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Abstract of the Dissertation 

 

 
Automation, Optimization, and Characterization of Adaptive Laboratory Evolution 

 

by 

 

Ryan Alan LaCroix 

Doctor of Philosophy in Bioengineering 

University of California, San Diego, 2016 

 

Professor Bernhard Palsson, Chair 

  

Adaptive laboratory evolution (ALE) has emerged as an effective tool for 

scientific discovery and addressing biotechnological needs. A typical ALE experiment 

requires significant attention over the course of the experiment and can last up to 

months. When designing such experiments much consideration is given to the logistics 
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of maintaining the experiment. Due to the difficult logistics, the consistency and 

throughput are often reduced. Overcoming these shortcoming is now possible with an 

automated platform. The automated platform was designed and built giving 

consideration to alleviating the design constraint that the time-sensitive processes 

impose on the experiment. 

Much of ALE’s utility is derived from reproducibly obtained fitness increases. 

Identifying causal genetic changes and their combinatorial effects is challenging and 

time-consuming. Understanding how these genetic changes enable increased fitness 

can be difficult. A series of approaches that address these challenges was developed 

and demonstrated using Escherichia coli K-12 MG1655 on glucose minimal media at 

37ºC. By keeping E. coli in constant substrate-excess and exponential growth, fitness 

increases up to 1.6-fold were obtained over wild-type. These increases are comparable 

to previously-reported maximum growth rates in similar conditions but obtained over 

a shorter time frame. Across the 8 replicate ALE experiments performed, causal 

mutations were identified using three approaches: identifying mutations in the same 

gene/region across replicate experiments, sequencing strains before and after 

computationally-determined fitness jumps, and allelic replacement coupled with 

targeted ALE of reconstructed strains. Three genetic regions were most often mutated: 

the global transcription gene rpoB, an 82bp deletion between the metabolic pyrE gene 

and rph, and an IS element between the DNA structural gene hns and tdk. Model-

derived classification of gene expression revealed a number of processes important for 

increased growth that were missed using a gene classification system alone. The 
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methods put forth here represent a powerful combination of technologies to increase 

the speed and efficiency of ALE studies. The identified mutations can be examined as 

genetic parts for increasing growth rate in a desired strain and for understanding rapid 

growth phenotypes. 

The evolution process is increasingly being leveraged in laboratory settings for 

industrial and basic science applications. Despite an increasing deployment, there are 

no standardized procedures available for designing and performing adaptive laboratory 

evolution (ALE) experiments. Thus, there is a need to optimize the experimental 

design, specifically for determining termination criteria and for balancing outcomes 

with available resources (i.e., lab supplies, personnel, and time). To design and better 

understand ALE experiments, a simulator, ALEsim, was developed, validated, and 

applied to optimize ALE experimentation. The effects of various passage sizes were 

experimentally determined and subsequently evaluated with ALEsim to explain 

differences in experimental outcomes. Further, a beneficial mutation rate of 10
-6.9

-10
-

8.4
 mutations per cell division was derived. A retrospective analysis of ALE 

experiments revealed that passage sizes typically employed in batch culture ALE 

experiments led to inefficient production and fixation of beneficial mutations. ALEsim 

and the results herein will aid in the design of ALE experiments to fit the exact needs 

of the project while taking into account the tradeoff in resources required, and lower 

the barrier of entry to this experimental technique. 

With successful completion of an automated ALE platform and multiple 

applied cases, there became a need to expand the ALE protocol for variations of ALE. 
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Specifically  to accommodate adaptation to environments that cannot initially sustain 

growth. Two algorithms were developed to implement two variations of ALE, 

pathway activation of latent enzymes (PALE ALE) and tolerization (TALE). The 

purpose of the PALE ALE protocol was to adapt and organism to growth using a 

substrate is it natively is unable to utilize. An algorithm was developed to put 

significant selection pressure on the population to adapt all while maximizing the 

amount of genetic diversity being created. The purpose of the TALE module is to 

adapt an organism to an increasing amount of stress (e.g. temperature, physical, 

chemical, etc…). The algorithm specifically targeted putting enough stress on the 

culture as reasonable but also ensuring that the culture is still able to grow. This is 

critical since if growth is arrested the genetic diversity in the culture drops off 

significantly. These two algorithms were successfully implemented into the automated 

ALE platform. 
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1.1 Introduction 

Natural selection is a powerful phenomenon that has shaped the entirely of life 

as we know it. It has shown the ability to entice a plethora of attributes out of an 

organisms building blocks—more specifically, the genome. Due its powerful nature, 

scientists began harnessing it in laboratories for scientific and industrial applications. 

This is often referred to as adaptive laboratory evolution (ALE). ALE has been used 

throughout the 20
th

 century but a recent surge in popularity has occurred over the past 

decade. This surge in popularity is often attributed to advancements in technology 

associated with analyzing ALE experiments—specifically next-generation sequencing 

(NGS) technologies. Examining the genetic changes responsible for the adaptation is 

of great interest to the scientific community. As the analysis of these experiments has 

grown, the methodologies and design considerations in performing these experiments 

has not. 

The basics of an ALE experiment are straightforward and well understood. 

Simply grow an organism in a given environment for multiple generations (e.g. >100 

generations). Because of the number of generations needed, microorganisms make up 

the majority of applications. As the organism grows, mutations occur in the genome 

due to DNA replication errors. Though most mutations are thought to have negative 

effects on the organism, there is an off-chance that one of these mutations will confer 

a benefit over the rest of the population. Over a long enough time the lineage with this 

mutation will fix itself and become the dominant strain. 

There are many ways to perform an experiment but the most popular methods 

are in continuous culture and batch culture. Continuous culture simply involves setting 
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up a chemostat-like device to constantly feed the culture with fresh growth media. 

Batch culture involved growing a culture in a batch and then at a certain time, taking 

an aliquot and passing it to a new batch with fresh media. Continuous culture requires 

a significant amount of upfront resources and planning whereas most microbiology 

laboratories have all the necessary equipment to perform a batch culture ALE 

experiment. As such, batch culture ALE experiments are more ubiquitous. 

Getting a batch culture ALE experiment started fairly simple but there are 

experimental parameters that can drastically affect the outcome. The most apparent 

difference between experiments is the phase of growth the culture is passed from (e.g. 

exponential growth phase or stationary phase). When passed during stationary phase, 

the culture is subjected to an environment of alternating feast and famine, where 

exponential phase growth is followed by stationary phase. The issue arises when 

analyzing the results in terms of the selection pressure. In this case it becomes quite 

complex where the cells can increase fitness by affecting survivability in any stages of 

the growth curve as well as the transitions (1). Thus the resulting analysis becomes 

convoluted. Alternatively the cultures can be passed during exponential phase where 

nutrients are still in excess. This minimizes the any selection to alternating 

environment as the environment remains more consistent. Ultimately this allows a 

cleaner and more reproducible end result (2-4). 

Passing cultures in exponential phase requires more time and resources than 

passing during stationary phase. When passing in stationary phase, it is common to 

pass the culture every 24 hours. Logistically, this is reasonable as the cultures can be 

passed during normal working hours and furthermore, a large number of cells can be 
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passed. This is important as a small passage size can reduce the genetic variation 

(chapter 4). Consequently, with exponential phase passaging, the logistic are much 

more complex. Passing in exponential phase requires strict timing and knowledge of 

the growth rate. Knowing the growth rate and cell density, a calculated number of 

cells can be passed to the next batch culture such that it will be in mid-exponential 

phase in 24 hours. The first issue is that unless biomass measurements are taken over 

the course of the culture, which they rarely are, calculating the growth rate becomes 

imprecise. This leads to incorrect timing and in 24 hours the culture can be not ready 

or has reached stationary phase. Additionally, the culture will begin to grow faster as 

evolution takes place. When this occurs, the number of cells propagated to the 

subsequent batch culture is decreased. This decrease often gets so low that the volume 

passage becomes sub micro-liter. At these volumes, the genetic diversity is severely 

bottlenecked and evolution is halted prematurely (5-7) (chapter 4). 

