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RESEARCH PAPER

Gut microbiota and derived metabolites mediate obstructive sleep apnea 
induced atherosclerosis
Jin Xuea, Celeste Allabanda, Simone Zuffab,c, Orit Poulsena, Jason Meadowsa, Dan Zhoua, Pieter C. Dorresteina,b,c, 
Rob Knighta,d,e, and Gabriel G. Haddada,f,g

aDepartment of Pediatrics, University of California San Diego, La Jolla, CA, USA; bSkaggs School of Pharmacy and Pharmaceutical Sciences, 
University of California San Diego, La Jolla, CA, USA; cCollaborative Mass Spectrometry Innovation Center, University of California San Diego, 
San Diego, CA, USA; dCenter for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA; eDepartment of Computer 
Science and Engineering, University of California, San Diego, La Jolla, CA, USA; fDepartment of Neuroscience, University of California San 
Diego, La Jolla, CA, USA; gThe Division of Respiratory Medicine, Rady Children’s Hospital, San Diego, CA, USA

ABSTRACT
Obstructive sleep apnea (OSA) is characterized by intermittent hypoxia/hypercapnia (IHC), affects 
predominantly obese individuals, and increases atherosclerosis risk. Since we and others have 
implicated gut microbiota and metabolites in atherogenesis, we dissected their contributions to 
OSA-induced atherosclerosis. Atherosclerotic lesions were compared between conventionally- 
reared specific pathogen free (SPF) and germ-free (GF) Apoe−/− mice following a high fat high 
cholesterol diet (HFHC), with and without IHC conditions. The fecal microbiota and metabolome 
were profiled using 16S rRNA gene amplicon sequencing and untargeted tandem mass spectro-
metry (LC-MS/MS) respectively. Phenotypic data showed that HFHC significantly increased athero-
sclerosis as compared to regular chow (RC) in both aorta and pulmonary artery (PA) of SPF mice. 
IHC exacerbated lesions in addition to HFHC. Differential abundance analysis of gut microbiota 
identified an enrichment of Akkermansiaceae and a depletion of Muribaculaceae (formerly S24–7) 
family members in the HFHC-IHC group. LC-MS/MS showed a dysregulation of bile acid profiles 
with taurocholic acid, taurodeoxycholic acid, and 12-ketodeoxycholic acid enriched in the HFHC- 
IHC group, long-chain N-acyl amides, and phosphatidylcholines. Interestingly, GF Apoe−/− mice 
markedly reduced atherosclerotic formation relative to SPF Apoe−/− mice in the aorta under HFHC/ 
IHC conditions. In contrast, microbial colonization did not show a significant impact on the 
atherosclerotic progression in PA. In summary, this research demonstrated that (1) IHC acts 
cooperatively with HFHC to induce atherosclerosis; (2) gut microbiota modulate atherogenesis, 
induced by HFHC/IHC, in the aorta not in PA; (3) different analytical methods suggest that a specific 
imbalance between Akkermansiaceae and Muribaculaceae bacterial families mediate OSA-induced 
atherosclerosis; and (4) derived bile acids, such as deoxycholic acid and lithocholic acid, regulate 
atherosclerosis in OSA. The knowledge obtained provides novel insights into the potential ther-
apeutic approaches to prevent and treat OSA-induced atherosclerosis.
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Introduction

Obstructive sleep apnea (OSA) is a respiratory dis-
order characterized by recurrent upper airway col-
lapse during sleep which leads to inadequate blood 
gas exchange, namely intermittent hypoxia and 
hypercapnia (IHC). OSA is a public health concern 
mainly because of its high prevalence and its wide 
association with cardiovascular morbidity and 
mortality.1–5

OSA is an independent risk factor for 
atherosclerosis.6–8 Drager L et al. showed that 
OSA patients exhibit early signs of atherosclerosis 

and the level of atherosclerosis correlates with the 
severity of OSA.7 Atherosclerosis is a slow, lifelong 
plaque (i.e. buildup of fats, cholesterol, and other 
substances) formation and accumulation in the 
walls of arteries. With plaque buildup, blood vessel 
walls thicken leading to narrowing of lumens and 
reduction of blood flow. When a plaque ruptures or 
erodes, it exposes thrombogenic material to the 
bloodstream, triggering clot formation, which is 
the primary cause of atherothrombosis and 
a serious complication of atherosclerotic cardiovas-
cular diseases. Such a process could result in life- 
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threatening conditions, such as stroke or myocar-
dial infarction. OSA accelerates atherosclerosis 
probably by inducing key atherogenic risk factors, 
such as systemic inflammation, oxidative stress, 
endothelial dysfunction, elevated systemic blood 
pressure, platelet activation as well as abnormal 
glucose and lipid metabolism.6,8 Accumulating 
research evidence suggests that the gut microbiota 
composition and functionality, via derived meta-
bolites, is also involved in this atherogenic 
process.9,10

The gut microbiota, including bacteria, viruses 
and fungi, colonizes the gastro-intestinal tract of 
the host and plays a role in the modulation of 
immune response, absorption of nutrients, metabo-
lism and development of organ systems in various 
animals including humans.11,12 It is proposed that 
the gut microbiota may influence the formation of 
atherosclerosis through different mechanisms: (1) 
bacterial infection (e.g. lipopolysaccharides and pep-
tidoglycans) can activate the immune system and 
trigger a harmful inflammatory response that aggra-
vates plaque progression and rupture13,14; (2) cho-
lesterol and lipid metabolism altered by the gut 
microbiota can modulate the development of 
atherosclerosis9; (3) microbial metabolites can have 
either beneficial or deleterious effects on 
atherosclerosis.14 For example, short-chain fatty 
acids (SCFAs),15 bile acids (BAs)16 and trimethyla-
mine N-oxide (TMAO),10 have been shown to act as 
signaling molecules mediating the communications 
between the gut microbiota and the host to affect the 
progression of atherosclerosis; (4) dietary constitu-
ents have profound effects on the composition and 
function of gut microbiota.17–19 The interplay 
between diet, microbiota, and microbial metabolites, 
can impact human health and disease susceptibility, 
including atherosclerosis;10,20–23 and (5) microbial 
metabolites, generated from dietary sources through 
meta-organismal pathways, including TMAO, phe-
nylacetylglutamine (PAGln), indoxyl sulfate, 
p-Cresol sulfate and SCFAs, could affect platelet 
responsiveness thereby the risk of an atherothrom-
botic complication.9,24 Interestingly, we and others 
have found that the gut microbiota and produced 
metabolites are altered in different mouse models of 
OSA.25–27

