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ABSTRACT OF THE DISSERTATION 

 

In Vivo Quantification of Cardiac Microstructure with Convex Optimized Diffusion Weighted MRI 
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Diffusion weighted imaging (DWI) is a powerful quantitative magnetic resonance imaging (MRI) 

technique that can probe tissues in vivo at the microscopic level and provide insight into cellular 

microstructural environment. Cardiac DWI has great potential value in its ability to answer open 

questions regarding myocardial structure, dynamics, and remodeling. Unfortunately, several 

technical limitations of current DWI techniques make its application in the beating heart very 

challenging, which leads to erroneous or inconsistent results. Amongst the challenges are an 

extreme sensitivity to bulk physiological motion, low signal to noise ratios (SNR), long scan 

times, and geometric image distortions. In this dissertation, these limitations are addressed with 

novel technical developments applied to the DWI pulse sequence including convex optimized 

diffusion gradient waveform design and multi-parametric tissue characterization. 
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 A brief introduction to Nuclear Magnetic Resonance (NMR) and MRI is provided in Chapter 

1. This leads into a description of the fundamental components of a DWI acquisition in Chapter 

2 and an overview of the current state of cardiac DWI in Chapter 3. 

 In Chapter 4, a novel DWI strategy called Convex Optimized Diffusion Encoding (CODE) is 

described. CODE is a mathematical framework that formulates diffusion encoding gradient 

design as a convex optimization problem and automatically generates motion compensated 

(MOCO) waveforms that achieve the shortest possible echo times (TE) and thus improve SNR. 

First and second order moment nulled CODE (CODE-M1M2) permits DWI that is robust to 

cardiac motion with higher SNR than an existing MOCO technique. First order motion 

compensated CODE-M1 also improves robustness to cardiac induced motion in liver DWI with 

higher SNR than M1 nulled bipolar DWI. CODE can also be used for non-motion compensated 

DWI and improves SNR compared with traditional monopolar DWI in the brain. 

 In Chapter 5 we present a multi-parametric DWI strategy that simultaneously yields maps of 

the apparent diffusion coefficient (ADC) and T2 relaxation time constant in the heart (T2+ADC). 

Typically, DWI protocols include multiple acquisitions with a range of diffusion encoding 

strengths (b-value), but with constant TE to isolate the effect of diffusion of the signal. The joint 

T2+ADC approach varies both b-value and TE within the acquisition to facilitate estimation of 

both ADC and T2 relaxation. T2+ADC permits joint reconstruction with no increase in scan time 

compared with DWI alone and no effect on ADC measurement. 

 In Chapter 6 we use CODE-M1M2 diffusion encoding to perform cardiac diffusion tensor 

imaging (cDTI) and generate maps of myocardial microstructure in healthy volunteers. cDTI can 

be used to map myocardial fiber and myolaminar sheetlet orientations, which can contribute to 

our understanding of ventricular microstructure in health and disease and facilitate sophisticated 

mechanical models of cardiac dynamics. However, it is important to understand the uncertainty 

underlying these measurements to inform interpretation and define acquisition limitations. We 
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apply a previously described bootstrap technique to measure the uncertainty in the diffusion 

tensors derived from CODE-M1M2 cDTI and establish achievable levels of precision in clinically 

feasible scan times. 

 In Chapter 7 the CODE framework is extended to compensate for the effect of eddy 

currents, which are a common cause of image distortions in DWI and DTI. Diffusion encoding 

gradients must be very strong to encode microscopic molecular displacements and these strong 

gradient pulses induce unwanted eddy currents in conductive MRI hardware components. If not 

addressed, eddy currents lead to distorted images and corrupted diffusion parameter estimates. 

We incorporate an eddy current model into the CODE optimization framework to develop eddy 

current nulled CODE (EN-CODE). EN-CODE accomplishes eddy current nulling with TEs that 

are comparable to traditional monopolar encoding and much shorter than the established twice 

refocused spin echo (TRSE) technique for eddy current nulling. 

 The developments described in this dissertation represent an improvement in the flexibility, 

efficiency, and robustness of diffusion encoding. The CODE framework can also be easily 

modified to address additional constraints and thus may prove useful in currently unforeseen 

applications.    
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 1 

THESIS MOTIVATION 

Diffusion weighted magnetic resonance imaging (DWI) is a powerful quantitative imaging 

technique that non-invasively probes the microstructure underlying biological tissues by 

measuring the diffusive mobility of water [1, 2]. For example, DWI is well established as a tool 

for the early detection of acute strokes because it is sensitive to local decreases in diffusivity 

that precede other detectable changes [3]. DWI is also a common oncological imaging 

technique because of its sensitivity to decreases in diffusivity that accompany increases in 

cellular density within malignant tumors [4].  Diffusion tensor imaging (DTI), an extension of DWI 

that can capture microstructural anisotropy and directionality, has also proven useful for 

improving our understanding of the structure of the brain in health and disease and by mapping 

the complex network of neuronal fibers [5].  

 In principle, cardiac DWI (cDWI) could provide substantially novel insight to cardiac 

microstructure and changes to microstructure in health and disease. For example, cDWI has 

potential value in its ability to detect myocardial infarction (MI) without the need for an injected 

contrast agent [6-8]. This could potentially enable detailed infarct characterization in patients 

who are precluded from contrast injections due to limited renal function a group that makes up 

nearly 1% of the adult population in the United States [9-13]. Furthermore, cardiac DTI (cDTI) 
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has demonstrated sensitivity to changes in cardiac microstructural organization that occur in 

hypertrophic and dilated cardiomyopathies [14-16]. Unfortunately, numerous challenges still 

exist in cDWI and cDTI that can confound measurement and have limited clinical adoption.  

 Unfortunately, the large gradients that are used to encode the diffusive motion of water 

molecules also make DWI highly sensitive to bulk physiological motion. This can lead to severe 

signal corruption when imaging the heart. One proposed solution is the use of motion 

compensated diffusion encoding gradient waveforms with nulled first (M1) and second (M2) 

order moments. Gradient waveforms designed with these constraints have no net effect on 

spins moving with linear velocities and accelerations during the diffusion encoding interval, 

thereby enabling diffusion encoding in the presence of cardiac motion [17-19]. Gradient moment 

nulling, however, necessarily increases the total diffusion encoding duration as compared to 

non-motion compensated waveforms. Consequently, conferring bulk motion insensitivity 

unavoidably increases the echo time (TE), which reduces signal to noise ratios (SNR). 

 This dissertation describes a novel approach called Convex Optimized Diffusion Encoding 

(CODE) [20]. CODE is a framework that automatically generates time-optimal diffusion 

encoding gradient waveforms subject to hardware constraints, pulse sequence timing 

constraints and gradient moment (i.e. motion compensation) constraints. Notably, CODE 

enables motion compensated diffusion encoding for cDWI with substantially shorter TEs (and 

thus higher SNR) than existing techniques. CODE enables robust mapping of myocardial ADC 

and local cardiomyocyte orientations and also facilitates a novel multi-parametric T2 and ADC 

mapping strategy. The CODE framework has several applications and herein it will be shown 

that CODE also permits improvements in DWI of the brain and liver. 

 The objective of this dissertation was to develop and evaluate optimized cardiac DWI 

acquisition strategies and explore applications outside of the heart. The specific aims were to: 

1) Develop convex optimized diffusion encoding (CODE) for robust DWI in the heart and explore 
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applications in the brain and liver (Chapter 4); 2) Demonstrate multi parametric T2+ADC 

mapping in the heart using CODE cDWI (Chapter 5); 3) Acquire in vivo maps of cardiac 

microstructure using CODE cDTI and quantify the precision of the technique (Chapter 6); and 4) 

Modify the CODE framework to mitigate eddy current induced image distortions in DWI while 

maintaining temporal efficiency (Chapter 7).  

 

SPECIFIC AIM #1 — Develop the Convex Optimized Diffusion Encoding (CODE) framework for 

time-efficient and motion compensated DWI. Most diffusion encoding gradient waveforms in 

spin echo EPI DWI are symmetric about the refocusing RF pulse, which simplifies design, but 

leads to inefficient dead-times within the pulse sequence and extends TE. This effect is 

amplified in multi-polar motion compensated gradient designs with nulled first and/or second 

order moments (M1 and M2). We hypothesized that we could remove all sequence dead time 

and shorten TEs by employing a convex optimized diffusion encoding gradient waveform 

design. In Chapter 4 we demonstrate through simulations, phantom imaging, and in vivo 

imaging that CODE can shorten TE and improve SNR in DWI of the brain, M1 nulled DWI of the 

liver and M1M2 nulled DWI of the heart.  

SPECIFIC AIM #2 — Demonstrate a technique for multi-parametric T2+ADC mapping in the heart 

using CODE cDWI. ADC mapping has potential value in its ability to detect myocardial fibrosis 

without contrast injections and quantitative T2 mapping can provide additional sensitivity to 

regions of edema (inflammation). While these techniques traditionally require two separate 

acquisitions, we hypothesized that quantitative T2 maps can be extracted from a DWI 

acquisition by simply shifting the TE between measurements. In Chapter 5 we demonstrate 

through simulations, phantom imaging, and in vivo imaging that T2+ADC mapping can 

accurately measure both parameters with no increase in scan time compared with DWI alone. 
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SPECIFIC AIM #3 — Quantify the in vivo precision of cardiac microstructural maps using CODE 

cDTI. cDTI provides a wealth of information regarding the microstructural organization of the 

myocardium and has promise in both clinical diagnosis and in improving our basic 

understanding of the heart. However, cDTI remains a challenging and low SNR technique and 

the achievable measurement precision is largely unknown. We hypothesized that a previously 

described bootstrapped method for measuring diffusion tensor uncertainty can be adapted and 

extended to quantify the overall precision of diffusion tensors derived parameters measured 

using in vivo cDTI with reasonable scan durations. In Chapter 6 we quantify the diffusion tensor 

uncertainty for CODE cDTI obtained in healthy volunteers and demonstrate that an acceptable 

degree of uncertainty can be achieved in five minute free breathing. 

SPECIFIC AIM #4 — Demonstrate eddy current nulled CODE for DTI with reduced image 

distortions. The large diffusion encoding gradients required to sensitize the MRI signal to the 

diffusive motion also induce unwanted eddy currents in the MRI hardware that can distort 

images and confound reconstruction. Eddy currents can be nulled by using a twice refocused 

spin echo (TRSE) DWI pulse sequence, but this requires longer TEs and thus reduces SNR. 

We hypothesized that we could adapt the CODE framework to compensate for diffusion 

encoding gradient induced eddy currents, but with shorter TEs than TRSE. In Chapter 7 we 

demonstrate that eddy current nulled CODE (EN-CODE) virtually eliminates eddy current 

induced image distortions in phantoms and in vivo neuro DTI with shorter TEs than TRSE and 

monopolar DWI in most cases. 

 The developments described in these specific aims represent an improvement on the 

efficiency and robustness of diffusion weighted imaging with specific emphasis on implications 

for cardiac imaging. This work will facilitate the clinical translation of cDWI for the evaluation of 

myocardial infarcts in patients who cannot receive contrast injections and improve the 

capabilities of microstructural myofiber mapping in the beating heart. These developments will 
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also translate to improvements in motion robustness, SNR, and image distortion in DWI outside 

of the heart in organs such as the brain and liver. 
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1 INTRODUCTION TO MAGNETIC RESONANCE IMAGING 

Proposed in 1973 [21] and brought to clinical practice in 1980 [22], magnetic resonance imaging 

(MRI) is a non-invasive medical imaging technique that utilizes the electromagnetic properties of 

water molecules in soft tissue to generate images of the human anatomy. MRI employs the 

phenomenon of nuclear magnetic resonance (NMR) to generate contrast between different 

tissues without the need for harmful ionizing radiation. This chapter will introduce 

several fundamental principles in MRI including signal generation, spatial localization, signal 

detection, and image reconstruction. 

1.1 Nuclear Magnetic Resonance 

Nuclei containing an odd number of protons and/or neutrons possess nuclear spin that, in turn 

produces a net angular momentum, J. Because the nucleus also possesses a non-zero electric 

charge, this leads to a magnetic moment, µ that is empirically described by: µ = γJ, where γ is 

the gyromagnetic ratio and is unique to any particular isotope. The magnetic moment becomes 

useful when a large magnetic field (! ) is applied to the system, which causes magnetic 

moments to align preferentially along the direction of the field. In the presence of !, the Zeeman 

effect [23] leads to two energetically favorable states: ! aligned parallel to !, denoted “spin up,” 
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the lowest energy state; and ! aligned anti-parallel to !, “spin down”, a state with slightly higher 

energy. The energy difference between these states is given by:  

 
!" = !"!! 

1.1 

Where h is Planck’s constant (6.63x10-34 J•s) [24] and B0 is the magnitude of ! . 

Thermodynamics dictates that the lower energy state results in a larger number of spins 

occupying the “spin up” (N↑) than “spin down” state (N↓) according to the Boltzmann relationship 

[25]: 

!↑
!↓

= !"# !"
!" = !"# !"!!

!"  1.2 

Where K is Boltzmann’s constant (1.38x10-23J/Kelvin) and T is the system temperature (in 

Kelvin). A rough calculation [26] can show that in a 3.0T magnetic field at room temperature 

(300K), N↑ exceeds N↓ by approximately 9 parts per million (ppm). Fortunately, this small 

disparity is enough to generate a detectable NMR signal. 

 A fundamental concept in NMR is excitation, which describes the absorption of a photon 

with energy ΔE into the system that causes a spin to “jump” from the “spin up” state to the “spin 

down” state. The frequency of this photon can be determined using the Einstein-Planck relation 

[27]: 

 
! = !" 

1.3 

By combining equations 1.1 and 1.3, the resonant frequency, or Larmor frequency, f0 of a 

system can be defined: 

 

!! =
!
!!!! 1.4 

The hydrogen nucleus (1H) that exists in water molecules and makes up the majority of tissues 

in the human body has a gyromagnetic ratio, γ/2π = 42.576 MHz/T. This results in a Larmor 
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frequency f0=63.87MHz in a 1.5T magnetic field and 127.74MHz at 3.0T, the field strengths 

most commonly used in modern MRI. This is significant because photons at these frequencies 

have energies <10-8 eV which is far below the threshold for ionizing radiation, which occurs at 

energies approximately >30eV and can free electrons from atomic orbitals and cause cancer. 

This comes in contrast to imaging modalities such as X-ray, computed tomography (CT) and 

positron emission tomography (PET), which rely on ionizing radiation to generate images and 

thus must be used sparingly to limit health risks. 

 If one considers an ensemble of N 1H nuclei initially in the “spin up” configuration in a field, 

B0 oriented along the longitudinal axis (i.e. z direction), there will be a net ensemble magnetic 

moment, referred to as the bulk magnetization, described by:      

! = !!
!

!!!
 1.5 

When the magnetic moments of all N spins are oriented along z, this vector quantity adds 

constructively (M = ! ! ). However, if a radio frequency (RF) excitation pulse tuned to a 

frequency f0 is applied, a portion of the magnetic moments will “flip” to the spin down energy 

state, which leads to destructive interference and a change in the bulk magnetization vector. 

Over time, the moments will revert back to the energetically favorable “spin up” state, which 

causes M to approach its initial value in a process referred to as relaxation, which will be 

discussed further in the next section. The rate of relaxation is dependent on the molecular 

environment surrounding a given set of molecules and thus varies between different tissues in 

the human body. These subtle differences are exploited in MRI to generate differences in signal 

strength (i.e. contrast) between organs. 
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1.2 Bloch Equations 

The temporal behavior of the bulk magnetization vector in the presence of an applied magnetic 

field can be described by the generalized Bloch Equation: 

!!
!" = !! ! ! −  !!! +  !!!

!!
−  (!! +  !!!)!

!!
 1.6 

where Mx, My and Mz are components of the bulk magnetization vector, M!!k is the thermal 

equilibrium state of M, and ı , ȷ , and k  are unit vectors along the x, y, and z directions, 

respectively. This vector equation can be written in terms of its three directional components: 

!"!
!" = ! !!!! −  !!!! −  !!!

!! 

!"!
!" = ! !!!! −  !!!! −  !!!

!! 

!"!
!" = ! !!!! −  !!!! −  !!!

(!! −  !!) 1.7 

These ordinary differential equations can be used to describe two processes: precession (the 

first terms of 1.7) and relaxation (the second terms of 1.7). Precession describes the rotation of 

the bulk magnetization about the z-axis at the Larmor frequency and can take two forms: free 

precession in the presence of the B0 field only and forced precession in the presence of an 

excitation RF pulse. Relaxation describes the temporal behavior of the system after excitation 

as it returns to its initial state. 



In Vivo Quantification of Cardiac Microstructure with Convex Optimized Diffusion Weighted MRI 

 10 

1.2.1 Free Precession 

Let us first consider the behavior of the magnetization vector in a static field, B = B!k and ignore 

the effect of relaxation (i.e. only consider the first terms of the equations in 1.7). The Bloch 

equations now take the form: 

!"!
!" = !!!!! 

!"!
!" = −!!!!! 

!"!
!" = ! 1.8 

If we consider an initial condition with longitudinal magnetization and transverse magnetization 

oriented in the x direction, M! = M!",!ı +  M!,!k , a closed form solution to this system of 

equations can be easily determined: 

!!(!) = !!",!!"#(!!!!) 

!!(!) = !!",!!"#(!!!!) 

!!(!) = !!,! 
1.9 

 Thus, in the absence of relaxation, there is no temporal change to the longitudinal 

magnetization. However, the transverse magnetization rotates about the z-axis with frequency 

ω0=γB0. This rotation describes the process of free precession. 

1.2.2 Forced Precession 

The spin system can be excited through the use of an RF excitation pulse in the form of an 

additional, time-varying magnetic field, B!. In MRI experiments, B! is tuned to oscillate with a 

carrier frequency !! = 2! f! (Eqn. 1.4) perpendicular to B! (i.e. circularly polarized in the x-y 
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plane). It is worth noting that the magnitude of B! is substantially lower than that of B! (B1 is 

typically ≤25µT whereas B0 is typically 1.5-3.0T). In addition to oscillating with the carrier 

frequency, RF pulses are defined by an envelope function, B!! that defines its overall temporal 

modulation (i.e. shape). This shape, when combined with concurrent magnetic field gradients 

(which will be discussed in 1.3) can create a spatially dependent excitation profile, which is 

critical for imaging experiments. 

 In order to describe the behavior of M during excitation, it is useful to define the rotating 

frame of reference which rotates clockwise with an angular frequency defined by the Larmor 

frequency of the B0 field, !! = !B! (Eqn. 1.4). This is mathematically convenient because in this 

coordinate frame, the effective magnetic field experienced by an on-resonance spin (i.e. one 

precessing at angular frequency !!) is given by: 

!!"" =  ! −  !!
! ! 1.10 

The B0 field (B = B!k) thus reduces to: 

!!"",! =  !!! −
!!
! ! = !!! − !!! = ! 1.11 

This means that in the rotating frame, the B0 field has no net effect on the magnetization. 

Similarly, the B1 component of the field reduces to a simpler form in the rotating frame, if the 

carrier frequency is chosen to be ω0: 

!!"",! =  !!! ! !!!! 
1.12 

Where φ is the phase of the RF pulse. If we assume φ=0, this reduces further to: 

!!"",! =  !!! ! ! 
1.13 
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  We can now return to the Bloch equations to explore how the magnetization progresses 

during excitation. This can be simplified if we ignore the effects of relaxation (which will be 

discussed in 1.2.3). Note that this is a reasonable approximation provided the RF pulse 

duration, τRF is short with respect to T1 and T2 (typically τRF<5ms whereas T1>200ms and 

T2>20ms). In this case, Eqn. 1.6 becomes: 

!!
!" = !! ! !!! ! ! 1.14 

Note that here M represents the magnetization vector in the rotating frame of reference (which 

will be implied for the remainder of this section). If we assume the initial configuration: M! =

M!!k, the following solution can be reached: 

! ! = !!!!"# ! !!! ! !"
!!"

!
! +  !!!!"# ! !!! ! !"

!!"

!
! 1.15 

 This behavior shows that in the rotating frame of reference, excitation manifests as a 

rotation of the magnetization vector. Note that the axis of rotation is determined by the phase of 

the RF pulse. Because the phase φ=0 was chosen for this example, the rotation occurs about 

the x-axis leading to a temporally increasing y component of the magnetization and a temporally 

decreasing z-component. It is convenient to describe this rotation by defining the flip angle of 

the RF pulse, α: 

! = ! !!! ! !"
!!"

!
 1.16 

Thus, after the completion of the RF pulse (in the absence of relaxation effects), the 

magnetization can be described by: 

!!" ! = !!!!"# !  

!! ! = !!!!"# !  
1.17 



Chapter 1: Introduction to Magnetic Resonance Imaging 

 13 

Where Mxy is the magnitude of both the x and y components of M and is typically referred to as 

the transverse magnetization. Mxy represents the available signal that can be measured in an 

MRI experiment because RF receivers are generally tuned to measure any on-resonance 

magnetization polarized perpendicular to the B0 field. Note that absent an excitation pulse (i.e. 

α=0), there is no transverse magnetization and thus no available signal.  

 Equations 1.16 and 1.17 provide a compact description of the net effect of an arbitrary RF 

pulse. Two commonly used RF pulse types are saturation pulses where α=90° and inversion 

pulses where α=180°. Saturation pulses rotate the magnetization entirely into the transverse 

plane whereas inversion pulses flip the magnetization to the –z orientation. While low and 

intermediate flip angles make less transverse signal available, they are often also useful for 

facilitating rapid data acquisition [28, 29]. 

1.2.3 Relaxation 

 The second terms in the equations in 1.7 represent the return of the bulk magnetization 

vector to its initial state over time in a process called relaxation. Relaxation can be divided into 

two distinct processes: spin-lattice, or T1 relaxation, and spin-spin, or T2 relaxation.  

 T1 relaxation describes the recovery of the longitudinal magnetization from some excited 

state back to its initial, equilibrium state. This occurs via a dispersion of thermal energy from the 

excited spin to the surrounding molecular lattice as it returns to the equilibrium condition. The 

temporal behavior of Mz according to T1 relaxation can be described by the following equation: 

!! ! =  !!(! − !!
!
!" )  −  !!!!!

!
!" 

1.18 

Following a saturation pulse (i.e. Mz=0 directly after the pulse), this becomes: 
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!! ! =  !!(! − !!
!
!" ) 

1.19 

From equation 1.19, it can be seen that the time T1 represents the amount of time needed for a 

spin with initial Mz=0 to recover to 1-1/e (or approximately 63%) of its equilibrium Mz. Similarly, 

following an inversion pulse (i.e. Mz=-M0 directly after the pulse, also referred to as a refocusing 

pulse), this becomes: 

!! ! =  !!(! − !!!
!
!" ) 

1.20 

 T2 relaxation describes the decay of the transverse magnetization of an excited system to its 

equilibrium value of zero. This occurs when independent spins in the system dephase, or lose 

directional coherence, which causes a decay of the magnitude of the transverse magnetization. 

Dephasing occurs when spins encounter sources of “off-resonance” that cause them to precess 

at different frequencies. Off-resonance can arise from two main sources: 1) variability in the field 

itself, ΔBfield which can stem from system imperfections or from the presence of field-distorting 

materials (e.g. air pockets or metallic implants); and 2) interactions with other nearby charged 

particles in the local molecular environment, ΔBmol. The overall signal decay due to both ΔBfield 

and ΔBmol is referred to as T2* decay and obeys the following decay model: 

!!" ! =  !!"! !!
!

!"∗ 
1.21 

Where: 

!
!!∗

=  !!!
+  !
!!"#$%

 1.22 

Here T2 and Tfield represent the time constants of signal decay due to ΔBmol and ΔBfield, 

respectively. Note that T2* describes the decay caused by both off-resonance sources and is 

always shorter than T2. 
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 While the signal decay due to ΔBmol (i.e. T2* decay) is irreversible, the effect of ΔBfield can be 

removed by applying a refocusing pulse to the system by generating a spin echo, which will now 

be briefly described. The phase generated by ΔBfield after a time t=ta can be described by 

φfield=γΔBfieldta. After the application of a refocusing pulse, this phase is inverted: φref=-γΔBfieldta. 

After an equivalent interval ta, the system will gain an additional, φfield=γΔBfieldta which leads to a 

final phase φfinal= φsys+ φref=0 at time t=2ta. This increase (relative to t<2a) in signal at t=2ta is 

referred to as the spin echo and the final time is known as the echo time (TE) where TE=2ta. As 

a result, the signal decay observed at TE is governed only by ΔBmol and thus T2 (not T2*) decay: 

!!" !" =  !!"! !!
!"
!" 

1.23 

Typically, a spin echo experiment involves a saturation pulse followed by the aforementioned 

refocusing pulse. In this case, equations 1.19 and 1.22 can be combined to produce the 

following signal equation: 

!!" !",!" =  !!(! − !!
!"
!"  ) !!

!"
!" 

1.24 

Where TR is the repetition time of the pulse sequence, which represents the time between 

excitation pulses in a series of spin echo experiments (multiple echoes are generally required to 

generate an image, as will be discussed in 1.3.5).  

 Relaxation plays a key role in generating useful anatomical images with MRI. Different 

tissues within the human body have different T1 and T2 values which leads to signal differences 

and thus contrast between regions. For example, at 3.0T, myocardial tissue typically has a 

T1~1200ms and a T2~40ms [30] whereas blood has a T1~2000ms and T2~275ms [31]. Different 

imaging techniques can accentuate one form of contrast over another to produce the most 

useful images of a particular anatomy. For example, T1-weighted or T2-weighted imaging 
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techniques attempt to maximize contrast due to T1 or T2 differences (respectively) between 

tissues.  

 Additionally, quantitative imaging techniques leverage the exponential signal decay models 

to generate maps of measured T1, T2, or T2* values across the anatomy. These techniques, 

typically referred to as T1, T2, or T2* mapping, are useful for absolute quantification of tissue in a 

way that can be directly compared with reference values in healthy and diseased conditions. For 

example, T2 mapping can be used to identify the presence of myocardial edema, which causes 

myocardial T2 to increase to ~70ms [32]. These principles can also be applied to quantifying 

other sources of contrast in MRI such as molecular diffusion, which will be discussed further in 

Chapter 2. In providing this additional information, however, quantitative mapping techniques 

require sampling of multiple points on the signal decay curve which typically prolongs scan 

times. However, quantitative MRI can provide  

1.3 Gradients and Spatial Localization 

Up to this point, the description of MRI does not include any information that can differentiate 

between different points in space. This critical aspect of MRI is accomplished via the application 

of magnetic field gradients, which superpose with the static B0 field. Gradients produce a 

magnetic field with carefully controlled spatial variations that are then used to localize portions 

of the received signal to distinct points in space. 

1.3.1 Gradients 

Contained within the MRI hardware are gradient coils that produce magnetic fields that act 

parallel to the B0 field (i.e. in the z-direction) but vary linearly across space. Typically, a scanner 

has three separate gradient coils to produce magnetic field gradients along the x, y, and z 

directions that can be superposed in linear combinations to generate gradients along arbitrary 
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directions in space. The fields generated by the gradient coils are substantially lower than the B0 

field and are typically on the order of 10-40mT. Gradient fields are typically measured in units of 

mT/m, which describes the slope of the linear field variation in space. Clinical MRI hardware 

typically contains gradients that are capable of generating field variations up to 40-80mT/m and 

some specialized coils can achieve gradients as high as 300mT/m [5]. The “strength” (i.e. 

maximum gradient amplitude) of gradient hardware is linked to its ability to resolve small spatial 

scales and plays an important role in encoding diffusion (Chapter 2).  

 Gradients are used to spatially localize components of the acquired MRI signal and are thus 

critical components in the generation of images. To localize signals in three dimensions, 

gradients are used in three orthogonal processes: slice selection, frequency encoding, and 

phase encoding. 

1.3.2 Slice Selection 

Among the simplest examples of using the magnetic field gradients for spatial selectivity is the 

slice selective gradient, which is routinely used to isolate signal from a small portion (or “slice”) 

of the anatomy. For the purposes of this description we assume the slice selective axis is along 

the z-direction. This is often the case in clinical imaging (as in scans of the brain, spinal cord, 

abdomen, etc.), but the slice orientation can in principle be arbitrarily defined. For example, 

cardiac imaging is frequently performed with slices defined by the local anatomy and 

corresponding to the ventricular short axis.  

 If we consider a gradient field played along the z-axis and centered at isocenter (z=0) with 

amplitude Gz we expect a magnetic field that is a linear function of z according to: 

! ! =  (!! + !!!)! 
1.25 
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Where z represents the distance from isocenter along z and can be a positive or negative 

quantity. This leads to a corresponding spatial dependence on the precessional frequency (eqn. 

1.4): 

! ! =  !!! (!! + !!!) 
 1.26 

It follows that an RF pulse tuned exactly to f0 would now only excite spins that are located 

exactly at the position z=0. In practice, RF pulses are tuned to excite a range of frequencies 

which is referred to as the excitation pulse bandwidth. This bandwidth (Δf) can be tuned to 

excited a slice with thickness Δz according to: 

!! =  !!"!!!! 
 1.27 

Maintaining constant bandwidth, the slice thickness can be adjusted by simply modifying the 

gradient amplitude. Two example slice selection excitations are illustrated in Figure 1.1 with 

varying gradient amplitudes to excite a thicker (A) and thinner (B) slice for constant bandwidth.  

 
Figure 1.1: Example slice selective gradients played with a low (A) and high (B) 

gradient amplitude along z. For fixed excitation bandwidth, increasing G leads to 

a thinner excited slice.  
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1.3.3 Frequency Encoding 

The second component of spatial encoding in MRI is accomplished using frequency encoding 

along the x direction. If we apply a gradient along the x-axis with amplitude Gx, the local 

precessional frequencies will vary according to the distance from isocenter along x in a form 

analogous to Equation  1.26: 

!(!) =  !!" (!! +  !!!) 1.28 

Thus, the MRI signal at a specific x location can be determined by measuring its frequency in 

the presence of the known gradient Gx. The interpretation and reconstruction of this information 

will be described in section 1.3.5. 

