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DISCLAIMER 
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assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
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process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 
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ON ACCURATE DETERMINATION OF CONTACT ANGLE 

Paul Concus and Robert Finn 

Abstract . 

Methods are proposed that exploit a microgravity environment to obtain highly accurate mea­

surement of contact angle. These methods, which are based on our earlier mathematical results, 

do not require detailed measurement of a liquid free-surface, as they incorporate discontinuolls or 

nearly-discontinuous behavior of the liquid bulk in certain container geometries. Physical testing 

is planned in the forthcoming IML-2 space flight and in related preparatory ground-based experi­

ments. 

1. Introduction 

Procedures for accurate determination of the contact angle formed between a liquid and a 

solid at a triple interface are developed, as an application of our general mathematical comparison 

principles for the equations describing capillary surfaces. Con tact angles are notoriously difficult to 

measure, and differing procedures often lead to disparate results that are not easily reproducible. 

As a consequence of these difficulties, the intrinsic physical significance of an equilibrium contact 

angle has come into some question. Two microgravity experiments are under development for 

procedures that should lead to substantially improved accuracy in the respective ranges of appli­

cability, and which we believe will shed some light on the question as to whether contact angle call 

properly be regarded as an intrinsic property of materials, as suggested by the classical Young­

Gauss theory. Both procedures have the advantage of not requiring sophisticated instrumentation 

for measurements, as they depend on global instabilities (or near instabilities) that occur at values 

of experimental parameters corresponding to the contact angle to be measured. 

The first procedure is based on a discontin11ous behavior that occurs in a capillary tube whose 

section contains a corner. It is especially well adapted for contact angles I between about 400 and 

1400
• The method can be applied whether or not gravity is present; however, observation of the 

discontinuity becomes more feasible, and accuracy improved correspondingly, by letting 9 ---+ O. 

For values of I closer to 00 or 180 0 another procedure is proposed. It is based on behavior 

that. can change very rapidly with contact a.ngle, when 9 is small, although not discontinuously 

as above. Prelimina.ry calculations indicate that very good accuracy should be expected; detailed 

confirmation will require more extensive computer calculat.ions, which are currently being ca.rried 
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out for particular geometries. 

2. First Method 

2.1. Background. We suppose first that 9 > 0 (as in a capillary tube on the earth's surface), 

and 0 ~ , < ~ (wetting liquid). We consider a vertical capillary tube, in an infinite reservoir, 

whose section n contains a wedge with opening angle 20'. We introduce a disk Bo such that the 

shaded region shown in Fig. 1 lies in n. Let f).p = density change across interface, (J = surface 

tension, n, = g6.p/(J. It is shown in [1] (see also [4] Chapter 5) that if 0' +, 2: ~ then the height 

u( x, y) of the free surface interface relative to the reservoir satisfies 

throughout the shaded region. 

However, if 0' + , < ~ then we set k = sin 0'/ cos, and find the asymptotic relation 

(see Fig. 1) as T -* O. 

cosB - Jk2 - sin2 B 
kn,T 

(1) 

(2) 

Note that (1) gives a bound that holds for all 0' 2: ~ -,. It does not depend on 0' in this range. 

Thus, if we let 0' decrease to ~ - , from larger values, the fluid height stays uniformly bounded 

throughout the shaded region and does not tend to infinity, even at the vertex. But according to 

(2), as soon as 0' < ~ - , then u -+ 00 at P. Thus, the behavior changes discontinuously as 0' 

moves across the critical value ~ -,. 

2.2. An Example. Consider n as above, water in the earth's gravity ~eld (n, ~ 41°3°), and 

{j = 0,5 cm. Then 
4 ·13 1 

u < 400 +"2 ~ 0,6 cm 

holds if 0' +, 2: ~; but u -* 00 if 0' < ~ -,. Thus, by changing 0' a fraction of a degree, the rise 

height can be made to jump from less than about 0,6 cm to infinity. Presumably, the jump could be 

observed optically or with laser beams, or by placing an electrode into the corner above the critical 

height. The difficulty with stich an approach is that unless, is reasonably close to 7r /2, the jump 

will be restricted to an extremely small neighborhood of P, and correspondingly measurements will 

be significantly affected by hysteresis, evaporat.ion from the int.erface, imprecision of the corner, 

and irregularities in the solid surface. We thus consider a modified approach. 

2.3. Planned Experiment. Consider a capillary tube whose section n is that of a "near 

rhombus", with opposite half-angles 0'1 < 0'2 < 7r /4 and boundary 'E, as indicated in Fig. 2. Let 
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Z denote the vertical cylinder over n, closed at the base. For gravity 9 > 0, consider the capillary 

surface u(x,y;g), with contact angle" obtained by introducing a volume V of fluid into z. It can 

be shown that if V is large enough so that the left side of (3) is positive, and if al +, 2: 7r /2, then 

V 8 ( J kl 2 - 1) V 8 ( J kl 2 - 1) -1"1 - - 1- k < u(x.y;,) < -1"1 + -. 1- k 
J' cos ~i 1 . H cos, '1 

(3) 

throughout n. Here k1 = sin ad cos /, 8 = radius of inscribed circle, and Inl denotes the area of 

n. This estimate holds regardless of g. Further, there holds 

lim u(x,y;g) = v(x,y), 
9->0 

(4) 

where vex, y) is the)ower hemisphere of radius 8/ cos, concentric with the inscribed circle and a.t. 

a height such that the volume bounded over n is V. 

Thus, if a1 +, 2: 7r /2 the fluid stays bounded above and below and tends to a known spherical 

cap as 9 -+ o. But if a1 +, < 7r/2, and a2 +, 2: 7r /2, then the fluid moves into the smaller corner 

and forms, in an asymptotic sense, a section as shown in Fig. 3, with R = Id~~s-y. The area of any 

such section with opening half-angle a is 

(5) 

and thus if the height of Z is large enough, the base n will become partly uncovered with decreasing 

gravity, the fluid moving into the smaller corner. Thus, instead of looking for the highest fluid point 

at the vertex P, it is better to look for the lowest point, which occurs at a known height over the 

center 0 of the inscribed circle when 9 = 0 a.nd a1 + , 2: 7r /2, and is thus easily accessible. The 

discontinuous change when 0'1 + , decreases past 7r /2, in conjunction with an observation of the 

direction of motion of the fluid (away from the larger corner and toward the sma.ller one), should 

lead to an extremely sensitive contact angle measurement without detailed measurements of the 

fluid free-surface in the range, > 45° that is admissible in the construction. 

If , ::; 45° the above construction is not feasible, as the existence criterion will fail for the 

upper and lower corners. We may however replace it by the configuration of Fig. 4, in which two of 

the angles are replaced by arcs of the inscribed circle. The discussion remains unchanged and the 

relation (3) continues to apply, with n and ~ now taken from Fig. 4. Thus, at least in principle, 

contact angles in the entire range 0 < , < 7r /2 can be measured by this procedure. A practical 

difficulty may appear, however, in that the sectional area .(5) filled out with fluid in the corner 

tends to zero as a -+ 7r /2, and thus the cylinder would have to be of large height in order to absorb 
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a significant amount of the fluid into the corner at P. Correspondingly, it must be expected that 

the discontinuity as (Xl + / crosses 11"/2 becomes physically less pronounced. These consideration.s 

are to some extent heuristic; the configuration is known exactly only when (Xl + / ~ 11"/2, 9 = 0, 

and does not lend itself easily to computation when (Xl + / < 11"/2. It is proposed to determine 

experimentally the actual range for which precise answers can be anticipated. It does however seem 

clear that for small values of / (say / < 40°) another approach should be sought, and accordingly I~ 

we consider such an approach below. \J 

3. Second Method 

We consider a section n bounded by two circular arcs, as shown in Fig. 5. We normalize the 

smaller radius to be unity, and consider the problem of finding a capillary surface over n in zero 

gravity, with contact angle / on the walls over E. We introduce a circular arc of radius R = IE"~;Sf 
as shown. Again, we discuss the case of a wetting liquid, Using methods introduced in [3] (see also 