However, the mechanistic roles of the gut micro-
biota and their metabolites in atherosclerosis under 

a HFHC diet and IHC remain obscure. In the 
current study, we investigated the contribution of 
HFHC diet in inducing or promoting atherosclero-
sis with or without IHC, the changes of gut micro-
biota and metabolites caused by HFHC diet and 
IHC, as well as the causal relationship between the 
gut microbiota and OSA-induced atherosclerosis.

Materials and methods

Animals

Ten weeks old male atherosclerosis-prone Apoe−/− 

mice on C57BL/6J background (002052; The 
Jackson Laboratory, Bar Harbor, ME)28 were used 
in the present study. Apoe deficiencies were con-
firmed by polymerase chain reaction (PCR). Germ- 
free (GF) Apoe−/− mice were re-derived in the 
laboratory of Dr. Sarkis Mazmanian at California 
Institute of Technology (Caltech) and maintained 
in the GF core at University of California San 
Diego (UCSD). GF status was routinely monitored 
by aerobic and anaerobic cultures, as well as 16S 
PCR using Zymo Research Quick-DNA Fecal/Soil 
Microbe Miniprep Kit (D6010, Zymo Research, 
Irvine, CA) (Supplementary Figure S1). All animal 
protocols were approved by the Animal Care 
Committee of the University of California San 
Diego and followed the Guide for the Care and 
Use of Laboratory Animals of the National 
Institutes of Health.

Diets

Mice were fed either a high fat and high cholesterol 
diet (HFHC) containing 1.3% cholesterol by weight 
and 42% fat by Kcal (TD.96121; Envigo-Teklad, 
Madison, WI) or a regular chow (RC) containing 
0.003% cholesterol by weight and 14% fat by Kcal 
(TD8604; Harlan-Teklad, Madison, WI) for 
10 weeks. Irradiated diet was given to germ-free 
mice. The body weight of each mouse was mea-
sured twice a week. The food intake of the animals 
in each cage was recorded every week.

Intermittent hypoxia and hypercapnia treatment

Intermittent hypoxia and hypercapnia (IHC) was 
administered in a computer-controlled atmosphere 
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chamber (OxyCycler, Reming Bioinstruments, 
Redfield, NY) as previously described.27 Mice 
were exposed to IHC for short periods (∼4  
minutes) of 8% O2 and 8% CO2 separated by alter-
nating periods (∼4 minutes) of normoxia (21% O2) 
and normocapnia (0.5% CO2) with 1–2 minutes 
ramp intervals, 10 minutes per cycle, 10 hours 
per day during the light cycle, for 10 weeks. 
Control mice were under room air (21% O2 and 
0.5% CO2) fed with either the same HFHC or RC 
diet. Supplementary Figure S2 illustrated the 
scheme of treatment paradigm.

Quantification of atherosclerotic lesions

Atherosclerotic lesion was quantified according to 
previous publications.27,29 Briefly, the mouse hearts 
were perfused with 4% paraformaldehyde. The 
aorta and pulmonary artery were dissected out 
and stained with Sudan IV. The magnitude of 
lesion was presented by the percentage of Sudan 
IV-stained area to the total area of the blood vessel 
examined with computer-assisted image analysis 
(ImageJ, NIH Image).30 Images of the aortic arch 
were cropped from the rest of the aorta (aortic 
trunk) by measuring the same distance from the 
bifurcation to the trunk using photo-editing soft-
ware (Adobe Photoshop CS6, Adobe Systems Inc., 
San Jose, CA). The blinded measurements were 
performed.

Microbiome analysis

Fecal samples were collected consistently between 
9AM and 11AM (ZT3-ZT5) on collection days and 
immediately stored at −80°C until the end of the 
study. We chose to collect samples at ZT3-ZT5 due 
to a concomitant circadian study from our group 
indicating it was the time of greatest microbiome 
composition differences between IHC and Air.31,32 

Samples were then prepared for sequencing and ana-
lysis following the Earth Microbiome Project standard 
protocols (http://www.earthmicrobiome.org/proto 
cols-and-standards/16s.).33 The V4 region of 16S 
rRNA gene was sequenced using the primer pair 
515f to 806 r with Golay error-correcting barcodes 
on the reverse primer. After processing, raw sequence 
data was uploaded to Qiita (QIITA #11548)34 and 
processed using the Deblur workflow (v2021.09)35 

with default parameters into a BIOM format table 
with amplicon sequencing variants (ASVs). The 
BIOM table was processed through QIIME 2 (version 
2024.2).36 Greengenes2 was used for phylogeny and 
taxonomy.37 Datasets were rarified to 10,200 reads to 
control for sequencing effort. Robust principal com-
ponent analysis (RPCA)38 and Weighted UniFrac39 

beta diversity distances were used to evaluate and 
compare microbiome compositional differences. 
Significance was tested using PERMANOVA40 and 
linear mixed effects models41 (generic equation: vari-
able of interest ~ host age * diet-exposure group; ran-
dom effect = host_subject_id). Differential abundance 
analysis on the feature table collapsed to family level 
was performed using ANCOM-BC242,43 and RPCA 
ranks and visualized using Qurro.44 Time-informed 
dimensionality reduction for longitudinal micro-
biome studies (TEMPoral TEnsor Decomposition =  
TEMPTED) was also used to identify ASV of 
interest.45 TEMPTED dimensionality reduction flat-
tens all information from all timepoints for each 
mouse to a single point for comparison. Data was 
visualized using EMPeror46 and custom python 
scripts. Log ratios are used instead of relative abun-
dances due to their increased replicability across 
studies.47,48