1.3.4 Phase Encoding 

With the x and z positions of the MRI signal determined by frequency encoding and slice 

selection, what remains is encoding y positions. This is accomplished using the process of 

phase encoding.  

 Phase encoding employs gradients that are limited in duration and played along the y 

direction and are turned off prior to the signal being read out (recorded). Let us consider this 

gradient with amplitude Gy played for a duration Δt.  During the time Δt, the gradient produces a 

spatially varying frequency along y analogous to that described in equation 1.28: 

!(!) =  !!" (!! +  !!!) 1.29 

We cannot simply use frequency encoding along y because it would be impossible to distinguish 

frequency variations from the x and y gradients. However, the frequency differences produced 

by this gradient during Δt will lead to spatially dependent signal phases, φ (in radians) that will 

persist after the gradient is turned off according to: 
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! ! =  !! ∙ ! ! ∙ !! 
1.30 

Thus, after the phase encode gradient is turned off, the y location of an MRI signal can be 

localized by its phase.  

1.3.5 k-space 

If a slice selective excitation is followed by a phase encode gradient “blip” and a frequency 

encoding readout gradient, the full x, y and z position of a signal can be determined. In practice 

this is recorded and analyzed using a theoretical formalism known as k-space which encodes 

an image in terms of spatial frequencies that can be converted to image space via the Fourier 

transformation. The orientation and frequency of an arbitrary two-dimensional spatial pattern 

can be described by the k-vector, ! = (kx, ky). k-space describes the magnitude of each spatial 

frequency, ! that is present in a particular image as illustrated in Figure 1.2.  

 
Figure 1.2: Illustration of the spatial frequency information contained in k-space. 

High spatial resolution information is contained near the edges of k-space while 

low spatial resolutions (i.e. contrast) information is contained near the center. 

ky

kx
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 The k-vector is directly related to the applied gradients according to: 

!(!) =  !!" ! ! !"
!

!
 1.31 

Where τ is the duration of the gradient played. It follows that a frequency encode gradient along 

x allows us to “move” horizontally along kx while it is being played: 

!!(!) =  !!"!!! 
1.32 

If the signal is read out discretely at time intervals, Δτ, the sampling density of kx can be 

described by: 

!!! =  !!"!!!" 1.33 

Similarly, a phase encode gradient “blip” with duration Δt allows us to jump from one ky line to 

another: 

!!! =  !!"!!!" 
1.34 

 An MRI image is acquired in this way by using frequency and phase encode gradients to 

move across k-space and sample the image signal (S) at each point, S(kx,ky). Each point in S 

includes information from the entire imaged object and is related to the final image intensity by 

the MRI signal equation: 

!(!)  =  !(!)!!!"# !∙!!! 1.35 

Where I(r) is the image intensity at spatial position !, i.e. the final image. I(r) represents the 

available transverse magnetization at each point in space and is dictated by both the pulse 

sequence used and the properties of the tissue at a given position (i.e. T1, T2). It is worth noting 



In Vivo Quantification of Cardiac Microstructure with Convex Optimized Diffusion Weighted MRI 

 22 

that S represents the Fourier transform of I. I can thus be recovered by taking the inverse 

Fourier transform of the acquired signal, S: 

!(!)  =  !(!) !!"# !∙!!! 1.36 

Note that in Equation 1.35, the integral is carried out over spatial position and the limits are 

characterized by the imaging field of view whereas in Equation 1.36, the integral is carried out 

over k-space and the limits are set by the acquired spatial resolution. An example image and its 

corresponding magnitude k-space data are shown in Figure 1.3. 

 
Figure 1.3: Illustration of the relationship between magnitude k-space (A) and 

image space (B). FT is the Fourier transform.  

 Several properties of acquired k-space data have important implications on a resultant 

image. The image field of view (FOV) is dictated by the spacing between k-space points, Δ!! 

and Δ!! where: 

!"#! =  !
!!!

 

!"#! =  !
!!!

 1.37 

Furthermore, the k-space extent dictates the acquired spatial resolution: 

Inverse FT

FT

A. B.
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!" =  !
!!,!"#

 

!" =  !
!!,!"#

 1.38 

Where: 

!!,!"# =  !!! !!! 

!!,!"# =  !!! !!! 1.39 

And Nx and Ny are the number of kx and ky points acquired, respectively (assuming points are 

acquired symmetrically about the origin). This can be intuitively understand by considering that 

kx,max and ky,max represent the edges of the acquired k-space and thus the highest spatial 

frequencies sampled which dictates the finest structures that can be resolved in the resultant 

image. It follows that while Δ!! and Δ!! must be sufficiently small to accommodate a large 

enough FOV to cover an area of interest, Nx and Ny must be large to achieve high spatial 

resolutions (i.e. small Δx and Δy). 

 In most MRI imaging experiments, k-space data is acquired one ky line per excitation and 

the imaging “sequence” (e.g. the spin echo sequence described in 1.2.3) is repeated many 

times to acquire all of the necessary k-space lines with time, TR between excitations. The scan 

duration to acquire a full image is thus given by TR⋅Nky where Ny is the number of acquired ky 

lines and dictates the spatial resolution (i.e. voxel size) of the image assuming fixed FOV. 

Depending on the application, TR can be as short as ~3-5ms or as long as 10s of seconds. As a 

result, MRI tends to be a very slow imaging modality, wherein the acquisition of a single image 

can take several minutes (X-ray and CT on the other hand can generate images in seconds).  
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1.3.6 Echo Planar Imaging 

 Imaging times can be substantially shortened by acquiring all of the necessary k-space data 

in a single excitation per TR using a technique called Echo Planar Imaging (EPI) [33]. EPI 

acquires all lines of k-space in one shot by playing a train of several frequency encoding 

gradients with alternating polarity separated by phase encoding gradient blips to move between 

ky lines. This readout strategy and the resultant k-space trajectory are illustrated in Figure 1.4. 

EPI permits the acquisition of a full 2-dimensional image with only a single excitation, which 

accelerates the acquisition by a factor of Ny. This makes EPI useful in applications requiring 

multiple repeated acquisitions in the same spatial location such as diffusion weighting imaging, 

which is of particular interest in this thesis and will be described at length in Chapter 2.  

 
Figure 1.4: Illustration of the frequency encoding gradients (A), phase encoding 

gradient blips (B), and the resultant k-space trajectory used in echo planar 

imaging (EPI). 

 The acquisition efficiency gains made possible with EPI, however, do not come without any 

cost and there are several drawbacks that must be considered. First, because EPI readouts 

traverse the entirety of k-space, they impart a larger temporal footprint on the pulse sequence 

itself than traditional single-line readout schemes. Because the imaging echo must be timed to 

the center line of k-space (which falls in the middle of the EPI readout), this can extend the 

ky

kx
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minimum achievable echo time (TE) in spin echo based imaging techniques which limits image 

signal to noise ratios (SNR) due to T2 decay. This effect becomes more dramatic as the spatial 

resolution is increased and more ky lines must be acquired. This issue can be mitigated by 

shortening the time to k-space center using k-space undersampling strategies such as partial 

Fourier imaging [34], which exploits the Hermitian symmetry of k-space, or parallel imaging 

which uses the signal received by different MRI coils to solve for missing data [35]. 

 Another drawback of EPI is an increased sensitivity to magnetic field inhomogeneity that can 

lead to geometric image distortions. This is because small persistent field errors that distort the 

k-space trajectory compound over time with each gradient that is played. This results in a 

mismatch between the expected and actual k-space positions that increases throughout the 

readout. As a result, EPI images tend to have substantial distortions in regions of the body with 

large magnetic susceptibility gradients that leads to an inhomogeneous B0 field. These problem 

areas tend to be in regions that contain both water and air such as parts of the brain that are 

close to the sinus and nasal cavities and the lateral left ventricular wall of the heart which is 

adjacent to the left lung. These distortions can be mitigated by either reducing the duration of 

the EPI readout (using the same techniques described above) or by carefully tuning the 

magnetic field in the anatomical region of interest using a process called shimming. 

 Image ghosting is another artifact that tends to appear in EPI images and also stems from a 

mismatch between the expected and acquired k-space trajectory. Ghosting tends to appear as 

faint repetitions of the anatomy near the image edges and is caused by differences between 

readout gradients with opposite polarity (i.e. blue left-right gradients and green right-left 

gradients in Figure 1.4). Several sources of error can lead to ghosting, such as eddy currents 

(which will be discussed at length in Chapter 7), gradient delays, and field inhomogeneities. A 

common method for correcting this artifact is acquiring a few reference lines of k-space read out 

in each direction that can be used to correct the subsequently acquired imaging data. 
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2 DIFFUSION WEIGHTED MRI 

Diffusion weighted imaging (DWI) is a quantitative MRI technique which encodes diffusion, the 

random Brownian motion, of water molecules into the MRI signal. DWI has profound clinical 

value because the diffusive properties of water molecules in soft tissues are affected by local 

cellular environments and can thus be used to characterize microstructural changes that occur 

in disease. This chapter will introduce the theoretical underpinnings of DWI and briefly describe 

the DWI acquisition. 

2.1 Molecular Diffusion 

The process of diffusion describes the random motion of molecules in a medium and is often 

referred to as Brownian motion in reference to the botanist, Robert Brown who observed (but 

did not explain) this process amongst pollen particles suspended in water [36]. While diffusion is 

a random process and thus cannot be described mechanistically on the single particle level, it 

was described statistically by Albert Einstein in 1905 [37]. In this description, a large system of 

particles is described by a density function, ρ that varies over space and time according to the 

molecular diffusion coefficient, D and the following diffusion equation: 
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!!(!, !)
!"  =  !!!!(!, !) 2.1 

Roughly, this equation states that the first temporal derivative of the density function is 

equivalent to its second spatial derivative scaled by D. If we only consider motion along the x-

direction, this equation simplifies to: 

!!(!, !)
!"  =  ! !

!!(!, !)
!!!  2.2 

If we consider a system of N molecules starting from a common position x=0, the following 

solution to this equation can be reached: 

!(!, !)  =  !
!!"! !

! !!
!"# 2.3 

This solution describes the probability density function of a normal distribution with a mean of 0 

and a variance, σ2=2Dt. This one-dimensional solution can be extended to three-dimensions 

and illustrates that diffusion causes the molecules in a system to spread out over time and take 

the form of a normal distribution in space. The diffusion coefficient describes the variance of the 

resultant distribution according to: 

! =  !
!

!" 
2.4 

Where D has the units of position squared over time and is commonly measured in mm2/s or 

mm2/ms. 

2.1.1 Restricted Diffusion 

On a fundamental level, the diffusion coefficient of a system of molecules in a gas or liquid is 

related to the surrounding temperature, pressure and viscosity. However, water molecules in a 

structured environment tend to encounter boundaries that restrict their free motion. This is the 
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case for water contained in human tissue, which interacts constantly with cell walls. This 

restriction of motion can have a measurable impact on the effective diffusion coefficient of these 

water molecules in certain experimental conditions.  

 Consider a set of water molecules diffusing in two-dimensions with some diffusion 

coefficient, D, from a common point of origin (x=y=0) with no structure restricting their motion in 

either direction. If we measure the variance of their spatial distribution at two time points, t1 and 

t2 (where t2>t1), Equation 2.4 says that we will recover: σ1
2=2t1D1 and σ2

2=2t2D2 where D1=D2=D.  

 
Figure 2.1: Illustration of unrestricted (A) and restricted diffusion (B) as measured 

over a short distance scale (red circle) and long distance scale (grey circle). In 

the unrestricted case, both experiments yield identical measures of diffusivity 

(D1=D2), but in the restricted case, the longer timescale experiment yields a lower 

effective diffusion coefficient (D2<D1). 

 Consider, however, a circular cell wall surrounding the origin with a diameter between σ1 and 

σ2 and some permeability factor <1 (i.e. molecules that come in contact with the wall have some 

probability of reflecting off the wall and back towards the origin). The measurement made at t1 

are unaffected by this boundary and will still report σ1
2=2t1D1 where D1=D, but the measurement 

made at t2 will reflect both the underlying diffusivity, D and the probability of molecules reflecting 
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off of the wall. Thus, this measurement will yield σ’22=2t2D’2 where D’2<D. The molecules in this 

case are thus undergoing restricted diffusion. 

 Measurements of diffusivity made using DWI typically operate on a time scale (and thus 

spatial scale) where cell boundaries significantly restrict diffusion. In fact, this is what makes 

quantifying diffusion in human tissue a useful endeavor, as it permits the observation of 

changes in cellular structure that affect the diffusive process. For example, the breakdown of 

cell walls that occur after cell death can be observed via an increase in diffusivity that can 

provide valuable insight into the progression of disease. 

2.1.2 Diffusion Anisotropy 

Section 2.1.1 addressed the behavior of diffusing molecules in the presence of isotropic 

boundaries that restrict diffusion equivalently in all directions. However, many biological tissues 

are made up of cells with distinctly anisotropic structure that do not behave in this manner. Two 

examples that are of particular interest in this thesis are neurons, which make up much of the 

structure of the brain and cardiomyocytes, which comprise the heart, both of which have distinct 

long and short axes. 

 
Figure 2.2: Diffusion of water molecules as restricted by an isotropic (A) and 

anisotropic boundary (B). Anisotropic boundaries restrict diffusion to varying 
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degrees along different orientations, resulting in direction-dependent measures of 

diffusivity. In this case, a cell boundary aligned preferentially in the y direction 

results in a higher effective diffusivity along the y orientation than along the x 

orientation.  

 In the case of anisotropic restriction, measures of diffusivity have an additional dependence 

on measurement orientation as illustrated in Figure 2.2. If we consider a cell with a long axis 

aligned along the y direction (Figure 2.2B), water molecules are more likely to encounter 

boundaries when travelling along the x direction than along the y direction. This results in a 

higher spatial variance along y and thus a higher effective diffusivity along y. 

 The implications of diffusion anisotropy are twofold. First, this means multiple 

measurements of diffusivity are required to accurately capture the full picture of the diffusion 

underlying a tissue in question. A measurement made along a single direction can be highly 

dependent on a cells orientation in space and thus risk being substantially biased. Second, we 

can use measurements of diffusion in several directions to actually capture the orientations of 

the cells that make up human tissue. This opens up a fascinating field of quantitative 

microstructural mapping that permits the visualization of neuronal fiber tracts in the brain and of 

the complex organization of myocardial microstructure. Techniques that employ this 

phenomenon will be discussed in 2.4. 

2.2 Diffusion Encoding Gradients 

The basic premise of DWI is that MRI gradients can impart decays in image intensity that are 

directly related to the diffusion coefficient of the water molecules underlying the tissue being 

imaged. The gradient pulses used to encode diffusion are technically no different from those 

used for spatial encoding, but they tend to require substantially larger amplitudes (40-80mT/m) 

and/or longer durations in order to sufficiently encode diffusive motion into the MRI signal. In 
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fact, because DWI frequently utilizes the maximum capabilities of the gradient coils it is a major 

driver behind the development of new gradient hardware [5].  

 Just as the spatial encoding gradients discussed in Chapters 1.3.2-1.3.4 impart a spatially 

dependent frequency variation on image that allows us to resolve signals from discrete image 

voxels, these gradients also produce a gradient of frequencies within each voxel. As discussed 

in the context of T2 decay in Chapter 1.2.3, any frequency variability within a voxel leads to a 

range of phases and thus a loss of signal coherence referred to as intravoxel dephasing. The 

result of this is a reduction of signal amplitude and is typically an undesirable phenomenon. This 

phenomenon is exploited in DWI, however, and is central to generating diffusivity-based 

contrast.   

2.2.1 Intra-voxel Dephasing 

Let us first consider the simplest and earliest form of the DWI experiment that was proposed by 

Stejskal and Tanner in 1964 [1] and is still widely used today. This acquisition is based on a 

spin-echo pulse sequence (as discussed in chapter 1.2.3), but with two identical diffusion 

encoding gradients along the x-axis, G1 and G2, placed before and after the refocusing pulse. 

Following G1, spins within a voxel will accumulate a phase, φ=φ1(x) that is dependent on their x-

position within the voxel. This phase is then flipped 180° after the refocusing pulse resulting in 

φ=-φ1(x). Then, provided the spins do not move at any point, G2 will impart the same phase, 

φ2(x)=φ1(x) and cancel the phase from the first gradient pulse, regardless of position, resulting 

in a fully refocused signal: φ=φ1(x)+φ2(x)=φ1(x)-φ1(x)=0. This process is illustrated in Figure 

2.3A. 

 However, if any motion occurs at any point in this sequence, the phase accumulated from 

G1 and G2 will no longer cancel each other out. If we consider the simple case of two spins with 

differing x-positions, we see that after G1, they accrue distinct phases: φ11 and φ12 that are 
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flipped after the refocusing pulse to -φ11 and -φ12. If the spins exchange positions between G1 

and G2, G2 will impart the phase that the other spin accrued from G1: φ21=φ12 and φ22=φ11. This 

results in a net, non-zero and non-equivalent phase for the two spins: φ1=φ12-φ11≠0 and φ2=φ11- 

φ12≠0. The difference in phases, Δφ=|φ2-φ1| dictates the degree of dephasing and thus the 

magnitude of the signal loss. This process is illustrated in Figure 2.3B. 

 
Figure 2.3: Illustration of intra-voxel dephasing in a basic Stejskal-Tanner DWI 

acquisition. Stationary spins (A) at two different locations (green and blue curves) 

are imparted with equal and opposite signal phases from identical gradients G1 

and G2 before and after a refocusing pulse, which results in a net phase of 0. 

However, if the spins exchange locations (B), the phases accrued from G1 and 

G2 no longer cancel, resulting in a net phase, Δφ, which attenuates the MRI 

signal. Larger displacements and/or larger gradient pulses will result in larger 

phase dispersion and thus a greater decay of the MRI signal.  

 In the case of randomly diffusing spins, the system becomes significantly more complicated, 

but the principle remains the same. In the case of a large system of diffusing spins constituting 

an imaging voxel, a statistical description relating the MRI signal to the underlying diffusion 

coefficient, D becomes particularly useful and will be described in the following section.  

2.2.2 Diffusion Encoding Factors 

As described in Section 2.1, the diffusion of molecules with diffusion coefficient, D will generate 

a density function over time that can be described by a normal distribution with variance σ2=2Dt 
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(Eqn. 2.4). In the presence of a diffusion encoding gradient, this motion will lead to signal 

dephasing as described in section 2.2.1. The magnitude of this dephasing and the resultant 

signal decay is dictated by the diffusion encoding strength (i.e. magnitude and duration) of the 

applied gradient pulse and is typically referred to as the sequence b-value (or simply, b). The 

diffusion weighted signal magnitude can be described according to b and D using a mono-

exponential decay model: 

!(!)  =  !!!!!" 
2.5 

Here S0 represents the signal without diffusion encoding gradients (i.e. b=0) and is typically T2 

weighted (in the case of a spin echo DWI pulse sequence). D can thus be calculated from a 

DWI signal provided b and S0 are known. Fortunately, b can be calculated directly from the 

applied diffusion encoding gradient waveform and thus known ahead of time. For an arbitrary 

gradient waveform G(t) defined over time, the phase offset, F can be defined: 

! ! = ! !(!) !"
!

!
  2.6 

F(t) has units of inverse distance and represents the k-space offset caused by G(t). Note that in 

this description, G(t) must be inverted after any refocusing pulse, which could alternately be 

described using a Heaviside function. The b-value can then be defined as a function of time by 

integrating the square of F: 

! ! = !(!)! !"
!

!
  2.7 

The pulse sequence b-value is then defined by b(TDiff) where TDiff is the time of the end of 

diffusion encoding gradient waveforms and has units of inverse diffusivity (i.e. s/mm2). Typical b-

values can range from 300-2000s/mm2 and vary depending on application. Higher b-values 
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generate greater diffusion contrast, but result in lower image SNR and tend to be more sensitive 

to corruption due to bulk physiological motion. 

 While presented as a scalar quantity in Equation 2.7, b is truly a vector quantity with 

directionality that is dictated by the orientation of the diffusion encoding gradient pulse. That is, 

a gradient waveform played along x has a non-zero b-value along x, bx, but has no b-value 

along y or z (by=bz=0). Furthermore, by simultaneously playing gradients along different 

combinations of x, y, and z, b-values with arbitrary orientations can be achieved.  

2.3 DWI Acquisition and Reconstruction 

The basic goal of a DWI experiment is to determine the diffusivity, D underlying the tissue of 

interest. Once the b-value of a pulse sequence is determined, the DWI signal (equation 2.5) has 

two remaining unknowns: D and S0 (the non-diffusion weighted reference signal). D can thus be 

determined by performing two experiments with different b-values: b1 and b2. In this case, two 

signals, S1 and S2 are generated: 

!! = !!!!!!! 

!! = !!!!!!! 
2.8 

We can now easily solve for D: 

! =
!"(!! !!)
!!  −  !!

  2.9 

A typical DWI acquisition uses one high b-value, b2=b and one reference image with b1=0.  

 Because diffusion anisotropy typically exists (to varying degrees) in biological tissues, this 

process must be performed with diffusion encoding along multiple directions to determine an 

overall measure of net diffusivity. For example, diffusion encoding gradients applied 

perpendicular to a neuronal fiber axis will yield lower measures of D than gradients applied 
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parallel to the fiber. To ensure unbiased measurement, DWI are typically acquired with diffusion 

encoding along three orthogonal directions (i.e. x, y and z). Note that because there is no 

directionality associated with a b=0 reference image, only images with b>0 need to be acquired 

along multiple directions. The resulting measure of D from all acquired directions is typically 

referred to as the apparent diffusion coefficient (ADC) as it reflects an ensemble estimate of the 

underlying diffusivity as quantifiable from the experiment performed. 

 Tissue ADC has proven to be a useful biomarker for several pathologies. The most widely 

employed application of ADC is the diagnosis of stroke, which is characterized by an acute 

decrease in ADC in affected regions of the brain, followed by a increase in ADC in the chronic 

stage. Tumors also tend to exhibit a decrease in ADC, which reflects an increase in cell 

proliferation that is characteristic of many cancers and has made DWI a useful technique in 

treatment planning for radiation therapy. Increases in ADC also indicate the presence of fibrosis 

in myocardial infarction (MI), which will be discussed later in this thesis. 

2.4 Diffusion Tensor Imaging 

The mathematics described in Section 2.3 can be extended to quantify the diffusivity within a 

complex system, including the extent and orientation of diffusion anisotropy. If diffusivity is 

independently measured along several orientations, it stands to reason that the shape of the 

molecular environment can come into view (i.e. directions with high and low degrees of 

restriction can be determined). A convenient framework for understanding the shape and 

orientation of this restricted environment is the second order diffusion tensor, which models the 

system’s diffusivity as a three-dimensional ellipsoid. The acquisition and reconstruction of the 

diffusion tensor with diffusion weighted MRI is referred to as Diffusion Tensor Imaging (DTI).  
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2.4.1 Acquisition and Reconstruction 

We can model the overall diffusivity within a system with a diffusion tensor that takes the form: 

! =
!!! !!" !!"
!!" !!! !!"
!!" !!" !!!

  2.10 

Because diffusion is a bi-directional process (i.e. the rates of diffusivity along antiparallel 

directions must be equivalent), this tensor must be symmetric (i.e. D12=D21, D13=D31 and 

D23=D32). Consequently, the tensor contains only six unique quantities. 

 By performing the DWI experiment described in section 2.3 with diffusion encoding 

gradients played along some arbitrary direction, !, with b-value, b we can measure the signal 

weighted by the diffusivity along !: 

!! = !!!!!!!! 
2.11 

Where Dr represents the projection of the diffusion tensor, D along !: 

!! =  !  ∙ !! 
2.12 

Considering the six unique elements of D and the reference signal S0, this leaves a system of 

equations with seven unknowns. D can thus be fully determined from a set of seven 

measurements including measures of diffusivity along at least six unique directions. It is also 

sometimes useful to acquire greater than the minimum six directions and generate an 

overdetermined system of equations that can mitigate the effects of measurement noise. In 

practice DTI experiments are often performed with 10-30 distinct diffusion encoding directions. 

 To effectively measure the diffusion tensor, it is important to carefully choose the set of 

diffusion encoding directions. Because tissues in the human body tend to contain cellular 

structures with a wide range of orientations, it is important to choose a set of directions that are 
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widely spaced and thus fully cover the range of possible tensor orientations. This is commonly 

achieved using regular polyhedra with varying numbers of vertices that can represent gradient 

orientation vectors [38]. These include the octahedron (six vertices), icosahedron (12 vertices) 

and the dodechahedron (20 vertices). Another technique for designing a well-spaced gradient 

vector set is modelling the electrostatic repulsion of point particles on the surface of a unit 

sphere [39]. 

 
Figure 2.4: Visualization of a diffusion tensor, which represents the diffusivity 

within in each image voxel as an ellipsoid with three orthogonal principal 

directions of diffusion (!! , !! , and !!). !!  corresponds, for example, with the 

orientations of fibers present in the human brain and heart.  

2.4.2 Properties of the Diffusion Tensor 

A useful way to describe the diffusion tensor is to decompose it into its principal axes and its 

diffusive magnitude along each of those axes. This can be easily done by determining the three 

eigenvectors (!!, !!, and !!) and eigenvalues (λ1, λ2 and λ3) of the diffusion tensor via the 

following equation: 

!!! = !!!! 
2.13 

Where j = 1, 2 or 3. !!, !!, and !! represent the principal directions of diffusion and give a full 

description of the orientation of the tensor. !! is particularly significant as it has been well 
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correlated with histological measurements of tissue fiber orientation in the brain [40] and heart 

[41, 42].  

 The size and shape of the diffusion tensor are contained in the three eigenvalues, λ1, λ2 and 

λ3, which describe the magnitude of diffusivity along !! , !! , and !! . For example, highly 

anisotropic systems may contain very disparate eigenvalues (e.g. λ1>>λ2 and λ1>>λ3) whereas 

more isotropic systems will have less eigenvalue disparity (e.g. λ1~λ2~λ3). Tensor shape is 

commonly described using tensor invariants, which describe the tensor in a rotationally invariant 

manner. The most commonly used invariants are: mean diffusivity (MD), which describes the 

overall magnitude of diffusion and is an analog to the ADC; fractional anisotropy (FA), which 

describes the degree of anisotropy in the tensor; and tensor mode, which describes the shape 

of the anisotropy. These invariants are described by the following equations: 

!" = !! + !! + !!
!  2.14 

!" =  !( !! −!" ! + !! −!" ! + !! −!" !)
!(!!! + !!! + !!!)

 2.15 

!"#$ = !!!!!!
!"#$(! −!" ∙ !)! 2.16 

Where I is the 3x3 identity matrix. MD has the same units as ADC (typically mm2/s or mm2/ms) 

and is always greater than 0. While there is no mathematical limit on the maximum MD, it is not 

expected to exceed the rate of diffusivity for free water (i.e. unrestricted) at 37° C (human body 

temperature): 3mm2/ms. FA is a unitless quantity that can range from 0, which indicates 

perfectly isotropic (spherical) diffusion and 1 indicates highly anisotropic diffusion (i.e. large 

disparity between eigenvalues). Mode is also unitless and can range from -1 to 1. Mode values 

close to 1 indicate a high degree of linear anisotropy (i.e. λ1>>λ2~λ3) whereas modes close to -

1 indicate a high degree of planar anisotropy (i.e. λ1~λ2>>λ3). 
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2.5 Higher Order Diffusion Imaging Techniques 

While DTI provides a wealth of information about the microstructure underlying human tissue, it 

is clear even from the simple example provided in Section 2.1.1 that it is insufficient for a full 

description. Because DTI only considers angular deviation of the underlying diffusivity, it does 

not incorporate any information regarding different length scales. For example, if the timescale 

of the diffusion measurement is sufficiently short such that diffusing molecules do not have time 

to interact with any structures that restrict their motion, the measured diffusion tensor will take 

an isotropic, spherical shape that provides little information about the micro-environment. In 

some cases, it may be useful to probe the diffusive system at multiple length scales to provide a 

more nuanced picture. Furthermore, the DTI model can be confounded simply by the presence 

of crossing fibers, which occur in several regions of the brain.  

 Higher order diffusion imaging techniques have been developed to overcome these 

limitations. These techniques, in general add to the DTI model by incorporating an additional 

degree of freedom that varies the length scales of diffusion encoding measurements in addition 

to their orientations. They also generally sample at a much higher angular density (sampling 

hundreds of unique directions) and use more sophisticated models to describe the diffusivity in 

terms of a probability distribution. Some notable higher order techniques are Diffusion Spectrum 

Imaging (DSI) [43], Q-ball imaging [44] and Generalized Q-sampling Imaging (GQI) [45]. Of 

course, the additional information required for these techniques results in substantially longer 

scan times which makes them unlikely candidates for any wide-scale clinical adoption. 

2.6 Common Problems with DWI 

While DWI is a well-established method with a robust clinical track record, it remains a fairly 

challenging and time consuming technique. There are several potential sources of error in DWI 
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that, while not unique to DWI, are accentuated by specific aspects of the acquisition. First, 

because DWI and DTI reconstructions require several matched acquisitions with varying 

diffusing weightings, it is important to employ a very fast acquisition strategy in order to keep 

scan times reasonable. For this reason, EPI is the most common readout used in DWI because 

it permits reconstruction of a full two-dimensional image in every TR. Consequently, DWI 

inherits all of the drawbacks associated with EPI that were discussed in section 1.3.6 including 

geometric distortions, ghosting artifacts, and a large temporal footprint in the spin echo pulse 

sequence.  

 The remainder of this section will discuss some additional limitations of the DWI 

acquisitions. Each of these issues is addressed to some extent by the developments described 

in this thesis and will thus be discussed at greater length in later chapters. 

2.6.1 Bulk Motion 

There are two ways in which bulk tissue motion can adversely affect a DWI experiment: inter-

shot motion and intra-shot motion.  

 Inter-shot motion describes displacements that occur between TRs and thus between the 

acquisition of different diffusion encoding measurements. If uncorrected, this results in mis-

registration between DWI images that confounds reconstruction. Common sources of this error 

are a subject shifting or turning in the scanner as well as respiratory induced organ 

displacements. Fortunately, these displacements can be easily corrected by performing image 

registration between all acquired DWI prior to reconstruction [46]. 