Solving the problems with exponential phase passaging ALEs is not a 

scientific limitation but a technological one. If the process of ALE could be automated 

the pressures of when and how much to passage could be alleviated. Not only will this 

allow these experiments to be performed without lowering the passage size but it will 

also expand the parameter space in designing ALE experiments. The expansion of the 

parameter space can then open up new capabilities where selection pressure can be 

applied at unprecedented ranges. 
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2.1 Introduction 

Adaptive laboratory evolution (ALE) experiments has a wide range of 

scientific and industrial applications(1-11) . The popularity of these experiments is 

growing as is the demand for them. Though fruitful in their outcomes, performing 

these experiments requires a considerable amount of time, resources, and dedication. 

ALE experiments often go in excess of months and require constant monitoring. 

Because constant monitoring is required, the experimental parameters are often chosen 

to allow for about 24 hours of walk-away time. (e.g. passage OD, passage volume, and 

culture volume). This 24 hour period can be attained by passing a small number of 

cells or letting the culture reach stationary phase. Though experiments performed in 

such a fashion have proven to be fruitful, there is a large experimental space that has 

yet to be explored as the manual process by which ALE experiments are currently 

performed prohibit their feasibility. 

The most limiting experimental parameter in a manual ALE experiment is the 

passage OD. Passing at a given OD it determines the selection pressure as well as the 

amount of genetic diversity. Ideally, the higher the passage OD the greater cell count 

and thus greater genetic diversity exists. With more genetic diversity beneficial 

mutation are more likely to occur at a faster rate. Passing at a low OD can attenuate 

the rate of adaptation (12, 13). However there is an upper limit on the passage OD as 

cultures will eventually reach stationary phase. If the culture is allowed to reach 

stationary phase then the cells have a secondary method of adaptation where they can 

outcompete during stationary phase, or even in lag phase after the culture is passed 
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(11, 14, 15). Depending on the desired outcome, this can be non-ideal as analyzing the 

end result of the experiment becomes convoluted. Ultimately what is desired is a 

passage OD that is as high as possible without a transition to stationary phase 

beginning. This window of time with which to pass the culture can often be small. 

Being able to predict this window of time is contingent on two properties, the current 

OD and the growth rate. Without knowing the values of these properties accurately it 

is easy to miss such a window. In a typical ALE experiment the researcher is typically 

only present at inoculation and at the passage time. An OD measurement can 

theoretically be taken at inoculation but these values are often below the detection 

limit of spectrophotometers or on par with noise in the measurement. Exponentially 

extrapolating from this value also exponentially increases the noise and the resulting 

prediction is often wrong. This furthermore requires an accurate growth rate. 

Determining the growth rate requires additional OD measurements throughout the 

lifetime of the culture. This would require the researcher to be present through the 

lifetime of the culture which is often not possible. This is further confounded by 

replicate experiments where variations between cultures require that the passage OD 

for each culture is reached at different times. Thus ensuring the culture is passed at the 

desired OD require near constant attention, including throughout the night. 

The constant attention needed to pass the culture at the desired OD can be 

alleviated by controlling the passage size but changes in the passage size can have 

further effects on the results. Since consistent surveillance of the culture is basically 

infeasible in a standard laboratory environment, a common technique to make sure the 

culture does not hit stationary phase throughout the night is to pass a small amount 
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such that even with the errors in starting OD and estimated growth rate, it is safe to 

conclude that the passage OD will not be reached until working hours the next day. 

This can be effective for catching the passage OD but passing a small amount limits 

the genetic variation in the culture thereby limiting the number of mutations being 

selected for. As the culture evolves and the growth rate increases, the passage size 

must be further reduced to compensate. Ultimately the passage size is reduced to a 

point where the chances of any beneficial mutation getting captured or next to nil (16, 

17). When ALE experiments stop increasing in growth rate the experiment is often 

terminated as a reasonable endpoint is presumed to have been reached. The problem is 

that with a reduced passage size there may be myriad beneficial mutations available 

they are simply thrown away due to the small passage size and a leveling off of the 

growth rate is simply an artifact of the experimental procedure.  

A further confounding factor when varying the passage size or passage OD to 

properly time an experiment is that it differentiates replicate experiments. As is typical 

in experimentation, ALE experiments are often run with biological replicates. This 

provides points of comparison and contrast as well as statistical power in downstream 

analysis when making conclusions (7). It becomes increasingly important to have 

biological replicates when trying to identify causality among mutated genes. When the 

parameters of ALE experiments are varied between themselves for the sake of 

performing the experiment, the replicate nature of the experiments can be lost wherein 

one culture has been able to sample and select for more mutations than another. 

Ultimately the issue with performing manual ALE experiments is that the 

space of feasible design parameters (e.g. passage OD and passage size) is significantly 
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limited. Accordingly, this presents a limitation of the field as a whole where the 

experiments that are designed to find optimal states are themselves inhibiting the 

finding of these optimal states. With all the technological advancements in automation 

it has become quite feasible to automate the ALE process. Automation would not only 

alleviate the self-imposed limitation but allow researchers to explore a design space 

that was previously unreached for new scientific findings. 

2.2 The Automation Platform 

As with any automation platform, there are tradeoffs to consider when 

automating ALE. There are many processes required for completing a long term 

evolution experiment  that must all be coordinated. These processes range from media 

preparation, to culture passaging, and even dish washing. Of the processes involved in 

ALE not all of them would add benefit if automated. Primarily those processes that are 

time sensitive are candidates for automation. For example, media preparation, though 

integral to completing an experiment, does not have a stringent time constraint. Excess 

media can easily be prepped in advance and stored until needed. Automating this 

process would be mostly a convenience to the researcher but ultimately would not lead 

to a more productive experiment. On the other hand, culture passaging has a strict time 

constraint and as such would add significant benefit if automated. Whether late or 

premature, it can affect the overall result of the experiment. Thus culture passaging is 

a good candidate for automation. Considering all processes the primary focus of 

automation was on processes that are time sensitive. The two main time sensitive 

process are culture measurement and passaging. 
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A liquid handling platform was used to create an automated platform (ALE 

machine) that would automate OD measurement and passaging. With measurement 

and passaging automated it is possible to accurately measure the growth rate for each 

batch culture. Accurately measuring growth rates and tracking the OD allows for 

passing the cultures during a well-defined yet narrow window of time where the OD is 

high for increased genetic diversity yet low enough that the transition to stationary 

phase has not begun. 

A software platform was developed to control the ALE machine. Key design 

features of the ALE machine include: robust control algorithms, expandable 

algorithms, sample tracking, and cloud enabled. A robust control algorithm was 

designed to accomplish batch culture ALE experiments. As with any automated 

platform obtaining primary functionality is straightforward. Under most circumstances 

accurate measurements are taken and processes are performed at their intended times. 

However, measurements taken are subject to noise and artifacts. The software makes 

use of measurement data to make predictions about when to measure and pass the 

cultures. Any inaccuracies in measurements could lead to early or delayed 

measurements or passaging. Either are undesired as it can lead to inaccurate growth 

rate calculations or missing the window of opportunity to pass to culture. As such the 

algorithm was developed to identify such errors in measurement. The breadth of errors 

sufficiently managed by the algorithm are: inaccurate pipetting into the detector, 

random noise in pipetting and detector measurements, and poor timing due to backlog. 

Beyond a robust control algorithm, the software was developed to allow 

expansion of the algorithms for variations of ALE experiments. As the ALE field 
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grows, new ideas and experimental designs are envisioned and tested. The software 

platform allows a developer to use a documented application programming interface 

(API) to create new experimental designs using the basic building blocks already in 

place. This lets the developer focus on the experimental design instead of how best to 

implement it in the context of the software platform. 

The software platform further tracks all samples, tubes, and cultures through 

the entire process. It is common practice to take samples throughout an experiment for 

additional tests (e.g. HPLC, sequencing, frozen stocks, etc…).  The software is able to 

create short identifiable tags to be used on the samples that would allow all data and 

meta-data to be looked up at a later date. This creates a straightforward working 

environment for the user where mistakes in labeling and identification are minimized. 

