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Abstract

We have performed exact classical rate calculations to compute adsorption and desorption rate

constants with a model representative of a real system. We compute the desorption rate using

transition-state theory by taking the dividing-surface far from the surface of the solid. We find

that using a mean-field assumption, i.e. applying potential of mean force to transition state theory,

could lead to two orders-of-magnitude error in the rate constant owing to large fluctuations in the

desorption barrier. Further, we compute the adsorption rate by including a dynamical factor

which reflects probability of sticking to the solid surface. We find that sticking probability is

highly sensitive to the coverage. Also, we find that adsorption rate computed from mean-field

assumption is not very different from the exact adsorption rate.

We also compute entropic contribution to desorption rates and compare it to that obtained

from two limiting models of adsorption—2D ideal gas and 2D ideal lattice gas. We show that

at high temperatures (700 K), the entropic contribution to desorption rates computed from exact

calculations are very close to that obtained from 2D ideal gas model. However, for lower to

intermediate temperatures from 200 K to 500 K, the entropic contributions covers a wide range

which lies in-between the two limiting models and could lead to over two-orders-of-magnitude errors

in the rate coefficient.
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∗ vagarwal@iitk.ac.in
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1. INTRODUCTION

Adsorption and desorption are processes of interest to surface science and catalysis.1,2 In

this article, we present simulations whose purpose is to examine how the rates of adsorption

and desorption depend on the number of particles Na adsorbed per unit area (the coverage).

We are particularly interested in the manner in which the activation entropy affects the

adsorption and desorption rate coefficients and also in the validity of the transition state

theory and of several mean-field approximations.

It is common practice to calculate, by using density functional theory, energy barriers for

desorption and estimate the desorption rate by choosing a reasonable pre-exponential. This

is useful for qualitative studies, especially when comparing similar systems (for example,

the same molecule desorbing or adsorbing on different solid surfaces). To calculate the rate

constants more accurately one needs to compute the activation entropy. The entropy of the

transition state is that of an ideal two-dimensional gas and it can be calculated analytically.

The entropy of the adsorbates is most often determined by using simple models: either a

two-dimensional lattice gas or a two-dimensional ideal gas.3–6 Campbell and co-workers have

shown that the measured entropy of adsorption differs significantly from that predicted by

these models7,8 and provided a linear relation between the entropy of the adsorbates and

that of a gas. A linear relation to estimate adsorbed-phase entropy has also been suggested

by Dumesic and co-workers.9–11

A simple analysis (see Supplementary Information) shows that the desorption rate

constants calculated with these two models can differ from each other by five orders-of-

magnitude for the diatomic molecule considered in this work. Since the two calculations

use the same activation energy, this difference originates from the way the models estimate
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the activation entropy. One expects that the lattice model gives an adequate approximation

when the barrier to diffusion is much higher than kBT . The two-dimensional ideal gas model

might work when the temperature is high and the barrier to diffusion is lower than kBT .

There is no simple model for intermediate situations. In addition, neither model covers the

case when the adsorbed molecules have a tendency to aggregate and form “islands” whose

size and existence depends on temperature and coverage.

This situation raises a number of questions. First, is the lattice-gas model correct at

low temperature or the two-dimensional gas model at high temperature? Second, what

can one say about the magnitude of the activation entropy in the case of intermediate

temperature? How does it depend on temperature and coverage? In this article we answer

these questions, by calculating exactly, for a generic model system, the adsorption and

desorption rate constant.

The model we use is not meant to simulate a specific system. It studies the adsorption

and desorption rate constants for a generic diatomic molecule, interacting with the surface

of a generic solid. We use a diatomic molecule, rather than an atom, because the energy

transfer from kinetic energy to rotational energy affects the probability that the molecule is

trapped at the surface. The parameters in the interaction energies were chosen so that the

model is representative of reality. The calculation of the rate constants includes the reaction

of all participants: the adsorbed molecules, the incoming (or departing) molecule, and all

the atoms of the solid. The infinite nature of the surface is captured by using periodic

boundary conditions in two directions. The supercell (the cell repeated periodically) is large

enough to prevent artificial size dependence.

4
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2. DEFINITIONS OF ADSORPTION AND DESORPTION RATE CONSTANTS

We collect here some elementary facts about adsorption and desorption in order to define

the terminology and prevent confusion. If the adsorbate is not in equilibrium with a gas,

the number of particles per unit area, Na, will change with a rate given by

dNa

dt
= −kdNa + kap (1)

Here p is the pressure of the gas in contact with the surface, kd is the desorption rate

constant, and ka is the adsorption rate constant. Eq. 1 is empirical and defines the constants

kd and ka. The equation assumes, correctly, that adsorption and desorption are statistically

independent events. The adsorption rate depends on the number of available sites. We

include this dependance in the adsorption rate coefficient. Therefore, both kd and ka are

functions of the coverage Na (the rate constants are not constant).

The following thought experiment clarifies the operational meaning of kd. Imagine that a

surface is held at constant temperature T and it is in contact with a gas having pressure p.

The surface is equilibrated with the gas and has the coverage (at equilibrium) N e
a (p, T ). We

can control the equilibrium surface coverage, while keeping the temperature T constant, by

changing p. After equilibration, we pump out the gas so that the gas pressure is instantly

equal to zero and is maintained this way until all atoms have desorbed. Throughout this

the temperature of the surface is held constant. We monitor the time dependence of the

coverage Na(t). Since the gas pressure is zero

kd ≡ − 1

Na(t)

dNa(t)

dt
(2)
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The statement that adsorption rate and desorption rate are uncorrelated means that kd

defined by Eq. 2 is identical to the one present in Eq. 1.

The following “thought” experiment defines the adsorption rate constant. Start with a

clean surface in perfect vacuum. Increase the gas pressure suddenly and monitor the time

evolution of the coverage Na(t). The adsorption rate constant is defined by

ka ≡
1

p

dNa(t)

dt
(3)

The rate constant ka defined by Eq. 3 is the same as the one present in Eq. 1.

The rate of desorption is the same whether a gas is present or not. This is not true at

very high gas pressure or for desorption from a solid in contact with a liquid.

Desorption takes place with the adsorbate in thermal equilibrium with the surface, and

the probability of different states in the system is given by a canonical ensemble. The only

quantity that is out of equilibrium, when the gas is pumped out, is surface coverage.

3. THE EXACT CALCULATION OF THE ADSORPTION AND DESORPTION

RATE CONSTANTS

We explain next the procedure used for exact calculations of the adsorption and desorp-

tion rate constants and of other quantities that characterize the dynamics of adsorption or

desorption processes.