 Intra-shot motion describes displacements that occur within a single TR including, most 

critically, during the application of the diffusion encoding gradients. Although diffusion encoding 

gradients are designed to encode diffusive motion, there is nothing inherent in their sensitivity to 

this specific source of motion. In fact, because bulk motion (e.g. respiratory motion, cardiac 
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motion, a restless subject moving in the scanner) is typically several orders of magnitude larger 

than diffusive motion, it can even eliminate the entire available DWI signal. This source of error 

is challenging, if not impossible to correct retrospectively and can be associated with cardiac 

motion either in DWI in the heart itself or in regions of the liver close to the heart. Intra-shot 

motion is best dealt with prospectively by careful design of the diffusion encoding gradient itself. 

This strategy will be discussed at length in Chapters 3 and 4. 

2.6.2 SNR 

DWI suffers from very low SNR for two separate, but related reasons: diffusion-based signal 

decay and long TEs. Because diffusion is encoded as a decay in the MRI signal (Eqn. 2.5) this 

necessarily reduces the SNR of images with b>0. Therefore, for a given b=0 reference image 

SNR, the corresponding diffusion weighted images will have substantially lower SNR, 

particularly for high b-values. This can be mitigated with judicious signal averaging (i.e. several 

repeated acquisitions), but this obviously increases the overall scan duration. 

 
Figure 2.5: Pulse sequence diagram showing a spin echo EPI DWI acquisition 

with a traditional monopolar (i.e. Stejskal-Tanner) diffusion encoding strategy. 

The minimum TE (which dictates image SNR) is limited by both the duration of 

the EPI readout and the diffusion encoding gradients. 

 DWI acquisitions typically require a relatively long TE (typically greater than 50ms and 

sometimes as long as 100ms) due to the temporal footprint of the EPI readout and the need for 

long diffusion encoding gradients to achieve a sufficient b-value (Figure 2.5). This leads to 
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substantial T2 signal decay and thus a reduction in SNR. One way to reduce the TE is to shorten 

the EPI readout by either reducing the acquired spatial resolution or undersampling k-space (i.e. 

parallel imaging or partial Fourier imaging). However, both coarse spatial resolution and k-space 

undersampling can result in reduced image quality and increased sensitivity to intra-shot bulk 

motion artifacts. Additionally, because k-space undersampling itself unavoidably reduces SNR, 

the trade-offs between shorter TEs and fully sampled acquisitions can be situation-dependent 

and are not always obvious. 

 TE can also be shortened by increasing the amplitude of the diffusion encoding gradients, 

which can shorten the time needed to achieve a given b-value. However, diffusion encoding 

gradients already tend to utilize the maximum gradient amplitudes achievable on clinical 

systems. The technique described in chapter 4 presents an alternative method for shortening 

TE by optimizing the diffusion encoding gradient waveform for optimal echo time efficiency. This 

permits a reduction of TE without shortening the EPI readout duration or developing improved 

gradient hardware. 

2.6.3 Eddy Currents 

The time varying magnetic fields generated by gradient pulses produce unwanted eddy currents 

in MRI hardware components, which generates background magnetic fields that superpose and 

distort the shapes of the applied gradient waveforms. One commonly used measure to deal with 

eddy currents is the use of shielded gradient coils which compensate for the eddy currents from 

the primary gradient coil by playing an opposed gradient field with a secondary outer coil. 

Another approach is gradient pre-emphasis, which accounts for the expected gradient distortion 

from eddy currents by playing a waveform that is intentionally distorted in the opposite direction. 

This results in a final waveform that more closely resembles the targeted gradient waveform 

design.  
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 Despite these routine correction strategies, eddy currents persist as a source of error in DWI 

and DTI due to the need for gradient pulses with particularly large amplitudes and long 

durations. Eddy currents produced by diffusion encoding gradients can lead to severe image 

distortions that are highly dependent on the diffusion encoding direction. This leads to mis-

registration between DWI measurements and can corrupt the reconstructed diffusion tensor, 

particularly near anatomical boundaries. These artifacts can be corrected by applying an affine 

transformation to co-register all DWI prior to tensor reconstruction, but this requires an 

additional post-processing step and tends to be sensitive to the choice of registration technique. 

Another approach is to redesign the diffusion encoding gradient waveform to nullify the effects 

of eddy currents and prevent the distortions from occurring in the first place. One such approach 

is the twice refocused spin echo (TRSE) sequence which uses a multipolar gradient scheme 

and an additional refocusing pulse to virtually eliminate eddy current induced image distortions. 

However, this approach further increases TE and reduces SNR compared with conventional 

monopolar (i.e. Stejskal Tanner) DWI. In Chapter 7 we further discuss this phenomenon and 

present an alternative approach using a convex optimized diffusion encoding scheme that 

nullifies the effects of eddy currents without increasing TE compared with monopolar encoding 

(and even reduces TE in many cases). 
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3 IMAGING CARDIAC MICROSTRUCTURE WITH DWI 

Cardiac diffusion weighted imaging (cDWI) is an emerging diagnostic technique due to its ability 

to quantify microstructrual changes in diseased myocardium without the injection of a 

gadolinium based contrast agent. Despite its value, cDWI has not gained widespread adoption 

due to several technical challenges that have limited its robustness as a clinical tool. This 

chapter will outline the clinical value of cDWI as well that the technical challenges facing the 

technique and current approaches for overcoming them. 

3.1 Cardiac Microstructure 

3.1.1 Structure of the Healthy Myocardium 

The heart is a muscular organ that facilitates the circulation of blood throughout the body. The 

heart consists of four chambers: the right atrium (RA), which receives deoxygenated blood from 

the venous system; the right ventricle (RV), which pumps this blood to the lungs to be 

oxygenated via the pulmonary artery; the left atrium (LA), which receives oxygenated blood from 

the lungs via the pulmonary veins; and the left ventricle (LV), which pumps oxygenated blood 

through the aorta to be circulated throughout the body. The heart beats in a fairly regular pattern 



Chapter 3: Imaging Cardiac Microstructure with DWI 

 45 

in a cardiac cycle that includes two main phases: diastole, or the relaxing of myocardial muscle 

while blood enters and fills the ventricles; and systole, the contraction of the ventricles and 

outward propulsion of blood. The LV plays a particularly critical role in the circulatory system as 

its contraction provides cells throughout the body with the oxygen necessary to function and will 

be the focus of the remainder of this chapter. 

 The LV is comprised by a continuously branching syncytium of cardiomyocytes (muscle 

cells) that are predominantly oriented circumferentially about the cavity at the mid-wall, but with 

a helical pitch that varies transmurally from approximately +60° at the endocardial surface to -

60° at the epicardial surface [47]. These myocytes shorten along their long axis by a factor of 

10-15% and thicken by about 8% during cardiac contraction, which in part facilitates the 

thickening of the LV wall and the expulsion of blood from the LV cavity. However, 8% fiber 

thickening is insufficient to explain the >25% wall thickening that is observed during contraction 

and thus another mechanism must contribute [48]. This disparity can be explained by the 

organization of myocyte subgroups into laminar sheets or “sheetlets.” Sheetlets are aligned in 

two dominant groups that are predominantly oriented orthogonal to each other and to the local 

fiber orientation [49]. Adjacent sheets are separated by cleavage planes that facilitate shearing 

and reorientation during contraction. This dynamic can explain the observed degree of LV wall 

thickening [50] and has been observed in vivo with cardiac DTI [16]. The combined effect of 

fiber thickening and sheetlet reorientation (shearing) leads to sufficient LV contraction to 

facilitate ejection fractions (the fraction of blood in the LV cavity that is expelled during a single 

contraction) of 50-70% and facilitates the efficient circulation of blood throughout the body. 

3.1.2 Myocardial Infarction 

Heart disease is a serious and growing health concern in the western world and is the leading 

cause of death in the United States [51]. Heart disease can take many forms and describes 
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anything that prevents the heart from effectively circulating blood, but approximately half of the 

approximately 6 million cases of heart failure in the United States are caused by LV contractile 

dysfunction [52]. For the purpose of this thesis, one particular cause of LV dysfunction, 

Myocardial Infarction (MI) will be described, particularly in the context of its detection and 

evaluation with MRI. 

 Myocardial Infarction describes the temporary loss of blood flow to myocardial tissue that is 

generally caused by blockages in the coronary arteries by atherosclerotic plaque. In the acute 

stage, MI is marked by severely compromised cardiac function and inflammation. Even after 

blood flow is restored via surgical or medicinal intervention, MI typically results in the death of 

myocytes in the affected area. The space previously occupied by healthy myocytes is eventually 

filled with collagen, resulting in myocardial scar tissue, or fibrosis. 

 In the chronic stage of MI, fibrotic regions can be identified by observing abnormalities in 

wall motion using ultrasound imaging [53] or dynamic MRI [54]. However, the ability to fully 

characterize the size and shape of an infarct can be valuable for clinical management, which 

motivates the use of specialized imaging techniques. An effective method for visualizing an 

infarct is an MRI technique called Late Gadolinium Enhancement (LGE) [55] which leverages 

contrast generated subsequent to the injection of a gadolinium based contrast agent (GBCA) 

that shortens T1 in proportion to the local proportion of extracellular space. Unfortunately, LGE 

MRI cannot be used in the large cohort of patients with limited renal function due to a risk for 

developing Nephrogenic Systemic Fibrosis (NSF), an incurable and potentially fatal condition 

[56]. As such, MRI techniques that can detect MI without the need for contrast injections are of 

potentially high diagnostic value.  

 Among these potential techniques is DWI wherein increases in ADC have been correlated 

with the presence of fibrosis [7, 8]. This is due to the increase in extracellular volume (ECV) in 

fibrosis compared with healthy myocardial tissue, which reduces the restriction of diffusive 
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motion. This mirrors the appearance of high ADC regions in the brain in the chronic stage of 

ischemic stroke. 

 Despite its potential value, cardiac DWI (cDWI) has not been widely adopted clinically. This 

is due in large part to the technical challenge associated with measuring diffusion in the 

presence of bulk physiological motion (as discussed in chapter 2.6.1). However, recent 

developments in cDWI pulse sequence design (including the technique described in Chapter 4) 

have improved the robustness of the technique and show promise in the clinical viability of 

cDWI. 

3.2 Motion Induced Errors in Cardiac DWI 

Bulk physiological motion can corrupt cDWI measurements (as mentioned in Chapter 2.6.1) and 

is particularly troublesome in cardiac applications for several reasons. First, because myocardial 

tissue is constantly displaced by both respiratory and cardiac motion, changes in position 

between paired cDWI acquisitions (i.e. inter-shot motion) can lead to mis-registration between 

measurements. However, this problem can be corrected or avoided by using image registration 

and/or by timing the imaging to occur at a fixed phase in both the cardiac and respiratory cycles. 

The cardiac phase can be fixed by monitoring an electrocardiogram (ECG) and timing the onset 

of imaging with a fixed trigger delay (TD) from the QRS complex. The respiratory phase can be 

fixed by either instructing the subject to hold their breath during the acquisition or by triggering 

the acquisition based on a semi-continuous image navigator (NAV) that monitors the position of 

the diaphragm using a short, one-dimensional view of the liver-lung interface. Other novel 

approaches have emerged for dealing with respiratory motion in cDWI including respiratory 

motion tracking with real time adjustments to the imaging location (slice following) [57] and 

retrospective image selection based on a quantitative similarity metric between images from the 

same respiratory phase [58]. 
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 Notably, intershot motion can be mitigated or corrected without modifying the DWI pulse 

sequence itself. However, intra-shot bulk motion induced errors in the acquired cDWI and 

presents a more challenging imaging problem. In the Stejskal-Tanner DWI experiment 

described in Figure 2.3, it is assumed that any spin displacement and subsequent signal phase 

is caused by diffusive motion. However, bulk physiological motion serves as an additional 

source of phase that can impact the DWI signal. This manifests as additional signal decay in 

images with b>0 which leads to overestimates of ADC. Furthermore, because bulk motion tends 

to greatly exceed diffusive motion in magnitude, this can result in unrecoverable signal 

saturation (i.e. drops to 0) particularly with moderate to high b-values (b>200s/mm2). 

 The problem of intra-shot motion has spurred many technical developments in cDWI 

acquisition and reconstruction. The following section describes several previously described 

approaches that have inspired and enabled the novel approach described in this thesis. 

3.3 Previous cDWI Approaches 

3.3.1 Imaging During Cardiac Quiescence 

Cardiac motion can be avoided entirely if the cDWI acquisition is timed precisely to a cardiac 

phase in which the LV remains stationary. This can occur to some degree at two points in the 

cardiac cycle: 1) at peak contraction (peak systole); and 2) at the end of passive left ventricular 

filling in late diastole (i.e. diastasis). While the peak systolic quiescent phase is typically <50ms, 

late diastolic quiescence can at times last over 100ms and thus theoretically accommodate a 

cDWI acquisition [59]. The timing of the diastolic quiescent period can be determined by 

acquiring a balanced steady state free precession (bSSFP) cine image set and visually 

determining the phase at which LV motion is minimized. This phase can inform the choice of 

ECG trigger delay to be used in the cDWI acquisition. 
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 Unfortunately, in reality, the entire myocardium is seldom completely still during any single 

portion of diastasis and subtle, localized ventricular motion tends to persist in most, if not all 

time points. As a result, selecting a single phase that can accommodate a fully uncorrupted 

cDWI acquisition tends to be at best, challenging and at worst, impossible. Furthermore, 

diastolic timing is highly sensitive to changes in heart rate and thus can change over the course 

of a cDWI acquisition. Even subtle changes in heart rate can thus lead to changes that can 

impact a cDWI acquisition.  

 An approach called the temporal maximum intensity projection (TMIP) was proposed to 

combat the sensitivity of a cDWI acquisition to the ECG trigger delay [60]. While cDWI 

frequently includes signal averaging across multiple identical repetitions to improve SNR 

(Chapter 2.6.2), TMIP includes multiple repetitions with slight adjustments to the ECG trigger 

delay (ΔTD=10ms) to acquire images with a range of trigger delays (~10 trigger delays). Instead 

of averaging the repeated acquisitions, a maximum intensity projection is performed at each 

voxel to remove the contribution of motion corrupted measurements that are necessarily lower 

in intensity. Principal component analysis (PCA) is then performed to improve image SNR in the 

absence of signal averaging. This approach is valuable in its simplicity and does not require any 

modification to the spin echo EPI DWI pulse sequence with monopolar diffusion encoding. 

However, it relies on the presence of a diastolic quiescent window that is large enough to 

accommodate the cDWI acquisition (even if the timing is not precisely known) and performs 

best in subjects with low and relatively stable heart rates. This approach is likely to face 

challenges in patients with high heart rates and arrhythmias and requires lengthy scans. 

3.3.2 Constrained Reconstruction 

Rather than performing a MIP, which discards all data at each voxel aside from the one with 

maximum signal intensity, a more judicious approach may conserve more of the acquired data 
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without including motion corrupted signals. We developed a Biophysically Constrained 

Reconstruction Algorithm (BCRA) that automatically detects and removes motion corrupted 

measurements [61]. This algorithm, which is depicted in Figure 3.1, measures a projection of 

the ADC along each acquired diffusion encoding direction (using a reference b0 image) and 

compares this value with the free diffusivity of water at human body temperatures (37°C), 

D0=3mm2/ms. D0 reflects the diffusivity of totally unrestricted water molecules and thus should 

never be exceeded by water diffusing within human tissue. Any measurements yielding ADC>D0 

can be assumed to be corrupted by bulk motion and thus discarded from the reconstruction. We 

found that the use of this algorithm eliminated 44% of signals in cDTI acquisitions in healthy 

volunteers and dramatically reduced the resultant myocardial ADC values indicating improved 

bulk motion robustness (Figure 3.2). 

 
Figure 3.1: The BRCA reconstruction algorithm calculates single-projection 

estimates of diffusivity (D’n) at each voxel and rejects data exceeds the maximum 

expected value (Dmax) for freely diffusing water. 
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 While the constrained reconstruction approach improves the efficiency of the cDWI 

acquisition compared with a TMIP strategy by maintaining all non-corrupted data, it still relies on 

the presence of a diastolic quiescent period. On its own, this approach is thus still subject to the 

drawbacks described in Chapter 3.3.1. 

 
Figure 3.2: Typical ADC maps of the LV using signal averaging (left column) and 

the proposed biophysical reconstruction constraint algorithm (right column) using 

Gmax=40mT/m (top row) and 80mT/m (bottom row). Deep red indicates voxels 

where ADC>(DH20+σ). Increasing Gmax permitted a shorter diffusion encoding 

period which reduced motion sensitivity and BRCA successfully discarded 

corrupted data. 

3.3.3 STEAM 

Another pulse sequence strategy for combatting the bulk motion issue in cDWI is to replace the 

Stejskal-Tanner sequence with the STimulated Echo Acquisition Mode (STEAM) [62] technique. 

The STEAM approach exploits the periodicity of cardiac motion and divides the dephasing and 

rephasing diffusion encoding gradient lobes between two subsequent heart beats. After a 

specified ECG trigger delay, a saturation pulse is followed by a single diffusion encoding 

gradient and an additional saturation pulse to tip the magnetization back to the longitudinal axis 

where it is not subject to T2
* decay. Then, following the QRS complex of the next heart beat and 
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PURPOSE: To improve the robustness to bulk motion of spin-echo single-shot EPI (SE-EPI) cardiac diffusion tensor MRI (DTI) by using 
ultrahigh maximum gradient amplitudes (Gmax) and a biophysical reconstruction constraint algorithm (BRCA). 

INTRODUCTION: Cardiac bulk motion makes reliable in vivo cardiac diffusion-weighted MRI extremely challenging. Diffusion preparation 
and subsequent imaging can be ECG gated to the diastolic quiescent interval, but this interval is often short and not necessarily free of 
bulk motion, which leads to bulk motion induced signal dropouts. Recent developments in gradient hardware that permit Gmax=80mT/m 
can reduce the temporal footprint of diffusion encoding (tprep) at clinically relevant b-values and enable reconsideration of SE-EPI DTI in 
the heart

1
. Coupled with hardware advances, further improvements can be made using judicious reconstruction techniques.  For 

example, temporal maximum intensity projection (TMIP)
2
 improves measurements of diffusion in the presence of bulk motion. Herein, 

we propose and evaluate a new biophysical reconstruction constraint algorithm (BRCA). 

METHODS: Image Acquisition - Healthy, consenting volunteers (N=7) were imaged on a 3.0T scanner (Siemens Prisma) in compliance 
with the local IRB. ECG gated cardiac DTI (12 directions) were acquired using single shot SE-EPI in a single breath hold. Diffusion was 
encoded using monopolar gradients with Gmax=40mT/m (G40) and Gmax=80mT/m (G80). The b-value remained constant for both cases 
(b=300mm

2
/s) which necessitated different echo times (TE) for each sequence (TEG40=45ms, TEG80=35ms) due to differences in tprep 

(tprep,40=35ms,tprep,80=25ms). All other scan parameters were kept constant (resolution: 2.4x2.4x8.0mm, bandwidth: 2000Hz/pixel, 5/8 
Partial Fourier). Each acquisition was repeated to improve SNR (Navg=5). Image Reconstruction - Motion corrupted signals were 
discarded by the BRCA prior to tensor reconstruction by first calculating the projection of the apparent diffusion coefficient (ADC) along 
each diffusion encoding gradient direction from the diffusion weighted and non-diffusion weighted (b0) signals within each voxel (ADC’). 
If ADC’ exceeded that of free water (DH20=2.4x10

-3
mm

2
/s at 37ºC) plus a two-standard deviation noise contribution estimated from a 

Rician fit to noisy signals, then it was discarded as corrupted by bulk motion. The diffusion tensor was then reconstructed if the 
remaining number of diffusion weighted signals was >6 and these directions had acceptable angular dispersion (condition number<4)

3
. 

Tensor Comparisons - Robustness to bulk motion was quantified for G40 and G80 acquisitions by the percentage of myocardial voxels 
discarded by the BRCA. Mean ADC and fractional anisotropy (FA) were also compared in the left ventricular (LV) myocardium. 

RESULTS: Figure 1 shows the improved ADC maps obtained from G80 compared to G40 acquisitions and the further gains with BRCA. 
As expected, the ADC (Fig. 1 and Table 1) and FA (Table 1) are lowest for G80-BRCA (i.e. less bulk motion corrupted). The percentage 
of discarded LV voxels with ADC’>(DH20+noise) (motion corrupted) decreased in all subjects for G80 compared to G40 (Table 1). 
G80+BRCA offers more accurate quantification and produces a more homogeneous ADC map.  

DISCUSSION: Bulk motion artifacts manifest as large signal dropouts in DWI that lead to artificially high ADC estimates. The prevalence 
of ADC>(DH20+noise) is thus indicative of motion corruption in a particular acquisition. By this metric, the bulk motion robustness of G80 
was improved compared to G40 as a consequence of its shortened diffusion preparation. This indicates that with newly available 
gradient hardware, cardiac DTI using SE-EPI may be a viable alternative to the more widely used Stimulated Echo Acquisition Mode 
(STEAM)

4
 approach while avoiding the need for strain correction and delivering better SNR performance. 

CONCLUSION: Shorter diffusion preparation times made possible with ultrahigh Gmax gradients (G80) combined with a biophysical 
reconstruction constraint algorithm (BRCA) improved the robustness to bulk motion of cardiac DTI.   

REFERENCES: 1. Gamper, U. MRM 2007; 57: 331-337 2. Rapacchi, S. Invest Radiol, 2011; 46(12): 751–758 3. Skare, S. JMRI, 2000; 
147: 340-352 4. Dou, J. MRM, 2002; 48: 105-114     ACKNOWLEDGEMENT: Research support from Siemens Medical Systems.  

Table 1. Percentage of voxels rejected by biophysical 
reconstruction constraint algorithm (top row) and mean global 
ADC and FA values in LV myocardium. 

G40 MONO G80 MONO

ADC’>DH20 60±18% 44±25%

ADC (x10-3mm2/s) 2.02±0.6 1.96±0.5

FA 0.64±0.2 0.62±0.2

Figure 1. Typical ADC maps (mm
2
/s) of the LV using signal 

averaging (left column) and the proposed biophysical 
reconstruction constraint algorithm (right column) using 
Gmax=40mT/m (top row) and 80mT/m (bottom row).  Deep red 
indicates voxels where ADC>(DH20+noise). 
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the same trigger delay, the magnetization is tipped back down with a saturation pulse, rephased 

with a second diffusion encoding gradient and immediately acquired with a single shot EPI 

readout. This approach has several features that make it advantageous for cardiac applications. 

First, the long duration (one heart beat) between the two diffusion encoding gradients (termed 

the mixing time), leads to high b-values with very short gradient pulses. Because the DWI pulse 

sequence is only exceptionally bulk motion sensitive during the diffusion encoding gradients 

themselves, this substantially reduces the impact of intra-shot motion corruption and enables 

cDWI at nearly any cardiac phase. Furthermore, this substantially reduces the requirements for 

high performance gradient hardware that is important for efficient spin echo cDWI. The long 

mixing time in STEAM also increases the time scale and thus distance scale of the cDWI 

experiment compared with a spin echo approach. Data suggests that this increases the effective 

FA of myocardial tissue which can lead to smoother maps with higher precision [39].  

 However, STEAM also has several drawbacks compared with spin echo DWI. First, the use 

of a stimulated echo sequence has half the SNR of a spin echo sequence [63], which 

exacerbates the already low SNR in DWI and necessitates long scans with many signal 

averages. STEAM cDWI is also sensitive to myocardial strain and thus can only produce 

accurate ADC measurements at “sweet spots” in the cardiac cycle when strain effects cancel 

each other out. This can be corrected by using a bipolar STEAM sequence, but this removes 

the diffusion encoding effect during the mixing time and substantially reduces the efficiency and 

increases TEs. Additionally, while the ECG trigger delay can in principle time the two diffusion 

encoding gradients to occur at exactly the same cardiac phase, beat to beat timing changes can 

be a confounder. This can result in intra-shot b-value differences [64] or even un-refocused and 

thus unusable data points. 

 Nonetheless, STEAM cDWI has endured as an acceptably robust technique for quantifying 

cardiac microstructure and has facilitated several developments in our understanding of cardiac 
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structure. For example, this approach was used to identify the dynamics of myolaminar sheetlet 

orientations between cardiac phases in the healthy heart as well as a loss of this dynamic in 

patients with hypertrophic [15] and dilated cardiomyopathies [14, 16]. 

3.3.4 Motion Compensated Diffusion Encoding 

It is possible to designing diffusion encoding gradient waveforms that encode diffusive motion 

but “ignore” physiological motion by employing the concept of motion compensated (MOCO) 

diffusion encoding. In describing this concept, it is useful to more formally describe the phase 

imparted by a diffusion encoding gradient as introduced in chapter 2.2.1. Considering a gradient 

waveform, G(t) and a spin with a time varying position, x(t), the accrued phase is given by: 

! ! =  ! ! !′ ∙ ! !! !"′
!

!
 3.1 

The spin’s position can also be described using a Taylor polynomial expansion: 

! ! =  !! +  ! !! ! + !
!!!! !  
!! +⋯ 3.2 

Or, equivalently:  

! ! =  !! +  ! ∙ ! + !
! ∙ ! 
! +  … 3.3 

Where v and a are the spin’s instantaneous velocity and acceleration, respectively. The accrued 

phase from G(t) can thus be described by: 

! ! =  ! ! !′ ∙ !! !"′
!

!
+  ! ! !′ ∙ !′ ∙ ! !"′

!

!
+  !! ! !′ ∙ !!! ∙ ! !!! +⋯

!

!
 3.4 

It is convenient to describe this in terms of gradient moments: 
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Note that moments are typically defined for an entire gradient waveform (i.e. with t representing 

TDiff, the end time of diffusion encoding). 

 It follows that the M0 of the gradient waveform (i.e. its area) dictates the phase applied as a 

function of starting position and thus must be zero for all diffusion encoding gradient waveforms. 

Maintaining M0=0 ensures that stationary spins are fully rephased as shown in Figure 2.3A. In 

the case of first order motion (constant velocity throughout the experiment), no phase will 

accrue if the diffusion encoding gradient waveform is designed such that M0=M1=0. This is 

achieved, for example, when a pair of bipolar gradient lobes is used. Furthermore, phase due to 

second order motion (constant acceleration during the diffusion encoding) can be nulled by 

designing the gradient waveform such that M0=M1=M2=0. Higher order motion can thus be 

compensated by nulling higher order gradient moments. However, it has been shown that first 

and second order motion compensation is sufficient for largely eliminating the effects of cardiac 

motion in cDWI [19]. This implies that cardiac bulk motion can be approximated by a second 

order Taylor polynomial: 
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!!"#$ ! ≈  !! +  ! ∙ ! + !
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 Critically, motion compensated diffusion encoding gradients still impart phase on diffusing 

spins and thus can still be used to characterize diffusion in moving tissues. To describe how 

motion compensated gradients can “ignore” physiological motion but still be sensitive to 

diffusion, it is useful to consider the sum of two sources of motion, bulk motion and diffusive 

motion (Figure 3.3): 

! ! =  !!"#$(!) + !!"##(!) 
3.11 

 
Figure 3.3: The motion of diffusing molecules confined in moving tissue can be 

broken down into two components of motion, bulk motion (A), and diffusive 

motion (B), which combine to form a hybrid pattern of motion (C). Motion 

compensated diffusion encoding is sensitive to diffusive motion, but not to bulk 

motion. 

Because diffusion is an inherently random process, its Taylor expansion cannot be truncated as 

in the description of bulk cardiac motion. The phase due to G(t) and both components of motion 

is given by: 

! ! =  ! ! !′ ∙ !!"#$ !! !"′
!

!
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!

!
 3.12 

Which simplifies when taking the Taylor expansion of the bulk motion component and making 

the assumption given in Equation 3.10: 

xBulk(t) x(t) = xDiff(t) + xBulk(t)xDiff(t)A. B. C.
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Therefore, if the gradient waveform is designed such that M0=M1=M2=0, the resultant phase is 

due only to the diffusive component of the motion: 

!!"#" ! =   ! ! !′ ∙ !!"## !! !"′
!

!
 3.14 

 MOCO diffusion encoding with M0=M1=M2=0 has proven to be a viable technique for 

encoding diffusion in the heart. Multiple designs have been proposed to achieve this design 

constraint including a twice refocused quadrapolar scheme [65] and a tri-polar gradient pair [66] 

for diffusion prepared cDWI as well as an asymmetric bipolar scheme [18] in spin echo single 

shot EPI cDWI. 

 Another motion compensation approach is the so called “diffusion prepared” strategy, which 

employs an additional saturation RF pulse after diffusion encoding to tip up the magnetization. 

This approach permits flexibility in the choice and speed of the readout and thus does not 

necessitate single shot EPI. Consequently, imaging with readouts such as balanced steady 

state free precession (bSSFP) or fast low angle shot (FLASH), which are less susceptible to 

image distortions are both possible. However, the increase in readout duration increases the 

temporal footprint of the pulse sequence within the cardiac cycle and thus is more likely to incur 

blurring due to cardiac motion or necessitate the use of segmented imaging, which extends 

acquisition durations. As a result, this technique is typically limited to diastolic imaging.  

Furthermore, this approach generally uses multi-shot readouts (i.e. only a portion of the image 

k-space is acquired per heartbeat) which improve image quality, but substantially increase scan 

times and can lead to mismatches is k-space where multiple shots are combined and is 

associated with ghosting artifacts. 
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Figure 3.4: Typical monopolar (MONO) DWI pulse sequences (A) are highly 

sensitive to bulk motion. Motion sensitivity can be reduced by incorporating 

moment nulling in the design of the diffusion encoding gradient to achieve motion 

compensated diffusion encoding as in first order (BIPOLAR, B) and second order 

(MOCO, C) moment nulling, but also extend the minimum TE. 

 In this thesis, we adopt the MOCO approach for spin echo single shot EPI cDWI, which is 

fast and thus amenable to both systolic and diastolic imaging. It also is not susceptible to k-

space mismatches as in multi-shot imaging. However, it is subject to all of the limitations of EPI 

as described in chapter 1.3.6, the most notable of which is image distortions. Furthermore, M1 

and M2 nulling requires a multipolar gradient design that reduces the temporal efficiency of 

diffusion encoding and necessarily extends the pulse sequence TE and reduces the available 

SNR. In this thesis, an optimized strategy for designing MOCO diffusion encoding gradient 

waveforms with shorter TEs is described. This approach uses convex optimization to design the 

time optimal MOCO waveform for any protocol and is described at length in chapter 4. 
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3.3.5 EPI in the Heart 

Because it typically relies on single shot EPI readouts, cDWI also presents image quality 

challenges that are independent from the diffusion encoding process. As mentioned in Section 

1.3.6, several of the problems associated with EPI are exacerbated in cardiac applications, 

which can lead to poor image quality if not carefully considered. The two main issues in this 

regard are chemical shift and susceptibility-induced magnetical field inhomogeneities. 

 Because hyrogen nuclei contained in fat precess at a slightly lower frequency than those in 

water, fat tissue exhibits a linear shift in position relative to water in an effect called chemical 

shift [67]. This effect is accentuated in EPI, where large chemical shifts (on the order of tens of 

pixels) can occur in the phase encode direction. In cardiac EPI, this can cause fat from the 

chest wall, back, or elsewhere overlap with the myocardium and distort measurement. To 

combat this, fat saturation can be used to suppress the signal from fat [68] or RF pulses can be 

specifically designed to only excite water protons [69]. 

 As mentioned in Section 1.3.6, sharp magnetic susceptibility gradients that arise at the 

interface between the heart and the air-filled lungs leads to magnetic field inhomogeneities that 

can distort EPI images. This can arise as distortions in the apparent myocardial shape or as 

signal voids near the posterior wall of the LV [70]. We deal with this issue in two ways: careful 

field shimming and keeping the EPI echo train as short as possible. Shimming refers to the 

process of making small adjustments to the B0 magnetic field in order to maximize homogeneity 

within a localized region of interest [71]. The EPI readout can also be shortened to mitigate 

distortions from inhomogeneity. This can be accomplished by either shortening the duration of 

each ky line or reducing the number of ky lines to be read out. The duration of each readout line 

can be shortened by simply optimizing the readout gradient amplitudes (i.e. readout bandwidth) 

to minimize readout duration. Note that because gradient ramp times are limited by peripheral 

nerve stimulation (PNS) limitations, this does not always amount to using the maximum 
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available gradient amplitude. To reduce the number of ky lines to be read out without reducing 

spatial resolution, the FOV can be reduced to include only the anatomy of interest. However, to 

avoid aliasing (i.e. the wrapping of anatomy from outside the FOV onto the image), signal from 

outside the FOV must be suppressed. This can be accomplished by using 2D-RF excitation [72] 

or by only refocusing signal within a limited region by playing a phase selective 180° pulse a 

slice selective excitation [73]. Furthermore, partial Fourier or parallel imaging techniques can be 

used to extrapolate a fully sampled dataset from an undersampled k-space (Chapter 1.3.6). The 

combination of a custom shim applied to a region tightly surrounding the heart and a short EPI 

readout can substantially reduce field inhomogeneity related EPI artifacts in the heart.  
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4 CONVEX OPTIMIZED DIFFUSION ENCODING 

In this chapter, we develop an optimized approach for second order motion compensated 

diffusion encoding that permits DWI in the beating heart with greater temporal efficiency (and 

thus higher SNR) than existing motion compensated methods. This technique designs the 

diffusion encoding gradient waveform using a constrained convex optimization procedure that 

removes inefficient “dead time” from the DWI pulse sequences to achieve shorter TEs than 

previously described waveforms for the same b-values. We demonstrate that this technique, 

called Convex Optimized Diffusion Encoding (CODE), permits high-resolution spin echo cardiac 

DWI that is robust to cardiac motion. We also demonstrate the benefit of CODE gradients in 

DWI outside the heart in both neurological and liver applications. This work was previously 

published in Magnetic Resonance in Medicine in 2017: Aliotta E, Wu HH, Ennis DB, Convex 

Optimized Diffusion Encoding (CODE) Gradient Waveforms for Minimum Echo Time and Bulk 

Motion Compensated Diffusion Weighted MRI. MRM; 2017 Feb;77(2):717-729. 

4.1 Abstract 

Purpose: To evaluate convex optimized diffusion encoding (CODE) gradient waveforms for 

minimum echo time and bulk motion compensated diffusion weighted imaging (DWI). 
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Methods: Diffusion encoding gradient waveforms were designed for a range of b-values and 

spatial resolutions with and without motion compensation using the CODE framework. CODE, 

first moment (M1) nulled CODE-M1, and first and second moment (M2) nulled CODE-M1M2 were 

used to acquire neuro, liver, and cardiac ADC maps in healthy subjects (N=10) that were 

compared respectively to monopolar (MONO), BIPOLAR (M1=0) and motion compensated 

(MOCO, M1+M2=0) diffusion encoding. 

Results: CODE significantly improved the SNR of neuro ADC maps compared with MONO 

(19.5±2.5 vs. 14.5±1.9). CODE-M1 liver ADCs were significantly lower (1.3±0.1 vs. 1.8±0.3x10-

3mm2/s, i.e. less motion corrupted) and more spatially uniform (6% vs. 55% ROI difference) than 

MONO and had higher SNR than BIPOLAR (SNR=14.9±5.3 vs. 8.0±3.1). CODE-M1M2 cardiac 

ADCs were significantly lower than MONO (1.9±0.6 vs. 3.8±0.3 x10-3 mm2/s) throughout the 

cardiac cycle and had higher SNR than MOCO at systole (9.1±3.9 vs 7.0±2.6) while reporting 

similar ADCs (1.5±0.2 vs. 1.4±0.6x10-3mm2/s). 

Conclusion: CODE significantly improved SNR for ADC mapping in the brain, liver and heart; 

and significantly improved DWI bulk motion robustness in the liver and heart. 

4.2 Introduction 

Diffusion weighted imaging (DWI) is a powerful MRI technique that measures the self-diffusion 

of water in a wide variety of soft tissues to provide directionally dependent microstructural 

information. In the brain, DWI is widely used to estimate the apparent diffusion coefficient (ADC) 

and is the clinical gold standard for detection of acute and chronic stroke. DWI has also 

demonstrated clinical value in the heart [6, 7, 74] and liver [75-78], but sensitivity to cardiac and 

respiratory bulk motion frequently contributes to large signal losses that confound diffusion 

weighted measurements in these regions[59, 60, 79-81].  



In Vivo Quantification of Cardiac Microstructure with Convex Optimized Diffusion Weighted MRI 

 62 

DWI generally uses a Spin-Echo Echo Planar Imaging (SE-EPI) sequence with large, 

motion sensitizing, monopolar diffusion encoding gradients. Consequently, any bulk motion that 

occurs during diffusion encoding leads to substantial signal losses and elevated ADC 

measurements. These errors cannot be corrected retrospectively, which means they must be 

prevented with prospective changes to the DWI sequence. 

Synchronizing the DWI acquisition with physiologic motion is a frontline approach to 

mitigating bulk motion artifacts. In the liver, bulk motion artifacts can be largely eliminated by 

implementing cardiac and respiratory triggering [82-84], but this significantly increases 

acquisition durations. In the heart, cardiac triggering and respiratory motion compensation (via 

triggering, breath holds, or navigators) are insufficient to suppress bulk motion artifacts [59, 60, 

80]. Bulk motion sensitivity can be further reduced by shortening the temporal footprint of the 

diffusion encoding gradient, as in DWI with stimulated echoes[85]. 

Implementing motion compensated (MOCO) diffusion encoding gradient waveforms with 

nulled first and/or second-order gradient moments (M1, M2) can mitigate sensitivity to bulk 

motion. For example, velocity compensated diffusion encoding gradient waveforms (M1=0) have 

been implemented in the liver and demonstrate improved ADC measurement reproducibility 

without respiratory or cardiac triggering [86, 87]. Similarly, velocity and acceleration 

compensated waveforms (M1=M2=0) have been shown to dramatically improve the bulk motion 

robustness of cardiac DWI [17-19]. 
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Figure 4.1: Diffusion encoding gradient waveforms for b=500s/mm2 and 

Tε=26.4ms (2x2mm spatial resolution with 300x300mm FOV, 1740Hz/px BW and 

GRAPPA acceleration factor 2) with (A) conventional monopolar, (B) CODE 

optimized monopolar, (C) conventional bipolar (velocity insensitive), (D) CODE-

M1, (E) conventional M1
+M2 nulled (velocity and acceleration insensitive), and (F) 

CODE-M1M2 encoding. CODE reduced the TE in all cases. Conventional 

encoding schemes (A, C, and E) all have deadtime that the CODE framework 

uses to minimize the diffusion encoding duration. 
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Conventional MOCO diffusion encoding is accomplished using a multi-polar gradient 

waveform that necessarily and significantly increases the TE compared to monopolar encoding, 

degrading SNR in the absence of bulk motion. Note, however, that the TE of SE-EPI DWI is 

dictated by the temporal footprint of: 1) the diffusion encoding gradient, and 2) the EPI readout 

(from its start to the TE). Consequently, there is always dead time between the excitation and 

refocusing pulses (Figure 4.1-A,C,E). This dead time increases with longer EPI readouts (i.e 

higher spatial resolution, lower bandwidth, etc.). In principle, this deadtime can be filled with 

diffusion encoding gradients such that less diffusion encoding is needed after the refocusing 

pulse, consequently decreasing the TE.  

Herein, we present a versatile optimization framework to redesign the diffusion encoding 

gradient waveforms to be M1 or M1+M2 compensated in order to mitigate sensitivity to bulk 

motion artifacts and eliminate dead time. This approach significantly shortens the TE in SE-EPI 

DWI, which improves the DWI signal-to-noise (SNR). The resulting diffusion encoding gradients 

are necessarily asymmetric about the refocusing pulse and closed-form gradient waveform 

designs that conform to pulse sequence constraints (i.e. the diffusion encoding gradients must 

be off during RF pulses and the EPI readout, for which the specific timing is dictated by the field 

of view, readout bandwidth, spatial resolution, etc.), diffusion encoding gradient waveform 

constraints (b-value, M1, and M2), and hardware constraints (maximum gradient amplitude and 

slew rate) are difficult, if not impossible, to determine. Therefore, a mathematical optimization 

technique is needed. 

Convex optimization (CVX) is a proven method for minimizing gradient durations while 

conforming to pulse sequence and hardware constraints [88, 89]. The objective of this study 

was to design and implement a Convex Optimized Diffusion Encoding (CODE) framework that 

can optimize gradient waveforms with any b-value and gradient moment-nulling properties in 

order to simultaneously achieve the shortest possible TE and robustness to bulk motion 

artifacts. 
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4.3 Theory 

CVX was applied to design diffusion encoding gradient waveforms that minimize the TE for any 

b-value with no constraint on the gradient shape or symmetry while conforming to all pulse 

sequence, diffusion encoding (gradient moment) and hardware constraints, which are defined 

as follows: 

4.3.1 Pulse Sequence Constraints 

The diffusion encoding gradients must be off during both periods of RF activity (excitation and 

refocusing pulses) and during the EPI readout. Therefore, the diffusion encoding gradient 

design must conform to: 

 
4.1 

 
4.2 

 
4.3 

Where diffusion encoding begins at t = T90(+) (immediately after excitation and EPI correction 

lines), the refocusing pulse is played when T180(-) ≤ t ≤ T180(+), and the EPI readout occurs when 

TDiff ≤ t ≤ TDiff +TEPI (where TEPI is the EPI readout duration) (Figure 4.1A). The duration of the 

EPI readout gradient needed to reach the center k-space line is given by the time-to-echo, Tε, 

where Tε=0.5*TEPI for full-Fourier imaging. 

4.3.2 Gradient Moment Constraints 

The optimized diffusion encoding gradient waveform must have a nulled M0 and, as required, 

nulled M1 or M1+M2 at the end of diffusion encoding (t = TDiff. Figure 4.1): 

G(0  t  T90(+)) = 0

G(T180(�)  t  T180(+)) = 0

G(TDiff  t  TE) = 0
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4.4 

 

4.5 

 

4.6 

The imaging gradients played during the EPI readout have zero net M0, and negligible M1, and 

M2 at the TE (<1% of typical moments from MONO). Therefore if they are nulled at t=TDiff, they 

are also effectively nulled at t=TE. The moments of the slice select gradient, which are also 

negligible (<0.5% of typical diffusion encoding gradient moments for MONO) with respect to the 

diffusion encoding gradients, are not considered in this optimization. 

4.3.3 Hardware Constraints 

The gradient waveform design must adhere to gradient hardware limitations on maximum 

gradient amplitude (Gmax) and slewrate (SRmax). This leads to the following constraint terms in 

the optimization: 

 

4.7 

 

4.8 

 

4.3.4 Maximizing b-value 

The magnitude of diffusion weighting in a DWI acquisition is characterized by the b-value (b), 

which is given by: 

M0 =

Z TDiff

0
G(t)dt = 0

M1 =

Z TDiff

0
tG(t)dt = 0

M2 =

Z TDiff

0
t2G(t)dt = 0

G(t)  G
max

Ġ(t)  SR
max
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4.9 

where: 

 

4.10 

G(t) is the gradient amplitude as a function of time, TDiff is the time at the end of the diffusion 

encoding gradient waveform and γ is the gyromagnetic ratio of 1H. The time t=0 corresponds 

with the center of the excitation pulse.  

The CODE framework begins by determining the maximum b-value for a fixed TE, then 

subsequently reducing the TE until the maximum b-value is equivalent to the target b-value 

(btarget). However, the b-value (Eqn. 4.9) is a convex functional of G(t) (i.e. its second variation is 

positive definite[90]) and therefore does not contain a single maximum that can be determined 

with CVX. In addition, Eqn. 4.9 is not a unique functional of G(t), which means multiple 

waveforms can produce the same b-value (e.g., +G(t) and -G(t) have the same b-value). 

Therefore, to facilitate convex optimization, the objective function can be reformulated by 

defining the function, β: 

 

4.11 

The magnitude of β corresponds directly with the b-value, but it is a concave functional of G(t) 

(i.e. its second variation is negative definite[90]); therefore it contains a maximum that can be 

determined using CVX. Consequently, the gradient waveform G(t) that produces the maximum 

β (and thus the maximum b-value) can be determined using the following objective function: 

 
4.12 

b = �2

Z TDiff

0
F (t)2dt

F (t) =

Z t

0
G(⌧)d⌧

� =

Z TDiff

0
F (t)dt

G(t) = argmax

G
�(G)
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Subject to the constraints in Eqn. 4.1-4.8. G(t) is defined discretely on t = m•dt where dt is the 

temporal resolution of the optimization and m is an integer between 1 and TDiff/dt.  

 

Figure 4.2: Flow chart describing the CODE optimization algorithm.  The time 

optimal solution is determined by finding the minimum TE for which a gradient 

waveform exists that is consistent with all constraints and can achieve the target 

b-value (btarget). This problem is solved through successive binary searches to 

divide the TE search space with each call of the convex solver. Upper and lower 

limits on TE (TEU and TEL) are first defined to initiate the optimization. TEU is 

defined by the TE of the non-optimized sequence with the desired gradient 

moments. TEL is defined by the TE of an equivalent spin echo sequence (i.e 

without diffusion encoding gradients), which has a minimum TE of 

2•(0.5•T180+Tε). The function β is defined in Eqn. 4.11 and is directly related to 

the b-value (i.e. maximizing β also maximized b-value), but is compatible with 

convex optimization. 
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4.3.5 Solution Strategy 

The time optimal solution is determined by finding the minimum TE for which a gradient 

waveform exists that is consistent with all constraints (Eqns. 4.1-4.8) and has bmax≥btarget. This 

problem can be efficiently solved through successive binary searches that divide the TE search 

space with each iteration of Eqn. 4.12, similar to the method described by Hargreaves et al[88]. 

The search algorithm is shown in a flow chart (Figure 4.2) and is provided as a downloadable 

MATLAB function (http://mrrl.ucla.edu/resources/code-optimization/). Upper and lower limits on 

TE (TEU and TEL) are first defined to initialize the optimization. TEU is defined by the TE of the 

non-optimized sequence with the desired gradient moments (i.e monopolar for M0=0, bipolar for 

M0=M1=0, modified bipolar [18] for M0=M1=M2=0). TEL is defined by the TE of an equivalent spin 

echo sequence (i.e without diffusion encoding gradients), which has a minimum TE of 

2•(0.5•T180 + Tε). 

4.4 Methods 

4.4.1 Diffusion Encoding Gradient Waveform Design 

In order to evaluate the reduction in TE when using CODE, diffusion encoding gradient 

waveforms were designed for a range of b-values (100-1000s/mm2) and Tε (10-60ms); 

corresponding to roughly 0.5-3.0mm in plane resolution, with full Fourier symmetric k-space 

coverage) using the following designs: 1) monopolar (MONO, Figure 4.1A); 2) CODE with M0=0 

(CODE, Figure 4.1B), 3) velocity compensated (M0=M1=0) bipolar (BIPOLAR, Figure 4.1C); 4) 

velocity compensated (M0=M1=0) CODE (CODE-M1, Figure 4.1D); 5) velocity and acceleration 

compensated (M0=M1=M2=0) modified bipolar (MOCO, Figure 4.1E); 6) velocity and 

acceleration compensated CODE (CODE-M1M2, Figure 4.1F). 
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All diffusion encoding gradient waveforms were designed for a 3T MRI scanner (Prisma, 

Siemens, Erlangen, Germany) with high performance gradients (Gmax=80mT/m and 

SRmax=200T/m/s). To limit peripheral nerve stimulation during diffusion encoding, the gradient 

performance was limited to Gmax=74mT/m and SRmax=50T/m/s. All optimizations were done in 

MATLAB (Mathworks, Natick, MA, USA) using the CPLEX linear solver (IBM, Armonk, NY, 

USA) with the YALMIP toolbox [91] and used time-step dt=100μs to maintain reasonable 

computation times (<5min). Shorter time-steps increase computational demand without 

significantly reducing echo times. 

4.4.2 Concomitant Field Correction 

The application of a gradient field leads to the production of concomitant magnetic fields as 

described by the higher order terms of Maxwell’s equations [92-95]. Because DWI typically 

employs large gradient amplitudes, these fields can have a notable effect and lead to erroneous 

DWI pixel values, distorted images, and consequently problematic ADC maps. Concomitant 

fields are not typically an issue in DWI because they are cancelled out when diffusion encoding 

gradient waveforms are identical on either side of a refocusing pulse. However, because the 

CODE gradient waveforms are not identical on either side of the refocusing pulse, the 

concomitant fields must be accounted for. Therefore, a prospective approach that has been 

used in PC-MRI [96] and DWI [96, 97] was implemented in the CODE sequence. Phase 

variations due to concomitant fields were linearly approximated on the scanner for the direction-

specific diffusion encoding gradient waveform and were corrected by adding a gradient 

magnitude offset to the diffusion encoding gradient waveform along the x, y and z axes. Further 

detail on the correction can be found in Ref. [96]. 
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4.4.3 In Vivo Protocols 

DWI protocols were designed for neuro (Tε=27.1ms, T90(+)=5.8ms, T180=4.3ms), liver 

(Tε=26.4ms, T90(+)=5.3ms, T180=4.3ms) and cardiac (Tε=25.3ms, T90(+)=5.4ms, T180=4.3ms) 

acquisitions with and without CODE. The specific parameters are defined in Table 1. All 

acquisitions included diffusion encoding along three oblique orthogonal directions. In the cardiac 

protocols, FOV reduction was performed in the phase encode direction using phase cycling 

between the excitation and refocusing RF pulses[73].  

 Neuro Liver Cardiac 

 MONO CODE MONO BIPOLAR CODE-M1 MONO MOCO CODE-M1M2 

TE (ms) 75 64 67 97 72 65 93 76 

TR (ms) 5000ms 1000ms 1 Heartbeat 

Resolution (mm) 1.6x1.6x3.0 2.0x2.0x7.0 1.5x1.5x5 

FOV (mm) 220x220 300x300 200x160 

BW (Hz/px) 1450 1740 2000 

b (s/mm2) 0, 1000 0, 500 0, 350 

Fat Suppression None SPAIR [98] Water Excitation 

Common Parallel Imaging Acceleration (GRAPPA[35]) Factor 2, Full-Fourier k-space sampling 

Table 4.1 Specific imaging parameters used in the neuro, liver and cardiac protocols are shown. 

Interleaved multi-slice imaging was used in the liver protocols. Reduced FOV imaging was used 

in the cardiac protocols using phase cycling between the 90° and 180° pulses. Additional fat 

suppression was achieved in the cardiac protocols using spatially selective saturation bands. 

4.4.4 Concomitant Field Evaluation 

To evaluate the performance of the concomitant field correction strategy, DWI were acquired in 

a uniform water phantom along seven directions (x,y,z,xy,xz,yz,xyz) using MONO diffusion 
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encoding as a reference for comparison to both CODE-M1M2 with and without the concomitant 

field correction (using the cardiac DWI protocols). Maps from single-direction projections of the 

ADC were reconstructed independently for each direction, in addition to a composite ADC map 

(from all directions). 

4.4.5 Phantom Validation 

All protocols were performed in a polyvinylpyrrolidone diffusion phantom (High Precision 

Devices, Boulder, CO, USA) containing thirteen regions with varying diffusivities. The ADC was 

reconstructed for each protocol and the mean value was calculated within each of the thirteen 

regions. Mean ADCs obtained with the neuro (MONO and CODE with b=1000mm2/s), liver 

(MONO and CODE-M1 with b=500mm2/s) and cardiac protocols (MONO and CODE-M1M2 with 

b=350mm2/s) were compared using linear regression analysis. 

4.4.6 In Vivo Acquisitions 

MRI examinations were performed on healthy volunteers who provided signed statements of 

informed consent prior to each MRI exam. All studies were in compliance with the local IRB, 

state, and federal guidelines. All imaging was performed on a 3T MRI scanner (Prisma, 

Siemens, Erlangen, Germany).  

4.4.7 Neuro DWI 

DWI of the brain were acquired in healthy volunteers (N=10) in a single axial slice with the 

neuro MONO and CODE protocols. All acquisitions included three discarded TRs to reach 

steady state and were repeated ten times for SNR analysis (scan time: 3min 40sec). 

ADC maps were reconstructed for each of the ten repetitions of MONO and CODE using 

linear least squares. A voxel-wise SNR map was generated by dividing the mean ADC at each 
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voxel by the standard deviation (across the ten repetitions). The global mean SNR was then 

calculated within the brain for CODE and MONO and compared across the ten subjects. 

4.4.8 Liver DWI 

Breath held liver DWI were acquired in healthy volunteers (N=10) using the MONO, BIPOLAR 

and CODE-M1 liver protocols with three averages. Cardiac triggering was not used. Slice 

interleaved imaging was used to acquire four slices per TR and provide coverage of the superior 

and inferior liver in two breath holds (8 slices). Additional non-diffusion weighted (b=0) images 

were also acquired separately with four repetitions (three averages per repetition) for SNR 

analysis. All acquisitions included three discarded TRs to reach steady state (scan time: 15s per 

breath hold). 

ADC maps were reconstructed for MONO, BIPOLAR, and CODE-M1 acquisitions using 

linear least squares. Four regions of interest (ROI) were manually defined in homogeneous liver 

regions (free of vessels) in the lateral left lobe (LL), medial left lobe (ML), superior right lobe 

(SR) and inferior right lobe (IR). The mean ADC was calculated within each ROI for each 

acquisition. To identify motion corruption, the mean ADCs in the three superior ROIs (ADCLL, 

ADCML and ADCSR) were compared with that in IR (ADCIR, most inferior and least influenced by 

cardiac motion). 

SNR maps were then calculated from the b=0 images for MONO, BIPOLAR and CODE-M1 

(voxel-wise standard deviation divided by mean signal across repetitions). The mean SNR was 

calculated within the IR ROI and compared between MONO, BIPOLAR and CODE-M1 across 

the ten subjects. 
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4.4.9 Cardiac DWI 

Cardiac MRI examinations were performed in healthy volunteers (N=10). First, the timing of end 

systole (TSYS, the time-point with minimum ventricular volume) and early diastole (TDIA, the first 

time-point after rapid filling) were visually determined for each subject using high temporal 

resolution (20ms) balanced steady state free precession (bSSFP) CINE imaging.  

Breath held DWI images were then acquired using the MONO and CODE-M1M2 cardiac 

protocols. Both protocols were acquired with ECG triggering delayed to the following eight 

subject-specific cardiac phases: 0.5TSYS, 0.75TSYS, TSYS, TSYS+0.25(TDIA-TSYS), TSYS+0.5(TDIA-

TSYS), TDIA, TDIA+0.25(RR-TDIA), and TDIA+0.5(RR-TDIA), where RR is cardiac cycle duration. Each 

acquisition included three discarded TRs to reach steady state and three repetitions to improve 

SNR (scan time: 15 heartbeats or ~15 seconds). 

ADC maps were reconstructed for each cardiac phase for both MONO and CODE-M1M2 

cDWI using linear least squares. Masks were manually defined to isolate the LV myocardium at 

each cardiac phase based on the non-diffusion weighted images. The mean ADC was 

calculated within the LV for each phase and compared with the diffusivity of free water at 37°C 

(3.0x10-3mm2/s, a thermodynamic upper bound for soft tissue ADC) using a one-sided 

comparison. Motion corrupted measurements were identified by voxels in which the reported 

ADC exceed 3.0x10-3mm2/s. The percentage of LV voxels with motion corruption was calculated 

for MONO and CODE-M1M2 at each cardiac phase and compared across the ten volunteers. 

An additional cohort of volunteers (N=10) were scanned using MONO, MOCO, and CODE-

M1M2 at a single systolic phase (0.5TSYS) for SNR and ADC comparisons between methods. 

Two acquisitions were obtained for each technique in separate breath holds: 1) the cardiac ADC 

mapping protocol with three averages, and 2) four repetitions of the non-diffusion weighted 

(b=0) images (three averages per repetition). ADC maps were reconstructed from the DWI sets 

as described above. SNR maps were generated from the b=0 images by dividing the mean 
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signal intensity at each voxel by the standard deviation (across the four repetitions). The mean 

ADC, ADC standard deviation (SD), and mean SNR were then calculated within the septum and 

compared between MONO, MOCO and CODE-M1M2 across the ten subjects. Measurements 

were limited to the septum to remove SNR variations caused by field inhomogeneity in the 

posterior wall near the lung. 

4.4.10 Statistical Analysis 

All data were first tested for normality using a skewness and kurtosis test for normality. 

Variability between groups (e.g. between methods or liver ROIs) was then tested using one-way 

analysis of variance (ANOVA) (for normal distributions) or Kruskal-Wallis (for non-normal 

distributions). Variations across cardiac phases were tested using repeated measures ANOVA 

(normal distributions) or Friedman’s test (non-normal distributions). If ANOVA yielded significant 

differences (P<0.05), pairwise comparisons were made between groups (e.g MONO vs. CODE) 

using paired t-tests (normal distributions) or Wilcoxon signed-rank tests (non-normal 

distributions) at a 0.05 significance level. Multiple comparisons (i.e. between techniques, cardiac 

phases and liver ROIs) were evaluated using post hoc Holm-Sidak correction [99]. 

4.5 Results 

4.5.1 CODE Optimization 

Convex optimization reduced the TE for all diffusion encoding strategies, i.e. CODE, CODE-M1, 

and CODE-M1M2 across a wide range of b-values and EPI readouts (Figure 4.3). The minimum 

TE for each strategy over a range of b-values and Tε are plotted in Figure 4.3. The TE 

reductions achievable with CODE increased with both longer Tε (i.e high spatial resolution) and 

large b-values. Mean TE reductions from CODE, CODE-M1 and CODE-M1M2 were 9.1%, 26.5% 
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and 18.4% respectively compared to MONO, BIPOLAR and MOCO. The maximum respective 

reductions were 17.2%, 32.6% and 28.0%. Example waveforms for each encoding strategy are 

shown in Figure 1 for b-value=500 s/mm2 and Tε=26.4ms (~2x2mm2 resolution, equivalent to the 

liver protocols). 

 
Figure 4.3: Minimum TE for a range of b-values and EPI readout times to echo 

(Tε) using (A) conventional monopolar (MONO), BIPOLAR, or MOCO diffusion 

encoding and (B) CODE, CODE-M1, and CODE-M1M2 gradient waveforms. (C) 

TE reduction (∆TE) achieved using the CODE framework. ∆TE was greater for 

motion compensated encoding and increased with increasing Tε. 

For the neuro protocol (Tε=27.1ms, b=1000s/mm2) the MONO waveform requires TE=75ms 

whereas CODE had TE=67ms (11% reduction). For the liver protocol (Tε=26.4ms, b=500s/mm2) 

the M1 compensated BIPOLAR waveform requires TE=97ms whereas CODE-M1 had TE=72ms 

(26% reduction). For the cardiac protocol (Tε=25.3ms, b=350s/mm2) the traditional M1M2 
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compensated (MOCO) waveform requires TE=93ms whereas CODE-M1M2 had TE=76ms (18% 

reduction). 

4.5.2 Concomitant Field Corrections 

The effect of the prospective concomitant field correction is shown in Figure 4.4. With MONO 

encoding (no concomitant fields, no correction) the ADC projections were spatially 

homogeneous and ADC values were distributed tightly about the free diffusivity of water at room 

temperature (DH20≈2.1x10-3mm2/s) for all diffusion encoding directions. Without the concomitant 

field correction, CODE-M1M2 encoding resulted in a large bias and direction-dependent spatial 

heterogeneity in the ADC projections. The concomitant field correction significantly reduced the 

error and spatial variation of the ADC projections for all directions. Mean ADC projections 

measured across all directions by CODE-M1M2 were significantly different from MONO without 

the correction (4.3±2.2x10-3mm2/s vs. 2.1±0.005x10-3mm2/s, p=0.01), but were not different with 

the correction (2.1±0.004x10-3mm2/s vs. 2.1±0.005x10-3 mm2/s, p=N.S.). 

4.5.3 Phantom Validation 

There was good agreement between MONO and CODE for all three sets of protocols across the 

range of diffusivities in the diffusion phantom (range: 0.3x10-3mm2/s to 2.1x10-3mm2/s). 

Regression analysis yielded the following linear fits for each pair of protocols: Neuro – 

ADCCODE=0.92*ADCMONO + 0.06x10-3 mm2/s (R2=0.997), Liver – ADCCODE-M1=0.94*ADCMONO + 

0.07x10-3 mm2/s (R2=0.99), Cardiac – ADCCODE-M1M21=1.02*ADCMONO + 0.21x10-3 mm2/s 

(R2=0.92). 
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Figure 4.4: Measured diffusivity maps and histograms along each gradient 

direction (Di) and the final ADC maps (rightmost column) for (A) MONO, (B) 

CODE-M1M2 without concomitant field corrections, and (C) CODE-M1M2 with 

concomitant field corrections in a uniform water phantom. Without the correction, 

the CODE-M1M2 gradients produce large concomitant fields that lead to errors 

(bias and heterogeneity) in the ADC maps that is also evident in the histograms. 

The concomitant field correction largely eliminates this effect. The dotted line 

indicates ADC=2.1x10-3mm2/s (the “true” value as determined from MONO 

encoding). 

4.5.4 Neuro DWI 

The results from the neuro acquisitions are shown in Figure 4.5. CODE encoding reduced the 

TE by 11% as compared to MONO (from 75ms to 67ms), which resulted in ADC maps with 

higher SNR (Figure 4.5C). The mean global SNR of the ADC maps were 35% higher with 

CODE than MONO (19.5±2.5 vs 14.5±1.9, P<0.0001) across the ten volunteers scanned. 
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Figure 4.5: (A) Diffusion weighted images of the brain from a typical healthy 

volunteer are shown with b=1000s/mm2 using MONO (TE=75ms) and CODE 

(TE=67ms) encoding. The 12% TE reduction leads to brighter DWI and (B) 

qualitatively improved ADC maps. (C) The SNR of the ADC maps measured 

voxel-wise from ten repeated experiments per subject, show increased SNR. 

ADC SNR throughout the brain was increased by 35% on average across ten 

volunteers with CODE encoding. 

4.5.5 Liver DWI 

Results from the liver acquisitions are shown in Figure 4.6. MONO encoding resulted in large 

bulk motion signal dropouts in portions of the liver that are closest to the heart (i.e superior 

regions and left lobe, Figure 4.6A). These signal dropouts lead to large overestimates of the 

ADC and were eliminated with BIPOLAR and CODE-M1 encoding (Figure 4.6B). Across the ten 

volunteers the mean ADC measured in left-most ROIs  (ADCLL and  ADCML) were significantly 

higher than in the most inferior ROI (i.e least influenced by cardiac motion, ADCIR) with MONO 
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MONO (Table 4.2, P=N.S.). Notably, there were no significant differences between the four 

BIPOLAR or CODE-M1 ROIs (Table 4.2). With MONO the maximum difference between mean 

ADCs across the four ROIs normalized by the mean ADC in the IR (i.e. (ADCLL-ADCIR)/ADCIR) 

was 55%; this decreased to 41% with BIPOLAR and 6% with CODE-M1. The mean ADC was 

also lower with CODE-M1 than MONO in a pairwise comparison to MONO in three of the four 

ROIs (ADCLL, ADCML and ADCSR, all P<0.006). ADCLL and ADCML were lower with BIPOLAR 

than MONO (P<0.006), but there was no significant difference in ADCSR. There were no 

significant differences between techniques in ADCIR. 

CODE-M1 and MONO both had significantly higher SNR than BIPOLAR (Figure 4.6E)  

(CODE-M1: 14.9±5.3 and MONO: 17.5±6.8 vs BIPOLAR: 8.0±3.1, both P<0.003). SNR was not 

significantly different between MONO and CODE-M1. 

 ADCLL ADCML ADCSR ADCIR 

MONO 2.1 ± 0.3† 2.0 ± 0.5† 1.5 ± 0.3 1.5 ± 0.3 

BIPOLAR 1.5 ± 0.6* 1.2 ± 0.4* 1.3 ± 0.4 1.2 ± 0.5 

CODE-M1 1.3 ± 0.2* 1.2 ± 0.1* 1.3 ± 0.2* 1.3 ± 0.2 

Table 4.2: Mean ADC values measured in the four liver ROIs (LL - Left lobe, ML - Middle lobe, 

SR - Superior right, and IR - Inferior right).† Indicates mean ADCs that are significantly different 

from ADCIR (p<0.003). * Indicates that mean ADCs are significantly different from MONO. 
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Figure 4.6: (A) Axial diffusion weighted images of the liver from a typical healthy 

volunteer  are shown with b=500s/mm2 using MONO, BIPOLAR and CODE-M1. 

(B) Signal dropouts caused by physiological motion lead to elevated ADC maps, 

but are largely eliminated with CODE-M1. (C) Mean±95%CI ADC values within 

the four ROIs across ten volunteers. The MONO ADC values are higher close to 

the heart (LL - left lobe and ML - middle lobe) where cardiac-induced bulk motion 

is greatest. CODE-M1 encoding leads to more spatially homogeneous ADC 

maps. (D) Approximate regions chosen for the four ROIs are shown in the 

coronal view. (E) Mean±95%CI SNR values within the IR ROI across the ten 

volunteers for MONO, BIPOLAR and CODE-M1 encoding. CODE-M1 had greater 

SNR than BIPOLAR while maintaining motion robustness (*P<0.0002, †P<0.02). 
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4.5.6 Cardiac DWI 

Results from the cardiac DWI acquisitions are shown in Figure 4.7 and Figure 4.8. Qualitatively, 

Figure 4.7A demonstrates acceptable DWI when using CODE-M1M2, but unacceptable bulk-

motion signal losses when using MONO in most cardiac phases. Mean ADC values were 

significantly corrupted (>3.0x10-3mm2/s) for 50% of the cardiac phases with MONO (p<0.004) 

and 0% of the cardiac phases with CODE-M1M2 (p=N.S.) (Figure 4.7B). CODE-M1M2 resulted in 

significantly lower mean ADCs (1.9±0.3x10-3mm2/s vs. 3.8±0.6x10-3mm2/s, p<0.007) and fewer 

motion corrupted voxels (14% vs 67%, p<0.0006) than MONO in 100% of cardiac phases 

(Figure 4.7B and Figure 4.7C). 

Figure 4.8A demonstrates the improved motion robustness of both MOCO and CODE-M1M2 

compared with MONO and also the SNR gains of CODE-M1M2 compared with MOCO. Mean 

ADCs were not different between CODE-M1M2 and MOCO (1.5x10-3±0.2mm2/s vs 1.4x10-3±0.6 

mm2/s, P=N.S.) (Figure 4.8B), but CODE-M1M2 had significantly lower ADC variance than 

MOCO (mean SD = 0.7x10-3±0.3 vs. 0.9x10-3±0.3, P<0.002) (Figure 4.8C) and significantly 

higher SNR (9.1±3.9 vs 7.0±2.6, P<0.02) (Figure 4.8D). MONO had significantly higher SNR 

(mean SNR = 11.0±5.9) than MOCO (mean SNR = 7.0±2.6, P<0.002), and slightly higher SNR 

than CODE-M1M2 (mean SNR = 9.1±3.9, P=N.S.), but reported corrupted ADC values that were 

significantly higher than CODE-M1M2 and MOCO (mean ADC = 4.4x10-3±1.6mm2/s, P<1x10-5 for 

MOCO and CODE-M1M2) (Figure 4.8B). 
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Figure 4.7: (A) Diffusion weighted images are shown from a typical healthy 

volunteer acquired at eight different cardiac phases with MONO and CODE-

M1M2. Motion corruption in MONO is highly subject dependent and varies greatly 

with cardiac phase.(B) Mean±SD LV ADC values and (C) percentage±SD of 

motion corrupted (ADC>3.0x10-3mm2/s) LV voxels for MONO and CODE-M1M2 

across the ten volunteers. CODE-M1M2 is much less sensitive to bulk motion and 

is not as dependent on precise sequence timing as shown by both (B) the lower 

ADC measurements and (C) lower percentage of motion corrupted voxels for all 

cardiac phases. 
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Figure 4.8: (A) Diffusion weighted images and ADC maps are shown from a 

typical healthy volunteer acquired at a single systolic cardiac phase with MONO, 

MOCO, and CODE-M1M2. MONO led to bulk motion corrupted DWI and 

subsequently elevated ADC maps while MOCO and CODE-M1M2 led to 

uncorrupted DWI and physiologically meaningful ADC values. (B) Mean septal 

ADC values were consistent between MOCO and CODE-M1M2, but much higher 

with MONO. CODE-M1M2 had less variability in mean ADC. (C) Standard 

deviations (SD) of the ADC within the septum were lower with CODE-M1M2 than 

MONO or MOCO. (D) SNR of the b=0 images was highest with MONO, but DWI 

were heavily corrupted. CODE-M1M2 had higher SNR than MOCO while 

maintaining bulk motion robustness. 
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4.6 Discussion 

In this study, time-optimal, bulk motion compensated DWI with CODE gradient waveforms was 

described, implemented, and evaluated in vivo on a clinical scanner. CODE reduced the TE for 

all combinations of b-value and Tε (Figure 4.3) and the largest reductions were seen for 

combinations of longer Tε (higher spatial resolution) and larger b-values. The benefit of CODE is 

greatest for high resolution imaging (long Tε) and is likely to be minimal in applications requiring 

coarse spatial resolution. Similarly, applications using low b-values may not benefit as much as 

applications that require large b-values, such as q-space[45] or diffusion spectrum[43] imaging. 

TEs can also be reduced using partial Fourier acquisitions that asymmetrically sample k-

space and shorten Tε. Reducing Tε decreases the TE reduction benefit from CODE (Figure 4.3). 

However, partial Fourier can lead to signal dropouts due to bulk vibrations or rotations[100, 

101]. CODE can achieve TE reductions similar to partial Fourier methods without these adverse 

effects and while acquiring more k-space lines for improved SNR. For example, neuro CODE 

permitted full-Fourier with a negligible TE increase compared to MONO with 7/8 PF (67ms vs. 

63ms), liver CODE-M1 with full-Fourier had a shorter TE than BIPOLAR with 7/8 PF (72ms vs. 

84ms) and cardiac CODE-M1M2 with full-Fourier had a shorter TE than MOCO with 7/8 PF 

(76ms vs. 81ms). Note that all comparisons assumed two-fold parallel imaging acceleration, 

which already roughly halves TEPI and Tε. 

CODE gradient waveforms were designed to be optimal along any gradient direction and 

can thus be applied to diffusion tensor imaging (DTI) or higher order q-space sampling. 

However, because the diffusion encoding direction affects the available gradient amplitude 

(Gmax effectively increases when more gradient axes are active simultaneously), the directions 

to be sampled must be accounted for in the optimization. 

While the prospective concomitant field correction significantly reduced image artifacts, 

some residual errors could still be seen along some diffusion encoding directions, as evidenced 
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by overestimates of diffusivity near the phantom edges (e.g x-z, y-z, x-y-z in Figure 4.4). These 

are likely caused by the linear field approximation made in the correction. However, because 

these errors varied spatially with different diffusion encoding directions, the final ADC maps had 

minimal errors throughout the FOV. Further investigation into more sophisticated corrections is 

warranted and may be necessary for use in DTI.  

No apparent eddy current distortions were observed in any of the CODE DWI compared 

with the non-diffusion weighted images or with MONO, BIPOLAR or MOCO encoding. There 

were also no issues associated with gradient heating or system instability from any of the CODE 

sequences. 

While the phantom experiments showed good agreement between CODE and MONO in all 

protocols, CODE-M1M2 showed a slight positive ADC bias and increased variability as compared 

with MONO. One possible explanation is the lower SNR of this particular protocol caused by its 

high spatial resolution (1.5mm in-plane) and relatively long TE (TE=75ms). Previous reports 

have shown through simulation that low SNR imaging can lead to overestimates of ADC [102]. 

All gradient optimizations were performed with the slew rate constrained to ≤50T/m/s, which 

is significantly less than the 200T/m/s capability of the gradient system. This is a conservative 

bound that is software-imposed on all diffusion encoding gradients to avoid peripheral nerve 

stimulation (PNS). TEs can be further reduced if this constraint is relaxed, which can likely be 

done safely. Recent work has shown that a more sophisticated PNS model based on nerve 

response functions can be applied to safely shorten gradient waveforms [103]. Future work will 

include applying a similar approach to the CODE framework. 

The neuro scans showed that CODE can improve the SNR of ADC maps by reducing TE 

compared to monopolar encoding at the same b-value. Neuro DWI often uses high spatial 

resolutions and large b-values (2000s/mm2 or higher) which limit SNR. This necessitates many 

signal averages and long scan times. The shortened TEs permitted by CODE can reduce the 



Chapter 4: Convex Optimized Diffusion Encoding 

 87 

number of averages needed for acceptable SNR. Note that while only single slice imaging was 

performed, CODE is fully compatible with 2D multi-slice imaging. 

In vivo liver (Figure 4.6) and cardiac (Figure 4.7, Figure 4.8) scans in healthy volunteers 

demonstrated the value of bulk motion compensated CODE. The results of this study echo 

previous reports of M1M2 nulled DWI in the heart by Nguyen et al. [65], Welsh et al. [19] and 

Stoeck et al. [18] as well as M1 nulled DWI in the liver by Ozaki et al. [87]. The CODE framework 

is specifically designed for SE-EPI DWI and needs further evaluation to identify any advantages 

for diffusion preparation based sequences. For example, 3D segmented bSSFP with diffusion 

preparation [65] has a potential image quality advantage over SE-EPI, but also has lower 

acquisition efficiency and a long diffusion preparation time. 

In the liver, CODE-M1 resulted in lower ADC values than MONO in all regions, even in ROIs 

distal from the heart and ostensibly free of bulk motion (though not significantly different in the 

most distal ROI). BIPOLAR reported lower ADC values in all four regions (with significant 

differences in two of the four). Note too that the CODE-M1 and MONO ADC measurements 

were in agreement in the phantom. This discrepancy is likely due to the perfusion sensitivity in 

MONO acquisitions that is reduced with CODE-M1 and BIPOLAR. The motion of perfusing blood 

within liver tissue contributes to the diffusion encoding signal decay with MONO, leading to 

overestimates of ADC. This effect is reduced in CODE-M1 and BIPOLAR and is absent as long 

as blood velocities are constant during diffusion encoding. All ADC reconstructions assumed a 

single compartment diffusion model and thus could not distinguish this effect. 

The present work leverages state-of-the-art gradient hardware that can achieve high 

gradient amplitudes (Gmax=80mT/m) and significantly shorten diffusion encoding gradient 

waveforms. This reduces the TE and improves bulk motion robustness (reduces the diffusion 

encoding footprint) as compared to more commonly available systems (typically Gmax=40mT/m) 

[104, 105]. The benefit of similar maximum gradient amplitude performance for cardiac DWI has 

been previously demonstrated at 1.5T [18, 106]. While CODE can be used with any gradient 
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hardware and will always reduce TEs compared to symmetric encoding, all TEs will be 

lengthened significantly when using lower gradient amplitudes and/or lower slew rates. In these 

cases, moment-nulled diffusion encoding may limit SNR or extend the diffusion encoding 

intervals beyond a point that is practical for clinical use. In fact, acceptable image quality with 

M1M2 nulled SE-EPI DWI in the heart has not been demonstrated with Gmax=40mT/m. Non-

motion compensated CODE (only M0 nulled) can still be used in this case to minimize the 

temporal footprint of diffusion encoding. In fact, in some conditions (e.g long Tε), CODE 

converges to the single-sided bipolar waveform (Figure 4.1B) which is designed to be a bulk 

motion management technique [106]. 

 All CODE gradient waveform design was performed using MATLAB (2013A, The 

Mathworks, Nattick, MA) running on a MacBook Pro (2.3 Ghz Core i7 with 16 GB RAM) and 

took between 2 and 5 minutes. This can likely be shortened by converting the optimization 

software to a faster language and by using a faster computer. However, it remains to be shown 

that the optimization can be fast enough to be performed during routine clinical exams. In this 

case, a database of waveforms previously optimized to a wide range of b-values and imaging 

constraints can be generated and readily accessed on the scanner. 

4.7 Conclusion 

CODE DWI reduced TEs for DWI with and without motion compensation compared to 

conventional encoding waveforms.  Implementation on a clinical scanner in healthy volunteers 

demonstrated that CODE improved the SNR of ADC maps in DWI of the brain while CODE-M1 

and CODE-M1M2 improved the bulk motion robustness of DWI and ADC maps in the liver and 

heart with shorter TEs and consequently higher SNR than existing methods. 
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5 SIMULTANEOUS T2 AND ADC MEASUREMENT IN THE HEART 

In this chapter, we modify the cardiac CODE-M1M2 approach developed in Chapter 5 to facilitate 

the simultaneous generation of quantitative myocardial T2 and ADC maps. T2 and ADC mapping 

both have potential value in the contrast free evaluation of MI but typically require separate 

acquisitions, which can be mismatched due to subject motion or subtle differences in image 

distortion. Our technique (T2+ADC) generates perfectly co-registered maps with free breathing 

scans that do not increase scan time compared with ADC mapping alone. We demonstrate the 

T2+ADC technique in simulations, phantom imaging, healthy volunteer imaging and in one 

patient with an acute MI. This work has been accepted for publication in Magnetic Resonance in 

Medicine in 2017: Aliotta E, Moulin K, Zhang Z, Ennis DB. Simultaneous Measurement of T2 

and Apparent Diffusion Coefficient (T2+ADC) in the Heart with Motion Compensated Spin Echo 

Diffusion Weighted Imaging. Magnetic Resonance in Medicine. 2017. 

5.1 Abstract 

Purpose: To evaluate a technique for simultaneous quantitative T2 and apparent diffusion 

coefficient (ADC) mapping in the heart (T2+ADC) using spin echo (SE) diffusion weighted 

imaging (DWI). 



Chapter 5: Simultaneous T2 and ADC Measurement in the Heart 

 91 

Methods: T2 maps from T2+ADC were compared with single-echo SE in phantoms and with T2-

prepared (T2-prep) balanced steady state free precession (bSSFP) in healthy volunteers. ADC 

maps from T2+ADC were compared with conventional DWI in phantoms and in vivo. T2+ADC 

was also demonstrated in a patient with acute myocardial infarction. 

Results: Phantom T2 values from T2+ADC were closer to a single-echo SE reference than T2-

prep bSSFP (-2.3±6.0% vs. 22.2±16.3%, p<0.01) and ADC values were in excellent agreement 

with DWI (0.28±0.4%). In volunteers, myocardial T2 values from T2+ADC were significantly 

shorter than T2-prep bSSFP (35.8±3.1ms vs. 46.8±3.8ms, p<0.01); myocardial ADC was not 

significantly (N.S.) different between T2+ADC and conventional motion compensated (MOCO) 

DWI (1.39±0.18 vs. 1.38±0.18mm2/ms, P=N.S.). In the patient, T2 and ADC were both 

significantly elevated in the infarct compared with remote myocardium (T2: 40.4±7.6ms vs. 

T2=56.8±22.0ms, P<0.01, ADC: 1.47±0.59mm2/ms vs. 1.65±0.65mm2/ms, P<0.01). 

Conclusion: T2+ADC generated co-registered, free-breathing T2 and ADC maps in healthy 

volunteers and a patient with acute MI with no cost in accuracy, precision or scan time 

compared with DWI. 

5.2 Introduction 

Cardiac diffusion weighted imaging (DWI) has high potential diagnostic value for quantifying the 

extent and degree of diffuse and focal myocardial fibrosis [8, 107] without the need for a 

gadolinium-based contrast agent. cDWI measures the self-diffusion of water molecules in soft 

tissues and can detect fibrosis via increases in the apparent diffusion coefficient (ADC) that 

accord with the increase in extracellular volume (ECV). This can  enable myocardial infarct (MI) 

evaluation for the ~40% of cardiovascular disease patients with impaired renal function in whom 

the use of gadolinium-based contrast agents is contraindicated [13, 56].  



In Vivo Quantification of Cardiac Microstructure with Convex Optimized Diffusion Weighted MRI 

 92 

 Conventional DWI approaches are extremely sensitive to bulk motion, but recent 

developments in gradient hardware and the emergence of bulk motion compensated (MOCO) 

diffusion encoding techniques have enabled robust DWI in the heart [18, 65]. In this study, we 

employ convex optimized diffusion encoding (CODE) [108] with first (M1) and second (M2) order 

motion compensation (CODE-M1M2). CODE-M1M2 simultaneously imparts insensitivity to bulk 

motion and improves pulse sequence acquisition efficiency, by minimizing the echo time (TE) 

for a given b-value.  The CODE approach enables higher resolution or higher signal-to-noise 

(SNR) cardiac MOCO DWI with shorter TEs than other techniques. 

 Quantitative T2 mapping is also a valuable tool for myocardial tissue characterization. For 

example, increases in T2 can indicate the presence of myocardial edema [32, 109] and 

decreases in T2 have been observed in iron overload [110], which can occur in thalassemia as 

well as in hemorrhagic MI [111]. The combination of quantitative T2 maps for detecting edema or 

iron overload and DWI maps for identifying myocardial fibrosis can potentially be used to 

differentiate infracts and score the extent and degree of focal and diffuse fibrosis for a variety of 

pathologies. 

 Herein, we describe a free-breathing technique that jointly measures cardiac T2 and ADC 

(T2+ADC) thereby generating maps that are perfectly co-registered and acquired at the same 

cardiac phase. T2+ADC requires only minor modification to the spin-echo DWI acquisition and 

does not increase scan time compared to conventional ADC mapping alone. In this study, 

T2+ADC was evaluated through Bloch equation simulations, validated with quantitative phantom 

imaging, and demonstrated in healthy volunteers. 

5.3 Theory 

DWI acquisitions typically employ a spin-echo (SE) sequence with a single-shot echo planar 

imaging (EPI) readout wherein several images are acquired at a fixed TE with diffusion 
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weighting along multiple directions. The diffusion weighting is characterized by the pulse 

sequence b-value (b, s/mm2) and the gradient direction (!) along which it is applied. This 

produces a series of images with combined T2 and diffusion weighting that can be defined by a 

mono-exponential signal dependence on b and the underlying tissue diffusivity (D, mm2/ms). In 

a classical DWI experiment, diffusion weighted images are normalized by a non-diffusion 

weighted acquisition (i.e. b=0) in order to extract only the diffusivity from all other sources of 

contrast. However, considering the T2 weighting of the spin echo pulse sequence, the overall 

signal behavior can be described by a bi-exponential: 

 

 

5.1 

Where S0 is the non-diffusion and non-T2 weighted signal intensity, which is predominantly 

proton density weighted given a sufficiently long repetition time, TR. !! is the diffusivity along 

the diffusion encoding direction ! . The resulting estimate of diffusivity from all sampled 

directions is denoted the apparent diffusion coefficient (ADC). In the proposed T2+ADC 

technique, DWI was acquired with multiple TEs and T2 and ADC were jointly reconstructed 

using Equation 5.1. 

Because the signal to noise ratio (SNR) of cardiac DWI images can be very low (<10), signal 

averaging is typically used to suppress noise [18, 64, 112]. However, the non-diffusion weighted 

reference images (b=0) have significantly higher SNR than those with higher b-values and thus 

do not require as much signal averaging. Furthermore, while conventional DWI uses the same 

TE for all images to avoid mixing of T2 and diffusion weighting, a shorter TE is always possible 

for b=0 due to the absence of diffusion encoding gradients. T2+ADC leverages the shorter 

minimum TE when b=0 to improve SNR and enable the estimation of joint T2+ADC maps. By 

varying the TE of the non-diffusion weighted images across the repetitions that are necessary to 

S(b, TE, ~G) = S0e
�TE/T2e�bD~G
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improve SNR for b>0, T2+ADC mapping can be acquired with no increase in scan time 

compared with an analogous ADC mapping acquisition with a single, fixed TE. 

5.4 Methods 

5.4.1 Bloch Simulations 

Bloch equation simulations [113] were used to evaluate and optimize the T2+ADC acquisition for 

measurement precision and accuracy. The simulations were designed to fulfill two principal 

objectives: 1) Determine the minimum TR necessary for T2+ADC to be insensitive to Τ1 (<1% T2 

bias) and thus to changes in heart rate; and 2) Determine the optimal distribution of signal 

averages for each of the TEs to optimize measurement accuracy under the constraint of fixed 

scan time.  

Simulation Parameters – T2+ADC acquisitions were simulated using a system of 500 

independent spins. The signal amplitude during a spin echo sequence was simulated for two 

TEs (TE1=25ms, TE2=65ms) and two b-values (b=0 and 350s/mm2). TE1 and TE2 were the 

minimum TEs for the desired 2.0x2.0x5.0mm spatial resolution with b=0 and 350s/mm2, 

respectively. These specific TEs accorded well with published sampling guidelines for T2 

mapping of the range of expected myocardial T2 values [114, 115]. The b-value was chosen to 

balance SNR, motion insensitivity, and diffusion weighting and was similar to previous cardiac 

DWI studies [80, 116]. To incorporate T2* effects, the spin system contained a range of off 

resonance frequencies ±50Hz (uniformly distributed, corresponding to T2*~20ms). Repeated 

simulations were performed over a range of T1 (T1=500, 1000, 1500ms) and T2 values (T2=30, 

40, 50, 60ms). The spin ensemble’s signal amplitude was measured over a duration 

surrounding TE corresponding to the duration of the EPI readout (TEPI=30ms). These signal 

amplitudes were used to modulate the k-space of a simulated left ventricle (LV) as shown in 
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Figure Figure 5.1. Diffusion encoding (D=1.4mm2/ms, isotropic) was applied to the simulated 

signals directly using Equation 5.1 along three directions (x, y and z). Simulated T2 and ADC 

maps were then generated from the resultant signals using Equation 5.1. 

 
Figure 5.1: T2+ADC Bloch equation simulation framework. (A) T2* weighting was 

generated using Bloch equation simulations of the signal during the spin echo 

acquisition, which generated (B) the k-space weighting that modulated line-by-

line the k-space corresponding to a simulated LV for two TEs (25ms and 65ms) 

and two b-values (b=0 and 350s/mm2). (D) Complex Gaussian noise was added 

to the resultant k-space signals to generate noisy images (E) that were then used 

to estimate T2 and ADC (F) according to Equation 5.1. 

Impact of T1 on T2+ADC – To evaluate the impact of T1 on T2 and ADC accuracy, the simulation 

was performed over a range of 10 TRs from 500ms to 5000ms for every combination of T1 and 

T2 evaluated. Mean T2 and ADC values were then calculated for each TR within the simulated 

LV. T2 and ADC accuracy were evaluated by the percent difference between the mean T2 and 

ADC and the pre-defined input values. 

Evaluating Signal Average Distribution – To define the distribution of signal averages for 

subsequent in vivo acquisitions, complex Gaussian noise was added to the simulated images 
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such that SNR=50 for b=0 and TE=25ms. Scan time was held constant by maintaining the total 

number of acquired images (10 signal averages per direction for b=350s/mm2 and 10 total 

averages for b=0 and both TE1 and TE2). The ratio of averages between TE1 and TE2 was, 

however, varied (i.e. Navg,TE1:Navg,TE2 = 9:1, 8:2, 7:3, etc.). Measurement precision was quantified 

for each acquisition by the standard deviation (SD) of T2 and ADC values within the simulated 

LV. 

5.4.2 Phantom Experiments 

T2+ADC was acquired in a phantom containing vials of water with varying concentrations of 

agar and CuSO4 which produced a range T1 and T2 values (T1=400-2000ms, T2=30-150ms) on 

a 3T MRI scanner (Prisma, Siemens, Erlangen, Germany). The T2+ADC protocol used 

TE1=25ms and TE2=65ms; TR=4000ms; b=0 and b=350s/mm2 with CODE-M1M2 diffusion 

encoding along three directions (x, y, z). Three “dummy” cycles (i.e. repetitions of the b=0 

sequence without readout) were played to ensure the signal reached a steady state prior to 

acquiring the first b=0 image. Additional T2 maps were generated for comparison using: 1) Spin 

echo imaging with five TEs (TE=12, 25, 55, 85, 100ms,  TR=12s); and 2) T2-prepared (T2-prep) 

balanced Steady State Free Precession (bSSFP) with three T2-prep durations (tprep=0, 25, 

55ms, TR=3s), an established technique for myocardial T2 mapping [117]. For comparison, a 

conventional ADC map was generated using a DWI protocol matched to the T2+ADC protocol, 

but with a single TE (TE=65ms). Additional protocol details are shown in Table 5.1. 

 T2,T2+ADC and T2,bSSFP were compared to the reference T2,SE using regression analysis on 

mean T2 values within each of the 10 phantom regions. ADCT2+ADC was similarly compared with 

the conventional ADCDWI. 
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5.4.3 Volunteer Experiments 

Healthy volunteers (N=8) were then imaged in an IRB approved study after obtaining written 

statements of informed consent. Localizers were first acquired to obtain a mid-ventricular short-

axis slice that was used for all subsequent imaging. Cine bSSFP images were acquired and 

visually inspected to determine the timing of the diastolic quiescent period during which bulk 

cardiac motion was minimized. This subject-specific trigger delay (TDDIA) was used for all 

subsequent diastolic imaging.  

 

Resolution 

 (mm) 

FOV  

(mm) 

TE  

(ms) 

tprep  

(ms)  

TR  

(ms) 

b  

(s/mm2) 
Undersampling 

T2+ADC 2.0x2.0x5.0 260x130 25, 65 N/A 4000 0, 350 6/8 PF, iPAT x2 

DWI 2.0x2.0x5.0 260x130 65 N/A 4000 0, 350 6/8 PF, iPAT x2 

bSSFP 1.5x1.5x5.0 312x312 1.17 0, 25, 55 3000 N/A 6/8 PF 

SE 1.0x1.0x5.0 200x200 12,25,55,85,100 N/A 10000 N/A N/A 

Table 5.1:  Protocol details for each of the T2 and ADC mapping sequences. 