Since the runtime of ALE experiments can often be on the order of months, it 

is important that all interested parties are able to watch and monitor the experiment. 

As such, the ALE machine is completely cloud enabled. All data generated as well as 

analysis of such data is available on a responsive website accessible from any modern 

computer, tablet, or phone. Based on the data generated parameters can be changed 

and designs updated as the cultures evolve in often unexpected ways. 

Overall the ALE machine platform was designed to eliminate many of the 

constraints that manual ALE experiments are subjected. In doing so it allows 

experiments that were previously impractical to be performed allowing for further 

understanding and application of adaptive evolution. The ALE machine was 

developed to scale alongside of the growing field, not only in number but with new 
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algorithms and experimental designs. Ultimately, this is a tool to push to frontier of 

evolutionary science. 
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3.1 Introduction 

Adaptive laboratory evolution (ALE) is a growing field facilitated by whole 

genome sequencing. The process of ALE involves the continuous culturing of an 

organism over multiple generations. During an ALE experiment, mutations arise and 

those beneficial to the selection pressure are fixed over time in the population. Most 

ALE experiments analyze a perturbation from a reference state to another (e.g., 

environmental (1, 2) or genetic (3)). After adaptation, understanding what genetic 

changes enabled an increase in fitness is often desirable (4). Generally there are two 

methods of evolving microorganisms – batch cultures and chemostats. Each method 

has its own advantages and disadvantages, in terms of maintenance, growth 

environment, and selection pressures (5). Applications of ALE are numerous and 

include those for biotechnological goals, such as improving tolerance to a given 

compound of interest (6-8), or more progressive uses such as improving electrical 

current consumption in an organism (9). Additionally, there has been a significant 

focus on using ALE to understand antibiotic resistance to given compounds (i.e., 

drugs) in order to combat clinical resistance (10).  A number of in depth reviews on 

ALE have appeared as the field continues to grow (5, 11, 12). 

The methodology utilized for conducting an ALE experiment needs to be 

carefully considered. A critical characteristic of ALE experiments is that they have 

long timescales, on the order of months, and often require daily attention (1, 5). The 

timescale is typically determined by culture size, amount of cells propagated to the 

next culture (i.e., passage size), and the growth phase under which it is passed. When 

passing strictly in exponential phase (3, 13-15), the timescale becomes restrictive as 
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there is only a small window of time in which to aliquot from the culture and 

propagate it. The amount passed significantly influences when the next window will 

occur. Thus, it is often the case that the passage size is adjusted according to the 

experimenter’s schedule (3, 16). An unfortunate consequence of this is that as the 

growth rate increases, the passage size is generally decreased. This allows for fewer 

potentially beneficial mutations to advance to the next flask, possibly slowing 

evolution. An alternate approach is to pass a fixed amount at a regular time interval, 

generally once per day. This time frame allows the cells to reach stationary phase, 

where they remain for the majority of the time. This approach has been used in a 

notable study where E. coli B strains were evolved in glucose minimal media batch 

cultures for over 25 years (17). Passing cells after they have reached stationary phase 

creates a more complex selection pressure than strictly passing cells during 

exponential growth (18), favoring both growth rate increases and decreases in lag-

phase duration (19). Thus, experimental setup should be tailored to the desired 

selection pressure of the experiment. 

Next generation sequencing has eased the process of finding mutations in ALE 

studies, however tying specific components of the genotype to the phenotype remains 

difficult.  Strains generated using ALE often have multiple mutations (20, 21) and if 

one wants to determine causality for a phenotype, it can require a significant effort 

(22-24). Despite the growing availability of genome engineering tools (22, 25, 26), 

determining causality is still a time consuming process. An alternative approach to 

speed in the discovery of causal mutations would be to perform multiple independent 

experiments and examine mutations that occur most frequently. Performing multiple 
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experiments under strict identical conditions can help filter casual mutation candidates 

encountered during ALE. 

Along with understanding causal genetic changes in ALE experiments, there is 

also a need to understand changes at the cellular pathway level. Omics 

characterization coupled with systems modeling approaches enable the mechanistic 

interpretation of data based on reconstructed metabolic network content (27). 

Constraint-based modeling, which is a bottom up approach based on network 

interactions and overall physiochemical constraints, has been shown to be a valuable 

systematic approach for analyzing omics data (28, 29). This approach has largely been 

pioneered using E. coli K-12 MG1655 as the organism of choice for validation and 

comparison of in silico predictions to experimental data (30, 31). In short, integration 

of omics data types with genome-scale constraint-based models has provided a context 

in which such data can be integrated and interpreted.  

In an effort to demonstrate the power of using strict selection pressure to 

understand the process of ALE, E. coli K-12 MG1655 was adaptively evolved in 

minimal media at 37ºC with excess glucose in eight parallel experiments. At the end 

of the ALE experiments, clones from the final populations were characterized in terms 

of their growth rate, metabolic uptake and secretion rates, genome sequence, and 

transcriptome. These multi-omics data types were then integrated and further 

categorized with genome-scale models to examine how the cells adapted to the 

conditions and how their physiology and genomes changed.   
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3.2 Materials and Methods 

3.2.1 Adaptive Laboratory Evolution 

Primary adaptive evolutions were started from wild type E. coli strain MG1655 

(ATCC47076) frozen stock and grown up overnight in 500mL Erlenmeyer flask with 

200mL of minimal media. 8 aliquots of 900µL were passed into eight flasks 

containing 25mL of media and magnetic stir discs for aeration. 800µL of culture was 

serially passed during mid-exponential phase (3.2% of the total culture volume was 

propagated to the next culture). Cultures were not allowed to reach stationary phase 

before passage. Four OD600nm measurements were taken between ODs of 0.05 and 

0.30 to determine growth rates. Periodically, aliquots of samples were frozen in 25% 

glycerol solution and stored at -80ºC for future analysis. Glucose M9 minimal media 

consisted of 4g/L Glucose, 0.1mM CaCl2, 2.0mM MgSO4, Trace element solution and 

M9 salts. 4000X Trace element solution consisted of 27g/L FeCl3*6H2O, 2g/L 

ZnCl2*4H2O, 2g/L CoCl2*6H2O, 2g/L NaMoO4*2H2O, 1g/L CaCl2*H2O, 1.3g/L 

CuCl2*6H2O, 0.5g/L H3BO3, and Concentrated HCl dissolved in ddH2O and sterile 

filtered. 10x M9 Salts solution consisted of 68g/L Na2HPO4 anhydrous, 30g/L 

KH2PO4, 5g/L NaCl, and 10g/L NH4Cl dissolved ddH2O and autoclaved. Final 

concentrations in the media were 1x. The validation was performed under the same 

conditions as above except 0.7% of the culture was passed. 

3.2.2 Physiological characterizations 

Growth rates of clones isolated from the primary ALE experiments were 

screened by inoculating cells from an overnight culture to a low optical density (OD) 

and sampling the OD600nm until stationary phase was reached. A linear regression of 
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the log-linear region was computed using ‘polyfit’ in MATLAB and the growth rate 

(slope) was determined. Growth rates of clones isolated from the follow-up validation 

ALE were similarly started but passed serially three times in late exponential phase. 

The growth rates of each culture were computed as above and the average of the three 

cultures was taken. The first culture was omitted due to physiological characterization 

(32). 

Growth rates of populations were determined by the output of the interpolated 

cubic spline used, unless stated otherwise. 

Extra-Cellular by-products were determined by HPLC. Cell cultures were first 

sampled and then sterile filtered. The filtrate was injected into an HPLC column 

(Aminex HPX-87H Column #125-0140). Concentrations of detected compounds were 

determined by comparison to a normalized curve of known concentrations. 

Substrate uptake and secretion rates were calculated from the product of the 

growth rate and the slope from a linear regression of gDW vs substrate concentration. 

Biomass Yield (YX/S_ss) was calculated as the quotient of the growth rate and 

glucose uptake rates during the exponential growth phase. 