We can distinguish an adsorbed molecule from a gaseous one by using a dividing surface

that is parallel to the solid surface and located at a distance zd from it. A molecule is

adsorbed if the position of its center of mass is between the solid surface and the dividing

surface. We chose zd so that a molecule whose center of mass is located on the dividing

6

http://dx.doi.org/10.1063/1.5095867


surface does not interact with the solid or with the molecules adsorbed on it. This choice

of dividing surface ensures that transition state theory (TST) gives the exact value for the

rate constant kd, because a desorbing molecule passing through the dividing surface will

never recross it. One must however keep in mind that this non-recrossing condition is not

satisfied if the pressure of the gas is very high, since a desorbing molecule can collide with

a gas phase molecule and readsorb. We do not examine this situation here.

The calculation of the rate constant at this level of detail, without making any approx-

imations, allows us to understand aspects of adsorption and desorption rates that are not

accessible to experiments.

Since we calculate kd at various values of T , we can make an Arrhenius plot. If the

plot is linear, it will provide a numerical value for the activation energy. We define this

to be the true activation energy and compare it to the values obtained by making various

approximations.

It is conventional to assume that the pre-exponential provides the activation entropy

and that the activation energy is the energy of the transition state minus the energy of

the adsorbates. The exact rate constant calculations we performed allow us to test and

understand these assumptions.

During our calculation, we evaluate by Monte Carlo the energy E† of Na adsorbed

molecules and one molecule on the dividing surface, as well as the energy ER of Na + 1

adsorbed molecules. The difference ∆E† ≡ E† − ER defines an activation energy ∆E†. Is

this energy equal to the energy obtained from the Arrhenius plot?

While ∆E† is an average quantity, each desorbing molecule interacts with theNa adsorbed

molecules having specific instantaneous positions on the surface. The energy needed for

desorbing a specific molecule, when the rest of the adsorbates have specific positions on the
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surface, is different from the average energy ∆E†. This means that the desorption energy

fluctuates. To get an indication of the magnitude of these fluctuations, we calculate, by

Monte Carlo, the standard deviation of the desorption energy.

The implementation of TST requires the computation of the ratio of two partition func-

tions: one for Na adsorbed molecules and one molecule on the divided surface and the other

for Na + 1 adsorbed molecules. There are several ways in which this ratio can be calcu-

lated. We use the multiple-window umbrella-sampling12 combined with weighted-histogram-

analysis method13 because this provides the two partition functions and also the potential

of mean force (which in turn provides a definition of the activation free energy).

We use the calculated activation energy and the activation free energy to calculate an

activation entropy. Calculating how this entropy depends on coverage and temperature will

allow us to evaluate the adequacy of the 2-dimensional lattice gas and 2-dimensional ideal

gas models.

The adsorption rate constant, however, has to be calculated by methods that take into

account the recrossing of the dividing surface. It is possible that TST is a good approxima-

tion but we don’t know this a priori. We calculate ka exactly by using the method explained

below by describing the steps of the simulation.

1. Start with Na molecules adsorbed on the surface. Use a sufficient number of Monte

Carlo moves to generate an equilibrium configuration of these adsorbates and of the

atoms in the solid. Memorize the positions of all atoms in the system obtained in the

last Monte Carlo move.

2. Place the center of mass of one diatomic molecule at a random location on the dividing

surface. To distinguish this diatomic molecule from the ones already adsorbed on the
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surface, we call it the incoming diatomic.

3. Solve Newton’s equation for all atoms in the system. Use the initial positions for

the solid and adsorbate atoms generated by the Monte Carlo simulation. The initial

velocities for all atoms are generated by sampling Maxwell distribution. Make sure

that the initial velocity of the center-of-mass of the incoming diatomic (starting on

the dividing surface) is such that the molecule moves towards the solid surface.

4. The flux of the molecules approaching the surface is vz(0)ρ, where ρ is the density of the

gas and vz(0) is the z-component of the velocity of the center of mass of the incoming

diatomic. We use a coordinate system with the z-axis perpendicular to the solid and

pointing towards it so that vz(0) > 0. Assuming an ideal gas gives ρ = p/kBT . The

incident flux is therefore

vz(0)
p

kBT
(4)

Multiply this by the function

X [z(t)] =


1 if z(t) < zd

0 if z(t) > zd

, (5)

which differs from zero only if the molecule is adsorbed. Record, for each trajectory,

the quantity

Jα ≡ X [zα(τ)]vz,α(0)
p

kBT
(6)

The index α labels the result obtained by running one trajectory. The time τ should be

long enough to allow one to decide whether the center of mass recrosses the dividing

surface (moving towards the gas side) or is stuck to the surface with no chance of
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getting away on a time scale much shorter than the inverse of the desorption rate

constant. Here, X [zα(τ)] is the sticking probability of the αth trajectory.

5. Go back to step 1 to generate a new equilibrium configuration and repeat this proce-

dure NMD times.

The quantity

R(Na, T ) =
1

NMD

NMD∑
α=1

Jα =
1

NMD

NMD∑
α=1

X [zα(τ)]vz,α(0)
p

kBT
(7)

is the adsorption rate for the coverage, Na, and the temperature, T . The adsorption rate

coefficient is

ka(T,Na) = lim
t→large

1

NMD

NMD∑
α=1

X [zα(t)]vz,α(0)/kBT (8)

The rate constant defined by Eq. 8 is the same as the rate constant defined by the phe-

nomenological equation, Eq. 1. This formula is a correlation function between the incident

flux and a function that is equal to 1 when z(t) < zd and equal to 0 otherwise; it is called

a flux-position correlation function. The rate constant is given by the asymptotic values of

this function when t = τ is larger than the collision time but smaller than the time 1/ka.

With no extra cost, one can calculate

∆R =

NMD∑
α=1

[Jα −R(Na, T )]
2

R(Na, t)2
(9)

to have a quantitative measure of the dispersion of the quantity Jα, which is a measure of

the effect of fluctuations on the rate. This quantity is of interest if we want to know the

chance that any mean-field method calculation will give large errors.

This simulation also provides the information needed for evaluating the TST approxi-
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mation for ka. All we have to do is exclude from the sum in Eq. 7 those trajectories in

which the incident molecule bounces off the solid surface and recrosses the dividing surface.

This is not the most efficient way of performing TST calculations but when we calculate the

exact rate constant ka, the TST is obtained as a side product, by taking into account only

trajectories that do not recross the dividing surface. Obviously this simulation also allows

the definition of a sticking coefficient and of its dependence on the energy of the incoming

molecules.

This calculation of ka assumes that the equilibration rate of the adsorbate with the solid is

fast enough so that every incident diatomic molecule comes in contact with the equilibrated

surface. This means that the equilibration rate is faster than the rate of deposition of the

molecules to the surface. It is also assumed that the heat of adsorption is removed so fast,

by the thermostat, that it exceeds the rate of heating by adsorption, so that the temperature

is constant. Both conditions are satisfied in experiments in which the incident flux is low.