Untargeted metabolomics analysis

Fecal samples were analyzed via untargeted liquid 
chromatography coupled with tandem mass spec-
trometry (LC-MS/MS) as previously described.26,49 

Briefly, the samples were run on a Vanquish ultra-
high-performance liquid chromatography (UHPLC) 
system coupled to a Q Exactive mass spectrometer 
(Thermo Fisher Scientific, Bremen, Germany). 
A C18 core shell column (Kinetex, 50 by 2 mm, 
1.7-µm particle size, 100-Å pore size; Phenomenex, 
Torrance, CA) was used for chromatography. Raw 
data were converted to mzML format using 
MSConvert.50 Feature detection and extraction 
were performed via MZmine 4.2.51 Briefly, MS1 
and MS2 noise levels were set to 5E4 and 1E3 
respectively for mass detection. Chromatogram 
builder parameters were set at 5 minimum consecu-
tive scans, 1E5 minimum absolute height, and 10 
ppm for m/z tolerance. The local minimum resolver 
function had the following parameters: chromato-
graphic threshold 85%, minimum search range RT 
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0.2 min, minimum ratio of peak top/edge 1.7. After 
that, 13C isotope filter and isotope finder were 
applied. Features were aligned using join aligner 
with weight for m/z set to 80 and RT tolerance set 
to 0.2 min. Features not detected in at least 2 samples 
were removed before using the peak finder function. 
Finally, an ion identity network was generated 
before exporting the metabolomics feature table 
with the peak areas and the .mgf file necessary for 
feature based molecular networking (FBMN) job52 

created on GNPS2 (https://gnps2.org/status?task= 
0ec6adc1ae534ba3bfcceb9283e3a920.).

Omics integration

Joint-RPCA is uniquely suited to understanding 
sparse and compositional data as seen in the final 
time point of both microbiome and metabolome 
data. This unsupervised machine learning method 
for multi-omics data applies robust-centered-log- 
ratio transformation (rclr), to center the data around 
zero and approximate a normal distribution, to each 
matrix.53 Rclr handles the sparsity without requiring 
imputation. The joint factorization used builds on the 
OptSpace matrix completion algorithm, which is 
a singular value decomposition optimized on a local 
manifold. For each matrix, the observed values were 
only computed on the non-zero entries and then 
averaged, such that the shared estimated matrices 
were minimized by gradient descent and then opti-
mized across all matrices. To ensure consistency of 
estimated matrices rotation, the estimated shared 
matrix and the matrix of shared eigenvalues across 
all input matrices were recalculated at each iteration. 
To prevent overfitting, cross-validation of the recon-
struction was performed. Samples were randomly 
assigned to training (80%) or test (20%) sets. 
Minimization was performed on only the training 
set data. The test set data were then projected into 
the same space using the training set data estimated 
matrices and the reconstruction of the test data was 
calculated. The correlations of all features across all 
input matrices were then calculated from the final 
estimated matrices.

Statistical analysis

Lesion data were presented as means ± standard 
error of the mean (SEM). One-way ANOVA 

followed by Tukey’s multiple comparison test or 
Student’s t- test was employed and p < 0.05 was 
considered statistically significant. Metabolomics 
data were imported in R 4.2.2 (The R Foundation 
for Statistical Computing, Vienna, Austria) for 
downstream data analysis. Briefly, quality control 
samples were used to check data quality and blank 
subtraction was used to remove noisy features. 
Features with near zero variance were removed 
using the package `caret v 6.0`. Multivariate analy-
sis was conducted using the package `mixOmics 
v 6.22`.54 Principal component analysis (PCA) and 
partial least square discriminant analysis (PLS-DA) 
were performed on the peak areas after robust 
center log ratio transformation (rclr) via the pack-
age `vegan v 2.6`. For the unsupervised PCA mod-
els, PERMANOVA was used to evaluate group 
centroid separation while to evaluate the perfor-
mance of the PLS-DA models a 5-folds cross- 
validation was used. Variable importance (VIP) 
scores were calculated per feature and features 
with VIPs > 1 were considered as significant. 
ANOVA followed by Tukey’s HSD test, for FDR 
correction, was used to investigate group 
differences.

Results

IHC exacerbates atherosclerotic plaque formation 
under the HFHC diet

To investigate the impact of high fat and high 
cholesterol (HFHC) and IHC on atherosclerotic 
lesion development, SPF Apoe−/− mice were fed 
with either a HFHC diet or regular chow (RC) 
diet for 10 weeks. Animals were also exposed to 
either room air (Air) or intermittent hypoxia/ 
hypercapnia (IHC) to study the potential athero-
genic effect of OSA. HFHC-treated mice exhibited 
significantly more atherosclerotic lesions than 
those fed with RC in room air (Figure 1). 
Specifically, the aorta (HFHC-Air 8.1 ± 0.76% vs 
RC-Air 1.0 ± 0.27%, p < 0.001), the aortic arch 
(HFHC-Air 16.6 ± 2.00% vs RC-Air 2.3 ± 0.55%, 
p < 0.001), and the pulmonary artery (HFHC-Air 
12.2 ± 1.51% vs RC-Air 0.2 ± 0.06%, p < 0.001) 
were all affected. Ten-week IHC exposure further 
aggravated atherogenesis in the aorta, aortic arch, 
and PA, as compared to Air controls in the 
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presence of HFHC (Aorta, HFHC-IHC 13.8 ±  
0.96% vs HFHC-Air 8.1 ± 0.76%, p < 0.001; Aortic 
arch, HFHC-IHC 28.5 ± 1.88% vs HFHC-Air 16.6  
± 2.00%, p < 0.001; PA, HFHC-IHC 28.9 ± 2.81% vs 
HFHC-Air 12.2 ± 1.51%, p < 0.001) (Figure 1), 
indicating that IHC works synergistically with 
HFHC to influence atherosclerosis.

