from (4.3):

|I0| ≤ min
I⊆I0

|I|
g′(I)

. (4.6)

Note that (4.6) contains neither v nor Tt. What it implies is, when this is satisfied,

the speed of data mule can be arbitrary. This validates the experimental observation in

[KSJ+04] that the speed of data mule does not affect the throughput of data collection

if the data mule travels the sensor field periodically without the stop time at the base

station.

Online Algorithm

For the variable speed model with simple location jobs, we can use an online

algorithm almost the same as EDD-with-Stop. A data mule moves at vmax while

executing a job with the earliest deadline location. When a node still has data at its

deadline, the data mule stops there and collects the data until the node becomes empty.

Linear Program Formulation

For the constant and variable speed models with general location jobs, we can

use a linear program formulation.

The formulation is almost the same as the ones for the non-periodic cases with

general location jobs (Section 4.3.2 for the constant speed model, Section 4.4.2 for the

variable speed model), but the job completion constraint is replaced with the following

one:

• (Job completion) ∀τ ∈ J ,
∑2m

i=0 pi(τ) =
(
∑2m

i=0 zi + Tb

)

λ(τ)/R, where R is the

bandwidth of communication from each node to the data mule.
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The right hand side is the amount of time to transmit the data generated in one period.

This linear program may be either infeasible or unbounded3. When it is infeasi-

ble, it is impossible to collect all data. When it is unbounded, the speed is arbitrary.

4.6 Connections with Speed Scaling Problems

In the 1-D DMS problem, we map each location point to a time point by determin-

ing the speed of the data mule and obtain a corresponding job scheduling problem. From

another perspective, we can consider the 1-D DMS problem as a “scale-parameterized”

scheduling problem, where some of the parameters are variables depending on some scal-

ing factor. For the 1-D DMS case, the speed of data mule is the scaling factor and the

location quantities such as release and deadline locations are the variables dependent on

the scaling factor. As another example of scale-parameterized scheduling problems, we

can think of the case where the release time and deadline are constant and the execution

time is parameterized by a scaling factor. Interestingly enough, the resulting problem

is analogous to processor speed scaling (as known as dynamic voltage scaling), which

is a popular technique for reducing processor energy dissipation by lowering the supply

voltage and operating frequency. Here we show the correspondence between the 1-D

DMS problem and speed scaling problems.

4.6.1 Problem Definition of Speed Scaling Problems

A typical speed scaling problem is defined as follows, which is based on the

definition in [ISG03]. The input is a tuple (T, {ri, di, Ri}, smin, smax), where T is the

end time, Ri is execution time in units of work, and smin, smax are the minimum and

maximum processor speed. The most notable difference from normal scheduling problems

is that the execution time is given as the number of units of work. This is because actual

execution time will change depending on the processor speed s(t), which represents the

number of units of work the processor does per unit time. The output is a pair of

functions S = (s(t), job(t)), where job(t) indicates which job is being executed at time

t. A schedule is feasible if

∫ dj

rj

s(t)δ(job(t), j)dt = Rj (4.7)

3It may be unbounded only in the constant speed model.
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is satisfied for all j, where δ(x, y) is 1 if x = y and 0 otherwise. The processor speed s(t)

always satisfies smin ≤ s(t) ≤ smax. We assume T > dj for all j.

The total energy cost cost(S) is defined as

cost(S) =

∫ t1

t0

P (s(t)) dt, (4.8)

where P (s) is the power consumption when the processor speed is s. P (s) is a mono-

tonically increasing convex function of s; typically P (s) ∝ s2. The objective is to find a

feasible schedule S that minimizes cost(S).

Normally speed scaling problems only deal with simple jobs that have one feasible

interval per each job. Thus, once we determine s(t), job(t) is optimally determined by

the EDD algorithm, as we have discussed in Section 4.2.1.

4.6.2 Constant Speed 1-D DMS and Static Speed Scaling

The Constant Speed 1-D DMS problem corresponds to static speed scaling (SSS)

problem, where the processor speed s(t) satisfies s(t) = s0 for some s0 and the problem

is to minimize s0.

We show how we can convert an instance of the Constant Speed 1-D DMS prob-

lem into the one of the SSS problem. For an instance of the Constant Speed 1-D DMS

problem {L,J }, where L is the total travel distance and J is a set of location jobs, given

the data mule’s speed v0, we have an induced job scheduling problem in which a job τ

is converted from a location job τL and has a release time r(τL)/v0, a deadline d(τL)/v0,

and an execution time e(τL). The objective is to maximizing the speed v0. Now, by ex-

panding the time axis by a factor v0, we can convert this induced job scheduling problem

to an equivalent SSS problem {T,J ′, [0, +∞]}, where each job in J ′ has a release time

r(τL), a deadline d(τL), and an execution time e(τL) in units of work. Note that the

actual execution time is v0e(τL) in the time domain, which includes a variable v0, but we

can remove v0 and make it a dimensionless parameter, since we see this problem as the

SSS problem instead of a normal job scheduling problem. We can set T to a sufficiently

large number. The objective is unchanged: to maximize v0, or equivalently, to minimize

1/v0, while keeping J ′ feasible.

Conversely, we can convert an instance of the SSS problem into the one of the

Constant Speed 1-D DMS problem in a similar way. The minimum and maximum

processor speed in the SSS problem becomes a speed constraint on the 1-D DMS problem,

and the problem is to find the maximum speed of the data mule within the speed range.
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4.6.3 Variable Speed 1-D DMS and Dynamic Speed Scaling

A natural extension of the above argument is to compare the Variable Speed 1-D

DMS problem with dynamic speed scaling (DSS) problem. However, the correspondence

between these two are not as clear as the constant speed case.

An instance of the DSS problem is {T,JS , [smin, smax]}, which is same as the

SSS problem. Based on the discussion in [YDS95], we can constrain the processor speed

s(t) to be piecewise constant with discontinuities only at the points in Pr ∪ Pd, where

Pr, Pd are sets of release time and deadline, respectively. Then we can represent s(t) as

{si, ti}, meaning the processor runs at speed si for time duration ti. Note ti’s are given

constants.

The DSS problem is an optimization problem defined as follows. For each interval

[Ti, Ti+1] where Ti =
∑i

k=0 tk, the variables are

• si: processor speed in this interval (in units of work per unit time)

• ai(τ): units of work allocated to job τ in this interval

Then the problem is:

Minimize
∑

i P (si)ti

Subject to

• (Minimum/maximum speed) ∀i, smin ≤ si ≤ smax

• (Feasible interval) ∀τ ∈ JS , if [Ti, Ti+1] ∈ I(τ), ai(τ) = 0

• (Job completion) ∀τ ∈ JS ,
∑

i ai(τ) = ec(τ)

• (Processor demand) ∀i, ∑τ∈JS
ai(τ) ≤ siti

where P (x) in the objective function is a function representing the power consumption

for processor speed x. Thus the objective function is the total energy consumption.

Similarly as the constant speed case, si in the DSS problem corresponds to 1/vi

in the Variable Speed 1-D DMS problem, when we set the power function P (s) = s. It

implies that the Variable Speed 1-D DMS problem for simple location jobs is easier than

the DSS problem, since the former problem maps to a special case of the latter.

In dynamic speed scaling context, P (s) = s2 is often assumed (for example in

[IY98]), by assuming that the power is quadratically proportional to the supply voltage
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and that the frequency is linear to the supply voltage. Some papers ([ZBSF04], for

example) use more precise model of the relation between frequency and supply voltage.

In fact, P (s) = s leads to a trivial result in dynamic speed scaling context,

since no matter how we change s, we can keep the total energy consumption unchanged.

Especially when s can be 0, one simple optimal schedule is to use highest speed until

a job finishes and go to sleep. However, the Variable Speed 1-D DMS problem is not

as easy as this case, since s = 0 in speed scaling problem implies infinite speed of data

mule, which is impossible. In addition, the case for general location jobs has not been

studied in the context of dynamic speed scaling, as far as we know.

Using the correspondence between variable speed data mule scheduling and dy-

namic speed scaling, we can use Yao et al.’s optimal offline algorithm [YDS95], since

it only assumes P (s) to be a convex function of s. Indeed, our algorithm presented in

Section 4.4.1 for simple location jobs is based on Yao et al.’s algorithm.

4.7 Related Work

We introduce related work on job scheduling and speed scaling, both of which

are related to the 1-D DMS problem.

4.7.1 Job Scheduling

Our formulation of the 1-D DMS problem is most closely related to single pro-

cessor preemptive scheduling with release times. For this problem, it is known that the

Earliest Due Date (EDD) algorithm, in which a job with the earliest deadline among all

available jobs is executed at any time slice, is optimal [Jac55, LL73, SSNB95]. However,

we have also discussed non-standard cases in which each job may have multiple feasible

intervals. As far as we know, there are only few studies on this case. Simons and Sipser

[SS84] considered unit-length, non-preemptive jobs that have multiple feasible intervals,

and showed the general problem is NP-complete. More recently, Shih et al. [SLC03]

showed NP-hardness in case of preemptive jobs, but their assumption does not allow a

job execution to continue over multiple feasible intervals: instead, partial work is lost at

the end of each feasible interval if a job is incomplete. Chen et al. [CWSK05] present

approximation algorithms for a similar problem in which the objective is to maximize

the number of completed jobs both for preemptive and non-preemptive jobs, but they

employ the non-continuation assumption above.
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4.7.2 Speed Scaling

In their seminal paper [YDS95], Yao et al. presented a formal analysis of the

speed scaling problem and designed an optimal offline algorithms and some online ap-

proximate algorithms. They employed a simple model, where they assumed that each

job has a release time and deadline and that the processor speed is continuous. Ishihara

and Yasuura [IY98] studied the cases with discrete processor speed. Pillai and Shin

[PS01] discussed the speed scaling in the context of real time scheduling. In their model,

the execution time is given as worst time execution time and also periodic tasks are

assumed instead of jobs. They presented heuristic algorithms based on earliest deadline

first (EDF) algorithm and rate monotonic (RM) algorithms [LL73]. Irani et al. [ISG03]

employed a different processor model that has a sleep state. In their model, a processor

consumes energy even when it is idle. By going into the sleep state, a processor can save

the energy but there is a constant overhead for coming back to the active state. Irani

et al. proposed some offline and online algorithms under these assumptions. Bansal et

al. [BKP07] gave theoretical backgrounds on the optimality of Yao et al.’s algorithm

[YDS95], and also proposed algorithms that optimizes the processor temperature.

4.8 Summary

In this chapter we discussed the basic cases of the 1-D DMS problem. The

1-D DMS problem consists of the speed control and job scheduling subproblems. We

first extended the job scheduling problem for general jobs that have multiple feasible

intervals and presented a linear program formulation. Then for the 1-D DMS problem

with the constant speed and variable speed mobility models, we have presented optimal

offline/online algorithms and also shown non-existence of online algorithms for some

cases. We also analyzed the periodic data generation case. In the end we showed the

correspondence between the 1-D DMS problem and speed scaling problems.
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Chapter 5

Motion Planning on Fixed Path:

General Case

In this chapter we discuss the general case of the 1-D DMS problem. By the

general case, we mean the Generalized mobility model (defined in Section 4.1.2), in

which the data mule can change the speed under an acceleration constraint. We first

define the Generalized 1-D DMS problem and show NP-hardness for general location

jobs case, while the complexity for simple location jobs case remains open. We then

present an approximation scheme for the case of simple location jobs. We also design

a heuristic algorithm that always finds a feasible solution for any case. To evaluate the

performance of the heuristic solutions, we analyze the lower bounds and compare them in

simulation experiments. Finally, we discuss the connections with speed scaling problems

and show how we can apply the approximation scheme to a special case of the speed

scaling problem.

5.1 Generalized 1-D DMS Problem

The general case of the 1-D DMS problem, which we call the Generalized 1-D

DMS problem, is defined by extending the definition of the original 1-D DMS prob-

lem presented in Section 4.1.3. An instance of the Generalized 1-D DMS problem is

(L,J , vmax, amax), where

• [0, L]: total travel interval of the data mule on the location axis,

• J : set of location jobs; i-th location job is characterized by

48
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– Ii: set of feasible location intervals, i.e., the location intervals in which the

job is executable. Each feasible location interval I ∈ Ii is defined as a pair of

release location r(I) and deadline location d(I),

– ei: execution time.

• vmax: maximum speed constraint

• amax: maximum absolute acceleration constraint

A solution to the problem is a time-speed profile v(t) and a job schedule. Let

T denote the total travel time. Then, the constraints on the motion of data mule are

0 ≤ v(t) ≤ vmax, |dv(t)/dt| ≤ amax, v(0) = v(T ) = 0,
∫ T

0 v(t) = L. In the optimization

version of the Generalized 1-D DMS problem, the objective is to find a feasible solution

that minimizes T . We can also consider a decision problem by adding a constant T to

the input and asking whether there exists a time-speed profile such that the travel time

is T and the induced job scheduling problem is feasible.

5.2 NP-Hardness for General Location Jobs Case

It is easy to see that there is no optimal online scheduling algorithm for Gen-

eralized 1-D DMS by considering a location job having a zero-length feasible location

interval. As for offline scheduling, we have the following theorems about the hardness of

the problem for general location jobs1:

Theorem 5.2.1. Generalized 1-D DMS for general location jobs with k feasible location

intervals is NP-hard for any fixed k ≥ 2.

Theorem 5.2.2. Generalized 1-D DMS for general location jobs with k feasible location

intervals is NP-hard in the strong sense for arbitrary k.

The proofs are by reductions from PARTITION and 3-PARTITION, respectively.

The basic ideas for constructing an instance of Generalized 1-D DMS from the one of

(3-)PARTITION are as follows:

• Map each binary choice in the original problems to a “stop/skip” choice in the

DMS problem.

1Complexity for simple location jobs case is still open.
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– Use a general location job with two zero-length feasible location intervals at

separate locations: the data mule needs to stop at one of these locations.

– Note that the data mule can also stop at both locations, but this is eliminated

by the next idea.

• Set the total travel time to an appropriate minimum value.

– If the data mule stops more often, it takes more time due to additional accel-

eration and deceleration.

– We choose the value such that it is achievable only when the data mule stops

the smallest possible times. This enforces the binary choices described above.

5.2.1 Proof of Theorem 5.2.1

For the decision version of Generalized 1-D DMS for general location jobs, we

show a reduction from PARTITION for k = 2 case. It is easily extended for k > 2

cases as well. One way is to add to each location job a sufficient number of “padding

intervals”: zero-length feasible location intervals, all of which are located at the deadline

location of the final feasible location interval of the job.

Let A = {a1, ...an} be the set of variables and s(ai) ∈ Z+ be the size for each

ai ∈ A in an arbitrary instance of PARTITION. Without loss of generality, we assume

s(ai) = ai in the rest of the proof.

Figure 5.1 shows an instance of Generalized 1-D DMS problem we construct. The

set J of location jobs is represented as the union of three disjoint sets JL,1,JL,2,JL,3.

Using the notation of each location job as “{(set of feasible location intervals), (execution

time)}”, these sets are defined as follows:

• Type-I: Subset choices:

JL,1 =
n⋃

i=1

{

{[Li−1 + pi], [Ln + Li−1 + pi]}, 1
}

,

• Type-II: Stop points:

JL,2 =
2n⋃

i=0

{

{[Li]}, 1
}

,

• Type-III: Equalizers:

JL,3 = {{[0, Ln]}, 3S} ∪ {{[Ln, 2Ln]}, 3S} ,
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0

Location job

Figure 5.1: Reduction from PARTITION: Each row represents one location job. For
type-I and type-II jobs, all feasible location intervals are zero-length.

where “[x]” is a short notation of a zero-length location interval [x, x] and

Li =
i∑

k=1

(pk + qk), S =
n∑

i=1

ai, pi =
9

16
a2

i , qi = a2
i .

We set the maximum speed vmax to a sufficiently large number, the maximum absolute

acceleration amax = 1, and the total travel interval [0, L] = [0, 2Ln]. For each location

job to have two feasible location intervals, type-II and III jobs need one padding interval

for each, but it is omitted from the above definition for clarity.

Intuitively, each of the type-I jobs corresponds to one variable in PARTITION.

A type-I job has two zero-length feasible location intervals at points Vi in Range #1 and

V ′
i in Range #2 in the figure. Since both intervals are zero-length, the data mule needs

to stop at either Vi or V ′
i (or both) to execute the job. The central idea of this reduction

is: at which of Vi or V ′
i the data mule stops (and executes the job) corresponds to which

of the subsets A′ or A−A′ contains the variable ai in PARTITION2. Type-II jobs restrict

2Later we will eliminate the possibility that the data mule stops at both Vi and V ′

i
.
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Figure 5.2: Possible travels and corresponding choices for i-th variable of PARTITION.
The values of pi, qi are determined such that one short jump plus one mid jump (zS,i +
zM,i) take longer than one long jump (zL,i) exactly by ai seconds, excluding the time the
data mule is stopping to execute jobs.

possible movements of the data mule by forcing it to stop at certain locations. Since a

type-II job has only one zero-length feasible location interval, the data mule needs to

stop at the location to execute the job. We call these locations “stop points” afterwards.

Type-III jobs work as equalizers: they force the data mule to spend equal time in Range

#1 and Range #2.

Figure 5.2 is an excerpt related to a decision on one variable. It shows three

possible travels to finish all the type-I and type-II jobs. The data mule must stop at stop

points A, B, C, and D. To execute location job I-i, the data mule needs to stop either

at Vi (Case A) or V ′
i (Case B), or both (Case C). To minimize the travel time between

two stop points, say, points A and B in Figure 5.2, the data mule should accelerate at

the maximum acceleration (amax = 1) first, then at the middle of A and B, decelerate

at the negative maximum acceleration (−amax). Let’s call this movement a “jump.” In
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Figure 5.2, there are three possible distances to make such jumps: pi, qi, and (pi + qi),

and we denote the time it takes to make these jumps by zS,i, zM,i, and zL,i, respectively.

Then we have pi = z2
S,i/4, qi = z2

M,i/4, pi + qi = z2
L,i/4, and thus

z2
S,i + z2

M,i = z2
L,i (5.1)

For Cases (A) and (B) in Figure 5.2, the travel for the ranges AB and CD consists of

one short jump, one mid jump, and one long jump, and thus it takes (zS,i + zM,i + zL,i)

in total, excluding the time to execute the jobs. For Case (C), it uses two short jumps

and two mid jumps, and thus takes 2(zS,i + zM,i), which is longer than the time in Cases

(A) and (B). We choose pi and qi such that the travel time with one short jump plus

one mid jump is slower exactly by ai than the time with one long jump, where ai is a

variable in PARTITION. Then we have

zS,i + zM,i = zL,i + ai (5.2)

One of the solutions satisfying both (5.1) and (5.2) is (zS,i, zM,i, zL,i) = (3
2ai, 2ai,

5
2ai).

We use these parameters and obtain pi = 9
16a2

i , qi = a2
i .

Now we consider the type-III jobs. Each type-III job has a feasible location

interval covering the whole range. For a little while, we focus the discussion on the time

the data mule is in motion and ignore the time it stops and executes the jobs. The

fastest travel for each of two ranges takes
∑

i zL,i(=
5
2S), when the data mule only uses

long jumps. However, as discussed above, the data mule needs to stop either at Vi or

V ′
i for each i, and it additionally takes at least

∑

i ai(= S) between the start and the

destination. Thus, excluding the time to stop and execute type-I and II jobs, the data

mule takes at least 2
∑

i zL,i + S(= 6S) to move from the start to the destination. Each

of type-III jobs has the execution time equal to the half of this, and thereby we make

the data mule spends the same time in each range, excluding the time the data mule is

not moving.

Let TM , TS denote the total time the data mule is moving and stopping, respec-

tively. As we discussed above, TM ≥ 6S. For TS , we need to consider type-I and type-II

jobs only, and get TS ≥ n + 2n + 1 = 3n + 1. To enforce the fastest possible travel, we

set TS = 3n + 1 and TM = 6S. It eliminates the possibility of case (C) in Figure 5.2.

Finally, since the total travel time T = TS + TM , we set T = 3n + 1 + 6S, which

is the minimum possible value. The construction above is done in time polynomial to

the size of the original PARTITION problem.



54

(⇒) For correctness, we first construct a feasible speed control plan and a fea-

sible schedule, from a satisfying partition A′ for the set A. A feasible speed control is

represented by a collection of acceleration changing points S. An acceleration changing

point P is represented as a tuple {x(P ), z(P ), v(P ), a(P )}, where x(P ) is the current

location, z(P ) is the time duration of keeping the same acceleration, v(P ) is the current

speed, and a(P ) is the acceleration. We prepare a collection SS of acceleration changing

points for stopping to execute type-I and type-II jobs as follows. Note that the speed

and acceleration are all zero for these.

S1+ =
⋃

i:1≤i≤n

ai∈A′

{Li−1 + pi, 1, 0, 0},

S1− =
⋃

i:1≤i≤n

ai∈A−A′

{Ln + Li−1 + pi, 1, 0, 0},

S2 =
2n+1⋃

i=1

{Li−1, 1, 0, 0},

SS = S1+ ∪ S1− ∪ S2.

S1+ ∪ S1− corresponds to the set of all type-I jobs and S2 corresponds to the set of all

type-II jobs.

Next we construct a collection SM of acceleration changing points for the move-

ments as follows:

SM+ =
⋃

i:1≤i≤n

ai∈A′




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2
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2
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2
,
zS,i

2
,−1}

︸ ︷︷ ︸
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∪
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2
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2
,
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2
,
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2
,−1}

︸ ︷︷ ︸
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∪
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2
, 0, 1} ∪ {Ln + Li−1 +

pi + qi

2
,
zL,i

2
,
zL,i

2
,−1}

︸ ︷︷ ︸

Long jump (Range #2)







,

SM− =
⋃

i:1≤i≤n

ai∈A−A′







{Li−1,
zL,i

2
, 0, 1} ∪ {Li−1 +

pi + qi

2
,
zL,i

2
,
zL,i

2
,−1}

︸ ︷︷ ︸

Long jump (Range #1)

∪

{Ln + Li−1,
zS,i

2
, 0, 1} ∪ {Ln + Li−1 +

pi

2
,
zS,i

2
,
zS,i

2
,−1}

︸ ︷︷ ︸

Short jump (Range #2)

∪

{Ln + Li−1 + pi,
zM,i

2
, 0, 1} ∪ {Ln + Li−1 + pi +

qi

2
,
zM,i

2
,
zM,i

2
,−1}

︸ ︷︷ ︸

Mid jump (Range #2)







,

SM = SM+ ∪ SM−,
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where SM+ and SM− correspond to Cases (A) and (B) in Figure 5.2, respectively.

Then we construct a collection S = SS ∪ SM . S represents a valid movement,

since SM assures the data mule to stop at every location contained in SS and to make

a connected movement between these locations. It also satisfies the one-way movement

constraint and the maximum acceleration constraint. Let ||S|| denote the time it takes

to finish all the schedules in the collection S. Then, since S1+, S1−, S2, SM+, SM− are

exclusive to each other, ||S1+∪S1−|| = n, ||S2|| = 2n+1, ||SS || = ||S1+∪S1−||+ ||S2|| =
3n+1, ||SM || = ||SM+∪SM−|| = 6S, and thus ||S|| = ||SS ||+||SM || = 3n+1+6S, which

equals to T . Finally, all jobs can be completed by this schedule. Specifically, execute

type-II jobs at the stop points and type-I jobs at the points representing variables if the

data mule stops there, and while moving, execute type-III jobs. Therefore, S is a feasible

speed control plan for the instance of Generalized 1-D DMS characterized by the set J
of location jobs, sufficiently large vmax, the maximum absolute acceleration amax = 1,

the total travel interval [0, 2Ln], and the total travel time T = 3n + 1 + 6S.

(⇐) Next, we construct a satisfying partition for A from a feasible speed control

plan for the above instance of Generalized 1-D DMS. We can immediately construct one

as follows:

ai ∈







A′ if the data mule stops at Vi

A−A′ if the data mule stops at V ′
i

From the discussion on Figure 5.2, the data mule stops and executes a type-I job at either

Vi or V ′
i (1 ≤ i ≤ n) but not both, which makes the above construction valid. In addition,

it stops at every stop point and executes a type-II job. From the conditions that both of

the type-III jobs are completed, the movement of the data mule takes additional time3

by S/2 compared to the fastest possible travel, which is realized by using long jumps

only. Since the additional moving time incurred by stopping at each Vi or V ′
i is equal to

ai, we obtain
∑

ai∈A′ ai =
∑

ai∈A−A′ ai = S/2, which means A′ is a satisfying partition.

5.2.2 Proof of Theorem 5.2.2

We show a reduction from 3-PARTITION. Let A = {a1, ..., a3m} be the set of

variables, B ∈ Z+ be the bound, and s(ai) ∈ Z+ be the size for each ai ∈ A such that

B/4 ≤ s(ai) ≤ B/2 and
∑

ai∈A s(a) = mB in an arbitrary instance of 3-PARTITION.

For simplicity we assume s(ai) = ai.

3Note that it only accounts for the moving time, i.e., time to execute type-I jobs is excluded.
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Figure 5.3: Reduction from 3-PARTITION: Each row represents one location job. For
type-I and type-II jobs, all feasible location intervals are zero-length.

Figure 5.3 shows an instance of Generalized 1-D DMS we construct. The location

axis is divided into m ranges, each of which is analogous to the one used in the proof for

the case of fixed k. The set J of location jobs is the union of the following sets:

• Type-I: Subset choices:

JL,1 =
3m⋃

i=1

{{
m−1⋃

k=0

[kL3m + Li−1 + pi]

}

, 1

}

,

• Type-II: Stop points:

JL,2 =
m−1⋃

k=0

3m⋃

i=1

{

{[kL3m + Li−1]}, 1
}

∪ {{[mL3m]}, 1},

• Type-III: Equalizers:

JL,3 =
m−1⋃

k=0

{

{[kL3m, (k + 1)L3m]},
(

5

2
m + 1

)

B

}

,
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where

Li =

i∑

k=1

(pk + qk), B =
1

m

3m∑

i=1

ai, pi =
9

16
a2

i , qi = a2
i .

We set the maximum speed vmax to a sufficiently large number, the maximum

absolute acceleration amax = 1, and the total travel interval [0, L] = [0, mL3m]. Choices

of pi and qi are based on the same discussion as before. For the fastest travel, the data

mule needs to stop at only one of V
(k)
i , and stopping at V

(k)
i takes additional ai seconds

compared to skipping it, excluding the time to execute a type-I job.

The fastest travel for each range takes
∑

zL,i = 5
2mB. For the whole range,

it takes additional
∑

ai = mB to execute all type-I jobs. Thus, the data mule spends

m· 52mB+mB = (5
2m2+m)B to move from the start to the destination. For the total time

the data mule stops (denoted TS), since there are 3m type-I jobs and 3m2+1 type-II jobs,

TS = 3m2+3m+1 seconds in total. Therefore we get T = 3m2+3m+1+(5
2m2+m)B. The

construction above is done in time polynomial to the size of the original 3-PARTITION

problem.

Correctness is proved in a similar way as the case of fixed k.

5.3 Approximation Scheme for Simple Location Jobs Case

In this section we present a polynomial time approximation scheme4 for Gener-

alized 1-D DMS for simple location jobs case. The complexity for this problem is still

open, but is presumably hard since there is no simple non-trivial algorithm that always

yields feasible solutions.

We design the approximation scheme by extending the one for kinodynamic mo-

tion planning [DXCR93] to a scheduling problem. The technique we used is a rather

standard one: to discretize the solution space and use dynamic programming, but it

requires an elaborate analysis to determine the step size so that the approximation ra-

tio is guaranteed. In the rest of the section, we first give a summary of the result and

comparisons to other techniques of designing a PTAS, and then discuss the details.

Following theorem is the main result of this section:

4Technically, our algorithm is not a PTAS: the running time is polynomial to the number of lo-
cation jobs and approximation factor (1/ǫ) and is pseudopolynomial to the dynamics parameters.
However, we just use the term PTAS for simplicity.
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Theorem 5.3.1. For an instance of Generalized 1-D DMS problem (L, {ri, di, ei}, vmax,

amax), there exists an algorithm that finds a trajectory Γd that satisfies |Γd| ≤ (1 +

2ǫ)|ΓOPT | for any positive constant ǫ < 1, where |Γ| denotes the travel time of Γ, and

runs in time

O

(

n7

(
1

ǫ

)6( ∑

i ei

mini{ei}

)2 v2
max

amaxL

)

, (5.3)

where n is the number of location jobs.

The running time is polynomial to the number of jobs and (1/ǫ) and pseudopoly-

nomial to dynamics parameters. It is also polynomial to the ratio of the total execution

time to the minimum of execution time.

As mentioned earlier, our approximation scheme extends Donald et al.’s work

[DXCR93] by incorporating feasibility constraints into the algorithm. The basic approach

is to discretize the solution space and use dynamic program. Although this is a standard

approach in designing a PTAS for several problems including scheduling, our method is

characteristic in the following ways:

• Discretization is applied in a very different way from [DXCR93]. This is due to

the fact that, in addition to the spatial constraints as in kinodynamic motion plan-

ning, the 1-D DMS problem also has temporal constraints expressed by feasibility

condition. We apply discretization only to the speed and the execution time at

certain location points, and not to the whole location axis and the travel time. We

determine the quantization steps to guarantee that there exists a discrete trajec-

tory that spends equal time to any continuous trajectory in each location interval,

except for short location intervals.

• Short location intervals are handled separately so that the running time is bounded

by polynomial time. The approach is different from the PTAS for bin packing

[Vaz03], where small items are used for filling the space after packing large items,

and the PTAS for real time scheduling with fixed priorities [ER08], where small

tasks are grouped into a large task. In the 1-D DMS problem, we cannot move

or group the short intervals, since location jobs are inherent in these intervals.

Instead, in short intervals, we allow a discrete trajectory to spend more time than

a continuous one, but also guarantee that the additional time is upper-bounded.
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5.3.1 Preliminaries

Definitions

First we define trajectory to represent the motion of the data mule.

Definition 5.3.2. A trajectory from (l0, v0) to (l1, v1) is a path in location-speed space

starting at location l0 with speed v0 and ending at location l1 with speed v1. A trajectory

is a-accel-bounded when the acceleration is in the range [−a, a] at any time for a positive

constant a. A trajectory is v-speed-bounded when the speed is in the range [0, v] at any

time for a positive constant v. A trajectory is (a, v)-bounded when it is a-accel-bounded

and v-speed-bounded.

Next we define equivalence of two trajectories. A trajectory is equivalent to

another one when the induced job scheduling problems are identical. This can be defined

by using the notion of dominant points.

Definition 5.3.3. A dominant point is a location that is either an endpoint of the total

travel interval (i.e., start or end location) or an endpoint of the feasible location interval

of a location job (i.e., release or deadline location).

Definition 5.3.4. Two trajectories are equivalent if the arrival and departure time for

all dominant points are identical in two trajectories.

Finally, we define feasible trajectory. We also define c-stretched feasible trajectory

to quantify the time margin to maintain the feasibility. The notion of stretched feasibility

is similar in spirit to resource augmentation (e.g., [BCK+07]).

Definition 5.3.5. A trajectory is feasible for J when the induced job scheduling prob-

lem has a feasible schedule. A trajectory is c-stretched feasible for J if the trajectory is

feasible for a modified set of location jobs J ′ in which each execution time is multiplied

by a positive constant c.

Feasibility Test by Cumulative Execution Time

We use cumulative execution time for feasibility testing. Specifically, for a given

trajectory Γ, we define a cumulative execution time function tΓ(x) at location x. We

first define a function fΓ(x) that maps location x to the departure time from x based

on the speed change in Γ. Note that the arrival and departure time may be different
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when the speed at x is zero. Using fΓ(x), we can define tΓ(x) as the total executed

portion of all jobs at time fΓ(x). In other words, tΓ(x) is the total non-idle time when

the data mule departs from location x. By extending Definition 5.3.5, we call tΓ(x)

is (c-stretched) feasible when it corresponds to a (c-stretched) feasible schedule for the

induced job scheduling problem.

Although tΓ(x) is not unique for Γ, we can define the optimal t∗Γ(x) in which the

allocation is based on the EDD algorithm (see Section 4.2.1). For such t∗Γ(x), tΓ(x) ≤
t∗Γ(x) is satisfied for any x. Then we can define the feasibility condition as follows:

Lemma 5.3.6. A trajectory Γ is feasible for J iff the optimal cumulative execution time

function satisfies t∗Γ(di) ≥
∑

j:dj≤di
ej for all deadline locations di.

Proof. (⇒) When the trajectory Γ is feasible, we show t∗Γ(x) satisfies the condition.

Since Γ is a feasible trajectory, when the data mule departs from di, all jobs that have

deadline locations at or before di have been finished in the allocation based on the EDD

algorithm. The sum of execution time of such jobs is
∑

j:dj≤di
ej . As other jobs can be

executed in the EDD algorithm as well, t∗Γ(di) is equal to or greater than this.

(⇐) When the condition is satisfied, we show that the trajectory is feasible.

Until di, at least time
∑

j:dj≤di
ej has been allocated to jobs. Since the EDD algorithm

always allocates time to the job with earliest deadline, all of the jobs that have deadline

locations at or before di have been finished. Since this holds for all deadline locations,

deadline constraint is never violated and thus the trajectory is feasible.

Trajectories between Two Points

Let Lmin(a, v, z, v0, v1) and Lmax(a, v, z, v0, v1) denote the minimum and maxi-

mum travel distance of an (a, v)-bounded trajectory from (0, v0) that ends after time z

with speed v1. These are expressed in a closed form as follows:

Lmin(a, v, z, v0, v1) =







1

4a

(
−a2z2 + 2a(v0 + v1)z + (v1 − v0)

2
)

If v0 + v1 ≥ az

v2
0 + v2

1

2a
Otherwise

Lmax(a, v, z, v0, v1) =







1

4a

(
a2z2 + 2a(v0 + v1)z − (v1 − v0)

2
)

If v0 + v1 ≤ 2v − az

vz − v2

a
+

(v0 + v1)v

a
− v2

0 + v2
1

2a
Otherwise

We show the derivations of these equations later. The following lemma states that we

can construct any trajectory in between these two:
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Figure 5.4: Idea for constructing trajectories with (a) arbitrary travel distance (Lemma
5.3.7) and (b) arbitrary travel time (Lemma 5.3.8). The small figures show the shapes
of trajectory for different vb’s.

Lemma 5.3.7. For any l satisfying Lmin(a, v, z, v0, v1) ≤ l ≤ Lmax(a, v, z, v0, v1), there

exists an (a, v)-bounded trajectory Γ from (v0, 0) to (v1, l) such that |Γ| = z.

Proof. We fix the travel time to z and find a trajectory whose travel distance is l. Note

that the area under a trajectory in time-speed graph is the travel distance. We consider

the trajectories with 3-phase acceleration changes, as shown in the right side of Figure

5.4(a). In the time-speed graph shown in Figure 5.4(a), the slope of CF and ED is +a

and that of CE and FD is −a. Then the area of ACEDB is Lmin(a, v, z, v0, v1) and that

of ACFDB is Lmax(a, v, z, v0, v1). Now we consider a horizontal line segment PQ across

the rectangle at v = vb and suppose that a trajectory first starts from C and follows the

line segment CP (i.e., acceleration at −a), then follows PQ (i.e., no acceleration), and

follows QD (i.e., acceleration at +a) to reach D. In this trajectory, the travel distance

is the area ACPQDB. When we change vb to vb + δ, the travel distance also increases,

since the area ACPQDB also increases while changing the shape as shown in the right

side of Figure 5.4(a). Since we can change vb continuously, there exists v∗b such that the

travel distance equals l, and we can use that as Γ. We only show the case in which the

speed at E is nonnegative and that at F is at most v, but the same construction idea is

used for other cases as well.

Similarly, we consider the trajectories with the minimum and maximum travel

time. Let Tmin(a, v, l, v0, v1) and Tmax(a, v, l, v0, v1) denote the minimum and maximum
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travel time of (a, v)-bounded trajectory from (0, v0) to (l, v1). These are expressed in a

closed form as follows:

Tmin(a, v, l, v0, v1) =







2

a

√

al +
v2
0 + v2

1

2
− v0 + v1

a
If v2

0 + v2
1 < 2v2 − 2al

l

v
+

v − v0 − v1

a
+

v2
0 + v2

1

2av
Otherwise

Tmax(a, v, l, v0, v1) =







−2

a

√

−al +
v2
0 + v2

1

2
+

v0 + v1

a
If v2

0 + v2
1 > 2al

+∞ Otherwise

The derivations of these equations are shown later. We have a lemma similar to Lemma

5.3.7:

Lemma 5.3.8. For any z satisfying Tmin(a, v, l, v0, v1) ≤ z ≤ Tmax(a, v, l, v0, v1), there

exists an (a, v)-bounded trajectory Γ from (v0, 0) to (v1, l) such that |Γ| = z.

Proof. We use the same idea as the proof of Lemma 5.3.7, but in the location-speed

space as shown in Figure 5.4(b). In the figure, the curves C’F’ and E’D’ represent the

acceleration at +a and C’E’ and F’D’ represent the acceleration at −a. We consider

a horizontal line segment P’Q’ at v = vb and a trajectory C’P’Q’D’ that follows the

perimeter of the region and the line. Note that in this case, the area under a trajectory

does not mean anything. However, when we increase vb, the travel time is decreased,

since the speed of the new trajectory is faster than or equal to that of the original

trajectory at any location. Since we can change vb continuously, there exists v∗b such

that the travel time equals z.

Derivations of Lmin, Lmax, Tmin, Tmax We first show the derivations of Lmin and

Lmax, which are the maximum and minimum travel distance when the starting/ending

speed and travel time are given. In Figure 5.5, set za = zb = zc = zd = z.

When the maximum acceleration is constrained to a, the maximum travel dis-

tance is achieved by first accelerating at the maximum acceleration a and then deceler-

ating at a. This is Case (a) in Figure 5.5. Let vm denote the maximum speed in this

travel. Since vm satisfies (vm − v0)/a + (v1 − vm)/(−a) = z,

vm =
az

2
+

v0 + v1

2
. (5.4)

When vm ≤ v, i.e., v0 + v1 ≤ 2v − az, we have v0 + aza1 = vm and thus

za1 =
z

2
+

v1 − v0

2a
. (5.5)
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Figure 5.5: Time-speed profiles for the trajectories from (l, v) = (0, v0) to (l, v1).

Therefore the maximum travel distance is

la =
v0 + vm

2
za1 +

v1 + vm

2
za2

=
1

4a

(
a2z2 + 2a(v0 + v1)z − (v1 − v0)

2
)
. (5.6)

When vm > v, i.e., v0 + v1 > 2v − az, the time-speed profile is like Case (b) in

the figure. In this case, since v0 + azb1 = v1 + azb3 = v, we have zb1 = (v − v0)/a and

zb3 = (v − v1)/a. Then the maximum travel distance is

lb =
v0 + v

2
zb1 + vzb2 +

v1 + v

2
zb3

= vt− v2

a
+

(v0 + v1)v

a
− v2

0 + v2
1

2a
. (5.7)

The shortest travel distance for a given travel time is achieved by first decelerating

at a and then accelerating at a. This is Case (c) in the figure. Let v′m denote the minimum

speed in this travel. Since v′m satisfies (v0 − vm)/a + (v1 − vm)/a = z,

v′m =
v0 + v1

2
− az

2
. (5.8)

When v′m ≥ 0, i.e., v0 + v1 ≥ az, we have v0 − azc1 = v′m and thus

zc1 =
z

2
+

v0 − v1

2a
. (5.9)
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Then the minimum travel distance is

lc =
v0 + v′m

2
zc1 +

v1 + v′m
2

zc2

=
1

4a

(
−a2z2 + 2a(v0 + v1)z + (v1 − v0)

2
)
. (5.10)

Finally, when v′m < 0, i.e., v0 + v1 < az, the time-speed profile is like Case (d)

with the lowest speed (during zd2) is actually zero. In this case, since zd1 = v0/a and

zd3 = v1/a, the minimum travel distance is

ld =
v0

2
zd1 +

v1

2
zd3

=
v2
0 + v2

1

2a
. (5.11)

Next we show the derivations of Tmin and Tmax, which are the maximum and

minimum travel time when the starting/ending speed and the travel distance are given.

In Figure 5.5, set la = lb = lc = ld = l.

The analysis is very similar to the previous one. For Case (a) in Figure 5.5, since

the maximum speed vm satisfies (v2
m − v2

0) + (v2
m − v2

1) = 2al,

vm =

√

al +
v2
0 + v2

1

2
. (5.12)

When vm < v, i.e., v2
0 + v2

1 < 2v2 − 2al, the minimum travel time is

za =
vm − v0

a
+

v1 − vm

−a

=
2

a

√

al +
v2
0 + v2

1

2
− v0 + v1

a
. (5.13)

When vm ≥ v, i.e., v2
0 + v2

1 ≥ 2v2 − 2al, the time-speed profile is like Case (b) in

the figure. In this case, since zb1 = (v − v0)/a and zb3 = (v − v1)/a,

l =
v0 + v

2
zb1 + vzb2 +

v1 + v

2
zb3

=
1

2a
(2v2 − v2

0 − v2
1) + vzb2. (5.14)

Then we have

zb2 =
l

v
− v

a
− v2

0 + v2
1

2av
. (5.15)

Therefore the minimum travel time is

zb =
l

v
+

v − v0 − v1

a
+

v2
0 + v2

1

2av
. (5.16)
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The slowest way to go from (l, v) = (0, v0) to (l, v1) is to first decelerate at a and

then to accelerate at a. This is Case (c) in the figure. Since v′m satisfies (v2
0 − v′2m) +

(v2
1 − v′2m) = 2al,

v′m =

√

−al +
v2
0 + v2

1

2
. (5.17)

When −al + (v2
0 + v2

1)/2 > 0, i.e., v2
0 + v2

1 > 2al, the maximum travel time is

zc = −2

a

√

−al +
v2
0 + v2

1

2
+

v0 + v1

a
(5.18)

When v2
0 + v2

1 ≤ 2al, the time-speed profile is like Case (d). In this case, the

speed during the constant speed movement can be arbitrarily small. Thus zd2 can be

arbitrarily large and the maximum travel time zd is unbounded.

5.3.2 Slower Trajectory

We first show that, for any trajectory, there exists another one that is slower

and constrained by slightly tighter acceleration and speed bounds. Then we determine

the size of speed quantization step for normal intervals such that there exists a discrete

trajectory with the original bounds that is equivalent to this slower one with the tighter

bounds. For short intervals, we use a different upper-bounding condition to determine

the step size. Finally, we quantize the cumulative execution time and design a dynamic

programming algorithm.

The following lemma gives a slower trajectory with tighter bounds:

Lemma 5.3.9. Let ǫ be a small constant satisfying 0 < ǫ < 1. For any (amax, vmax)-

bounded trajectory Γ, there exists an (amax/(1+ǫ)2, vmax/(1+ǫ))-bounded (1+ǫ)-stretched

feasible trajectory.

Proof. Consider (amax/(1 + ǫ)2, vmax/(1 + ǫ))-bounded trajectory Γs with speed vs(t) =

v(t/(1 + ǫ))/(1 + ǫ) and acceleration as(t) = a(t/(1 + ǫ)2)/(1 + ǫ)2, where v(t), a(t) are

the speed and acceleration of Γ at time t. Then, for any location intervals, Γs spends

(1 + ǫ) times more time than Γ does. Therefore Γs is (1 + ǫ)-stretched feasible and the

lemma follows.

5.3.3 Speed Quantization

We first present the basic idea for determining the size of quantization step for

normal intervals. Then, for short intervals, we present a different way.
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Normal intervals

The following lemma states that, for any trajectory, by slightly relaxing the

bounds on acceleration and speed, we can construct an equivalent trajectory with its

speed on each dominant point being equal to or less than that of the original one and

also being an integer multiple of some quantization step.

Lemma 5.3.10. Let ǫ be a small constant satisfying 0 < ǫ < 1. Suppose, for an (amax,

vmax)-bounded trajectory Γ from (0, v0) to (l, v1), an (amax/(1+ǫ)2, vmax/(1+ǫ))-bounded

trajectory Γs from (0, v0) to (l, v1) is constructed as stated in Lemma 5.3.9. Then, for

such Γs and positive constants q0, q1, there exists an (amax, vmax)-bounded trajectory Γq

from (0, v0 − q0) to (l, v1 − q1) that satisfies |Γq| = |Γs| if

max{q0, q1} ≤ min

{
ǫ

8

amaxl

vmax
,

ǫ2vmax

4

}

. (5.19)

Proof. We first show that the following two statements are equivalent:

1. For any Γs, there exists Γq such that |Γq| = |Γs|.

2. min |Γq| ≤ min |Γs| and max |Γq| ≥ max |Γs|.

From the first statement to the second one is trivial. The other direction is also true due

to the fact that we can construct a trajectory having any travel time between min |Γq|
and max |Γq| (Lemma 5.3.8).

We also claim that max |Γq| ≥ max |Γs| is satisfied for any positive q0, q1. This

is because we can construct Γq whose speed is smaller than or equal to that of Γs at

any location, and also because q0, q1 > 0. Thus, to prove the lemma, we need to show

min |Γq| ≤ min |Γs|.
Now we consider another (amax, vmax)-bounded trajectory Γ′ from (0, v0 − q0)

to (l′, v1 − q1) and |Γ′| = t∗, where l′ is a positive variable and t∗ = min |Γs|. The

difference between Γ′ and Γ is that the travel distance of Γ′ (i.e., l′) may not be equal

to l. Then, min |Γq| ≤ min |Γs| ⇔ max{l′} ≥ l, which is shown from Lemma 5.3.7. To

summarize, we want to find a condition on q so that max{l′} ≥ l is always satisfied,

where q = max{q0, q1}.
The technique used in the following argument is similar to [DXCR93]. However, a

major difference is that we do not discretize the time at this point. To find the conditions

to satisfy max{l′} ≥ l, it is sufficient to consider Γs with the minimum travel time and
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Figure 5.6: Time-speed profiles for the trajectories with maximum travel distance: (a)
v′(t) < vmax, (b) v′(t) = vmax for some t

Γ′ with the maximum travel distance. Hereafter, with a little abuse of notation, we use

Γs and Γ′ to represent such trajectories: i.e., Γs = arg minΓs |Γs| and Γ′ = arg maxΓ′ l′.

Let vs(t), v
′(t) denote the time-speed profiles of Γs and Γ′, respectively. We can

divide the time interval [0, t∗] into three intervals according to the relationship between

two time-speed profiles as follows: 1) [0, t1]: vs(t) ≥ v′(t), 2) [t1, t2]: vs(t) ≤ v′(t), and

3) [t2, t
∗]: vs(t) ≥ v′(t).

We first consider how much the trajectory Γs lags behind Γ′ in the intervals [0, t1]

and [t2, t
∗]. Since 1− 1/(1 + ǫ)2 > ǫ/2 for 0 < ǫ < 1, we can show

t1 =
q0

amax − amax

(1+ǫ)2
<

2q

ǫamax
, t∗ − t2 =

q1

amax − amax

(1+ǫ)2
<

2q

ǫamax
. (5.20)

Then we have
∫ t1

0
(vs(t)− v′(t))dt <

q2

ǫamax
,

∫ t∗

t2

(vs(t)− v′(t))dt <
q2

ǫamax
. (5.21)

Therefore, to satisfy max{l′} ≥ l, it is sufficient to choose q that guarantees

∫ t2

t1

(v′(t)− vs(t))dt ≥ 2q2

ǫamax
. (5.22)

We consider sufficient conditions to satisfy (5.22) separately for the case of 0 ≤ ∀t ≤
t∗. v′(t) < vmax and the case of 0 ≤ ∃t ≤ t∗. v′(t) = vmax.

First we consider the case of v′(t) < vmax in [t1, t2] (Figure 5.6, Case (a)5). Then,

for t1 < t ≤ tm,

v′(t)− vs(t) ≥
(

amax −
amax

(1 + ǫ)2

)

(t− t1) >
ǫamax

2
(t− t1). (5.23)

5The figure shows typical cases only. Specifically, it is possible that vs(t) reaches vmax/(1+ ǫ)
and keeps that speed before going down to v1. However, the analysis holds for such cases as well.
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Similarly for tm ≤ t < t2,

v′(t)− vs(t) >
ǫamax

2
(t2 − t). (5.24)

Using (5.23) and (5.24),
∫ t2

t1

(v′(t)− vs(t))dt =

∫ tm

t1

(v′(t)− vs(t))dt +

∫ t2

tm

(v′(t)− vs(t))dt

>
ǫamax

2

(

t2m − (t1 + t2)tm +
t21 + t22

2

)

≥ ǫamax

8
(t2 − t1)

2. (5.25)

Then a sufficient condition to satisfy (5.22) is

ǫamax

8
(t2 − t1)

2 ≥ 2q2

ǫamax
. (5.26)

Using t2 − t1 > t∗ − 4q/ǫamax (from (5.20)), a sufficient condition to satisfy (5.26) is

4q

ǫamax
≤ t∗ − 4q

ǫamax
, (5.27)

which is equivalent to q ≤ ǫamaxt∗/8. Since t∗ ≥ l/vmax, we have

q ≤ ǫ

8

amaxl

vmax
. (5.28)

Now we consider the other case. As shown in Figure 5.6 (Case (b)6), there is a

time interval [tm1, tm2] where v′(t) = vmax. For tm1 ≤ t ≤ tm2, using ǫ/(1 + ǫ) > ǫ/2 for

0 < ǫ < 1,

v′(t)− vs(t) ≥ vmax −
vmax

1 + ǫ
>

ǫvmax

2
. (5.29)

Since v′(tm1) = vmax and v′(t1) ≤ vmax/(1 + ǫ),

tm1 − t1 ≥
vmax − vmax

1+ǫ

amax
>

ǫvmax

2amax
, (5.30)

t2 − tm2 >
ǫvmax

2amax
. (5.31)

Then, using 1− 1/(1 + ǫ)2 > ǫ/2 for 0 < ǫ < 1,
∫ t2

t1

(v′(t)− vs(t))dt =

{∫ tm1

t1

+

∫ tm2

tm1

+

∫ t2

tm2

}

(v′(t)− vs(t))dt

>
ǫamax

4

(
(tm1 − t1)

2 + (t2 − tm2)
2
)

+
ǫvmax

2
(tm2 − tm1)

>
ǫ3v2

max

8amax
. (5.32)

6Again, the figure shows typical cases only. There are more variations for this case, such as
vs(t) reaches vmax/(1 + ǫ) before intersecting with v′(T ), or vs(t) does not reach vmax/(1 + ǫ).
For all possible cases, the analysis is valid.
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To guarantee that (5.22) is satisfied, a sufficient condition is

ǫ3v2
max

8amax
≥ 2q2

ǫamax
(5.33)

and thus

q ≤ ǫ2vmax

4
. (5.34)

From (5.28) and (5.34), the lemma follows.

Based on Lemma 5.3.10, we choose the speed quantization step qn at each dom-

inant point as follows:

qn = min

{
ǫ

8

amax

vmax
min

i
{xi+1 − xi},

ǫ2vmax

4

}

. (5.35)

To summarize, for any (amax/(1 + ǫ)2, vmax/(1 + ǫ))-bounded trajectory, there

exists an (amax, vmax)-bounded trajectory that travels the same distance and, at each

endpoint, the speed is at most that of the original one and an integer multiple of qn.

Short Intervals

The speed quantization step derived in (5.35) depends on mini{xi+1 − xi}, the

minimum difference between two neighboring dominant points. This is not preferable

because the number of possible speed choices will be very large when the difference is

very small, resulting in indefinitely long running time of the algorithm based on dynamic

programming.

For this reason, we handle such short intervals differently. In normal intervals,

we have determined the speed quantization step so that: 1) there exists an (amax, vmax)-

bounded discrete trajectory that takes the same amount of time in each interval as an

(amax/(1 + ǫ)2, vmax/(1 + ǫ))-bounded continuous trajectory, and 2) the speed of the

discrete trajectory at each dominant point is immediately below that of the continuous

trajectory. In short intervals, however, we relax both of these conditions and change

them as follows: 1’) in each short interval, the discrete trajectory takes at most ∆t time

more than the continuous trajectory does, and 2’) the speed of the discrete trajectory

at each dominant point is in a certain range below that of the continuous trajectory.

We consider an interval short when qn < ǫ2vmax/4 The choice of this threshold

is arbitrary, but we choose this value for simplicity. From (5.35), an interval is short if

the length l satisfies l < 2ǫv2
max/amax.
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First we determine the quantization step qs and the speed range so that there

always exists a discrete trajectory corresponding to any continuous trajectory. The prob-

lem of indefinitely long running time can be overcome by allowing a discrete trajectory

to take a quantized speed that is not immediately below the speed of the continuous

one. As we see later, this results in multiple speed choices at each dominant point. In

addition, on transition from a short interval to a normal interval, the whole speed range

must satisfy the condition in Lemma 5.3.10. The following lemma gives a speed range

that satisfies all these conditions:

Lemma 5.3.11. For arbitrary (amax/(1 + ǫ)2, vmax/(1 + ǫ))-bounded trajectory Γ1 from

(l, v) = (0, v0) to (l, v1) and any constants qs > 0 and integer m0 that satisfy the following

constraints for any k ∈ {0, 1, 2, . . . , 2n}:






max{v0/qs − αk, 0} ≤ m0 ≤ v0/qs − βk If v0 − βkqs ≥ 0

m0 = 0 Otherwise,
(5.36)

where αk ≡ 2n + k + 1 and βk ≡ 2n− k, there exists an (amax, vmax)-bounded trajectory

Γ2 from (0, m0qs) to (l, m1qs) where m1 is an integer satisfying







max{v1/qs − αk+1, 0} ≤ m1 ≤ v1/qs − βk+1 If v1 − βk+1qs ≥ 0

m1 = 0 Otherwise.
(5.37)

Proof. We assume v0 − αkqs ≥ 0 and v1 − αk+1qs ≥ 0, since all other cases are easily

shown from the result for this case. For any m0qs, if |m0qs − m1qs| ≤ |v0 − v1|, then

transition to m1qs is possible. For a speed range [v0 − pqs, v0 − (p + 1)qs], consider a

corresponding speed range [v1 − pqs, v1 − (p + 1)qs]. Assume m0qs is in the first range

and m′
0qs is in the corresponding range. If |m0qs − m′

0qs| ≤ |v0 − v1| then just set

m1 = m′
0, since the transition from m0qs to m′

0qs is clearly possible. Otherwise, since

either |m0qs − (m′
0 + 1)qs| ≤ |v0 − v1| or |m0qs − (m′

0 − 1)qs| ≤ |v0 − v1| is satisfied,

set m1 = m′
0 + 1 or m′

0 − 1 accordingly. Since v0 − αkqs ≤ m0qs ≤ v0 − βkqs, we have

v1 − (αk + 1)qs ≤ m1qs ≤ v1 − (βk − 1)qs.

Figure 5.7 explains the idea of Lemma 5.3.11. For a dominant point between

normal intervals (x0), a speed-quantized trajectory takes the speed in the range [v0 −
qn, v0] for quantization step qn determined by Eq. (5.35). The vertical interval in the

figure shows the speed range that a speed-quantized trajectory can take, and thus the

quantization step must be at most the length of the speed range to guarantee that there
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Figure 5.7: Example of consecutive short intervals and transitions to/from normal inter-
vals: Bold lines show the speed range that a speed-quantized trajectory can take.

is at least one speed point in the range. On the boundary of normal and short intervals

(x1), speed is discretized by step qs and speed range is [v1−(2n+1)qs, v1−2nqs]. For this

to be possible, qs must satisfy (2n + 1)qs < qn (from Lemma 5.3.10), but this condition

can be ignored since it is looser than the one imposed at the transition from a short

interval to a normal one. When there are consecutive short intervals, the speed range

grows as shown at x2, x3, and xp.

We have a condition on qs imposed when moving from a short interval to a

normal interval. At xp in Figure 5.7, when the sequence of short intervals ends, we need

to guarantee that 1) the top of the speed range is equal to or less than vp, and 2) the

bottom of that is the equal to or more than vp − qn. The condition 1 is always satisfied

because there are at most 2n consecutive short intervals before a normal interval. We

need to satisfy the condition 2, which is equivalent to (2n + 2n + 1)qs ≤ ǫ2vmax/4.

Then we consider an upper bound on the additional time that discrete trajectory

takes in each short interval.

Lemma 5.3.12. In Lemma 5.3.11, there exists Γ2 satisfying |Γ1| ≤ |Γ2| ≤ |Γ1|+ (4n +

2k + 3)qs/amax.

Proof. Since the speed of Γ2 at dominant points are equal to or less than that of Γ1, it

is possible for Γ2 to travel the distance equal to or less than l in time |Γ1|. We consider
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another trajectory that consists of following three steps: 1) Accelerate from m0qs to v0

at the rate amax, 2) Emulate Γ1, 3) Decelerate from v1 to m1qs at the rate amax. This

trajectory clearly travels at least l and the total additional time in step 1 and 3 is at

most (2n + k + 1)qs/amax + (2n + k + 2)qs/amax.

In the rest of the proof we use the notation Lmax(t) ≡ Lmax(amax, vmax, t, m0qs,

m1qs). We also define Lmin(t) similarly. From the above discussion, we have Lmin(|Γ1|) ≤
l and Lmax(|Γ1| + δ) ≥ l, where we define δ = (4n + 2k + 3)qs/amax for clarity. If

Lmax(|Γ1|) ≥ l or Lmin(|Γ1|+δ) ≤ l, the lemma follows from Lemma 5.3.7. Otherwise, we

have Lmax(|Γ1|) < l. For this case, since we already have Lmax(|Γ1|+δ) ≥ l and Lmax(t)

is an increasing function for t, there exists t′ such that |Γ1| ≤ t′ ≤ |Γ1|+ δ, Lmax(t′) = l

and thus the lemma follows.

We want the total additional time to be bounded by ǫ|ΓOPT |:
2n+1∑

k=1

(4n + 2k + 3)qs

amax
≤ ǫ|ΓOPT |. (5.38)

Since |ΓOPT | ≥ 2
√

L/amax, where the right hand side is the fastest possible travel time

from (0, 0) to (L, 0), a sufficient condition for (5.38) is qs ≤ ǫ
√

amaxL/(2n + 1)(6n + 5).

To summarize, we choose the speed quantization step of short intervals as follows:

qs = min

{
ǫ
√

amaxL

(2n + 1)(6n + 5)
,

ǫ2vmax

4(4n + 1)

}

(5.39)

Note that it is possible to treat all intervals as short and quantize the speed by qs.

However, since qs is smaller than the step of normal intervals by at least a factor of n,

thus results in unnecessarily long running time.

Procedure for choosing the speed quantization step

Combining the results for normal intervals and short intervals, we choose the

speed quantization step qi at dominant point xi as follows:

qi =







min

{
ǫ
√

amaxL

(2n + 1)(6n + 5)
,

ǫ2vmax

4(4n + 1)

}

If min{xi − xi−1, xi+1 − xi} ≤
2ǫv2

max

amax

ǫ2vmax

4
Otherwise

(5.40)

The following lemma states the existence of a trajectory that is (1 + ǫ)-stretched

feasible and speed-quantized:
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Lemma 5.3.13. Let ǫ be a small constant satisfying 0 < ǫ < 1. For any (amax/(1 +

ǫ)2, vmax/(1+ǫ))-bounded trajectory Γs from (0, 0) to (L, 0), there exists an (amax, vmax)-

bounded trajectory Γq from (0, 0) to (L, 0) that satisfies 1) the time staying in the location

interval [xi, xi+1] is at least as long as that in Γs, 2) the speed at dominant point xi is

equal to or less than that of Γs and an integer multiple of qi, where qi is given by Eq.

(5.40), and 3) |Γq| ≤ |Γs|+ ǫ|ΓOPT |.

Proof. If there are no short intervals in the whole travel interval [0, L], from Lemma

5.3.10, Conditions 1) and 2) are clearly satisfied and Condition 3) is also satisfied because

|Γq| ≤ |Γs|.
When there is a short interval, Conditions 1) and 2) are satisfied from Lemma

5.3.11. Condition 3) is also satisfied since the additional travel time is upper bounded

by Lemma 5.3.12 and the quantization step for short intervals is determined such that

the total additional time is upper bounded by ǫ|ΓOPT | (in Eq. (5.38)).

5.3.4 Time Quantization

Having quantized the speed, we now quantize the cumulative execution time at

each dominant point. Note that the travel time of data mule is not quantized. The

following lemma gives a constraint on the step size so that the feasibility is guaranteed

after the quantization:

Lemma 5.3.14. Let ǫ be a small constant satisfying 0 < ǫ < 1. For trajectory Γs that is

(1 + ǫ)-stretched feasible for J , let tΓs(x) denote a (1 + ǫ)-stretched feasible cumulative

execution time function. Then, there exists another cumulative execution time function

t′Γs
(x) that is (1-stretched) feasible and the value at each dominant point is an integer

multiple of τ , where τ satisfies τ |ei for all i and τ ≤ {ǫ/(2n + 1)}mini{ei}, where n is

the number of location jobs in J and “a|b” means that b is an integer multiple of a.

Proof. Let xi, xi+1 denote neighboring dominant points. We can construct t′Γs
(x) induc-

tively as t′Γs
(xi+1) = t′Γs

(xi) + τ⌊(tΓs(xi+1) − tΓs(xi))/τ⌋. The last term is the delta of

tΓs(x) rounded down to an integer multiple of τ . Then t′Γs
(x) is a cumulative execution

time function for Γs, since we can always reduce the execution time by considering idle

time. Next we consider a condition for τ so that t′Γs
(x) is (1-stretched) feasible. For

each interval, allocated time in t′Γs
(x) is equal to or less than that in tΓs(x) by at most

τ . Since there are up to (2n + 1) location intervals, total reduction of allocated time for
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each job is at most (2n + 1)τ . To maintain the feasibility, the allocation time for each

job must be at least its execution time. As tΓs(x) is (1 + ǫ)-stretched feasible, we need

(1 + ǫ)ej − (2n + 1)τ ≥ ei for job i. The lemma follows.

5.3.5 Dynamic Programming

We use a three-dimensional table of (location, speed, cumulative execution time).

The entry in (i, j, k) is the travel time of the fastest feasible speed-quantized trajectory

from (l, v) = (0, 0) to (xi, jqi) that has cumulative execution time kτ at location xi.

The table is initialized by 0 at (0, 0, 0) and +∞ otherwise. The final output is the

entry in (Nd − 1, 0,
∑

em), where Nd is the number of dominant points. This is the

minimum travel time of the feasible trajectory from (0, 0) to (L, 0) of which the speed

and cumulative execution time are quantized at each dominant point.

The table is updated in the following way along the location index. There are

two types of transitions. A transition from (i, j, k) to (i + 1, j′, k′), which we call a

type-I transition, is possible when all of the following constraints are satisfied. We define

v = jqi and v′ = j′qi+1.

• (Valid movement) |v′2 − v2| ≤ 2amax(xi+1 − xi).

• (Feasibility) If j′ > 0,
∑

m:dm≤xi+1
em ≤ k′τ ≤∑m:rm≤xi+1

em. From Lemma 5.3.6,

this constraint is equivalent to the feasibility constraint. The right inequality means

that the cumulative execution time cannot exceed the sum of execution time of all

released jobs.

Note that this constraint is not necessary when j′ = 0, since the data mule can

stop at xi+1 and execute the jobs (“type-II transition,” which is discussed later).

For such cases, we have the following constraint on departing from a location: if

j = 0,
∑

m:dm≤xi
em ≤ kτ ≤∑m:rm≤xi

em.

• (Cumulative execution time) k′τ − kτ ≤ Tmax(amax, vmax, xi+1 − xi, v, v′). This is

because the increase of cumulative execution time must be equal to or less than

the travel time. As the data mule can be idle while moving, we do not need the

lower bound condition.

When all these conditions are met, we can update the entry at (i + 1, j′, k′). Let T and

T ′ denote the current entry at (i, j, k) and (i + 1, j′, k′), respectively. We update the

entry by T + max (k′τ − kτ, Tmin(amax, vmax, xi+1 − xi, v, v′)) if this is less than T ′.



75

When j = 0, a transition from (i, 0, k) to (i, 0, k′) (k < k′) is also possible. We

call this a type-II transition. This corresponds to the case that the data mule stops at

xi to execute the jobs. In this case, k′ needs to satisfy only the feasibility condition:
∑

m:dm≤xi
em ≤ k′τ ≤∑m:rm≤xi

em.

As for the order of updating, first we must do all the type-II transitions and then

the type-I transitions later so that all possible transitions are explored.

5.3.6 Proof of Theorem 5.3.1

We first construct a slower trajectory from ΓOPT and then convert it to a quan-

tized version without violating the feasibility. By Lemma 5.3.9, we can convert ΓOPT into

a (amax/(1 + ǫ)2, vmax/(1 + ǫ))-bounded trajectory Γs that is (1 + ǫ)-stretched feasible.

Note that |Γs| = (1+ǫ)|ΓOPT |. From Lemma 5.3.13, there exists a (amax, vmax)-bounded

discrete trajectory Γ1 that spends at least the same amount of time as ΓOPT does for

each location interval, and that the additional time for whole travel interval is at most

ǫ|ΓOPT |. The speed at each dominant point is equal to or less than that of Γs and is an

integer multiple of qi (from Eq. (5.40)).

Since Γ1 is (1 + ǫ)-stretched feasible, there exists a cumulative execution time

function t′Γ1
(x) that is (1-stretched) feasible and is discretized by step τ determined by

Lemma 5.3.14. From Lemma 5.3.13, Γ1 is a trajectory from (0, 0) to (L, 0), as the speed

of Γ1 at each dominant point is equal or less than that of ΓOPT .

Let Ns and Nc denote the number of quantization steps of speed and cumulative

execution time. From Lemma 5.3.13 and Lemma 5.3.14,

Ns ≤ vmax

qi
= O

(

n2

(
1

ǫ

)2 vmax√
amaxL

)

, (5.41)

Nc ≤
∑

ei

τ
=

∑
ei

ǫ
2n+1 mini{ei}

= O

(

n

(
1

ǫ

) ∑
ei

mini{ei}

)

. (5.42)

For each neighboring pair of dominant points, there are at most (NsNc)
2 type-I

transitions. There are at most N2
c type-II transitions for each dominant point. Each

update is done in constant time. Since there are at most 2n + 2 dominant points, the

running time is at most (2n + 2)(N2
s N2

c + N2
c ), which leads to (5.3).
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Figure 5.8: Idea of the proposed heuristic algorithm: (a) Increase the plateau speed. Two
dotted curves show the acceleration/deceleration for the fastest possible travel covering
the whole interval. Bold lines and thin lines mean fixed intervals and free intervals,
respectively. (b) A tight interval is found. New terms are shown in italic. (c) Recursively
maximize the speed for the remaining free intervals.

5.4 Heuristic Algorithm

We design an efficient heuristic algorithm for Generalized 1-D DMS problem that

works for both simple and general location jobs cases. This algorithm always returns

a “feasible” speed control plan, i.e., the induced job scheduling problem has a feasible

schedule. We first present the idea of the algorithm and then explain the details, followed

by discussions and some possible extensions.

5.4.1 Overview of Approach

Figure 5.8 shows the idea of the heuristic algorithm. We first design the heuristic

algorithm for the case where the speed is constrained to be zero at 0 and L, and extend it

to an unconstrained case later. The algorithm works recursively, and in each recursion,

we confine ourselves to the following 3-phase speed change profile: first accelerate at the
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maximum acceleration, then move at the constant speed, and finally decelerate at the

maximum negative acceleration. We call each of these intervals accel interval, plateau

interval, and decel interval, respectively. All of these are actually location intervals, but

we omit “location” for simplicity. Further we call the speed in the plateau interval as

plateau speed.

As shown in Figure 5.8(b), the main idea of the algorithm is to maximize the

plateau speed until we have a tight interval, defined as an interval whose length (in time)

is equal to the processor demand for that interval. Processor demand for an interval is

defined as the sum of execution time of the jobs whose feasible interval is completely

contained in the interval. We can naturally extend the definition to define tight location

interval, when we give the speed of data mule for the interval. We simply call it a tight

interval as well.

For convenience, we define the terms fixed interval and free interval. Fixed in-

tervals are the location intervals where the speed is already maximized. Accel interval,

decel interval, and tight interval are all fixed intervals. The remaining intervals, specifi-

cally the intervals in plateau interval but not in tight interval, are called free intervals.

We can further increase the speed for free intervals without destroying the feasibility.

The heuristic algorithm recursively applies maximization to the free intervals, as

shown in Figure 5.8(c). The algorithm terminates when there is no free interval.

After determining the speed control plan, finding a feasible job schedule is easy:

we can use the EDD algorithm, which is possible because the heuristic algorithm first

converts all general location jobs to simple location jobs.

5.4.2 Algorithm Details

The heuristic algorithm consists of four steps: simplify, maximize, trim, and

recursion.

Simplify

The procedure Simplify-Jobset converts all general location jobs to simple

location jobs. For each general location job having k feasible location intervals, we

create k simple location jobs. The execution time is distributed to each feasible location

interval proportionally to its length. If all the feasible location intervals of a general

location job are zero-length, we just distribute the execution time equally to them.
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1: procedure Simplify-Jobset(J )

2: for each general location job τ ∈ J do

3: if
∑

I∈I(τ) |I| > 0 then

4: for each feasible location interval I ∈ I(τ) do

5: J ′ ← J ′ ∪
{

I,
|I|

∑

I∈I(τ) |I|
e(τ)

}

6: end for

7: else

8: for each feasible location interval I ∈ I(τ) do

9: J ′ ← J ′ ∪
{

I,
1

N(τ)
e(τ)

}

10: end for

11: end if

12: end for

13: return J ′

14: end procedure

N(τ) (in Line 9) is the number of feasible location intervals of general location job τ . In

Line 4 and 8, a location job is denoted as {(set of feasible location intervals), (execution

time)}.

Maximize

In this step, we maximize the plateau speed until we have a tight interval. For

every possible location interval from the release location of one job and the deadline

location of another job, calculate the speed that makes it a tight interval. We choose

the plateau speed by finding the minimum of them for all the intervals. This procedure

does not destroy the feasibility, since the processor demand for every location interval is

equal or less than the time allocated for that interval.

Given a set J of location jobs, a baseline interval I0, and a baseline speed v0, the

procedure Maximize finds the plateau speed. We provide baseline interval and speed as

the input, since we use this procedure recursively, as explained later.

1: procedure Maximize(J , I0, v0)

2: for each location interval I = [r(τ), d(τ ′)] s.t. τ, τ ′ ∈ J , r(τ) ≤ d(τ ′) do

3: u(I)←Max-Speed(J , I)

4: end for

5: vp ← minI{u(I)} ⊲ Plateau speed
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Figure 5.9: Determining maximum plateau speed: v1, v2 are the maximum possible speed
at l[I], h[I] that are determined by the accel/decel curves. We define va = min{v1, v2},
vb = max{v1, v2}, and vm as the maximum possible speed within interval I assuming no
feasibility constraints. Only the case of v1 < v2 is shown, but the same equations hold
for v1 ≥ v2 case as well.

6: if vp 6= +∞ then

7: Itight ← arg minI(u(I))

8: Iaccel ← [l[I0], l[I0] + (v2
p − v2

0)/2amax]

9: Idecel ← [h[I0]− (v2
p − v2

0)/2amax, h[I0]]

10: else

11: Itight ← ∅
12: Iaccel ← [l[I0], (l[I0] + h[I0])/2]

13: Idecel ← [(l[I0] + h[I0])/2, h[I0]]

14: end if

15: Trim and Recursion

16: end procedure

l[I] and h[I] denote the lower and higher endpoints of interval I, respectively. Max-

Speed (in Line 3) is a procedure to find the maximum speed that preserves the feasibility

for location interval I.

In Max-Speed, the maximum plateau speed is determined according to the table

shown in Figure 5.9. It is done by analyzing the processor demand for I and computing

the speed that makes I a tight interval. Each graph shows the speed change when the

maximum plateau speed is realized. Two dotted curves in each graph represent the
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maximum acceleration from and deceleration to the start/end of the baseline interval.

Let’s call them “accel curve” and “decel curve”, respectively. Any speed changes cannot

exceed the accel/decel curves and thus maximum possible speed at each location is

determined by these curves. There are two cases depending on the relation between

interval I and the accel/decel curves. First is the case that, at the start of I, the accel

curve is below the decel curve (i.e., maximum speed is determined by the accel curve)

and it is the opposite at the end of I. This is shown as the “different side” case in the

figure. The other is the “same side” case, in which the accel curve is above (or below)

the decel curve at both endpoints of I and thus the maximum speed is determined solely

by the accel (or decel) curve.

In the table, Case 1 to 4 show different speed changes depending on the processor

demand for I, which is the highest in Case 1 and lowest in Case 4. To determine which

case applies, we first assume that Case 1 applies and calculate the maximum plateau

speed by using the equation shown in the table. Then, if the result satisfies the constraint

(e.g., v ≤ va in Case 1), it means that Case 1 actually applies and we found the maximum

plateau speed. Otherwise, we move on to Case 2 and do the same thing until we find the

case in which the constraint is satisfied. Note that maximum plateau speed is infinity in

Case 4 and so the procedure eventually exits.

Trim

After identifying the tight interval and the corresponding plateau speed, we trim

the feasible location interval of each location job. By trimming, we can make all the

location jobs completely contained in the free intervals, and thus we can further increase

the speed in these intervals independently from other fixed intervals.

We first consider the plateau speed vp > 0 case. Figure 5.10 explains the details

of trimming. For the accel interval, we simulate the EDD algorithm to see how much

time is allocated to each job within the interval. It is possible because we can map each

location point to a time point using the knowledge that the initial speed is v0 and the

acceleration is amax. Let ai denote the total allocated time to job τi at the end of the

accel interval. A job completely contained in the interval (τ1) will be finished in the

interval (i.e., a1 = e1). For a job that intersects with the interval (τ2), we trim off the

feasible location interval at the end of the accel interval, and decrease the execution time

to e2 − a2.
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Figure 5.10: Trimming feasible location intervals: accel, decel, and tight intervals are
trimmed off from the feasible location interval of each location job. Execution time is
shown on the right of each interval.

For the decel interval, it works in the same way except that we simulate the

LRT (latest release time) algorithm instead of the EDD algorithm. The LRT algorithm

schedules jobs backwards, treating release times as deadlines, and is also known to be

optimal [Liu00].

The tight interval is processed differently. In a tight interval, by definition, time

is allocated only to the jobs that are completely contained in the interval (τ5). Thus,

for the jobs that intersect a tight interval but not completely contained (τ6 and τ7), we

trim off the feasible location interval and their execution times are unchanged. For a job

that completely contains the tight interval (τ8), we divide it into two jobs (τ8L and τ8R),

one before the tight interval and the other after that. How to distribute the execution

time to these two jobs without destroying the feasibility is not a trivial problem. As one

of the simplest ways, we simulate the EDD algorithm for the location interval from the

end of the accel interval to the beginning of the tight interval7. Assuming time a8 is

allocated to job τ8 within that interval, we assign the execution time a8 to job τ8L and

e8 − a8 to τ8R. When a8 is zero, τ8L is not created. Similarly for τ8R.

When the plateau speed vp = 0, there is at least one simple location job having

a zero-length feasible location interval. Then, each of accel, decel, and tight intervals

7Alternatively we could simulate the LRT algorithm for the location interval from the end of
the tight interval to the end.
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degenerates to a point. In this case, we only divide each of the jobs that straddle the

point into two. Execution time is proportionally distributed to two newly created jobs

according to the length of feasible location intervals.

Recursion

At this point, if there are any remaining jobs, the feasible location intervals of

these jobs are completely contained in the free intervals that are neither accel, decel, nor

tight intervals. For these free intervals, since there may be some room for increasing the

speed, we recursively maximize the speed by repeating from the maximization procedure.

As long as we maintain the feasibility condition in these intervals, the entire speed control

plan remains feasible because of the trimming procedure we use.

Figure 5.11 shows the possible cases of recursion and corresponding output of

speed control plan. The number of recursions is zero (Case 0-1, 0-2), one (Case 1-1, 1-2),

or two (Case 2), depending on the configuration of the tight interval. Here each speed

control plan is represented as a collection of acceleration segments. An acceleration

segment s is represented as a tuple {I(s), z(s), v(s), a(s)}, where I(s) is the location

interval, z(s) is the time duration, v(s) is the initial speed at l[I(s)], and a(s) is the

acceleration during the interval. The speed control plan for the accel and decel intervals

are defined by the following acceleration changing segments saccel and sdecel, respectively:

saccel = {Iaccel, tf , v0, amax},

sdecel = {Idecel, tf , vp,−amax},

where

tf =

√

v2
0 + 2amax|Iaccel| − v0

amax
,

which is the time spent in the accel (or decel) interval. The set J ′ of location jobs in

Case 1-1 and 1-2 is the output of the trimming procedure for J . Sets J1 and J2 in Case

2 are subsets of J ′ defined as follows:

J1 = {τ |τ ∈ J ′, I(τ) ⊆ I1},

J2 = {τ |τ ∈ J ′, I(τ) ⊆ I2}.

The time ts in Case 2 needs a special treatment when vp = v0 = 0. In this case, the tight

interval degenerates to a point, where there are simple location jobs having zero-length
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Figure 5.11: Possible cases of recursive maximization: the number of recursions differs
according to the orientation of the tight interval. Sets of location jobs J ′, J1, and J2

are determined by the trimming procedure.



84

feasible location interval. We set ts as follows so that these location jobs are finished:

ts =







Stop-Time(J , Itight) if vp = v0 = 0

|Itight|/vp otherwise

where Stop-Time returns the sum of execution time of the location jobs that have

zero-length feasible location interval at Itight, which is in fact a single point.

5.4.3 Discussions

Correctness

First we show that the heuristic algorithm always halts. In each recursion, the

algorithm identifies a tight interval. Since each tight interval completely contains at least

one job, the number of jobs in the next recursion is strictly less than that of the current

step. Therefore, the total number of jobs eventually become zero and recursion ends at

this point.

Next, we show that the heuristic algorithm produces a feasible speed control

plan. We show every procedure in the algorithm preserves the feasibility. One recursion

step increases the plateau speed until there is a tight interval. Since the plateau speed

is chosen such that there is no interval [r(τ), d(τ ′)] in which processor demand exceeds

the time duration allocated to the interval, if the initial speed control plan is feasible,

the output is also feasible.

Feasibility preserving property of the trimming procedure is due to the optimality

of the EDD and LRT algorithms. For any given feasible speed control plan, the corre-

sponding scheduling problem is schedulable by EDD, because we schedule the simplified

set of jobs instead of the original set of general location jobs. When trimming off the

accel interval, the EDD algorithm is emulated for the interval and the feasible location

intervals of the remaining location jobs are trimmed according to the result. Since the

remaining set of location jobs is also schedulable by EDD, the procedure preserves the

feasibility. For the decel interval, we do the same thing backwards from the end and

emulate the LRT algorithm, which also works backwards. After running EDD for the

accel interval and LRT for the decel interval, it is obvious that the remaining set of

location jobs for the plateau interval is also feasible. When dividing jobs at the tight

interval, assuming vp > 0, EDD is applied to the plateau interval up to the left end of

the tight interval. As we discussed, the remaining set of location jobs on the right of the
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tight interval continues to be feasible. When vp = 0, we can divide the feasible location

intervals arbitrarily without violating feasibility, since the plateau speed is still zero.

Robustness

For the heuristic algorithm to be useful in practice, it should be robust against

various errors that occur in the real world. Major examples of such errors include

unexpected death of nodes and communication failure within communication range.

When a node dies unexpectedly, the data mule can detect it by not receiving

any response from the node, assuming that a simple request-response protocol is used.

Then the data mule can safely skip the schedule for the dead node and continue data

collections from the remaining nodes, without affecting the travel time and data collection

performance. Updating the plan at runtime to further improve the travel time is also

feasible, but requires more computation at the data mule.

Regarding communication failure, we have assumed that the release locations

and the deadline locations of all location jobs are known. However, in reality, they may

not be deterministically known due to fluctuations of link quality. One way to deal with

this issue is to set these values conservatively. Doing so will usually result in longer

travel time, but may be preferred when it is important for the application to gather all

data for sure.

5.4.4 Extensions

When endpoint speed is unconstrained

Although our heuristic algorithm assumes the speed at both 0 and L is con-

strained to zero, we can use it also for the unconstrained case in the following way. The

idea is to run the algorithm for a hypothetical travel interval [X ′
s, X

′
d] that contains the

original travel interval [0, L] so that we can freely change the speed at 0 and L.

1. Convert all general location jobs to simple location jobs by Simplify-Jobset

2. Identify one tight location interval It; let PD(It) denote the processor demand for

It.

3. Calculate the maximum possible speed vb at one endpoint of It. As shown in Figure

5.12, there are two possible cases depending on the processor demand in It. When
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Figure 5.12: Maximum speed at the edge of each location interval as determined by the
processor demand

|It|/PD(It)− amax · PD(It)/2 ≥ 0, Case 1 applies and we obtain

vb =
|It|

PD(It)
+

amax · PD(It)

2
. (5.43)

Otherwise, Case 2 applies and

vb =
√

2amax · |It|. (5.44)

4. Calculate the maximum possible speed at 0 and L. Let vs and vd denote the

maximum speed at these points. Tentatively assuming there is no other tight

interval except It, vs is achieved when the speed at l[It](≡ xl) is vb. Similarly

vd is achieved when the speed at h[It](≡ xh) is vb. Then we have the equations

v2
s − v2

b = 2amaxxl and v2
d − v2

b = 2amax(L− xh). Thus,

vs =
√

v2
b + 2amaxxl, (5.45)

vd =
√

v2
b + 2amax(L− xh). (5.46)

5. Calculate the hypothetical travel interval [X ′
s, X

′
d]. We should set X ′

s sufficiently

far from 0 so that the data mule can take any speed up to vs at 0. Similarly for

X ′
d. Then we have v2

s = 2amax(0−X ′
s) and v2

d = 2amax(X ′
d − L) and obtain

X ′
s = − v2

s

2amax
, (5.47)

X ′
d = L +

v2
d

2amax
. (5.48)
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For the hypothetical travel interval [X ′
s, X

′
d], we run Maximize and recursively maximize

the speed, as in the constrained case. We then trim off the speed changes outside [0, L]

from the output. Note all of Equations (5.43) to (5.48) are closed-form solutions, and so

we can calculate X ′
s and X ′

d efficiently once we obtain It and PD(It).

When the maximum speed is constrained

When the speed is restricted to be in the range [0, vmax], we make the following

changes to the heuristic algorithm:

• In the maximize step, after Line 4 of Maximize, if vp > vmax, then set vp ← vmax

and Itight ← ∅, since there is no tight interval. In addition, define a new location

interval Imax and set Imax ← [h[Iaccel], l[Idecel]].

• In the trim step, do nothing.

• In the recursion step, make no recursive call and output {saccel, smax, sdecel}, where

smax = {Imax, |Imax|/vmax, vmax, 0}.

Periodic data generation case

For the periodic data generation case described in Section 4.5.1, we can estimate

the travel time Tt iteratively in the following manner:

• Solve the linear program for the variable speed model by ignoring the acceleration

constraint. Set the result to the initial value of T̂t, the estimate of Tt.

• Repeat

– Run the heuristic algorithm with setting e(τ) = λ(τ)(T̂t + Tb)/R. Denote the

travel time as T̃t.

– If |T̃t − T̂t| < ǫ, break the loop. Otherwise, update T̂t by T̃t and repeat.

5.5 Analysis of Lower Bound

To evaluate the goodness of heuristic solutions, we need a reference. Since ob-

taining the global optimal solution for Generalized 1-D DMS problem is hard, we find a

lower bound instead.
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We present two different lower bounds. First one is only for simple location jobs

and based on the analysis of maximum possible speed at each location. Second one is

a more general method that uses a QP (quadratic programming) formulation and SDP

(semidefinite programming) relaxation.

5.5.1 Lower Bound for Simple Location Jobs Case

Procedure LB-MaxSpeed finds a lower bound of travel time from the following

two conditions:

1. Maximum speed condition at each release or deadline location (denoted xi after-

wards)

2. Minimum time condition for each location interval [xi, xj ]

Note that these are necessary conditions, and thus there may not exist a travel whose

travel time equals to the derived lower bound.

The first condition is about the maximum speed at each xi. By the processor

demand analysis similar to the one in Section 5.4.2, for each location interval consisting

of the release location of a job and the deadline location of another job, the maximum

possible speed at the edge of the interval is determined. By extrapolating the speed

change within the interval, we obtain an upper bound on the speed at every xi on

the whole travel interval. The details of the procedure is described by the following

pseudocode:

1: for all location interval I = [r(τ), d(τ ′)] s.t. τ, τ ′ ∈ J , r(τ) ≤ d(τ ′) do

2: if |I|/PD(I)− amax · PD(I)/2 > 0 then

3: vb ← |I|/PD(I) + amax · PD(I)/2

4: else

5: vb ←
√

2amax · |I|
6: end if

7: for all i do

8: if xi 6∈ I then

9: d1 ← min {|l[I]− xi|, |h[I]− xi|}
10: vi[I]←

√

v2
b + 2amaxd1 ⊲ Case 1

11: else

12: if |I|/PD(I)− amax · PD(I)/2 > 0 then
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Figure 5.13: Upper bound of the maximum speed at each xi

13: vi[I]← vb ⊲ Case 2-1, loose bound

14: else

15: d2 ← max {xi − l[I], h[I]− xi}
16: vi[I]←

√
2amaxd2 ⊲ Case 2-2

17: end if

18: end if

19: end for

20: end for

21: for all i do

22: vi ← minI vi[I]

23: end for

First, in Lines 2-6, the maximum speed vb at the edge of the location interval I

is calculated in the same way as in Section 5.4.4 (see Figure 5.12). Then in Lines 7-19,

we calculate the upper bound vi[I] of the speed at each xi, derived from the processor

demand constraint of the location interval I. When xi is out of I (Lines 9-10), vi[I] is

achieved by simply accelerating from the closer edge of I (Figure 5.13, Case 1). It is

more complicated when xi is within I (Lines 12-17). There are two possible cases, as

shown in the bottom half of Figure 5.13. In Case 2-1, vi[I] is derived as the solution of
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a cubic equation and very complicated. Instead, since we can show vi[I] ≤ vb is always

satisfied when xi ∈ I, we use vb as a loose upper bound (Line 13). In Case 2-2, we can

calculate vi[I] exactly (Line 16). Finally, in Line 22, the maximum speed at each xi is

determined by the lowest of all the upper bounds.

The second condition is about the minimum time duration for each location

interval [xi, xj ], which is determined by the processor demand for the interval. By

using variables zi to denote the time to stay in the interval [xi, xi+1], the condition

is represented as a set of linear constraints. Then, the maximum speed at each xi

derived from the first condition (vi) gives additional constraints for zi. Combining these

constraints, we have the following linear program and obtain a lower bound of travel

time by solving this:

Minimize
∑

i zi

Subject to

• (Fastest travel)

zi ≥
2

amax

√

amax(xi+1 − xi) +
v2
i + v2

i+1

2
− vi + vi+1

amax

The right hand side is the minimum possible travel time starting from xi at the

speed vi and finishing at xi+1 at the speed vi+1. This is a linear constraint since

there is no variable (i.e., zi) on the right hand side.

• (Processor demand) For each location interval I = [r(τ), d(τ ′)] s.t. τ, τ ′ ∈ J , r(τ) ≤
d(τ ′),

∑

τL∈J ,I(τ)⊆I

e(τ) ≤
∑

[xi,xi+1]⊆I

zi.

5.5.2 Lower Bound based on Quadratic Programming

We present another way of obtaining a lower bound by first formulating the

problem as a QP (quadratic program) and then using SDP (semidefinite programming)

relaxation to efficiently find a lower bound. Different from the first method, this one is

applicable to any problems including general location jobs case.

QP Formulation

Figure 5.14 shows the relationship between time and speed under constrained

acceleration. Suppose the data mule moves from location xi to xi+1. Also suppose that
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Figure 5.14: Time and speed under constrained acceleration: All possible transitions
from point C (ti, vi) to D (ti+1, vi+1) are confined in the parallelogram CFDE in Case
(a) or the pentagon C’F’D’H’G’ in Case 2.

time is ti and the speed is vi at location xi. As the figure shows, there are two different

cases.

We focus on Case 1 first. Any change of speed over time is expressed as a curve

in the time-speed graph. Under the constraint on maximum absolute acceleration, all

possible changes of speed during the time interval [ti, ti+1] are confined in the parallel-

ogram CFDE, where the slope is amax for CF and ED, and −amax for FD and CE. As

the area between the curve and the time axis corresponds to the distance traveled, we

have the following relationships:

xi+1 − xi ≥ S(ACEDB), (5.49)

xi+1 − xi ≤ S(ACFDB), (5.50)

where S(·) is the area. These areas are calculated as follows:

S(ACEDB) = α− β, (5.51)

S(ACFDB) = α + β, (5.52)

where

α =
1

2
(vi + vi+1)zi, (5.53)

β =
1

4

{

amaxz2
i −

(vi+1 − vi)
2

amax

}

, (5.54)

zi = ti+1 − ti. (5.55)
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As for Case 2 in Figure 5.14, since we assume the movement is one-way, the speed

must be nonnegative at any time. Thus the change of speed along C’-E’-D’ is impossible.

Instead, the speed change along C’-G’-H’-D’ achieves the shortest travel distance, which

is equal to S(A′C ′G′)+S(H ′D′B′). In this case, the following constraint replaces (5.49)

in Case 1:

xi+1 − xi ≥ S(A′C ′G′) + S(H ′D′B′)

=
v2
i + v2

i+1

2amax
. (5.56)

Now we combine these two cases. Since the vertical coordinate of point E (or E’)

is (vi + vi+1 − amaxzi)/2, we can summarize the constraints as follows:

xi+1 − xi ≥ α− β (5.57)

xi+1 − xi ≤ α + β (5.58)

xi+1 − xi ≥
v2
i + v2

i+1

2amax
(5.59)

(if vi + vi+1 − amaxzi ≤ 0)

Note (5.57) can be a constraint for both cases, since (5.59) is a stronger constraint than

(5.57) for Case 2.

Now, in addition to vi and zi, we define a variable pi(τ) to represent the time

allocated to location job τ in the location interval [xi, xi+1]. Then we obtain the following

quadratic programming problem:

Minimize
∑

i zi

Subject to

• (One-way movement) zi ≥ 0, vi ≥ 0

• (Job completion)
∑

i pi(τ) = e(τ)

• (Feasible interval) pi(τ) = 0 if ∀I ∈ I(τ), [xi, xi+1] 6⊆ I

• (Processor demand)
∑

τ∈J pi(τ) ≤ zi

• (Maximum absolute acceleration)

α− β ≤ xi+1 − xi ≤ α + β (5.60)

v2
i + v2

i+1

2amax
≤ xi+1 − xi (5.61)

(if vi + vi+1 − amaxzi ≤ 0)

|vi+1 − vi| ≤ amaxzi (5.62)
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where α and β are defined in Equations (5.53) and (5.54), respectively.

The constraint (5.61) is not quadratic since it is conditioned, but it is replaced

by equivalent quadratic constraints using additional variables bi and wi as follows:

bi(1− bi) = 0

bi(vi + vi+1 − amaxzi) ≥ 0

(1− bi)(vi + vi+1 − amaxzi) ≤ 0

(1− bi)(wi − 2amax(xi+1 − xi)) ≤ 0

v2
i+1 + v2

i = wi

SDP (semidefinite programming) Relaxation

We construct a relaxation problem for the nonconvex QP problem above. The

domain of a relaxation problem contains that of the original problem, so the minimum

value of the relaxation problem gives a lower bound of the original problem, assuming

it is a minimization problem. We first omit the constraint (5.61) for simplification8 and

then apply SDP relaxation. SDP is a convex optimization problem and can thus be

solved efficiently (see [BV04] etc.).

In our formulation, (5.60) is the only quadratic constraint after we omit (5.61).

We introduce a matrix variable X ≡ xxT where x = [vT |zT ]T and replace (5.60) by the

following linear constraint:

α′ − β′ ≤ xi+1 − xi ≤ α′ + β′, (5.63)

where

α′ =
1

2
(Xi,n+i + Xi+1,n+i),

β′ =
1

4

{

amaxXn+i,n+i −
(Xi+1,i+1 − 2Xi,i+1 + Xi,i)

amax

}

.

SDP relaxation replaces the equality constraint X = xxT by X−xxT � 0, where

the symbol “�” denotes componentwise inequality. By using the Schur complement

[BV04, §A.5.5], we convert it to a positive semidefiniteness constraint:



X x

xT 1



 � 0 (5.64)

8SDP relaxation without omitting (5.61) is possible, but the size of the problem becomes large
and numerical computation is very hard.
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Figure 5.15: Randomly generating test cases: Fixed nodes are aligned on line SS′; (b)
For multiple data mules case. An example with two data mules is shown.

The resulting problem is an SDP problem, since it only has linear constraints

and one positive semidefiniteness constraint.

5.6 Performance Evaluation

In this section, we evaluate the performance of the heuristic algorithm by numer-

ical experiments.

5.6.1 Comparison with Multihop Forwarding

For the first experiment, we compare the data delivery latency and energy con-

sumption between data mule approach and multihop forwarding approach.

Method

We use MATLAB for simulation experiments. Besides the heuristic algorithms,

we have implemented a naive method for speed control. In the naive method, a data

mule stops to collect data from each node one by one. Specifically, a data mule moves to

the point on the path that is the closest to the node, collects data from the node while

stopping, and moves to the next point. This is similar to the one used in [MY07], though

they do not assume an acceleration constraint.

We randomly generate test cases in the following ways for each of the two experi-

ments. For the first experiment, we need to guarantee the connectivity between the base

station and each node, since otherwise multihop forwarding approach is not feasible. For

this purpose, we generate node placements as shown in Figure 5.15, in which we arrange

nfixed “fixed” nodes on the horizontal dotted line SS′, each of them are r apart. Base
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Table 5.1: Comparison with multihop forwarding: Amount of transmission is relative to
the minimum possible amount.

Data mule
Multihop forwarding

Heuristic Naive

Latency (sec) 502.1 1098.3 (251.0)

Amount of transmission (max/avg) 1.0/1.0 1.0/1.0 25.1/6.0

stations are located at S and S′, assuming the data mule starts from and comes back

to the base station. Then we put n − nfixed “random” nodes at random locations in

the rectangle within the distance (
√

3/2)r from the horizontal line. In this way we can

guarantee that each of these random nodes has at least one fixed node or the base station

within its communication range and thus is reachable to the base station via multihop

forwarding. In case of data mule approach, the data mule moves from S to S′ on the

straight line. All the nodes are within r from the trajectory and thus the data mule can

collect data from them. We set nfixed = 20, n = 50, and r = 100[m] in the experiment.

We set the execution time e = 10[sec]. Each experiment is repeated for 10 times

on each case and the average is used as the result. We use the variable speed with

acceleration constraint as the mobility model of data mules and set amax = 1[m/s2]

and vmax = 10[m/s] to roughly simulate the mobility capability of a radio controlled

helicopter used in [TMF+07].

Results

We compare data mule approach and multihop forwarding approach in terms of

latency and energy consumption. We use one data mule in both of the heuristic and the

naive algorithms for data mule approach. For a multihop forwarding algorithm, we use

a simple one that each node forwards the data that it generated and received from other

nodes to its neighbor node that is closest to the base station.

Table 5.1 shows the latency and energy consumption in these approaches averaged

for 10 different node placements. Latency is measured by the total travel time in case of

data mule approach. For multihop forwarding approach, we use a lower bound calculated

from the maximum amount of data that a single node needs to send. Latency is more

than twice in data mule approach compared to the multihop forwarding algorithm9.

9It should be noted that the latency in multihop forwarding will be shorter in periodic data
generation case, since the nodes can keep streaming the data.
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Within data mule approach, latency in the heuristic algorithm was less than half of that

in the naive method.

Amount of transmission is minimum in data mule approach, since each node sends

its own data to the data mule and does not forward other nodes’ data. On the other

hand, it is 6.0 on average and 25.1 at maximum in the multihop forwarding algorithm.

Since communications account for major part of energy consumption at nodes, these

results suggest that data mule approach is more energy efficient roughly by six times.

Moreover, since the maximum amount of transmission occurs at the node next to the base

station and reachability to the base station is lost without this node, functional lifetime

in multihop forwarding is much shorter in this simple forwarding algorithm compared to

data mule approach.

5.6.2 Comparison with Lower Bounds

Method

We implemented the heuristic algorithm, LB-MaxSpeed method, and the SDP

relaxation of the QP formulation. We developed and ran the programs on MATLAB

7.4.0 (R2007a) with YALMIP interface [Löf04] and used SeDuMi [Stu99] for SDP solver.

We randomly generate test cases in the following way. In Figure 5.16, the hor-

izontal dotted line in the middle of the rectangle represents the path of data mule. L

is the total travel length. We randomly place circles of radius r so that each circle has

its center inside the rectangle. A circle represents the communication range of a sensor

node and the center is the location of the node. In this way, we can make the circle

intersect with the path of data mule. This intersection corresponds to a feasible location

interval. The length of each feasible location interval is between 0 and 2r. We place nk

circles, where n is the number of location jobs and k is the number of feasible location

intervals per job.

For the experiments, we set r = 10[m] to roughly simulate the communication

range of IEEE 802.15.4. We define “length factor” f and set L = fn so that we can keep

the density of nodes unchanged for different n’s. We set the execution time for each job

to 10[sec]. Each experiment is repeated for 100 times on each case and the average and

standard deviation are calculated.
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Figure 5.16: Randomly generating test cases: two location jobs; each has two feasible
location intervals
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Figure 5.17: Comparison of lower bounds

Results and Discussions

To evaluate the results, we use the following two metrics: quality and scalability.

Quality is measured by the total travel time and scalability is measured by the elapsed

time to compute the schedule.

Since we evaluate the heuristic algorithm by comparing with the lower bounds,

a lower bound should be as tight as possible for the evaluation to be more accurate. In

Figure 5.17, we compare the lower bounds from LB-MaxSpeed method with the ones

from the SDP relaxation for several different cases. From the figure, we can observe LB-

MaxSpeed constantly yields higher (thus tighter) lower bound for all cases. Thus, for

simple location jobs, we compare LB-MaxSpeed with the heuristic algorithm. We use

the SDP relaxation for general location jobs case, as LB-MaxSpeed is only applicable

for simple location jobs.
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Figure 5.18: Effect of number of location jobs
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Figure 5.19: Effect of density: node density is less for larger length factor

Quality To compare the total travel time, we first normalize the travel time by the

sum of execution time of all jobs, which serves as the trivial lower bound. By this

normalization, we can roughly estimate the relative quality of solution of the heuristic

algorithm for different test cases.

Figure 5.18 shows the effect of varying number of location jobs from n = 5 to

20. We use k = 1 (simple location jobs) and length factor f = 20. For this range of

n, the schedules from the heuristic algorithm have up to 5% (on average) longer total

travel time than those from LB-MaxSpeed. The average ratio slightly increases (1.042

for n = 5, 1.052 for n = 20), but it does not imply the heuristic algorithm performs

poorer for larger n, since we do not know how close the lower bound is to the optimal

solution. What we can say for sure is that the global optimal solution lies between the
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Figure 5.20: Effect of number of feasible location intervals

lower bound and the heuristic solution. Therefore, for these test cases, the total travel

time of the heuristic algorithm is within 5% (on average) of the global optimal solution.

Figure 5.19 shows the effect of varying density by changing the length factor from

f = 10 to 40. Smaller length factor means higher node density. We use the number of

location jobs n = 5 and k = 1 (simple location jobs). The average ratio to the lower

bound varies from 1.010 (f = 10) to 1.103 (f = 40), but again we cannot conclude the

heuristic algorithm performs poorer for less node density.

Figure 5.20 shows the effect of varying number of feasible location intervals from

k = 1 to 3. We use the number of location jobs n = 5 and f = 20. For the cases of

k = 2 and 3, we use the lower bound from the SDP relaxation. When k = 1, the average

ratio to the lower bound from LB-MaxSpeed is 1.042 and that for the SDP relaxation

is 1.094. As k increases, the ratio decreased (1.029 for k = 2, 1.018 for k = 3, both to

the SDP relaxation).

All these results suggest that the heuristic algorithm yields reasonably good

schedules within 10% (on average) of the optimal solutions for these test cases.

Scalability Figure 5.21 shows the computation time of the heuristic algorithm for the

problems of different size. We use k = 1 (simple location jobs) and length factor f = 20,

and varied the number of location jobs from n = 5 to n = 200. We have ran our code on

MATLAB (HW: Intel Pentium 4 2.8GHz (RAM:1.5GB), OS: Linux (kernel 2.6.20)). On

average, the heuristic algorithm takes 0.8 second for 100 location jobs and 3.2 seconds

for 200 location jobs. It is considerably fast, given the SDP relaxation takes more than
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Figure 5.21: Computation time

20 minutes on the same machine to compute the lower bound for n = 20 case (data not

shown).

5.7 Connections with Speed Scaling Problems

As discussed in Section 4.6, we can see the speed v(t) of data mule corresponds

to the inverse of the processor speed s(t) in a special case of speed scaling problem,

in which the power function is given as P (s) = s. The generalized mobility model

with acceleration constraint roughly corresponds to the speed scaling problem with a

constraint on the rate of processor speed change. In this section we first define the

rate-constrained speed scaling problem and show how we can apply the approximation

scheme for the Generalized 1-D DMS problem to it.

5.7.1 Rate-constrained Speed Scaling Problem

We define the rate-constrained speed scaling problem by adding a constant K,

which is the maximum rate of processor speed change, to the input and the rate constraint

|ds(t)/dt| ≤ K. The assumption of constrained speed change rate has been validated

through experiments [NYM97], but most studies on speed scaling adopt simple settings

without the rate constraint.

We can apply the approximation scheme for the Generalized 1-D DMS problem

to the rate-constrained speed scaling problems. For that purpose, we first define “cumu-

lative processed workload,” which is a function of t and represents the total workload
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processed until t. This corresponds to the cumulative execution time that we have used

in the 1-D DMS problem.

A major difference between the 1-D DMS problem and speed scaling problems

is in the objective function. The 1-D DMS problem roughly corresponds to a special

case of speed scaling problems where P (s) = s. Nevertheless, as discussed below, we can

apply the same technique to more general rate-constrained speed scaling problems, since

we can determine the speed function that minimizes the energy consumption, as long as

P (s) is positive and monotonically increasing for s.

Another difference is that we cannot apply the analysis on short intervals to

the rate-constrained speed scaling problem. In the Generalized 1-D DMS problem, we

have allowed a speed-quantized trajectory to take more time in a short interval than

the original trajectory does. However, this is not possible for the rate-constrained speed

scaling problem because the dominant points in the speed scaling problem are defined

on the time axis and taking more time means exceeding the dominant point.

In the rest of the section, we present the necessary changes in the approximation

scheme to apply that to the rate-constrained speed scaling problem.

5.7.2 Energy-minimizing Speed Function

For a given feasible schedule S = (s(t), job(t)), there are infinitely many different

speed functions that can replace s(t) without violating the feasibility. Since the total

energy cost varies depending on the speed function, we need to determine the one that

minimizes the cost.

In the following theorem, we show that the 3-phase speed changes we used in

Lemma 5.3.7 are the energy-minimizing speed function.

Theorem 5.7.1. Given time t0, t1, the processor speed s0, s1 at each time, and workload

W , let s∗(t) denote a function that minimizes energy consumption
∫ t1
t0

P (s(t)) dt while

satisfying
∫ t1
t0

s(t)dt = W where P (s) is positive and monotonically increasing. Then,

s∗(t) is defined as follows:

Case (I): if W2 ≤W ≤Wmax,

s∗(t) =







s0 + K(t− t0) if t0 ≤ t ≤ ta

sp if ta ≤ t ≤ tb

s1 + K(t1 − t) if tb ≤ t ≤ t1

(5.65)
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Figure 5.22: Shape of the energy-minimizing speed function

Case (II): if W1 ≤W ≤W2,

s∗(t) =







s0 + K(t− t0) if t0 ≤ t ≤ ta

sp if ta ≤ t ≤ tb

s1 −K(t1 − t) if tb ≤ t ≤ t1

(5.66)

Case (III): if Wmin ≤W ≤W1,

s∗(t) =







s0 −K(t− t0) if t0 ≤ t ≤ ta

sp if ta ≤ t ≤ tb

s1 −K(t1 − t) if tb ≤ t ≤ t1

(5.67)

where

Wmin = S(ACEDB), Wmax = S(ACFDB)

W1 = S(ACQDB), W2 = S(ACPDB)

(S(·) is the area of shape) in Figure 5.22, ta, tb are the time of acceleration changes

determined by W , and sp is the speed during [ta, tb].

Proof. Suppose s(t) is another speed function that satisfies
∫ t1
t0

s(t)dt = W and not

identical to s∗(t). We show that total energy consumption in s(t) is larger than that in

s∗(t).

Let D denote the region bounded by s(t) and s∗(t). Let l(s) denote the total

length of intersection of D and a horizontal line at s. Further, we define two disjoint
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Figure 5.23: Energy-minimizing speed function: s(t) and s∗(t) process the same workload
in [t0, t1], but s(t) consumes more energy than s∗(t).

subregions of D as follows: D+ is the subregion of D above s∗(t) and D− is the rest.

Since the processed workload is identical in s∗(t) and s(t), we have S(D+) = S(D−),

where S(·) represents the area of a region.

Figure 5.23 shows an illustration for Case (I). Since s∗(t) accelerates at the max-

imum rate in [t0, ta], s(t) cannot exceed s∗(t). Similarly, s(t) ≤ s∗(t) in [tb, t1]. Thus,

region D+ is located only above the line s = sp. Clearly, region D− is located only below

the line. These can be easily shown for Case (II) and (III) in a similar way. Then we

have

S(D+) =

∫ sn

sp

l(s)ds, S(D−) =

∫ sp

sm

l(s)ds,

where sm, sn are the minimum and maximum of s(t) in [t0, t1], respectively.

Let E∆ denote the difference of energy consumption between s∗(t) and s(t). Since

P (s) is positive and monotonically increasing, we obtain

E∆ =

∫ t1

t0

(P (s(t))− P (s∗(t))) dt

=

∫ sn

sp

P (s)l(s)ds−
∫ sp

sm

P (s)l(s)ds

≥ P (sp)

(
∫ sn

sp

l(s)ds−
∫ sp

sm

l(s)ds

)

= 0.

Therefore s∗(t) minimizes the energy consumption.
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5.7.3 Necessary Changes in the Approximation Scheme

Dominant points are now defined on the time axis at each rj , dj in addition to 0

and T . The quantization step for processor speed is derived in the same way as in Eq.

(5.35) as follows:

qi = min

{
ǫ

8

K

smax
min

i
{ti+1 − ti},

ǫ2smax

4

}

. (5.68)

From a similar argument as in Lemma 5.3.14, the quantization step for cumulative

processed workload is w = {ǫ/(2n + 1)}mini{Ri}.
The DP algorithm in Section 5.3.5 is modified as follows. The table is indexed

by (time, processor speed, cumulative processed workload). The entry in (i, j, k) is the

total energy consumption of the energy-minimizing speed function from (0, 0) to (ti, jqi)

that has cumulative processed workload kw at time ti. The table is initialized by 0 at

(0, 0, 0) and +∞ otherwise. The final output is the entry in (Nd − 1, 0,
∑

Rm).

Since there are no type-II transitions, the update rules are as follows. A transition

from (i, j, k) to (i+1, j′, k′) is possible when all of the following constraints are satisfied.

We define s = jqi and s′ = j′qi+1.

• (Valid speed change) |s′ − s| ≤ K(ti+1 − ti).

• (Feasibility)
∑

m:dm≤ti+1
Rm ≤ k′w ≤ ∑m:rm≤ti+1

Rm. Note that there are no

type-II transitions.

• (Cumulative processed workload) k′w− kw ≤ Lmax(K, smax, ti+1 − ti, s, s
′), where

the right hand side is the maximum possible workload processed when starting from

(time, speed) = (ti, s) and ending at (ti+1, s
′). This is because actual processed

workload (k′w−kw) must be less than the maximum possible processed workload.

Note that we do not need the lower bound condition, since the processor can be

idle.

When all these conditions are met, we can update the entry at (i + 1, j′, k′).

Let C and C ′ denote the current entry at (i, j, k) and (i + 1, j′, k′), respectively. We

update the entry by C +
∫ ti+1

ti
P (s∗W (t))dt if this is less than C ′, where s∗W (t) is the

energy-minimizing speed function when workload is W . Here, W is defined as W =

max (k′w − kw, Lmin(K, smax, ti+1 − ti, s, s
′))).
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5.8 Related Work

We introduce some related work on speed scaling with rate constraint. Related

work in job scheduling is introduced in Chapter 4.

There are a few papers on speed scaling that adopts the assumption of constrained

rate of processor speed change. Hong et al. [HQPS98] studied the problem and presented

several findings about the relations among processor speed, incurred time delay and

workload, which are directly applicable to the data mule scheduling problem. They

presented a heuristic algorithm for a limited case, in which the processor speed at each

dominant point is given, but did not give a detailed analysis on the general case. Our

approximation scheme is built upon their analysis and gives a guaranteed performance

for the general case of the problem.

Yuan and Qu [YQ05] classify the models of speed scaling into “ideal”, “multiple”,

and “feasible”. “Ideal” allows continuous voltage levels and “multiple” only allows dis-

crete levels. “Feasible” allows continuous levels but the maximum voltage change rate is

constrained. It is further classified into “optimistic feasible” and “pessimistic feasible”.

A prominent difference between these two models is whether a task can be processed

during transition to the new voltage level: it is allowed in “optimistic feasible” model

and not in “pessimistic feasible” model. In this classification, our work and Hong et al.’s

work [HQPS98] are classified as the “optimistic feasible” model.

5.9 Summary

In this chapter we have studied the 1-D DMS problem with the generalized mo-

bility model that has an acceleration constraint. We have shown NP-hardness for general

location jobs case and designed an approximation scheme that runs in time polynomial

to the job parameters. We have also designed an efficient heuristic algorithm. Through

the analysis of lower bound and numerical experiments, we have demonstrated that the

heuristic algorithm runs fast and finds near-optimal solutions that are within 10% of the

lower bound. Finally we have discussed the similarity with the rate-constrained speed

scaling problem and shown how we can apply the approximation scheme to this problem.

Acknowledgements This chapter, in part, has been accepted for publication as “Op-

timal Speed Control of Mobile Node for Data Collection in Sensor Networks” by Ryo
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Chapter 6

Path Selection

In this chapter we discuss the path selection problem. The main idea of the DMS

problem framework is to divide the problem into loosely connected subproblems. Ac-

cordingly, path selection is treated as an independent problem. We present one possible

formulation as a graph problem, which we call Label-Covering Tour problem. We first de-

fine the problem and determine the cost metric through preliminary experiments. Since

the Label-Covering Tour is NP-hard, we present an approximation algorithm. Further

we evaluate the performance by simulation experiments.

6.1 Label-Covering Tour Problem

6.1.1 Idea of Formulation

The ultimate objective of the path selection problem is to find a path such that

the shortest travel time can be realized in the corresponding 1-D DMS problem. How-

ever, it is not clear which path results in shorter travel time. For example, even if the

path length is short, the travel time would be long if the intersections of the path and

communication range of each node are short, because the data mule needs to slow down

to collect all the data. Moreover, it is also difficult to search an optimal path in a

brute-force manner when the data mule can freely move around within the space.

To deal with these issues, we simplify the path selection problem. To reduce the

solution space, we consider a complete graph having vertices at sensor nodes’ locations

and assume the data mule moves between vertices along a straight line. Each edge is

associated with a cost and a set of labels, where the latter represents the set of nodes

107
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Figure 6.1: Simplifying the path selection problem using a labeled graph representation:
(a) Instance of path selection problem. (b) Corresponding labeled graph.

whose communication ranges intersect with this edge. In other words, the data mule

can collect data from these nodes while traveling along this edge. We want to find a

minimum-cost tour that the data mule can collect data from all the nodes. We discuss

later how we assign the cost to each edge so that a tour with smaller cost results in

shorter travel time.

Figure 6.1 is an example that depicts the basic idea of the formulation. Figure

6.1(a) shows five nodes and their communication ranges, in addition to the base station

(shown as “s”), where the data mule starts and brings the data back. From this input,

we construct a labeled undirected complete graph as shown in Figure 6.1(b). Each edge

e has a set of labels L(e) ⊆ L and cost c(e), where L = {l1, ..., ln} is the set of all labels

and n is the number of sensor nodes. We determine L(e) as follows: li ∈ L(e) if node

i’s communication range intersects edge e. Intuitively, by moving along edge e, the data

mule can collect data from the nodes whose labels are in L(e).

6.1.2 Problem Definition

Now we define the Label-Covering Tour problem formally as follows: Given an

undirected complete graph G = (V, E) where each vertex in V = {v0, v1, ..., vn} is a

point in R2, a cost function on edges c : E → Q+
0
, a set L = {l1, ..., ln} of labels, and

a constant r. Each edge eij ∈ E is associated with subset Lij ⊆ L. For k = 1, ..., n,

lk ∈ Lij iff the Euclidean distance between vk and an edge eij is equal to or less than r.

A tour T is a list of points that starts and ends with v0, allowing multiple visits to each
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point. A tour T is “label-covering” when it satisfies at least one of the followings for

k = 1, ..., n: 1) ∃eij ∈ T (E), lk ∈ Lij , where T (E) is the set of edges traversed by T , or

2) dist(v0, vk) ≤ r, where dist(vi, vj) is the Euclidean distance between vi and vj . Find

a label-covering tour T that minimizes the total cost
∑

eij∈T (E) cij .

The choice of cost metric is discussed in the next section.

Unfortunately, this simplified problem is still NP-hard.

Theorem 6.1.1. Label-Covering Tour is NP-hard.

Proof. We show metric TSP is a special case of Label-Covering Tour. First we choose

the cost function c to satisfy the triangle inequality (e.g., Euclidean distance). For a

given set of points V = {v0, ..., vn}, by choosing a small r, we can make dist(v0, vi) > r

for all i > 0, Lij = {li, lj} for all i, j > 0, and L0j = {lj} for all j > 0. For such r,

any label-covering tour must visit all the points. An optimal label-covering tour does

not visit any point multiple times except x0 at the start and the end of the tour, since

in such cases, we can construct another label-covering tour with smaller total cost by

“shortcutting.” Therefore, an optimal label-covering tour is an optimal TSP tour for

V .

6.1.3 Other Formulations of Path Selection

The Label-Covering Tour problem is merely one possible way of formulating the

path selection problem. Clearly TSP is also an option, as used in many studies, though

it has a problem that we cannot benefit from the communication range. An alternative

formulation that takes account the communication range is TSP with Neighborhoods

(TSPN) problem, in which the problem is to find a shortest tour that visits each of given

regions. Application of TSPN problem to path selection is proposed in some recent

studies [YOS07, TLTI08]. Although the solutions are better in TSPN than in Label-

Covering Tour in terms of the total Euclidean distance, we adopt the latter for the

following reasons:

• Tours tend to touch the communication ranges at the boundary in TSPN. Even

if we assume circular communication range, wireless link quality at the boundary

is worse than near the center in reality. This would result in longer time for

transmitting data and thus it is likely that the benefit in travel time is not as much

as that in path length, when compared with the tours from the Label-Covering

Tour problem.
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• The number of vertices in TSPN tours are generally close to the number of regions.

This makes the data mule stop often, which leads to loss of time when it takes non-

negligible time to change direction or there is an acceleration constraint. On the

other hand, in Label-Covering Tour problem, the number of vertices is smaller

when the communication range is larger.

• Some approximation algorithms of TSPN may produce tours with arcs (e.g., [DM03]),

which may be non-preferable due to difficulty of maneuvering. Most approximation

algorithms are based on constructing TSP tours connecting representing points,

each of which is chosen from each region (e.g., [DM03, EFMS05, YOS07]). This is

modeled by slightly extending the definition of Label-Covering Tour, specifically

by putting vertices at other locations as well as the node locations, labeling the

additional edges accordingly, and finding a label-covering tour for that graph.

6.2 Choice of Cost Metric

In the definition of Label-Covering Tour, the cost cij is a critical parameter.

In a restricted scenario, in which the data mule can either move at a constant speed

or stop and no remote communication is used, Euclidean distance is the optimal cost

metric in the sense that the shortest travel time is realized when the total path length

is minimum. However, it is not clear for the general case in which the speed is variable

under an acceleration constraint.

Since we minimize the total cost, and also we want to choose a tour that we can

achieve the shortest travel time, a good cost metric should be strongly correlated with

the travel time. Therefore we measure the goodness of cost metric by the correlation

coefficient between cost and total travel time in the corresponding 1-D DMS problem.

When the correlation is high, smaller cost implies shorter total travel time, and thus

finding a minimum cost tour makes more sense.

We compare three different cost metrics that seem reasonable:

• Number of edges: cij = 1

• Euclidean distance: cij = dist(xi, xj)

• Uncovered distance: cij =
∑

s⊆eij ,∀k,dist(xk,s)>r |s|, i.e., total length of intervals in

edge eij that are not within the communication ranges of any nodes.



111

Uncovered distance is apparently a reasonable cost metric because it represents the total

distance that the data mule “wastes”, i.e., travels without communicating with any

nodes.

6.2.1 Experimental Methods

We assume nodes are deployed in the circular area of radius d that has a start

(i.e., point x0) in the center. We randomly place other nodes within the circle so that

they are uniformly distributed. For each edge connecting a pair of nodes, we assign a

set of labels by calculating the distance from the line segment and each node.

For each of the node deployments, we randomly generate label-covering tours. A

tour is generated by random walk which, at each point, chooses next point randomly,

repeats this until all the labels are covered, and goes back to x0. We measure the cost

of the tour in three different cost metrics as listed above.

Using the tour, we transform the original problem to 1-D DMS problem and find

a near-optimal latency by using the heuristic algorithm presented in Section 5.4. We

assume that each node has the same execution time e and the communication range r,

and also that the speed of data mule needs to be zero at each point where it changes the

direction1. For each node deployment, the cost and the total travel time are normalized

among different random tours so that the mean is zero and standard deviation is one.

For the collective set of data for same d, r, and e, we calculate the correlation coefficient

between the normalized cost and the normalized total travel time for each cost metric.

For each (d, r, e), we generate 1000 examples, which consist of 20 random tours

for each of 50 node deployments. We use d = 150, 500 and r = 10, 100 for Label-

Covering Tour. For 1-D DMS, we use the execution time e = 2, 20, the maximum

absolute acceleration amax = 1, and the maximum speed vmax = 10. These parameter

values roughly simulate data collection by a helicopter as in [TMF+07] by assigning units

as follows: meters for d and r, seconds for e, m/s2 for amax, and m/s for vmax. Also

the values of r are chosen to simulate the communication ranges of IEEE 802.15.4 and

802.11, respectively.

1Otherwise, it would require infinite acceleration, since we assume a path consists of only line
segments and not curves.
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Table 6.1: Correlation coefficients between total cost and total travel time for different
cost metrics: 20 nodes, amax = 1, vmax = 10.

Radius (d) 150 500

Comm. range (r) 10 100 10 100

Exec. time (e) 2 20 2 20 2 20 2 20

Num. edge 0.992 0.987 0.982 0.850 0.984 0.982 0.988 0.988

Euclidean dist. 0.997 0.996 0.990 0.835 0.999 0.999 0.999 0.999

Uncovered dist. 0.992 0.993 — — 0.999 0.999 0.935 0.935

6.2.2 Results

Table 6.1 shows the correlation coefficients. Except one case, both number of

edges and Euclidean distance had correlation coefficient above 0.98, and Euclidean dis-

tance had higher correlation than number of edges. In the exceptional case (d, r, e) =

(150, 100, 20), the correlation was weaker than other cases. This is most likely because

the travel time is more influenced by the execution time rather than the moving time,

since the deployment area is small relative to the size of communication range and also

the execution time is long. Uncovered distance had similar results but had no data

when (d, r, e) = (150, 100, 2) and (d, r, e) = (150, 100, 20). These are the cases when the

communication range is so large that the total cost measured by uncovered distance is

always zero.

These results suggest that number of edges and Euclidean distance are both

appropriate metrics that precisely measure the goodness of paths. In the rest of the

paper, we use Euclidean distance as the cost metric.

6.3 Approximation Algorithm

We design an approximation algorithm for the Label-Covering Tour problem.

As discussed earlier, Euclidean distance is used as the cost metric. This enables us to

design an approximation algorithm by using known algorithms for metric TSP where

the triangle inequality holds. Figure 6.2 shows the approximation algorithm for Label-

Covering Tour. It first finds a TSP tour T by using any algorithm (exact or approximate)

for TSP. Then, using dynamic programming, it finds a short label-covering tour that is

obtained by shortcutting T . For the dynamic programming, we use two tables d[i] and

tour[i]. Letting T (i) denote the i-th vertex in tour T , tour[i] is the shortest of all the

paths from T (0) to T (i) that are obtained by shortcutting T (0)T (1)T (2)...T (i) and cover
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• Make a TSP tour T using an exact or approximation algorithm for metric TSP

• Initialize d[0]← 0, d[1...n]← +∞, tour[0]← {T (0)}, and tour[1...n]← ∅.

• For i = 0 to n− 1 do

– For j = i + 1 to n do

∗ Check if the line segment T (i)T (j) is within distance r from each of the nodes

T (i + 1), ..., T (j − 1).

∗ If yes and d[i] + |T (i)T (j)| < d[j], update the tables by d[j]← d[i] + |T (i)T (j)|
and tour[j]← append(tour[i], T (j)).

• Return tour[n].

Figure 6.2: Approximation algorithm for Label-Covering Tour: T (i) is the i-th vertex
that the tour T visits. T (0) is the starting vertex.

the labels T (0), ..., T (i). d[i] is the length of tour[i].

Computation time of the algorithm is CTSP + O(n3), where CTSP denotes the

computation time of the algorithm used for solving TSP.

Next we analyze the approximation factor of the algorithm. Let TOPT , TAPP

denote the optimal label-covering tour and the approximate label-covering tour, respec-

tively. Total length of tour T is denoted as |T |. Also let α be the approximation factor

of the TSP algorithm used in the first step of the approximation algorithm. Then we

have the following theorem:

Theorem 6.3.1. |TAPP | ≤ α(|TOPT |+ 2nr)

Proof. Clearly |TAPP | ≤ α|TTSP |, where TTSP is the optimal TSP tour. We give a

lower bound to TOPT by constructing another TSP tour by modifying TOPT . Figure 6.3

shows the idea of construction. The points A and B (shown in filled circles) are visited

by TOPT and other points in the figure (shown in non-filled circles) are not. We call

the former “visited points” and the latter “non-visited points”. By the definition of a

label-covering tour, any non-visited points are within distance r from either a traversed

edge or a visited point of a label-covering tour. For example in the figure, all of AC

and DD’, ..., GG’ have the length less than r. Then we can construct a “tour”2 that is

2This is not a tour in our definition because it does not consist of edges between the nodes.
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Figure 6.3: Constructing a TSP tour from the optimal label-covering tour TOPT : every
non-visited point is within distance r from TOPT .

identical to TOPT but takes a detour to visit each non-visited point (e.g., ACAD’DD’...B).

Since there are at most n non-visited points, total length of detour is at most 2nr.

This “tour” is easily converted to a shorter TSP tour by skipping all additional points

(e.g., D’, E’, ...) and apply shortcutting so that each point is visited exactly once.

Therefore, we have |TOPT |+ 2nr ≥ |TTSP |. The theorem follows by combining this and

|TAPP | ≤ α|TTSP |.

6.4 Performance Evaluation

We evaluate the performance of the approximation algorithm by numerical ex-

periments. We have implemented the algorithm in MATLAB.

6.4.1 Method

We deploy n nodes in the circular area of radius d that has the base station at

the center. The nodes are randomly placed within the circle. Each of the nodes has

circular communication range of radius r. For each edge connecting a pair of nodes, we

assign a set of labels by calculating the distance from the line segment and each node.

We use Concorde TSP solver [Con] to find an optimal TSP tour.

Using the tour, we transform the original problem to 1-D DMS problem and

calculate the travel time by using the heuristic algorithm presented in Section 5.4. We

assume that each node has the same execution time e = 10[sec] and also that the speed

of data mule needs to be zero at each point where it changes the direction3.

3Otherwise, it would require infinite acceleration, since we assume a path consists of only line
segments and not curves.
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r = 1 r = 20 r = 50

r = 100 r = 200 r = 300

Figure 6.4: Label-covering tours for different communication ranges: 40 nodes, d = 500;
Path of data mule is shown in bold line.

For each (n, d, r), we generate 50 node deployments and take the average for the

results. For 1-D DMS, we use the maximum absolute acceleration amax = 1[m/s2], and

the maximum speed vmax = 10[m/s] to roughly simulate the motion of a helicopter as

in [MFL+08].

Figure 6.4 shows some examples of label-covering tours for a node deployment

with different communication ranges. As the communication range grows, the number

of visited points becomes less and the path length becomes shorter.

6.4.2 Effect of Node Density and Network Size

Figure 6.5(a) shows the relation between the communication range and the total

travel time for different node density. To see how the size of communication range

affects the travel time, we have normalized the total travel time by the one when the

communication range is zero. The graph shows that the total travel time is reduced in all

cases by up to 60% for this parameter set, suggesting the proposed problem formulation

and algorithm altogether successfully exploit the breadth of communication range. The
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Figure 6.5: Comparison of total travel time for (a) different node density (40 nodes) and
(b) different number of nodes (d = 500 for 20 nodes): amax = 1, vmax = 10.

amount of reduction is bigger when the density is higher (i.e., smaller d), except the

case of d = 150 for large communication ranges. This is because the total travel time is

already very close to the lower bound, which is the product of the execution time and

the number of nodes.

Figure 6.5(b) shows the effect of number of nodes, varied from n = 5 to n =

100. We set d to 500 when n = 20, and changed d in proportion to
√

n so that the

density remains constant. The results show the reduction of total travel time for large

communication ranges, but no big difference for different number of nodes.

6.4.3 Comparison with Other Strategies

Next we compare the travel time of our approximation algorithm with those of

other algorithms as listed below.

• TSP-like: Based on the model used in [SRS04]. Data mule visits all nodes. It stops

at each node location to collect data and moves to the next node. While moving,

the speed is constant at vmax. We use optimal TSP tours.

• Stop-and-collect: Based on the model used in [MY07]. Data mule takes a label-

covering tour, as in our approximation algorithm. However, it stops to collect

data when it is in the communication range of each node. While moving, speed

is constant at vmax. We find tours by using our approximation algorithm with

optimal TSP tours4.

4We could not use the path selection algorithm proposed in [MY07], since it has a restriction
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• Message Ferrying: Based on the algorithm proposed in [ZA03]. Data mule visits all

nodes as in the TSP-like algorithm, but communication is also done while moving.

Speed is variable between 0 and vmax. Speed and data collection schedule are

determined by solving a linear program such that the total travel time is minimized.

We use optimal TSP tours.

To allow direct comparison, we set amax = +∞ for our proposed approximation algo-

rithm, since all other algorithms assume data mule can change its speed instantly. Note

that when amax = +∞, we can obtain an exact solution for the 1-D DMS problem by

solving a linear program, as discussed in Section 4.4.

Figure 6.6 shows the results for a representative case for 40 nodes. When the

communication range is small, the travel time does not differ among the algorithms.

As the communication range grows, Message Ferrying and the proposed algorithm show

larger improvements than other two methods, and the proposed algorithm gets gradually

better than Message Ferrying. When the communication range is 150, the proposed

algorithm is nearly 10% better than Message Ferrying, 40% better than Stop-and-collect,

and more than 50% better than TSP-like method.

When there is an acceleration constraint (i.e., amax 6= +∞), which none of these

studies has addressed, the gaps between the proposed algorithm and others are expected

to be larger. This is because all of these methods require the data mule to stop more

on the configuration of data mule and deployment area. Specifically, it assumes the data mule
starts from the left end of the deployment area, travels toward the right end, and comes back to
the initial position.
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frequently than the proposed algorithm does.

These results suggest that the proposed algorithm effectively exploits broader

communication range for planning the path of the data mule.

6.5 Related Work

As far as we know there is no previous study on the Label-Covering Tour problem,

but there are some studies on similar problems. The Steiner tree problem [GJ79] is similar

in choosing a subset of vertices in the graph to minimize the cost metric, but it finds

a tree instead of a tour. The Prize Collecting Traveling Salesman Problem (PCTSP)

[Bal89] is a variation of the traveling salesman problem and finds a tour of subset of

vertices. The difference is that, in PCTSP each vertex vi has a profit pi and the problem

is to find a minimum length tour such that the total profit of the tour is more than or

equal to some value p.

The Covering Tour Problem (CTP) [GLS97] is one of the most related problems

and defined as follows.

Let G = (V ∪W, E) be an undirected graph, where V ∪W is the vertex set,
V = {v1, ..., vn}, and E = {(vi, vj)|vi, vj ∈ V ∪ W, i > j} is the edge set.
Vertex v1 is a depot, V is a set of vertices that can be visited, T ⊆ V is a set
of vertices that must be visited (v1 ∈ T ), and W is a set of vertices that must
be covered. A distance metric C = (cij) satisfying the triangle inequality is
defined on E. The CTP consists of determining a minimum length tour or
Hamiltonian cycle over a subset of V in such a way that the tour contains all
vertices T , and every vertex of W is covered by the tour, i.e., it lies within a
distance c from a vertex of the tour.

Gendreau et al. [GLS97] developed an exact branch-and-cut algorithm based on an

integer linear program formulation of the CTP problem, and also a heuristic algorithm.

There are some differences between the CTP and the Label-Covering Tour problem. For

example, there is no distinction between V and W in the Label-Covering Tour problem.

In addition, the term “cover” in CTP means the covering by a vertex, as can be seen

from that every vertex of W must be within a distance c from a vertex of the tour. On

the other hand, in Label-Covering Tour we allow a vertex to be covered not only by a

vertex but also by an edge, considering the distance between a point and a line segment.

The traveling salesman problem with neighborhoods (TSPN) is also a closely

related problem and is indeed used for formulating the path selection problem. In Section
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6.1.3 we have already discussed the pros and cons of using the TSPN problem and why

we chose the Label-Covering Tour problem.

6.6 Summary

In this chapter we have presented a formulation of path selection problem as a

graph problem called the Label-Covering Tour problem. Since the Label-Covering Tour

problem is NP-hard, we have designed an approximation algorithm. We have experi-

mentally demonstrated that the approximation algorithm finds near-optimal paths and

achieves much smaller latency compared to previously proposed algorithms, especially

when the communication range is large.
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Chapter 7

Hybrid Approach with Multihop

Forwarding

In this chapter we consider the combined approach of data mule and multihop

forwarding. In the “pure” data mule approach that we have discussed in Chapter 4 –

6, the energy consumption at each node is minimum and the data delivery latency is

relatively large. On the other hand, multihop forwarding requires greater energy due

to increased data transfer at each node but the latency is expected to be much shorter.

In the hybrid approach, these two approaches are combined in such a way that the

designers of sensor networks can balance the energy consumption and the data delivery

latency according to application needs. We formulate the problem by extending the

DMS problem and design centralized and distributed algorithms. Then we implement

the combined approach on the ns2 network simulator [ns2] to experimentally evaluate

the effectiveness of the formulation and algorithms.

7.1 Forwarding Problem

We consider a combined approach of data mule and multihop forwarding. In the

DMS problem framework, we realize this by defining a new “forwarding” problem that

is placed in front of the path selection problem as shown in Figure 3.2. The forwarding

problem is to determine how much data each node forwards to other nodes and to the

data mule while satisfying a predetermined energy consumption constraint.

120
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7.1.1 Problem Description

The objective of the forwarding problem is to find a forwarding plan such that

the induced DMS problem has the shortest total travel time. Different from the “pure”

data mule approach, in which each node sends its data only to the data mule, it can

now forward its data to other neighboring nodes as well. More importantly, if a node

decides to forward all data to other nodes, the data mule does not need to collect data

directly from this node. Then the data mule can possibly take a shorter path to reduce

the travel time.

We present a centralized algorithm based on linear program formulation. Since

finding the optimal forwarding plan that minimizes the travel time in the induced DMS

problem is at least as hard as the DMS problem, we make it an independent problem by

changing the objective function.

We minimize the average distance of nodes from the base station weighted by

the amount of data at each node after forwarding. There are three reasons why this is

a reasonable choice as the objective function. First, this function is likely to shorten

the path of the data mule by forcing the nodes at the edge of network to primarily use

forwarding. Secondly, this function allows a smooth transition between the data mule

approach and multihop forwarding. As the energy consumption limit grows, more data

is forwarded closer to the base station. In a connected network, all the data is eventually

forwarded to the base station without using a data mule, which is equivalent to “pure”

multihop forwarding. Finally, since the function is linear, we can formulate the problem

as a linear program as described below.

7.2 Centralized Algorithm by Linear Programming

We assume the location of sensor nodes and the connectivity between them are

known. We also assume the following parameters are given:

• λi: Data generation rate of node i

• Elimit: Energy consumption limit at each node per unit time

• Er, Es: Energy consumption for receiving and sending unit data

• R: Bandwidth, i.e., maximum data rate that each node can communicate with

other nodes and the data mule
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We use variable xij to represent the amount of data sent from node i to j per

unit time. Let λ′
i denote the data rate that node i sends directly to the data mule. λ′

i is

defined by the difference of incoming data rate and outgoing data rate as follows:

λ′
i =

∑

j

xji + λi −
∑

j

xij . (7.1)

Then we have the following linear program:

Minimize
∑

i diλ
′
i

Subject to

• ∀i, xii = 0.

• (Connectivity) ∀i, j s.t. i 6= j, xij ≥ 0 if node j is in the communication range of

node i. Otherwise xij = 0.

• (Flow conservation) ∀i, λ′
i ≥ 0.

• (Energy consumption) ∀i, Er

∑

j xji + Es

(
∑

j xji + λi

)

≤ Elimit,

• (Bandwidth) ∀i, 2
∑

j xji + λi ≤ R.

In the objective function, di is the distance between node i and the base station.

In the energy consumption constraint, the first term in the left hand side is the amount

of energy consumed by receiving data and the second term is that for sending data.

About the latter, node i sends
∑

j xij to other nodes and λ′
i to the data mule per unit

time, when averaged over time. Using Eq. (7.1), the sum of these two equals
∑

j xji +λi.

The bandwidth constraint is obtained using the amount of incoming data
∑

j xji and

the outgoing data
∑

j xij + λ′
i.

The formulation above is also capable of expressing the case in which each node

communicates along the preconstructed routing tree as in [XWXJ07]. This is possible

by replacing the connectivity constraint with the following one:

• (Routing tree) ∀i, j s.t. i 6= j, xij ≥ 0, if node j is node i’s parent in the routing

tree. Otherwise xij = 0.

7.3 Distributed Algorithm

The LP formulation above yields the optimal forwarding plan in the sense that

it minimizes the weighted distance of data from the base station. However in practice, it
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may be difficult to tell each node about the list of forwarding destination and the data

rate for each. To cope with this issue, we present a distributed algorithm where each

node determines the forwarding destination and the data rate in a distributed manner.

In the algorithm, we consider the case that each node forwards the data along

a routing tree. For connected networks, there is only one routing tree rooted at the

base station. For disconnected networks, there are multiple routing trees, one for each

connected cluster. In each cluster, the node closest to the base station is chosen as the

root. We describe how to identify connected clusters, construct intra-cluster routing

trees, and plan the forwarding rate.

7.3.1 Clustering and Constructing Routing Trees

We can simultaneously find connected clusters and construct intra-cluster routing

trees by extending DSDV [PB94], which is a routing scheme based on the distance vector

algorithm. We extend DSDV so that each node exchanges ID and position of the interim

root node. An interim root node is the node that is reachable and closest to the base

station as far as the current node knows. The information on root node is updated when

the current node knows the one closer to the base station, and is propagated to neighbors

when it is updated. These communications can be piggybacked on the update packets

of normal DSDV. When it reaches a convergence, each node has the correct information

on the root node and the next hop for reaching the root.

To plan the forwarding rate, each node needs to learn the set of immediate child

nodes as well as the parent. This is realized by each node sending a message to the

parent node along the established routing tree.

7.3.2 Planning the Forwarding Rate

Forwarding rate is calculated in the following three phases.

Request

The request phase is initiated from the leaf nodes and proceeds toward the root.

Each node tells the parent the cumulative data rate, which is the total data rate generated

at the node and its descendants. Let Λi denote cumulative data rate of node i, which is
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defined as follows:

Λi ≡ λi +
∑

j∈Ci

Λj , (7.2)

where Ci is the set of immediate children of node i.

Allocate

The allocate phase proceeds downwards from the root. Parent node tells each

immediate child the allocated data rate, which is the maximum data rate that the parent

can receive from this child.

Let y
(in)
i denote the total data rate that node i receives from its children. Then

y
(in)
i needs to satisfy

Ery
(in)
i + (λi + y

(in)
i )Es ≤ Elimit, (7.3)

and thus

y
(in)
i ≤ Elimit − λiEs

Er + Es
. (7.4)

For each child node, we distribute the maximum data rate proportionally by the cumu-

lative data rate. Thus the maximum data rate Xj that child node j can send to the

parent i is

Xj =
Λj

∑

k∈Ci
Λk

Elimit − λiEs

Er + Es
. (7.5)

Plan

The plan phase proceeds upwards from the leaf nodes. Node determines the

forwarding rate and tell it to the parent. For node i, the total data rate y
(out)
i to be sent

to either the parent or the data mule is

y
(out)
i = λi + y

(in)
i , (7.6)

where y
(in)
i =

∑

j∈Ci
xji.

We try to forward the data to parent node as much as possible and send the

remaining data to the data mule. Therefore, if we let node j be the parent of i, data

rate xij is

xij = min
{

y
(out)
i , Xi

}

. (7.7)
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By setting xij in this way, inequality (7.4) is satisfied. Data rate λ′
i to the data mule is

λ′
i = y

(out)
i − xij . (7.8)

7.4 Implementing Hybrid Communication Model

In the combined approach of data mule and multihop forwarding, each node po-

tentially communicates with multiple destinations including the data mule. In addition,

for the communication with the data mule, each node needs to send the data when the

data mule is within the communication range. In this section, we discuss how we imple-

ment this hybrid communication model. Figure 7.1 shows the basic idea. The protocol

works on top of MAC layer and can work with any MAC protocols.

7.4.1 Node-to-Node Communication

In node-to-node communication for multihop forwarding, each node sends the

data to one of the forwarding destinations. To satisfy the energy consumption constraint,

it needs to follow the forwarding rate for each of the destinations that is determined by

solving the forwarding problem. It also needs to have a storage for the data to be sent

to the data mule.

Handling Incoming Data Packets

A node receives data packets from other nodes by node-to-node forwarding. It

also generates data by itself periodically at the built-in sensor module. When a node

receives these data packets, it adds them at the end of the storage queue.

Choosing a Forwarding Destination

When there is a data packet in the storage, the node may forward it. It sends a

packet to one of the forwarding destinations if there is one whose actual forwarding rate

is lower than the predetermined rate. It chooses the destination that is most behind the

schedule. For this purpose, each node records the cumulative amount of data sent to

each destination.

When a node forwards data, it fetches a data packet from the end of the storage

queue, which is the packet that is received most recently. This is to avoid the delay to
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Figure 7.1: Combined data mule and forwarding communications

accumulate during node-to-node forwarding, since it would cause large delivery latency

in case a packet is forwarded node-to-node many times.

7.4.2 Communication with the Data Mule

According to the job schedule determined by solving the DMS problem, each

node needs to send certain amount of data to the data mule at certain time duration.

We enable this by letting the data mule initiate the communications. According to the

schedule, the data mule sends a request packet to the node that it collects data from. A

request packet contains the information about the size of data to be sent and the request

ID. The request ID is unique for each allocation in the job schedule.

When a node receives a request packet from the data mule, it fetches the specified

amount of data from the beginning of the storage queue (i.e., received least recently)

and sends it back to the data mule packet by packet. The request ID is included in each

of the response packets and it serves as an acknowledgment for the request.

When the data mule does not receive any response packets for a request after a

certain time period, it sends the same request again.

7.5 Simulation Experiments

We experimentally evaluate the combined approach of data mule and multihop

forwarding in the periodic data generation case, specifically on the effectiveness of for-

mulation and algorithms in optimizing the energy-latency trade-off.
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Figure 7.2: Network topology: (a) Connected network; (b) Disconnected network. White
circle is the base station. Line between two circles represents that they are within the
communication range. Grid size g is set to 0.8r, where r is the radius of communication
range, and a uniformly random disturbance of [−0.025r, 0.025r] is added to the position
of each node.

7.5.1 Methods

We have implemented the centralized and distributed algorithms for the for-

warding problem and the algorithms for the DMS problem in MATLAB with YALMIP

interface [Löf04] and SeDuMi [Stu99] for LP solver. The MATLAB program generates

a Tcl script for ns2 [ns2], which simulates the movement of the data mule and the

communication among the data mule and the nodes.

To assess the performance, we measure the delivery latency for each data packet

from the time it is generated to the time the base station receives it either from neigh-

boring nodes or via the data mule. For each test case, the simulation on ns2 is repeated

multiple periods until it reaches stability. We consider it stable when the average delivery

latency of the data received in the current period is within ±1% of that of the previous

period. If it is stable, we use the data for the next period as the final results.

Figure 7.2 shows two network topologies we use for the experiments. Both of

them have 100 sensor nodes, one base station and one data mule, but one is a connected

network and the other is a disconnected network. The disconnected network consists of

four connected networks of 25 nodes and the base station is not directly reachable from

any nodes.

For the data mule’s movement, we use the variable speed model. The range

of speed is 0 ≤ v ≤ 10m/s, which roughly simulates the movement of a UAV used in



128

−500 0 500

−400

−300

−200

−100

0

100

200

300

400

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

 

 

Figure 7.3: Example of forwarding plan and calculated path: Connected network,
Elimit = 10E, centralized forwarding algorithm. Nodes in white forward all data and the
data mule does not collect data directly from them. Path is shown in bold line.

[TMF+07].

For ns2 simulator, we use FreeSpace propagation model with 100m communica-

tion range. We use 802.11 MAC (with RTS/CTS) with 2 Mbps raw bandwidth, which

is the default value for ns2. Packet size is 400 Bytes.

Other parameters are set as follows. Energy consumption for sending/receiving

unit data is assumed to be equal, i.e., Er = Es. The rate of data generation at each node

λi is 100 Byte/sec. Let E denote the energy consumption at each node for “pure data

mule” case without any node-to-node forwarding. Then E is expressed as λiEs, and this

is the minimum possible value of Elimit. We measured the latency for Elimit = E, ..., 50E.

Effective bandwidth R is set to 400 Kbps, considering the overhead of RTS/CTS and

packet header.

7.5.2 Results

Figure 7.3 is an example of forwarding plan and calculated path. The small

circles represent the nodes and large circles are their communication ranges. Color of

each circle represents how much data the node sends directly to the data mule. White

circles mean zero and colored circles mean nonzero. As the forwarding algorithms try

to gather data close to the base station, which is located in the center in this example,

the nodes at the edge of the network forward all data to the ones closer to the center.
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Figure 7.4: Data delivery latency for varying energy consumption limit: (top) connected
network, (bottom) disconnected network. The centralized forwarding algorithm is used.

Nodes that have the base station within their communication range forward all the data

directly to the base station.

In ns2 simulation, the delivery latency reached stability in all tested cases. Aver-

age number of periods until reaching stability was 5.2 (centralized) and 5.6 (distributed)

in the connected network, and 4.0 (centralized) and 4.1 (distributed) in the disconnected

network.

Figure 7.4 shows the simulation results for the connected network and discon-

nected network when the centralized algorithm is used for the forwarding problem. For

both networks, Elimit = E corresponds to the “pure data mule” case. The average la-

tency in this case was 432.81 secs for the connected network and 513.07 secs for the
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Figure 7.5: Average data delivery latency for different forwarding algorithms: (top)
connected network, (bottom) disconnected network.

disconnected network. These are quite similar to the total travel time (440.73 secs and

511.68 secs, respectively). For the connected network, it became “pure multihop for-

warding” when Elimit = 49E, where all the data are sent to the base station by multihop

forwarding and the data mule is not used. The average latency in this case was 4.17 secs.

Figure 7.5 shows the comparison of average data delivery latency between the

two forwarding algorithms. In both of the connected and disconnected networks, the

centralized scheme based on LP formulation achieved shorter average latency than the

distributed algorithm in most of the cases. On average, the ratio of average latency was

1.53 (min:0.93, max:2.05) for the connected network and 1.31 (min:0.95, max:1.80) for

the disconnected network.
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7.5.3 Discussions

For both the connected and disconnected networks, the simulation results showed

the decrease of data delivery latency as the energy consumption limit increases. The de-

crease was almost monotonic, demonstrating fine-grained control of the trade-off between

energy and latency. It was also shown that formulation of the forwarding problem, espe-

cially the choice of objective function is appropriate, due to the fact that the centralized

algorithm achieved a better trade-off than the distributed one, which yields suboptimal

forwarding plans.

We can also observe that the travel time of the data mule is nearly equal to the

average latency for the data delivered by the data mule. It demonstrates that minimizing

the travel time for the purpose of minimizing the data delivery latency is a valid approach.

In addition, this implies that we can estimate the average delay solely by solving the

DMS problem.

Figure 7.6 shows the histograms of data delivery latency for two different energy

consumption limits for each of the connected and disconnected networks. As these

figures show, regardless of the different network topology and the different total travel

time, more than 98% of the data has delivery latency within double of the travel time.

This means we can estimate the maximum delivery latency as well as the average.

In practice, our problem formulation and algorithms provide sensor network de-

signers a good estimate of the data delivery latency when there is an energy consumption

limit, which is imposed by their application scenarios. Conversely, since the energy-

latency curve is nearly monotonic and the problem is solved in relatively short time1,

by using binary search, we can also estimate the maximum energy consumption at each

node when there is a constraint on the average or the maximum of data delivery latency,

as assumed in [XWXJ07].

7.6 Summary

In this chapter we presented the hybrid approach of data mule and multihop for-

warding. The primary objective of combining these two approaches is to realize a flexible

trade-off between energy consumption and data delivery latency. We have formulated

the multihop forwarding as the Forwarding subproblem. Then we have designed a cen-

1For 100 nodes case, solving the forwarding problem and the DMS problem altogether takes
around 10 secs on MATLAB running on a PC.
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Figure 7.6: Histogram of data delivery latency: For the connected network, gray bars
are for the data delivered to the base station from neighboring nodes, and black bars are
for the data delivered via the data mule. The centralized forwarding algorithm is used.

tralized algorithm based on linear programming and also a distributed algorithm. We

have also implemented the hybrid communication model and evaluated the performance

by ns2. The results showed nearly monotonic decrease of the data delivery latency for

larger energy consumption limit, demonstrating the effectiveness of the formulation and

the algorithms in optimizing the energy-latency trade-off.
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Chapter 8

Extended DMS: Multiple Data

Mules Case

In Chapter 8 and 9, we discuss two extensions of the DMS problem framework.

In this chapter, we first discuss the case of multiple data mules. Using multiple data

mules is a feasible option in some application scenarios to achieve better performance.

We show how the DMS problem framework can be extended to formulate the problem

of scheduling the motion and communication of multiple data mules. For 1-D case, we

can formulate the problem as a scheduling problem with multiple processors. For 2-D

case, path selection problem for multiple data mules is defined as the k-Label-Covering

Tour problem by extending the Label-Covering Tour problem for single data mule case

discussed in Chapter 6.

8.1 1-D DMS for Multiple Data Mules

In this section we discuss one dimensional DMS (1-D DMS) problem for multiple

data mules case.

8.1.1 Problem Definition

First we define k-DM 1-D DMS by extending the 1-D DMS problem:

k-DM 1-D DMS
INSTANCE: Set J of location jobs, for each location job τ ∈ J , an execution
time e(τ), and a set I(k)(τ) of feasible location intervals, for each feasible lo-
cation interval I(k) ∈ I(k)(τ), a release location r(I(k)) and deadline location

133
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d(I(k)), a start X
(k)
s , a destination X

(k)
d , number of data mules K, and a

constant T .
QUESTION: Is there a feasible speed control plan and a feasible job schedule
for K data mules satisfying Tk ≤ T for all k, where Tk is the travel time of

k-th data mule from X
(k)
s to X

(k)
d ?

Depending on the mobility assumption, there may be additional constraints (e.g., max-

imum speed, maximum acceleration) that determine the feasibility of a speed control

plan. In the rest of the paper, we focus on an optimization version of the problem, in

which we minimize maxk Tk.

For the optimization problem, we can use other objective functions as well. One

example is average travel time over all the data mules
∑

k Tk/n. However, it does not

appropriately reflect the overall data delivery delay, for example when some of the data

mules do not travel at all and have zero travel time. To avoid this, average travel

time weighted by the amount of collected data (
∑

k wkTk) would be a more appropriate

metric. However, this allows a small amount of data having a very large delay, which is

also not preferable in some applications. It also has a practical issue that it is hard to

be efficiently solved due to the non-linear cost function. Maximum travel time maxk Tk

gives a guarantee on the data delivery latency, and appropriate for applications in which

the maximum delivery latency is important. Although this is also a nonlinear function,

it can be converted to a linear function using additional constraints, as we see later.

8.1.2 Basic Cases

First we discuss the basic cases, i.e., Constant speed and Variable speed cases. We

consider two separate cases depending on whether the paths of data mules are identical

or not.

For Identical Paths

When paths are identical for all data mules, feasible location intervals of each

job are identical as well. We define the term “symmetric schedule” as follows. We call

a schedule is “symmetric” when the speed control plan and job schedule are identical in

all data mules. Then we have the following theorem:

Theorem 8.1.1. For the optimization version of k-DM 1-D DMS with identical paths

for Constant speed or Variable speed models, there exists an optimal symmetric schedule.
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Proof. We show there always exists an equal or faster symmetric schedule than asym-

metric one. Consider splitting the total travel interval into short location intervals by

dividing at a location which is either a release or deadline location of a job. Then,

without loss of generality, we can assume each data mule moves at a constant speed in

each of these short location intervals. For each of these intervals, let v1, v2, ..., vn denote

the data mules’ speed in the location interval. Without loss of generality, we assume

v1 ≤ v2 ≤ ... ≤ vn. Total amount of collected data c satisfies c ≤ ∑i l/vi, where l is

the length of the location interval. Maximum time is l/v1. Now, consider a symmetric

schedule in which each data mule moves at v′ = n/(
∑

i 1/vi), which is the harmonic

mean of the original speed. Since n(l/v′) =
∑

i l/vi ≥ c, it is possible to collect the same

amount of data as in the original schedule. Maximum time is l/v′ ≤ l/v1, where the

equality is satisfied if and only if v1 = ... = vn.

To find an optimal schedule, we first divide the execution time of each location

job equally to each data mule and then apply the optimal algorithms for single data mule

case.

For Arbitrary Paths

When the path of each data mule is different, we formulate the problem as a linear

program in the following way. The formulation is based on the same idea as the single

data mule case (Section 4.4.2), but we introduce additional variable z and constraints

to convert the min-max objective into linear objective. For k-th data mule, we split

the location interval [X
(k)
s , X

(k)
d ] into (2m(k) + 1) location intervals [l

(k)
0 (= X

(k)
s ), l

(k)
1 ],

[l
(k)
1 , l

(k)
2 ], ..., [l

(k)
2m, l

(k)
2m+1(= X

(k)
d )] (l

(k)
i ≤ l

(k)
i+1), where m(k) is the number of feasible

location intervals of all location jobs that are executable at this data mule, and each l
(k)
i

is either a release location or a deadline location. Let z
(k)
i denote the time that the k-th

data mule spends in location interval [l
(k)
i , l

(k)
i+1], and p

(k)
i (τ) denote the time it allocates

to job τ in this interval. Using a variable α to represent min-max objective, we have the

following linear program:

Minimize α

Subject to

• (Min-max objective) ∀k,
∑2m(k)

i=0 z
(k)
i ≤ α. Note that minimizing α is equivalent to

minimizing the maximum of the left hand side over all k.
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Figure 8.1: Example of non-optimal symmetric schedule (with acceleration constraint):
Two location jobs have zero-length feasible location intervals with execution time e.

• (Max/min speed) ∀k, 0 ≤ ∀i ≤ 2m(k), vminz
(k)
i ≤ l

(k)
i+1− l

(k)
i ≤ vmaxz

(k)
i for variable

speed model. For constant speed model, (l
(k)
i+1 − l

(k)
i )/z

(k)
i = (l

(k)
j+1 − l

(k)
j )/z

(j)
i for

all i, j satisfying l
(k)
i+1 − l

(k)
i > 0, l

(k)
j+1 − l

(k)
j > 0.

• (Positive allocation time) ∀k, 0 ≤ ∀i ≤ 2m(k), ∀τ ∈ J , p
(k)
i (τ) ≥ 0.

• (Feasible intervals) ∀k, 0 ≤ ∀i ≤ 2m(k), ∀τ ∈ J , if [l
(k)
i , l

(k)
i+1] 6∈ I(k)(τ), p

(k)
i (τ) = 0.

• (Job completion) ∀τ ∈ J ,
∑

k

∑2m(k)

i=0 p
(k)
i (τ) = e(τ).

• (Processor demand) ∀k, 0 ≤ ∀i ≤ 2m(k),
∑

τ∈J p
(k)
i (τ) ≤ z

(k)
i .

8.1.3 General Case

When there is a constraint on acceleration (i.e., Generalized model), the problem

for multiple data mules case is hard, as implied by the hardness of single data mule case.

One interesting observation is that, for identical paths case, symmetric schedule

is not always optimal. Figure 8.1 shows such example. In this example, the data mules

travel from location 0 to 3l. Each of two location jobs (representing communication

with two sensor nodes) have a zero-length feasible location interval at location l and 2l,

respectively. All curves in location-speed graphs represent acceleration/deceleration at

the maximum rate a. Since t1 = 2
√

l/a and t2 = 2
√

2
√

l/a, we have 3t1 + e > t1 + t2 + e

and thus the symmetric schedule is not optimal.
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• Sort the jobs in the ascending order of the number of executable data mules.

– For the jobs with the same number of executable data mules, sort them by execution

time in the descending order (i.e., long job first).

• For all jobs, from head of the list,

– Determine the strategy such that the maximum of current travel time is minimized.

The strategy is one of the followings:

∗ Assign: Assign the job to one data mule that can execute it.

∗ Spread: Divide the job equally to all data mules that can execute it.

– Remove τ from the list and update the travel time of each data mule.

Figure 8.2: Heuristic algorithm for k-DM 1-D DMS problem with acceleration constraint

We design a heuristic algorithm based on the idea similar to List Scheduling

[Gra69]. Figure 8.2 shows the algorithm. First the jobs are sorted in decreasing order of

the number of executable data mules. This is to assign the jobs that are executable at

only one data mule first. In this way, there will be more freedom later in balancing the

travel time of each data mule by appropriately allocating the jobs, which are executable

at many data mules. The main idea of the algorithm is to assign jobs one by one to a

data mule so that the maximum travel time is minimized. In addition to assigning a job

to one of the data mules, we can also choose to spread the job to all data mules that can

execute it by equally dividing the job’s execution time, if the resulting maximum travel

time is shorter than assigning the job to one data mule.

When each location job is not allowed to be executed by multiple data mules, we

modify the heuristic algorithm by eliminating the “spread” option when determining the

strategy. This modified version of the algorithm is also applicable to the case without

acceleration constraint. Although it is not optimal anymore when applied to constant

speed or variable speed cases, it is appropriate when it is infeasible for each node to

communicate with multiple data mules.
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8.2 Path Selection for Multiple Data Mules

In this section, we first define the path selection problem for multiple data mules

case and then present an approximation algorithm. We also present an integer linear

program (ILP) formulation of the problem and apply relaxations in several ways to

obtain the lower bounds. In the end we present the results from simulation experiments.

8.2.1 Problem Definition

Based on the Label-Covering Tour problem1 for single data mule case, we de-

fine k-Label-Covering Tour (k-LCT) problem for k data mules case as follows. We are

given an undirected complete graph G = (V, E) where each vertex in V = {v0, v1, ..., vn}
is a point in R2, a cost function on edges c : E → Q+

0
, a set L = {l1, ..., ln} of la-

bels, and constants r ∈ Q+
0

and K ∈ Z+. Each edge eij ∈ E is associated with

subset Lij ⊆ L. For p = 1, ..., n, lp ∈ Lij iff the Euclidean distance between vp and

edge eij is equal to or less than r. A subtour T is a list of subset of all vertices that

starts and ends with v0, allowing multiple visits to each vertex. A set of subtours

{T1, T2, ..., TK} is “label-covering” when it satisfies at least one of the followings for

p = 1, ..., n: 1) ∃k, eij ∈ Tk(E), lp ∈ Lij , where Tk(E) is the set of edges traversed by

Tk, or 2) dist(v0, vp) ≤ r, where dist(vi, vj) is the Euclidean distance between vi and

vj . Find a set of label-covering subtours {T1, T2, ..., TK} that minimizes the maximum

of cost of subtours maxk

∑

eij∈Tk(E) c(eij).

As in the previous section, we focus on the case that c is the Euclidean distance.

8.2.2 Approximation Algorithm

Our strategy in designing an approximation algorithm is to solve TSP for k

salesmen (k-TSP) first and then to shortcut each subtour so that the label-covering

property is maintained. For solving k-TSP problem, we use k-SPLITOUR algorithm

[FHK78]. k-SPLITOUR algorithm constructs k subtours by splitting 1-TSP tour in the

following way:

• Find a 1-TSP tour R = (v0, v1, ..., vn, v0) with
∑

e∈R(E) c(e) = D.

• For each j, 1 ≤ j < k, find the last vertex vp(j) such that the cost of the path from

v0 to vp(j) along R is not greater than (j/k)(D − 2cmax) + cmax, where cmax =

1Hereafter we call it the “1-LCT” problem for clarity.
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• Find k-TSP subtours {R1, R2, ..., Rk} using k-SPLITOUR algorithm.

• While true,

– For each subtour R, in the decreasing order of total cost,

∗ Find a visited vertex v s.t.

· the label-covering property is maintained if v is skipped by R, and

· c(R)− c(R\v) is maximized.

∗ If v is found, R← R\v and break the inner loop; Otherwise continue.

– If no vertex was skipped in all subtours, stop and output the subtours.

Figure 8.3: Approximation algorithm for k-LCT problem

maxi c(e0i).

• Form k subtours as R1 = (v0, v1, ..., vp(1), v0), R2 = (v0, vp(1)+1, ..., vp(2), v0),

..., Rk = (v0, vp(k−1)+1, ..., vn, v0).

We have the following theorem about the approximation ratio:

Theorem 8.2.1 (Frederickson et al. [FHK78]). If Ĉk is the cost of the largest of the k

subtours generated by k-SPLITOUR algorithm, and C∗
k is the cost of the largest subtour

in an optimal solution of k-TSP, then

Ĉk/C∗
k ≤ α + 1− 1/k,

where α is the bound for the single traveling salesman algorithm.

Figure 8.3 shows the algorithm for the k-LCT problem. In the algorithm, we

first use k-SPLITOUR algorithm to construct k subtours. Then we apply shortcutting

for each subtour as long as the label-covering property is not violated. Shortcutting is

attempted on the longest subtour first. If not successful, we try the second longest one,

and the third one, etc., until there is no subtours that can be shortcutted. We have the

following guarantee on the approximation ratio:

Theorem 8.2.2. If APP is the approximate solution of a given instance of the k-LCT

problem and OPT is the optimal one, APP ≤ (α + 1− 1
k
)(OPT + 2nr), where α is the

approximation ratio of TSP algorithm and r is the communication range.
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Proof. As we construct k-label-covering subtours by shortcutting k-TSP subtours, we

have APP ≤ Ĉk. By definition of the label-covering property, for any unvisited vertex

there exists an edge in k-label-covering subtour within distance c. Thus, by using the

same technique for Theorem 6.3.1 to convert a label-covering tour into a TSP tour, we

have C∗
k ≤ OPT + 2nr. Then, from Theorem 8.2.1, the theorem follows.

8.2.3 Integer Linear Program Formulations

First we give an ILP formulation of the 1-LCT problem. Variables are

• xij ∈ {0, 1}: edge eij = (vi, vj) is included in the tour iff xij = 1

• yi ∈ {0, 1}: node vi is visited iff yi = 1

Constants are

• cij ∈ Q+
0 : cost of edge eij

• di,pq ∈ {0, 1}: equals 1 iff node vi is within the distance r from edge epq.

Then the 1-LCT problem is

Minimize
∑

i,j cijxij

Subject to

xii = 0 (∀i) , y0 = 1 (8.1)

yi ≤
∑

j

xji =
∑

j

xij ≤ (n− 1)yi ∀i (8.2)

∑

p,q

xpqdi,pq ≥ 1 + yi ∀i ≥ 1 (8.3)

1

|S|
∑

i∈S

yi ≤
∑

i∈S,j 6∈S

xij ≤
∑

i∈S

yi ∀S ⊆ V \{v0} (8.4)

1

|S|
∑

i∈S

yi ≤
∑

i∈S,j 6∈S

xji ≤
∑

i∈S

yi ∀S ⊆ V \{v0} (8.5)

Inequality (8.2) enforces in- and out-degree of each vertex to be equal. It also

enforces that both degrees are zero when the vertex is not visited. We obtain this by

combining the following two constraints:

• if yi = 0,
∑

j xji =
∑

j xij = 0

• if yi = 1,
∑

j xji =
∑

j xij
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Inequality (8.3) is the label-covering property. It is obtained by combining the

following two constraints:

• if yi = 0,
∑

p,q xpqdi,pq ≥ 1

• if yi = 1, no constraint (
∑

p,q xpqdi,pq ≥ 2 is trivially satisfied)

Finally, inequalities (8.4) and (8.5) are the constraints for eliminating invalid

subtours. They are obtained by combining the following two constraints:

• if
∑

i∈S yi = 0,
∑

i∈S,j 6∈S xij =
∑

i∈S,j 6∈S xji = 0

• if
∑

i∈S yi > 0,
∑

i∈S,j 6∈S xij ≥ 1 and
∑

i∈S,j 6∈S xji ≥ 1

Note that these subtour constraints consist of exponential number of inequalities. How-

ever, we can use the cutting-plane technique (e.g., [Pat03]), in which we solve the ILP

problem without these constraints first, add only violated inequalities and solve again,

and repeat this until we obtain the tour without invalid subtours.

We can easily extend this formulation to the k-LCT problem in the following

way. Instead of xij , yi, the variables are x
(k)
ij and y

(k)
i , representing whether edge eij is

included in k-th tour (i.e., tour of k-th data mule) and whether vertex vi is visited by k-

th tour, respectively. To allow the min-max objective, we have an additional variable z.

Constants are the same as in the 1-LCT problem. Then, k-LCT problem is to minimize

z subject to ∀k.
∑

i,j cijx
(k)
ij ≤ z and inequalities (8.1)-(8.5), with substituting x

(k)
ij , y

(k)
i

for xij , yi.

8.2.4 Obtaining Lower Bounds

The ILP problem above cannot be solved in a realistic time when the number of

variables is large. Instead, we use that for obtaining lower bounds of the optimal solution

by applying various relaxations.

Lower bounds are useful because of the following reason. In Theorem 8.2.2, we

have obtained a theoretical guarantee on the performance of the approximation algorithm

for the k-LCT problem. However, the upper bound given in the theorem is loose when

r is large. This gives a motivation for evaluation by experiments, in which we compare

the approximate solution with lower bounds to figure out the performance in practical

settings.

We consider the following relaxations to obtain the lower bounds:
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• ILPcover: ILP without subtour constraints: This finds subtours that collectively

satisfy the label-covering property. Note that the number of subtours is arbitrary

and some of them may not include v0.

• LPCP: LP relaxation + cutting plane: first solve LP relaxation of the original

ILP with the subtour constraints for |S| = 2 case. Then, cutting plane method is

applied for at most ten times.

• MaxCost: Trivial lower bound by 2 max{maxi{c0i} − r, 0}. This is the smallest

possible cost to touch the communication range of the farthest node.

We need a different approach to use cutting plane method in LPCP. In the

original ILP formulation, we just needed to find invalid subtours in an intermediate

solution, add subtour constraints for them, and repeat that until we find a valid solution.

However, this does not work in LPCP because intermediate solutions are generally

fractional in the LP relaxation and thus cannot identify invalid subtours directly. Instead,

we regard the value of x
(k)
ij as the weight of edge (i, j) and add the subtour constraints

for the cycles with large mean weight.

Finding a cycle that has the maximum mean weight in a graph is done in poly-

nomial time [Kar78]. We modify the algorithm to find only the cycles with length at

least three and applied it iteratively by eliminating the vertices in the cycle. Subtour

constraints are added if they were not added previously. If no new invalid subtours were

found, or it reached the maximum number of iterations (set to 10), the solution at that

point is used.

The following theorem enables us to obtain a lower bound for k-DM case by

“scaling” the result for 1-DM case:

Theorem 8.2.3. For a given graph G and a lower bound LB1 of the 1-LCT problem for

G, LB1/k ≤ OPTk, where OPTk is the optimal solution for the k-LCT problem for G.

Proof. From any set of k-LCT subtours, by connecting each subtour, we can make a 1-

LCT tour. If there exists a set of k-LCT subtours whose maximum length is strictly less

than OPT1/k, the 1-LCT tour made by connecting these subtours have length strictly less

than OPT1, which is a contradiction. Therefore we have LB1/k ≤ OPT1/k ≤ OPTk.
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Figure 8.4: Randomly generating test cases: An example with two data mules is shown.

8.3 Performance Evaluation

We evaluate the performance of our algorithms in realistic situations by simula-

tion experiments. We first compare the path length by the proposed algorithm with two

other strategies and also with the lower bounds. Then, we compare the travel time in

these strategies by solving the 1-D problem.

8.3.1 1-D DMS

Method

We use MATLAB for simulation experiments. Besides the heuristic algorithms,

we have implemented a naive method for speed control. In the naive method, a data

mule stops to collect data from each node one by one. Specifically, a data mule moves to

the point on the path that is the closest to the node, collects data from the node while

stopping, and moves to the next point. This is similar to the one used in [MY07], though

they do not assume an acceleration constraint. The difference from the experiments in

Section 5.6.1 is that there are multiple data mules this time. Each node is assigned to

the data mule whose path is the closest to it.

We have random nodes only and no fixed nodes (Figure 8.4). The vertical

coordinate of the deployment area is [−(
√

3/2)r, (
√

3/2)r], which is same as the first

case. The path for i-th data mule is a horizontal line on the vertical coordinate of

((2i−1)
√

3/2k−
√

3/2)r, where k is the total number of data mules. This setting makes

each data mule cover the strip of same size. We used the same parameters as the first

experiment: n = 50, r = 100[m], and L = 2100[m]. The number of data mules is

k = 1, 2, 3.
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We set the execution time e = 10[sec]. Each experiment is repeated for 10 times

on each case and the average is used as the result. We use the variable speed with

acceleration constraint as the mobility model of data mules and set amax = 1[m/s2]

and vmax = 10[m/s] to roughly simulate the mobility capability of a radio controlled

helicopter used in [TMF+07].

Results

Next we compare the heuristic algorithm and the naive method in multiple data

mules setting. Since the energy consumption at the nodes measured by the amount of

transmission is identical in both methods, we compare the total travel time.

Figure 8.5 shows examples of speed control plans from these two methods. For

random node placement as shown in Figure 8.5(a), we use two data mules that move

along two dotted horizontal lines. Figure 8.5(b) shows the speed changes of two data

mules in the heuristic algorithm. The travel time of the data mules are 264.55 sec and

266.22 sec, respectively. Figure 8.5(c) shows the ones in the naive method, in which the

travel time is 727.75 sec and 630.28 sec, respectively. Not only the maximum travel time

is much shorter in the heuristic algorithm, travel time is also balanced between two data

mules compared to the naive method.

Figure 8.6 shows the travel time for different number of data mules. For each of

k = 1, 2, 3 case, the average of maximum travel time is 510.99 sec, 275.50 sec, 228.93 sec

for the heuristic algorithm and 1082.69 sec, 725.54 sec, 609.51 sec for the naive method,

respectively. The heuristic algorithm reduced the travel time by 50-60% from the naive

method on average.

8.3.2 Path Selection

We evaluate the performance of the approximation algorithm in Figure 8.3 in

realistic situations by simulation experiments. We first compare the path length by the

proposed algorithm with two other strategies and also with the lower bounds. Then, we

compare the travel time in these strategies by solving the 1-D DMS problem.

Method

We use MATLAB for simulation. For simulations, nodes are deployed at random

locations in a circular area with the base station at the center. Number of nodes is 40
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Figure 8.5: Example of speed control plans (Number of data mules k = 2): (a) Node
placement. Filled circles are the node locations and large circles represent communi-
cation ranges. Two dotted lines correspond to the trajectories of two data mules; (b)
Speed control plans from the heuristic algorithms; (c) Speed control plans from the naive
method.
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Figure 8.6: Travel time for multiple data mules case: Maximum of all data mules.
Average of 10 experiments.

and radius of deployment area is fixed to d = 600[m]. We compute our results as the

average of ten different node deployments. The number of data mules is k = {1, 2, 3, 4}
and communication range is r = {0, 50, 100, 150}[m]. Euclidean distance is used as the

cost function c. We use Concorde TSP solver [Con] to find an optimal TSP tour. For

the 1-D DMS problem, we set maximum acceleration of data mule amax to 1[m/s2] and

maximum speed vmax to 10[m/s]. Execution time is e = {10, 30, 60}[sec] for each node.

We use the heuristic algorithm (presented in Section 5.4) to solve the 1-D DMS problem

under acceleration constraint.

We have implemented the following three strategies for comparison:

• Proposed: Use k-LCT subtours obtained by the approximation algorithm (Figure

8.3).

• Overlay: Use a 1-TSP tour for all k data mules and each data mule collects equal

amount of data from each node, i.e., symmetric schedule on identical paths. This

models the SIRA (single-route algorithm) strategy in [ZAZ05].

• Partition: Use k-TSP subtours and each data mule collects data only from the

nodes on the subtour it is assigned. This models the MURA (multi-route algo-

rithm) strategy in [ZAZ05].
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Figure 8.7: Maximum path length: (left) For different k. Communication range is fixed
to r = 100; (right) For different r. Number of data mules is k = 2. Data for ILPcover
(k = 2, 3, 4) and LPCP (k = 3, 4) are due to the scaling of k = 1 case.

Results

Figure 8.7 shows the maximum path length for different number of data mules k

and different size of communication range r. When k is changed, the path length does

not change for the overlay strategy, since it always uses 1-TSP tours regardless of k.

Both of the partition strategy and the proposed strategy scale well with the number of

data mules. When the size of communication range r is changed, the path length did not

change in either the overlay or partition strategies, because both of them use (k-)TSP

tours. In the proposed strategy, the length decreased for larger communication range.

In comparing with the lower bounds, the average ratios of approximate solutions

to the lower bounds are less than two in the tested cases. We cannot guarantee anything

from these results, since we do not know how tight the lower bounds are and how bad

the ratio can be in other parameters. Nevertheless, this is useful information to give

estimates to the practical performance, since the bound by Theorem 8.2.2 is very loose

in many of the tested cases.

Figure 8.8 compares the maximum travel time of the three strategies. We have

tested three different execution time e to see the effect of the communication bandwidth

and/or the amount of data in each sensor node. In e = 10 case, the proposed strategy

yielded up to 30 − 40% shorter travel time than other two strategies. As e increases,

which corresponds to less communication bandwidth or larger amount of data in sensor
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Figure 8.8: Maximum travel time when execution time e = {10, 30, 60}. (left) For
different k. Communication range is fixed to r = 100; (right) For different r. Number of
data mules is k = 2.
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nodes, the differences between the strategies shrank. This is because the execution time

becomes more dominant in determining the travel time than the path length.

8.4 Related Work

In case of multiple data mules, notable works include Jea et al. [JSS05], who

present a distributed coordination scheme for allocating sensor nodes to each data mule

to achieve a good distribution of communications load. They assumed fixed paths for

each data mule and no speed control. Our work is complementary to their work and

focused on identifying the performance limits of centralized schemes when we can freely

determine the path and speed of each data mule. This would serve as a performance

target for distributed schemes. Zhao et al. [ZAZ05] present heuristic algorithms for

choosing the paths of multiple “message ferries” for communication among stationary

nodes. Somasundara et al. [SRS07] present a heuristic algorithm for path selection based

on the formulation as a vehicle routing problem (VRP). These work do not address speed

control problem, and we extend their work by considering both path and speed of data

mules to optimize the data delivery latency in multiple data mules environment.

Based on the connections between the 1-D DMS problem and speed scaling prob-

lem, the multiple data mules case corresponds to multiprocessor speed scaling (e.g.,

[AMS07]). The 1-D DMS problem is simpler in some ways than the DVS problems

due to the assumptions such as preemptible and malleable2 jobs. On the other hand,

acceleration constraint is not generally studied in the scheduling literature.

Path selection problem for multiple data mules case is similar to TSP with k

salesmen (k-TSP) and vehicle routing problem (VRP). For k-TSP, we have discussed

an approximation algorithm for the case with min-max objective [FHK78]. There are

many variations of VRP and approximation algorithms for some of them are presented in

[AHL06]. One of the variations most similar to our formulation of the k-Label-Covering

Tour is the single-depot case allowing split delivery (e.g., [AS08]). Different from the

normal VRP, each customer can be visited more than once in the split delivery VRP.

However, one of the characteristic features of k-LCT problem is that we assume that

each node has circular range around it where the communication is possible. On the

other hand, formulations based on the VRP would be useful for the DMS problem if we

2In job scheduling terminology, “malleable jobs” can be allocated to arbitrary number of
processors.
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employ the assumptions such as that each data mule has a capacity.

8.5 Summary

In this chapter we have shown how we can extend the DMS problem framework

to multiple data mules case. For the 1-D case, in which speed control plan and commu-

nication schedule of each data mule are to be determined when the paths are given, we

have designed optimal and heuristic algorithms for the mobility models with or without

acceleration constraint. For the 2-D case, i.e., path selection problem, we designed an

approximation algorithm and also formulated the problem as an integer linear program

for obtaining lower bounds through relaxations. Simulation experiments in practical

settings demonstrated that the proposed algorithms improve data collection time by up

to 30− 40% compared to earlier work on Message Ferrying.
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Chapter 9

Extended DMS: Partially-known

Communication Ranges

In this chapter we discuss another extension of the DMS problem framework.

Specifically we use a different wireless connectivity model that is based on more real-

istic radio environments. We first design a realistic connectivity model, which we call

the “hybrid model.” In this model, communication range is known only partially and

consists of two parts: known and unknown communication ranges. Under this model,

we formulate the problem as a semi-online scheduling problem, in which partial informa-

tion about jobs is available offline and more information gets available at runtime. We

discuss both non-periodic and periodic cases and design semi-online algorithms. Finally

we implement these algorithms on MATLAB and ns2 and evaluate the performance by

simulation experiments.

9.1 Hybrid Connectivity Model

A simple connectivity model is the circular, fixed-range model. In this model,

received signal strength at distance is estimated by considering mean pass loss, and the

radius of the circle is determined by thresholding the strength. Despite its appearance

in many papers, it has been pointed out that this model does not reflect the reality of

the wireless channel [GKW+02, KNE03].

In contrast, probabilistic models takes shadowing and fading into account. While

these are more realistic, they make the problem more difficult since there is a finite

151
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Known communication range: 
- Circular area centered at the node location
- Communications in this area always succeed
- Stationary and known in advance 

Unknown communication range: 
- Area with an arbitrary shape that includes 

known communication range
- May be non-contiguous
- Communications in this area succeed 

but the area itself may be transient over time

Node

Figure 9.1: Hybrid connectivity model

probability of communication failure. In combinatorial frameworks used for solving the

path and scheduling problems, this results in excessively conservative assumptions such

as “communication is possible only at the exact location of each node” as in [SRS07,

XWJL08] or “no knowledge about connectivity” as in [SKJ+06]. Furthermore, recent

study shows empirically that probabilistic models are still insufficient to model many

realistic aspects [LCL07]. Specifically, in the Shadowing model implemented in ns2

[ns2], noises are assumed spatially independent and follow Gaussian, both of which are

not true in real environments.

Our hybrid connectivity model is based on the observation that, even though the

connectivity at distance fluctuates dramatically, there is a certain range in the vicinity

of node that we can guarantee the connectivity for sure. Figure 9.1 shows the idea of the

hybrid connectivity model. We have a fixed circular range called known communication

range around the node. A larger range that contains known communication range is

unknown communication range. Note that the communication is always successful in

both known and unknown communication ranges. The uncertainty at distance is repre-

sented as the temporal change of unknown communication range. We do not make any

assumptions about the deterministic or probabilistic characteristics of the unknown com-

munication range, except that it always contains the known communication range. The

size of known communication range needs to be chosen accordingly, depending on the

degree of uncertainty of channel and the environments (indoor/outdoor, terrain, etc.).

Having the known communication range enables the offline algorithm that has

a performance guarantee. On the other hand, the performance is largely affected by

the size of communication range, as shown in Section 6.2. Thus the opportunity that
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the offline algorithm misses becomes huge under a more uncertain environment, because

there is larger portion of unknown communication range that the offline algorithm cannot

exploit. This motivates us to consider semi-online algorithms, which are based on offline

plans based on partial knowledge and try to improve at runtime with new information.

9.2 Semi-Online Scheduling: Non-Periodic Case

Under the hybrid connectivity model consisting of known and unknown commu-

nication ranges, we design two different semi-online algorithms. While we seek to exploit

the unknown communication range to minimize the performance degradation in highly

uncertain environments, our design goal is to guarantee that the proposed algorithm

never produces a result worse than the offline algorithm. This is not trivial since online

algorithms usually tend to produce results that are theoretically bounded in quality that

is worse than the worst case offline algorithms.

9.2.1 Preliminaries

Here are some assumptions. All the sensor nodes except the data mule are

stationary. The location of each sensor and the amount of data it has are known. There

is a single base station where the data mule starts from and travels back after collecting

data from the sensor nodes. Communication bandwidth is known and thus the time

it takes to collect data from each node is calculated. The hybrid connectivity model

is assumed. The radius rK of known communication range is same for all nodes and

is known. The unknown communication range is not known offline, but the data mule

can tell whether its current location is in the unknown communication range of each

node (i.e., whether the data mule can collect data from that node)1. There is only one

data mule. The data mule knows its current location and moves along a polygonal path

starting and ending at the base station. The data mule can change the speed in the

range of [0, vmax] without any acceleration constraint.

We use POff and SOff to denote the path and schedule by the offline algorithm,

respectively. A schedule is represented as a set of schedule entry s = (I, job, v), where

s(I) is the location interval on the path, s(job) is the job to execute (i.e., node to collect

1This is a strong assumption and will be removed when we design a communication protocol
and do simulations in ns2.
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data from), and s(v) is the speed of data mule. The travel time by schedule SOff is

denoted as TOff .

9.2.2 1-D Semi-Online Algorithm

The 1-D semi-online algorithm is a rather straightforward extension of the offline

algorithm. It uses the same path and the schedule as the offline algorithm and tries to

do opportunistic data collection while the data mule is idle.

Algorithm 4 shows the pseudocode for the 1-D semi-online algorithm. The data

mule makes decision at each location along the path. When there is an offline schedule

entry that includes the current location and the job is not finished yet, the data mule

executes it (Line 3-5). Otherwise, the data mule moves at the maximum speed and

does opportunistic data collection (Line 7-8). The schedule entries for finished jobs are

eliminated accordingly (Line 10).

Algorithm 4 1-D semi-online algorithm

1: S ← SOff ⊲ Copy offline schedule

2: while moving along POff do

3: if ∃s ∈ S. x ∈ s(I) then ⊲ x: current location

4: v ← s(v)

5: execute s(job)

6: else

7: v ← vmax

8: Execute any available jobs

9: end if

10: Eliminate all s ∈ S s.t. s(job) is finished

11: end while

When the data mule collects data opportunistically and there are multiple nodes

that it can communicate, there is a problem of how to choose a node. It can be arbitrary,

but one possible policy that we use in the numerical experiments later is to give higher

priority based on the order in the TSP tour constructed when determining the offline

label-covering tour.

We have the following theorem that guarantees the travel time is shorter than

that of the offline algorithm:
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Figure 9.2: 2-D semi-online algorithm: If the data collection from Node 1 finishes at P,
the data mule directly heads for D, where the next offline schedule entry starts.

Theorem 9.2.1. T1D ≤ TOff

Proof. Let Iidle, Ibusy denote the sets of location intervals that the data mule is idle

and busy in the offline schedule, respectively. For the offline schedule, let T
(idle)
Off , T

(busy)
Off

denote the total travel time for Iidle, Ibusy. Similarly, define T
(idle)
1D , T

(busy)
1D for the 1-D

semi-online algorithm.

In the 1-D semi-online algorithm, the data mule may collect some data in Iidle.

Thus the amount of data collected in Ibusy in the semi-online algorithm is at most as

much as that in the offline algorithm. Since the data mule moves at the maximum

speed after finishing data collection, T
(busy)
1D ≤ T

(busy)
Off . Since the data mule moves

at the maximum speed in Iidle both in the semi-online algorithm and in the offline

algorithm, T
(idle)
1D = T

(idle)
Off . Therefore, T

(busy)
1D + T

(idle)
1D ≤ T

(busy)
Off + T

(idle)
Off and the

theorem follows.

9.2.3 2-D Semi-Online Algorithm

Algorithm 5 shows the pseudocode for the semi-online algorithm. At first the

data mule follows the offline path and schedule, and does opportunistic data collection

when there is no schedule entry to execute at the current location (Lines 3-13). When

one of the jobs finishes, the data mule takes a shortcut to the location where the next

schedule entry starts, moving at the maximum speed (Lines 16-20). Figure 9.2 explains

this. In the figure, the bold lines (A-B-C, D-E) on the offline path POff represent the

intervals covered by offline schedule entries. Now, in the semi-online algorithm, assume

that the data collection from Node 1 finished at P, due to that some of the data have
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Algorithm 5 2-D semi-online algorithm

1: S ← SOff ⊲ Copy offline schedule

2: repeat

3: if ∃s ∈ S. x ∈ s(I) then ⊲ x: current location

4: v ← s(v)

5: execute s(job)

6: if x = end of s(I) then

7: S ← S\s
8: end if

9: else

10: v ← vmax

11: Execute any available jobs

12: end if

13: Eliminate all s ∈ S s.t. s(job) is finished

14: if ∃s ∈ S. x ∈ s(I) then

15: dest← end of s(I)

16: else if S 6= ∅ then

17: dest← start of next(S) ⊲ Start of the next schedule entry in S

18: else

19: dest← BS ⊲ BS: base station

20: end if

21: until arrive at the BS

been collected beforehand by opportunistic data collection. Then, the schedule entries

covering A-B-C are removed and the next schedule entry to execute is the one covering

D-E. So the data mule sets its destination to D and takes a shortcut path P-D. On P-

D, the data mule moves at the maximum speed and does opportunistic data collection.

Since the length of P-D is shorter than that of P-B-D and the speed is maximum, we

can further reduce the travel time.

The following theorem guarantees that the travel time is shorter than that of the

offline algorithm:

Theorem 9.2.2. TS ≤ TOff

Proof. Let Iidle, Ibusy denote the sets of location intervals that the data mule is idle and
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busy in the offline schedule SOff , respectively.

Consider another offline schedule S′
Off that is exactly the same in all of Ibusy

but takes a shortcut between the intervals in Ibusy, where the data mule moves at the

maximum speed. Let T ′
Off denote the travel time for S′

Off , then T ′
Off ≤ TOff clearly

holds.

In the semi-online algorithm, when the data mule does not fully cover one of

the intervals in Ibusy, it means that the job has finished before reaching the finishing

location as planned in SOff . Since the data mule can directly head to the start of

the next schedule entry, it may further reduce2 the total travel length from S′
Off . As

movements outside of Ibusy are always at the maximum speed, we have TS ≤ T ′
Off and

the theorem follows.

9.2.4 Numerical Experiments

We implement the 1-D and 2-D semi-online algorithms and the offline algorithm

presented in Chapter 4 and Chapter 6 in MATLAB with YALMIP interface [Löf04] and

GLPK [GLP] for LP solver.

Fifty nodes are placed randomly in a circular field with the radius of 200m (dense)

and 500m (sparse). Base station is located at the center of the circle, and the data mule

starts from and comes back to the base station. Each node has the equal amount of

data that takes time e sec to be sent to the data mule. We set e to 10 or 30 secs. For

the numerical experiments, unknown communication range is assumed to be circular

(radius rU ), as well as known communication range. Note that this is just for the

purpose of simplifying the experiments and all the algorithms work with the unknown

communication range with arbitrary shape. We fix rU to 150m and changed the ratio

rK/rU from 0.0 to 1.0 by 0.1 step. This ratio represents the amount of offline knowledge

we have in advance. The maximum speed of the data mule is 2 m/sec.

Figure 9.3 shows an example of the path the data mule takes in each of the

algorithms.

Figure 9.4 shows the results for different density and execution time. Each graph

shows the travel time of data mule for different rK/rU . In all cases, travel time decreased

as rK/rU increased, i.e., when more offline knowledge was available. The change was the

largest in the offline algorithm, whereas it was slight in the 2-D semi-online algorithm.

2Travel length is unchanged when the interval, the new destination, and the current location
are aligned on a line.
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BS

Figure 9.3: Example of data mule’s path: 20 nodes, rK = 50m, and rU = 150m. The
polygon with thin lines is the offline path that the offline and the 1-D semi-online algo-
rithms choose. The path by the 2-D semi-online algorithm is shown in bold lines.

As Theorems 1 and 2 state, travel time was always shorter in the 1-D and 2-D semi-online

algorithms than the offline algorithm.

From these results, we can infer the effects of various assumptions about connec-

tivity in the previous studies. For example, the assumption that no remote communica-

tion is possible (as in [SRS07, XWJL08]) corresponds to the case where rK/rU = 0 in

the offline algorithm. This case is up to three times worse than the 2-D semi-online al-

gorithm (in dense, e = 10). Another example is the adaptive case proposed in [SKJ+06].

It roughly corresponds to the case where rK/rU = 0 in the 1-D semi-online algorithm,

which is up to 1.8 times as bad as the 2-D semi-online algorithm (in dense, e = 10). The

fixed-range model (as in [MY07, ZAZ04]) corresponds to the cases where rK/rU = 1.

Although we do not see much difference in travel time between algorithms in this case,

it is not likely that we will have the complete knowledge about the communication range

in reality.
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Figure 9.4: Results of numerical experiments: 50 nodes, rU is fixed to 150m and rK is
varied from 0 to 150m. Travel time is lower-bounded by the total of the execution time
of all 50 nodes, which is 500 sec (e = 10 case) and 1500 sec (e = 30 case).

9.3 Semi-Online Scheduling: Periodic Case

We can use the algorithm for the non-periodic case to design the one for the

periodic case. The main change from the non-periodic case will be in deciding whether

to skip a schedule entry or not, because the data is continuously generated and a job

can never be finished. Our idea is to use a simple strategy: the data mule simply tries

to collect from each node as much data as possible according to the offline schedule: i.e.,

replace “s(job) is finished” in Line 13 of Algorithm 5 with “node s(job) is empty.” When

a node’s buffer once becomes empty, the node is regarded as “finished” and the schedule

entries for that node are skipped throughout the current period.

We can construct a periodic offline algorithm in the following way. We use the

same path selection algorithm described in Figure 6.2 and solve the 1-D DMS problem

for the periodic case. When there is no acceleration constraint, the periodic 1-D DMS
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problem is solved optimally either by a closed formula or by linear programming, as

presented in Section 4.5.

The following two lemmas state that the periodic semi-online algorithm collects

more data in shorter amount of time compared to the offline algorithm.

Lemma 9.3.1. Let T
(k)
Sp , TOff denote the travel time in the k-th period for the periodic

semi-online algorithm and the periodic offline algorithm. Then, for all k, T
(k)
Sp ≤ TOff .

Proof. Immediately follows from Theorem 9.2.2.

Lemma 9.3.2. Let c
(k)
i , cOff

i denote the amount of data collected from i-th node in the

periodic semi-online algorithm (in k-th period) and in the periodic offline algorithm,

respectively. Then, for any k and all i, either c
(k)
i ≥ cOff

i or i-th node’s buffer becomes

empty during k-th period.

Proof. If i-th node does not become empty during k-th period, all schedule entries for i-

th node are fully executed by the semi-online algorithm. Thus, at least cOff
i is collected.

In addition, the semi-online algorithm may collect more data opportunistically.

Then the following theorem guarantees that the system is stable; i.e., the amount

of data in each node does not increase indefinitely:

Theorem 9.3.3. Assume there exists a feasible offline schedule for a given set of nodes,

data generation rate λi, stop time Tb, and vmax. After sufficiently large number of

periods, for the periodic semi-online algorithm, the amount of data in each node is less

than some constant.

Proof. For sufficiently large k, we show that the amount of data in each node is not

increasing. We consider the following three cases, classified by the travel time and the

amount of collected data: (i) T
(k)
Sp = TOff and c

(k)
i = cOff

i for all i, (ii) T
(k)
Sp = TOff and

∃i.c(k)
i 6= cOff

i , and (iii) T
(k)
Sp < TOff . From Lemma 9.3.1, these three cases enumerate all

possibilities. In Case (i), for any node, the amount of data generated and collected are

the same. Thus the amount of data in each node is not increasing. In Case (ii), for i’s

that satisfy c
(k)
i 6= cOff

i , by Lemma 9.3.2, either c
(k)
i > cOff

i or i-th node becomes empty

during k-th period. For the first case, the amount of data in the node will decrease.

For the second case, the amount is less than cOff
i , which is a constant. Finally in Case

(iii), the theorem holds for the nodes that become empty for the same reason as above.
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For other nodes, from Lemma 9.3.2, the data mule collects more than cOff
i in the time

strictly less than TOff . Thus the amount of data in each node will decrease.

9.4 Communication Protocol

Let us consider how the data mule communicates with each node in either sched-

uled or opportunistic data collection. We design a simple request-response-based com-

munication protocol. In this protocol, communications are always initiated by the data

mule. This helps keep the implementation simple at the nodes, which have only limited

computational resources.

Note that the protocol design described here is one of the simplest examples. We

can possibly improve the throughput in several ways, for example by letting nodes send

multiple packets per single request and introducing a windowing scheme as in TCP.

9.4.1 Basic Operation

Data from nodes is sent and acknowledged packet by packet in the following way.

The data mule sends a request packet that includes a request ID and requested data size.

The data mule keeps track of the latest request ID for each node. When a node receives

a request, it responds to the data mule by sending the data of the requested size with

attaching the request ID. When the data mule receives a packet with the newest request

ID for that node, it increments the request ID and sends the next request. If the data

mule does not receive a response for a request within the predetermined timeout period,

it regards the packet was lost and sends the previous request again.

9.4.2 Scheduled Data Collection

For the scheduled data collections in the offline plan, the data mule sends a

request only to the node designated in each schedule entry. It continues to send requests

until one of the following events happens:

1. Amount of collected data reached the size designated in the schedule entry.

2. The data mule arrived at the endpoint of the schedule entry.

3. The buffer of the node became empty.
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Ideally the first and second events happen at the same time, but they usually do not,

due to the error in estimating the effective bandwidth.

9.4.3 Opportunistic Data Collection

For the opportunistic data collection, a practical issue is that the data mule

cannot tell whether it is in the unknown communication range of a node without actually

communicating with it. This can be accomplished by using advertisement packets. When

the data mule tries to start opportunistic data collection, it first broadcasts an advertise

packet. When a node receives an advertise packet, it responds to that by sending the size

of data in its buffer to the data mule. Then, when the data mule receives the response

packet, it sends a request to that node just as in the scheduled data collection. In this

way, the data mule can communicate with multiple available nodes concurrently and can

adapt dynamically to transient connectivity. To find new nodes in range, the data mule

issues advertisement packets periodically during opportunistic data collection.

9.5 Simulation Experiments

To evaluate the effect of introducing the hybrid connectivity model and the bene-

fit of using semi-online algorithms in realistic radio environments, we conduct simulation

experiments in ns2 with the Shadowing propagation model.

9.5.1 Methods

We have implemented the offline algorithm and the semi-online algorithm for

the DMS problem in the periodic data generation case. We implemented the offline

algorithm in MATLAB and generated a Tcl script for ns2. The semi-online algorithm

along with the communication protocol are implemented as the modules of ns2. We run

the script on ns2 version 2.33.

To assess the performance, we measure the delivery latency for each data packet

from the time it is generated until the time the base station receives it. For each test

case, the simulation is repeated multiple periods until it reaches stability. We consider

it stable when the average delivery latency of the data received in the current period is

within ±1% of that of the previous period. If it is stable, we use the data for the next
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period as the final results.

We use the Shadowing propagation model in ns2. In the Shadowing model, the

received power Pr(d) at distance d is derived as the ratio to that at reference distance

d0 as follows:

[
Pr(d)

Pr(d0)

]

dB

= −10β log

(
d

d0

)

+ XdB

where β is pass loss exponent, XdB is a Gaussian random variable with zero mean and

standard deviation σdB, which is called the shadowing deviation. Based on [SCA05],

we set d0 = 1.0, (β, σdB) = (3.0, 6.0) to simulate outdoor environments. We set the size

of known communication range rK to 20[m], where the theoretical successful reception

probability is 99.9%.

Other parameters are as follows. Fifty nodes are randomly placed in a circular

area of radius 200[m] (dense) or 500[m] (sparse). We generate 10 node deployments for

each. For all deployments, the base station is placed at the center of the circular area

and the data mule starts from and comes back to the base station. Data generation rate

λ at each node is 100 or 500[Bytes/sec]. In the communication protocol, the request

timeout is 200 msec and the period to issue advertisement packet is 5 sec. In ns2, we use

802.11 MAC with RTS/CTS and bandwidth 2 Mbps. Packet size is set to 400 Bytes. We

determined the effective bandwidth by a simple experiment: the data mule and a node

are placed 10 m apart and, using the communication protocol above, the data mule tries

to collect data as much as possible within 10 sec. The average of 10 measurements with

different seeds for random number generator of ns2 was 402440 Bytes, which corresponds

to 322.0 Kbps. Based on these results, we use 320 Kbps as the effective bandwidth.

9.5.2 Main Results

Figure 9.5 shows the average data delivery latency for each of the four deployment

cases. All tested cases reached the stability condition. Average number of periods until

getting stable was 4.0 (min: 4, max: 4) for the offline algorithm and 5.3 (min: 4, max:

8) for the semi-online algorithm, respectively. The average data delivery latency was

lower in the semi-online algorithm in all cases. The decrease was larger in the dense

deployments (38.9% and 20.6% for λ =100 and 500, respectively) than in the sparse

deployments (15.4% and 17.4% for λ =100 and 500, respectively).
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Figure 9.5: Simulation results: Average data delivery latency: 50 nodes, average of 10
experiments for each case.

9.5.3 Effects of Inaccurate Parameters

For the hybrid connectivity model and the algorithms (both offline and semi-

online) to work, we need to estimate two parameters: the size of known communication

range (rK) and the effective bandwidth. Larger rK implies better performance, but

it is not clear about the consequences when it is larger than the reality. We have a

similar issue for effective bandwidth, too, especially when the actual effective bandwidth

fluctuates over time. Here we see the effects of overestimating these parameters on both

the offline and the semi-online algorithms.

We use “collection rate” as the performance metric for these experiments. Col-

lection rate RC is calculated in each period and, for k-th period, it is defined as follows:

R
(k)
C =

∑

i c
(k)
i

∑

i g
(k)
i

,

where g
(k)
i is the amount of data generated at i-th node in k-th period and c

(k)
i is the

amount of data collected by the data mule in k-th period. For the data to be collected

without any loss, RC needs to be 1 on average. On the other hand, if RC is constantly

lower than 1, data accumulates at each node over time and eventually overflows, resulting

in loss of data.

As in the previous experiments, we test each case on four deployments: combi-

nations of two node densities (dense and sparse) and two data generation rates (λ = 100
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and 500). For the experiments on known communication range, we test on rk = 20

(default), 30, 40, and 50. Theoretical probabilities of successful reception for these val-

ues are 99.9%, 98.4%, 93.6%, and 85.1%, respectively. For the experiments on effective

bandwidth, we test on 320 Kbps (default), 480 Kbps, and 640 Kbps.

Figure 9.6 shows the effect of overestimating rK . In the offline algorithm, the

average of RC for the deployments (from period 6 to 10) was 1.000, 0.991, 0.933, 0.762 for

rK =20, 30, 40, 50, respectively. The average was higher in the semi-online algorithm:

1.000, 0.999, 0.989, and 0.923, respectively.

Figure 9.7 shows the effect of overestimating the effective bandwidth. The average

of RC for the deployments (from period 6 to 10) was 1.000, 0.679, 0.509 for the 320 Kbps

case, 480 Kbps case, 640 Kbps case, respectively. These values almost agree with the

ratio to the actual effective bandwidth (≈ 322 Kbps). For the semi-online algorithm, the

average of RC was much higher: 1.000, 0.989, 0.983 for the effective bandwidth of 320

Kbps, 480 Kbps, 640 Kbps, respectively.

To summarize, the experiments with overestimated rK and effective bandwidth

showed that, in these cases, we can achieve higher collection rate in the semi-online

algorithm than in the offline algorithm. This suggests that the semi-online algorithm

is beneficial in terms of the robustness against inaccurate parameters, as well as the

performance improvements as demonstrated in the first experiments.

9.6 Related Work

The term “semi-online scheduling” appears in the context of job scheduling and

refers to the cases when partial information is available offline. Common examples of

partial information are optimum makespan, order of job arrivals, etc.; for more on these

topics, see [PST04]. The notion of “worst case execution time” in real-time scheduling

problems is analogous in the sense that only the upper bound of execution time is given

offline and actual execution time is known at runtime. Also in real-time scheduling

context, a loosely related work is Imprecise computation [Liu00], which is the model

in which each task consists of mandatory and optional components. When the system

is overloaded, optional components may be skipped, but the results of the task will be

“imprecise” or approximate. In our case, partial information is the feasible location

intervals. Specifically, part of the feasible location intervals is known in advance, but the

job is possibly executable also in other intervals. Unlike work in the real-time systems
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community, this is not a standard assumption, since scheduling problems for jobs with

multiple feasible intervals are not common.

9.7 Summary

We have formulated the problem of controlling a data mule under a realistic con-

nectivity model, which we call the hybrid model. Then we designed semi-online schedul-

ing algorithms that make an offline plan and update it at runtime. We proved that

these algorithms are guaranteed to perform better than the offline algorithm. Numer-

ical experiments showed significant improvements over the offline algorithm, especially

when there is less information on the communication range known in advance. Then we

extend the semi-online algorithm to periodic data generation case. We also designed a

communication protocol that keeps the implementation at the node very simple, which is

good for resource-constrained nodes. Finally, in simulation experiments with ns2 under

Shadowing model, we demonstrated that the data delivery latency is reduced by up to

38% in the semi-online algorithm compared to the offline algorithm. We also showed

that the semi-online algorithm is robust against inaccurate estimations of radio parame-

ters. These results suggest that the semi-online algorithms are feasible in realistic radio

environments.
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Chapter 10

Conclusion and Future Work

Use of controlled mobility in sensor networks enables data mule approach for

data collection from sensor nodes. Compared to the widely-used multihop forwarding

approach, the data mule approach is beneficial in reducing the energy consumption at

the sensor nodes by eliminating the need for forwarding other sensors’ data. On the

other hand, increased data delivery latency is the most notable disadvantage in the data

mule approach.

To reduce the data delivery latency, optimizing the motion of the data mule is

critical, since the latency is mostly governed by the relatively slow movement of the

data mule compared to the speed of data traveling over wireless links. However, motion

optimization is a difficult problem, since we need to choose the speed, path, and data

collection schedule simultaneously such that the data mule’s travel time is minimized.

Due to the hardness, previous literature often simplified the problem so that they can

solve the problem optimally and/or design heuristic algorithms. These simplification

lead to suboptimal solutions and also made the algorithms difficult to be applied to

similar but slightly different application scenarios.

In this dissertation, we have presented a problem framework called the Data Mule

Scheduling (DMS) problem for optimization of data mules’ motion. The DMS problem

framework divides the motion optimization problem into four subproblems (Forwarding,

Path selection, Speed control, and Job scheduling) and addresses them separately when

necessary. The benefits of the DMS problem framework are summarized by the following

four points:

Expressiveness The DMS problem framework is general and capable of expressing

169
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Table 10.1: Summary of complexity results for the 1-D DMS problem

Simple (location) jobs General (location) jobs

Offline Online Offline Online

Preemptive Job
Scheduling
(Section 4.2)

EDD algorithm
[Jac55, LL73, SSNB95]

Non-existent
(Thm. 4.2.1)

LP

Constant Speed
1-D DMS
(Section 4.3)

O(n2)
(Find-Min-

MaxSpeed)
Non-existent LP Non-existent

Variable Speed
1-D DMS
(Section 4.4)

O(n3)
(Sequential-

Find-Min-

MaxSpeed)

[vmin = 0]
EDD-with-

Stop
LP

Non-existent
(Thm. 4.4.3)[vmin > 0]

Non-existent
(Thm. 4.4.2)

Generalized
1-D DMS
(Chapter 5)

(Open) /
PTAS
(Thm. 5.3.1)

Non-existent

[fixed k ≥ 2]
NP-hard
(Thm. 5.2.1)

Non-existent[k arbitrary]
Strongly
NP-hard
(Thm. 5.2.2)

various different problem settings and assumptions. These variations include fixed

path (1-D) case, pure data mule approach, and hybrid data mule approach, and all

of which can be combined with different connectivity and mobility models. This

expressiveness allows us to handle the several assumptions used in the previous

literature, such as constant speed motion of data mule and zero communication

ranges, in the DMS problem framework.

Effectiveness In terms of theoretical analysis, the DMS problem framework has enabled

us to extract optimally-solvable cases out of the hard problem. It also allowed us to

identify the hard cases that have motivated us to design approximate and heuristic

algorithms. Table 10 summarizes the complexity results for the 1-D DMS problem

discussed in Chapter 4 and Chapter 5.

The DMS framework is also effective for improving the performance as demon-

strated by the simulation experiments. For example in Chapter 6, simulation



171

experiments showed that our formulation of the path selection problem as the

Label-Covering Tour problem, along with the optimal algorithm for the 1-D DMS

problem, has been effective for improving the data delivery latency compared to

other techniques proposed in the literature.

Flexibility The DMS problem framework is flexible in the sense that it accommodates

different problem formulations other than the ones presented in this dissertation.

Ultimately, each subproblem is formulated in an arbitrary manner as long as the

interface with neighboring subproblems are maintained. An example of alterna-

tive problem formulation is the one for the path selection problem as TSP with

Neighborhoods problem [DM03], as discussed in Chapter 6.

Extensibility The DMS problem framework is extensible in several ways to be applied

to various application scenarios. The extensibility has been demonstrated in Chap-

ter 8 for multiple data mules case and in Chapter 9 for the case of partially-known

communication ranges.

Our work in this dissertation has been focused on designing a versatile problem

framework for optimizing the motion of a data mule and providing some basic problem

formulations and analyses. Naturally there are many things to be done in the area, as

listed below.

Open cases on complexity analysis The computational complexity of the General-

ized 1-D DMS problem with simple location jobs remains unknown. Clearly it is easier

than the general location jobs case, since simple location jobs are a special case of general

location jobs. This is also suggested by the fact that our approximation scheme cannot

be used at least in its original form for the general location jobs case, since the feasibility

condition cannot be expressed by cumulative execution time. However, as of this writing,

it is not clear if the problem is easy enough to be solved optimally in polynomial time.

Relaxing the assumptions We started with a number of simplifying assumptions

that enabled us to complete the problem formulation of the entire DMS problem. We

later relaxed a few important assumptions. As an example of such efforts, in Chapter

9 we have relaxed the assumption of fixed and known communication range and have

designed the semi-online scheduling algorithms. Among the remaining assumptions, the

constant bandwidth assumption is one of the strongest. One way to relax this assumption
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would be to use a conservative estimate for the bandwidth and to treat the execution

time as the worst case execution time (WCET). Then, for the case when a data collection

job finishes earlier than the WCET, we need an adaptive algorithm that makes use of

the extra time for improving the data mule’s travel time. The semi-online scheduling

algorithms for the case of partially-known communication ranges may realize this in part,

but we need further analyses.

Another strong assumption is the complete knowledge about location of both

data mule and sensor nodes. There may also be a deviation between planned and actual

movements of data mule. As well as the previous case, the semi-online scheduling algo-

rithms are helpful for absorbing these errors to some extent, but we can possibly design

a better algorithm to deal with them.

Different problem settings We can think of several different problem settings. An

example is to use an objective other than minimizing the data delivery latency. For

instance, the problem studied in Somasundara et al. [SRS04, SRS07] was to find a data

mule’s schedule so that the buffers of sensor nodes do not overflow. Another example

is the case of multiple base stations when there are multiple data mules. This problem

requires different problem formulation for the subproblems of forwarding and path selec-

tion. To handle these cases, we need to modify or extend the DMS problem framework.

Different problem formulations Not only the problem settings, we can also use

different problem formulations for the DMS framework other than the ones we have

presented. For example, the formulation for the forwarding problem has been based on

the simplification where the objective is to minimize the weighted distance from the base

station, but it would be better if we can optimize the forwarding strategy in a way that

is more directly connected to the data mule’s travel time. A possible starting point is

to consider the forwarding problem and the path selection problem together so that a

better forwarding strategy leads to a shorter path.

Broader application area Although the DMS problem framework is designed pri-

marily for data mule approach in data-collection applications, it is potentially useful also

for other applications in sensor networks. For instance, data dissemination is another

important aspect of sensor networks when the users need to update a program module

in the sensor node or the network contains actuator nodes that can be remotely com-
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manded. Using a data mule for these purposes is feasible and, in fact, it is possible

to model these cases within the DMS problem framework by treating both upward and

downward communications simply as location jobs.

The DMS framework is also potentially extensible for a mobile ad-hoc network

scenario where a data mule is used for mediating node-to-node communications without

a base station. Message Ferrying [ZA03, ZAZ05] represents this scenario. Their objective

is to minimize the average data delivery delay and meet bandwidth requirement of each

node, assuming that the traffic between each pair of nodes is given. They designed

some algorithms for single ferry case [ZA03] and multiple ferries case [ZAZ05], but they

only considered constant speed mobility model and used zero communication ranges (in

[ZAZ05]). By extending the DMS problem framework, we may be able to address the

problem in a more detailed and theoretically grounded way. Specifically, for node-to-node

communications, a data mule needs to receive data from a source node before sending

the data to the destination node. In the context of job scheduling, this is analogous to

the case where there are dependencies among the jobs.

Beyond sensor networks An interesting and adventurous future work is to use the

DMS problem framework as a proxy for the problems in different domains other than

sensor networks. One such example has been shown in the connection between the 1-

D DMS problem and the processor speed scaling problem discussed in Chapter 4 and

Chapter 5. Another possibility is kinodynamic motion planning in robotics area that

we have used for designing the approximation scheme for the Generalized 1-D DMS

problem. Conversely applying the algorithms in the DMS problem to motion planning

problems in robotics area may be interesting if there is a good application for that.
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