This simulation will answer a number of interesting questions. Is the rate constant calcu-

lated with transition state theory correct? It is common to describe experiments in terms of

a sticking coefficient, which is the fraction of the incident flux that sticks to the surface. This

is essentially the average of the quantity, X [zα(τ)]. Our simulations allow us to determine

how the sticking coefficient depends on the kinetic energy and orientation of the incident

molecules, surface temperature, and surface coverage. It is assumed that the sticking coef-

ficient is proportional to the fraction of empty surface but this is not obvious and needs to

be tested.

We have mentioned here only the calculation of the adsorption rate coefficient. However,

other quantities that describe the dynamics of adsorption, as well as their fluctuations can

be recorded during the simulation. These will be mentioned later.
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The remainder of this article is organized as follows: in Section 4 we summarize meth-

ods used in this work. In Section 5 we present results of rate calculations and entropic

contribution to desorption rates. Finally, in Section 6 we offer concluding remarks.

4. METHODS

4.1. The model

We consider the desorption and the adsorption of a generic heteronuclear diatomic

molecule, AB, which is adsorbed, without dissociating, on a generic solid surface. The solid

is simulated by using a slab that contains 6 atomic layers. We fix the positions of the atoms

in the bottom layer of the slab, which is located in the plane z = 0, as shown in the Figure

1. When the molecule hits the slab it creates a “phonon wave packet” which moves away

from the impact site, is reflected by the bottom layer and travels back to the solid-vacuum

interface. Our slab is sufficiently thick so that the time of this round trip is shorter than the

time it takes an incoming molecule to be reflected or to settle as an adsorbate. Moreover, the

impact energy is distributed over may atoms of the solid not just on the atoms with which

the newly adsorbed molecule is in contact. In other words, the phonon packet produced by

impact does not affect the fate of the impacting molecule. Since we equilibrate the system

prior to sending a molecule in the simulation is performed at the same temperature in each

step.

We used Morse potentials14

VM(|r⃗ij|) = De (exp[−2α(|r⃗ij| − re)]− 2 exp[−α(|r⃗ij| − re)]) (10)
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to model the interaction between the solid atoms and bonded interactions in a diatomic

molecule. The Morse potential parameters are given in Table I. For the solid, these param-

eters yield atomization energies of 3.3 eV, which falls in the range of atomization energies

of metals.15 For a diatomic molecule, using the parameters given in Table I, we get a vi-

brational frequency of 2157 cm−1 which is close to the fundamental frequency of C-O (2143

cm−1). We note here that although Morse potential parameters are inspired from solid Cu

and CO molecule,16,17 we make no attempt to simulate the behaviour of CO molecules on a

Cu surface. We use these parameters to give our generic model a behaviour similar to that

of real systems.

The interaction of the atoms in the solid with the atoms of the diatomic, as well as

the interaction between the atoms belonging to two different diatomics, are given by the

Lennard-Jones (LJ) potential18

VLJ(|r⃗ij|) = 4ϵ

[(
σ

|r⃗ij|

)12

−
(

σ

|r⃗ij|

)6
]
, (11)

with the parameters given in Table I. The lowest adsorption energy is obtained when the

molecule binds to the hollow site. The barrier to diffusion is at a bridging site and its magni-

tude is 0.2 eV. This was determined by using the climbing image nudged elastic method19,20

with the implementation previously reported.21 The A atom in the diatomic AB interacts

more strongly with the atoms of the solid. The Lennard-Jones parameters for two dissimilar,

non-bonded atoms of two diatomic molecules were obtained using the Lorentz-Berthelot22,23

mixing rules. Further, we included dipole-dipole interactions between the diatomic molecules
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using the function:24,25

Vdd =
µiµj

4πϵ0|r⃗ij|3

[
ˆ⃗pi · ˆ⃗pj − 3

(
r⃗ij
|r⃗ij|

· ˆ⃗pj
)(

r⃗ij
|r⃗ij|

· ˆ⃗pi
)]

, (12)

where µi is the dipole moment of ith molecule and ˆ⃗pi is the unit vector along the dipole

direction of the ith molecule. In this work, we used µ = 0.1 D which is close to the dipole

moment of CO in gas (which is 0.122 D). A cutoff radius of 12 Å was used for all Lennard-

Jones and for the dipole-dipole interactions. These potential functions yield a desorption

energy of 0.9 eV for one molecule at 0 K.

4.2. The Desorption Rate Constant

We begin by reviewing a few concepts from statistical mechanics needed for describing

the calculations performed here. The transition state theory provides an exact expression

for the desorption rate constant kd, if the dividing surface is properly chosen. This dividing

surface is parallel to the solid surface and its distance zd from the solid surface must be such

that a molecule whose center of mass moves away from the solid surface and crosses the

dividing surface will not return to the solid. If such a choice is made then

kd =

√
kBT

2πm

Q†

QR

(13)

Here Q† is the partition function of a system of N molecules, one of which has the center of

mass on the dividing surface while the remaining N − 1 are adsorbed. Therefore Q† is given

by

Q† =

∫
exp[−V (Γ)/kBT ]δ(z − zd) dΓ (14)
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Γ represents the Cartesian coordinates of all atoms in the system. z is the distance of the

center of mass of the diatomic from the solid surface.

It is also useful to define the potential of mean force w(ξ) through

exp[−w(ξ)/kBT ] =

∫
exp[−V (Γ)/kBT ]δ(ξ − z)dΓ (15)

where ξ is the distance from the solid surface and w(ξ) is the free energy of the system when

the center of mass of the diatomic is constrained to stay at a distance ξ from the surface.

With this notation Q† = exp[−w(zd)/kBT ].

The partition function QR is defined by

QR =

∫
exp[−V (Γ)/kBT ]X (z − zd) dΓ (16)

where X (z − zd) = 1 if z < zd and X (z − zd) = 0 if z > zd. This is the partition function

when all, N , molecules are adsorbed.