To evaluate lesion development with diet and 
environmental exposure, we measured body weight 
and food consumption. Not surprisingly, mice on 
the HFHC diet had significantly higher weight gain 
than those in the RC group (Supplementary Figure 
S3(a)). Intriguingly, IHC exposure decreased body 
weight gain compared to their Air controls 
(Supplementary Figure S3(a)), along with increased 
lesion formation. Of note, Apoe−/− mice consumed 
more RC food than HFHC food throughout the 
whole treatment period. IHC stress reduced food 
intake relative to Air controls under the same 
HFHC diet condition, starting week 3 of the treat-
ment (Supplementary Figure S3(b)).

Both HFHC and IHC alter the gut microbiota 
composition

To find out the changes of gut microbiota composi-
tion by HFHC and IHC, serial fecal samples from all 
mice were collected every 3–4 days during the study 
(10 weeks) and analyzed by 16S V4 amplicon 
sequencing.

A beta diversity metric based on robust center log 
ratio (rclr) transformed data, RPCA, was used to 
examine gut microbial composition (Figure 2(a)). 
While groups were not significantly different at the 
initial time point when all animals were on RC, differ-
ences accumulated over time. Strong effects of both 
diet and experimental exposure type were observed 
(RC-Air vs HFHC-Air, PERMANOVA p < 0.001, 
pseudo-F statistic = 295; RC-Air vs HFHC-IHC, 
PERMANOVA p < 0.001, pseudo-F statistic = 380; 
HFHC-Air vs HFHC-IHC, PERMANOVA p <  
0.001, pseudo-F statistic = 22). Other traditional beta 
diversity metrics, such as weighted UniFrac, 

Figure 1. Atherosclerotic lesions after 10-week of HFHC diet with or without IHC in SPF Apoe−/− mice. (a) Representative Sudan iv- 
stained images of lesions. (b) The en-face lesions were quantified as the percentage of lesion area in the total area of the blood vessel 
examined. HFHC diet increased lesion formation and IHC further accelerated atherosclerotic progression in the presence of HFHC. Data 
are presented as means ± SEM. Statistical significance tested via one-way ANOVA followed by Tukey’s multiple comparison test. 
Significance: ***p < 0.001.
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supported these observations (Supplementary Figure 
S4(a)). We also saw significant and clear separation 
between groups when using the TEMPoral TEnsor 
Decomposition (TEMPTED) beta diversity metric, 
which captures within-subject correlation and tem-
poral structures in longitudinal datasets better than 

other methods45 (Figure 2(b)). Additionally, examina-
tion of alpha diversity metrics also revealed strong 
effects of diet on microbiome composition, especially 
for observed features and Faith’s PD, which measures 
biodiversity (Supplementary Figure S4 (b-d)). 
Differentially abundant bacterial families identified 

Figure 2. Microbiome analysis of SPF Apoe−/− mice on a 10-week HFHC diet with or without IHC treatment. (a) RPCA beta diversity 
PCoA Emperor plot, metric based on robust center log ratio (rclr) transformation. Each dot represents a single sample. PERMANOVA 
was used to determine significance. (b) TEMPTED beta diversity PCoA of the microbiome. Each point represents a unique mouse. 
PERMANOVA was used to determine significance. (c) Log fold change barplots the top differentially abundant microbial families in 
response to exposure type when diet is held constant via ANCOM-BC (p < 0.0001). (d) Log fold change barplots of the top differentially 
abundant microbial families in response to diet when exposure type is held constant via ANCOM-BC (p < 0.0001). (e) Natural log ratio 
of two families of bacteria previously found to be important in this murine model. The numerator contains all ASV assigned to the 
muribaculaceae family; the denominator contains all the ASV assigned to the akkermansiaceae family. The thick lines represent the 
mean of all mice in the group and the thin lines represent individual mice over time. Linear mixed effect model (equation: log_ratio  
~ host_age * diet_exp + (1|host_subject_id)) was used to determine significant differences across time. (f) The same log ratio as in C, 
but only the last 2 time points (host age 19 and 19.5 weeks) shown by group. Mann-Whitney-Wilcoxon test with Bonferroni correction 
was used to determine significance. Significance: *p < 0.05; **p < 0.01; ***p < 0.001.
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by ANCOM-BC2 were shown in Figure 2(c) (IHC vs 
Air, all on HFHC) and Figure 2(d) (HFHC vs RC, all 
in room air). Key overlapping families with opposing 
enrichments are Muribaculaceae and 
Akkermansiaceae (Figure 2(c-d), bold and star). 
Based on our previous work26,55 as well as differential 
abundance results from this dataset using RPCA 
rankings (Figure 2(a)), TEMPTED rankings 
(Figure 2(b)), and ANCOM-BC discriminant features 
(Figure 2(c-d)), we examined a relevant natural log 
ratio comparing reads from ASV belonging to 
Muribaculaceae (formerly known as S24–7) and 
Akkermansiaceae families (Figure 2(e)). This log 
ratio revealed significant differences among all three 
groups over time when using linear mixed effects 
models. Mice on HFHC diet and exposed to IHC 
conditions were the group most likely to have more 
Akkermansiaceae than Muribaculaceae, especially by 
the end of the experiment (Figure 2(f)). In addition, 
a log ratio based on the top and bottom TEMPTED 
differentially ranked ASV for Axis 1 was created, 
which separated IHC from Air condition, regardless 
of diet (Supplementary Figure S4(e) and 
Supplementary Table S1). A log ratio based on the 
top and bottom TEMPTED differentially ranked ASV 
for Axis 2 was also created, which did a better job of 
separating regular chow from HFHC diet, regardless 
of exposure type (Supplementary Figure S4(f) and 
Supplementary Table S2).

HFHC and IHC profoundly affect fecal metabolic 
profiles

Untargeted metabolomics analysis revealed clear 
separation of the fecal biochemical profiles by both 
diet and gas exposure via PCA after the exclusion of 
the first time point, when all animals were on RC 
diet (Figure 3(a)). To identify the effect of the HFHC 
diet on the fecal metabolome, a supervised PLS-DA 
model was generated comparing the RC-Air and 
HFHC-Air groups. The model displayed a perfect 
discrimination (CER = 0) and 3120 features, with 
VIP score > 1, were considered to be affected by 
diet (Supplementary Table S3). HFHC diet induced 
an increase of more than 200 annotated or puta-
tively annotated bile acids, including cholic acid 
(CA), deoxycholic acid (DCA), lithocholic acid, 

taurocholic acid, taurodeoxycholic acid, glycocholic 
acid, 12-ketodeoxycholic acid and their isoforms, as 
well as the recently described microbial bile acids 
Ile/Leu-CA, Lys-CA, Phe-CA, Tyr-CA, Val-CA, 
Phe-DCA, and Glu-DCA. Additionally, HFHC 
increased the recently described long-chain N-acyl 
amides, such as Leu-C16:0, Lys-C16:0, Phe-C16:0, 
Tyr-C16:0, Leu-C18:1, Lys-C18:1, Phe-C18:1, Tyr- 
C18:1, and Leu-C20:4, and several phosphatidylcho-
lines, including PC (16:0/0:0), PC(16:1/0:0), PC 
(16:0/20:5), PC(19:0/0:0), PC(17:1/0:0), PC(20:1/ 
0:0), PC(20:3/0:0), PC(15:0/16:0), PC(20:4/0:0), PC 
(20:2/0:0), PC(14:0/20:4), and PC(15:0/16:0), and 
sphingosines (both C17 and C18). On the other 
hand, the HFHC diet appeared to decrease the 
abundance of more than 50 putative not annotated 
mono-, di-, tri-, tetra-, and penta-hydroxylated bile 
acids, several short-chain N-acyl amides, such as 
cadaverine-C2:0, His-C2:0, acetyl cadaverine-C2:0, 
His-C3:0, serotonin-C2:0, spermidine-C:20, cada-
verine-C4:0, together with indole metabolites, such 
as 2-oxindole-3-acetic acid, kynurenic acid, tyrosine, 
and phenylalanine, linoleic acid metabolites, and 
more than 100 di- and tri-peptides. The log ratio 
of these extracted features separated animals receiv-
ing or not the HFHC diet after the first timepoint, 
when all animals were receiving RC (Figure 3(b)). 
To investigate the effect of the IHC, a supervised 
PLS-DA model was then generated comparing the 
HFHC-Air and HFHC-IHC groups. The model dis-
played a close-to-perfect discrimination (CER =  
0.01), with a total of 2034 features affected by gas 
exposure (Supplementary Table S4). IHC caused the 
increase of more than 100 annotated and putative 
bile acids including taurolithocholic acid, tauro-
deoxycholic acid, taurocholic acid, and 12- 
ketodeoxycholic acid, several of the above men-
tioned long-chain N-acyl amides, such as Leu-C16 
:0, Phe-C16:0, Leu-C18:1, and Phe-C18:1, phospho-
cholines including PC (16:1/0:0), PC(17:1/0:0), PC 
(19:1/0:0), PC(20:1/0:0), and bilirubin and urobilin. 
IHC also reduced the abundance of several bile 
acids, like cholic acid and microbial bile acids, such 
as Arg-CA, Glu-CA, Gln-CA, Lys-CA, Glu-DCA, 
Tyr-DCA, Phe-DCA, short-chain N-acyl amides 
including serotonin-C2:0 and spermidine-C2:0, 
vitamin B5, sphingosine C18, and linoleic acid meta-
bolites. The log ratio of RC-Air associated features 
over HFHC-IHC associated ones significantly 
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Figure 3. Metabolomics analysis of SPF Apoe−/− mice on a 10-week HFHC diet with or without IHC treatment. (a) PCA highlights the 
separation between groups receiving or not the HFHC diet or being exposed or not to IHC. Centroid separation (indicated with 
asterisks) was tested using PERMANOVA (Diet_exposure; R2 = 0.36, F = 43.07, p < 0.001). A small effect of host age was observed. (b) 
Longitudinal analysis of the fecal metabolic profiles using the log ratio of the significant features (3120) associated either with the 
HFHC (1548) or RC (1572) diet via PLS-DA model (CER = 0). Significance tested using a linear mixed effect model (log ratio ~ host_age  
+ diet_exposure + (1|host_subject_id)). (c) Log ratio of selected features (441) significantly associated with either RC-Air (179) or 
HFHC-IHC (262) via stratified PLS-DA models. Significant separation between the three groups was calculated via ANOVA followed by 
Tukey’s HSD test. Only the last two timepoints were retained for analysis. (d) Subnetworks of molecular features of interest affected by 
both HFHC and IHC, i.e. bile acids, phosphocholines, and N-acyl amides. Node sizes are based on VIP scores obtained from the 
stratified PLS-DA models. Decreased and increased by IHC refers to comparison between HFHC_IHC and HFHC_Air. Increased by HFHC 
and increased by IHC refers to the features that are higher in HFHC when comparing RC_Air to HFHC_Air and higher in IHC when 
comparing HFHC_Air to HFHC_IHC. (e) Univariate analysis of selected molecular features of interest covering linoleic acid metabolism, 
polyamines, long-chain N-acyl amides, phosphocholines, and bile acids. Repeated measures were collapsed to mean values across 
time and the first time point was excluded. Boxplots represent first (lower), interquartile range (IQR), and third (upper) quartile. 
Whiskers represent 1.5 * IQR. Significance: **p < 0.01; ****p < 0.0001.
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separated the three groups of interest (Figure 3(c)). 
A comprehensive molecular network of the features 
affected by HFHC, IHC, or both, was generated 
(Supplementary Figure S5, interactive Cytoscape 
file available on GitHub) and sub-networks of mole-
cular features of interest were extracted to showcase 
some of the molecules driving the separation 
between the groups, such as bile acids, phosphocho-
lines, and N-acyl amides (Figure 3(d)). Since ather-
osclerotic formation was promoted by HFHC and 
further accelerated by IHC, a subset of 441 features 
with the concordant or inverse pattern of changes 
were identified, as these molecules could possibly be 
biologically highly relevant to the correlated athero-
sclerosis development (Supplementary Table S5). 
Representative molecules of interest were also inves-
tigated via univariate analysis to highlight group 
differences (Figure 3(e)).