[4] Chapter 6), it can be proved that for all (large enough) p, there is acritical /0 with ° < /0 < 11" /2, 

such that the problem has (under SUItable normalization) a bounded solution over n when / > /0, 

but such that the fluid disappears to infinity in the shaded region when I ::; /0. In this case the 

change is not discontinuous as before, but indications are that it will be "nearly discontinuous", in 

the sense that for decreasing / the height will stay bounded until / is very close to /0, and then 

increase rapidly in the shaded region. Accurate indications of the nature of the change are being 

obtained by numerical solution of the capillary free-surface equation. 

Figs. 6-8 depict the dependence of /0 and of don p for varying values of (x, and of /0 on (X for 

varying p. It is seen that even for very small /0, the rates of change of A(O with respect to p and (X 

can be made small, so that errors in construction of the apparatus will not lead to large errors in 

the measured con tact angle /0. 

4. Experimental Considerations 

4.1. First Method. Preliminary experiments, using glycerol and fluorinert in rhombic 

containers of acrylic plastic, were carried out by D. Langbein in parabolic flight, and are described 

in [5]. One sees in all cases the marked effect of the discontinuity as the critical angle is crossed; 

however for fluorinert the effects of residual accelerations are significant, while glycerol, in view 

of its larger viscosity, did not have sufficient time during the 20 seconds at zero 9 to achieve 

its equilibrium configuration. The proposed experiments to be carried out in space flight will 

permit a much lonber time duration. Residual accelerations will also then be much smaller, and 
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equilibrium configurations should be achievable with liquids of widely varying viscosity and density. 

If contact angle is indeed an intrinsic property of materials (as we expect it to be) then it should be 

feasible by the proposed procedures to obtain reproducible measurements to considerably greater 

accuracy than has heretofore been possible. In this connectio~" we note an earlier "kitchen sink" 

experiment conducted by T. Coburn in the medical school of Stanford University, which used the 

discontinuous dependence property in a terrestrial ;gravity environment essentially along the lines of 

Example 2.2 above to establish the contact angle of water with acrylic plastic as about 78°, see [1] . .' . 

or Chapter 5 of [4]. The experiment was repeated recently by M. Weislogel under more controlled 

terrestrial conditions, who obtained 80° to a repeatable accuracy of 2°, see [2]. Our estimate that 

/ should exceed 40° for accurate results is based on past experience and is tentative; neither exact 

nor calculated solutions are presently available. We believe that the estimate errs on the side of 

caution. Nevertheless, for significantly smaller angles, we consider the second method, as described 

above and below, to have in the long range more promise. 

4.2. Second Method. The configuration is directly amenable to computer calculation for 

/ > /0; it poses some difficulties but is within range of modern methods. The main emphasis in 

our current calculations is on determining the dependence on / of rise height in the shaded region 

of Fig. 5, as / '\. /0. It is anticipated that for the geometries of principal interest, the height 

will change very slowly until/enters a small interval around /0, and then shoot rapidly upward 

toward infinity. If this occurs as expected, an extremely effective method for getting contact angle 

measurements for most angles that occur physically will have been found. The final details of design 

will depend strongly on the results of the calculations. Similar information could in principle be 

obtained by preliminary experiments, as has been dOlle for the first method above, and could be 

used to corroborate the computer calculations. 

5. Space Flight 

The experiments discussed here are scheduled for the International Microgravity Laboratory 

IML-2 space flight in 1994 as part of a joint investigation with D. Langbein, T. M. Haynes, and U. 

Hornung. 
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Figure 1. Wedge domain; coordinates. 

Figure 2. Near-rhombus. Case 1: al < a2 < 7r /4. 
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Figure 3. Fluid filling corner, t:Y +', < 7r /2. 
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Figure 4. N ear- rhombus. Case 2: t:Yl < t:Yz, t:Yz > 7r / 4. 
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Figure 5. Two circle domain. 
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