The probability that the center of mass of a molecule is located at a distance from the

surface between ξ and ξ + dξ is

P (ξ)dξ = exp[−w(ξ)/kBT ]/QR dξ (17)

4.3. Computation of the potential of mean force and Q†/QR

In order to compute P (ξ) we partition the space between the solid surface and the dividing

surface into bins defined by planes parallel to the surface. The width, ∆b, of each bin is much

smaller than zd and is chosen so that we can assume that the free energy is constant within
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each bin. We use the Monte Carlo method to create a histogram that gives the number ni

of particles whose center of mass is in bin i. If the number of Monte Carlo moves NMC is

sufficiently large, then the probability P (ξi) that a molecule is in bin i is

P(ξi)∆b =
ni

NMC

(18)

where ni is the total number of configurations for which one molecule is in the ith bin. A

straight implementation of the Monte Carlo method does not frequently sample enough

positions corresponding to high energy. To overcome this sampling problem, we use a

multiple-window umbrella sampling method12,13 with the bias potential

Uj(ξ) =
1

2
kj(ξ − ξj)

2 for j = 0, . . . , Nw (19)

Here Nw is the number of windows and ξj = ξ1+ j∆W . The effect of the bias potential is to

increase sampling around ξj. ∆W and kj are chosen to achieve significant overlap between

the distributions of adjacent windows. The unbiased distributions are obtained by combining

biased distributions from each ‘umbrella window’ by using the maximum likelihood of the

multinomial distribution function.13,26 This method of obtaining free energy is known as the

weighted histogram analysis method (WHAM).13 If nij is the total number of observations

in the ith bin and jth window, the unbiased distribution, P i, is

P i =

∑Nw

i=1 nij∑Nw

j=1
Nj exp[−βUj(ξj)]

µj

(20)

16
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Here, Nw is the total number of windows, Nb is the total number of bins, Nj =
∑Nb

i=1 nij,

and

µj =

Nb∑
i=1

P i exp[−βUj(ξj)] (21)

Eqs. 20 and 21 are solved self-consistently, starting with an initial guess of the µj. Finally,

we obtain the ratio of partition functions by using

Q†

QR

=
exp [−β (w(zd)))]∫

dξ X (ξ − zd) exp [−β (w(ξ)))]
(22)

where zd is the position of the dividing surface and the value of X (ξ − zd) is 1 when ξ < zd

and 0 otherwise.

4.4. Computation of ∆A†, ∆E†, and ∆S†

The activation Helmholtz free energy ∆A† is computed from

∆A† = −kBT ln

(
∆bQ

†

QR

)
(23)

where the factor ∆b is needed to make the argument of the logarithm dimensionless.

The activation energy ∆E† = E†−ER is obtained by two separate Monte Carlo runs: one

calculates the mean energy E†, by restricting center of mass of one molecule to be located

on the dividing surface, and the other calculates ER, when all molecules are adsorbed. We

obtain the activation entropy change ∆S† by using the thermodynamic relation

∆S† =
∆A† −∆E†

T
(24)
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If the number of molecules included in the simulation is N , the calculations of averages

pertaining to the transition state are performed with one molecule on the dividing surface

and N − 1 molecules adsorbed on the surface. All calculations of the properties of A are

performed with N adsorbed molecules. Independent simulations with different values of N

correspond to different surface coverages.

4.5. Simulation Details

Desorption was studied at 200 K, 500 K, and 700 K for the coverages θ of 1/50, 7/50,

11/50, and 14/50. We considered the (100) surface of a face-centered close-packed structure

with a unit cell parameter of 3.615 Å. Calculations were performed on a supercell containing

a 5×5 surface unit. The slab was 6 atomic layers thick and we fixed the atoms in the bottom

layer of the slab. The slab has a total of 300 atoms with 50 hollow-sites on the surface for

adsorption. We applied periodic boundary conditions in all directions according to the

minimum image convention.27,28 A vacuum layer of 40 Å was used to decouple interaction

of the slab with its images in the z-direction. All atoms in the slab, except those in the

bottom layer, were allowed to move, both in th Monte Carlo and in the molecular dynamics

simulation.

For the Monte Carlo part of the computations, we used fast Mersenne-Twister algorithm

based on 128-bit operations for generating random numbers because it produces statistically

good equi-distribution over long periods.29 Two types of MC moves were attempted: (1) the

translation of atoms, and (2) the translation of the center of mass of diatomic molecules

with fixed orientation. The atomic translations were attempted with 90% probability and

molecular translations with 10% probability. In principle, any combination of attempted

probabilities could be used but each will have its own efficiency. We obtained these proba-
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bilities by performing MC simulations on a test system for which maximum efficiency was

obtained (data not shown here). In these moves an atom (or molecule) is selected at random

and a random displacement between −λ/2 and λ/2 is added to the three Cartesian coor-

dinates (or center-of-mass coordinates). The value for λ was tuned to have an acceptance

probability between 0.2 and 0.4. For atomic moves we used λ = 0.2 − 0.4 Å, and for the

center molecular moves we used λ = 6.0 − 7.0 Å. These large values for λ are needed for

sampling jumps from one binding site to another to generate new configurations and get

the correct entropy of mixing. At 700 K only atomic moves were used. The moves were

accepted or rejected based on the Metropolis algorithm.30

The system was equilibrated at the target temperature for 20,000 sweeps before perform-

ing production runs. Each sweep is equal to NT moves, where NT is the total number of

atoms in the system.

For the molecular dynamics part of the computations, we used velocity-Verlet algorithm31

to integrate the Newton’s equations of motion, with a timestep of 1.0 fs. Maxwell-Boltzmann

velocity distribution was obtained using the Box-Muller method.32,33 Molecular dynamics

trajectories for computing adsorption flux were computed for a total time of 15 ps, which is

typically the time scale for collision. Within this time scale the average sticking coefficient

converged to a constant value for all coverages and temperatures. For low coverages and low

temperatures, it was sufficient to run the simulations for 10 ps.

For the free energy part of the calculations, we considered 8 different initial guesses picked

randomly from a large sample of equilibrated configurations. Each configuration was run for

a total of 20,000 sweeps. We collected data at every sweep; thus making total sample size

equal to 160,000. There was no appreciable change in the free-energy surface on increasing

the sample size by another 20,000. The umbrella windows were placed at an interval of
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0.2 − 0.3 Å and the kj for umbrella Gaussian potential was chosen to be 800 kJ/mol/Å2.

These values were obtained by performing benchmarking calculations to obtain significant

overlap between adjacent windows. The self-consistency loop in Eq. 20 was terminated when∑Nw

j=1

(
1− µnew

j

µold
j

)2

< 10−8. Numerical integration to compute the ratio of partition functions

was performed using composite Simpson’s rule.32 The width of the bin (∆b) for computing

probability distributions was 0.01 Å.

The dividing surface was placed at z = 21 Å from the bottom layer of the slab, which

is fixed at the plane z = 0. This choice corresponds to nearly 11 Å away from the surface.

We say ‘nearly’ because this distance will depend on temperature. However, because the

bottom layer is fixed, the distance of the molecule from the bottom layer will not change

with temperature. Adsorption rates were computed using 50 trajectories (with velocities

obtained from Maxwell-Boltzmann velocity distribution at the target temperature) fired

from each of the 400 random configurations drawn from a sample of configurations on the

dividing surface generated from MC simulations; in all, this corresponds to a total of 20,000

trajectories.