T2+ADC – Free breathing T2+ADC images were acquired with respiratory triggering to end-

expiration using a liver-dome navigator. Protocol details were: 2.0x2.0x5.0mm resolution, 

FOV=260x200mm, 6/8 Partial Fourier (PF), and 2x parallel imaging acceleration using 

Generalized Autocalibrating Partially Parallel Acquisitions (GRAPPA)[35]. Based on simulation 

results, the non-diffusion weighted images were acquired with three averages for TE1 and seven 

averages for TE2; b=350s/mm2 images were acquired at TE=65ms with 10 averages using 

CODE-M1M2. Imaging was triggered to at least every fourth heartbeat such that TR≥4000ms 

and three “dummy” cycles were played prior to acquiring the first b=0 image. Inner volume 

excitation was used to reduce the field of view in the phase encode direction, thereby shortening 

the readout duration and reducing image distortions [73]. TE2 (b=0 and 350s/mm2) was acquired 

at mid-systole using TDSYS=100ms and at late diastole using TDDIA whereas TE1 was shifted 
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(TDSYS+40ms and TDDIA+40ms) such that imaging occurred at the same cardiac phase (Figure 

Figure 5.2). Acquiring 40 images per phase required a total scan time of ~10 minutes. 

 
Figure 5.2: T2+ADC pulse sequence diagram. T2+ADC consists of SE EPI DWI 

with b=0 reference images at TE=25ms (A) and TE=65ms (B) to enable T2 

mapping. (C) Bulk motion robust CODE-M1M2 gradients were used 

(b=350s/mm2, TE=65ms) to obtain cardiac DWI within a reasonable TE. ECG 

trigger delays were defined for each acquisitions such that imaging always 

occurred at the same cardiac phase. 

 Image reconstruction was then performed using custom MATLAB code (The Mathworks, 

Nattick, MA).  Prior to averaging, all images were co-registered using a rigid transformation to 

correct for respiratory motion and motion corrupted voxels were removed using a constrained 

reconstruction algorithm [104] to correct for artifactual bulk motion signal drop out in the DWI. In 

this algorithm, a single gradient direction ADC projection, ADC0, was calculated for each image 

and any voxels in which ADC0 exceeded 3.0mm2/ms (the free diffusivity of water at 37°C, a 

fundamental limit for diffusion in soft tissue) were discarded. 

 The T2+ADC reconstruction was then performed using two methods: 1) a non-linear fit (NLF) 

to Equation 5.1; and 2) a linear fit (LF) to the natural log of Equation 5.1. For each fitting 

method, mean T2 (µT2), T2 standard deviation (σT2), mean ADC (µADC), and ADC standard 

deviation (σADC) were calculated within the LV. 
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Independent T2 Mapping – For comparison to T2+ADC, breath-held T2-prep bSSFP maps were 

acquired at the same slice location at mid-systole and diastole in separate breath holds with 

1.5x1.5x5.0mm resolution, TE=1.17, TR=3 heartbeats, linear k-space encoding and three T2-

prep durations (tprep=0, 25, 55ms). T2 maps were reconstructed using a least squares linear fit. 

Conventional ADC Mapping – ADC maps were also generated from the CODE-M1M2 DWI 

acquired for T2+ADC, but using only TE=65ms at both systole and diastole. ADC values were 

reconstructed using a least squares linear fit.   

T2 and ADC Map Comparisons – LV masks were manually defined and were used to determine 

µT2,T2+ADC, σT2,T2+ADC, µT2,bSSFP and σT2,bSSFP for each subject at both systole and diastole. µT2 and 

σT2 reported by each technique were compared using a paired t-test across the eight subjects. 

 The same analysis was performed on the ADC maps to measure µADC,T2+ADC, µADC,DWI, 

σADC,T2+ADC and σADC,DWI for each subject at both cardiac phases. 

5.4.4 Patient Imaging 

T2+ADC were acquired on a patient undergoing a clinically indicated cardiac MRI examination at 

3.0T (Siemens Prisma) with a non-reperfused acute MI in the infero-lateral wall, impaired LV 

ejection fraction (22%) and a pericardial effusion after a failed rescue percutaneous coronary 

intervention. Imaging parameters were identical to the volunteer experiments, but the acquisition 

was limited to a single mid-ventricular slice at mid-systole (TD=100ms) and the number of 

averages was reduced to shorten scan time (Navg,TE1=2, Navg,TE2=3, scan time ~5min. Post-

contrast late gadolinium enhanced (LGE) and cine (bSSFP) images were also acquired for 

reference. Median T2 and ADC values were measured in manually defined regions of remote 

and infarcted myocardium as defined on LGE.    
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5.5 Results 

5.5.1 Simulations 

T2+ADC Accuracy – T2+ADC Bloch simulation results are shown in Figure 5.3. T2 errors were 

observed in measurements made with short TRs, but these became negligible (<1%) for all 

simulated T1 and T2 values when TR≥4000ms (Figure 5.3A). For TR=1000ms (approximately 

one heart beat), T2 error was as high as 4.6% (for T1=2000ms, T2=30ms). TR had no impact on 

ADC accuracy (ADC accuracy <0.1% for all simulated T1 and T2 values) (Figure 5.3B). 

T2+ADC Precision – Both T2 and ADC precision were dependent on the ratio of Navg,TE1:Navg,TE2 

(Figure 5.3C and D). The precision of both the T2 and ADC maps was greatest when 

Navg,TE1:Navg,TE2=9:1. σADC decreased monotonically as Navg,TE1:Navg,TE2 decreased, but with 

minimal change when Navg,TE1:Navg,TE2≤4:6. σT2 was a concave function of Navg,TE1 and reached a 

minimum at Navg,TE1:Navg,TE2=3:7 for all T1 values . 

5.5.2 Phantom Experiments 

Compared with the reference T2,SE maps, T2+ADC underestimated T2 (T2,T2+ADC = 1.01*T2,SE – 

1.9ms, R2=0.99) while bSSFP overestimated T2 (T2,bSSFP = 1.02*T2,SE + 8.8ms, R2=0.97) for T2 

values between 30ms and 150ms (Figure 5.4A). Across all T2 reference values, T2,T2+ADC was 

closer to T2,SE and had a lower variance than T2,bSSFP (-2.3±6.0% vs. 22.2±16.3%, p=2x10-7). 

Very high agreement was observed in the diffusion phantom between ADCT2+ADC and 

conventional ADCDWI (ADCT2+ADC = 1.01*ADCDWI - 0.02 mm2/ms, R2=0.99, mean ADC difference: 

0.14±0.39%) (Figure 5.4B). 
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Figure 5.3: Bloch simulation results for joint T2+ADC mapping. T2 accuracy (A) 

was <1% when TR≥4000ms whereas ADC accuracy (B) was <1% for all TRs. T2 

precision (C) was minimized when Navg,TE1=3 (TE1=25ms) and Navg,TE2=7 

(TE2=65ms) for all T1 (Navg,TE1+Navg,TE2=10). ADC precision (D) decreased with 

decreasing Navg,TE1, but the change was negligible with Navg,TE1≤4. 
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Figure 5.4: (A) T2 phantom validation results comparing T2+ADC (blue) and T2-

prepared bSFFP (red) to conventional SE T2-mapping. (B) compares ADC from 

T2+ADC to conventional DWI. Good agreement was observed between T2 

techniques, but bSSFP overestimated T2 while T2+ADC slightly underestimated 

T2 compared with conventional SE. Very high agreement was observed between 

ADC maps. The dashed black line is the line of unity. 

5.5.3 Volunteer Experiments 

Impact of Fitting Algorithm – T2 and ADC maps were successfully acquired in all eight 

volunteers during both systole and diastole using T2+ADC. The choice of fitting algorithm had no 

significant impact on the population mean or variance of the T2 maps (LF-µT2=37.7±3.8ms vs. 

NLF-µT2=37.7±3.8ms, p=1.00; LF-σT2=7.4±1.2ms vs. NLF-σT2=7.4±1.2ms, p=0.99). NLF and LF 

mean ADC values were not significantly different (LF-µADC=1.58±0.28mm2/ms vs. NLF-

µADC=1.53±0.25mm2/ms, p=0.56), but the NLF ADC variance was significantly lower than LF 

(LF-σADC=0.63±0.21mm2/ms vs. NLF-σADC=0.46±0.15mm2/ms, p=0.01). With conventional DWI, 

mean ADC from T2+ADC mapping was not significantly different from NLF or LF 

(µADC,DWI=1.51±0.26mm2/ms, µADC,NLF=1.53±0.25mm2/ms, p=0.48, µADC,LF=1.58±0.28mm2/ms, 

p=0.28). ADC variance from T2+ADC mapping was significantly lower than LF 

(σADC,DWI=0.47±0.15mm2/ms vs. σADC,LF=0.63±0.21mm2/ms, p=0.02), but not different from NLF 

(σADC,DWI=0.47±0.15mm2/ms vs. σADC,NLF=0.46±0.15mm2/ms, p=0.80). T2 and ADC maps 

generated using both NLF and LF fitting algorithms are shown in Figure 5.5. All subsequent 

analysis of T2+ADC was performed using NLF because of the lower NLF ADC variance.  
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Figure 5.5: Example T2 and ADC maps from T2+ADC generated using linear 

fitting (A) and nonlinear fitting (B). The choice of fitting algorithm had no 

significant impact on the mean or variance of the T2 maps. Nonlinear fitting had 

no significant impact on mean ADC, but led to ADC maps with significantly lower 

variance (p=0.01). 

In Vivo T2 and ADC Mapping – Representative T2 maps from T2+ADC and T2-prep bSSFP at 

both mid-systole and diastole are shown in Figure 5.6. ADC maps from T2+ADC and DWI in the 

same subject are shown in Figure 7. Mean myocardial T2 and ADC values (µT2 and µADC) as well 

as myocardial T2 and ADC variances (σT2 and σADC) from each technique are shown in Figure 

5.6 and Figure 5.7 as well as in Table 5.2. 

 Mean myocardial T2 values from T2+ADC were significantly lower than bSSFP at both 

systole and diastole. There were no significant differences in T2 between systole and diastole 

within either technique. T2 variance was significantly lower with T2+ADC than with T2-prep 

bSSFP at both systole and diastole. 

 There were no significant differences in mean myocardial ADC between T2+ADC and 

conventional DWI at either systole or diastole. However, ADC was significantly lower during 

systole than diastole within both T2+ADC (p=0.02) and DWI (p=0.03). No significant differences 

were observed in ADC variance between T2+ADC and DWI at systole or diastole. 
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Mid-Systole Diastole 

 

µT2  

(ms) 

σT2  

(ms) 

µADC  

(mm2/ms) 

σADC 

(mm2/ms) 

µT2  

(ms) 

σT2  

(ms) 

µADC  

(mm2/ms) 

σADC 

(mm2/ms) 

T2+ADC 35.8±3.1 6.9±1.1 1.39±0.18 0.41±0.09 39.2±5.4 8.0±1.0 1.64±0.31 0.51±0.18 

DWI N/A 1.38±0.18 0.41±0.08 N/A 1.65±0.32 0.52±0.19 

bSSFP 46.8±3.8* 12.2±3.2* N/A 46.8±3.4* 14.0±4.1* N/A 

Table 5.2:  Quantitative in vivo results. 

 
Figure 5.6: Representative T2 maps measured in a healthy volunteer using 

T2+ADC and T2-prepared bSSFP (A) at a mid-systolic (top row) and diastolic 

(bottom row) cardiac phase. The mean myocardial T2 values (µT2) measured by 

each technique for eight (N=8) subjects are also shown in (B). The box edges 

represent the population mean ± 1SD and individual points represent the mean 

intra-subject value. Consistent with phantom results, T2+ADC reported 

significantly lower T2 values than T2-prep bSSFP at both systole (p=6x10-4) and 

diastole (p=1x10-3). 
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Figure 5.7: ADC maps (A) from the healthy volunteer shown in Figure 5.6 using 

T2+ADC and DWI at a systolic (top row) and diastolic (bottom row) cardiac 

phase. The mean myocardial ADC values (µADC) measured by each technique 

for eight (N=8) subjects are also shown in (B). The box edges represent the 

population mean ± 1SD and individual points represent the mean intra-subject 

value. No significant differences were observed in the ADC values reported by 

T2+ADC and DWI at either phase. 

5.5.4 Patient Imaging 

T2 and ADC maps and histograms from T2+ADC are shown in Figure 5.8 along with companion 

bSSFP and LGE. LGE revealed a large region of enhancement in infero-lateral LV free wall. 

T2+ADC showed a significant increase in T2 within the infarct compared with remote 

myocardium (T2,Remote=40.4±7.6ms vs. T2,Infarct=56.8±22.0ms, P<0.01) as well as a significant 

increase in ADC (ADCRemote=1.47±0.59mm2/ms vs. ADCInfarct=1.65±0.65mm2/ms, P<0.01). 
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Figure 5.8: A representative diffusion weighted image (A), T2 map (B), ADC map 

(C), cine image (D), and LGE (E) from a patient with acute MI. T2 and ADC were 

both elevated in the infarct region (lateral wall) compared to the remote 

myocardium (septal wall) (T2,Infarct=56.8±22.0ms vs. T2,Remote=40.4±7.6ms, P<0.01,  

ADCInfarct=1.65±0.65mm2/ms vs. ADCRemote=1.47±0.59mm2/ms, P<0.01). 

5.6 Discussion 

T2+ADC permitted quantitative estimates of T2 from cardiac DWI acquisitions with no significant 

impact on ADC measurement and no increase in scan time compared with conventional DWI. 

While the simulations indicated that a TR≥4s (i.e. approximately 4 heart beats) should be used 

to eliminate T1 effects, this significantly limits acquisition efficiency. Although a single slice 

acquisition was used in this study, T2+ADC is compatible with multi-slice imaging approaches 

(e.g. slice following [57]) which would substantially improve acquisition efficiency.  

  While the linear bi-exponential fit in T2+ADC did increase ADC variance compared with 

conventional DWI, the loss in precision was mitigated by using a non-linear exponential fit (NLF) 

in place of the conventional log-linear fit. When using the NLF, there were no significant 

LGE

70 

35 

0m
s

3 

2 

1 

0m
m

2 /
m

s

DWI ADC MapT2 Map

Cine

A. C.B.

D. E.

Figure 8 - R3 Update

Remote 
1.47±0.59

Infarct 
1.65±0.65

0.0 3.00.5 1.51.0 2.0 2.5

ADC [mm2/ms]

Remote 
40.4±7.6

Infarct 
58.6±22.0

0 10020 40 60 80

T2 [ms]F.



Chapter 5: Simultaneous T2 and ADC Measurement in the Heart 

 107 

differences in the mean or variance of myocardial ADC with T2+ADC compared with DWI. This 

indicates that T2+ADC can generate both maps with no cost in scan time compared with DWI 

and without affecting ADC measurement. 

 Myocardial T2 values measured using T2+ADC were significantly shorter than those reported 

by bSSFP in both the phantom and in vivo experiments. However, in the phantom, T2+ADC was 

closer to the SE reference than bSSFP. This is consistent with reports of bSSFP overestimating 

T2, which are likely due to T1 signal weighting [118]. It is possible that T2* decay during the 

single shot SE-EPI readout caused T2+ADC to underestimate T2. However, this effect did not 

bias T2 measurements in simulations and did not lead to significant errors compared to SE 

measurements in the phantom study. We expect the SE sequence produces accurate T2 

measurements as it is free of any stimulated echo effects that are known to lead to errors in 

multi-echo spin echo T2 mapping [119-122] 

 In our experience, the M1+M2 nulled diffusion encoding approach used in this work performs 

best during systolic imaging due to the consistent and coherent motion during that phase [18, 

108]. Experience shows that diastolic motion tends to be less consistent and varies with 

changes in heart rate, which can lead to artificially high diastolic ADC values. This was reflected 

in the higher and more variable ADC values observed in diastole with both T2+ADC and DWI 

despite the constrained image reconstruction algorithm that eliminates the most severe bulk 

motion artifacts. 

 Slightly shorter T2 values were reported at mid-systole compared to diastole when measured 

with T2+ADC, whereas no such decrease was observed in bSSFP. This difference could also be 

caused by bulk motion sensitivity in the SE-EPI pulse sequence. The second order moment of 

the crusher gradients surrounding the refocusing pulse used for the b=0 acquisitions depends 

on their timing within the pulse sequence [26]. Consequently, acquisitions with long TEs are 

more bulk motion sensitive than those with short TEs. This could lead to additional signal decay 
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for longer TEs, which would shorten the apparent T2 from T2+ADC, as observed in mid-systole 

compared with diastole. Furthermore, inconsistent motion during of diastole may have led to the 

increase in T2 variability in diastole. 

 One drawback of T2 mapping with T2+ADC compared with T2-prep bSSFP is the impact of 

single shot SE EPI on image quality, which has known issues with distortion and chemical shift 

in the heart [70]. The use of inner volume excitation combined with high performance imaging 

gradients significantly mitigates these issues by shortening the EPI readout, but further work is 

necessary to improve image quality. Furthermore, the minimum TE achievable in T2+ADC is 

directly linked to the EPI readout duration, which in turn limits spatial resolution for a given TE. 

Parallel imaging and partial Fourier were used to shorten the EPI readout and thereby decrease 

the minimum achievable TE and mitigate EPI distortions. However, this impacts SNR, which 

necessitated signal averaging. In the present study, the minimum TE of 25ms appeared to be 

sufficiently short for healthy myocardial T2 quantification, but this may present a problem with 

shortened T2 values in conditions such as Thalassemia [123]. These drawbacks could 

potentially be avoided by adapting T2+ADC to a diffusion prepared acquisition [65] at the cost of 

a significantly longer temporal footprint due to the duration of a single or multi-shot bSSSP 

readout compared with single shot EPI. 

 The preliminary T2+ADC mapping results in acute MI indicate that this technique is 

applicable in severely ill patients and can detect the presence of fibrosis and edema. Notably, 

there was good agreement between ADC values in remote myocardium for this patient and 

those measured in volunteers. Remote T2 values were slightly longer than what was seen in 

volunteers at mid-systole which indicates the presence of global inflammation which is expected 

after acute MI [124]. Infarct T2 values were consistent with those reported by Giri et al. [32] but 

infarct ADC values were lower than values observed by Nguyen et al. [116].  
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5.7 Conclusion 

T2+ADC is a novel technique for simultaneously estimating T2 and ADC in the heart during a 

free-breathing acquisition. T2+ADC generated perfectly co-registered maps and had no impact 

on ADC accuracy, ADC precision or scan time compared with conventional DWI while making 

precise measurements of myocardial T2. 

5.8 Acknowledgements 

This work was supported, in part, by the Graduate Program in Bioscience at UCLA, the 

Department of Radiological Sciences at UCLA, the National Institutes of Health (NIH 

R01HL131975), and the American Heart Association (AHA 16PRE27380023). The authors 

would like to thank Drs. Pierre Croisille and Magalie Viallon for the clinical dataset presented in 

this work. 

 

 

 

 

 

 

 



In Vivo Quantification of Cardiac Microstructure with Convex Optimized Diffusion Weighted MRI 

 110 

6 QUANTIFYING PRECISION IN CARDIAC DIFFUSION TENSOR 
IMAGING  

In this chapter, we leverage the Convex Optimized Diffusion Encoding (CODE) framework to 

acquire and evaluate in vivo cardiac diffusion tensor imaging (cDTI) using first and second order 

motion compensated diffusion encoding (CODE-M1M2) in healthy volunteers. To assess the 

precision of this technique, we employ a previously described bootstrapped resampling 

approach to measure the 95% confidence intervals for measured diffusion tensor orientation 

(i.e. eigenvectors) and shape (i.e. eigenvalue-based invariants) in clinically viable free-breathing 

scans with durations between one and five minutes per slice. We also compare the precisions of 

cDTI acquired in mid-systolic and diastolic cardiac phases to assess the impact of bulk cardiac 

motion on measurement precision of CODE-M1M2 in healthy volunteers. 

6.1 Introduction 

Cardiac diffusion tensor imaging (cDTI) is an emerging contrast-free technique for quantifying 

microstructure in healthy [125, 126] and diseased myocardium [14-16]. cDTI provides 

quantitative maps of local cardiomyocyte orientation, the organization of myolaminar sheetlets, 

and microstructural anisotropy by probing the diffusion of water molecules contained in 
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myocardial tissue. Increases in the mean diffusivity (MD) have been linked to the presence of 

fibrosis in myocardial infarction as well as changes in extracellular volume in hypertrophic 

cardiomyopathy [8, 116]. Changes in myocardial sheetlet dynamics have also been 

demonstrated in hypertrophic and dilated cardiomyopathies using cDTI [14-16].  

 As with any quantitative measure, several sources of error lead to uncertainty for in 

vivo cDTI measurements. These include noise, image distortions, and physiological variability. 

Noise can have a large impact on cDTI derived parameters due to the low signal to noise ratios 

(SNR) of the acquired diffusion weighted images that stem from the diffusion induced signal 

decay and the reliance on single shot echo planar imaging (SS-EPI) readouts. Image distortions 

can also be substantial in cDTI due to sharp magnetic susceptibility gradients at the heart-lung 

interface that are exacerbated by the SS-EPI readout [127]. Physiological variability is also 

significant in cDTI due to the presence of bulk cardiac and respiratory motion as well as 

pulsatile blood flow. This variability can lead to both corrupted individual measurements (i.e. 

intra-shot motion effects) and mismatches between subsequent measurements (i.e. inter-shot 

variability between encoding directions or repetitions). 

 The propagation of these errors from the acquired image data through diffusion tensor 

reconstruction and on to derived tensor quantities is a complex problem that is not easily 

modeled. As a result, a non-parametric bootstrapped approach has been proposed for 

quantifying uncertainty in diffusion tensor orientation [128] and shape [129, 130] in neurological 

DTI. This approach provides insight into the uncertainty underlying neurological DTI 

experiments [131, 132], but these results do not directly apply to in vivo cDTI for several 

reasons. Namely, cardiomyocytes are approximately ten times thicker in diameter than neuronal 

fibers [133, 134] which leads to diffusion tensors with substantially lower fractional anisotropy 

(FA) and consequently larger uncertainties in measures of fiber orientation [128]. Cardiac 

motion also necessitates the use of highly specialized pulse sequences which employ either 
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motion compensated diffusion encoding gradients [18, 19, 65, 135] or a stimulated echo 

acquisition mode (STEAM) with diffusion encoding spread across multiple heart beats [64, 136]. 

Furthermore, even when using motion compensated diffusion encoding schemes, slight 

variations in heart rate and breathing patterns throughout an acquisition contribute a degree of 

uncertainty to the measured signal. The impact of bulk physiological motion also depends on 

the pulse sequence timing within the cardiac cycle [135] and thus uncertainty is expected to 

depend on the cardiac phase selected for triggering, but this has not yet been characterized. 

 In light of the many sources of variability present in cDTI, standard practice is to 

acquire multiple repetitions of the protocol and average the repeated data to increase SNR and 

thus improve measurement precision. This, of course, increases scan times that are already 

long in cDTI due to the need for multiple diffusion encoding directions and both cardiac and 

respiratory triggering (or multiple repeated breath holds). Therefore, it is useful to quantify the 

precision of cDTI measurements made within clinically viable scan durations. 

 In this study, we employ bootstrapped uncertainty measurements to characterize the 

precision of in vivo spin echo EPI cDTI measurements made using first and second order 

motion compensated convex optimized diffusion encoding (CODE) [108] at two points in the 

cardiac cycle (mid-systole and diastole). Herein, we quantify the precision of diffusion tensor 

orientation (i.e. tensor eigenvectors) and shape (i.e. tensor invariants) for cDTI acquisitions with 

scan times between one and five minutes per slice to identify practical guidelines for efficiently 

measuring high quality microstructural information. 

6.2 Theory 

Diffusion tensor uncertainty can be measured for a cDTI acquisition using bootstrapped 

resampling to generate a distribution of tensors that reflects the uncertainty inherent in the 

measurement. This was previously described for calculating uncertainty in the tensor primary 
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eigenvector, which was referred to as the “cone of uncertainty” [128]. This technique is briefly 

described herein and extended to quantify other aspects of diffusion tensor uncertainty including 

the secondary and tertiary eigenvectors as well as several tensor invariants. 

 This bootstrapping technique requires the cDTI acquisition to be repeated twice to 

generate two independent, but matched datasets. From these, a composite dataset can be 

generated by randomly sampling images for each diffusion encoding direction between the two 

sets. This composite dataset can be used to reconstruct a diffusion tensor at each voxel with a 

least squares linear regression. This process can then be repeated a large number of times 

(Nboot repetitions) to generate a distribution of diffusion tensors at each voxel. Eigensystem 

decomposition can then be performed on each diffusion tensor to determine their eigenvectors 

(E1, E2, and E3) and eigenvalues (λ1, λ2, λ3). Rotationally invariant quantities such as mean 

diffusivity (MD), factional anisotropy (FA), and tensor Mode [102] can also be extracted from 

each diffusion tensor, which describe tensor size (MD) and shape (FA, Mode).  

 The precision of each eigenvector, Ej can then be measured by first calculating the 

dyadic mean, ψj of the Nboot Ej vectors and measuring the angle, θj between each vector Ej and 

ψj. Ej precision (dEj) can then characterized by the one-sided 95% confidence interval (95CI) of 

the resultant θj distribution. A one-sided 95CI is used because by definition θj≥0. Note that dE1 

as described here is exactly the cone of uncertainty as described by Jones in [128]. 

 Analogous measures of tensor invariant precision can be determined by analyzing their 

distributions across the Nboot repetitions (as done for FA in [129]). Unlike the θj distributions 

describing vector uncertainties, which by definition are bounded between 0° and 90°, the 

invariants form two-sided distributions and can meaningfully exhibit negative deviations from the 

median value. As such, their uncertainty should be represented by a two-sided 95CI, which 

need not be symmetric about the median. The width of this 95CI (i.e. the upper bound minus the 

lower bound) can then be used to represent the underlying uncertainty (dMD, dFA, dMode). 
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6.3 Methods 

6.3.1 cDTI Acquisition 

cDTI were acquired in healthy volunteers (N=10) on a 3.0T scanner (Siemens Prisma, Erlangen 

Germany) using a spin echo EPI DWI pulse sequence with convex optimized diffusion encoding 

with first and second order moment compensation (CODE-M1M2) to reduce the echo time (TE) 

and thus improve SNR. The acquisition included two b-values (b=0 and 350s/mm2) along 12 

diffusion encoding directions with 2.0x2.0x5.0mm spatial resolution (TE=65ms, 

FOV=200x160mm, GRAPPA factor 2 [35], full-Fourier, water-only excitation). Local B0 

shimming was performed in a focused shim-box containing only the left ventricular (LV) 

myocardium to minimize susceptibility artifacts in the posterior wall. Imaging was timed to an 

end-expiratory respiratory phase using a liver-dome navigator trigger (TR=one respiratory 

cycle). Separate acquisitions were performed with ECG trigger delays timed to: 1) mid-systole 

(fixed trigger delay=100ms); and 2) late diastole (subject specific trigger delay determined from 

a balanced steady state free precession (bSSFP) cine image). 10 signal repetitions were 

acquired at each cardiac phase to facilitate bootstrapped uncertainty measurement for datasets 

containing up to 5 averages (scan time: ~10 minutes per cardiac phase).  

6.3.2 Image Quality Evaluation 

While SNR generally increases with additional signal averages (SNR ∝ !!"#), it can vary 

substantially in space and between subjects due to differences in subject geometry and coil 

positioning. It is thus useful to quantify voxel-wise image SNR in order to more precisely 

observe the relationship between SNR and cDTI uncertainty. Because ten repetitions of each 

image were acquired, it was possible to map SNR for each reference DWI (b=0) acquisition. In 

order to estimate SNR from images that included several averaged repetitions, a bootstrapped 
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approach similar to that described above was used. For example, for Navg=5, five b=0 images 

were randomly chosen (with replacement) from the acquired set of ten and averaged together. 

This process was repeated to generate a set of 300 images that each included five averages. 

SNR was then calculated at each voxel by dividing the mean signal value across the 300 

images by their standard deviation. SNR maps were generated in this manner for Navg=1-10.  

 Because all pulse sequence parameters and set-up conditions were held constant 

between acquisitions at mid-systole and diastole, we can assume that any differences observed 

between the acquisitions arise from physiological variability. Furthermore, if cardiac bulk motion 

effects are present in the images, it is expected that they will vary subtly from beat to beat [59] 

and lead to signal fluctuation between repetitions. To quantify this effect, the coefficient of 

variation (i.e. the standard deviation normalized by the mean) of the image intensity across all 

10 repetitions of each direction (CoVDTI) was measured at each voxel for both cardiac phases.  

6.3.3 cDTI Precision Measurement 

Subsets of the set of 10 cDTI repetitions were first randomly selected and averaged together to 

reflect acquisitions with scan times ranging from approximately one to five minutes (Navg=1 to 

Navg=5). A second subset was then randomly generated for each case to facilitate 

bootstrapping. The uncertainty in tensor eigenvectors (dE1, dE2, dE3) and invariants (dMD, dFA, 

dMode) was then measured from the two subsets as described above. These calculations used 

Nboot=1000 bootstrapped samples which was determined to be sufficient to generate stable 

statistical measures of uncertainty (i.e. increasing Nboot did not alter the measured tensor 

uncertainties) and is in line with previous studies [126].  

 Histograms of the uncertainty in each tensor quantity were generated for all LV voxels 

within each subject for Navg=1 to Navg=5 at both mid-systole and diastole. Median and maximum 

likelihood values were then extracted from each histogram. Global LV histograms of each 
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quantity’s uncertainty were also generated from data pooled across all subjects at each cardiac 

phase. 

 Uncertainty was then characterized as a function of b=0 image SNR on a voxel-wise 

basis. This was done by first binning all voxels by SNR (bin size: 2) and generating histograms 

of uncertainty across all voxels contained in each SNR bin. The median uncertainty was then 

measured within each bin and the 95CI of the median was measured using bootstrapped 

histogram analysis. Significant differences between mid-systole and diastolic median 

uncertainties were identified by non-overlapping 95CIs. 

 In order to examine the impact of bulk motion induced signal attenuation on precision, 

the same process was then carried out to measure the median uncertainty of each parameter 

as a function of CoVDTI (bin size: 2%). 