Akkermansiaceae/Muribaculaceae ratio drives 
metabolite profiles

The microbiome and metabolome datasets were inte-
grated using joint-RPCA, an unsupervised machine 
learning model that looks at the joint-factorization 
and correlation of individual features. Output was 
filtered to retain only ASVs found to be differentially 
abundant and used for previous log ratios (Figure 2 
and Figure S2). Retained metabolic features were the 
ones found to be affected by both diet and air expo-
sure via the previously described PLS-DA models 
(shown in Figure 3(c), detailed in Supplementary 
Table S5). The joint-RPCA co-variance of the top 

ASV and metabolites of interest show strong patterns 
(Supplementary Figure S6).

Using the previously discussed microbiome 
(Figure 2(e-f)) and metabolome (Figure 3(c)) 
log ratios, we used to create a scatterplot to 
observe sample clustering (Figure 4(a)). When 
the log ratios favor the metabolites associated 
with RC Air conditions and are skewed more 
toward ASVs from the Muribaculaceae family, 
there is a majority of RC Air samples. 
Conversely, when the log ratios favor the meta-
bolites associated with HFHC IHC conditions 
and are skewed more toward ASVs from the 
Akkermansiaceae family, there is a majority of 
HFHC IHC samples. While strong clustering of 
all three groups is observed, diet appears to have 
a large effect. In addition, a significant and 
strong linear relationship can be seen (r = 0.80, 
p = 7.6×10−32) (Figure 4(b)). Together, these 
results indicate that there is a strong micro-
biome and metabolite signature that appears to 
be relevant to the response to both diet and 
exposure type.

Absence of microbiota reduces HFHC- and 
IHC-induced atherosclerosis in the aorta but not in 
the pulmonary artery

To investigate if gut microbiota plays a role in 
HFHC- and IHC-induced atherosclerosis, germ- 
free (GF) Apoe−/− mice were fed the same HFHC 
diet in the presence of either Air or IHC for 10  
weeks, as for the SPF animals. The atherosclerotic 

Figure 4. Comparison of microbiome and metabolome log ratios. (a) Scatterplot of microbiome and metabolome log ratios of interest 
(as described in Fig 2(e-f), 3(c)), colored by experimental group (b) Linear regression plot of data shown in A.
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lesions of GF mice were compared to correspond-
ing sex- and age-matched conventionally-reared 
SPF controls. HFHC-induced lesions were signif-
icantly lower in the aorta, mainly in the aortic 
trunk which excludes the arch, in GF mice than 
in SPF mice (Figure 5(a-b), Aorta, GF-HFHC 4.4  
± 0.59% vs SPF-HFHC 6.8 ± 0.47%, p < 0.05; 
Aortic trunk, GF-HFHC 1.9 ± 0.0.66% vs SPF- 
HFHC 5.0 ± 0.65%, p < 0.05). Although the aortic 
arch and pulmonary artery showed a higher 
lesion formation (8–12%), the differences 
between SPF and GF were not significant. When 
exposed to IHC, GF Apoe−/− mice showed statis-
tically less lesion only in the aortic trunk relative 
to SPF controls but not in the other examined 
vascular areas (Figure 5(c-d); Aortic trunk, GF- 

IHC 1.4 ± 0.45% vs SPF-IHC 5.9 ± 1.49%, p <  
0.05). These data suggest that microbial coloniza-
tion modulates atherosclerosis differently in dis-
tinct vascular beds.

As shown in Figure 1, IHC promoted the for-
mation of atherosclerosis in the aorta, aortic arch, 
and pulmonary artery of SPF Apoe−/− mice in the 
presence of HFHC. However, the effect of IHC on 
atherosclerosis was only detected in the pulmonary 
artery not in the aorta of GF Apoe−/− mice fed with 
HFHC (Figure 6; PA, GF-IHC 17.9 ± 1.69% vs GF- 
Air 8.3 ± 2.70%, p = 0.01). These data indicate that 
(1) microbiota is required for IHC-induced ather-
osclerosis in the aorta; (2) microbiota-independent 
mechanisms underlie IHC-induced atherosclerosis 
in the pulmonary artery.

Figure 5. Atherosclerotic lesions in GF and SPF Apoe−/− mice, after 10-week of HFHC diet or IHC exposure. (a, c) Representative Sudan 
iv-stained images of lesions. (b, d) the en-face lesions were quantified as the percentage of lesion area in the total area of the blood 
vessel examined. Atherosclerotic lesions were significantly reduced in the aorta and aortic trunk of HFHC-fed GF mice and aortic trunk 
of IHC-exposed GF mice. Data were presented as means ± SEM. Significance with Student’s t-test, *p < 0.05.
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Discussion

OSA is a sleep disorder characterized by repetitive 
episodes of complete or partial airway obstruction, 
resulting in IHC which is a prominent feature of 
OSA pathophysiology. The most commonly used 
experimental IH protocol is implemented by rapid 
delivery of a hypoxic mixture to an airtight chamber 
followed by flushing with normoxic air. Reducing 
the ambient chamber oxygen to 5–10% results in an 
SaO2 of 60–80%.56 IH exposure is given during day-
time when rodents generally sleep. Since OSA can 
vary in severity from few (i.e., 5) to many (i.e., 
15–30) episodes per hour, we chose a middle of 
the range treatment that is practically achievable in 
the present study. We also included hypercapnia in 
our experimental protocol to better mimic the oscil-
lations of O2 and CO2 in OSA patients.

In the current study, we investigated the impact 
of a high fat and high cholesterol diet, as well as its 
interaction with IHC, on the fecal microbiome and 
metabolome in relation to the development of 
atherosclerosis using both conventionally-reared 
SPF and GF Apoe-/- mice. High fat and high cho-
lesterol are two common components in athero-
genic diets to induce and facilitate atherosclerosis 
in experimental mice.57,58 Apoe-/- mice are a widely 
used mouse model for atherosclerosis research 
because Apoe-deficiency leads to increased plasma 
levels of total cholesterol (mostly in the chylomi-
cron remnant/VLDL fractions) and increases sen-
sitivity to dietary lipids.59 In the present study, we 
demonstrated that the HFHC diet significantly 
promoted atherosclerosis in the aorta and pulmon-
ary artery of Apoe−/− SPF mice (Figure 1). We also 
performed another study using a high fat only diet 
(HF) and found that the HF diet alone caused 
much less lesions (<5%), which was similar to the 
RC control group. Moreover, IHC, in the absence 
of high cholesterol, increased atherosclerosis but 
the extent of lesion was still minimal. 
(Supplementary Figure S7). This set of results 
demonstrated that high cholesterol, rather than 
high fat, is essential for atherogenesis in the 
Apoe-/- mice under both Air and IHC conditions. 
When exposed to IHC, atherosclerotic progression 
was expedited in addition to the HFHC effect 
(Figure 1). It is worth mentioning that IHC stress 
reduced body weight gain and food intake 
(Supplementary Figure S3). Even though consum-
ing less HFHC food, IHC mice still developed more 
lesions, indicating that IHC exposure itself has 
atherogenic effect.

The gut microbiome is a complex ecosystem of 
microorganisms that live in the host intestines. 
Diet, environmental exposures, stress and disease- 
relevant stimuli could cause imbalance of these 
microorganisms (i.e., gut dysbiosis) and subse-
quently have various impacts on host health. 
Current microbiome data revealed that the 
Akkermansiaceae family was enriched and the 
Muribaculaceae family was depleted under HFHC 
and IHC conditions (Figure 2(c-d)). Natural log 
ratio of these two families separates the three 
experimental groups well (Figure 2(e-f)), suggest-
ing that these two families contribute to OSA- 
induced atherosclerosis. Some species within the 

Figure 6. Atherosclerotic lesions in GF Apoe−/− mice after 10- 
week IHC and Air treatment. (a) Representative Sudan iv-stained 
images of lesions. (b) The en-face lesions were quantified as the 
percentage of lesion area in the total area of the blood vessel 
examined. In the absence of microbiota, IHC exposure promoted 
the progression of atherosclerosis in the pulmonary artery but 
not in the aorta. Data were presented as means ± SEM. 
Statistical significance with Student’s t-test, *p < 0.05.
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Muribaculaceae are thought to help support gut 
barrier function,60,61 produce short-chain fatty 
acids by metabolizing dietary fiber and mucin 
glycans62 and its role in mouse intestinal inflam-
mation is controversial.63 While Akkermansiaceae 
members, especially Akkermansia muciniphila, are 
known for their mucin degradation enzymes,64,65 

as well as their impact on host lipid and cholesterol 
homeostasis.66,67

Bacterial families Peptostreptococcaceae, 
Streptococcaceae and Clostridiaceae were relatively 
increased by HFHC diet (Figure 2(d)), which corro-
borates the finding that these bacteria levels were sig-
nificantly higher in western diet-fed mice with 
atherosclerosis.68 Clostridiaceae and 
Peptostreptococcaceae are more abundant in omni-
vores and associated with higher trimethylamine 
N‑oxide (TMAO) levels in humans,69 suggesting 
their potential role in metabolism of dietary choline, 
phosphatidylcholine, and L-carnitine into trimethyla-
mine (TMA) which is further oxidized to TMAO in 
the liver. TMAO is a well-known risk factor for ather-
ogenesis by enhancing macrophage cholesterol accu-
mulation and foam cell formation, altering bile acid 
composition and pool size as well as causing endothe-
lial inflammatory injury.69,70 Genus Streptococcus 
belongs to the family Streptococcaceae, its members 
have been found in human atherosclerotic plaques71 

and its abundance in the gut was associated with 
coronary atherosclerosis and systemic inflammation.72

We also identified bacterial families affected by 
IHC exposure, such as Ruminococcaceae and 
Lachnospiraceae (Figure 2(c), Supplementary 
Figure S4(e) and Supplementary Table S1). In 
terms of atherosclerosis, Ruminococcaceae is 
reduced in atherosclerosis patients compared to 
healthy controls,73,74 negatively associated with 
cardiometabolic diseases through isolithocholic 
acid, muricholic acid and nor cholic acid75 as well 
as regulates lipid metabolism, apolipoprotein and 
cholesterol.76 Lachnospiraceae is positively corre-
lated with total and LDL cholesterol and its abun-
dance decreases in patients with coronary artery 
disease (CAD).77 Kasahara et al. discovered that 
Roseburia intestinalis, a member of the 
Lachnospiraceae family, interacts with dietary 
plant polysaccharides to produce butyrate and pro-
tect against atherosclerosis by improving intestinal 
barrier function thus lowering systemic 

inflammation and directing metabolism away 
from glycolysis and toward fatty acid utilization.78 

Our current microbiome data have actually 
demonstrated that both Ruminococcaceae and 
Roseburia intestinalis from the Lachnospiraceae 
family were depleted by IHC (Figure 2(c), 
Supplementary Figure S4(e) and Supplementary 
Table S1), implicating their roles in mediating 
IHC-induced atherosclerosis.

Interestingly, bile acids (BAs) appeared to be top 
differentially abundant metabolites under HFHC 
and IHC conditions (Supplementary Tables S3 
and S4). Bile acids are synthesized from cholesterol 
in the liver and prevent cholesterol overload in the 
body, therefore ameliorate atherosclerosis. BAs 
also act as signaling molecules and work through 
bile acid receptors (BARs), such as nuclear recep-
tors – farnesoid X receptor (FXR) and membrane- 
bound receptors – Takeda G protein-coupled 
receptor (TGR5), to regulate their own homeosta-
sis, lipid, glucose and energy metabolism, gut bar-
rier integrity, inflammation as well as 
cardiovascular function.79 It has been reported 
that FXR and TGR5 agonists have lipid-lowering 
and anti-inflammatory effects.79 Hence, the chan-
ged bile acid by HFHC and IHC can serve as either 
agonists or antagonists of FXR or/and TGR5 recep-
tors to modulate atherosclerotic formation.

In addition, HFHC- and IHC-induced gut dysbiosis 
can affect bile acid composition/pool size and indirectly 
influence host functions via BA signaling. Three major 
microbial enzymes, i.e. bile salt hydrolases (BSHs), 
hydroxysteroid dehydrogenases (HSDHs), and bile- 
acid-inducible (bai) genes, are responsible for the gen-
eration of various secondary BAs. Notably, among the 
altered bacterial families by HFHC and IHC (Figure 2 
(c-d), Supplementary Figure S4(e-f), Supplementary 
Tables S1 and S2), Ruminococcaceae, 
Lachnospiraceae and Peptostreptococcaceae contain 
bai genes which encode enzymes involved in 7α- 
dehydroxylation.80 Lactobacillaceae, Streptococcaceae 
and Clostridiaceae carry BSH genes which encode 
enzymes catalyzing the deconjugation of the N-acyl 
amide bond between primary BAs and taurine or 
glycine.79 Our integrated analysis of the microbiome 
and metabolome uncovered that different metabolite 
signatures were correlated with Muribaculaceae and 
Akkermansiaceae families (Figure 4 and 
Supplementary Figure S6). It is unclear at present if 
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the microbial families are actively involved in altering 
the amounts or/and activities of these metabolites and 
this requires further investigation.

Our previous and present studies have demon-
strated that IHC exposure significantly alters both 
gut microbiota and bile acids along with an ele-
vated level of atherosclerosis in the HFHC fed 
mice.26,27,55,81 Hence, it is critical to examine the 
synergistic role of the gut microbiota, HFHC diet, 
and IHC on atherogenesis. Our current data 
revealed that in the absence of microbial coloniza-
tion, HFHC diet-stimulated development of ather-
osclerosis was significantly attenuated in the aorta, 
mostly in the aortic trunk, under both room air and 
IHC conditions (Figure 5), suggesting that the 
microbiome contributes to atherosclerotic disease 
pathogenesis. Although the underlying mechan-
isms remain elusive, the gut microbiota might 
mediate HFHC diet- and IHC- induced atherogen-
esis through: (1) activating host’s immune system 
(such as activation of macrophages), (2) elevating 
the inflammatory response (such as releasing lyso-
phospholipids (LPS) and peptidoglycan (PG)), (3) 
catalyzing cholesterol metabolites (such as the pro-
duction of secondary bile acids).

Unlike the aorta, the IHC-induced atherosclero-
sis was not abolished in the absence of microbial 
colonization in the pulmonary artery (PA) 
(Figure 6), suggesting that the gut microbiota is 
not a major player. Other mechanisms may be 
responsible for pathogenesis of PA atherosclerosis 
when exposed to IHC, such as an increase of shear 
stress at branching points of the pulmonary 
arteries82 and/or pulmonary hypertension induced 
by intermittent hypoxia,55 with both potentially 
causing endothelial damage and initiating athero-
sclerotic formation. Future research is warranted.

Conclusion

Taken together, we demonstrated that IHC and 
HFHC work synergistically to promote athero-
sclerosis, which requires the presence of gut micro-
biota. Bacterial families Akkermansiaceae and the 
Muribaculaceae, as well as microbial metabolite 
bile acids appear to be important modulators of 
OSA-induced atherosclerosis. The knowledge 
obtained helps us better understand the mechan-
istic link between diet, microbiota and IHC/OSA- 

induced atherosclerosis and provides a basis for 
future therapeutic approaches to prevent and treat 
OSA-induced atherosclerosis, such as prebiotics, 
probiotics or synbiotics to correct gut dysbiosis or 
FXR/TGR5 agonists or antagonist to modify BA 
signaling, combined with diet modification.
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