5. RESULTS AND DISCUSSION

5.1. Potential of Mean Force for the Desorption Process

The potential of mean force was calculated from Eq. 15, by the procedure explained in

Section 4.3. Figure 2 shows a plot of potential of mean force as a function of the distance ξ

between the center of mass of the diatomic and the solid surface.

As seen from Figure 2, the restricted free-energy barrier for desorption decreases when

the coverage or the temperature is increased.
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An interesting feacture of these free-energy profiles is the minimum at ξd ∼ 16 Å for

coverages greater than 0.02. The minima are deeper when the coverage or the temperature

is increased. A similar minimum has been previously observed by Doren and Tully,34,35 who

suggested that it corresponds to a ‘precursor state’. The potential of mean force includes

contributions from entropy and therefore this minimum might not be present in the potential

energy surface.

5.2. Potential energy fluctuations

It is common to use density functional theory to calculate the energy barrier for desorp-

tion. To study the coverage dependence of the barrier, one assumes a certain distribution of

the adsorbates on the surface. Because of computer-power limitations, one cannot examine

all possible configurations of the adsorbed molecules. We use a simple model for calculating

the potential energy, so we are not subject to this limitation. To explore the fluctuation

in the barrier height caused by fluctuations in the positions of the adsorbates, we calcu-

lated the energy barriers for 14 different adsorbate configurations generated by Monte Carlo

simulations.

Figure 3 shows that there are substantial variations in the energy barriers, the difference

between the largest and the smallest being 20 kJ/mol. If the pre-exponential factor is

assumed to be the same for both processes, the desorption rates from mean-field theory will

differ by three orders-of-magnitude between the two barriers at 500K.
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5.3. The ratio Q†/QR

The numerical values of Q†/QR are given in Table II. The units are Å−1 because when

Q† is calculated, we do not integrate over the distance between the center of mass and the

surface, while that integral is included in QR. In the calculation of Q†, the center of mass

of one molecule is fixed on the dividing surface and the remaining (N − 1) molecules are

adsorbed. The ratio Q†/QR increases with coverage, which we expect because the interaction

between adsorbates is repulsive. However, this interpretation is qualitative: Q†/QR depends

on the entropy change ∆S†, which is also coverage dependent. Finally, we point out that

to calculate the change in Helmholtz free energy ∆A† from Q†/QR, we need to use Eq. 23,

in which Q† is multiplied by the bin width ∆b. Doing so makes the quantity ∆bQ
†/QR

dimensionless, which is necessary for calculating ∆A† = −kBT ln(∆bQ
†/QR).

5.4. The energy difference ∆E†

∆E† was calculated by performing two independent Monte Carlo simulations. In one,

we calculated the mean energy E† for a system in which one molecule had the center of

mass on the dividing surface and the other N − 1 molecules were adsorbed. In the other,

we calculated the mean energy ER when all N molecules were adsorbed. ∆E† is defined by

∆E† = E† −ER. Because the adsorbate-adsorbate interactions are repulsive, ∆E decreases

as the coverage increases.

It is interesting to compare ∆E† to the desorption energies given in Figure 3 for a variety

of configurations. At a coverage of 0.28 and a temperature of 500 K, the desorption energies

in Figure 3 range between 73 kJ and 90 kJ. Under the same conditions, ∆E† = 74.7 kJ;

this value is sensible because the higher desorption energies in Figure 3 are weighted by a
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Boltzmann factor and contribute less to the average ∆E†.

5.5. The activation energy

In order to define the activation energy Eact, we make Arrhenius plots of the logarithm

of the desorption rate constant versus the inverse temperature. The plots are linear at all

coverages. The results are shown in Table III.

It is interesting to compare the activation energy to the mean desorption energy ∆E†.

Because the rate depends exponentially on energy, we also tabulated the values of exp[(∆E†−

Eact)/kBT ] in Table III. At a temperature of 500 K, these values are close to 1 at all coverages.

This result means that under these conditions, one can approximate Eact by ∆E†. This is

good news, because ∆E† is easier to calculate. However, the nearness of ∆E† to Eact is

accidental. Using ∆E† as a proxy for Eact leads to large errors in the rate constant at 200 K

and 700 K.

We conclude that the equation

kd =
kBT

h
exp[∆S†/R] exp[−∆H†/RT ]

is approximate. Because ∆S† and ∆H† depend on temperature, a fit of kd to P exp[−Eact/RT ]

gives P ̸= (kBT/h) exp[∆S†/R] and Eact ̸= ∆E†.

Moreover, the barrier in the potential of mean force also gives a poor approximation to

the activation energy. For example in Figure 2b, the desorption free energy at 500 K, for

a coverage θ = 0.02, is equal to 60 kJ/mol. The activation energy is 73.7 kJ/mol. This

discrepancy means that using TST with the free energy surface is not recommended. In

part the reason for the differences in these energies is the large fluctuations in the desorption
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energies caused by the fluctuations in the adsorbate distribution on the surface (see Figure

3).

5.6. The activation entropy

It is customary to use density functional theory (DFT) to obtain an estimate of the

desorption energy. In order to make contact with rate theory, one must estimate the acti-

vation entropy. This estimation is most often done by using either a lattice gas model or

a two-dimensional ideal gas model, for the adsorbed molecules. One hopes that the two-

dimensional gas model is adequate at high temperature and the lattice gas model, at low

temperature. There is no reasonable candidate to model the intermediate temperatures.

In the present work, the activation entropy was calculated from ∆S† = (∆E† −∆A†)/T ,

with ∆E† and ∆A† obtained from our simulations. The results are given in Table III.

The change of ∆S† with temperature is remarkably large. In a simplified model for the

rate constant it is assumed that in the empirical Arrhenius formula kd = Ap exp[−Eact/kBT ],

one should identify Ea with ∆E† and take Ap = (kBT/h) exp[∆S†/kB]. It is further assumed

that ∆S† and ∆E† are independent of temperature because Ap and Ea in the empirical

formula are temperature-independent. Unfortunately the situation is not so simple. We

find that kd calculated in our simulation does satisfy a Arrhenius formula: the plot of ln kd

versus 1/T is linear. From this plot we extract an activation energy Ea, and we find that

it is different from ∆E† (see Table III). Moreover, the pre-exponential Ap is temperature-

independent and differs from (kBT/h) exp[∆S†/kB].

The reason for the mismatch is that ∆H† and ∆S† depend on temperature. In the case

of ∆S†, the dependence is fairly strong. For a coverage of θ = 0.02, ∆S† changes from

44.6 J/mol K at 200 K, to −7.0 J/mol K at 500 K, and to −17 J/mol K at 700 K.
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5.7. A comparison of activation entropy with the results of simple models

It is common to obtain an approximation to the desorption rate by using DFT to calculate

desorption energy for one adsorbate concentration, and use it as the activation energy.

The entropy is calculated by simple models: either an ideal lattice gas (2DLG) or a two-

dimensional ideal gas (2DIG). Since there are many such models, we explain in detail, in

the Appendix, the versions used here.

We now compare our computed results for ∆S† obtained from exact rate constant theory

to those obtained from assuming simple models of adsorption. The 2DIG does not depend

on coverage because of the assumption that adsorbate-adsorbate interaction is negligible.

2DLG depends on coverage through the configurational entropy. As seen from Table III,

we find that the 2DIG ideal gas model is very close in predicting the behavior of adsorbed

molecules at high temperatures. We do not expect a perfect match since ν⊥ (see Appendix)

was obtained from experiments and, as mentioned in the Methodology section, we did not

try to build a ‘perfect’ model of CO adsorption on Cu. Nonetheless, even this level of

matching is encouraging. We find our results to depend slightly on coverage while the 2DIG

ideal gas model is independent of coverage. As mentioned above, we find ∆S† to increase by

∼ 10 J/K/mol when θ increases from 0.02 to 0.28, which results in a rate-coefficient increase

by ∼ 30%.

At T = 500 K, the calculated ∆S† matches well with that obtained form 2DIG; however,

at high coverage (θ = 0.28) the calculated ∆S† lies in between 2DIG and 2DLG. Because

the calculated ∆S† is ∼ 40 J/K/mol away from that for either of the two models, the rate

coefficients obtained from the two models will differ from the exact rate by nearly two orders

of magnitude. Similarly, at T = 200 K, ∆S† lies between the values given by the limiting
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models and picking one of them could lead to huge errors in rate constant.

Finally, we compare our computed ∆S† to simplified relations provided by the Campbell7? ,8

and Dumesic9–11 groups. As shown in Table III, the relation provided by Campbell and co-

workers is closer to our exact values at T = 200 K, whereas the predictions from Dumesic’s

group are not close to exact values for any temperatures. It is not a surprise that the relation

provided by Campbell and co-workers is closer to values obtained at lower temperatures

as it is obtained by fitting to experiments which were performed at lower temperatures.

We do not expect a exact match because experiments have been performed on different

systems. Moreover, solid surfaces in real systems are different from the one considered here.

We cannot exclude the possibility of island formation in experiments, which has not been

considered in this work. It may be fortuitous that we get a close match to that obtained by

Campbell and co-workers; however, as they showed, the relation is valid for large number of

systems and may also be applicable to our system.

5.8. Rate of Adsorption

The outcome of gas-surface collision (which is non-dissociative) depends on several factors:

the surface corrugation, the impact point on the surface, the energy exchange between

phonons and colliding molecule, and the conversion, during the collision, of kinetic energy

perpendicular to the surface into rotational energy or kinetic energy parallel to the surface.

Loss of kinetic energy in the direction perpendicular to the surface leads to trapping of the

molecule at the surface.

The efficiency of trapping, as a function of coverage and temperature, is described by the

sticking coefficient, given in Table II. We also plot average sticking coefficient as a function

of time of molecular dynamics trajectory for various coverages and temperatures in Figure
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4. Trapping can also be seen in Figure 5, which displays 500 trajectories, chosen at random,

for several surface coverages and temperatures.

At the lowest coverage (θ = 0.02), trapping is very efficient. Even at 700 K, very few

trajectories hit the surface and bounce back into the vacuum. Trapping takes place because,

during the collision, some of the kinetic energy in the direction perpendicular to the surface

is transferred to rotation, to kinetic energy parallel to the surface, or to phonons. As a

result, the molecule does not have enough kinetic energy to escape the attraction of the

surface. Of course, trapping is also helped by the fact that the desorption energy is much

larger than kBT .

As the coverage increases, a smaller fraction of trajectories is trapped. This happens,

primarily, because the attraction between molecules is much weaker than the attraction

between a molecule and the surface. Not all incoming molecules that collide with an adsorbed

molecule are repulsed into the vacuum. Some acquire velocity in a direction parallel to the

surface, do not have enough energy to escape, travel sideways, and may find an empty

surface site to stick to.

It is somewhat surprising that temperature does not have a strong effect on sticking

coefficient. Additionally, we find that sticking coefficient is weakly correlated with velocity,

i.e., mean field rate is equivalent to exact rate obtained from flux-correlation theory. This

is because rotational anisotropy is very large and the barriers are much larger than kBT .

We show a sample of 500 trajectories for each temperature and coverage studied in this

work in Figure S1. Several incoming trajectories are displayed in detail, for illustration

through movies. Figure S2 shows a trajectory, for θ = 0.18 and T = 500 K, in which the

molecule is trapped as soon as it arrives at the surface. The incoming molecule lands on a

surface site that is not covered by an adsorbate and sticks there. Its center-of-mass performs
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a small-amplitude oscillation in the direction perpendicular to the surface and its rotational

motion is suppressed.

Figure S3 shows a trajectory for θ = 0.28 and T = 500 K. The molecule hits the surface

and manages to return to the vacuum after several attempts. Alternatively, Figure S4 shows

a movie of a molecule colliding with the adsorbed molecule, loosing energy, after several failed

attempts finds a vacant site and gets trapped on the surface.

6. SUMMARY AND CONCLUSIONS

We have performed exact calculations of the adsorption and desorption rate constants for

a model that contains all essential features of a real system. If the dividing surface is taken

sufficiently far from the surface, no molecule whose center of mass reaches it will ever return

to the surface: the transition state theory gives the exact rate coefficient. The adsorption rate

is more interesting because not all incoming molecules will stick to the surface. Besides the

usual thermodynamic partition function, the theory contains a dynamic factor that reflects

the sticking probability. We found that the sticking probability is very sensitive to coverage:

most incoming molecules stick when the coverage is low. At high coverage, many incident

molecules interact with adsorbed molecules. The interaction between molecules is much

weaker than the molecule-surface interaction and as a result, the adsorption probability is

diminished. This lessening is not strictly proportional to the fraction of surface sites not

covered with adsorbates because some incoming molecules collide with an adsorbed molecule,

lose energy, and move along the surface until they find an empty site to which they bind.

The entropic contribution to desorption rate increases with temperature and decreases

with coverage. At high temperature (T = 700 K) the exact entropic contribution is close to

that provided by the two-dimensional gas model. However, at lower temperature both the
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two-dimensional gas model and the two-dimensional lattice gas model give errors in the rate

constant of two orders-of magnitude.

The mean-field model, which applies the transition state theory to the potential of mean

force, also gives errors of two orders-of-magnitude. The reason is that each desorbing

molecule sees a different potential energy surface because of different adsorbate configu-

rations. These fluctuations in the energy barrier for desorption can be quite large and have

a big effect on the desorption rate.

7. SUPPLEMENTARY MATERIAL

See supplementary material for: a) Ratio of 2D ideal gas and 2D lattice gas desorption

rates for a diatomic molecule, b) Sample trajectories from the dividing surface for differ-

ent coverages and temperatures, and c) Selected embedded movies of molecular dynamics

trajectories from the dividing surface.

8. APPENDICES

Appendix A. DERIVATION OF ACTIVATION ENTROPY AND DESORPTION

RATES FOR 2D-IDEAL GAS AND 2D-LATTICE GAS MODELS

Here we discuss simple models—2D lattice gas (2DLG) and 2D ideal gas (2DIG)—that

are used in the literature to calculate the entropies of adsorbed molecules. In the case

of desorption the entropy of a molecule in the transition state is given exactly by a two-

dimensional ideal gas. Only the entropy of the adsorbates is treated by using a simplified

model.

The 2DLG model assumes that the adsorbed molecules behave like a two-dimensional
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ideal lattice gas, i.e., they remain localized on an adsorption site where they vibrate. The

2DIG model assumes that the adsorbates translate parallel to the surface and are also free

to rotate in two dimensions; the model ignores the corrugation of the surface.

We want to compute entropy to remove one molecule from the surface and place if on

dividing surface, i.e., we want to calculate

∆S†

kB
=

S† − SR

kB
= ln

(
Q†

QR

)
− β

(
∂ ln(Q†/QR)

∂(β)

)
N,V

(A.1)

where SR and QR are the entropy and canonical partition functions of the adsorbed

molecules, respectively; and S† and Q† are the entropy and the canonical partition function

of the molecule when its center of mass is restricted to stay on the dividing surface.

We also want to compute the transition state theory (TST) rate constant for the two

limiting cases. The TST rate constant is given by

kTST =
kBT

h

Q†

QR

(A.2)

In what follows, we assume that the adsorbates are randomly distributed on the surface

and they adsorb non-dissociatively. We also assume gas molecules are ideal hetero-nuclear

diatomics (because our system consists of diatomic molecules). Additionally, we use a classic,

rigid-rotor, harmonic oscillator approximation to separate rotational and vibrational degrees

of freedom. Therefore, we assume canonical partition function of each molecule can be

approximated as

q(V, T ) = qtrans · qvib · qrot · qelec · qnucl, (A.3)

where qtrans, qvib, qrot, qelec and qnucl are the translational, vibrational, rotational, electronic
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and nuclear partition functions, respectively. We further assume that the solid surface

is homogeneous. N molecules are adsorbed on the surface and the vibrational stretching

frequency of the diatomic molecule is retained on adsorption. The vibrational frequency of

CO molecule changes from 2157 cm−1 in the gas-phase to 2050 cm−1 upon adsorption on

Cu.36,37 We want to compute the change in entropy when one molecule is removed from the

surface and placed on the dividing surface.

We first evaluate ∆S† when the adsorbed molecule is considered a 2DIG. In this case,

the ratio of partition is given by

Q†

QR

=
q2Dt q†νs(q

†
r)

2q†eq
†
nucl

qν⊥q
2D
t qνs(qr)

2qadse qnucl

N !

(N − 1)!N

(
qads
qads

)N−1
QL

QL

(A.4)

=
exp

[
−β∆E†]
qν⊥

(A.5)

= βhν⊥ exp
[
−β∆E†] (A.6)

where QL is the total partition function of the solid. For the ideal case, we assume the

phonons are not changed by the adsorption of the molecule and therefore their effect will

cancel in the ratio of partition functions. ∆E† is the electronic adsorption energy. The

factor N ! is a correction that comes from the fact that at sufficiently high temperatures,

identical molecules obey ‘Boltzmann’ statistics. Note that for transition state there is one less

molecule on the surface and hence this term would become 1
(N−1)!

. The factor 1/N appears

to preserve the extensivity of ln
(
Q†). For 2D ideal gas model, vibrational, rotational and 2D

translational degrees are retained on adsorption; and hence the partition functions will cancel

in the ratio. qν⊥ is the vibrational partition function for the motion perpendicular to the

surface. In principle, one should use quantum vibrational partition function. However, as we
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are performing classical simulations, we take the classical approximation to the vibrational

partition function, i.e. qν⊥ = 1/βhν⊥. This is not a bad approximation since the frequencies

associated with adsorption are usually small and there is very small error in using classical

approximation. For example, for a vibrational frequency of 200 cm−1, the error in vibrational

partition is less than 10% between quantum and classical harmonic approximations at 200

K . Nuclear partition function contribute through a multiplicative constant which cancels

on computing the ratio of partition functions.

Finally, for a 2DIG model, the entropy change (∆S†
2DIG) can be written as:

∆S†
2DIG/kB = −1 + ln(βhν⊥), (A.7)

and the TST rate constant for the 2DIG is given by:

k2DIG
TST = ν⊥ exp

(
−β∆E†) . (A.8)

We now evaluate ∆S† when the adsorbates are considered as 2DLG. We assume that there

are M sites available for the molecule to adsorb. After adsorption, the two translational

degrees of freedom are converted to two low-frequency vibrational modes (νt). For a diatomic

molecule there are two rotational degrees of freedom which we assume are converted to two

low-frequency vibrational modes (νr). For the rest of degrees of freedom we use arguments

as before. For the 2DLG model, there is an additional term that takes into account the

number of ways of arranging N molecules on M adsorption sites. The ratio of partition
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function is given by:

Q†

QR

=
q2Dt (q†r)

2q†e
qν⊥qνt1qνt2qνr1qνr2q

ads
e

M !

(M −N + 1)!(N − 1)!N

(M −N)!N !

M !
, (A.9)

=
2πmA

βh2(M −N + 1)

Θνr1Θνr2

Θ2
r

βhν⊥βhνt1βhνt2 exp
(
−β∆E†) , (A.10)

=
2πma

βh2(1− θ)

Θνr1Θνr2

Θ2
r

βhν⊥βhνt1βhνt2 exp
(
−β∆E†) , (A.11)

where M !
(M−N)!N !

is the number of ways for arranging N molecules on M adsorption sites.

Note that for transition state there is one fewer molecule on the surface and hence this term

would become M !
(M−N+1)!(N−1)!

. Again, the factor 1/N is needed to make ln
(
Q†) extensive.

The value of a is the area of per site (or A/M). Θν is the vibrational temperature and is

equal to hν/kB. Θr is rotational temperature and is equal to h2/8π2IkB; where I is the

moment of inertia. a is the area/site and θ is the coverage. We note here that in the last

equality, we have assumed M ≫ 1; and therefore, 1/M ≈ 0. The ratio of partition function

obtained above has a singularity when θ → 1 and should not be used for θ close to one. We

note here that this relates with the fact that Langmuir’s isotherm has complete coverage

only at infinite pressures.

Now, for 2DLG model, the entropy change is given by:

∆S†
2DLG/kB = −2 + ln

(
Θνr1Θνr2

Θ2
r

)
+ ln

(
2πma

βh2(1− θ)

)
+ ln(βhν⊥) + ln(βhνt1) + ln(βhνt2).

(A.12)

And the transition state theory rate constant is given by:

k2DLG
TST = ν⊥

2πma

βh2(1− θ)

Θνr1Θνr2

Θ2
r

βhνt1βhνt2 exp
(
−β∆E†) (A.13)
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The dependence of the rate constant on 1/(1 − θ) has previously been shown by many

authors.38–40 We note here that it might seem that the dependence of rate constant on

1/(1− θ) would mean that rate of desorption will be proportional to θ/(1− θ), which would

in turn get the adsorption isotherm incorrect. However, as has been pointed out,40 one

needs to multiply the TST rate with the appropriate recrossing term. The 1/(1− θ) occurs

from the ‘excluded-area’ effect similar to the ‘excluded-volume’ term in the van der Waal’s

equation. To put this into perspective, let us consider the van der Waal’s equation of state

with only excluded volume correction, i.e., we consider the following equation of state:

P (V −Nb) = NRT (A.14)

where N is number of molecules, R is the universal gas constant, and b is the volume per

molecule. The chemical potential of this gas is

µvw = µ◦(T )vw − kBT ln

(
V −Nb

N

)
(A.15)

This equation is similar to the the chemical potential of the 2D ideal lattice gas:

µ2DLG = µ◦(T )2DLG − kBT ln

(
Ma−Na

N

)
(A.16)

where a is the area/site, and thus Ma is the total area of the solid.
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FIG. 1. Side view of the simulation cell showing solid atoms in light-brown color and a single

adsorbed molecule; one atom is shown in red and the other in gray. The coordinate perpendicular

to the solid surface is z. z = 0 is at the center of the atoms forming the bottom layer and the

dividing surface is located at z = zd. The bottom-most atomic layer of the solid is kept fixed

during simulation. The solid blue lines show the boundary of the simulation cell.
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FIG. 2. Potential of mean force as a function of z -coordinate of diatomic center-of-mass. The

bottom layer of the slab is fixed and corresponds to z = 0. Three different temperatures are

considered: (a) T = 200 K, (b) T = 500 K, and (c) T = 700 K. For each temperature we

considered four different fractional coverages: θ = 0.02, θ = 0.14, θ = 0.22, and θ = 0.28. For

clarity we have not plotted the errors in the potential of mean force as they are too low to be

shown in the current scale. The maximum error we found was ∼ 0.25 kJ/mol.
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FIG. 3. A sample of different potential energy curves obtained by coordinate-driving approach for

θ = 0.28. The initial state was obtained from Monte Carlo sampling at T = 500 K.
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FIG. 4. Average sticking coefficient for different coverages: (a) T = 200 K, (b) T = 500 K, and

(c) T = 700 K. For each temperature we considered four different fractional coverages: θ = 0.02,

θ = 0.14, θ = 0.22, and θ = 0.28.
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FIG. 5. A sample of 500 random trajectories fired from the dividing surface for a coverage of

θ = 0.28 and a temperature of T = 500 K. The y-axis represents the distance of the center-of-mass

of the diatomic molecule from the bottom of the solid slab. The dividing surface is taken as center-

of-mass distance of 21 Å from the bottom of the slab. For comparison of trajectories at different

temperatures and coverages, see Supplementary Information (Figure S1). We also provide movies

of three sample trajectories in the Supplementary Information (Figures S2, S3 and S4).
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FIG. 6. Plot of ln(k) vs 1/T for different coverages. The Arrhenius parameters obtained by linear

least square fitting are given in Table III.
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TABLE I. Model potential parameters. s-s indicate the parameters for the interaction

between two solid atoms and A-B for the atoms forming the diatomic. s-A indicates

the parameters for the interaction of a solid atom s and the atom A, s-B between solid

atom and B, A-A between atoms A in different diatomic molecule, and B-B between

atoms B in different diatomic molecule.

The parameters in the Morse Potential.

re (Å) α (Å−1) De (eV)

s-s 2.838 1.4 0.342

A-B 1.125 2.3 11.09

The parameters in the Lennard-Jones Potential.

σ (Å) ϵ (eV)

s-A 2.4 0.150

s-B 3.3 0.002

A-A 3.9 0.004

A-B 3.4 0.004
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TABLE II. The ratio of partition function with the center-of-mass of the diatomic

molecule at dividing surface (Q†) to that of the partition function in the adsorbed

state (QR), the desorption rate constant (kd), the adsorption rate (Ra), average sticking

coefficient (⟨X ⟩(θ)), and the mean-field adsorption rate (⟨X ⟩⟨vz(0)⟩ p
kBT ). The values in

the parenthesis are the powers of 10.

T θ Q†/QR kd Ra/p ⟨X ⟩(θ) ⟨X ⟩⟨vz(0)⟩ 1
kBT

(K) (Å−1) (s−1) (Å−2·s−1 · atm−1) (Å−2·s−1 · atm−1)

200

0.02 3.19(-18) 3.10(-6) 7.78(7) 1.00 7.78(7)

± 0.04(-6) ± 0.06(7)

0.14 2.75(-18) 2.67(-6) 7.56(7) 0.96 7.56(7)

± 0.03(-6) ± 0.08(7)

0.22 3.64(-18) 3.53(-6) 7.23(7) 0.93 7.24(7)

± 0.04(-6) ± 0.08(7)

0.28 1.61(-17) 1.57(-5) 6.73(7) 0.88 6.78(7)

± 0.02(-5) 0.08(7)

500

0.02 6.80(-7) 1.05(6) 4.93(7) 1.00 4.93(7)

± 0.01(6) ±0.03(7)

0.14 1.85(-6) 2.85(6) 4.46(7) 0.89 4.43(7)

± 0.03(6) ±0.05(7)

0.22 5.42(-6) 8.34(6) 3.66(7) 0.75 3.64(7)

± 0.09(6) ± 0.04(7)

0.28 2.45(-5) 3.82(7) 2.54(7) 0.53 2.53(7)

± 0.04(7) ±0.04(7)

700

0.02 9.76(-5) 1.78(8) 4.12(7) 0.98 4.13(7)

± 0.02(8) ± 0.04(7)

0.14 2.46(-4) 4.47(8) 3.45(7) 0.82 3.40(7)

± 0.05(8) ± 0.04(7)

0.22 2.05(-4) 3.72(8) 2.70(7) 0.63 2.62(7)

± 0.04(8) ± 0.04(7)

0.28 6.41(-4) 1.17(9) 1.60(7) 0.37 1.55(7)

± 0.01(9) ±0.03(7)
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