 

6.3.4 Tensor Evolution with Varying Signal Averages 

The dependence of eigenvector and tensor invariant parameters was also evaluated as a 

function of Navg. To do so, diffusion tensors were reconstructed from cDTI image subsets 

including the full range of acquired signal averages (Navg=1-10, note that all 10 averages could 

be used for this analysis because it did not require bootstrapped resampling). Maps of E1, E2, 

E3, MD, FA, and Mode were then generated for each subset. 

 Helix Angle (HA) maps were then generated by measuring the elevation angle of the 

projection of E1 relative to the local circumferential tangent vector, C [49]. C was defined by a b-

spline vector fit to the endo- and epicardial surfaces as defined by ten manually defined seed 

points on each surface [49]. The average HA slope across the wall, HApitch was calculated using 

a linear regression between HA and percent wall depth (PWD) for each subject. PWD values 
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were calculated at each LV voxel by linearly interpolating between the endo- and epicardial 

splines (where PWD=0% at the epicardial surface and 100% at the endocardial surface). 

Myocardial sheet angles, E2A and E3A were then defined by the angles between the 

circumferential-long axis plane and E2 and E3, respectively [49]. Median myocardial HA, |E2A|, 

and |E3A| were then calculated for each subject for Navg=1-10. The median (µ) and standard 

deviations (σ) of myocardial MD, FA, and Mode were also calculated for each subject for 

Navg=1-10. Statistical differences between each median and SD across all subjects as a function 

of Navg were identified using one-way ANOVA. If ANOVA yielded significant differences, µ and σ 

from Navg=1 were compared with Navg≥2 using paired t-tests. 

6.3.5 Cardiac Phase Dependence of Tensor Parameters 

Median myocardial HA, HApitch, |E2A|, |E3A|, MD, FA, and Mode were also compared between 

mid-systole and diastole with Navg=10 using paired t-tests. 

6.4 Results 

6.4.1 Image Quality Evaluation 

All imaging experiments resulted in cDTI with sufficient quality to reconstruct diffusion tensors 

across the LV. The average heart beat duration (R-R interval) was 1006.1±101.4ms and the 

ECG trigger delays used for systolic and diastolic imaging were TDSYS=100±0ms and 

TDDIA=705±63ms. The average scan time was 9.1±3.1 minutes per cardiac phase (54.7±18.5 

seconds per cDTI average). 
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Figure 6.1: (A) Maps of eigenvector orientations for one subject from a mid-

systolic cardiac phase with (B) corresponding eigenvector orientation 95CI 

uncertainty maps and (C) histograms of uncertainty within the LV. Qualitatively, 

regions with increased uncertainty correspond with regions of eigenvector 

incoherence. Overall, uncertainty in E2 was greater than uncertainty in E1 and E3, 

a trend that was observed in all subjects. 

 The mean b=0 image SNR in the LV increased from 8.0±1.9 with Navg=1 to 22.3±6.1 

with Navg=10. No significant differences in SNR were observed between mid-systolic and 

diastolic b=0 images (8.2±1.1 vs. 7.9±2.6, p=N.S.). However, median myocardial CoVDTI was 

significantly lower in mid-systole than in diastole (16.7±2.2% vs. 25.8±9.1%, p=0.006), which 

indicates an increased sensitivity to bulk cardiac motion and a greater degree of variability in the 

diastolic phase. 

6.4.2 cDTI Precision Measurement 

Primary, secondary, and tertiary eigenvector (E1, E2, and E3) maps along with eigenvector 

uncertainty maps (dE1, dE2, and dE3) and myocardial uncertainty histograms are shown for a 

mid-systolic acquisition from a single subject in Figure 6.1. Qualitatively, regions with increased 
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uncertainty corresponded with regions with less coherent eigenvectors. cDTI images, and 

reconstructed maps of MD, FA, and Mode as well as maps of each parameter’s uncertainty and 

histograms of myocardial uncertainty are shown for the same subject and cardiac phase in 

Figure 6.2.  

 

Figure 6.2: (A) Example images with b=0 and 350s/mm2 from the subject shown 

in Figure 1 and a histogram of LV b0 SNR. Maps of tensor (B) MD, (C) FA, and 

(D) Mode with their corresponding uncertainties and LV histograms. dMD was 

low compared with myocardial MD values, while dFA was closer to myocardial 

FA and Mode was not well resolved with respect to dMode. 
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Figure 6.3: Histograms of uncertainty in tensor eigenvectors pooled from all LV 

voxels from all subjects at mid-systole (A,B,C) and diastole (D,E,F) from 

acquisitions with Navg=1-5. Uncertainty decreased with additional signal averages, 

but differences were minimal for Navg≥4. Uncertainty was larger for diastolic cDTI. 

 Histograms of tensor eigenvector uncertainty are shown in Figure 6.3 for mid-systolic 

and diastolic cDTI with Navg=1-5 pooled across all subjects at systole (Figure 6.3A-C) and 

diastole (Figure 6.3D-F). Uncertainty decreased with additional signal averages, but differences 

were minimal for Navg≥4. Uncertainty was generally larger for cDTI acquired in diastole than in 

mid-systole. Analogous histograms of tensor invariant uncertainty (MD, FA and Mode) are 

shown in Figure 6.4. Invariant uncertainty also decreased with increasing Navg, but with minimal 

differences for Navg≥4. Differences in tensor invariant uncertainty histograms between mid-

systolic and diastolic cDTI were minimal. 
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Figure 6.4: Histograms of uncertainty in tensor invariants pooled from all LV 

voxels from all subjects at (A,B,C) mid-systole and (D,E,F) diastole from 

acquisitions with Navg=1-5. Differences between mid-systolic and diastolic cDTI 

were minimal and all uncertainties reduced with increasing Navg. However, only 

minimal differences were observed between Navg=4 and 5.  

 The median and maximum likelihood values from the uncertainty histograms generated 

for each subject are shown for Navg=5 in Table 6.1. Median and maximum likelihood 

uncertainties were lower in mid-systole than in diastole for all parameters. 
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Figure 6.5: Plots of median uncertainty in (A) tensor eigenvalues and (B) 

invariants  as a function of b0 image SNR at mid-systole (solid lines) and diastole 

(dotted lines). Median uncertainties and 95CI of the medians (not shown) were 

calculated from uncertainty distributions across all voxels and subjects with a 

particular b0 SNR (binned in SNR increments of 1) across images with Navg=1-5. 

Significant differences between mid-systole and diastole were identified by non-

overlapping 95CIs and are indicated by shaded regions between the plots. dE1, 

dE2, dE3, and dMode were significantly lower at mid-systole for moderate SNRs. 

No significant differences in dMD or dFA were observed between phases. 

  
dE1  

degree 

dE2  

degree 

dE3  

degree 

dMD  

mm2/ms 

dFA 

unitless 

dMode 

unitless 

Mid-systole 
Max Likelihood 9.7±1.0 15.7±1.0 12.1±1.5 0.25±0.02 0.13±0.01 1.62±0.47 

Median 15.5±1.2 31.2±3.5 21.8±3.1 0.38±0.02 0.20±0.01 1.10±0.08 

Diastole 
Max Likelihood 17.8±21.6 84.1±1.5 42.7±33.2 0.28±0.07 0.16±0.003 1.88±0.02 

Median 31.9±7.1 59.6±6.8 40.5±6.4 0.52±0.09 0.23±0.01 1.57±0.11 

 
Table 6.1:  Mean ± SD from N=10 subjects of uncertainty histogram maximum likelihoods and 

medians with Navg=5. 
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 Median eigenvector and invariant uncertainties are plotted as functions of b0 in Figure 

6.5. Uncertainty in all measured parameters dropped consistently with increasing SNR. 

Uncertainty dropped faster with respect to SNR for mid-systolic data, particularly in dE1, dE2, 

dE3, and dMode where significant differences were observed between phases for intermediate 

SNRs as highlighted in Figure 6.5. While the maximum observed SNR across all subjects and 

voxels was 95, histograms were only generated for SNR≤50 due to a lack of sufficient data for 

meaningful statistics as seen in the histograms of b=0 SNR pooled across all subjects and 

cardiac phases which are plotted for Navg=1-5 in Figure 6.6.  

 Median uncertainty values were plotted as functions of CoVDTI in Figure 6.7. There 

were clear increases in uncertainty for all parameters with increasing CoVDTI. Figure 6.7C shows 

global histograms of CoVDTI, which demonstrates the increased CoVDTI in the diastolic phase. 

 

Figure 6.6: Histograms of b0 image SNR within the LV with Navg=1-5 for all 

subjects and phases. Median (±95CI) SNR increased from 7.4±0.3 with Navg=1 to 

16.7±0.7 with Navg=5. 

6.4.3 Tensor Evolution with Varying Signal Averages 

Differences in HA, HApitch, |E2A|, or |E3A| across signal averages at either mid-systole or 

diastole were not significant. Median myocardial values are tabulated for each parameter in 

Table 6.2. 
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 Median (µ) and standard deviations (σ) of MD, FA, and Mode across the LV 

myocardium are plotted for all subjects as functions of Navg in Figure 6.8. No significant changes 

in µMD were observed between any number of averages at either mid-systole or diastole. 

Compared with Navg=1, σMD decreased significantly with Navg≥2 in mid-systole 

(σMD,1avg=0.95±0.2mm2/ms vs. σMD,2avg=0.67±0.2mm2/ms, p=8x10-4) and with Navg≥6 in diastole 

(σMD,1avg=1.39±1.1mm2/ms vs. σMD,6avg=0.63±0.2mm2/ms, p=0.05). 

 

Figure 6.7: Plots of median uncertainty in (A) tensor eigenvalues and (B) 

invariants as a function of CoVDTI with Navg=5 and pooled across all subjects and 

cardiac phases as well as (C) histograms of CoVDTI from mid-systole and diastole. 

Median values were calculated from uncertainty distributions across all voxels 

and subjects with a particular CoVDTI (binned in increments of 1%). Uncertainty in 

all parameters increased with increasing CoVDTI indicating a connection with bulk-

motion induced signal variations. This likely explains the increased uncertainty 

observed in diastolic cDTI parameters, which had significantly higher CoVDTI. 

 Compared with Navg=1, µFA decreased significantly with Navg≥3 at both mid-systole 

(µFA,1avg=0.46±0.05 vs. µFA,3avg=0.41±0.04, p=0.01) and diastole (µFA,1avg=0.48±0.08 vs. 

µFA,3avg=0.38±0.06, p=4x10-3). Compared with Navg=1, σFA decreased significantly with Navg≥2 in 

mid-systole (σFA,1avg=0.24±0.03 vs. σFA,2avg=0.21±0.03, p=0.03) and with Navg≥3 in diastole 

(σFA,1avg=0.22±0.03 vs. σFA,3avg=0.18±0.04, p=0.01). 
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 A significant increase in Mode was observed in mid-systole with Navg≥4 compared with 

Navg=1 (µMode,1avg=0.22±0.6 vs. µMode,4avg=0.31±0.9, p=0.02). Compared with Navg=1, σMode 

decreased significantly with Navg≥3 in mid-systole (σMode,1avg=0.57±0.02 vs. σMode,1avg=0.56±0.01, 

p=0.03). No corresponding significant differences were observed in diastole. 

 

Figure 6.8: LV medians (µ) and SDs (σ) of MD (A), FA (B), and Mode (C) from mid-systolic (left) 

and diastolic (right) cDTI with Navg=1-10. Lines and error bars represent the mean and SDs 

across all subjects and dots represent individual subject values. LV SDs decreased with 

increasing Navg for all parameters but with diminishing changes with Navg≥4. Median FA values 

decreased with increasing Navg while median Mode values increased. Median MD values did not 

change with increasing Navg. 
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6.4.4 Cardiac Phase Dependence of Tensor Parameters 

With Navg=10, median myocardial MD was significantly lower in mid-systole than in diastole 

(MDSYS=1.58±0.09mm2/ms vs. MDDIA=1.91±0.34mm2/ms, p=8x10-3) whereas FA was 

significantly higher in mid-systole (FASYS=0.37±0.03 vs. FADIA=0.32±0.06, p=0.03). No significant 

differences were observed between cardiac phases for any of the other parameters examined.  

6.5 Discussion 

The observed increase in bulk motion effects and tensor precision in diastolic cDTI compared 

with mid-systolic cDTI is consistent with previous reports of the second order motion 

compensated diffusion encoding scheme [20]. M1+M2 nulled diffusion encoding relies on an 

assumption that cardiac motion can be well described by a second order polynomial (i.e. only 

velocity and acceleration terms). Systolic (contractile) motion is highly coherent and thus closely 

conforms to this assumption and is largely compensated by the CODE M1+M2 nulled gradient 

waveform. Contractile motion is also very consistent from beat to beat and over a range of heart 

rates which limits inter-shot motion fluctuations over the course of an acquisition (i.e. low CoV). 

On the other hand, diastolic motion, though smaller in magnitude, does not meet the second 

order assumption as closely and thus is not fully compensated by the M1+M2 nulling. 

Furthermore, it is highly dependent on beat to beat variations and changes in heart rate which 

leads to substantial deviations in the cDTI signal during an acquisition (i.e. higher CoV). This is 

reflected in the strong correlation between uncertainty and CoVDTI, which is an indicator of bulk-

motion artifacts, and the increased CoVDTI in diastolic imaging (Figure 6.7). 

 It is possible that the uncertainty in diastolic diffusion tensors could have been reduced 

by employing specialized image post processing algorithms to remove bulk-motion image 

artifacts such as constrained reconstruction [104] or maximum intensity projection [59, 60]. 



Chapter 6: Quantifying Precision in Cardiac Diffusion Tensor Imaging 

 127 

These correction strategies would likely reduce the effects of physiological variability, but would 

not permit the SNR gains from signal averaging. 

 

  Navg=1 Navg=5 Navg=10 

Mid-systole 

HA 3.8±3.5° 1.88±3.8° 1.6±3.1° 

HApitch -1.2±0.2°/% -1.2±0.2°/% -1.2±0.2°/% 

|E2A| 40.9±5.7° 38.2±5.5° 36.6±6.0° 

|E3A| 61.7±4.3° 65.2±5.5° 66.5±4.8° 

Diastole 

HA 4.2±4.5° 1.9±3.4° 1.14±4.1° 

HApitch -1.3±0.2°/% -1.3±0.3°/% -1.24±0.1°/% 

|E2A| 41.2±7.5° 37.8±9.9° 35.0±10.7° 

|E3A| 64.7±7.1° 67.8±7.7° 68.9±8.1° 

Table 6.2:  Mean ± SD from N=10 subjects of global median eigenvector orientation metrics with 

Navg=1, 5, and 10. 

 Uncertainty varied substantially between tensor parameters and was lowest for E1, MD, 

and FA and largest for E2, E3, and Mode. This indicates that SNR and scan time requirements 

vary depending on the parameters of interest in a given study. To contextualize these 

uncertainties, it is useful to consider examples of expected physiological variability. For 

example, the global HApitch value of 1.2±0.2°/% observed in this work (which are in line with 

other in vivo studies [15, 66]) indicate an inherent range of fiber orientations present in each 

imaging voxel. Assuming an LV wall thickness of 15mm and 2.0mm in-plane spatial resolution, 

each voxel will occupy approximately 13% of wall depth. Consequently, each voxel should 

contain a range of fiber orientations which vary by as much as 15° thus placing a reasonable 

upper bound on the expected precision of E1. For a 5 minute acquisition (5 averages, SNR~18), 

the maximum likelihood for E1 precision was within this bound for mid-systolic cDTI: 

dE1=9.7±1.0° (median dE1=15.4±1.2°). To reach median E1 uncertainties within 15°, our data 
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indicates that an SNR of at least 22 (Figure 6.5A) is required, which corresponds to an 

acquisition with ~8 averages (scan time ~8min).  

 In comparison to our observed eigenvector uncertainties, an ex vivo study of cDTI in rat 

hearts reported mean dE1, dE2, and dE3 values of 3.7°±0.2°, 10.9°±0.4°, and 10.6°±0.5°, 

respectively [126]. However, this study was performed at high field (9.4T), employed gradients 

capable of amplitudes >10x of standard clinical hardware (1T/m) and did not contend with 

physiological motion. Furthermore the 0.1mm spatial resolution protocol resulted in substantially 

lower range of fiber orientations and thus less physiological variability within each voxel. 

 Notably, the uncertainty in E2 was consistently greater than the uncertainty in E3. This 

is surprising because E2, by definition, has a larger eigenvalue than E3. This behavior was also 

reported by Teh et al. [126]. One possible explanation for this is the orthogonality enforced by 

the eigensystem tensor decomposition. This implies that once E1 and E2 are determined for a 

system, E3 is automatically oriented normal to the E1-E2 plane, which could result in the 

observed E3 uncertainties that lie between those of E1 and E2. 

 Another example of expected physiological diffusion tensor variability is the 0.9mm2/ms 

MD increase observed in myocardial infarcts compared with healthy tissue observed by Nguyen 

et al. [65]. MD precision should thus be sufficiently small to detect this difference for the purpose 

of identifying infarcts. The median MD uncertainty was within this difference for even just one 

average in mid-systole (median dMD=0.73±0.04mm2/ms). However, the uncertainty histogram 

for one average (Figure 6.4) shows that nearly 40% of voxels exhibited MD uncertainties 

≥0.9mm2/ms, a number that reduced to just 11% with five averages (median 

dMD=0.38±0.02mm2/ms). 

 Our results indicate that little benefit in precision is achieved by increasing SNR beyond 

approximately 25 (Figure 6.5), which, in this study this corresponded to an approximately 10 

minute long acquisition (i.e. ten averages). Note, that this study was conducted on a 3.0T 
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clinical system with high performance gradient hardware (Gmax=76mT/m), which reduces the 

minimum TE (65ms) for the cDTI protocol compared with more commonly available gradient 

hardware sets (Gmax=40mT/m, TEMin=85ms). The baseline SNR on these systems will 

consequently be lower than those reported here and would thus require longer scans to achieve 

the same degree of uncertainty. Further scan time increases would also be required for imaging 

at 1.5T.  

 Conversely, no significant changes in median myocardial tensor parameters or their 

standard deviations were achieved by increasing scan time beyond approximately 4 minutes, 

which corresponded with b0 image SNR=16.0±3.8 (i.e. four averages, Figure 6.8). With low 

SNR (Navg<4), we observed an upward bias in FA and a downward bias in Mode, which are both 

consistent with published reports based on numerical simulations [102]. Notably, no significant 

differences in median MD were observed for any number of signal averages. This indicates that 

MD measurement accuracy is very robust to variability and does not require long scan times. 

 The only significant differences observed between cardiac phases were an increase in 

MD and a decrease FA in diastole relative to mid-systole. It is likely that the increase in MD in 

diastole stems from the increased bulk motion sensitivity in this phase [20]. The FA decrease 

may be due to an increase in myocardial blood volume in diastole, which contributes an 

isotropic diffusive compartment. However, this comes in contrast to the increase in FA in 

diastole measured with STEAM cDTI [137]. 

 The |E2A| steepening in diastole compared with peak-systole that has been previously 

observed was not observed in this study. This may arise, in part, because the mid-systolic 

phase does not correspond with a fully contracted myocardium, which limits the observable 

differences in sheetlet mobility. Furthermore, the relatively large E2 uncertainties indicate this 

method may not be as sensitive to sheetlet mobility, possibly because of the short diffusion 

times of the CODE-M1M2 sequence. 
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 This study only examines the precision in spin echo EPI cDTI. Substantial differences 

may be observed in STEAM cDTI, which generally reports higher FA (FASTEAM~0.5-0.6 [137, 

138] vs. FASE~0.3-0.4 reported here and elsewhere [138]) values than spin echo data due to the 

longer diffusion “mixing times” that allow diffusing molecules to probe larger length scales during 

diffusion encoding. The higher effective FA will likely reduce the inherent uncertainty in E1. 

However, STEAM cDTI has half the baseline SNR of spin echo cDTI and also double the scan 

time due to the need for two heartbeats per diffusion encode, which results in lower SNR 

efficiency [138]. However, currently it is unclear how the tradeoffs between FA and SNR 

efficiency affect the relative tensor uncertainty from these pulse sequences. 

 The number of unique diffusion encoding gradient orientations sampled in a DTI 

acquisition also impacts measurement precision [131]. While neurological studies provide 

guidance in this regard (the 12-direction sampling scheme was used based on such guidance 

[131]), it remains an open question whether additional signal averages or diffusion encoding 

directions more efficiently improve the precision of in vivo cDTI. Furthermore, it is unclear how 

to best employ EPI acceleration techniques such as parallel imaging and partial Fourier, which 

have complex relationships with image SNR in that they reduce SNR efficiency but often permit 

shorter TEs. Partial fourier also has the added effect of increasing bulk motion sensitivity [100].   

 It would be interesting to observe the progression of tensor precision with Navg>5, but 

the bootstrapped technique used in this work requires a repeated acquisition and thus can only 

quantify uncertainties for datasets containing half of the acquired 10 averages. Model-based 

techniques such as the wild bootstrap [139], however, can quantify precision without a repeated 

acquisition, but require assumptions of the underlying uncertainties. It is unclear whether these 

approaches can be successfully applied to in vivo cDTI and they have not been examined in this 

work. 
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6.6 Conclusion 

Diffusion tensor precision was evaluated for in vivo spin echo cDTI using motion compensated 

CODE-M1M2 diffusion encoding. Acceptable levels of precision in E1, MD, and FA were 

achieved in a four to five minute (per slice) free breathing scan. Increased uncertainty during 

diastolic acquisitions indicate that bulk cardiac motion can still confound measurements made 

with first and second order motion compensation. 
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7 EDDY CURRENT NULLED CONVEX OPTIMIZED DIFFUSION 
ENCODING 

In this chapter, we modify the Convex Optimized Diffusion Encoding (CODE) framework to 

generate optimized gradient waveforms that reduce image distortions by nullifying the eddy 

currents that are produced in conductive MRI hardware components during gradient ramps. 

Eddy current nulled CODE (EN-CODE) gradient design is accomplished by incorporating an 

exponential eddy current decay model as an additional constraint in the optimization problem. 

We demonstrate that EN-CODE can reduce eddy current induced image distortions to a degree 

equivalent to the established twice refocused spin echo (TRSE) pulse sequence but with 

substantially shorter echo times in most situations. EN-CODE also achieves similar echo times 

to traditional monopolar diffusion encoding, which suffers from severe eddy current induced 

image distortions. This work was previously published in Magnetic Resonance in Medicine in 

2017: Aliotta E, Moulin K, Ennis DB, Eddy Current Nulled Convex Optimized Diffusion Encoding 

(EN-CODE) for Distortion-Free Diffusion Tensor Imaging with Short Echo Times. MRM; 2017 

doi: 10.1002/mrm.26709. 
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7.1 Abstract 

Purpose: To design and evaluate eddy current nulled convex optimized diffusion encoding (EN-

CODE) gradient waveforms for efficient diffusion tensor imaging (DTI) that is free of eddy 

current induced image distortions. 

Methods: The EN-CODE framework was used to generate diffusion encoding waveforms that 

are eddy current compensated. EN-CODE DTI was compared with the existing eddy current 

nulled twice refocused spin echo (TRSE) sequence as well as monopolar (MONO) and non-

eddy current compensated CODE in terms of echo time (TE) and image distortions. 

Comparisons were made in simulations, phantom experiments and neuro imaging in ten healthy 

volunteers. 

Results: EN-CODE achieved eddy current compensation with a significantly shorter TE than 

TRSE (78ms vs. 96ms) and a slightly shorter TE than MONO (78ms vs. 80ms). Intravoxel signal 

variance was lower in phantoms with EN-CODE than with MONO (13.6±11.6vs.37.4±25.8) and 

not different from TRSE (15.1±11.6) indicating good robustness to eddy current induced image 

distortions. Mean FA values in brain edges were also significantly lower with EN-CODE than 

with MONO (0.16±0.01vs.0.24±0.02, p<1x10-5) and not different from TRSE 

(0.16±0.01vs.0.16±0.01, p=N.S.). 

Conclusion: EN-CODE eliminated eddy current induced image distortions in DTI with a TE 

comparable to MONO and substantially shorter than TRSE. 

7.2 Introduction 

Diffusion weighted imaging (DWI) uses large amplitude gradient pulses to impart sensitivity to 

diffusion in the MRI signal amplitude. These same gradients, however, induce eddy currents 

within conductive hardware components in the MRI system, which generate additional magnetic 
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fields. The use of active gradient coil shielding [140-142], advanced gradient coil designs [143] 

and gradient pre-emphasis corrections [144, 145] has reduced the magnitude and impact of 

eddy currents, but they can still lead to substantial image distortions with the large amplitude 

gradient pulses used in DWI. These image distortions are especially apparent in echo planar 

imaging (EPI) — the readout most commonly used in both DWI and diffusion tensor imaging 

(DTI) — which is particularly sensitive to magnetic field perturbations. Within a specific protocol, 

eddy current induced image distortions are dependent on the direction and magnitude (i.e. b-

value) of the diffusion encoding gradients, which leads to mis-registration between different DWI 

and confounds diffusion tensor reconstruction if not carefully corrected for in post-processing 

[46, 146]. 

 In addition to improved gradient hardware and post-processing methods, modified 

pulse sequence approaches are another solution strategy. For example, the twice refocused 

spin echo (TRSE) pulse sequence [147] significantly reduces eddy current induced image 

distortions. TRSE balances the eddy currents produced by each diffusion encoding gradient 

ramp by using a bipolar gradient encoding design and an additional refocusing pulse. TRSE is 

an effective technique for mitigating eddy current induced distortions, but it significantly 

increases echo times (TE) compared with conventional monopolar (MONO) encoding. This is 

particularly true for low to moderate b-values (b≤1000s/mm2) and long EPI readouts (≥50ms, i.e. 

high spatial resolution imaging). The use of two refocusing pulses also enhances sensitivity to 

B1 imperfections and increases SAR deposition [148]. 

 Recently, Convex Optimized Diffusion Encoding (CODE) was described as a 

framework for generating time-optimal (minimum TE) gradient waveforms for spin echo EPI 

(SE-EPI) DWI [20]. CODE formulates the design of the diffusion encoding gradient waveforms 

as a constrained (i.e. gradient hardware limits, pulse sequence timing constraints, b-value, and 

gradient moment requirements) convex optimization problem. Consequently, CODE can 
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efficiently determine the diffusion encoding gradient waveform that optimally satisfies all 

requirements and produces the shortest TE. 

 In this work, the CODE framework was used to design eddy current compensated 

diffusion encoding gradient waveforms for DTI that is free of eddy current image distortions with 

a single refocusing pulse. To do so, an additional eddy current nulling constraint was 

incorporated into the CODE optimization framework. The resultant eddy current nulled convex 

optimized diffusion encoding (EN-CODE) gradient waveforms shorten TE compared with both 

TRSE and MONO DTI, particularly for low b-values and high spatial resolution imaging. EN-

CODE was evaluated using eddy current simulations as well as imaging in both phantoms and 

healthy volunteers. 

7.3 Theory 

7.3.1 CODE Optimization Framework 

The previously reported CODE framework employs convex optimization to design diffusion 

encoding gradient waveforms that minimize TE in SE-EPI DWI for a given b-value with no 

explicit constraint on gradient waveform shape or symmetry [20]. Minimum TE waveforms are 

achieved by first maximizing the b-value (b) for any particular sequence timing, which is given 

by: 

 

7.1 

where γ is the gyromagnetic ratio of 1H, TDiff is the time corresponding to the end of diffusion 

encoding and: 

b = �2

Z TDiff

0
F (t)2dt
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7.2 

where the time t=0 corresponds with the center of the excitation pulse.  

 However, because the b-value (Eqn. 7.1) is a convex and non-unique functional of G(t), 

it does not contain a single maximum that can be determined through convex optimization. To 

facilitate convex optimization, the objective function can be reformulated by defining the 

function, β: 

 

7.3 

The magnitude of β corresponds directly with the b-value, but it is a concave functional of G(t) 

(i.e. its second variation is negative definite [90]); and thus contains a unique maximum that can 

be determined using convex optimization. Consequently, the gradient waveform G(t) that 

maximizes β (and thus the b-value) can be determined using the following objective function: 

 7.4 

G(t) is defined discretely and arbitrarily on t = m•dt where m is an integer number of gradient 

time points and dt is the temporal discretization of the optimization. 

7.3.2 Optimization Constraints 

In addition to maximizing the b-value, CODE diffusion encoding gradient waveforms must also 

be achievable on an MRI system. Therefore, the CODE optimization includes three constraints: 

1) Pulse sequence timing constraints to ensure that gradients are off during periods of RF 

activity and during readout; 2) Gradient moment constraints to ensure that the total gradient 

area (i.e. M0) is zero and that higher order gradient moments (M1, M2) for motion compensated 

diffusion encoding are zero as needed (M1 and M2 were not nulled in the present study); and 3) 

F (t) =

Z t

0
G(⌧)d⌧

� =

Z TDiff

0
F (t)dt

G(t) = argmax

G
�(G)
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Hardware constraints to limit the gradient waveform design to operate within gradient amplitude 

and slewrate limits. EN-CODE adds a fourth constraint on the diffusion encoding gradient 

waveform for eddy current nulling. 

7.3.3 Eddy Current Model 

Eddy currents are generated within various conductive MRI hardware components during the 

application of time-varying gradient pulses. Eddy currents predominantly exhibit exponential 

decay over time and can be modeled as a resistive-inductive (RL) circuit. The eddy currents 

generated during equivalent gradient ramp-up and ramp-down intervals (e.g. in a trapezoidal 

gradient waveform) are equal in magnitude and opposite in direction. Exponential decay of the 

eddy currents generated at earlier time points, however, leads to imperfect cancellation and a 

non-zero superposition of the eddy current induced magnetic fields (BEC). These magnetic fields 

can persist during the EPI readout and result in deviations from the target k-space trajectory and 

substantial image distortions. By modeling the induced eddy currents with a RL-circuit BEC from 

an arbitrary gradient waveform, G(t), can be described as follows [26]:  

 

7.5 

Where * is the convolution operator, λi are the time constants of eddy current decay, and w is a 

system-dependent scaling factor for each λi. Previous approaches have effectively eliminated 

eddy current induced image distortions by compensating for a single λ [147, 149]. Considering 

only a single λ reduces the problem: 

 7.6 

In general, w is scanner-dependent scalar value, but it is not necessary to know the value in 

order to null eddy currents for any single λ, if the convolution term can be minimized at a 

BEC(t) =
X

i

w(�i)(
dG

dt
⇤ e� t

� i)

BEC(�, t) = w(�)
dG

dt
⇤ e� t

�
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specific time. Therefore, a new function is defined that is proportional to BEC, but independent of 

w:  

 7.7 

An eddy current nulling constraint can then be defined using Eqn. 7.7: 

 7.8 

where λnull is the target decay constant to be nulled. Importantly, nulling eddy currents at TDiff 

ensures that eddy current contributions from the diffusion encoding gradient waveform are zero 

for all t≥TDiff. 