3.2.3 DNA Sequencing 

Genomic DNA was isolated using Promega’s Wizard DNA Purification Kit. 

The quality of DNA was assessed with UV absorbance ratios using a Nano drop. DNA 

was quantified using Qubit dsDNA High Sensitivity assay. Paired-end resequencing 

libraries were generated using Illumina’s Nextera XT kit with 1 ng of input DNA total. 

Sequences were obtained using an Illumina Miseq with a PE500v2 kit. The breseq 

pipeline (33) version 0.23 with bowtie2 was used to map sequencing reads and 
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identify mutations relative to the E. Coli K12 MG1655 genome (NCBI accession 

NC_000913.2). These runs were performed on the National Energy Research 

Scientific Computing Center carver supercomputer. The identified mutations were 

then entered into an SQL database to track mutations along each evolution. All 

samples had an average mapped coverage of at least 25x. 

3.2.4 RNA-Sequencing 

RNA-sequencing data was generated under conditions of exponential and 

aerobic growth in M9 minimal media with a glucose carbon source. Cells were 

washed with Qiagen RNA-protect Bacteria Reagent and pelleted for storage at -80°C 

prior to RNA extraction. Cell pellets were thawed and incubated with Read-Lyse 

Lysozyme, SuperaseIn, Protease K, and 20% SDS for 20 minutes at 37°C. Total RNA 

was isolated and purified using the Qiagen RNeasy Mini Kit columns and following 

vendor procedures. An on-column DNase-treatment was performed for 30 minutes at 

room temperature. RNA was quantified using a Nano drop and quality assessed by 

running an RNA-nano chip on a bioanalyzer. Paired-end, strand-specific RNA-seq 

was performed following a modified dUTP method (34). A majority of rRNA was 

removed using Epicentre’s Ribo-Zero rRNA removal kit for Gram Negative Bacteria. 

Reads were mapped with bowtie2 (35). Expression levels in units fragments 

per kilobase per million fragments mapped (FPKM) were found with cufflinks 2.0.2 

(36). Gene expression fold change (with respect to the wild-type strain) was found 

using cuffdiff; a q-value cutoff of 0.05 was used to call significant differential 

expression. Gene annotation from EcoCyc version 15.0 was used for all analysis (37).  
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3.2.5 Commonly differentially expressed genes 

A statistical model was used to determine how many genes are expected to be 

commonly differentially expressed in the same direction (up or down) across multiple 

strains. In the null model, each gene in each strain can have one of three states: up-

regulated, down-regulated, or not significantly differentially expressed compared to 

the wild-type. For each gene in a given strain, the probability of the three states 

follows a multinomial distribution parameterized empirically by the differential 

expression calls in the processed RNA-seq data (see RNA-Sequencing). The genes 

that are differentially expressed in each strain are assumed independent in the null 

model, so the probability that a gene is differentially expressed in multiple strains is 

determined by the product rule of probability. Commonly differentially expressed 

genes are then called when no genes are expected to be differentially expressed in the 

same direction across that number of strains (i.e., expected value is less than 1). For 

this dataset, no genes are expected to be commonly differentially expressed (in either 

direction) across 6 or more strains. 

3.2.6 ME-Model simulation and gene classification 

The ME-model as published in O’Brien et al. was used for all simulations (38). 

20 distinct glucose uptake rates, evenly spaced between 0 and the optimal substrate 

uptake rate (when glucose is unbounded) were simulated as described in O’Brien et al. 

(38). Any gene predicted to be expressed in any of the 20 simulations are classified as 

‘Utilized ME’; genes within the scope of the ME-Model, but not expressed in any of 

the 20 simulations are classified as ‘Non-utilized ME’; genes outside the scope of the 

ME-Model are classified as ‘Outside scope ME’. These gene groups are then 
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compared to COGs and the identified commonly differentially expressed genes in the 

end-point strains (see Commonly differentially expressed genes) (39). 

3.2.7 Jump Finding 

Growth rates were calculated for each batch during the course of evolution 

using a least-squares linear regression. The following criteria were used to determine 

whether to accept or reject the computed growth rate 

- Number of OD samples ≥ 3 

- Range of OD measurements must be ≥ .02 

- Passage OD within 50% of targeted passage OD 

The accepted growth rates were fit with a monotonically increasing piecewise 

cubic spline.  Regions with a slope greater than 4.2x10
-15

hr
-1

CCD
-1

 were considered 

jumps with a few exceptions. The spline was created using ‘slmtools’ function in 

MATLAB available on the MATLAB file exchange. The number of spline segments 

(#knots-1) was varied to capture the upward trends in growth rates. 

3.2.8 Knock in Procedure 

The single point mutation introduction in rpoB was done by ‘gene gorging’ as 

described previously (22). Briefly, the mutation in rpoB was amplified by PCR from 

the genomic DNA of the ALE clone where it was originally found. Amplification was 

done with primers approximately 500 bp upstream and downstream of the mutation 

and flanked by the 18 bp I-SceI site, and PCR product was cloned in a pCR-Blunt II-

Topo vector (Invitrogen, Carlsbad, CA) to create a donor plasmid. The donor plasmid 

was co-transformed along with the pACBSR plasmid harboring an arabinose induced 
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lamda-red system and the I-SceI endonuclease on a compatible replicon. A colony of 

the strain transformed with both plasmids was grown with arabinose as an inducer and 

after 7-12h several dilutions of culture were plated with and without antibiotics to 

verify the loss of the donor plasmid. The initial screening of positive clones was 

carried out by PCR using a 3’ specific primer to the introduced mutation (40). The 

positive colonies were confirmed by Sanger sequencing. 
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3.3 Results 

3.3.1 Characterization of the Evolution Process and the Endpoint Strains 

Adaptive laboratory evolution was used to examine E. coli’s physiological and 

genetic adaptation to simple media conditions under a strict selection pressure. Eight 

independent populations of wild-type E. coli K-12 MG1655 from the same seed 

culture were adaptively evolved in parallel under continuous exponential growth for a 

time period of 39-81 days. During this time, the cultures underwent approximately 

8.3x10
12

-18.3x10
12

 cumulative cell divisions (CCD) (Table 3.1) (41, 42). The use of 

CCD as a coordinate allows for incorporation of the number of cells passed in an ALE 

experiment along with generations of a culture (41). Variations in time courses and 

CCD are due to re-inoculations from frozen stocks (taken throughout the experiment) 

and occasional unexpected losses of cultures or suspected contamination as 

determined using 16S ribosomal sequencing. The fitness trajectories (i.e., population 

growth rates) as fit by a spline over the course of the evolution are given in Figure 3.1. 

Each of the evolved populations increased in fitness from the starting strain (Table 

3.1).  The growth rate increases were 1.47±0.05 (standard deviation, n=3) fold faster 

than the starting strain and ranged from 1.42-1.59. One of the populations (determined 

to be a hypermutator strain, see below) was statistically faster than the rest and 

increased 1.59 fold (p-value ≤ 0.01). 

There was a significant increase in fitness from the first flask to the second in 

each of the independent experiments (Figure 3.1, insert). This phenomenon has been 
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previously observed and described through an examination of growth when cells are 

repeatedly passed during their exponential growth phase (32).  An initial 

‘physiologically-adapted’ growth rate was determined for the starting wild-type strain 

of 0.824±0.036 hr
-1

 and was determined using growth rates recorded for flasks 2-4 

across all of the independent ALE experiments.  This repeated exponential phase 

growth rate is 19% faster than the average growth rate of flask 1 from each experiment 

(0.69±0.02hr
-1

). It should be noted that this increase in growth rate is not expected to 

be a result of a beneficial mutation. 

Clones were isolated from the last flask of each of the evolved populations, 

phenotypically characterized (growth rates, glucose update rates (GUR) and acetate 

productions rates (APR)), and compared to the starting wild-type strain to understand 

how their behavior changed after evolution (Figure 3.2). Nine clones isolated from the 

experiments were analyzed (six isolated from the non-hypermutator populations, and 

three isolated from the hypermutating linage were analyzed as it possessed a 

significantly higher population fitness). The increase in fitness (i.e., growth rate) was 

1.29-1.46 fold. To quality control the data, the phenotype of the wild-type strain was 

compared with other studies and found to be in good agreement with previous 

characterizations (43).  The clone growth rates were compared to the population from 

which they were derived, and the Pearson correlation coefficient between them was 

0.16. The isolated hypermutator clones diverged more significantly from the 

population growth rates (1.10-1.20) than did the non-hypermutator strains (1.02-1.11). 

The physiological properties of each of the clones isolated from the 

independent ALE experiments were compared to examine if there were any conserved 
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trends across the different experimental outcomes. There was a similar increase in 

growth rate across the isolates from different experiments, but a larger variation in the 

glucose uptake rates and biomass yields (Figure 3.2A). The glucose uptake rates 

(GUR) and acetate production rates (APR) increased in the endpoint strains compared 

to wild-type (except for one strain where the APR decreased). There is a correlation 

(r
2
= 0.70) between the increase observed in the GUR and APR (Figure 3.2B). Of the 

characterized strains, the hypermutators accounted for three of the four lowest APRs 

and highest steady-state biomass yields (YX/S_ss). No other common fermentation 

products of E. coli K-12 MG1655 (i.e., formate, ethanol, succinate, lactate) were 

detected as secretion products in any of the endpoints, thus indicating that these the 

three hypermutator strains strains generally metabolized glucose more efficiently. A 

similar correlation was also seen between biomass yield and APR (r
2
=0.57, Figure 

3.2C). Thus, clones in the independent ALE experiments converged to a similar 

optimal fitness by either becoming more efficient in their biomass yield or increasing 

GUR and overflow metabolism in the form of acetate secretion. A tradeoff between 

GUR and YX/S_SS was observed in that higher glucose uptake rates led to lower YX/S_SS 

(i.e., they are inversely correlated, r
2
=0.93). However, it should be noted that the 

YX/S_SS calculation involves GUR as a factor.  

3.3.2 Analysis of Mutations Identified in the Evolved Strains 

A persistent challenge and goal in ALE experiments is differentiating between 

causal mutations and genetic hitch-hikers. In these set of experiments alone, 72 unique 

mutations were identified across non-mutator strains. To aid in determining causal 

mutations, jumps in fitness were identified using a jump finding algorithm (see 
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methods). Clones were isolated that bracketed jump regions and sequenced in order to 

evaluate if jumps in growth rates could be linked to a genetic change which had been 

fixed in the population over the course of the jump (Figure 3.3). An analysis of key 

mutations is given in Table 3.2. The genes or genetic regions listed in Table 3.2 are 

those that were found mutated in multiple experiments, or which contained multiple 

unique mutations across the gene/genetic region. Figure 3.3 additionally show if a 

given mutation persisted, was found in multiple points of clonal analysis, or was no 

longer detected but another mutation in the same gene was identified.  Mutations that 

were linked to fitness jumps are identified in Table 3.2. 

Overall, 52 unique genetic regions (i.e., genes or intergenic regions between 

two genes) were mutated across all non-mutator clones sequenced, encompassing 72 

total unique mutations. Of the 52 unique genetic regions, multiple unique mutations 

occurred in eight genetic regions (Table 3.2). 57% (30 of 53) of all mutations persisted 

in every subsequent clone examined until the experiment ended (mutations only 

observed in the last clone examined for each experiment were not considered). Some 

mutations were found in multiple subsequent clones from an experiment, but did not 

persist after first being observed. There were two such instances in experiment 10, 

where three distinct genotype lineages were observed in the various clones sequenced.  

Of the genes containing the 30 persistent mutations, only three have been reported in a 

similar glucose minimal media ALE experiment: rpoB, ygiC, and ydhZ/pykF (44). 

When considering the hypermutator population clones, an additional pykF mutation 

was also observed. It should be noted that the exact mutations were different than 

those previously reported and only rpoB was included in our analysis of key 
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mutations. Overall, there were 7 - 21 mutations identified in each experiment, with a 

median value of 13. Experiment 4 had the fewest genetic changes with seven unique 

mutations across all sequenced clones, and only four in the final clonal isolate. In 

comparison, experiment 10 had 21 unique mutations observed across all clones and 12 

in the final clonal isolate. Similar continuous exponential growth-phase ALE 

experiments run for approximately 10
11

 CCDs (more than an order of magnitude fewer 

than in this study) on glycerol, lactic acid, and L-1,2-propanediol minimal media 

yielded 2-5, 1-8, and 5-6 mutations per independent experiment, respectively (23, 24, 

45).  

Several genes and genetic regions were identified that contained mutations 

across many of the independent ALE experiments, implying causality. The most 

frequent mutation targets were the intergenic region between pyrE and rph, the rpoB 

gene, and between hns/tdk via an insertion sequence (IS). An 82bp pyrE/rph deletion 

was observed in every sequenced clone. A K-12 specific defect has been previously 

described which is ameliorated by this mutation (23, 46).  A subunit of RNA 

polymerase, rpoB was found to be mutated in every experiment and likely has a 

genome-wide impact on transcription given its vital role in the transcription process 

(47, 48). All of the mutations were single amino acid changes. Multiple unique 

mutationsg were found singly across clones which harbored rpoB mutations after the 

first jump in fitness. IS element mediated mutations were found in all experiments, 

typically after the second jump in fitness, except where a hypermutating phenotype 

was dominant. Three different IS elements (IS1, IS2, and IS5) were inserted in seven 
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different locations, and one identical IS5 mutation was detected using the described 

clonal analysis. 

The clones sequenced after the second jump in experiment 7 exhibited 

hypermutator behavior.  This was readily apparent from the 139 mutations it 

possessed, an order of magnitude greater than any other strain for a given number of 

CCDs. Additionally there was an IS element inserted into the mutT gene of this strain. 

Due to the large size of the insertion (777bp), it almost surely results in mutT loss-of-

function. It has been shown, by knock-out, that defective MutT increases SNPs in the 

form of A:T to C:G conversions (49). Of all the mutations observed in the 

hypermutator strains, only 6 of 381 were not A:T to G:C conversions. When all four 

isolated and resequenced hypermutator clones were compared, 33 mutations were 

shared between all four. The overlap in genes or genetic regions between the 

hypermutators and non-mutators was analyzed, and it was found that the only identical 

shared mutation was the 82bp deletion in pyrE/rph. Only two (iap, ydeK) of the same 

genes or genetic regions were mutated in both the non-mutator and hypermutator 

lineages.  Thus, these genes also indicate potential key mutations for the observed 

phenotypes. 

3.3.3 Analysis of Reproducibility for Key Mutations Which Enable Increased 

Fitness Phenotypes 

To analyze how reproducibly key mutations occur, the evolution process was 

repeated starting with strains that harbored three of the key mutations identified in this 

study: rpoB E546V, rpoB E672K, and pyrE/rph Δ82bp.  The hypothesis which was 

tested was the expectation that key mutations would again occur and the approach 
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developed in this work could select for them when starting another ALE experiment 

with one of the key mutations already present (i.e., with different starting material). 

Consequently, the fitness increase associated with each mutation could also be tested. 

Each of these single mutants were reconstructed in the starting strain background and 

validated (see Methods). The conditions of this ‘validation’ ALE experiment were 

essentially identical to the first ALE experimental setup, but with the dilution ratio 

changed to 0.67% of the total culture volume (as compared to 5.0% in the initial 

experiment) in order to reduce clonal interference and genetic drift. The fitness 

trajectories of the validation evolution experiment are shown in Figure 3.4. The initial 

and physiologically-adapted growth rates of the three reconstructed strains 

demonstrated that their mutations were indeed causal for faster growth on minimal 

media. Key mutations detected in the validation ALE are given in Table 3.4. It is 

interesting to note that a different mutation between pyrE/rph was detected (a 1bp 

deletion) besides the ubiquitous 82bp deletion detected in the primary ALE. 

Furthermore, using PCR it was revealed that all populations showed evidence of 

obtaining the 82bp deletion, though the entire population did not harbor the mutation.  

Additionally, metL and hns/tdk mutations were also detected in the validation ALE. 

metL mutations are not as widespread, but two out of three mutations that did appear 

in metL are consistently loss of function suggesting that inactivation of the gene can 

increase growth rate in the minimal media conditions tested. 

To examine the increase in fitness from key mutations identified, growth 

screens were performed for relevant single and double mutants (Figure 3.5). These 

strains were either reconstructed manually or were isolates of the validation ALE. The 
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results show that the mutation observed in metL and the IS1 insertion into hns/tdk also 

conferred a fitness advantage. The metL and hns/tdk were both shown in the presence 

of additional mutations, so their potential for epistasis is unknown. However, for the 

mutant with the IS1 insertion into the region between hns/tdk, it only harbors the 82bp 

deletion in pyrE/rph which has been previously shown to alleviate a known K-12 

MG1655 specific defect (23, 46). Thus, it is highly likely that it is uniquely causal 

without epistasis. In the case of metL, mutations were only observed after a mutation 

in rpoB was present. This could either indicate epistasis between the two mutations or 

simply that rpoB confers a larger fitness advantage and thus was selected for before a 

mutation in metL.  If the fitness advantage from the double mutant screens is assumed 

to be additive, the increase in fitness for the observed mutation in metL and between 

hns/tdk is 0.065±0.023hr
1
 and 0.045±0.035hr

-1
, respectively.  Furthermore, the double 

mutant harboring both the rpoB E672K and Δ82bp pyrE/rph mutation follows this 

additive trend as each single mutant increased fitness 0.125±0.038hr
-1

 and 

0.146±0.044hr
-1

, respectively, and when they were both present the increased fitness 

was 0.237±0.058hr
-1

. It should be noted that the growth rate measured from just the 

rpoB E672K and Δ82bp pyrE/rph mutations (1.027±0.043hr
-1

) matches the highest 

growth rate measured from the populations that harbored both of these mutations 

(1.01hr
-1

) in its 95% confidence interval. 

3.3.4 Transcriptomic Analysis of Evolved Strains 

Expression profiling was performed on endpoint strains using RNA-seq to 

identify system-wide changes in gene expression after evolution. For the eight strains 

profiled using RNA-seq, out of 4298 protein-coding ORFs, reads aligned to a total of 
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4189 genes (109 have no reads) in at least one strain, and 2922 genes in all strains (see 

sequencing methods), indicating a comprehensive/deep coverage of the transcriptome. 

Genes were identified that were differentially expressed in endpoint strains compared 

to the wild-type (see sequencing methods). In all strains, hundreds of genes 

significantly increased and decreased in expression, indicating large shifts in the 

transcriptome.  

The common changes in gene expression across strains were analyzed to 

examine the heterogeneity of the different independent ALE experiments. As a null 

model, it was assumed that the expression changes in each gene are independent of 

each other. Using this null model, the expectation would be that no genes should be 

commonly differentially expressed across 6 or more strains. However, 448 genes 

commonly increased in expression and 383 genes commonly decreased in expression 

across 6 or more strains (Figure 3.6A), indicating largely consistent changes in 

expression (though there is also a significant amount of diversity in the expression 

changes). This commonly differentially expressed gene set was selected for further 

analysis to better understand the coordinated change in the transcriptomes of the 

evolved strains. 

For a broad overview of the cellular processes with modulated expression, 

over-represented COG (Cluster of Orthologous Group) annotations (39) in the 

commonly differentially-expressed genes were identified. Overall, 79% (359) of the 

commonly increased and 65% (252) of the commonly decreased genes had annotated 

COGs (see Methods). While no COG annotation was enriched in the genes that 

decreased in expression, three categories were enriched in the increased genes. These 
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up-regulated COGs are translation, protein folding, and amino acid metabolism 

(Figure 3.6B). All of these COGs are related to protein synthesis, indicating that an 

increase in protein synthesis capacity is a common trend among evolved strains. These 

changes are consistent with previously described growth rate dependent increases in 

ribosomal and other protein synthesis machinery (50). At faster growth rates, the 

increased dilution of protein to daughter cells places a higher demand on protein 

synthesis, driving the increased expression. 

In order to connect genotype to molecular phenotype where possible, a 

comparison was made between the identified common mutations (Table 3.4) and gene 

expression levels within or between the mutational loci. Paired mutation and 

expression data for 6 endpoint strains (numbers 3, 4, 6, 8, 9, and 10) along with two 

hypermutator isolates, 7A and 7B, were used in the analysis. The same pyrE/rph 

mutation occurred in all 6 endpoint strains; pyrE was significantly up-regulated in all 

strains whereas rph was significantly down-regulated in 5 out of 6 strains (with no 

significant differential expression in strain 6). The up-regulation of pyrE is consistent 

with the previously identified mechanism of the mutation as relieving a pyrimidine 

pseudo-auxotrophy (23, 46); the rph down-regulation, on the other hand, is likely not 

directly beneficial for fitness as the gene contains a frameshift and lacks RNase PH 

activity (46). An intergenic hns/tdk mutation also occurred in all 6 endpoint strains, 

and in all strains, hns is significantly up-regulated and tdk is significantly down-

regulated (though not significantly in strain 9). Histone-like nucleoid structuring 

protein (H-NS) is a global transcription factor, which represses a wide array of stress 

responses (51); the benefit of the hns/tdk mutation may therefore be due to the up-
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regulation of hns and subsequent down-regulation of many stress responses. Tdk 

down-regulation has no apparent benefit, but may ameliorate a potential imbalance in 

deoxyribonucleotide biosynthesis. A mutation occurred in rpoB in all 6 endpoint 

strains and rpoB was also up-regulated in all of these strains (though not significantly 

in strain 8). The mutation was intragenic within rpoB and likely does not directly 

affect its expression level, however rpoB was up-regulated (in addition to all other 

subunits of the sigma 70 holoenzyme) as a consequence of increases in growth rate 

(see section below). This growth-rate dependency is further corroborated in that the 

hypermutator clones did not have an rpoB mutation, but all of the RNAP holoenzyme 

subunits are upregulated in these strains as well.  For the other key mutations that 

occurred repeatedly, there was no clear pattern between the occurrence of the mutation 

and differential expression of the related gene. Looking at an additional strain-specific 

intergenic IS element insertion between uvrY/yecF in endpoint strain 6, it was found 

that uvrY was significantly down-regulated, a shift experienced in three of the other 

strains as well (yecF expression was essentially the same as wild-type). Furthermore, 

there was an intragenic mutation in uvrY (W42G) in strain 7A, one of the other strains 

where it was differentially expressed. Thus, comparison of expression data and 

mutation data revealed potential links between genotype and molecular phenotype for 

the three intergenic IS element mutations identified in evolutions (those where one 

would most expect to see a change in transcription) (52-54). 

3.3.5 Integrated Genome-scale Modeling 

Constraint-based models are capable of predicting growth-optimizing 

phenotypes (15, 30, 55, 56). A recent genome-scale model of Metabolism and gene 
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Expression for E. coli, a ME-Model, extends predictions beyond metabolism to also 

include growth-optimization of gene expression phenotypes (38). To test the 

predictions of gene expression, categorize the transcriptomic data, and provide further 

insight into the expression data, model predictions were compared to the commonly 

differentially expressed genes from the analysis of evolved strains.  

Utilizing the ME-Model of E. coli, growth rate optimizing phenotypes in 

glucose aerobic culture media conditions (i.e., the same conditions as the ALE 

experiments) were simulated. Based on these simulations, three groups of genes were 

identified: 1) genes utilized by the ME-Model in maximum growth rate conditions 

(‘Utilized ME’, n=540), 2) genes within the scope of the ME-Model, but not predicted 

to be utilized in a maximum growth phenotype (‘Non-utilized ME’, n=1014), and 3) 

genes outside the scope of the ME-Model (‘Outside scope ME’, n=2744) which have 

yet to be reconstructed in a constraint-based formalism (38). 

If the in silico predicted Utilized ME genes are indeed important for an 

apparent optimal growth rate, one would expect them to be in the commonly 

differentially expressed set as determined through untargeted transcriptomics. To test 

this hypothesis, the three model-defined gene classes were compared to the commonly 

differentially expressed genes. Indeed, it was determined that the Utilized ME genes 

were more often commonly differentially expressed (Figure 3.7A top). Furthermore, 

of the Utilized ME genes that are differentially expressed, 85% were up-regulated, 

indicating that the transcriptome generally shifts towards these optimal growth-

supporting genes (Figure 3.7A bottom). The Non-utilized ME genes form an 

intermediate category whose frequency of differential expression (and frequency of 
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increased differential expression) is between that of Utilized ME genes and Outside 

scope ME genes. Non-utilized ME genes, although not predicted to be utilized for 

purely growth-optimizing phenotypes, still contribute to increased growth; whereas 

many Outside scope ME genes do not. While differentially expressed Non-utilized 

ME genes have increased expression about half of the time, Outside scope ME genes 

more often show decreased expression, indicating a shift away from the Outside scope 

ME genes. 

The COG and model-based gene categorizations were combined to provide 

further insight into the processes commonly differentially expressed among the 

endpoint clonal isolate strains. By dividing up the genes into Utilized ME and outside 

scope ME, new processes missed by just considering the COG annotations alone were 

identified, which also served to highlight important areas of model expansion. 

As in the analysis of the transcriptomic data alone, amino acid metabolism, 

translation, and protein maturation were enriched in the commonly differentially 

expressed Utilized ME genes, indicating that the ME-Model correctly predicted a 

number of the genes in these processes that are important for increased growth rate. 

By further categorizing the COGs based on the Utilized ME genes, transcription was 

identified as an up-regulated process. This finding was missed by the categorization 

based on COGs alone as a result of the numerous genes annotated as related to 

Transcription. However, by further segmenting this COGs group by model-predicted 

genes essential for transcription, it is revealed as an up-regulated process. 

Looking at the specific genes in the pared gene groups at the intersection of 

COGs annotations and modeling predictions revealed more details on the specific 
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processes and complexes that change in expression (Figure 3.7B). However, there are 

some clear pathway-level shifts worth mentioning here. Energy production and 

conversion was identified as a down-regulated process (again, energy production and 

conversion (C) is a broad COG category), but when it is pared-down to only consider 

model-predicted Utilized ME genes, it is identified as a category with significant 

changes in expression. Interestingly, genes that decrease in expression all belong to 

the TCA and glyoxylate cycles (mdh, acnAB, aceAB, gltA, icd). This concerted down-

regulation is likely related to the increase in fermentative metabolism and acetate 

secretion of the evolved strains (Figure 3.2). Though aerobic respiration has higher 

energy yields than fermentative metabolism, it has been hypothesized that the flux 

through the respiratory reactions is limited by protein synthesis cost and capacity (38, 

57, 58) (as TCA and the electron transport system require more proteins than 

glycolysis and acetate secretion) or limitations in membrane space (58) (for electron 

transport system enzymes). These gene expression and physiological changes may be 

driven by these key capacity constraints. 

Many COG categories were revealed as enriched when combining this 

categorization with the Outside scope ME genes. COG categories with significantly 

increased expression indicate processes important for growth, but not yet encompassed 

by the ME-Model, whereas COG categories with decreased expression indicate 

processes important for growth, but not important for optimal growth in glucose-

excess aerobic culture conditions (Figure 3.7B). The up-regulated Outside scope ME 

genes involved in intracellular trafficking and secretion are all involved with protein 

translocation from the cytosol to the membranes and periplasm. These include genes 
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in the Sec (secA, secE, yajC), Tat (tatB), and SRP (ffh, ftsY) translocation pathways. 

Similar to the common changes in gene expression and protein folding, this increased 

expression is likely driven by the increased need to synthesize a functional (and 

localized) proteome, as the dilution of these proteins to daughter cells increases their 

demand. Thus, categorization using both COGs and the ME-Model allows for an 

interpretation of the expression changes driving the observed growth increases in the 

evolved strains, and highlights areas of poor understanding to be further characterized 

and included in future genome-scale models. 

3.4 Discussion 

Adaptive laboratory evolution was utilized to explore optimal growth of E. coli 

K-12 MG1655 on glucose minimal media. This combination of organism and media 

conditions is arguably the most widely-used in basic science and biotechnology 

applications (59). Multiple parallel experiments were performed to use as comparison 

points for the overall process. The ALE was performed by propagating batch cultures 

during exponential growth phase where the passage volume was intentionally kept at a 

relatively large amount and held constant throughout the experiment. This is different 

from previous ALE studies where passage volume was generally decreased as the 

growth rate increased (45). The intent was to isolate the growth rate as the only 

selection pressure and remove any bottlenecks associated with a lower passage size. 

The results show that the large increases in growth rates observed here are achieved 

over a significantly shorter time-frame (44). As with stationary phase batch culture 

propagation, any fixed mutated genetic regions could very well be causal for a 
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secondary selection to growth rate (e.g., lag phase duration). The strains produced by 

this experiment were screened for their phenotype, genotype, and transcriptome. 

Genome-scale models were used to analyze the results of these screens. Accordingly, 

the major findings from this work are: i) passing larger volumes strictly in exponential 

phase batch culture can increase the rate of selection for improved fitness, ii.) the 

identification of key reproducibly-occurring mutations that enable higher growth rates 

for E. coli K-12 MG1655 under glucose minimal media conditions, iii.) apparent 

optimal phenotypes can be realized through modification of different mechanisms, and 

iv.) optimal phenotypic states, as probed through transcriptomic assays, are in good 

agreement with predicted cellular states from genome-scale modeling, and 

categorization with modeling results reveal drivers for the optimal phenotypes on a 

pathway level. 

The growth rates achieved in this work surpass those from comparable studies. 

In a long-term evolution experiment (LTEE), in which E. coli have been evolving for 

over 50,000 generations in glucose minimal media, results at the 2,000 generation 

mark were used for comparison, as those were closest in evolutionary timeframe to the 

results of this work (60). It is important to note that in the LTEE, an E. coli B strain 

was used on glucose minimal media, as opposed to K-12 used here, and cells were 

always passed during stationary phase. Nonetheless, the LTEE observed a 1.29±0.10 

(standard deviation) fold increase in growth rates of the populations, compared to the 

1.42-1.59 fold increase achieved here. Further, the LTEE took 10,000-15,000 

generations to reach an approximate 1.5 fold increase in growth rate, here this fold 

increase was achieved in approximately 2,000 generations.,. No identical mutations 
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were seen between the LTEE and this work, and only three mutated genetic regions 

were found in both: rpoB, ygiC, and pykF. The differences can presumably be 

attributed to the serial passage of cultures and/or the different starting E. coli strain. As 

another point of comparison, a different evolution study was performed on glucose 

minimal media for 50 days using the same K-12 strain and media conditions used here 

(3). In that experiment, a 1.1-fold increase in growth rate was observed, drastically 

lower than the increase found here. The only major difference between the two K-12 

studies was that in the previous work the passage size was adjusted (i.e., reduced as 

the fitness increased) to keep the cultures out of stationary phase. Thus, these findings 

point to the importance of methodology used in an ALE experiment as highlighted by 

the differences in phenotypic and genotypic outcomes.  

Key mutations were identified which enabled faster growth of E. coli K-12 

MG1655 on glucose minimal media and these mutations did not appear in the 

identified hypermutating lineage. These key mutations were straightforward to 

identify as the given genetic regions were reproducibly mutated across multiple ALE 

experiments. The causality of select single and double mutants of these regions was 

shown (Figure 3.5). The reproducibility observed is likely due to the strict selection 

pressure that was maintained in the experiment, keeping the populations in constant 

exponential growth. However, in one experiment, a hypermutating population arose. 

The genotype of the hypermutator differed significantly from the non-mutators; the 

vast majority of the key mutations determined from the non-mutator set were not 

detected in the hypermutator clones sequenced. This indicated that there were multiple 

genetic changes capable of enabling a similar fitness increase, which is further 
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supported by the similarities in the transcriptome across all strains. Furthermore, the 

rpoB and hns/tdk mutations in the non-mutator strains likely affect global 

transcriptional levels. This would allow for single mutations to affect a multitude of 

reactions in the network. Compared to the hypermutator that did not have either of 

these, it was able to confer a similar effect on the network by fixing numerous 

mutations that presumably have similar, perhaps more local, individual effects. It 

should be mentioned however, that while the hypermutator did not have mutation in 

rpoB, it did have one in the rpoC subunit of the RNA polymerase holoenzyme, which 

could have a similar board impact on transcriptional levels in the cellular network. 

The occurrence of the identified key mutations was highly reproducible. This 

conclusion was supported by the results of the validation ALE experiment which was 

started using clones already harboring single causal mutations (Figure 3.5, Table 3.4). 

Mutations in pyrE/rph, rpoB, hns/tdk, and metL all reappeared in these experiments, to 

varying extents. The ability of clonal analysis to capture population dynamics was also 

examined. Although clonal resequencing most often yielded agreement with the 

population-level analysis (analyzed with population PCR), it did not always capture 

the presence of a specific mutation shown to cause an increase in fitness (in this case, 

the 82 bp deletion between pyrE/rph). Thus, clonal analysis is useful and informative, 

but it has its limitations and ultimately ALE studies can benefit from a more 

population-centric analysis of mutations. Looking at the differences in mutations 

which occurred in a given gene, it appears that there are multiple specific mutations 

that can have a similar effect on fitness (Table 3.2). Of the specific mutations observed 

in rpoB, all conferred a fitness advantage but to varying degrees (Figure 3.5). More 
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than one mutation in rpoB was never observed in a single strain, suggesting that there 

could be negative epistasis between the different identified SNPs; their effects are 

non-additive. Nonetheless, this study presents a number of reproducibly occurring and 

causal genes which enable rapid growth of E. coli on glucose minimal media. 

The physiological characterization of evolved strains indicated that there were 

multiple mechanisms through which to realize an increased growth rate. The clones 

isolated from the endpoints of the primary ALE experiments all increased in fitness to 

a relatively similar degree, yet the GUR and YX/S_ss varied between them (Figure 3.2). 

Of the three hypermutator clones isolated and characterized, two seemed to diverge 

from the others by having significantly lower GURs yet higher YX/S_ss (i.e., they are 

more efficient). The observed extremes in GUR, APR, and YX/S_ss show that the 

trajectory across the fitness landscape traversed by MG1655 on glucose minimal 

media is not a rigid, predetermined path. It should be noted that the growth rates of the 

two aforementioned hypermutators fell in between the range of growth rates of the 

other clones. Furthermore, this study has shown that there is a clear and distinct 

physiologically adapted growth state which is realized after several generations of 

continuous exponential growth (differing from growth started directly from a 

stationary phase culture). This observed phenomenon was reproducible using the 

quantitative approach in this study and puts an emphasis on critically evaluating 

previously reported “maximum” growth rates of strains.  

Genome-wide analysis of the evolved strains using transcriptomics revealed a 

consistent evolved expression shift, and further categorization using genome-scale 

modeling revealed pathway-level shifts underlying the increased growth phenotypes. 
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Furthermore, transcriptomics was utilized to link genotype to phenotype when 

considering the effects of IS element mutations. The most apparent mutational effect 

was that of IS elements between hns/tdk, where the hns gene product was significantly 

up-regulated in all of the strains harboring these mutations. These hns/tdk insertions 

were shown to be causal for an increased growth rate and could be further utilized, 

along with other key mutations, to improve efficiency in biomass yield or GUR. The 

most highly conserved changes in the transcriptomes across the evolved strains were 

in good agreement with the predicted gene products whose differential expression 

would enable rapid growth, as determined through genome-scale modeling. When 

considering the coordinated changes in the transcriptomes of the evolved strains solely 

with a classification like COGs, enriched pathways became apparent which 

contributed to the shift in the functional state of the cells. The results of the genome-

scale modeling classification changed this enrichment significantly and allowed a 

deeper examination into the physiological state and mutation-induced pathway 

expression changes of the evolved strains.  Thus, it was useful to interpret the outcome 

of evolution in the context of an in silico analysis of optimal performance in this 

particular condition. 

In summary, we have shown that ALE can be utilized to find reproducible 

causal mutations that optimize for a selectable phenotype using a controlled 

experimental setup and strict selection pressure. Whole-genome resequencing enabled 

the mutational discovery, and transcriptomic analysis coupled with genome-scale 

modeling uncovered the metabolic pathways underlying the evolved phenotypes. 

These findings and the general experimental approach we have laid out can be 
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extended to additional culture conditions, strains, and selection pressures for a variety 

of basic science and applied biotechnological purposes. 

 

Chapter III, in full, is a reprint that the dissertation author was the principal 

researcher and author of.  The material appears in Applied and Environmental 

Microbiology.  (LaCroix RA, Sandberg TE, O'Brien EJ, Utrilla J, Ebrahim A, Guzman 

GI, Szubin R, Palsson BO, Feist AM. 2015. Use of adaptive laboratory evolution to 

discover key mutations enabling rapid growth of Escherichia coli K-12 MG1655 on 

glucose minimal medium. Appl Environ Microbiol 81:17-30.) 
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3.5 Tables 

Table 3.1 - Fitness properties of the evolved populations  

 

Experiment 
Population Growth 

Rate (hr-1) 

Total 

CCD 

Total 

Doublings  

Ratio of Final 

Fitness to Wild 

Type 

Total Number 

of Flasks 

 Wild-type K-12 

MG1655 
0.69±0.02 0 0 1 NA 

3 1.01±0.16 13.5x1012 1903 1.46 
382 

4 0.98±0.10 10.2x1012 1440 1.42 
288 

5 1.01±0.08 8.3x1012 1184 1.46 
288 

6 1.00±0.16 11.3x1012 1630 1.46 
327 

7 1.11±0.10 13.6x1012 1870 1.59 
375 

8 0.99±0.11 10.5x1012 1542 1.43 
309 

9 1.01±0.09 18.1x1012 2589 1.46 
519 

10 1.02±0.12 18.3x1012 2582 1.48 
518 

CCD – Cumulative cell divisions, 95% Confidence interval for the wild-type strain was determined 

from biological triplicates, population growth rate were taken from the endpoint of the fitted spline. 
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Table 3.2 - Key Mutations 

 

 

Gene Mutation 

Appearan

ce 

Location 

Replacing Mutation (within 

same experiment) 

Appearanc

e Location 

Occurrenc

es 

Experiment(

s) 

pyrE/rp

h 
Δ82 bp 

Jump 1             

pre-Jump 1 
    8 

3, 5, 9, 10  4, 

6, 7, 8 

rpoB E672K (GAA→AAA) Jump 1     8 3, 5, 9 

  P1100Q (CCG→CAG)  Jump 1       4, 8 

  E546V (GAA→GTA)  Jump 1       10 

  H673Y (CAC→TAC) Jump 1 D785Y (GAC→TAC)  Jump 2   6 

  L671P (CTG→CCG)  Jump 1 hypermutator Jump 2   7 

hns/tdk 
intergenic (-114/-487) 

IS2 
Jump 2 

    
7 3 

  
intergenic (-110/-488) 

IS1 
Jump 2 

    
  4 

  
intergenic (-274/-328) 

IS5 
Jump 2 

    
  5 

  
intergenic (-86/-511) IS1 

post Jump 

2     
  6 

  intergenic (-67/-531) IS1 Jump 2       8 

  intergenic (-93/-505) IS1 Jump 3       9 

  
intergenic (-258/-344) 

IS5 
Jump 2 

intergenic (-274/-328) IS5 post Jump 2 
  10 

corA 
coding (726-728/951 nt) 

Δ3bp 
Jump 1 

coding (220-224/951 nt) