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Abstract

Vehicle Parameter Identification and its Use in Control for Safe Path Following

by

Sanghyun Hong

Doctor of Philosophy in Engineering – Mechanical Engineering

University of California, Berkeley

Professor John Karl Hedrick, Chair

This thesis develops vehicle parameter identification algorithms, and applies identified pa-
rameters to a controller designed for safe path following.

A tire-road friction coefficient is estimated using an in-tire accelerometer to measure
acceleration signals directly from the tires. The proposed algorithm first determines a tire-
road contact patch with a radial acceleration profile. The estimation algorithm is based
on tire lateral deflections obtained from lateral acceleration measurements only inside the
contact patch. A new model is derived for the lateral deflection profiles, which provides
robustness to orientation-variation of the accelerometer body frame during tire rotation.

A novel algorithm is developed to identify three inertial parameters: sprung mass, yaw
moment of inertia, and longitudinal position of the center of gravity. A correlation of iner-
tial parameters is derived and is used for the identification algorithm. Inertial parameters
and vehicle states are simultaneously estimated with a dual unscented Kalman filter based
on a nonlinear vehicle model. In order to activate and de-activate different modes of the
proposed algorithm, a local observability analysis is performed with the nonlinear vehicle
model. The performance and robustness of the proposed approach are demonstrated with
extensive CarSim simulations and experimental tests on a flat road with a constant tire-road
friction coefficient.

Following a curved road can be dangerous if autonomous vehicles do not take roll motion
into consideration. A control algorithm is designed to prevent a dangerous vehicle state
induced by roll motion while following a curved road. Roll motion is suppressed throughout
cornering with model predictive control. A four-wheel nonlinear vehicle model with roll
dynamics and a tire brush model are utilized for the prediction of the vehicle state. An
optimal balance in the trade-off between vehicle speed and roll motion is achieved with full
braking as a control actuator. Identified vehicle inertial parameters are incorporated into the
designed controller. CarSim simulations illustrate the performance of the proposed controller
and the effect of the vehicle parameter estimator.
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Chapter 1

Introduction

1.1 Safety of Passenger Vehicles

Vehicle control systems have been an important research subject for enhancing safety and
comfort over the last few decades. Active safety systems, such as electronic yaw stability
control, adaptive cruise control, and lane-keeping systems, are designed for driving more
comfortably and safely. Furthermore, much attention has been paid to (semi-)autonomous
vehicles as future technologies which plan a path to a destination and follow the planned
path automatically.

Active safety systems and (semi-)autonomous vehicles use various vehicle parameters, e.g.
a tire-road friction coefficient, a sprung mass, position of the center of gravity (CoG), and
yaw moment of inertia, to produce control signals. Most of vehicle control systems, however,
assume vehicle parameters to be fixed. If vehicle parameters were identified accurately, the
performance of vehicle control systems could be improved.

Roll motion of vehicles has a significant influence on the safety of occupants. According
to the National Highway Traffic Safety Administration (NHTSA), in the United States (US),
34.7 % of the total fatalities were due to rollover accidents in 2011, although the rollover
accidents constituted only 2.1 % of all vehicles involved in crashes [1]. In addition, it is
startling that 38.5 % of occupants killed by rollover were driving passenger cars. In order
to reduce fatalities, roll dynamics should be taken into consideration in vehicle control sys-
tems. Particularly, lane-keeping systems and (semi-)autonomous vehicles need to consider
roll dynamics to safely travel on a curved road.

1.2 Vehicle Parameter Identification

1.2.1 Tire-Road Friction Coefficient

Tire forces generated between tires and a road are necessary to maintain stability and control-
lability of vehicle dynamic motion. A tire-road friction coefficient accounts for the maximal
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tire forces available to control vehicle motion. Therefore, the estimation of a tire-road friction
coefficient is of fundamental importance in vehicle control systems.

Many of the existing estimation algorithms are based on measurements from vehicle
sensors, such as a yaw rate sensor and wheel speed sensors. Furthermore, they need unsteady
state driving conditions, e.g. acceleration or deceleration, to estimate a friction coefficient
[23, 24, 35, 38, 43, 55], and hence a tire-road friction coefficient cannot be estimated under
steady state driving conditions, e.g. traveling ahead at a constant vehicle speed.

Lateral deflection of a tire results from tire lateral forces generated by steering. If an
estimation algorithm uses the lateral deflection, a tire-road friction coefficient can be identi-
fied without acceleration and deceleration. This approach has been applied to the tire-road
friction coefficient estimation, and the potential is demonstrated with finite element model
(FEM) simulations in [18].

This thesis extends the lateral deflection-based framework to identify the tire-road fric-
tion coefficient with a test vehicle in steady state driving. The lateral deflection is obtained
with the double integration of lateral acceleration measured by an in-tire 3D wireless ac-
celerometer, as proposed in [8, 10, 11, 46, 47].

1.2.2 Inertial Parameters

Vehicle control systems, e.g. active safety systems and (semi-)autonomous vehicles, compute
control signals based on vehicle models, and therefore the closed-loop behavior depends on
vehicle inertial parameters, such as a sprung mass, moment of inertia, and position of the
center of gravity (CoG). Most vehicle control systems use robust control strategies with
constant vehicle inertial parameters assumed [14]. Vehicle inertial parameters, however, vary
under different driving conditions, e.g. the number of passengers and seating arrangement.

A variety of approaches have been applied to identify vehicle inertial parameters. Bae et
al. [5], Winstead et al. [54], and Vahidi et al. [51] identify a vehicle mass and road grade
based on vehicle longitudinal dynamics. Fathy et al. [20] also uses a vehicle longitudinal
model to identify a vehicle mass. Bruyne et al. [14], Zarringhalam et al. [58], and Rajamani
et al. [41] estimate a vehicle mass, moment of inertia and the CoG position with vehicle
vertical dynamics. Wenzel et al. [53] and Best et al. [7] use lateral/yaw dynamics to identify
a vehicle sprung mass, yaw moment of inertia, and position of the CoG. Hong and Smith
et al. [32] also identify a sprung mass and yaw moment of inertia based on lateral/yaw
dynamics.

Yaw moment of inertia has been identified in fewer studies. Bruyne et al. [14] identifies
yaw moment of inertia with a test rig, where suspension displacement sensors are assumed to
be available. Wenzel et al. [53] and Hong and Smith et al. [32] use a four-wheel vehicle model
for the estimation of yaw moment of inertia, and the algorithm is tested with simulations
under a single driving condition. Best et al. [7] identifies yaw moment of inertia based on a
simple bicycle model, and validates experimentally under a single driving condition.

Inertial parameters are correlated each other. If additional masses, such as passengers
and luggage, are loaded on a vehicle, the position of the CoG is changed. Then, the yaw
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moment of inertia is also changed as a result of the changed sprung mass and position of
the CoG. Most existing algorithms, however, identify the inertial parameters individually
without taking the correlation into consideration.

This thesis presents a novel approach to identify a vehicle sprung mass, position of the
CoG, and yaw moment of inertia under different driving conditions. A correlation of inertial
parameters is applied to the identification algorithm using measurements from commonly
used vehicle sensors.

1.3 Path Following of an Autonomous Vehicle

Unintentional lane departure is dangerous for passengers while traveling on a freeway. Lane
keeping systems [13, 36] and (semi-)autonomous vehicles [2, 3, 19, 37, 22] provide a vehicle
with control signals so that the vehicle can stay within a lane while following a planned path.
When following a curved path, roll motion is generated due to vehicle lateral acceleration.
However, most vehicle control systems for path-following do not take roll dynamics into
consideration.

Roll motion alters contact conditions between rubber tires and a road. Tire lateral forces
that enable a vehicle to corner are influenced by the change of tire-road contact conditions.
A suspension is designed to generate camber angles when it is vertically displaced due to
roll motion. The changed contact conditions can be compensated for with tire lateral forces
which are induced by the camber angles [40, 42]. Nevertheless, an aim of suspension designers
is to suppress roll motion [42].

Various control strategies have been proposed to prevent extreme roll motion, i.e. rollover.
Roll angle is constrained with lower and upper bounds, and control signals are fed into a
vehicle only if the roll angle violates the bounded constraints [9, 12, 48, 49, 50, 57]. That is,
the rollover prevention controllers are activated only when rollover is imminent.

Many rollover prevention controllers have used differential braking as a control actuator
[9, 12, 48, 50, 56]. In order to prevent rollover, differential braking forces a vehicle into
understeer by producing yaw moment. Although the understeer is effective in preventing
rollover, it is unfavorable in achieving yaw rate required to follow a curved road [12]. This
causes a vehicle to deviate from a planned path [48].

This thesis designs an optimal controller to follow a curved path while simultaneously pre-
venting rollover, and the controller is incorporated with the vehicle parameter identification
algorithm.

1.4 Contribution and Outlines

In Chapter 2, an estimation algorithm for a tire-road friction coefficient is developed based
on tire lateral deflections and an in-tire 3D wireless accelerometer. The estimation algorithm:
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• Proposes a method to determine the tire-road contact patch with radial acceleration
measurements, which is used to extract lateral acceleration only inside the contact
patch.

• Presents lateral deflection models corresponding to the lateral deflections obtained
from the lateral acceleration only inside the contact patch.

• Involves vehicle steering in the estimation to achieve consistency of estimation results
under large steering maneuvers.

• Validates experimentally the effectiveness and performance of the proposed algorithm
with small and large tire slip angles on icy, snowy, and asphalt roads.

In Chapter 3, vehicle inertial parameters, including a vehicle sprung mass, longitudinal
position of the CoG, and yaw moment of inertia, are identified with a novel algorithm. The
identification algorithm:

• Performs a local observability analysis for vehicle inertial parameters with a four-
wheel nonlinear vehicle model. Most existing algorithms have identified the inertial
parameters without demonstrating the observability of inertial parameters.

• Determines a vehicle sprung mass ms by estimating an additional mass ma, such as
passengers and luggage.

• Reduces the complexity of the algorithm by deriving yaw moment of inertia Iz as a
function of ma and lf .

• Applies a dual unscented Kalman filter framework to estimate simultaneously the in-
ertial parameters and the vehicle state variables.

• Illustrates the capability of the algorithm to differentiate two driving conditions with
extensive simulations and experiments.

In Chapter 4, an optimal controller is designed for safe path following of autonomous ve-
hicles. The controller seeks to follow a curved path while simultaneously preventing rollover.
The optimal controller:

• Utilizes a receding horizon optimal control technique to minimize the roll motion
throughout cornering, which is more aggressive than other rollover prevention con-
trollers which take an action only when rollover is imminent.

• Provides control signals with full braking rather than differential braking since differ-
ential braking impedes following a curved path.

• Suppresses excessive reduction of vehicle speed to avoid rear-end collisions by cars
following on a freeway.
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• Incorporates the vehicle inertial parameter and state estimation algorithm into com-
puting control actions.

• Verifies the performance of the proposed control algorithm with extensive simulations.
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Chapter 2

Estimation of Tire-Road Friction
Coefficient using Lateral Deflection
and a Tire sensor

2.1 Introduction

This thesis develops an algorithm to estimate a tire-road friction coefficient in steady state
driving conditions. The algorithm to be proposed is based on an in-tire 3D accelerometer
[8, 10, 11, 46, 47] and tire lateral deflection [16]. A tire lateral axis is perpendicular to the
wheel vertical plane on which a tire longitudinal axis lies. The fact that a tire has small
stiffness in the lateral direction is the basis for the proposed approach.

The potential of the proposed approach is demonstrated in [18] with Finite Element Model
(FEM) simulations. This thesis modifies the algorithm proposed in [18] in order to estimate
the tire-road friction coefficient with measurements from wireless 3D accelerometers in a test
vehicle. The tire-road contact patch is first determined, which is used to extract acceleration
measurements only inside the contact patch. A lateral deflection profile is obtained with the
lateral acceleration measurements inside the contact patch. Lateral deflection models are
derived to describe the lateral deflection profiles. The proposed algorithm is experimentally
validated with small and large tire slip angles on icy, snowy, and asphalt roads. Note that
the contents of this chapter have been published in [29, 31].

2.2 Lateral Deflection-based Framework for

Tire-Road Friction Coefficient Estimation

The new algorithm for the tire-road friction coefficient estimation builds on the lateral
deflection-based framework proposed in [18]. The main steps of the lateral deflection-based
framework is listed in the following Table 2.1.
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Table 2.1: Lateral Deflection-based Framework [31] c©2013 Taylor & Francis

Input: Lateral acceleration during tire rotation
Output: Tire-road friction coefficient µ
Begin

1: De-trend the lateral acceleration profile by subtracting its mean value.
2: Double integrate the lateral acceleration profile to obtain

the lateral deflection profile.

3: Estimate α (:= − Fy

2cbend
) and β (:= Mz

cyaw
) of a parabolic lateral-

deflection model y = αx2 + βx+ γ in [40] by using a curve-fitting technique,
where y is the lateral deflection and x is the coordinates in the tire-
longitudinal direction.

4: Estimate the lateral force Fy and the aligning moment Mz:
Fy = −2cbendα, Mz = cyawβ,
where the stiffness parameters cbend and cyaw are assumed to be known.

5: Estimate the tire-road friction coefficient µ by using a tire brush model
and the estimated Fy and Mz.

End

Although the basic approach of the algorithm in [18], including the use of simple physics-
based models and measured lateral acceleration, is maintained, the new algorithm uses the
different lateral deflection model, acceleration signals and estimation techniques. These
changes to be proposed are fundamental in order to apply the lateral deflection-based friction
coefficient estimation algorithm to experimental tests. In particular, the new algorithm first
determines the tire-road contact patch with radial accelerations. Then, it uses the lateral
acceleration profile only inside the contact patch, which ensures robustness to orientation-
variation of accelerometer body frame. Using the lateral acceleration only inside the contact
patch requires a new form of lateral deflection model to be derived. All the steps are detailed
in the subsequent sections.

2.3 Determination of Tire-Road Contact Patch

A tire interacts with a road through the tire-road contact patch. The tire-road contact
patch is defined as the region of a tire that contacts with a road [42]. In this section, a
radial acceleration profile is used to determine the tire-road contact patch. The approach to
be proposed is different than those proposed in [8, 46, 59] that utilize zero, maximum and
minimum radial acceleration values.

The contact patch of a tire circumferential center line is identified by locating the leading
and trailing edges, as shown in Fig. 2.1. The leading and trailing edges are the foremost
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and rearmost edges of the contact patch, respectively. A side view of a Simple Tire Model
(STM) is shown in Fig. 2.1, which provides the theoretical basis to locate the leading and
trailing edges. The accelerometers at two different time instants are indicated as dots. An
angular position θ starts from the top of the tire, whereas another angular position φ starts
from the center of the contact patch; θ = π − φ.

Figure 2.1: Simple Tire Model (STM) [31] c©2013 Taylor & Francis

The simple tire model is constructed based on the following assumptions:

Assumption 1 On the circumferential line, the deformation of a tire material element does
not affect a neighboring material element. As a result, the simple tire model has sharp corners
at both the leading xl and trailing xt edges. In addition, the simple tire model is in a perfect
circular shape with a constant radius r outside the contact patch.

Assumption 2 The accelerometer, attached on the center line of the tire inner liner, re-
volves around the wheel-center at a constant angular velocity θ̇.

Based on the simple tire model with the above assumptions, the kinematics of the ac-
celerometer is investigated to determine the contact patch. The radial acceleration outside

the contact patch is expressed as r̈ − rθ̇
2
, which is the radial component of ~̈r = d2(r~er)

dt2
=

(r̈−rθ̇2)~er+(rθ̈+2ṙθ̇)~eθ, where ~er and ~eθ are the unit vectors in the radial and tangential di-
rections, respectively. Due to the assumption of the constant radius r, the radial acceleration
outside the contact patch ar,o becomes the centripetal acceleration:

ar,o = −rθ̇2. (2.1)

As shown in Fig. 2.1, the radius inside the contact patch r2 is a function of the angular
position θ: r2 = −rl sec θ, where rl is a constant loaded radius of the tire, i.e. distance
between the wheel-center and the center of the contact patch. The radial acceleration inside
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the contact patch ar,i is the radial component of the second derivative of ~r2 = r2~er, i.e.

~̈r2 = (r̈2−r2θ̇
2
)~er+(r2θ̈+2ṙ2θ̇)~eθ. Since r̈2 = −rlθ̇

2
sec θ(tan2θ+sec2θ), the radial acceleration

inside the contact patch ar,i is:

ar,i = −2rlθ̇
2

sec θtan2θ. (2.2)

The accelerations, ar,o in (2.1) and ar,i in (2.2), are drawn against the angular position θ
ranging from 0o through 360o in Fig. 2.2. The radial acceleration in Fig. 2.2 is drawn with a
simulation where the angular velocity θ̇ is 33.9685 rad/s, the angular position at the leading
edge φl is 15o, the unloaded radius r is 0.3322 m, and the loaded radius rl is 0.3222 m.
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Figure 2.2: [STM] Radial Acceleration from STM [31] c©2013 Taylor & Francis

Note that the radial acceleration has abrupt changes at the leading and trailing edges,
and also has a convex shape inside the contact patch, as shown in Fig. 2.2. The convex
shape is also observed in the radial acceleration profiles collected from the experiments, as
shown in Fig. 2.3. A set of measured radial acceleration profiles are presented in Fig. 2.3
(details of the experimental set-up will be explained later). Since the assumptions in the
STM do not hold in a real tire, the experimental radial acceleration profiles are not identical
to those in Fig. 2.2. Nevertheless, the abrupt changes in the radial acceleration occur at the
leading and trailing edges.

The abrupt changes observed in Fig. 2.2 and Fig. 2.3 implies that the derivative of the
radial acceleration, i.e. radial jerk, has two large absolute values at the leading and trailing
edges. Therefore, the contact patch is determined by locating the two large absolute values
in the derivative of the radial acceleration. A simulation result of a tire Finite Element Model
(FEM) is presented in Fig. 2.4. The solid line in Fig. 2.4a represents the radial acceleration
profile, and the dashed line in Fig. 2.4b represents the magnitude of the derivative. The
leading and trailing edges are located by the positions of the two peaks in Fig. 2.4b.

In the tire FEM simulations, a tire rolls freely on a flat road surface with a given tire slip
angle. For the sake of brevity, the most important features of the tire FEM are only presented
as follows (all details on the tire FEM can be found in [18]). The tire FEM is constructed
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Figure 2.3: [Exp.] Radial Acceleration from an Experiment [31] c©2013 Taylor & Francis
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Figure 2.4: [FEM] Radial Acceleration and Magnitude of its Derivative [31] c©2013 Taylor &
Francis

with a rubber body, an inner-liner, two layers of belts and a rigid bead. The geometry
of all the tire components is symmetric with respect to the wheel vertical plane. The tire



CHAPTER 2. ESTIMATION OF TIRE-ROAD FRICTION COEFFICIENT USING
LATERAL DEFLECTION AND A TIRE SENSOR 11

body is modeled with the rubber materials that have both hyperelastic and viscoelastic
characteristics. The rolling on a flat road surface, the tire inflation, the tire normal load,
and the translational velocity are all the same as those in [18]. One difference is that the
mesh is uniformly distributed every one degree throughout the tire circumference as shown
in Fig. 2.5a, whereas the tire FEM in [18] uses the reduced mesh density in the upper half
of the tire. The uniform mesh density facilitates in building a more realistic set-up for the
accelerometer with a constant sampling frequency.

It should be noted that the radial jerk is used to estimate the contact patch rather than
the radial acceleration itself. If the assumptions of the STM do not hold, the two peaks in
Fig. 2.2 might not be clearly observed, and therefore the localization of them might not be
easy as shown in Fig. 2.4a. In the magnitude of the radial jerk, however, the two peaks are
clearly identifiable as shown in Fig. 2.4b.

Table 2.2: Angular Positions θ at Leading and Trailing Edges [31] c©2013 Taylor & Francis

Normal Leading Edge Trailing Edge
Force [N] (Proposed/Pressure) (Proposed/Pressure)

3800 173o/172o 187o/188o

4500 172o/171o 188o/189o

6000 170o/169o 191o/192o

As presented in Table 2.2, the effectiveness of the proposed methodology is demonstrated
through the tire FEM simulations. The leading and trailing edges are estimated by two
different approaches. One is the proposed approach, and the other one is an approach to
use contact pressures on elements of the tire FEM. The contact pressure values are reported
from the FEM simulation software. The angular positions, θ, corresponding to the estimated
leading and trailing edges are presented in Table 2.2.

2.4 Orientation-Variation of Accelerometer Body

Frame

The lateral acceleration profile is integrated twice to obtain the lateral deflection profile.
As a tire rotates, however, the lateral axis of the accelerometer body frame is not always
pointed at the actual lateral direction that is perpendicular to the wheel vertical plane.
Therefore, the measured lateral acceleration is different from the actual lateral acceleration,
which violates the assumption in [18].

Fig. 2.5b presents a lateral deflection profile from the bottom view of the tire FEM in
Fig. 2.5a. The translational velocity of the tire FEM is indicated as V , and the tire slip angle
is α = 2.0o. The angular position in Fig. 2.5b starts from the top position of the tire and
ends at the same top position. The accelerometer in Fig. 2.5a follows the tire circumferential
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(a) Tire FEM
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Figure 2.5: Orientation-Variation of Accelerometer Body Frame [31] c©2013 Taylor & Francis

inner center line as the tire rotates. If the tire is steered and have the tire slip angle α, a
friction force is generated inside the contact patch. Then, the tire deforms in the direction
of the friction force vector, and the tire inner center line also deforms in the same direction.
Consequently, the orientation of the accelerometer body frame continues to vary while the
accelerometer follows the deformed circumferential inner center line. As shown in Fig. 2.5b,
the lateral axis (y) of the accelerometer body frame is not parallel to the actual lateral axis
(η) which is perpendicular to the wheel vertical plane. Note that the orientation-variation of
the accelerometer body frame occurs in the entire 3D space, although Fig. 2.5b only presents
the bottom view.

Due to the orientation-variation, the accelerometer does not measure the actual lateral
acceleration that is necessary for the lateral deflection-based framework in Table 2.1. Two
lateral acceleration profiles of the tire FEM are presented in Fig. 2.6a, where L indicates the
leading edge and T indicates the trailing edge. The dashed line represents the acceleration
profile measured by the lateral axis of the wheel-center frame, η-axis in Fig. 2.5, whereas
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(b) [Exp.] Lateral Acceleration Inside Contact Patch

Figure 2.6: Lateral Acceleration [31] c©2013 Taylor & Francis

the solid line represents that measured by the lateral axis of the accelerometer body frame,
y-axis in Fig. 2.5. The wheel-center frame rotates with its lateral axis η pointed at the
direction perpendicular to the wheel vertical plane, i.e. actual lateral direction. The lateral
acceleration measured by the accelerometer, solid line, is different from the actual one, dashed
line, as shown in Fig. 2.6a.

However, the orientation-variation of the accelerometer body frame is negligible inside
the contact patch. There is little discrepancy between two lateral acceleration profiles inside
the contact patch, as shown in Fig. 2.6a.

Therefore, the new tire-road friction coefficient estimation algorithm uses the lateral
acceleration profile only inside the contact patch. Once the contact patch is determined
with the methodology proposed in the previous section, the lateral accelerations outside
the contact patch are set to zero, as shown in Fig. 2.6b and Fig. 2.7a. Then, the lateral
deflection is obtained through the double integration of the lateral acceleration only inside
the contact patch, as shown in Fig. 2.7. Note that the mean value of the lateral acceleration
is not subtracted before the double integration, which is different from the framework of
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(a) Lateral Acceleration Inside Contact Patch

(b) Integration

(c) Double Integration

Figure 2.7: Integrations of Lateral Acceleration [29] c©2013 IEEE

Table 2.1 proposed in [18].
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2.5 New Form of Lateral Deflection Model

The lateral deflection of the inner center line has been modeled as a parabolic polynomial
in [40] as follows:

y = αx2 + βx+ γ,

(
α := − Fy

2cbend
, β :=

Mz

cyaw
, γ :=

Fy
clat

)
, (2.3)

where x indicates the coordinate value in the tire longitudinal direction and y indicates the
coordinate value in the tire lateral direction, as shown in Fig. 2.8. This model, however,
should be modified since only the lateral acceleration inside the contact patch will be used
to estimate the tire-road friction coefficient.

Figure 2.8: [Exp.] Produced Lateral Deflection Inside Contact Patch [31] c©2013 Taylor &
Francis

2.5.1 Lateral Deflection Produced by Lateral Acceleration Only
Inside Contact Patch

The dashed-dotted line in Fig. 2.8 represents an actual lateral deflection, which can be
obtained from the lateral acceleration measured with no orientation-variation of the ac-
celerometer body frame. The solid line in Fig. 2.8 represents the lateral deflection produced
by the lateral acceleration only inside the contact patch. The difference between the dashed-
dotted line and the solid line results from the zero lateral acceleration outside the contact
patch and zero boundary conditions for double integration at the leading edge (time t = tl),
i.e. zero lateral velocity vy(tl) = 0 and zero lateral deflection yl = 0.

The key idea for the modification of (2.3) is to take double integration of the lateral
acceleration model. The lateral acceleration is expressed as a differential form of the parabolic
lateral deflection model, i.e. the double derivative of (2.3):

d2y

dt2
= 2α

(
dx

dt

)2

+ (2αx+ β)
d2x

dt2
(2.4)
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2.5.2 Classification of Lateral Acceleration Profiles

If the lateral acceleration is measured on a high friction road, e.g. asphalt road, it will be
handled differently for double integration than that on a low friction road, e.g. icy road. In
order to classify roughly whether or not the lateral acceleration is measured on a road with
high friction coefficient, simple criteria are established in this section.

2.5.2.1 Compressive Lateral Deflection

The criteria are based on the observation that a small lateral deflection is produced inside
the contact patch even at a zero tire slip angle. Fig. 2.9a presents the lateral deflections
from bottom view of the tire FEM with different friction coefficient µ and tire slip angle
α conditions. The changes of the lateral deflections at different friction coefficient and tire
slip angle conditions have also been experimentally validated in [16]. The contact patches
of the lateral deflections in Fig. 2.9a are magnified in Fig. 2.9b, Fig. 2.9c, and Fig. 2.9d,
respectively.

(a) Lateral Deflections
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Figure 2.9: [FEM] Lateral Deflections by Compressive Force and Friction Force [31] c©2013
Taylor & Francis

As shown in Fig. 2.9b, the lateral deflection profile at a zero tire slip angle is a curve
rather than a straight line parallel to the longitudinal axis, which results from the tire vertical
deflection. Due to the normal load, the tire deforms vertically, and, as a result, a compressive
force is generated inside the contact patch [33]. The small lateral deflection inside the contact
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patch even at the zero tire slip angle is attributed to the compressive force. Note that this
kind of lateral deflection is different from the lateral deflection created by the friction force
at a non-zero tire slip angle.

Many tire properties can affect the lateral deflection induced by the compressive force
inside the contact patch. For instance, tire manufacturing elements, such as a radial body
ply and a bias ply, affect the tire vertical stiffness, and can also result in the anisotropic
characteristics of the stiffness. Different tire tread designs lead to different lateral deflections
at the zero tire slip angle. Furthermore, the hyperelasticity of the tire rubber body has
a significant influence on the compressive lateral deflection. The hyperelasticity prevents
the tire circumferential line from being compressed axially, and therefore the center line is
shaped into a curve by the compressive force.

The compressive component of the lateral deflection provides a clue to establish the
criteria for the rough classification of the lateral accelerations. On a low friction road, e.g.
icy road, the lateral deflection by the compressive force still remains dominantly even at a
non-zero tire slip angle as shown in Fig. 2.9c, in which the dashed-dotted line represents the
lateral deflection profile of the tire FEM at the tire slip angle α = 2.0o on a road with the
friction coefficient µ = 0.1. However, on a high friction road, e.g. asphalt, the compressive
lateral deflection component vanishes, whereas the frictional lateral deflection component
is dominant as shown in Fig. 2.9d, in which the solid line represents the lateral deflection
profile at the tire slip angle α = 2.0o on a road with the friction coefficient µ = 0.9.

Therefore, the lateral accelerations will be classified into two categories:

Category 1 - lateral accelerations without compressive lateral deflection component

Category 2 - lateral accelerations with compressive lateral deflection component.

2.5.2.2 Lateral Acceleration on a Road with a High Friction

The reason for classifying the lateral accelerations (rather than deflection) is that the lateral
acceleration in the category 1 might include a random and persistent acceleration. The lat-
eral accelerations only inside the contact patch, which are experimentally measured on an
asphalt road, are presented in Fig. 2.10. As shown in Fig. 2.10, all the lateral acceleration
profiles have similar dominant curves. However, those are shifted by random and constant
accelerations; the shifts are exaggerated for visibility. It is presumed that the random and
constant shifting is a consequence of the tire deformation; this phenomenon is under inves-
tigation. The random shift at each tire rotation does not affect the fundamental profile of
the lateral acceleration as shown in Fig. 2.10. However, when taking double integration to
obtain the lateral deflection, the effect of the random shift is amplified, as will be illustrated
in the Experimental Results section.
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Figure 2.10: [Exp.] Shifted Lateral Accelerations Inside Contact Patch [31] c©2013 Taylor &
Francis

2.5.2.3 Criteria for the Classification

The criteria for the classification is established by combining (2.4) with the simple tire model
in Fig. 2.1. The longitudinal acceleration inside the contact patch is expressed as ax = d2x

dt2
in

(2.4), and it can be approximated as the negated tangential acceleration inside the contact
patch, −aθ, based on the simple tire model (STM) in Fig. 2.1. The tangential acceleration
aθ is the coefficient of ~eθ in ~̈r2 = (r̈2 − r2θ̇2)~er + (r2θ̈ + 2ṙ2θ̇)~eθ, where ṙ2 = −rlθ̇ sec θ tan θ
and θ̇ is a constant. Therefore, the longitudinal acceleration ax is:

ax ≈ −aθ = 2rlθ̇
2 sec θ tan θ. (2.5)

Note that the longitudinal acceleration is positive and decreases to zero as shown in Fig.
2.11 over the leading region, i.e. from the leading edge to the center of the contact patch:
a ≥ x ≥ 0. The longitudinal velocity vx = dx

dt
in (2.4) is also approximated as the negated

Figure 2.11: [STM] Longitudinal Acceleration (ax ≈ −aθ) [31] c©2013 Taylor & Francis

tangential velocity vθ in the STM, which is the coefficient of ~eθ in ~̇r2 = ṙ2~er + r2θ̇~eθ, where
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r2 = −rl sec θ and θ̇ is a constant. The longitudinal velocity vx is modeled as:

vx ≈ −vθ = rlθ̇ sec θ. (2.6)

Substituting (2.5) and (2.6) into (2.4) yields the lateral acceleration model which is a
function of the angular position θ and the angular velocity θ̇. This lateral acceleration model
describes the lateral acceleration in category 1. Fig. 2.12 presents the lateral acceleration of

Figure 2.12: Lateral Acceleration corresponding to Lateral Deflection without Component
from Compressive Force [31] c©2013 Taylor & Francis

the category 1 that corresponds to the lateral deflection on the negative side of the lateral
axis, as the solid line in Fig. 2.9d with no compressive deflection component. Note that
both the curvature α and the slope β of the parabolic lateral deflection model in (2.3) have
positive signs for the lateral deflection on the negative side of the lateral axis. The lateral
acceleration in Fig. 2.12 is a result of the angular velocity θ̇ = 33.9685 rad/s, the angular
position at the leading edge φl = 15o, the unloaded radius r = 0.3322 m, the loaded radius
rl = 0.3222 m, α = 3, and β = 0.05. The lateral acceleration decreases over the leading
region, while its maximum value is at the leading edge, as shown in Fig. 2.12.

Fig. 2.12 provides the criteria to classify the lateral accelerations, as listed in Table
2.3, where Acc(k) indicates the lateral acceleration at the kth point in Fig. 2.12. The same
criteria in Table 2.3 are applied after inverting the lateral acceleration and deflection profiles,
if the lateral deflection is on the positive side of the lateral axis.

2.5.3 A New Form of Lateral Deflection Model

In order to derive the new form of lateral deflection model, the classified lateral accelerations
are integrated twice. If the lateral acceleration belongs to category 1, i.e. it corresponds to
the lateral deflection without compressive component, the lateral acceleration model is:

d2y

dt2
= 2α

(
dx

dt

)2

+ (2αx+ β)
d2x

dt2
+B (t) . (2.7)
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Table 2.3: Classification of Lateral Acceleration [31] c©2013 Taylor & Francis

If
Acc(1) > Acc(2) > Acc(3) AND Mean(Acc(2) : Acc(3)) > 0

Then
Category 1: Lateral acceleration corresponding to lateral deflection
without deflection component from compressive force

Else
Category 2: Lateral acceleration corresponding to lateral deflection
with deflection component from compressive force

End

Note that the random shift in the lateral acceleration is expressed as the shift term B(t),
which is assumed to be a constant value B.

The term B is a random constant number, and therefore it should be removed. The

longitudinal acceleration at the center of the contact patch (time t = tc), i.e. d2x
dt2

∣∣∣
tc

, is zero

as shown in Fig. 2.11. Therefore, the lateral acceleration at the center of the contact patch

is: d2y
dt2

∣∣∣
tc

= 2α
(
dx
dt

)2
tc

+ B. Then, subtracting the lateral acceleration at the center of the

contact patch, d2y
dt2

∣∣∣
tc

, from (2.7) removes the term B as follows:

h(t) :=
d2y

dt2
− d2y

dt2

∣∣∣∣
tc

= 2α

{(
dx

dt

)2

−
(
dx

dt

)2

tc

}
+ (2αx+ β)

d2x

dt2
. (2.8)

The lateral deflection model is derived by taking double integration of (2.8). The inte-
gration of h(t) in (2.8) is:∫ t

tl

h(t)dt := H(t) (2.9)

= (2αx+ β)
dx

dt
− vy(tl)− 2ατ

(
dx

dt

∣∣∣∣
tc

)2

,

where vy(tl) = (2αxl + β) dx
dt

∣∣
tl
, and the double integration of h(t) is:∫ t

tl

H(t)dt = α(x2 − x2l ) + β(x− xl)− (2αxl + β)τ
dx

dt

∣∣∣∣
tl

− ατ 2
(
dx

dt

∣∣∣∣
tc

)2

. (2.10)

In (2.9) and (2.10), τ denotes the time difference between the leading edge xl and a position
x inside the contact patch, τ := t− tl = φl−φ

θ̇
, where θ̇ is the constant angular velocity.
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Since the lateral acceleration outside the contact patch is set to zero as shown in Fig. 2.7a,
the lateral velocity at the leading edge is zero in Fig 2.7b, i.e. vy(tl) = (2αxl + β)vx(tl) = 0.
This implies 2αxl + β = 0 since the longitudinal velocity at the leading edge vx(tl) is not
zero. Note that the boundary condition, vy(tl) = (2αxl +β)vx(tl) = 0, is used for the second
integration in (2.10). Then, the lateral deflection model is re-written as follows:∫∫ t

tl

d2y

dt2
− d2y

dt2

∣∣∣∣
tc

dtdt = α

{
1−

(
vx(tc)

v̄x

)2
}

(x− xl)2, (2.11)

where vx(tc) is the longitudinal velocity at the center of the contact patch and v̄x is the
average longitudinal velocity over the contact patch, i.e. v̄x = x−xl

τ
.

The longitudinal velocity vx is approximated as the negated tangential velocity, i.e. vx ≈
−vθ = rlθ̇ sec θ, as discussed previously. When considering θc = π at the center of the contact
patch, the longitudinal velocity vx (tc) is:

vx (tc) = −rlθ̇. (2.12)

Note that the longitudinal speed at the center of the contact patch |vx (tc) | is not close
to zero, although it is the smallest inside the contact patch. Furthermore, the difference
between the longitudinal velocity at the leading edge vx(tl) and at the center of the contact
patch vx(tc) is not large. This is because the coordinate frame in Fig. 2.9 is fixed at the
center of contact patch and under the translational motion in the direction of the velocity
V . If the coordinate frame is fixed at the ground, vx(tc) would be almost zero since the tire
material element in the inner center line is close to the instantaneous center of rotation.

Since the difference in vx(t) over the contact patch is not large, the average longitudinal
velocity v̄x is approximated to be the longitudinal velocity at the leading edge, v̄x ≈ vx (tl).
Another reason for this approximation is that it is hard to measure vx(t) throughout the
contact patch for calculating the average longitudinal velocity v̄x. Therefore, the average
longitudinal velocity v̄x is:

v̄x = rlθ̇ sec θl = −rlθ̇ secφl, (2.13)

where the angular position at the leading edge in the STM is θl = π − φl. The angular
position φ starts from the center of the contact patch, and therefore φl = sin−1 xl

runloaded
.

Finally, the model for the lateral deflection with no compressive component is obtained
by substituting (2.12) and (2.13) into (2.11) as follows:

y =

∫∫ t

tl

d2y

dt2
− d2y

dt2

∣∣∣∣
tc

dtdt = α

(
xl

runloaded

)2

(x− xl)2. (2.14)

Note that the lateral acceleration at the center of the contact patch should be subtracted
to obtain the lateral deflection profile which is described by the lateral deflection model in
(2.14). The model in (2.14) contains the longitudinal coordinate inside the contact patch,
x, and the unloaded radius runloaded, which are parameters that can be estimated more
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accurately and easily than the longitudinal velocity at the center of the contact patch vx(tc)
and the average longitudinal velocity v̄x in (2.11).

On the other hand, in order to derive the model for the lateral deflection with a com-
pressive component, the original lateral acceleration model in (2.4) is integrated twice with
the same boundary conditions as follows:

y =

∫∫ t

tl

d2y

dt2
dtdt = α(x− xl)2. (2.15)

2.6 Estimation of Lateral Force and Aligning Moment

The lateral force Fy, included in α := −1
2

Fy

cbend
in (2.14) and (2.15), is estimated by applying a

least squares curve-fitting technique to the lateral deflections. In the curve-fitting technique,
the lateral deflection model in (2.14) and (2.15) are used depending on the criteria defined
in Table 2.3. Note that the lateral deflection is produced from the lateral acceleration only
inside the contact patch. Furthermore, if the lateral acceleration belongs to category 1, the
lateral acceleration at the center of the contact patch is subtracted from the original one
before double integration.

Figure 2.13: [Exp.] Curve-Fitting for α [31] c©2013 Taylor & Francis

In order to reduce a statistical deviation in the lateral force Fy estimates, the lateral
deflections for n tire rotations are used for the curve-fitting technique. If n = 5, for example,
the lateral deflection profiles for (k−4)th, . . ., kth tire rotations, i.e. solid lines yk−4, . . ., yk in
Fig. 2.13, are used in the curve-fitting to estimate αk for the kth tire rotation. If the lateral
acceleration belongs to category 1, αk is estimated by solving an optimization problem for
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the curve-fitting with the model (2.14) as follows:

αk = argmin
α

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

α
(

xk,l
runloaded

)2
 xk,l

...
xk,t

− 1·xk,l


2

−

 yk,l
...
yk,t


...

α
(
xk−n+1,l

runloaded

)2
 xk−n+1,l

...
xk−n+1,t

− 1·xk−n+1,l


2

−

 yk−n+1,l
...

yk−n+1,t



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

, (2.16)

where xk = [xk,l ; · · · ; xk,t] represents a column vector whose elements are the longitudinal
coordinate values from the leading edge xk,l through the trailing edge xk,t for the kth tire
rotation and 1 represents a column vector whose elements are one and size is the same as

xk. The square symbol in


 xk,l

...
xk,t

− 1·xk,l


2

refers to the element-wise square. The

estimated αk yields the estimated lateral deflection yf,k for the kth tire rotation, the dashed
line in Fig. 2.13, as follows:

yf,k = αk

(
xk,l

runloaded

)2


 xk,l

...
xk,t

− 1·xk,l


2

. (2.17)

The new lateral deflection profile yf,k replaces the original lateral deflection profile yk so that
it can be used for the future curve-fitting at (k + 1)th, (k + 2)th, . . . tire rotations.

The lateral force Fy is calculated with the estimated α as follows:

Fy = −2αcbend, (2.18)

where cbend is a given bending stiffness.
The aligning moment Mz, which is contained in β := Mz

cyaw
, is not included in the lateral

deflection models in (2.14) and (2.15). Therefore, Mz cannot be estimated with the curve-
fitting. The aligning moment Mz is estimated using a pneumatic trail. The pneumatic trail
t is defined as the relationship between Fy and Mz:

t = −Mz

Fy
= ηxl, (0 ≤ η ≤ 1). (2.19)

This implies that t is the distance between the center of the contact patch and the position
where Fy is applied to generate Mz. Therefore, η in (2.19) should be in the range 0 ≤ η ≤ 1,
and it can be any value between 0 and 1 as long as the nonlinear equations to be discussed in



CHAPTER 2. ESTIMATION OF TIRE-ROAD FRICTION COEFFICIENT USING
LATERAL DEFLECTION AND A TIRE SENSOR 24

the next section can converge to a solution; η is a tuning parameter in the tire-road friction
coefficient estimation algorithm. Then, the aligning moment Mz is estimated as follows:

Mz = −ηxlFy. (2.20)

2.7 Estimation of Friction Coefficient

The tire-road friction coefficient is estimated through the tire brush model, which correlates
the tire-road friction coefficient µ, the tire slip angle α, and the normal force Fz with the
lateral force Fy and the aligning moment Mz in [40]. This section introduces the tire brush
model briefly, and presents how the friction coefficient µ is estimated.

2.7.1 Tire Brush Model

The tire brush model assumes a tire consists of tread elements, whose tips contact with the
road surface inside the tire-road contact patch. The deflection of the tread elements inside
the contact patch is described by the tire brush model, as shown in Fig. 2.14.

Figure 2.14: Tire Brush Model [29] c©2013 IEEE

If a tire has a tire slip angle αs between the translational velocity V and the longitudinal
(x) axis, the tread elements deform in the lateral (y) direction, as shown in Fig. 2.14. Then,
the contact line is drawn by connecting the tip of each tread element. The contact line is
parallel to the wheel velocity vector V . As the tire rotates, the tip of the tread element
follows the contact line. If the tip of tread element reaches the maximum possible lateral
deflection at xtrans in Fig. 2.14, it loses adhesion to the ground and starts to slide.

The distance from the leading edge xl = a to xtrans is calculated as:

a− xtrans = 2aλ, (2.21)

where λ is a non-dimensional quantity between 0 and 1 derived as (see [40] for details on the
derivation):

λ = 1− θy|σy|. (2.22)



CHAPTER 2. ESTIMATION OF TIRE-ROAD FRICTION COEFFICIENT USING
LATERAL DEFLECTION AND A TIRE SENSOR 25

In (2.22), θy is called the composite tire model parameter and defined as:

θy :=
2cpya

2

3µFz
, (2.23)

where cpy is a given lateral stiffness of tread elements, Fz is the normal force on the tire, and
µ is the tire-road friction coefficient. In (2.22), σy denotes the tire lateral slip [42]:

σy := tanαs, (2.24)

where the tire slip angle αs is defined as

αs := δsteer − δwheel. (2.25)

The steering angle δsteer is the angle between the vehicle longitudinal axis and the tire
longitudinal (x) axis, while δwheel denotes the angle between the vehicle longitudinal axis
and the wheel velocity V . Note that the tire slip angle αs is linearly correlated with δsteer.

The lateral force Fy and the aligning moment Mz are calculated as follows:

Fy = µFz(1− λ3)sgn(αs) (2.26)

Mz = −µFzaλ3(1− λ)sgn(αs). (2.27)

The ratio of Mz to Fy is referred to as the pneumatic trail t:

t = −Mz

Fy
= a

λ3

1 + λ+ λ2
. (2.28)

2.7.2 Friction Coefficient

The friction coefficient µ is estimated by solving the nonlinear equations in (2.26) and (2.27),
where the unknown variables are θy and σy due to λ in (2.22). If a solution of θy is converged,
the friction coefficient µ is calculated as:

µ =
2cpya

2

3Fzθy
. (2.29)

2.8 Incorporation of Vehicle Steering

All the steps for the proposed algorithm have been presented in the previous sections. The
proposed algorithm yields acceptable estimation results with small steering maneuvers, as
will be shown in the Experimental Results.

The proposed algorithm, however, does not take into account the vehicle steering. There-
fore, the estimation results degrade in maneuvers with large steering, as will be illustrated in
the Experimental Results section. According to (2.22)-(2.25), λ is a function of the steering
angle δsteer. The pneumatic trail t in (2.28) is also a function of δsteer since it is a function
of λ. However, the algorithm proposed in the previous sections sets t to be a fixed value as
a tuning parameter in (2.19), which cannot account for the vehicle steering. This section
presents an alternative algorithm adapted for large steering maneuvers.
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2.8.1 Models for Lateral Deflection and Change of Lateral
Velocity

In order to incorporate the steering angle, the change of lateral velocity as well as the lateral
deflection is used.

2.8.1.1 Longitudinal Kinematics Inside the Contact Patch

Based on the STM in Fig. 2.1, the longitudinal kinematics is derived for the lateral deflection
and the change of lateral velocity models.

The longitudinal coordinate x is a function of angular positions θ and φ inside the contact
patch:

x = −rloaded tan θ = rloaded tanφ. (2.30)

The time-derivative of (2.30) is the longitudinal velocity:

vx(t) =
dx

dt
= −rloadedθ̇ sec2 θ (2.31)

= −rloadedθ̇ sec2 φ.

The longitudinal velocities at the center of the contact patch and the leading edge are
computed as:

vx(tc) = −rloadedθ̇ = rloadedφ̇ (2.32)

vx(tl) = −rloadedθ̇ sec2 φl. (2.33)

The angular position φ at the leading edge is determined as:

φl = sin−1(
xl

runloaded
). (2.34)

The loaded radius rloaded is calculated as a function of the unloaded radius runloaded:

rloaded = runloaded cosφl. (2.35)

Since runloaded can be calibrated off-line and is easier to be estimated than rloaded, using
runloaded is advantageous in implementing the friction coefficient estimation algorithm. The
angular position φ through the contact patch is a function of the unloaded radius:

φ = tan−1(
x

rloaded
) (2.36)

= tan−1

 x

runloaded cos
(

sin−1( xl
runloaded

)
)
.
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The time difference between the leading edge xl and a position x inside the contact patch is
calculated as:

τ := t− tl =
φl − φ
θ̇

, (2.37)

where θ̇ is the constant angular velocity.

2.8.1.2 Lateral Deflection Inside the Contact Patch

If v(tc) in (2.32) and the time difference τ = t− tl in (2.37) are substituted into (2.10) with
the boundary condition vy(tl) = (2αxl + β)vx(tl) = 0, a new form of the lateral deflection
model is written as:∫ t

tl

H(t)dt =

∫ t

tl

∫ t

tl

{
d2y

dt2
− d2y

dt2

∣∣∣∣
tc

}
dtdt (2.38)

= α(x2 − x2l ) + β(x− xl)− ατ 2
(
dx

dt

∣∣∣∣
tc

)2

= α[(x− xl)2 − {runloaded(φl − φ) cosφl}2].

Note that the time difference τ in (2.37) is used instead of introducing the average longitu-
dinal velocity, i.e. τ = x−xl

vx
, which is used in the previously proposed algorithm. Since the

lateral deflection model in (2.38) does not contain vx to be approximated, it is more accu-
rate than that in (2.14). However, it has more nonlinearity since φ is computed by (2.36).
Choosing the lateral deflection model between (2.14) and (2.38) relies on circumstances, e.g.
computational capability. The steering angle δsteer is included through Fy in α := − Fy

2cbend

which is a function of δsteer, as derived in (2.26) by the tire brush model.
If the measured lateral acceleration belongs to category 2, the term {runloaded(φl −

φ) cosφl}2 is eliminated from (2.38) to be the same as (2.15).

2.8.1.3 Change of Lateral Velocity Inside the Contact Patch

Both the lateral force Fy in (2.26) and the aligning moment Mz in (2.27) are functions of
the vehicle steering δsteer. Including both Fy and Mz in the estimation algorithm would be
advantageous to account for the influence of the vehicle steering.

The aligning moment Mz is not contained in the lateral deflection model in (2.38). It
can be incorporated into the algorithm through the model in the lateral acceleration model
in (2.8) or the integration in (2.9). Since an integrator acts as a low-pass filter, this thesis
uses the integration model in (2.9) rather than the model in (2.8). Taking integration is
equivalent to removing high frequency noises, and therefore the model in (2.9) yields more
robustness to uncertainties in a test vehicle.

Note that the integration model in (2.9) describes the change of lateral velocity from the
leading edge xl throughout a position x corresponding to t. Therefore, H(t) in (2.9) becomes
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zero at the leading edge t = tl: H(tl) = 0. The change of lateral velocity model is re-written
by substituting (2.31), (2.32), (2.33) and (2.37) into (2.9) as follows:

H(t) =

∫ t

tl

(
d2y

dt2
− d2y

dt2

∣∣∣∣
tc

)
dt (2.39)

= runloadedθ̇ cosφl

× {−(2αx+ β) sec2 φ+ (2αxl + β) sec2 φl − 2αrunloaded(φl − φ) cosφl},

where the angular positions φl and φ are calculated with (2.34) and (2.36). Note that the
term 2αrunloaded(φl − φ) cosφl is eliminated if the measured lateral acceleration belongs to
category 2.

2.8.1.4 Tire Slip Angle

As presented in (2.25), the tire slip angle αs contains the steering angle δsteer, and therefore
the vehicle steering can be taken into consideration through αs. The tire slip angle αis of the
ith tire is approximated as a linear function of the built-in toe angle δitoe and the steering
angle δisteer as follows:

αis = Sitoeδ
i
toe + Sisteerδ

i
steer, (2.40)

where Sitoe and Sisteer are scaling factors which are tuned for individual vehicles.

2.8.1.5 Normal Force

The lateral force Fy and the aligning moment Mz are affected by the normal force Fz, as
presented in (2.26) and (2.27), and therefore Fz influences the tire-road friction coefficient
estimation.

The length of the contact patch in the STM in Fig. 2.1 is used to estimate Fz. If the effect
of the tire slip angle and the camber angle is neglected, the contact patch length A = 2a is
determined by the normal force [8].

Assume the normal force Fz has a linear relationship with the vertical tire deflection,
runloaded − rloaded as Fz = crad(runloaded − rloaded), where crad is a known tire radial stiffness
and rloaded =

√
r2unloaded − a2. Then, the normal force Fz is derived as a nonlinear function

of the contact patch length A [17]:

Fz = crad(runloaded −
√
r2unloaded −

A2

4
), (2.41)

where the length of the contact patch A is estimated using the radial acceleration, as proposed
previously.
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2.8.1.6 Friction Coefficient

As presented in (2.26) and (2.27), Fy and Mz are determined by λ which is a function of the
composite tire model parameter θy. Therefore, θy is estimated by applying the least-square
curve-fitting technique based on the models in (2.38) and (2.39) to the integration and the
double integration of the lateral acceleration only inside the contact patch in Fig. 2.7. Then,
the friction coefficient µ is calculated with θy, as presented in (2.29).
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2.9 Experimental Results

The effectiveness of the new tire-road friction coefficient estimation algorithm is validated
with experimental tests to differentiate three road surface conditions, i.e. icy, snowy, and
asphalt roads. Three classes of experimental maneuvers are performed at different vehicle
speeds and at small and large tire slip angles. One class is a slow lane change, in which the
steering wheel is turned by around ±5o, and the vehicle speeds are 32, 48, 64, 80, 96 kph
(= 20, 30, 40, 50, 60 mph). The other class is a steady-state surface transition, in which the
vehicle travels straight on a road with successive different road surface conditions: asphalt-
ice. The last one is a sinusoidal steering, in which a driver keeps steering to the left and the
right with different vehicle speeds: 48, 64, 80 kph.

Among all four tires, two proposed friction coefficient estimation algorithms are applied
to a rear-left (RL) tire which has a toe angle, i.e. built-in tire slip angle, of 0.15o. Front
tires can be steered unintentionally during driving, whereas rear tires are fixed. Therefore,
the front tires have more noise than the rear ones.

2.9.1 Experiment Setup

Experimental tests were conducted at the Smithers Winter Test Center with the support by
the Tyre Systems & Vehicle Dynamics Division of Pirelli Tyres SpA and the Research and
Innovation Center of Ford Motor Company.

A test vehicle, Volvo XC90, is equipped with Pirelli Scorpion Ice & Snow tires (235/60R18)
with 2.3 bar air pressure. Two data acquisition (DAQ) systems are constructed in the test
vehicle. One is for the acceleration measurement from the tire sensors, i.e. 3D wireless
accelerometers attached on the center line of the tire inner liner. The other is for the mea-
surements from the vehicle sensors, e.g. steering angles and wheel angular velocities, and
those from GPS/IMU, e.g. yaw-rate, a forward vehicle velocity, and traveled distance.

Time-synchronization is required in storing the measurement data, as shown in Fig.
2.15. The acceleration data collected from four tires are sent to a computer. The data
from GPS/IMU are collected along with the data from other vehicle sensors transmitted
via CAN bus, and then those are sent to the computer. An impulse signal is used for the
time-synchronization between the acceleration data and the data from GPS/IMU and other
vehicle sensors.

The acceleration data from tires and vehicle velocity data are used in the friction co-
efficient estimation algorithm, whereas the measurements from other vehicle sensors and
GPS/IMU are used to check and understand what is happening on the test vehicle.

2.9.2 Algorithm 1 - Vehicle Steering Not Incorporated

In this section, the measurement data are applied to the first friction coefficient estimation
algorithm which does not incorporate the vehicle steering.
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Figure 2.15: Experiment Setup [31] c©2013 Taylor & Francis

2.9.2.1 Slow Lane Change

The steering wheel is turned by around±5o in most experimental tests of the slow lane change
maneuver. This means the front wheels are steered by around ±0.31o since the steering ratio
of the test vehicle is known to be 15.9. Absolute values of the front wheel steering angle for
all experiments in the slow lane change maneuver are presented in Fig. 2.16. The circle point
at the center represents the mean value, while the dark and light colored bands indicate σ
(standard deviation) and 2σ which covers 68.2 % and 95.4 % of samples, respectively, under
the assumption of a normal distribution. The front wheel steering angle is less than 1o, as
shown in Fig. 2.16, which implies that tires of the test vehicle have the small tire slip angles
in the slow lane change maneuver.

Figure 2.16: Front Wheel Steering Angle [31] c©2013 Taylor & Francis

The new algorithm is motivated by the existing algorithm in [18] that could not dif-
ferentiate the road surface conditions between asphalt and icy roads with the test vehicle.



CHAPTER 2. ESTIMATION OF TIRE-ROAD FRICTION COEFFICIENT USING
LATERAL DEFLECTION AND A TIRE SENSOR 32

Table 2.4: Mean and Standard Deviation of Front Wheel Steering Angle [31] c©2013 Taylor &
Francis

Ice
Speed 32 32 48 48
Mean 0.41 0.29 0.41 0.13
σ 0.27 0.16 0.12 0.10

Asphalt
Speed 48 48 64 64 80 80 96 96
Mean 0.18 0.18 0.15 0.15 0.12 0.13 0.13 0.09
σ 0.12 0.12 0.10 0.10 0.10 0.09 0.09 0.08

The friction coefficient estimation results of the existing algorithm is presented in Fig. 2.17,
where the vehicle speed is 48 kph (≈ 30 mph). The horizontal lines indicate the mean values
of the estimated friction coefficients. Note that most estimated friction coefficients on the
icy road are greater than those on the asphalt road. Furthermore, some friction coefficient
estimates coincide.

Figure 2.17: Existing Friction Coefficient Estimation Algorithm [31] c©2013 Taylor & Francis

The first tire-road friction coefficient estimation algorithm successfully differentiate the
road surface conditions, as shown in Fig. 2.18, where the vehicle speed is 48 kph (≈ 30 mph).
The mean value of the estimated friction coefficients are denoted as the horizontal lines. The
dark and light colored bands indicate σ(standard deviation) and 2σ which covers 68.2 % and
95.4 % of the estimated friction coefficients, respectively, under the assumption of a normal
distribution. As shown in Fig. 2.18a and Table 2.5, the friction coefficient estimates on the
asphalt road are greater than those on the icy road, and the gap between two road surface
conditions is large enough to clearly differentiate.

As discussed previously, η in the estimation of the aligning moment Mz in (2.20) is
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(a) η = 0.25

(b) η = 0.1

Figure 2.18: Estimated Friction Coefficient for Slow Lane Change (Asphalt and Ice) [31]
c©2013 Taylor & Francis

Table 2.5: Mean and Standard Deviation of Estimated Friction Coefficient for Slow Lane
Change (Asphalt and Ice) [31] c©2013 Taylor & Francis

Ice Asphalt
(a) η = 0.25 Mean 0.013 0.994

σ 0.006 0.040
(b) η = 0.1 Mean 0.005 0.442

σ 0.003 0.017

a tuning parameter, for which any value between 0 and 1 can be chosen as long as the
nonlinear equations from the tire brush model converge to a solution for the friction coefficient
estimation. The estimation results with the different choice of η are presented in Fig. 2.18b.
The different values of η affect the order of the magnitude of the friction coefficient estimates.
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However, the road surface conditions are still differentiated as shown in Fig. 2.18a and 2.18b.

(a) Removing Shift

(b) No Removnig Shift

Figure 2.19: Estimated Friction Coefficients for Slow Lane Change (All Experiments), η =
0.25 [31] c©2013 Taylor & Francis

All experimental results for the friction coefficient estimation are presented in Fig. 2.19a
with different vehicle speeds. Each block represents an experiment at a certain vehicle speed.
The circle point at the center indicates the mean value, while the dark and light colored bands
for each block indicate σ and 2σ. As shown in Fig. 2.19a and Table 2.6, the road surfaces
between asphalt and icy roads are differentiated for all the experimental tests.

The robustness of the proposed estimation algorithm is demonstrated through Fig. 2.19b
and Table 2.7, in which the friction coefficients were estimated without removing the shift
in the lateral acceleration corresponding to the lateral deflection without compressive com-
ponent, i.e. category 1. The mean value and the deviation are random for every experiment
on the asphalt road as shown in Fig. 2.19b and Table 2.7, whereas those are consistent in
Fig. 2.19a.
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Table 2.6: Mean and Standard Deviation of Estimated Friction Coefficients for Slow Lane
Change (All Experiments) : η = 0.25 [31] c©2013 Taylor & Francis

Removing Shift
Ice

Speed 32 32 48 48
Mean 0.004 0.018 0.013 0.013
σ 0.012 0.008 0.006 0.017

Asphalt
Speed 48 48 64 64 80 80 96 96
Mean 0.99 1.04 1.02 1.04 1.00 0.99 0.95 0.93
σ 0.04 0.05 0.05 0.05 0.05 0.07 0.06 0.06

Table 2.7: Mean and Standard Deviation of Estimated Friction Coefficients for Slow Lane
Change (All Experiments) : η = 0.25 [31] c©2013 Taylor & Francis

No Removing Shift
Ice

Speed 32 32 48 48
Mean 0.004 0.018 0.013 0.014
σ 0.006 0.008 0.006 0.020

Asphalt
Speed 48 48 64 64 80 80 96 96
Mean 2.67 1.22 1.46 1.36 2.01 1.10 1.23 1.16
σ 0.13 0.07 0.12 0.10 0.20 0.05 0.16 0.20

2.9.2.2 Steady-State Surface Transition

When traveling straight with no steering on successive road surfaces, i.e. asphalt and icy
roads, at a constant vehicle speed 48 kph (≈ 30 mph), the friction coefficient estimation
results are degraded, as shown in Fig. 2.20. The mean value of the measured front wheel
steering angle is ±0.041o for this maneuver, which is smaller than those for the slow lane
change maneuver in Table 2.4. This implies that the tire slip angle is mainly due to the toe
angle 0.15o in the steady-state surface transition maneuver.

Since the proposed estimation algorithm is based on the lateral deflection, the proposed
estimation algorithm cannot differentiate the road surface conditions when traveling straight,
i.e. at very small tire slip angle, as shown in Fig. 2.20. In Fig. 2.20, two horizontal solid
lines indicate the mean values of the estimated friction coefficients for each road surface
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condition, respectively. The mean value on the asphalt road, 0.544, is smaller than that on
the icy road, 0.843. However, the slow lane change maneuver is even closer to the normal
driving in real life than the maneuver of traveling ahead with no steering. Therefore, the
lateral deflection-based friction coefficient estimation algorithm is still a promising way to
identify the road surface conditions.

Figure 2.20: Estimated Friction Coefficient for Steady-State Surface Transition [31] c©2013
Taylor & Francis

2.9.3 Algorithm 2 - Vehicle Steering Incorporated

In this section, the measurement data are applied to the second friction coefficient estimation
algorithm which incorporates the vehicle steering.

2.9.3.1 Sinusoidal Steering

Large steering maneuvers are performed at constant vehicle speeds: 48, 64 and 80 kph.
When driving with a vehicle speed of 48 kph, the steering wheel is turned by about ±20o

which corresponds to the steering angle of the front wheel turned by around ±1.26o since
the steering ratio of the test vehicle is known to be 15.9. If the vehicle steering is not
included in the estimation algorithm, the friction coefficient estimates change along with the
steering wheel angle, as shown in Fig. 2.21a. The solid line represents the steering wheel
angle, and each dot represents the friction coefficient estimates for one tire rotation. The
horizontal line is the mean value of the friction coefficient estimates. The dark and light
colored bands indicate σ (standard deviation) and 2σ which covers 68.2 % and 95.4 % of
samples, respectively, under the assumption of a normal distribution.

Fig. 2.21a manifests that the first proposed algorithm cannot estimate the friction coeffi-
cient with the large steering maneuvers. The second proposed algorithm, however, incorpo-
rates the vehicle steering, and significantly diminishes the influence of the vehicle steering,
as shown in Fig. 2.21b. Little change is observed in the friction coefficient estimates in Fig.
2.21b while turning the steering wheel. Fig. 2.22 presents the friction coefficient estimation
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(a) Not Incorporating δsteer (mean = 0.77, σ = 0.34)

(b) Incorporating δsteer (mean = 0.90, σ = 0.03)

Figure 2.21: Friction Coefficient Estimation on Asphalt at 48 kph (Steering Wheel ' ±20o)
[29] c©2013 IEEE

results for driving with a vehicle speed of 64 kph, which shows the diminished influence of
the vehicle steering.

If the vehicle is driven with 80 kph, some influence of the vehicle steering is observed,
as shown in Fig. 2.23b. However, the change of µ estimates is reduced compared to that in
Fig. 2.23a. Furthermore, the steering wheel is turned by around ±13o, which is considerably
intense driving maneuver with the vehicle speed 80 kph. This is not close to normal driving.
Therefore, the second proposed friction coefficient estimation algorithm is still promising for
large steering maneuvers.

2.9.3.2 Slow Lane Change - Ice, Snow, and Asphalt

If the experimental measurements in the slow lane change maneuver is applied to the esti-
mation algorithm, three road surface conditions are mostly differentiated, as shown in Fig.
2.24.

Note that an additional signal processing is used to obtain smoother estimation results;
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(a) Not Incorporating δsteer (mean = 1.21, σ = 0.15)

(b) Incorporating δsteer (mean = 0.91, σ = 0.05)

Figure 2.22: Friction Coefficient Estimation on Asphalt at 64 kph (Steering Wheel ' ±16o)
[29] c©2013 IEEE

this will be illustrated in detail in the Experimental Results section of Chapter 3. In order to
obtain the smoother estimation results, the Kalman Filter is used based on the state-space
model written as:

µ̄(k) = µ̄(k − 1) (2.42)

d̄(k) = µ(k) = µ̄(k) + ē(k). (2.43)

The estimate before the additional processing is denoted as µ(k), which is the measurement
for the system in (2.42)-(2.43). The estimate after the additional processing is denoted as
µ̄(k). The noise ē in (2.43) is assumed to be white, stationary, and normally distributed
with zero mean.
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(a) Not Incorporating δsteer (mean = 1.10, σ = 0.17)

(b) Incorporating δsteer (mean = 0.89, σ = 0.08)

Figure 2.23: Friction Coefficient Estimation on Asphalt at 80 kph (Steering Wheel ' ±13o)
[29] c©2013 IEEE
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Figure 2.24: Friction Coefficient Estimation on Icy, Snowy, and Asphalt Roads

2.10 Conclusion

Two tire-road friction coefficient estimation algorithms are proposed in this chapter. The lat-
eral acceleration only inside the contact patch is used in the algorithms to ensure robustness
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to the orientation-variation of the accelerometer body frame. The first algorithm is based
on the lateral deflection, and the second one is based on the change of lateral velocity as
well as the lateral deflection. The proposed algorithms are validated with three experimental
maneuvers.
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Chapter 3

A Novel Algorithm for Vehicle
Inertial Parameter Identification
based on a Dual Unscented Kalman
Filter

3.1 Introduction

This thesis proposes a novel approach to identify vehicle inertial parameters of a passenger
car: a vehicle sprung mass (ms), yaw moment of inertia (Iz), and longitudinal position of
the CoG (lf ). These parameters affect the closed-loop behaviors of vehicle control systems

The proposed identification algorithm is based on a four-wheel nonlinear vehicle model
with roll dynamics. In order to provides a theoretical background to establish criteria for
the activation of the algorithm, a local observability analysis for the inertial parameter iden-
tification is performed with the nonlinear vehicle model. The vehicle sprung mass ms is
determined by estimating the additional mass ma loaded on the empty sprung mass. A rela-
tionship between ma, Iz, and lf is derived by using the Parallel-Axis Theorem, which allows
a reduction in complexity of the identification algorithm. As an estimation technique, a dual
unscented Kalman filter framework is used for the simultaneous estimation of the inertial
parameters and the vehicle state variables. Standard vehicle sensors, such as accelerometers
and a gyroscope, are used for the identification, whereas more advanced equipment, e.g. a
Global Positioning System (GPS) and suspension displacement sensors, are assumed to be
unavailable. Extensive simulations and experimental tests illustrate the capability of the
algorithm to differentiate between two driving conditions on a flat road with a constant
tire-road friction coefficient. Note that the contents of this chapter have been published in
a journal [30].
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3.2 Vehicle Model

The identification algorithm to be developed in this chapter uses the four-wheel vehicle model
which has four degree-of-freedom: longitudinal (x) and lateral (y) translational motion, yaw
(ψ) rotation about the z-axis, and roll (φ) rotation about the x-axis in Fig. 3.1.

The vehicle state vector is defined as s := [s1, s2, s3, s4, s5]
> = [vx, vy, ψ̇, φ, φ̇]>, and

the dynamic equations are:

ṡ1 = v̇x = ax + vyψ̇ (3.1)

ṡ2 = v̇y = ay − vxψ̇ (3.2)

ṡ3 = ψ̈ =
1

Iz

{
lw(F fr

x + F rr
x )− llwFx (3.3)

+ lfFy − l(F rl
y + F rr

y )
}

ṡ4 = φ̇ = φ̇ (3.4)

ṡ5 = φ̈ =
1

Ix

{
mshs(ay + gφ)− kφφ− cφφ̇

}
. (3.5)

The track widths on the front and rear axles in Fig. 3.1 are assumed to be the same:
lw = lfw = lrw. The portion of lw to the left of the center of gravity (CoG) is denoted as llw
in (3.3). In (3.5), ms indicates the vehicle sprung mass, hs indicates the height from the roll
center to the CoG of sprung mass, and kφ and cφ denote the rolling stiffness and damping,
respectively.
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Figure 3.1: 4-Wheel Vehicle Model with Roll Dynamics [30] c©2014 IEEE

In the above equations, F i
x and F i

y indicate the tire forces in the vehicle longitudinal (x)
and lateral (y) directions, respectively, at the ith wheel in Fig. 3.1. The column vector u is
defined to contain the tire forces as follows:

u := [{F i
x}i∈I , {F i

y}i∈I ]>,
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where I = {fl, fr, rl, rr} is a set indicating front-left, front-right, rear-left, and rear-right
wheels.

The vehicle longitudinal acceleration ax in (3.1) and lateral acceleration ay in (3.2) are
calculated as:

ax =
Fx − Faero

m
(3.6)

ay =
Fy
m

, (3.7)

where Fx and Fy indicate the total vehicle longitudinal and lateral forces, respectively, and
they are computed as Fx =

∑
i∈I{F i

x} and Fy =
∑

i∈I{F i
y}. The aerodynamic drag force

Faero in (3.6) is computed as Faero = 1
2
ρCdAfv

2
x with the mass density of air ρ, the aerody-

namic drag coefficient Cd, and the frontal area of a vehicle Af (see [42]). The total vehicle
mass, i.e. the sum of the sprung mass ms and the mass of all wheels mt, is denoted as m
in (3.6) and (3.7). Note that the vehicle longitudinal force Fx in (3.6) contains the rolling
resistance force [32].

Fl
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Figure 3.2: Tire Longitudinal and Lateral Forces [30] c©2014 IEEE

The vehicle longitudinal and lateral forces at the ith wheel, F i
x and F i

y, are calculated
with the tire longitudinal and lateral forces, F i

l and F i
c , as shown in Fig. 3.2:

F i
x = F i

l cos δi − F i
c sin δi, (i ∈ I) (3.8)

F i
y = F i

l sin δi + F i
c cos δi, (i ∈ I), (3.9)

where δi denotes the steering angle of the ith wheel. Note that the steering angles are zero
for the rear wheels. The calculation of the tire longitudinal and lateral forces, F i

l and F i
c ,

will be discussed in detail in the Tire Forces section.
The lateral acceleration ay,sensor, the longitudinal velocity vx, the yaw rate ψ̇, and the

longitudinal acceleration ax constitute the measurement vector d. Due to the roll dynamics
about the longitudinal x-axis, the measured lateral acceleration ay,sensor in [53] is modeled
as:

ay,sensor = ay − haccφ̈− gφ,
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where the height from the roll center to the accelerometer hacc is assumed to be the same as
hs. The measurement vector d is expressed as a function of s and ṡ using (3.1)-(3.5):

d :=
[
ay,sensor, vx, ψ̇, ax

]>
(3.10)

= G(s, ṡ) =


ṡ2 + s1s3 − haccṡ5 − gs4

s1
s3

ṡ1 − s2s3

 .

The vehicle sprung mass ms is the sum of the additional sprung mass ma, such as pas-
sengers and luggage, and the empty vehicle sprung mass ms,emp specified by automobile
manufacturers. The algorithm to be proposed will identify the additional sprung mass, ma,
and the longitudinal position of the CoG, lf . Therefore, the vehicle inertial parameter vector
is defined as:

w := [ma, lf ]
>. (3.11)

The yaw moment of inertia Iz is identified with the estimated ma and lf , as will be discussed
in the next section.

Equations (3.1)-(3.11) is compactly written as the continuous state-space model:

ṡ(t) = F (w(t), s(t), u(t)) (3.12)

ẇ(t) = 0 (3.13)

d(t) = G(s(t), ṡ(t)). (3.14)

Note that the time-derivative of w is zero since the inertial parameters are assumed to be
constant while driving a passenger vehicle.

When using Euler forward discretization, the discretized state-space representation for
(3.12)-(3.14) is:

s(k + 1) = s(k) + τsF (w(k), s(k), u(k)) + v(k) (3.15)

= T (w(k), s(k), u(k)) + v(k)

w(k + 1) = w(k) + r(k) (3.16)

d(k) = G(s(k), ṡ(k)) + e(k), (3.17)

where τs is the sampling time, v in (3.15) and r in (3.16) are the process noises, and e in
(3.17) is the measurement noise. The noises v, r, and e are assumed to be white, stationary,
and normally distributed with zero mean. Note that the inertial parameter dynamic model
in (3.16) has the identity transition matrix since the time-derivative ẇ is zero in (3.13). The
state-space equations (3.15) and (3.17) are used for the estimation of the vehicle state s, and
the equations (3.16) and (3.17) are used in identifying the inertial parameter w.
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3.3 The relationship between Iz, ma, and lf

The yaw moment of inertia Iz and the position of the vehicle sprung mass CoG change if
additional masses, such as fuel tank, passengers, or luggage, are loaded on the empty vehicle.
The CoG position is located by the distance from the front axle lf and the distance from
the left edge llw as denoted in Fig. 3.3.
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lw,emp
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lf,emp
x’

y’

o’

lw
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rcgra
ma

Figure 3.3: Vehicle with an Additional Mass [30] c©2014 IEEE

Assume a rigid body of mass ma is added to the empty vehicle in Fig. 3.3. Then,
the vehicle sprung mass ms is the sum of the empty vehicle sprung mass ms,emp and the
additional mass ma: ms = ms,emp + ma. Note that the coordinate frame oxy is at the CoG
of the empty vehicle sprung mass ms,emp, and the coordinate frame o′x′y′ is at the new CoG
of the sprung mass after loading the additional mass ma.

The new CoG position vector of the vehicle sprung mass ms in the oxy frame is indicated
as ~rcg, as shown in Fig. 3.3. The position vector of the CoG of ma is ~ra in the frame oxy,
and it is expressed as:

ms~rcg = ms,emp
~0 +ma~ra

⇒ ~ra =
ms

ma

~rcg. (3.18)

The new yaw moment of inertia in the oxy frame, Ioxyz , is calculated as:

Ioxyz = Iz,emp +ma‖~ra‖22, (3.19)

where Iz,emp is the yaw moment of inertia of the empty vehicle sprung mass ms,emp. Note
that ma is assumed to be a point mass when calculating the yaw moment of inertia in (3.19),
i.e. the yaw moment of inertia of ma with respect to its own CoG is neglected. Using the
Parallel-Axis Theorem [6], Ioxyz is expressed as:

Ioxyz = Io
′x′y′

z +ms‖~rcg‖22, (3.20)
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where Io
′x′y′
z represents the new yaw moment of inertia in the o′x′y′ frame, and this is the

yaw moment of inertia to be estimated. When combining (3.19) and (3.20), the new yaw
moment of inertia in the o′x′y′ frame is:

Io
′x′y′

z = Iz,emp +ma‖~ra‖22 −ms‖~rcg‖22. (3.21)

If ~ra = ms

ma
~rcg in (3.18) is substituted into (3.21), the yaw moment of inertia after loading

the additional mass ma is written as:

Io
′x′y′

z = Iz,emp +ms

(
ms

ma

− 1

)
‖~rcg‖22, (3.22)

where ms = ms,emp +ma.
Note that the position vector ~rcg is expressed as ~rcg = (lf,emp− lf )~ex + (lwl,emp− llw)~ey, as

shown in Fig. 3.3, where ~ex and ~ey are the unit vectors in the x and y directions, respectively.
Furthermore, Io

′x′y′
z in (3.22) is the same as the yaw moment of inertia Iz in (3.3). Therefore,

the yaw moment of inertia after loading the additional mass ma is expressed as a function
of ma, lf , and llw:

Iz = Io
′x′y′

z

= Iz,emp + (ms,emp +ma)

(
ms,emp +ma

ma

− 1

)
× {(lf,emp − lf )2 + (llw,emp − llw)2}, (3.23)

where the empty vehicle parameters, Iz,emp, ms,emp, lf,emp, and llw,emp are assumed to be
known.

This thesis will not identify the transverse CoG position llw, and therefore llw = llw,emp.
The inertial parameter w = [ma, lf ]

> is first identified by substituting (3.23) for Iz in the yaw
dynamics in (3.3). Then, the yaw moment of inertia Iz is calculated with the identified ma,
lf , and the relationship in (3.23). Using this approach, the proposed identification algorithm
has less complexity than when ma, lf , and Iz are estimated individually.

3.4 Local Observability Analysis

This section demonstrates that the inertial parameter w can be uniquely determined with
the measurement d, which is necessary to identify the inertial parameter, w = [ma, lf ]

>.
Since the state-space model in (3.15)-(3.17) is a nonlinear function in terms of w, it will be
presented that w is locally observable with the measurement d = G(s, ṡ) in (3.10).

By investigating the rank of an observability codistribution matrix, the local observability
can be proven, as described in [27][39]. If the observability codistribution matrix has full
column rank, w is said to be locally observable.
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Define a vector O consisting of the measurement vector d and its time-derivative ḋ:

O :=

[
G

Ġ

]
=



g1
g2
g3
g4
ġ1
ġ2
ġ3
ġ4


=



ay − haccφ̈− gφ
vx
ψ̇
ax

ȧy − hacc
...
φ − gφ̇

v̇x
ψ̈
ȧx


,

where d is expressed with ay, vx, ψ̇, and ax. The observability codistribution matrix is defined
as the Jacobian of O with respect to the parameter vector w: ∇O = [∂O/∂ma, ∂O/∂lf ],
whose size is 8 × 2. The partial derivatives of g1, g4, and ġ3 with respect to ma and lf are
derived as follows:

∂g1
∂ma

=
∑8

i=5 ui

(
−1
m2 + mshacchs

m2Ix
− hacchs

mIx

)
− hacchs

Ix
gs4

∂g1
∂lf

= 0

∂g4
∂ma

= − 1
m2

(∑4
i=1 ui −

1
2
ρCdAfs

2
1

)
∂g4
∂lf

= 0

∂ġ3
∂ma

= 0
∂ġ3
∂lf

= −1
I2z

∂Iz
∂lf

{
lw(u2 + u4)− llw

∑4
i=1 ui

+ lf
∑8

i=5 ui − l(u7 + u8)
}

+ 1
Iz

∑8
i=5 ui.

If the vector u = [u1, . . . , u8] is not zero, the above partial derivatives of g1, g4, and ġ3
ensure the full column rank of the matrix ∇O. This proves the local observability of w based
on the measurement d.

According to this analysis, the identification algorithm pauses to avoid malfunctions if
neither the longitudinal excitation {ui}4i=1 nor the lateral excitation {ui}8i=5 is observed.

3.5 Tire Forces

As computed in (3.8)-(3.9) previously, the vehicle longitudinal and lateral forces at the ith

wheel, F i
x and F i

y, are determined by the tire longitudinal and lateral forces at the ith wheel,
F i
l and F i

c . While the tire brush model is used to estimate the tire lateral force F i
c , the

engine torque map and gear ratios are used to estimate the tire longitudinal force F i
l . Note

that the change of tire pressure, temperature, and tire wear are assumed to be negligible.
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3.5.1 Tire Lateral Force

The tire lateral force Fy is calculated using the tire brush model which accounts for the non-
linear tire characteristics during a normal driving. The tire brush model has been presented
in Chapter 2, and therefore equations for the model are briefly reviewed here; refer to the
Chapter 2 for details.

The tire lateral force F i
c of the ith wheel is computed as:

F i
c = µF i

z{1− (1− θiy|σiy|)3}sgn(αis), (3.24)

where F i
z indicates the normal force at the ith wheel to be discussed later and µ indicates

a known tire-road friction coefficient. Note that the pure lateral tire slip is taken into
consideration, and the longitudinal tire slip is neglected.

The composite tire model parameter θiy in (3.24) is defined as:

θiy :=
2cpy(a

i)2

3µF i
z

,

where cpy is the known lateral stiffness of the tread elements and ai is the half length of
the tire-road contact patch. If in-tire accelerometers are available, an approach proposed
in Chapter 2 can be applied to estimate ai. This chapter, however, uses the following
relationship:

ai =

√
(riunload)

2 − (riunload −
F i
z

crad
)2, (3.25)

where crad is the known tire radial stiffness, and runload is an unloaded tire radius. The
relationship in (3.25) is derived based on the assumption that the vertical tire deflection is
linearly proportional to the normal force [29]. Note that ai of the front tire is assumed to
remain constant. If the engine is mounted on the front of a vehicle, additional masses on a
passenger vehicle are mostly loaded behind the CoG, e.g. at a trunk and passenger seats.
Therefore, the change in ai of the front tire is negligible.

The tire lateral slip σiy in (3.24) is defined as:

σiy := tanαis.

The tire slip angle αis is the difference between the steering angle δi and the wheel velocity
angle δiwheel (see [42]):

αis := δi − δiwheel.

The steering angle δi is the angle between the vehicle longitudinal axis and the tire longitu-
dinal axis. The wheel velocity angle δiwheel is the angle between the vehicle longitudinal axis
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and the wheel velocity vector (see [42]). The angle δiwheel is computed with the vehicle state
s = [vx, vy, ψ̇, φ, φ̇]> as follows:

δiwheel = tan−1

(
vy + l̄iψ̇

v̄ix

)

l̄i =

{
lf (i = fl, fr)
lf − l (i = rl, rr)

v̄ix =

{
vx − ψ̇ · llw (i = fl, rl)

vx + ψ̇(lw − llw) (i = fr, rr).

3.5.2 Tire Longitudinal Force

The engine output torque is obtained from the engine torque map, and it is transmitted
through the Controller Area Network (CAN) bus. The total tire longitudinal force Fl is
computed with the engine torque Teng, the transmission gear ratio Rtrans, the differential
gear ratio Rdiff , the unloaded tire radius runload, and scaling factor η:

Fl =
∑
i∈I

F i
l =

TengRtransRdiff

runload
η, (3.26)

where the pure longitudinal tire slip is assumed, and the lateral tire slip is neglected. The
total longitudinal force Fl is equally distributed to the driven wheels. The scaling factor η
is calculated as η = runload

reff
ηm, where reff is the effective tire radius and ηm indicates the

mechanical efficiency [5]. Since Fl is estimated only when the lock-up occurs, the torque
converter ratio is not taken into consideration.

3.5.3 Normal Force

The tire normal forces are determined by the distribution of the sprung mass and the roll
dynamics. The vehicle sprung mass ms is distributed on the front and rear tires to generate
the normal forces, f fz and f rz [42]:

f fz = ms
l − lf
l

g −mshsax

f rz = ms
lf
l
g +mshsax.

Note that the normal forces f fz and f rz are affected by the longitudinal acceleration ax. The
forces f fz and f rz are, in turn, laterally distributed on the left and right tires. The lateral
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distribution of f iz is calculated as:

f̄ iz =


lw−llw
lw

f fz (i = fl)
llw
lw
f fz (i = fr)

lw−llw
lw

f rz (i = rl)
llw
lw
f rz (i = rr),

where f̄ iz denotes the lateral distribution of f iz.
The load transfer between left and right tires is caused by the roll dynamics. Therefore,

the total normal force is computed as:

F i
z =

{
f̄ iz − ksllwφ− csllwφ̇, (i = fl, rl)

f̄ iz + ks(lw − llw)φ+ cs(lw − llw)φ̇, (i = fr, rr).

The roll dynamics, φ and φ̇, account for the load transfer. The known suspension stiffness
and damping are denoted as ks and cs, respectively.

3.6 Dual Unscented Kalman Filter

While the identification of the vehicle inertial parameter, w = [ma, lf ]
>, needs the vehicle

state, s = [vx, vy, ψ̇, φ, φ̇]>, the estimation of the vehicle state s also needs the inertial
parameter w. Therefore, a dual estimation framework is used for the estimation of s and
w, as shown in Fig. 3.4. The inertial parameter w = [ma, lf ]

> is identified, and then ma

and lf are used along with (3.23) to determine Iz. The vehicle state estimator receives the
identified parameters, ma, lf , and Iz, as a vector w′ = [ma, lf , Iz]

>, as shown in Fig. 3.4.
The vehicle state estimator uses w′ to estimate the vehicle state s, and the estimated s is,
in turn, used for the inertial parameter estimator.

The vehicle inertial parameters, ma and lf , are identified separately using the switch
block as shown in Fig. 3.4. The criteria used in the switch block will be listed in the
Simulation Results and the Experimental Results sections. The ma estimation is activated
when the longitudinal dynamics prevail over the lateral dynamics, whereas the lf estimation
is activated when the lateral dynamics prevail over the longitudinal dynamics. The additional
mass ma can be estimated more accurately with the longitudinal dynamics than is estimated
with the lateral dynamics. If ma is estimated along with lf in lateral dynamics maneuvers,
the inaccurate ma estimates degrade the accuracy of lf estimates.

In the inertial parameter estimator in Fig.3.4, the tire longitudinal force Fl is estimated
with the engine torque under the prevailing longitudinal dynamics and the tire lateral force
Fc is estimated with the tire slip angle αs, the normal force Fz, and the tire brush model
under the prevailing lateral dynamics.
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Figure 3.4: Dual Estimation Framework [30] c©2014 IEEE

3.6.1 Unscented Kalman Filter

A wide range of estimation techniques have been applied to the inertial parameter iden-
tification. For example, Recursive Least Squares (RLS) and Kalman Filter (KF) can be
easily implemented and have fast convergence [58], even if they cannot be applied for non-
linear vehicle models. The KF applies a recursive Bayesian estimation algorithm to a linear
state-space model with the assumption of Gaussian probability distributions [4, 21], and it
produces the optimal estimate in the sense of the minimum mean squared error (MMSE).

The variants of the KF adapted for nonlinear models, e.g. Extended Kalman Filter (EKF)
and Unscented Kalman Filter (UKF), have been applied to the estimation with nonlinear
vehicle models [7, 32, 44, 45, 53, 54]. Hong and Smith et al. present the comparison between
the estimation results of the EKF and the UKF [32].

This thesis uses the UKF proposed in [34, 52] due to it increased accuracy and robustness,
as demonstrated in [32]. If the probability distribution of a random vector undergoing a
nonlinear transformation could be calculated, the MMSE optimal estimate could be obtained
with the nonlinear model in the KF architecture. The optimal estimate is approximated up
to a second-order term in the Taylor series expansion by the UKF [26].

A recursive Bayesian estimation algorithm has a two-stage filter architecture, and hence
the UKF is also executed in the two-stage architecture. The two-stage UKF algorithms
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for both the vehicle inertial parameter and the vehicle state identifications are presented in
Appendix A.

3.7 Simulation Results

3.7.1 Vehicle Maneuver in Simulations

In order to generate the longitudinal and lateral dynamics, acceleration and double lane
change (DLC) maneuvers are simulated in the vehicle simulation software, CarSim. All

Table 3.1: Vehicle Parameters [30] c©2014 IEEE

Parameter Value Parameter Value
ms,emp 1274.0 [kg] l 2.578 [m]
mt 142.0 [kg] lf,emp 1.016 [m]
Ix 606.1 [kgm2] lw 1.539 [m]

Iz,emp 1523.0 [kgm2] hs 0.224 [m]
ρ 1.206 [kg/m3] kφ 42075.0 [kgm2/s2]
Af 1.6 [m2] cφ 5737.5 [kgm2/s]
Cd 0.15

Table 3.2: Switch of Vehicle Inertial Parameter Identification (Simulation) [30] c©2014 IEEE

If
• Longitudinal Acceleration (ax) > 0.70 m/s2

• |Lateral Acceleration (ay)| < 0.25 m/s2

• |Yaw Rate (ψ̇)| < 1 deg/s
• |Front Wheel Steering Angle (δf )| < 0.52 deg
⇒ Then, ma (longitudinal) estimation

Else If
• |Lateral Acceleration (ay)| > 0.25 m/s2

• |Yaw Rate (ψ̇)| > 1 deg/s
• 0.78 deg < |Front Wheel Steering Angle (δf )| < 8.31 deg
⇒ Then, lf (lateral) estimation

Else
⇒ Pause of the inertial parameter identification algorithm

End
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the vehicle parameters used for the simulation are listed in Table 3.1. The path of the vehicle
is indicated as the solid line in Fig. 3.5a. The small box in Fig. 3.5a represents a vehicle,
and it follows the path. The maneuver performed in the simulation is: acceleration → DLC
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Figure 3.5: Vehicle Maneuver in Simulation [30] c©2014 IEEE

→ deceleration → acceleration → DLC on a flat road with a constant friction coefficient
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0.8. The measurements during the maneuver are presented in Fig. 3.5b. The measurements
ay,sensor, vx, ψ̇, and ax in Fig. 3.5b are corrupted with Gaussian noises with zero mean and
variances of 0.0144, 0.0900, 0.0900, and 0.0144, respectively. The sampling time τs is 0.005
s.

The vehicle inertial parameter identification algorithm activates the estimation of the
additional mass ma under the prevailing longitudinal dynamics, whereas the estimation of the
CoG position lf is activated under the prevailing lateral dynamics. Otherwise, the algorithm
pauses since the local observability of w is not ensured, as discussed in the Local Observability
Analysis section. The estimation mode is switched based on the criteria presented in Table
3.2.



CHAPTER 3. A NOVEL ALGORITHM FOR VEHICLE INERTIAL PARAMETER
IDENTIFICATION BASED ON A DUAL UNSCENTED KALMAN FILTER 55

3.7.2 Estimation with a Point Mass

An estimation result of the inertial parameters, ms, lf , and Iz is presented in Fig. 3.6. In
this simulation, a point mass 350 kg is added on the vehicle whose parameters are listed in
Table 3.1. The point mass is located at the position of la = 2.1 m as shown in Fig. 3.6a,
where la is the distance between the front axle and the CoG of the additional mass.
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Figure 3.6: Identification with an Additional Point Mass [30] c©2014 IEEE

In Fig. 3.6b-3.6d, the horizontal dashed-dotted lines represent the true values of ms, lf ,
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and Iz, and the solid lines represent the estimations by the proposed algorithm. Once ma

is estimated, the sprung mass ms in Fig. 3.6b is computed as ms = ma + ms,emp. Note
that the yaw moment of inertia Iz is calculated using the estimated ma, lf , and (3.23).
According to the criteria in Table 3.2, the identification algorithm switches between the
estimations for ma and lf . The shaded area in Fig. 3.6b represents the time period when
the longitudinal dynamics prevail over the lateral dynamics to identify ma, whereas that in
Fig. 3.6c corresponds to the time period when the lateral dynamics predominate to identify
lf .

Monte Carlo simulations further illustrate the performance of the algorithm. The number
of simulations is N = 300. The Gaussian noise is newly created for each trial, and is added
to the measurements in Fig. 3.5b. At the end of each trial, e.g. about 34 s in Fig. 3.6, the
percentage of the deviation from the true value is computed, and its statistics are presented
in Fig. 3.7 with the mean value and the standard deviation σ.
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Figure 3.7: Monte Carlo Simulation (N = 300) with the Point Mass 350 kg [30] c©2014 IEEE

Note that there are biases of non-zero values, e.g. 0.31 % for ms, for the mean values in
Fig. 3.7. The vehicle and tire models used in the proposed algorithm do not perfectly describe
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the high-fidelity vehicle and tire models in the CarSim. Therefore, the tire forces estimated
in the proposed algorithm can be different from those in the CarSim, which accounts for the
biased mean values.
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Figure 3.8: Identification with Different Point Additional Masses [30] c©2014 IEEE

The performance of the proposed identification algorithm is more clearly demonstrated
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with the standard deviations. The deviation from true value is within±1 % with the standard
deviation σ = 0.24 % for the sprung mass ms, as shown in Fig. 3.7a. Fig. 3.7b and Fig.
3.7c also show the deviations from true values mostly within ±1 % with small σ values, 0.31
% and 0.31 %, for lf and Iz, respectively.

The primary goal of this research to differentiate two different ma conditions is accom-
plished, as shown in Fig. 3.8. The additional mass ma in Fig. 3.6a is changed from 350kg
to 150kg, and the location is the same, la = 2.1 m. The estimated inertial parameters, ms,
lf , and Iz are smaller than those of the 350 kg additional mass, as shown in Fig. 3.8.
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3.7.3 Estimation with a Box Mass

When deriving (3.23), an additional point mass is assumed. Acceptable estimation results,
however, are still obtained with an additional box mass by the proposed algorithm, as shown
in Fig. 3.9. The box mass (1 m × 1 m) is loaded on the empty vehicle as shown in Fig. 3.9a,
and the distance from the front axle to the CoG of the box mass is la = 2.1 m. The 350
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Figure 3.9: Identification with Additional Box Masses [30] c©2014 IEEE

kg box mass has the yaw moment of inertia, 58.33 kgm2, with respect to its own centroid.
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Due to the centroidal yaw moment of inertia, the estimates of Iz have discrepancies from
the true values of Iz, as shown in Fig. 3.9d. The discrepancy, however, is small, compared
to the total Iz of the vehicle.

Fig. 3.10 presents Monte Carlo simulations carried out with the 350 kg additional box
mass. The precision of the algorithm is not degraded by the additional box mass in the
N = 300 simulations; the standard deviations are small values, 0.25 %, 0.34 %, and 0.30
%, for ms, lf , and Iz, respectively. Because the additional box mass has a centroidal yaw
moment of inertia of 58.33 kgm2, Fig. 3.10c shows more biased mean values than those of
the point mass in Fig. 3.7c. All the deviations of Iz estimates, however, are still within ±5
%.
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Figure 3.10: Monte Carlo Simulation (N = 300) with the Box(1 m × 1 m) Mass 350 kg [30]
c©2014 IEEE

Different box (1 m × 1 m) additional mass conditions are differentiated with the proposed
algorithm, as shown in Fig. 3.11. The additional mass ma in Fig. 3.9a is changed from 350
kg to 150 kg, and the location is the same, la = 2.1 m. As shown in Fig. 3.11, the estimated
inertial parameters, ms, lf , and Iz are smaller than those of the 350 kg additional mass. Due
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to the centroidal yaw moment of inertia, Fig. 3.11c shows discrepancies between the true Iz
and the estimated Iz for both 150 kg and 350 kg. However, the yaw moment of inertia Iz
for 150 kg and 350 kg is still differentiated with the proposed identification algorithm.
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3.7.4 Robustness of the Algorithm

The noise covariance matrices have influence on the identification, and it is examined with a
point mass of 350 kg. In Fig. 3.12, Rr and Re denote the covariance matrices of the process
noise r in (3.16) and the measurement noise e in (3.17), respectively. While the process noise

0 5 10 15 20 25 30
1300

1400

1500

1600

1700

Time [s]

m
s [k

g]

 

 

 

0 5 10 15 20 25 30

1.2

1.3

1.4

1.5

1.6

Time [s]

l f [m
]

0 5 10 15 20 25 30

1600

1800

2000

2200

2400

2600

Time [s]

I z [k
gm

2 ]

True

Rr

1/5xRr

5xRr

(a) Covariance Matrix Rr

0 5 10 15 20 25 30
1300

1400

1500

1600

1700

Time [s]
m

s [k
g]

 

 

0 5 10 15 20 25 30
1.1

1.2

1.3

1.4

1.5

1.6

Time [s]

l f [m
]

0 5 10 15 20 25 30

1600

1800

2000

2200

2400

2600

Time [s]

I z [k
gm

2 ]

True

Re

1/5xRe

5xRe

(b) Covariance Matrix Re

Figure 3.12: Identification with Different Covariance Matrices [30] c©2014 IEEE

covariance matrices (Rr, 1/5Rr, and 5Rr) are used for estimation in Fig. 3.12a, estimation
results with the measurement noise covariance matrices (Re, 1/5Re, and 5Re) are presented
in Fig. 3.12b. As shown in Fig. 3.12a, the proposed algorithm converges to similar values
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in all cases, although the process noise covariance matrix, Rr, affects the convergence rate
and the extent of chatter [26]. In Fig. 3.12b, as Re increases, the algorithm converges more
conservatively, i.e. the corrective action is attenuated. This is because the large Re implies
that the measurements are less trustworthy.
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3.8 Experimental Results

3.8.1 Experimental Setup

Experiments were conducted at the Richmond Field Station with the support by the Hyundai-
Kia Motor Company. The test vehicle, an Azera V6 3.3L, is equipped with standard vehicle
sensors, e.g. accelerometers, a gyroscope, a steering wheel angle sensor, and wheel speed
sensors. The measurement data from the vehicle sensors are transmitted via the Controller
Area Network (CAN) bus.

Ramp
Ramp

Freeway

Local Road

Figure 3.13: [Exp.] Experimental Course [30] c©2014 IEEE

Fig. 3.13 presents the course used for the experimental tests. The test vehicle executes
acceleration and deceleration multiple times on a local road. Then, it travels on a curved
ramp interconnecting the local road and a freeway. The test vehicle accelerates again on the
straight section of the freeway. Both the local road and the freeway are asphalt pavements.
This experimental driving was conducted for 3 laps, which lasts about 500 s. Note that
the road bank and road grade angles are neglected. The 200 kg additional box mass was
loaded in the trunk. The measurements during the experiment are shown in Fig. 3.14. The
sampling time τs is 0.01 s.

The criteria presented in Table 3.3 are used to switch between the estimation of ma and
the estimation of lf . Note that the 4th-gear is used to activate the ma estimation. The large
gear ratio by the lower gear can generate a large change in the acceleration ax, which dis-
courages the ma estimation compared to the constant acceleration maneuver. Furthermore,
the torque converter lockup rarely occurs if the lower gears are used.

Note that an additional signal processing is used for the experimental tests to obtain
smoother identification results. The ms estimation, dashed line in Fig. 3.15, chatters a lot
due to noise and unmodeled dynamics. In Fig. 3.15, the vertical lines represent the time
periods when the longitudinal dynamics prevail over the lateral dynamics to identify ma.
In order to obtain the smoother estimation results, various filtering techniques, such as a
moving average filter and Recursive Least Squares (RLS) filter, can be applied.

A filter which minimizes the squared errors, such as the RLS (see [25]), is used to obtain
the smoother estimation results. Note that the filter is based on the assumption that a given
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Figure 3.14: [Exp.] Measurements with Additional Mass (200 kg) [30] c©2014 IEEE

data set is normally distributed. This filter is implemented by the Kalman Filter (KF) (see
[15]) that uses the state-space model written as:

w̄(k) = w̄(k − 1) (3.27)

d̄(k) = wUKF (k) = w̄(k) + ē(k). (3.28)

The KF is a linear estimator to minimize the mean of the squared errors with normal
distribution (see [15]). Note that the identity state transition and output matrices are used
in the state-space model in (3.27)-(3.28), and the process noise is not included in the state
dynamics in (3.27). Fig. 3.15 illustrates the importance of the proposed filtering. The dashed
line in Fig. 3.15 is indicated as wUKF (k), which is the measurement vector for the system
in (3.27)-(3.28). The solid line in Fig. 3.15 represents the estimate of w̄(k) in (3.27)-(3.28)
after the proposed processing. The noise ē in (3.28) is assumed to be white, stationary, and
normally distributed with zero mean.
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Table 3.3: Switch of Vehicle Inertial Parameter Identification (Experiment) [30] c©2014 IEEE

If
• 4th-Gear & No Gear Change
• Lockup
• 0.70 m/s2 < Longitudinal Acceleration (ax) < 1.50 m/s2

• |Lateral Acceleration (ay)| < 0.3 m/s2

• |Yaw Rate (ψ̇)| < 1.5 deg/s
• |Front Wheel Steering Angle (δf )| < 0.62 deg
⇒ Then, ma (longitudinal) estimation

Else If
• No Brake
• |Lateral Acceleration (ay)| > 0.3 m/s2

• |Yaw Rate (ψ̇)| > 1.5 deg/s
• Longitudinal Acceleration (ax) < 0.25 m/s2

• Longitudinal Velocity (vx) > 8.3333 m/s
• 0.9438 deg < |Front Wheel Steering Angle (δf )| < 3.1460 deg
⇒ Then, lf (lateral) estimation

Else
⇒ Pause of the inertial parameter identification algorithm

End
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Figure 3.15: [Exp.] Estimation of ms with Additional Mass (0 kg) [30] c©2014 IEEE

3.8.2 Estimation Results

As shown in Fig. 3.16, the measurements without the additional mass is first used for the
inertial parameter identification algorithm. Due to the lack of the equipment to measure the
position of the CoG and the yaw moment of inertia, the true lf and Iz are approximately
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Figure 3.16: [Exp.] Identification with Additional Mass (0 kg) [30] c©2014 IEEE

calculated. The vertical lines in Fig. 3.16a represent the time periods when the longitudinal
dynamics prevail over the lateral dynamics to identify ma, whereas those in Fig. 3.16b
represent the time instants when the lateral dynamics predominate to identify lf . The ma

estimator is activated for 14.47 s in Fig. 3.16a, and the estimator for lf is activated for 27.65
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Figure 3.17: [Exp.] Identification with Different Additional Masses (0 kg and 200 kg) [30]
c©2014 IEEE

s in Fig. 3.16b. Since the local observability of the inertial parameter w is not ensured, the
identification algorithm pauses for the rest of the time.
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Fig. 3.17 presents the identification results with the 200 kg additional mass in the trunk.
The inertial parameter estimates using the 200 kg additional mass are different from those
using the 0 kg additional mass. The experimental tests are repeated three times for each
value of ma case, and Fig. 3.18 shows the overall identification results. While the upper
dashed-dotted horizontal lines indicate the approximated true values for 200 kg, the lower
dashed-dotted horizontal lines indicate those for 0 kg. Uncertainties in real world result in
some discrepancies from the true values for both 0 kg and 200 kg. The proposed identification
algorithm, however, distinguish the two cases of 0 kg and 200 kg for all the experimental
tests. Particularly, the Iz estimates for 0 kg and 200 kg are clearly distinguishable in Fig.
3.18.
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Figure 3.18: [Exp.] Repetitive Identification with Different Additional Masses (0 kg and 200
kg) [30] c©2014 IEEE
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3.9 Conclusion

This chapter proposes an identification algorithm for vehicle inertial parameters: a vehicle
sprung mass, longitudinal position of the CoG, and yaw moment of inertia. The proposed al-
gorithm uses the correlation between the inertial parameters and the dual unscented Kalman
filter. The extensive CarSim simulations and the experimental tests illustrate that the al-
gorithm is capable of differentiating two additional mass conditions on a flat road with a
constant friction coefficient.
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Chapter 4

Optimal Control based on Roll
Prediction for Safe Path Following

4.1 Introduction

This thesis develops a control algorithm to combine autonomous vehicles with rollover pre-
vention systems. That is, the proposed controller aims to follow a curved path achieving
the required yaw rate while simultaneously preventing rollover. Roll motion is minimized
throughout cornering by applying a receding horizon optimal control technique. Compared
to other rollover prevention controllers that only respond to imminent rollover, the proposed
controller reduces possibility of rollover more aggressively.

A four-wheel vehicle model with roll dynamics is utilized to predict the roll motion during
cornering, which is included in a cost function of the optimal control formulation. Using the
roll motion prediction enables the controller to preemptively respond to future roll motion.
If differential braking operates to prevent rollover, a vehicle cannot follow a curved path due
to the counter yaw moment generated by the differential braking. Therefore, full braking
is used as a control actuator. However, excessive reduction of vehicle speed should also
be avoided since it can possibly cause rear-end collisions by cars following on a freeway.
The proposed algorithm is incorporated with the vehicle inertial parameter estimator and
the state estimator developed in Chapter 3. The performance of the proposed algorithm
is verified with simulations. Note that some contents of this chapter are submitted to a
conference [28].

4.2 Vehicle Model

The four-wheel vehicle model with roll dynamics is used in this chapter. This vehicle model
has been presented in Chapter 3, and therefore equations for the model are briefly reviewed
here; refer to Chapter 3 for details.
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Four degrees of freedom are considered in the vehicle model: longitudinal (x) and lateral
(y) translational motion, yaw (ψ) rotation about the z-axis, and roll (φ) rotation about
the x-axis, as shown in Fig. 3.1. Define the state vector of the vehicle model as s :=
[s1, s2, s3, s4, s5]

> = [vx, vy, ψ̇, φ, φ̇]>. The state-space dynamics model is presented in
(3.1)-(3.5) as follows:

ṡ1 = v̇x = ax + vyψ̇

ṡ2 = v̇y = ay − vxψ̇

ṡ3 = ψ̈ =
1

Iz

{
lw(F fr

x + F rr
x )− llwFx

+ lfFy − l(F rl
y + F rr

y )
}

ṡ4 = φ̇ = φ̇

ṡ5 = φ̈ =
1

Ix

{
mshs(ay + gφ)− kφφ− cφφ̇

}
.

The tire forces at the ith wheel in the vehicle longitudinal (x) and lateral (y) directions
are denoted as F i

x and F i
y, respectively. Then, the vector u is defined as follows:

u := [{F i
x}i∈I , {F i

y}i∈I ]>,

where I = {fl, fr, rl, rr} is a set indicating front-left, front-right, rear-left, and rear-right
wheels.

The vehicle longitudinal acceleration ax in (3.1) and lateral acceleration ay in (3.2) are:

ax =
Fx − Faero

m
(4.1)

ay =
Fy
m

,

where Fx =
∑

i∈I{F i
x} and Fy =

∑
i∈I{F i

y} are the total vehicle longitudinal and lateral
forces, respectively. The aerodynamic drag force Faero is modeled as Faero = 1

2
ρCdAfv

2
x. The

total vehicle mass is denoted as m, and it is the sum of the sprung mass ms and the mass of
all wheels mt, i.e. m = ms +mt.

The measurement vector d consists of the lateral acceleration ay,sensor = ay − haccφ̈− gφ,
the longitudinal velocity vx, the yaw rate ψ̇, and the longitudinal acceleration ax:

d :=
[
ay,sensor, vx, ψ̇, ax

]>
= G(s, ṡ) =


ṡ2 + s1s3 − haccṡ5 − gs4

s1
s3

ṡ1 − s2s3

 ,

where hacc = hs is assumed.
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The above equations are compactly written as the continuous state-space model:

ṡ(t) = F (s(t), u(t))

d(t) = G(s(t), ṡ(t)).

Using Euler forward discretization, the discretized state-space representation is:

s(k + 1) = s(k) + τsF (s(k), u(k))

= T (s(k), u(k))

d(k) = G(s(k), ṡ(k)),

where τs is the sampling time. Note that the inertial parameter vector w and the noise terms
in Chapter 3 are not included in the above state-space model.

4.3 Tire Forces

The vehicle longitudinal and lateral forces at the ith wheel, F i
x and F i

y, are calculated with
the tire longitudinal and lateral forces, F i

l and F i
c , as follows (see Fig. 3.2):

F i
x = F i

l cos δi − F i
c sin δi, (i ∈ I) (4.2)

F i
y = F i

l sin δi + F i
c cos δi, (i ∈ I), (4.3)

where δi denotes the steering angle of the ith wheel. Note that the steering angles of the rear
wheels are zero.

4.3.1 Tire Lateral Force

The tire lateral force Fc is estimated through the tire brush model. This section has also
been presented in the previous chapter, and therefore equations for Fc are briefly reviewed
here; refer to Chapter 3 for details.

The tire lateral force F i
c on the ith wheel is:

F i
c = µF i

z{1− (1− θiy|σiy|)3}sgn(αis),

where F i
z represents the normal force at the ith wheel, µ is a known tire-road friction coef-

ficient, the composite tire model parameter is defined as θiy := 2cpy(ai)2

3µF i
z

, and ai is the half

length of the tire-road contact patch. The half length ai is estimated with the following
relationship:

ai =

√
(riunload)

2 − (riunload −
F i
z

crad
)2,
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where crad is a known tire radial stiffness, and runload is an unloaded tire radius. Note that
ai of the front tire is assumed to be a constant. The lateral tire slip σiy is defined as:

σiy := tanαis.

The tire slip angle αis is computed as αis = δi − δiwheel, where δi is the steering angle, and
δiwheel indicates the wheel velocity angle. The wheel velocity angle δiwheel is estimated by
using the vehicle state s as follows:

δiwheel = tan−1

(
vy + l̄iψ̇

v̄ix

)

l̄i =

{
lf (i = fl, fr)
lf − l (i = rl, rr)

v̄ix =

{
vx − ψ̇ · llw (i = fl, rl)

vx + ψ̇(lw − llw) (i = fr, rr).

4.3.2 Tire Longitudinal Force

In the proposed control algorithm, a control actuator is full braking. Full braking is imple-
mented by calculating a desired vehicle longitudinal acceleration ax. The tire longitudinal
force Fl is estimated by using the tire lateral force Fc and the desired ax, as will be discussed
in the Design of Optimal Controller section.

4.3.3 Normal Force

Again, equations for the normal force are briefly reviewed here; refer to Chapter 3 for de-
tails. The sprung mass ms and the longitudinal acceleration ax generate the normal force
distribution on the front and rear tires as f fz and f rz :

f fz = ms
l − lf
l

g −mshsax

f rz = ms
lf
l
g +mshsax.

The lateral distribution of f iz is denoted as f̄ iz:

f̄ iz =

{
lw−llw
lw

f fz (for i = fl), llw
lw
f fz (for i = fr)

lw−llw
lw

f rz (for i = rl), llw
lw
f rz (for i = rr).

Then, the total normal forces including the load transfer are derived as follows:

F i
z =

{
f̄ iz − ksllwφ− csllwφ̇, (i = fl, rl)

f̄ iz + ks(lw − llw)φ+ cs(lw − llw)φ̇, (i = fr, rr),

where ks and cs represent known suspension stiffness and damping, respectively.
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4.4 Design of Optimal Controller

4.4.1 Objective of the Controller

Following a curved path while simultaneously preventing rollover is the objective of the
controller. If a controller only takes an action when rollover is imminent, then an actuator
with a very fast response speed is required. Therefore, this thesis proposes to minimize roll
motion throughout cornering, which ensures maximal safety against rollover. Full braking is
utilized as a control actuator, and it is implemented by calculating the desired longitudinal
acceleration ax. Differential braking precludes following a curved path since it degrades
yaw rate [12]. Note that excessive reduction in the vehicle speed should be avoided since
dangerous rear-end collisions can be caused by the excessive reduction of vehicle speed.

4.4.2 Design of Controller

In the design of the controller, a receding horizon optimal control, also known as Model
Predictive Control (MPC), is used. At time step k, the roll motion is predicted using the
current vehicle state s(k). In other words, {φ(k + j|k)}Nj=0 is computed using s(k) and
the vehicle model, where φ(k + j|k) represents the roll angle φ(k + j) predicted at time k
and N represents a time horizon. This prediction is repeatedly performed afterward using
the vehicle state s at time k + 1, k + 2, · · · . Note that the novel algorithm based on the
Unscented Kalman Filter (UKF) in Chapter 3 is used for the estimation of the vehicle state
s (see Chapter 3 for details).

The MPC solves the following constrained optimal control problem at every time step:

min
Φ

βφ

N∑
j=Ns

|φ(k + j|k)|2 + βax

N∑
j=Ns

|ax(j)|2 + βvx|vx(k +N |k)− vx,e|2 (4.4a)

subj. to

[
vx(k + j + 1|k)
φ(k + j + 1|k)

]
= C T (s(k + j|k), u(k + j|k)), (4.4b)

where C =

[
1 0 0 0 0
0 0 0 1 0

]
u(k + j|k) = [{F i

x(k + j|k)}i∈I , {F i
y(k + j|k)}i∈I ]> (4.4c)

albx ≤ ax(j) ≤ aubx (4.4d)

j = 0, 1, · · · , N − 1

|φ(k +N |k)| ≤ φb (4.4e)

Φ = [ax(0), · · · , ax(N − 1)]> (4.4f)

vx,e : entry speed. (4.4g)

Note that the above problem is formulated for time step k. The prediction of roll angle φ(k+
j|k) is included in the cost function (4.4a). The magnitude of longitudinal acceleration |ax(j)|
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in the cost function restrains abrupt braking. In addition, vx,e indicates the longitudinal
velocity when a vehicle enters a curved road. The criteria to be listed in the Simulation
Results section are used to detect when the vehicle enters the curved road. Excessive speed
reduction, which can induce dangerous rear-end collisions, is avoided with the difference
between the predicted vx(k + N |k) and the entry speed vx,e, i.e. |vx(k + N |k) − vx,e|. In
the cost function, βφ, βax , and βvx represent weights. Note that the cost function includes
the prediction from the time step j = Ns to j = N discarding the prediction from the time
step j = 0 to j = Ns − 1. It takes some time lag to generate the roll angle φ after feeding
the control input ax. Therefore, the effect of different ax on the cost value is more clearly
observed by using the tail of prediction, φ(k+Ns|k), · · · , φ(k+N |k) than all the predictions,
φ(k|k), · · · , φ(k + N |k). This approach facilitates an optimization solver to converge to a
solution.

The vehicle longitudinal force {F i
x(k + j|k)}i∈I and the vehicle lateral force {F i

y(k +
j|k)}i∈I constitute the vector u(k + j|k) in (4.4c). If an optimization solver assigns a value
to ax(j), which is the decision variable in the above problem, F i

x is computed with (4.1) as
follows:

F i
x(k + j|k) =

1

4
{max(j) +

1

2
ρCdAfs1(k + j|k)2}, (4.5)

where i ∈ I. The total vehicle longitudinal force Fx is assumed to be equally exerted on the
four wheels, and hence (4.5) includes 1

4
. The tire lateral force F i

c is estimated through the
tire brush model as presented in the previous section. Therefore, (4.2) and (4.5) yield the
tire longitudinal force F i

l corresponding to ax(j) as follows:

F i
l (k + j|k) = 1

cos δi(k)
{F i

x(k + j|k) + F i
c(k + j|k) sin δi(k)}. (4.6)

A driver model, e.g. [22], can be used to predict the steering angle on a curved road.
The proposed algorithm, however, assumes constant steering angle δi(k) over the prediction
horizon j = 0, · · · , N for simplicity: δi(k) = δi(k|k) = · · · = δi(k+N |k). Next, F i

y in (4.4c)
is calculated using (4.3) and (4.6):

F i
y(k + j|k) = F i

l (k + j|k) sin δi(k) + F i
c(k + j|k) cos δi(k). (4.7)

Then, (4.5) and (4.7) comprise the vector u(k + j|k) in (4.4c).
A lower bound albx and an upper bound aubx constrain the longitudinal acceleration ax(j)

in the above optimal control problem. Note that the constant ax over the prediction horizon,
i.e. ax = ax(0) = · · · = ax(N), is used in order to relieve computational burden. Note that
an inequality constraint is imposed on |φ(k +N |k)| as a threshold of rollover.

Once the above constrained optimal control problem yields the desired ax, the desired
longitudinal velocity vdesx (k) is calculated as:

vx,des(k) = vx(k) + τsax. (4.8)

The low-level speed controller in the simulation software tracks the desired velocity vx,des.
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4.5 Simulation Results - without Parameter

Identification

In this section, the performance of the proposed controller is illustrated with simulations
assuming vehicle inertial parameters are known.

4.5.1 Vehicle Maneuver in Simulations

As shown in Fig. 4.1, a curved road of radius 100 m is used for simulations in the vehicle
simulation software, CarSim. The vehicle starts from the inertial position of (0, 0) in Fig.
4.1 by moving straight, and finishes driving at the same position. All the vehicle parameters
used for the simulation are listed in Table 4.1.

Table 4.1: Vehicle Parameters [28] c©2014 IEEE

Parameter Value Parameter Value

ms,emp 1424.0 [kg] l 2.578 [m]

mt 142.0 [kg] lf,emp 1.016 [m]

Ix 606.1 [kgm2] lw 1.539 [m]

Iz,emp 1523.0 [kgm2] hs 0.224 [m]

ρ 1.206 [kg/m3] kφ 42075.0 [kgm2/s2]

Af 1.6 [m2] cφ 5737.5 [kgm2/s]

Cd 0.15
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Figure 4.1: Circular Path of Radius 100 m [28] c©2014 IEEE
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Table 4.2: Activation of Vehicle Controller [28] c©2014 IEEE

If

• |Lateral Acceleration (ay)| > 0.25 m/s2

• |Yaw Rate (ψ̇)| > 1 deg/s

• 0.78 deg < |Front Wheel Steering Angle (δf )|
⇒ Then, activate controller.

Else

⇒ deactivate controller.

End

Table 4.3: Controller Parameters [28] c©2014 IEEE

Parameter Value Parameter Value

Ns 120 albx -3 [m/s2]

N 125 aubx 0 [m/s2]

τs 0.01 [s] φb 3.5 [o]

βφ 510.66 βax 0.0065

βvx 0.0094

If the vehicle enters a curved road, the proposed controller is activated, that is, it is
activated when the lateral dynamics prevail over the longitudinal dynamics. The criteria
presented in Table 4.2 are used in order to activate the controller. Table 4.3 lists the param-
eters used for the constrained optimal control problem in (4.4).

4.5.2 Driving at 70 kph

Fig. 4.2 presents the 70 kph simulation results on the circular path of radius R = 100 m
with the proposed controller. The dashed-dotted lines represent the simulation results when
the proposed controller is turned off, whereas the solid lines represent the simulation results
when the proposed controller is turned on. When the controller is turned off, the speed
controller of CarSim tracks the constant vx,des of 70 kph as shown in Fig. 4.2a. In addition,
the steering-wheel angle in Fig. 4.2b and the roll angle in Fig. 4.2c reach the steady-state
values of about 47.91o and 1.89o, respectively.
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Figure 4.2: Comparison of Driving at 70 kph with/without the Controller [28] c©2014 IEEE

If the proposed controller is turned on, the desired velocity vx,des, dashed line in Fig.
4.2a, is calculated by the proposed controller. Then, the vehicle slows down according to
vx,des, and converges to the optimal vx of 46.56 kph at around 28 s, as shown in Fig. 4.2a.
The region shaded by vertical lines corresponds to the time period when the controller is
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activated after detecting the prevailing lateral dynamics. The roll angle is simultaneously
reduced and converges to the steady-state value 0.84o, as shown in Fig. 4.2c. Note that a
33.5 % reduction of vx attenuates the roll angle φ by about 55.6 %.

4.5.3 Driving at 105 kph

The simulations of driving at 105 kph demonstrate clearly the efficacy of the proposed control
algorithm. As shown in Fig. 4.3, the vehicle cannot follow the curved path, and strays from
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Figure 4.3: Trajectories When Driving at 105 kph with/without the Controller [28] c©2014
IEEE

the path when the vehicle enters the circle of the radius 100 m at 105 kph. The box in
Fig. 4.3a is magnified in Fig. 4.3b. In Fig. 4.3b, the dashed-dotted line represents the
trajectory without the proposed controller, whereas the solid line represents the trajectory
with the proposed controller. As shown in Fig. 4.3b, if the proposed controller is turned off,
the vehicle deviates in the radial direction by, at most, around 4.5 m from the trajectory
that is followed with the proposed controller. The deviation results not only from the high
speed, but also from the roll motion. The roll motion changes the grip condition between
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the tires and a road. Assume an autonomous vehicle travels on a freeway and plans to follow
a circular path (R = 100 m) at 105 kph. Then, passengers in the autonomous vehicle can
be involved in crashes by deviating from a lane by 4.5 m.
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Figure 4.4: Comparison of Driving at 105 kph with/without the Controller [28] c©2014 IEEE

The simulation results of the velocity, the steering wheel angle, and the roll angle are
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presented in Fig. 4.4. The dashed-dotted lines represent the results when the proposed
controller is not used, whereas the simulation results with the proposed controller are repre-
sented as the solid lines in Fig. 4.4. If the proposed controller is turned off, the steering-wheel
angle and the roll angle reach the steady-state values of about 84.46o and 4.25o, respectively,
as shown in Fig. 4.4b and Fig. 4.4c. The constant vx,des of 105 kph is tracked by the
speed controller of CarSim, as shown in Fig. 4.4a. If the proposed controller is turned
on, the vehicle velocity vx decreases following the desired velocity vx,des, the dashed line in
Fig. 4.4a, and converges to 91.39 kph at around 12.5 s, as shown in Fig. 4.4a. Note that
since driving at 105 kph is recognized to be a more dangerous maneuver than driving at 70
kph, the velocity vx is reduced more rapidly in Fig. 4.4a than in Fig. 4.2a. While slowing
down the vehicle, the roll angle is simultaneously reduced in Fig. 4.4c, and converges to
the steady-state value 3.25o. The results in Fig. 4.2 and Fig. 4.4 show that it is harder to
accomplish the control performance as the velocity vx increases. Fig. 4.4c shows about 13.0
% attenuation of the roll angle φ by a reduction of about 23.5 % in vx, which is a worse
result than that of driving at 70 kph. This also implies that suppressing the roll motion is
hard once the roll angle becomes large. Therefore, it is important to use the prediction of
the vehicle state for following a curved road and minimizing roll motion.
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4.6 Simulation Results - with Parameter

Identification

The vehicle inertial parameter identification in Chapter 3 is incorporated with the proposed
controller. Note that the tire-road friction coefficient estimator in Chapter 2 is not incor-
porated into the controller since the acceleration data from tire cannot be obtained in the
simulation software, CarSim.

4.6.1 Vehicle Maneuver in Simulations

A vehicle starts from the (0, 0) position, as shown in Fig. 4.5. The box in Fig. 4.5 magnifies
the section of double lane change (DLC) which is the same as that in Fig. 3.5a in Chapter
3. The same vehicle velocity vx in Fig. 3.5b is fed into the low-level speed controller for the
DLC in Fig. 4.5, and the constant velocity of 105 kph is fed into the rest of the path in Fig.
4.5. After driving the DLC, the vehicle travels on sequential circular paths of a radius 100
m, and then it finishes driving by going straight.
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Figure 4.5: Double Lane Change (DLC) and Circular Path of Radius 100 m

The vehicle controller is activated when the vehicle enters the circular path by using the
criteria presented in Table 4.2. Note that the inertial parameters are identified while driving
the DLC.

4.6.2 Inertial Parameter Identification

The vehicle inertial parameters, including the additional sprung massma and the longitudinal
position of the CoG lf , are identified with the algorithm developed in Chapter 3. The yaw
moment of inertia Iz is calculated using the estimated ma and lf , as discussed in Chapter 3.
The DLC maneuver in Fig. 4.5 is used for the identification of ma and lf .

Once the inertial parameters are identified during the DLC, the identification algorithm is
turned off, and the controller uses the latest parameter values while computing control inputs



CHAPTER 4. OPTIMAL CONTROL BASED ON ROLL PREDICTION FOR SAFE
PATH FOLLOWING 84

on the circular paths. On the circular paths, full braking control signals are fed into the
vehicle, which results in the combined tire slip. This provokes a high level of nonlinearity in
vehicle dynamics and tire forces, which degrades the inertial parameter identification. Then,
the closed-loop behavior of the controller also degrades.
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Figure 4.6: Standard Deviation from Identification Algorithm

In order to judge when the identification algorithm is turned off, the covariance matrices
computed with the unscented Kalman filter in Chapter 3 are used. For example, Fig. 4.6
presents the standard deviations for the estimates of ma and lf while running the identifi-
cation algorithm. As ma and lf converge to true values, the standard deviation σ decreases
and stays below some constant. Therefore, the identification algorithm is turned off if σ is
lower than a threshold, as listed in Table 4.4.

4.6.3 Effect of Inertial Parameters

In this section, the effect of the inertial parameters on the control performance is investigated
before running the controller combined with the inertial parameter estimator in the next
section.

The control algorithm is applied to the maneuver in Fig. 4.5 assuming that the inertial
parameters, ma and lf , are given. If the true values of ma and lf are known, the control
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Table 4.4: Stop Identification Algorithm

If

• σ for ma ≤ 27

• σ for lf ≤ 0.06

Then

⇒ stop the identification algorithm.

End
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Figure 4.7: Longitudinal Velocity for Controller with Fixed Inertial Parameters

simulation results are presented as shown in Fig. 4.7 and Fig. 4.8. The proposed controller
is activated and reduces the velocity vx within the shaded region in Fig. 4.7 by feeding
the desired velocity vx,des. Without the proposed controller, the vehicle deviates from the
reference path by around 10 m as shown in Fig. 4.8c. The large steering angle is required
to compensate for the deviation as shown in Fig. 4.8a. Next, the effect of ma and lf on the
control performance is studied by changing ma and lf .
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Figure 4.8: Controller Simulation

4.6.3.1 Additional Sprung Mass ma

If ma is changed by ±50%, the controlled vehicle velocity is presented in Fig. 4.9. The
velocity vx has little discrepancy between ma×1.0 and ma×1.5. However, the cost function
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value in (4.4a) is underestimated with ma × 0.5, and therefore vx is not reduced as much as
in other ma cases. This results in the loss of vehicle stability, as shown in Fig. 4.10.
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Figure 4.9: Longitudinal Velocity for ±50% of ma

If ma× 0.5 is used for the control algorithm, the vehicle deviates from the reference path
by about 3 m as shown in Fig. 4.10c even if the proposed controller is still running. In order
to compensate for the deviation, the steering wheel is rapidly turned to both the left and the
right, as shown in Fig. 4.10a. As a result, the roll angle in Fig. 4.10b also changes rapidly.

The above simulation results imply that the underestimate of ma has more effect on the
control performance than the overestimate of ma does.
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Figure 4.10: Effect of ±50% of ma

4.6.3.2 Longitudinal Position of the CoG lf

If lf is changed by ±50%, the controlled vehicle velocity is presented in Fig. 4.11. The
controlled velocity vx is different for all three cases: lf × 0.5, lf × 1.0, and lf × 1.5. The cost



CHAPTER 4. OPTIMAL CONTROL BASED ON ROLL PREDICTION FOR SAFE
PATH FOLLOWING 89

function value in (4.4a) is underestimated with lf × 0.5, and therefore vx is not reduced as
much as that of lf × 1.0 case. However, the cost function value in (4.4a) is overestimated
with lf × 1.5, and therefore vx is overly reduced compared to that of lf × 1.0 case.
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Figure 4.11: Longitudinal Velocity for ±50% of lf

The effect of different lf values on the control performance is clearly shown in Fig. 4.12.
If lf × 0.5 is used for the controller, the vehicle strays from the reference path by around 6
m due to the less severe reduction of vx, as shown in Fig. 4.12c, which leads to the large
steering angle and the magnitude of roll angle greater than 4o, as shown in Fig. 4.12a and
Fig. 4.12b, respectively. If lf × 1.5 is used for the control algorithm, the vehicle stays in a
stable state, while the steering wheel angle and the roll angle are decreased more than those
of lf × 1.0 case due to the overly reduced vx.
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Figure 4.12: Effect of ±50% of lf

4.6.4 Controller with Inertial Parameter Identification

In this section, the proposed controller and the inertial parameter estimator run simulta-
neously on the path in Fig. 4.5. As the vehicle performs the DLC maneuver, the inertial
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parameters are identified, and then the identification algorithm fixes the inertial parameter
estimates if the criteria in Table 4.4 are satisfied, as shown in Fig. 4.13. Although the ve-
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Figure 4.13: Inertial Parameter Identification (Initial Guess: ma × 0.1 and lf × 0.5)

hicle is in the midst of the maneuver for which ma or lf can be identified, the identification



CHAPTER 4. OPTIMAL CONTROL BASED ON ROLL PREDICTION FOR SAFE
PATH FOLLOWING 92

algorithm does not update the inertial parameter values after about 14 s in Fig. 4.13. An
initial guess of the inertial parameters in Fig. 4.13 is: ma × 0.1 and lf × 0.5.

The proposed controller creates the desired velocity vx,des with the identified parameters,
ma and lf as shown in Fig. 4.14. The dashed-dotted line in Fig. 4.14 represents the case
in which neither the identification algorithm nor the proposed controller are operated. The
solid line in Fig. 4.14 represents the case in which both the identification algorithm and the
proposed controller are operated.
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Figure 4.14: Combination of Identification and Controller (Velocity vx)

The efficacy of the combined system is further demonstrated with Fig. 4.15. If neither the
parameter estimator nor the controller operates, the vehicle strays from the reference path by
about 13 m, as shown in Fig. 4.15c. The dashed line in Fig. 4.15 represents the case in which
the controller operates with the inertial parameter guess: ma×0.1 and lf ×0.5. In this case,
the vehicle cannot follow the reference path. This implies that accurate inertial parameter
values are of great importance to the control performance. If the controller operates along
with the identification algorithm, the vehicle follows the reference path while maintaining
the roll angle below about 3.5o, as the dashed-dotted lines represent in Fig. 4.15. Note that
the vehicle achieves the safe state by reducing just around 15 kph, as shown in Fig. 4.14
and Fig. 4.15.
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Figure 4.15: Importance of Inertial Parameter Identification

4.7 Conclusion

This chapter designs a controller to follow a curved path while simultaneously preventing
rollover. Excessive reduction of vehicle speed is circumvented to avoid dangerous rear-end
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collisions on a freeway. The vehicle parameter estimator and state estimator in Chapter
2 are incorporated with the controller. Simulations illustrate the efficacy of the proposed
control algorithm and the importance of the accurate parameter estimates.
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Chapter 5

Conclusions and Future Work

This thesis developed new algorithms for identification of vehicle parameters: a tire-road
friction coefficient and vehicle inertial parameters. In addition, a control scheme was designed
for safe path following as well as roll mitigation. The proposed controller incorporates
the inertial parameter identification algorithm, which shows the importance of accurate
parameter estimates.

5.1 Conclusions

In Chapter 2, two tire-road friction coefficient estimation algorithms were developed based
on an in-tire sensor which has not been used in most existing algorithms. The proposed
algorithms utilize the lateral deflection and the change of lateral velocity, which are obtained
from the tire lateral acceleration that is directly measured by a 3D wireless accelerometer
attached on the inner center line of the tire.

The main challenge in using an in-tire accelerometer is that the orientation of the ac-
celerometer body frame continues to change while the tire rotates. Inside the tire-road
contact patch, the orientation-variation has negligible influence on the lateral acceleration,
whereas the lateral acceleration measurements outside the contact patch is not trustworthy.
Therefore, a method to determine the contact patch has been proposed and is used to extract
the lateral acceleration only inside the contact patch. This approach ensures robustness to
the orientation-variation of the accelerometer body frame.

Since only lateral acceleration inside the contact patch is used, its double integration
profile cannot be described by the existing tire lateral deflection model. Therefore, a new
form of mathematical models is derived with zero boundary conditions. They describe the
lateral deflection and the change of lateral velocity profiles which are produced from the
lateral acceleration only inside the contact patch. Furthermore, the models account for the
random bias in the lateral acceleration profile, which further enhances robustness of the
proposed algorithm.

The estimation algorithms were experimentally validated based on three different ma-
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neuvers, each of which was executed on icy, snowy, and asphalt roads. Although the first
proposed algorithm does not take vehicle steering into account, it differentiates road surface
conditions in small steering maneuvers. In large steering maneuvers, the second proposed
algorithm yields better estimation results than the first algorithm since it involves the vehicle
steering in the estimation of the friction coefficient.

In Chapter 3, the vehicle inertial parameters, including the vehicle sprung mass, the center
of gravity (CoG) longitudinal position, and the yaw moment of inertia, were identified with
a novel approach.

The key idea is to utilize the correlation of the inertial parameters. Using the Parallel-
Axis Theorem, the yaw moment of inertia is expressed as a function of the additional sprung
mass and the CoG longitudinal position. Therefore, once the additional sprung mass and
the CoG longitudinal position are identified, the yaw moment of inertia is simply calculated
based on the correlation. This enables more accurate identification with less complexity
when compared to other existing algorithms.

The observability of the inertial parameters has not been analyzed in existing algorithms.
This thesis performs the local observability analysis based on a nonlinear vehicle model with
roll dynamics. According to the local observability analysis, the identification algorithm
switches between the different identification modes in order to separately identify the addi-
tional sprung mass and the longitudinal position of the CoG.

The dual unscented Kalman filter is applied to simultaneously estimate the inertial pa-
rameters and the vehicle states. In addition, the proposed algorithm uses the measurements
from commonly used vehicle sensors rather than costly equipment, such as a GPS and sus-
pension displacement sensors.

Extensive CarSim simulations and experimental tests illustrate that the proposed algo-
rithm yields acceptable estimates with small standard deviation values in the statistics and
has the capability to distinguish between two additional mass conditions.

In Chapter 4, a control algorithm to achieve yaw rate required to follow a curved path while
simultaneously mitigating roll motion was proposed.

The motivation is to enhance safety by traking the optimal balance in the trade-off
between vehicle speed and roll motion when an autonomous vehicle corners. In order to
reduce possibility of rollover, the receding horizon optimal control technique is utilized to
minimize roll motion throughout cornering. The roll motion is predicted with the four-wheel
vehicle model with roll dynamics and the tire brush model.

Since differential braking hinders a vehicle from following a curved path, full braking
is used as a control input. However, the proposed controller avoids excessive reduction of
vehicle speed since it can result in dangerous rear-end collisions on a freeway.

The proposed controller was simulated with a vehicle simulation software, CarSim. On a
circular path, the simulation results illustrate the efficacy of the proposed control algorithm.
In addition, the influence of the additional sprung mass and the CoG longitudinal position
on control performance is presented. The previously developed vehicle parameter estimator
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and state estimator were incorporated with the controller in the simulation. The simula-
tion results with the combined system demonstrate the importance of accurate parameter
estimates in accomplishing high vehicle control performance.

5.2 Future Work

The proposed algorithm for a tire-road friction coefficient estimation could distinguish road
surface conditions in experimental tests. However, the type of the test vehicle is a Sport
Utility Vehicle (SUV) whose tires have thick sidewalls; the sidewall is the side part of pneu-
matic tires. Since the thick sidewall of a tire facilitates generating the tire lateral deflection,
the proposed algorithm needs more tests with sedan cars which have thinner sidewalls than
SUVs. Furthermore, influence of the in-tire accelerometer position on the estimation results
should be studied since the in-tire accelerometer may not be positioned on the center line.
The proposed algorithm could not be incorporated into the controller designed in this thesis
since the vehicle simulation software does not provide tire acceleration data. For the com-
patibility with controllers using standard vehicle sensors, a different approach will be studied
based on a dual unscented Kalman filter as used in this thesis.

Road grade and bank angles are not taken into consideration in the vehicle inertial
parameter identification algorithm. These angles affect the additional sprung mass identi-
fication, and, in turn, degrade the identification results of the longitudinal position of the
CoG. Therefore, more research should be conducted to obtain consistent identification re-
sults with varying road grade and bank angles. In addition, tires have severe nonlinearity
in generating tire forces. Consequently, the order of magnitude of the identification results
would be scaled up or down if the vehicle travels on different test tracks than that used in
this thesis. A methodology to handle the tire model mismatch is important to advance the
proposed identification algorithm further.

The proposed control algorithm unifies controllers for path following, roll mitigation, and
avoidance of rear-end collisions. Even if the proposed controller assumes autonomous path
following systems, the same approach can be applied to the commercialized adaptive cruise
control (ACC) systems. If the proposed approach is combined with the ACC system, it can
ensure additional safety compared to just maintaining a safe distance to preceding vehicles.
Therefore, the proposed controller will be tested experimentally using a test vehicle with
standard vehicle sensors, by which the efficacy of the proposed controller and the potential
of application to current ACC systems can be demonstrated.
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Appendix A

Recursive Algorithm of the UKF

The main advantages of the Unscented Kalman Filter (UKF), e.g. the second-order accuracy
and the simple implementation, result from the use of the Unscented Transformation (UT).
The UT captures the statistics of a random vector undergoing a nonlinear transformation

Table A.1: Scaling Factors & Weights [30] c©2014 IEEE

λ := α2(L+ κ)− L
W

(m)
0 = λ

L+λ

W
(c)
0 = λ

L+λ
+ 1− α2 + β

W
(m)
i = W

(c)
i = 1

2(L+λ)
, i = 1, ..., 2L

[26]. Let x be an L-dimensional random vector with the mean x̂ and the covariance Px, which
is propagated through the nonlinear function y = f(x). By using x̂ and Px, 2L+ 1 discrete
sample points Xi, called sigma points, are determined: {Xi}2Li=0 = {x̂, x̂± σj, j = 1, . . . , L},
where σi is the ith column of the matrix

√
(L+ λ)Px. The scaling factor λ is obtained in

Table A.1, where the scaling factor α relates to the spread of sigma points about the mean x̂,
and κ is generally set to 3−L. The sigma points {Xi}2Li=0 are propagated through the nonlinear
transformation y = f(x) to produce Yi: {Yi}2Li=2 = {f(Xi)}2Li=2. The UT approximates the

mean ŷ and the covariance Py with the weighted summation of {Yi}2Li=0: ŷ '
∑2L

i=0W
(m)
i Yi

and Py '
∑2L

i=0W
(c)
i (Yi − ŷ)(Yi − ŷ)>. The weights, W

(m)
i and W

(c)
i , are computed in Table

A.1, where β is determined to incorporate prior knowledge of the x distribution, and β = 2
is optimal for Gaussian distributions [26] (this paper uses α = 0.01, κ = 1, β = 2).

The UKF has the two estimation stages: prediction before the measurement and update
after the measurement. All equations in the two stages are extracted from [26], and adapted
for the state-space model in (3.15)-(3.17) as presented in Table A.2 and A.3 for the vehicle
inertial parameter and the vehicle state identification, respectively. Consider random vectors
i and j, e.g. w and s in Table A.2 and A.3. The expectation value of a vector i is denoted as î.
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Table A.2: Vehicle Inertial Parameter Identification [30] c©2014 IEEE

1: Initialize ŵ+
0 , P+

w0
:

ŵ+
0 = E[w(0)]

P+
w0

= E[(w(0)− ŵ+
0 )(w(0)− ŵ+

0 )>]

γ :=
√
L+ λ

2: Prediction before the measurement of d(k):
ŵ−k = ŵ+

k−1
P−wk

= P+
wk−1

+Rr
k−1

Wk|k−1 = [ŵ−k ŵ−k + γ
√
P−wk

ŵ−k − γ
√
P−wk

]
Sk|k−1 = T (Wk|k−1, ŝ

+
k−1, u(k − 1))

Ṡk|k−1 = F (Wk|k−1, ŝ
+
k−1, u(k − 1))

Dk|k−1 = G(Sk|k−1, Ṡk|k−1)
d̂−k =

∑2L
i=0W

(m)
i Di,k|k−1

3: Update after the measurement of d(k):

P−dk =
∑2L

i=0W
(c)
i (Di,k|k−1 − d̂−k )(Di,k|k−1 − d̂−k )> +Re

k

P−wkdk
=
∑2L

i=0W
(c)
i (Wi,k|k−1 − ŵ−k )(Di,k|k−1 − d̂−k )>

Kk = P−wkdk
(P−dk)−1

ŵ+
k = ŵ−k +Kk[d(k)− d̂−k ]

P+
wk

= P−wk
−KkP−dkK

>
k

The superscript (−) indicates a-priori, and (+) indicates a-posteriori. The cross covariance
matrix of random vectors i and j is denoted as Pij. The covariance matrix of noise i at time
k is denoted as Ri

k. The dimension of w and s is denoted as L in Table A.2 and A.3. The

scaling factor λ and the weights, W
(m)
i and W

(c)
i , are obtained in Table A.1.

In Table A.2, the state-space model in (3.16) and (3.17) is used for the vehicle inertial
parameter, w, identification. The UT is applied in calculating d̂−k , P−dk , and P−wkdk

. The UKF
for the vehicle state vector s in Table A.3 uses the system in (3.15) and (3.17). The UT is
applied in calculating ŝ−k , P−sk , d̂−k , P−dk , and P−skdk . The difference of Table A.3 from Table

A.2 is that the UT is used to estimate the a-priori state vector at time k, ŝ−k , since the
state s(k+ 1) is calculated through the state transition function in (3.15), whereas the state
transition matrix for w(k + 1) in (3.16) is the identity matrix: w(k + 1) = w(k).
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Table A.3: Vehicle State Estimation [30] c©2014 IEEE

1: Initialize ŝ+0 , P+
s0

:
ŝ+0 = E[s(0)]
P+
s0

= E[(s(0)− ŝ+0 )(s(0)− ŝ+0 )>]

γ :=
√
L+ λ

2: Prediction before the measurement of d(k):

Sk−1 = [ŝ+k−1 ŝ+k−1 + γ
√
P+
sk−1

ŝ+k−1 − γ
√
P+
sk−1

]

S∗k|k−1 = T (ŵ+
k−1, Sk−1, uk−1)

ŝ−k =
∑2L

i=0W
(m)
i S∗i,k|k−1

P−sk =
∑2L

i=0W
(c)
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−
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−
k )> +Rv

k−1
Sk|k−1 = [ŝ−k ŝ−k + γ

√
P−sk ŝ−k − γ

√
P−sk ]

Ṡk|k−1 = F (ŵ+
k−1, Sk|k−1, u(k − 1))

Dk|k−1 = G(Sk|k−1, Ṡk|k−1)
d̂−k =

∑2L
i=0W

(m)
i Di,k|k−1

3: Update after the measurement of d(k):

P−dk =
∑2L

i=0W
(c)
i (Di,k|k−1 − d̂−k )(Di,k|k−1 − d̂−k )> +Re

k

P−skdk =
∑2L

i=0W
(c)
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P+
sk

= P−sk −KkP
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dk
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