 Comparing the magnitude of eddy current induced artifacts between two different pulse 

sequences is typically an empirical exercise. Note, however, that Eqn. 7.7 can also be used to 

define the eddy current characteristics of any diffusion encoding gradient waveform, which we 

term the eddy current spectrum. By calculating ε(λ,t) over a range of λ and at the end of 

diffusion encoding (TDiff) the eddy current spectrum can be compared between different diffusion 

encoding gradient waveforms. Importantly, because w is not included in this formulation, the 

eddy current spectrum is system invariant. 

7.3.4 Solution Strategy 

The time optimal EN-CODE gradient waveforms are determined by finding the minimum TE for 

which a gradient waveform exists that is consistent with all constraints and reaches the desired 

b-value. This is efficiently accomplished using a binary search through a TE search space with 

each iteration of Eqn. 4 [88, 108]. Upper and lower limits on TE (TEU and TEL) are first defined 

to initialize the optimization. TEU is defined by the TE of MONO plus 20ms, which was a suitable 

upper bound in all cases examined. TEL is defined by the TE of a spin echo sequence without 

"(�null, TDiff ) = 0

"(�, t) =
dG

dt
⇤ e� t

�
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diffusion encoding gradients, which has a minimum TE of T180+2Tε where Tε is the duration of 

the EPI readout before the spin echo (exactly half of the readout time for full-Fourier imaging) 

and T180 is the refocusing pulse duration. 

 

Figure 7.1: EN-CODE gradient optimization algorithm. The time optimal solution 

is determined by finding the minimum TE for which a diffusion encoding gradient 

waveform that is both consistent with all constraints and achieves the target b-

value (btarget) exists. Successive binary searches divide the TE search space with 

each call of the convex solver. The function β (Eqn. 7.4) is directly related to the 

b-value (i.e. maximizing β also maximized b-value) and is compatible with convex 
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optimization. The EN-CODE algorithm is equivalent to the previously described 

CODE algorithm with the added eddy current nulling constraint. 

7.4 Methods 

7.4.1 Simulations 

EN-CODE diffusion encoding gradient waveforms were designed with a range of individual λnull 

(10ms to 100ms, Δλnull=10ms) using the algorithm shown in Figure 1. This range of λnull values 

was chosen to match the time scale of the DWI pulse sequence and corresponds with values 

that have been previously shown to be relevant on a clinical MRI system [147-149]. The 

simulated pulse sequence parameters were b=1000s/mm2, bandwidth=1852Hz/pixel (0.6ms 

echo spacing), Tε=27.5ms and T180=5.2ms, corresponding with a neuro DTI protocol with 1.7mm 

in plane resolution and a 300x300mm field of view (FOV) which was subsequently used for 

phantom and in vivo imaging. Hardware constraints were defined for a 3T MRI scanner with 

high performance gradients (Gmax=80mT/m and SRmax=200T/m/s), but with Gmax limited to 

76mT/m and SRmax limited to 50T/m/s to limit peripheral nerve stimulation during diffusion 

encoding. All optimizations were performed in MATLAB (Mathworks, Natick, MA, USA) using 

the CPLEX linear solver (IBM, Armonk, NY, USA) and the YALMIP toolbox [91] with a time-step 

dt=100µs that maintained EN-CODE gradient waveform computation times to <5min without 

notably impacting the minimum possible TE. 

 Analogous TRSE diffusion encoding gradient waveforms were also designed using the 

same pulse sequence parameters and hardware constraints and with the same λnull values used 

for EN-CODE. Conventional MONO waveforms and non-eddy current compensated CODE 

waveforms were also designed. Eddy current spectra were then simulated for each diffusion 
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encoding gradient waveform using Eqn. 7.7 for a range of λ (0ms to 100ms, Δλ=1ms) and TDiff 

matched to each sequence. 

 TE differences between EN-CODE and alternative diffusion encoding methods were 

also evaluated. Minimum TEs were compared over a range of b-values (200 to 2000s/mm2) and 

Tε (10-60ms) (corresponding to roughly 0.5 to 3.0mm isotropic in-plane resolution, with full-

Fourier symmetric k-space coverage) using: 1) TRSE with λnull=80ms; 2) EN-CODE with 

λnull=80ms; and 3) MONO. λnull=80ms was used based on the findings of the phantom imaging 

experiments shown below. 

7.4.2 Phantom Imaging 

Phantom experiments were performed to evaluate eddy current induced image distortions 

between diffusion encoding methods and to determine the optimal λnull for our system. A 

phantom containing 50mL conical tubes (diameter 5.5cm) of water submerged in a 

susceptibility-matched fluid with a negligible MRI signal (Fomblin, Solvay Solexis, West 

Deptford, NJ) was imaged using a 3T scanner (Prisma, Siemens, Erlangen, Germany). DWI 

were acquired with b=1000s/mm2 along six diffusion encoding directions (±x,±y,±z), 

1.7x1.7x5mm spatial resolution (Tε=27.5ms), 15 interleaved slices, parallel imaging acceleration 

factor of two with GRAPPA [35], five averages to improve SNR, and TR=2300ms (Table 7.1). All 

acquisition parameters were matched, except TE, for all diffusion encoding schemes: 1) MONO 

(TE=80ms); 2) CODE (TE=71ms); 3) TRSE with λnull=20-100ms (TE=96ms); and 4) EN-CODE 

with λnull=10-100ms (TE=76-78ms). A Δλnull of 10ms was used for TRSE and EN-CODE. Note, 

λnull=10ms was not achievable for TRSE with this protocol due to timing constraints imposed by 

this particular Tε. EN-CODE waveforms were calculated offline as described above and then 

implemented on the scanner. 
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 Eddy current induced image distortions were evaluated for each diffusion encoding 

waveform by measuring the pixel-wise coefficient of variation (CoV) across the three acquired 

directions. The mean global CoV (CoVGlobal) was then calculated within all water voxels (masked 

to exclude the very low Fomblin signal in the b=0 images) as well in edge voxels (CoVEdge) at 

water-Fomblin interfaces. Masking was performed using magnitude thresholding and built-in 

binary image operations in Matlab. 

 The optimal λnull were determined for EN-CODE and TRSE by comparing the mean 

CoVEdge from the acquisitions with each of the ten λnull values. The λnull that led to the minimum 

CoVEdge was then used for in vivo imaging. 

 Apparent diffusion coefficient (ADC) maps were also reconstructed from each DWI set 

and mean global ADC values were measured within all water voxels. 

 

FOV 

(mm) 

Resolution 

(mm) 

b 

(s/mm2) 

TR 

(ms) 

TE 

(ms) 
Other 

MONO 

300x300 1.7x1.7x5.0 1000 2300 

80 
2x GRAPPA 

5 Averages 

15 Slices 

BW=1852Hz/px 

CODE 71 

TRSE 96 

EN-CODE 76-78 

Table 7.1:  DWI/DTI protocol details for both phantom and in vivo imaging. 

7.4.3 In Vivo Imaging 

 Neuro DTI were acquired in healthy volunteers (N=10) to further compare the four 

diffusion encoding protocols. Four DTI sets were acquired: 1) MONO; 2) CODE; 3) TRSE with 

λnull=80ms; and 4) EN-CODE with λnull=80ms.  A λnull of 80ms was chosen for TRSE and EN-

CODE based on the phantom results (see below). The in vivo protocol was identical to the 
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phantom study, but with 20 diffusion encoding gradient directions to facilitate tensor 

reconstruction (Table 7.1). 

 Images were reconstructed using the manufacturer provided pipeline and no additional 

image registration or distortion correction was performed to correct for eddy current induced 

image distortion prior to off-line tensor reconstruction from each DTI set. Fractional Anisotropy 

(FA) maps were then generated off-line from the diffusion tensors. The mean whole-brain global 

FA (FAGlobal) was measured for each diffusion encoding protocol within a manually drawn whole 

brain mask on the b=0 images and in the outermost single-pixel layer from the global mask 

(FAEdge). To visualize differences in eddy current induced image distortion, FA-weighted color 

maps of the diffusion tensor primary eigenvector (red, green and blue mapped to x, y and z) 

were generated for each subject [150].  

 All values are reported as Mean±1SD and comparisons were made using paired t-tests 

wherein p-values <0.05 were deemed statistically significant. 

7.5 Results 

7.5.1 Simulations 

  

Figure 7.2 shows EN-CODE gradient waveforms generated for a range of λnull values and the 

corresponding eddy current spectra, normalized to the largest peak. Each EN-CODE gradient 

waveform nulled eddy currents for each specified λnull. 

 Pulse sequence diagrams for MONO, CODE, TRSE with λnull=80ms and EN-CODE 

with λnull=80ms are shown in Figure 7.3. Each was used for both phantom and in vivo imaging. 

TRSE had the longest TE (96ms), which was reduced to 80ms with MONO, further reduced to 
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78ms with EN-CODE, and minimized to 71ms with CODE. The eddy current spectra for each 

sequence are shown in Figure 7.4. MONO demonstrated the largest residual eddy currents 

across all time constants (λ) whereas CODE notably reduced eddy currents at all λ while 

minimizing TE compared to the other three methods. TRSE and EN-CODE demonstrated even 

greater eddy current reductions, particularly for λ>20ms. 

 

Figure 7.2: (A) EN-CODE diffusion encoding gradient waveforms designed for 

λNULL = 20ms, 40ms, 60ms, 80ms and 100ms. While EN-CODE does not impose 

any specific gradient shape, the resultant waveforms contain only trapezoidal 

and triangular pulses. (B) The resultant eddy current spectra for each of the 

waveforms shown in (A). Each waveform nulls eddy currents with λ=λnull. 

λnull=80ms empirically produced the smallest eddy current induced image 

distortion on our system and was used for all in vivo imaging. Note that while the 

location of the refocusing RF pulse varies slightly between waveforms in (A), the 

position shown is approximated to improve visibility. 

 The minimum TE for TRSE (λnull=80ms), EN-CODE (λnull=80ms) and MONO over a 

range of b-values and Tε, as well as TE differences between sequences are shown in Figure 
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7.5. EN-CODE had a shorter TE than TRSE for 78% of the examined cases (TETRSE-TEEN-

CODE=20.8±18.8ms) and a shorter TE than MONO in 65% of cases (TEMONO-TEEN-

CODE=3.1±12.7ms) while conferring eddy current insensitivity. EN-CODE had a longer TE than 

MONO for short EPI readouts (Tε<25ms) at b-values above 500s/mm2 and a longer TE than 

TRSE for short EPI readouts (Tε<30ms) at all b-values. For Tε≥30ms, EN-CODE had a shorter 

TE than MONO and TRSE for all b-values. The choice of λnull had only a small impact on the TE 

for EN-CODE (the maximum TE difference between λnull values was 2ms) and had no impact on 

TE for TRSE. 

 

Figure 7.3: Pulse sequence diagrams for b=1000s/mm2 with (A) MONO, (B) 

CODE, (C) TRSE and (D) EN-CODE diffusion encoding. The EPI time-to-echo, 
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Tε, was 27.5ms, which accords with 1.7mm in-plane spatial resolution 

(FOV=300x300mm) for all four sequences. MONO and CODE are both 

susceptible to eddy current distortions, whereas TRSE and EN-CODE are eddy 

current compensated. EN-CODE accomplishes eddy current nulling with a slight 

TE decrease compared to MONO, whereas TRSE requires a significant TE 

increase compared with MONO. 

 

Figure 7.4: Simulated eddy current spectra at the end of diffusion encoding (TDiff) 

for a range of eddy current decay time constants (λ) for each sequence shown in 

Figure 3. Spectra are normalized by the peak of the MONO spectrum. MONO 

generates the largest residual eddy currents for all values of λ. CODE notably 

reduces eddy currents while minimizing TE whereas TRSE and EN-CODE lead 

to large reductions for λ greater than 20ms and an eddy current null point at the 

prescribed λnull=80ms. 

 

1.0 

0.5 

0
0 20 60

λ [ms]

ε(
λ)

 [a
rb

.]

Eddy Current Spectra

40

FIGURE 4

80 100

MONO 
CODE 
TRSE 

EN-CODE

TETRSE

T ε
 [m

s]

b [s/mm2]

60

50

40

30

20

10

20
0

10
00

20
0040
0

60
0

80
0

12
00

14
00

16
00

18
00

A.

B.

TEEN-CODE

b [s/mm2]

60

50

40

30

20

10

20
0

10
00

20
0040
0

60
0

80
0

12
00

14
00

16
00

18
00

b [s/mm2]

TEMONO
60

50

40

30

20

10

20
0

10
00

20
0040
0

60
0

80
0

12
00

14
00

16
00

18
00

40

20

0

-20

-40

ΔTE

m
s

150

100

50

0

TE

m
s

FIGURE 3 
Ver 1

b [s/mm2]

60

50

40

30

20

10

20
0

10
00

20
0040
0

60
0

80
0

12
00

14
00

16
00

18
00

TEMONO -TEEN-CODETETRSE -TEEN-CODE

b [s/mm2]

60

50

40

30

20

10

20
0

10
00

20
0040
0

60
0

80
0

12
00

14
00

16
00

18
00

T ε
 [m

s]

vs. MONO 
ENCODE is shorter 65% of the time 

MEAN ΔTE=3.1±12.7ms

vs. TRSE 
ENCODE is shorter 78% of the time 

MEAN ΔTE=20.8±18.8ms



Chapter 7: Eddy Current Nulled Convex Optimized Diffusion Encoding 

 147 

Figure 7.5: (A) The minimum TE as a function of b-value and EPI time-to-echo, 

Tε for TRSE, EN-CODE and MONO diffusion encoding. (B) TE differences 

between TRSE and EN-CODE (left) as well as between MONO and EN-CODE 

(right). Positive values (blue) indicate EN-CODE has a shorter TE while negative 

values (red) indicate EN-CODE has a longer TE. EN-CODE had shorter TEs 

than TRSE in 78% of instances and shorter TEs than MONO in 65% of 

instances. The black square indicates the parameters used for phantom and in 

vivo imaging in this study and plotted in Figure 7.3. The upper row (Tε=60ms) 

corresponds to a DTI protocol with ~0.5mm in-plane spatial resolution with a full-

Fourier readout, the lower row (Tε =10ms) corresponds to ~3.0mm resolution. 

 

Figure 7.6: DTI distortion, quantified by the mean coefficient of variation across 

diffusion encoding directions within phantom edges (CoVEdge) for each of the 

pulse sequences examined. Image reconstruction was performed using only the 

vendor provided pipeline and no eddy current image distortion correction was 

performed. MONO was the worst (CoVEdge=37.4±25.8) while CODE performed 

slightly better (CoVEdge=22.8±18.0). For MONO and CODE, these results are 
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independent of λnull. TRSE and EN-CODE substantially reduced image distortion 

for all choices of λnull. CoVEdge was minimized for EN-CODE with λnull=80ms 

(CoVEdge=13.6±11.6), which was used for subsequent in vivo imaging. The choice 

of λnull had little effect on distortion for TRSE so λnull=80ms (CoVEdge=15.1±11.6) 

was also used for TRSE in vivo.  

7.5.2 Phantom Imaging 

CoVEdge was plotted for for MONO and CODE and for TRSE and EN-CODE as a function of λnull 

(Figure 7.6). CoVEdge was greatest for MONO (CoVEdge=37.4±25.8%) and reduced by 39% with 

CODE (CoVEdge=22.8±18.0%). The minimum CoVEdge for EN-CODE was achieved with 

λnull=80ms (CoVEdge=13.6±11.6%), which reduced CoVEdge by 64% compared with MONO, and 

was used for subsequent in vivo imaging. TRSE demonstrated minimal variation with the choice 

of λnull (CoVEdge differences were ≤0.9% between λnull values), so λnull=80ms was also used for 

TRSE in vivo (CoVEdge=15.1±11.6%).  

 

Figure 7.7: (A) Coefficient of variation (CoV) maps calculated across all diffusion 

encoding directions for each technique as well as (B) mean CoV values within all 
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cylinders, CoVGlobal (red) and within edge voxels only, CoVEdge (blue). High CoV 

indicates large differences in signal intensity between diffusion directions which is 

indicative of eddy current induced image distortions. CoV was largest with the 

MONO sequence, reduced with CODE, and further reduced with TRSE and EN-

CODE, especially for edge voxels. (C) The segmentation used for global 

analysis. 

 

 CoV maps for MONO, CODE, TRSE (λnull=80ms) and EN-CODE (λnull=80ms) in a 

single slice are shown in Figure 7.7A. The CoV was high for MONO near phantom edges (water-

Fomblin interfaces) indicating eddy current induced misregistration between images with 

different diffusion encoding directions. This effect was mitigated with CODE and substantially 

reduced with TRSE and EN-CODE, as shown in the CoVGlobal and CoVEdge values plotted in 

Figure 7.7B. 

 No significant differences were observed in mean ADC values from any of the 

sequences. MONO ADC was 2.1±0.3mm2/ms, CODE ADC was 2.1±0.25mm2/ms, TRSE 

(λnull=80ms) ADC was 2.1±0.25mm2/ms, and EN-CODE (λnull=80ms) ADC was 2.1±0.22mm2/ms. 

7.5.3 In Vivo Imaging 

A representative neuro DTI example is shown in Figure 7.8. The apparent SNR of the DWI from 

TRSE was lower compared to the other sequences due to the longer TE (Figure 7.8A) and the 

second refocusing pulse. Eddy current distortion between diffusion encoding directions in 

MONO and CODE led to regions of notably elevated FA near brain edges (Figure 7.8B,C) that 

were largely eliminated with TRSE and EN-CODE.  

 Global FA analysis is shown in Figure 7.9. FA was reduced with CODE compared to 

MONO (FAGlobal=0.24±0.01 vs. 0.25±0.01, p=0.02; FAEdge=0.21±0.02 vs. 0.24±0.02, p=3x10-4). 

FA was further reduced with EN-CODE compared to MONO (FAGlobal=0.24±0.01 vs. 0.25±0.01, 
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p=1.5x10-4; FAEdge=0.16±0.01 vs. 0.24±0.02, p<1x10-5). Similar FA reductions were observed 

with TRSE compared to MONO (FAGlobal=0.23±0.01 vs.0.25±0.01, p=1x10-5; FAEdge=0.16±0.01 

vs. 0.24±0.02, p<1x10-5). There was no significant difference between TRSE and EN-CODE for 

either FAGlobal or FAEdge. 

 

Figure 7.8: (A) Diffusion weighted images from each technique with matched 

window and level, (B) reconstructed FA maps and (C) FA-weighted primary 

eigenvector maps where the x, y, and z vector components are mapped to red, 

green, and blue, respectively. MONO diffusion encoding leads to substantial 

eddy current image distortions that led to regions of artificially high FA (white 
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arrows). These were reduced with CODE and further reduced with TRSE and 

EN-CODE. EN-CODE, however, had a shorter TE than TRSE (78ms vs. 96ms) 

which led to higher apparent SNR in (A). 

7.6 Discussion 

The results of the simulations, phantom imaging, and in vivo imaging all indicate that EN-CODE 

achieves a significant reduction of eddy current distortions compared with MONO. In 

simulations, EN-CODE reduced TE compared with MONO and TRSE for a wide range of 

imaging and diffusion weightings parameters, only failing to do so for very short (i.e. low-

resolution) EPI readouts. Symmetric, full-Fourier k-space coverage was used in this work, but 

partial Fourier imaging can be used to substantially shorten Tε and thereby reduce TE, 

particularly for TRSE and, to a lesser extent MONO, which would reduce or eliminate the TE 

reduction of EN-CODE. However, the use of partial Fourier leads to an increase in bulk-motion 

sensitivity [100], the potential for additional signal attenuation from eddy currents [151], a 

broader point-spread function, and lower SNR. EN-CODE can be used to shorten TE without 

the drawbacks of partial Fourier imaging. For the protocol used in this study (1.7mm in-plane 

resolution, b=1000s/mm2) a partial Fourier factor of 6/8 (i.e. Tε=20.6ms) results in TE=78ms for 

TRSE, which is equivalent to full-Fourier EN-CODE. 

 

Figure 7.9: (A) Mean global FA values measured in all brain voxels, FAGlobal (red) 

and voxels along brain edges, FAEdge (blue). * Indicates significant differences 
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from MONO (p<0.05). (B) Example DWI and mask used for FAGlobal and FAEdge 

analysis. Notably, FAEdge was highest with MONO, decreased with CODE and 

decreased further with both TRSE and EN-CODE. This indicates that CODE 

reduces eddy current distortions compared with MONO and that both TRSE and 

EN-CODE further reduce them. Trends were equivalent for FAGlobal and FAEdge, 

but changes were exaggerated in edge voxels where distortions have a larger 

impact on the diffusion tensor. 

 While EN-CODE reduced TE compared to TRSE and MONO for a wide range of 

acquisition parameters, it led to longer TEs for cases with high b-values and very short (i.e. low 

spatial resolution, partial Fourier) EPI readouts. In these cases, the temporal footprint of the 

readout within the TE is reduced, which improves the efficiency of non-optimized waveforms. 

Therefore, TRSE may be a better choice for these applications. The EN-CODE framework is 

compatible with a TRSE-like double echo sequence which, when combined, may also confer TE 

reductions. However, this has not been evaluated in the present study. 

 Eddy current distortions in EN-CODE were more sensitive to the choice of λnull than 

TRSE. This may be due to the substantially lower gradient amplitudes used in TRSE than in 

EN-CODE (gradient amplitude was 46mT/m for TRSE vs. 76mT/m for EN-CODE). The use of 

two refocusing pulses in TRSE causes the minimum TE to be especially dictated by Tε rather 

than b-value (as shown by the flat TRSE TE distribution in Figure 7.5), which also indicates that 

higher b-values could have been accomplished without increasing TE by increasing gradient 

amplitude. This also led to lower slew rates for TRSE (30T/m/s) because ramp times were fixed 

for all diffusion encoding gradients in our vendor-provided implementation of TRSE. Further 

optimization could have thus led to a slightly shorter TE for TRSE. However, even with the 

higher gradient amplitudes and higher slew rates, EN-CODE (λnull=80ms) achieved equivalent 

eddy current nulling performance to TRSE (λnull=80ms).  
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 The relatively flat behavior of EN-CODE for λnull≥50ms indicates that the technique is 

unlikely to be sensitive to slight variations in hardware between scanners or to the presence of 

multiple eddy current decay times. This behavior is also consistent with the smooth eddy current 

spectra for EN-CODE as shown in Figure 7.2. Further distortion reductions may be achievable 

by nulling multiple values of λnull as previously shown in a double echo sequence [148] albeit 

with likely TE increases. 

 The in vivo neuro DTI results demonstrate that EN-CODE improves diffusion tensor 

reconstruction without the need for post-processing eddy current corrections. While numerous 

image processing corrections exist that improve DTI reconstruction in the presence of eddy 

current distortions [46, 151, 152], an eddy current nulled diffusion encoding approach avoids the 

added complexity and potential for errors [153] and EN-CODE achieves this with no penalty 

compared to MONO over a wide range of acquisition parameters. 

 It is possible that subject motion between diffusion encoding directions could have 

contributed to the observed artifacts near the edges of the brain. However, the consistency of 

our findings across ten subjects indicates that eddy current induced image distortions were the 

predominant cause of distortion in the MONO and CODE sequences. 

 Although it was not evaluated in this work, the tripolar approach for eddy current nulling 

previously described by Finsterbusch [149] also reduced TE compared with TRSE in many 

scenarios and used only a single refocusing pulse. EN-CODE has similar benefits to this 

approach, but has the added flexibility of optimally conforming to any set of sequence 

parameters. Furthermore, the tripolar approach uses a gap between gradient lobes to 

accomplish eddy current nulling, which leads to sub-optimal diffusion encoding efficiency which 

extends TE. 

 EN-CODE gradients are not symmetric about the refocusing pulse, therefore 

concomitant magnetic field corrections are needed to avoid significant image artifacts. A 
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previously described linear correction was used in this work [96, 108] and no residual effects 

were observed. This approach is widely used for TRSE and was also used for CODE in this 

work. 

 It is also notable that CODE, which does not explicitly account for eddy currents, 

improved eddy current distortions compared to MONO while substantially reducing TE. CODE 

has previously been shown to reduce TE compared with MONO for a wide range of b-values 

and EPI durations [108] indicating that the CODE gradient design is both time optimal and more 

robust to eddy current induced image distortion than MONO. However, both phantom and in 

vivo imaging showed that some residual eddy current effects were still present in CODE. 

7.7 Conclusion 

EN-CODE reduced eddy current induced image distortions in DTI by incorporating eddy current 

compensation in the previously described CODE optimization framework. EN-CODE also has a 

shorter TE compared to MONO and TRSE over a wide range of acquisition parameters. 
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8 APPENDIX 

This appendix contains a brief, general description of mathematical optimization and convex 

optimization and how these concepts apply to the diffusion encoding gradient optimizations 

described in Chapters 4 and 7. 

8.1 Optimization 

Broadly speaking, optimization refers to the process of finding the input value that minimizes or 

maximizes a particular function. For the case of a minimization of some function f(x), this can be 

represented by: 

 

8.1 

Here, x represents the input value to f that produces the minimum output value, f(x). There are 

many ways that this class of problem can be solved and these specifics are outside of the scope 

of this dissertation. 

x = argmin
x

f(x)
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8.2 Convex Optimization 

The strategy for solving an optimization problem and the speed with which it can be solved is 

highly dependent on the characteristics of the function, f to be maximized or minimized. One 

important characteristic for the purposes of optimization is convexity. A convex function has 

features that are particularly useful in optimization and is generally defined by the following 

criterion: 

! !!! + (! − !)!! <  !!(!!) + ! − ! !(!!) 8.2 

Where 0 < θ < 1. In a one-dimensional case, this can be understood as the case where a ray 

connecting any two points on a curve, f(x1) and f(x2), is entirely above the function f(x) for 

x1<x<x2 and is illustrated in Figure 8.1. 

 

Figure 8.1: Examples of a convex function (A) and non-convex functions (B and 

C). In one-dimension, convexity requires that a line connecting two points on the 

curve must exist entirely above the curve itself. 

 While not all optimizations present themselves immediately as convex optimization 

problems, it is useful to formulate them as such when possible (as in the case described in 

Chapter 4). While solutions can be reached for non-convex problems, many proven methods 

exist for solving convex optimization problems extremely efficiently and reliably. For this reason, 
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convex optimization has found many applications in situations where the fast, robust 

convergence to a solution is of great importance. 

8.3 Convex Gradient Optimization 

In the context of MRI gradient waveform design, an optimization problem can be defined 

wherein the gradient waveform, G(t), serves as an input value to some function of interest, f(G) 

with a desired output parameter, y: y = f(G). To design a gradient waveform with this property, 

the optimization can be formulated as: 

 
8.3 

Note that in this case the input G(t) is not a scalar value, but a function defined discretely over 

time. Alternatively, we may wish to simply minimize or maximize the output f(G). These 

problems can be formulated as follows:  

 8.4 

    
8.5 

The function, f and output, y can be chosen to specify the desired properties of the gradient 

pulse. For example, in the case of diffusion encoding gradient waveform design, one may wish 

to determine the waveform that maximizes the diffusion encoding strength (b-value, Equation 

4.9): 

    8.6 

The b-value function is convex with respect to G(t). However, the minimum of b=0 simply 

corresponds with the trivial case of G(t)=0 for all t. It is challenging to determine a maximum of 

the b-value function because of its degenerate nature. This degeneracy arises because multiple 

G(t) = argmin
G

f(G)� y

G(t) = argmax

G
f(G)

G(t) = argmin
G

f(G)

G(t) = argmax

G
b(G)
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distinct G(t) inputs can produce the same b-value. For example, flipping the polarity of any 

gradient waveform ahs no impact on its b-value. 

 While it is difficult to conceptualize the “shape” of the b-value function over the full space of 

gradient waveform possibilities, it can be easily visualized for a case with only one degree of 

freedom. Consider a gradient waveform consisting of only two rectangular pulses with fixed 

duration and spacing, but with amplitudes G1 and G2 free to vary between +80mT/m and -

80mT/m (Figure 8.2A). To ensure zero total gradient area, G2 must be equal to -G1. Thus, the 

full space of possible waveforms can be described by only G1. If b-value is plotted as a function 

of G1 (Figure 8.2B), we can see that it is quadratic and possesses two equivalent maxima at 

+80mT/m and -80mT/m. 

 If we instead define the function β (Equation 4.11), which has a single common maximum 

with b-value and varies linearly with G1 instead of quadratically (Figure 8.2C) we can separate 

each waveform from its negative counterpart. As a result, β has a unique maximum that can be 

easily and efficiently determined using convex optimization with the following objective function:  

 8.7 

This objective function can be used to determine the G(t) that occupies the global maximum of 

β. Because this maximum corresponds with one of the degenerate b-value maxima, it still 

solves the desired problem. Note that if the objective were reformulated to minimize β, the 

optimization would converge to the inverse of G(t) as determined by the maximization problem. 

and the same problem would effectively be solved. 

G(t) = argmax

G
�(G)
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Figure 8.2: Diffusion encoding gradient waveforms (A) with fixed durations and 

variable gradient amplitudes G1 and G2. While the b-value (B) of any waveform 

and its inverse (i.e. purple vs. orange) are equivalent, β has a unique value for 

each waveform (C), which facilitates the use of convex optimization. 
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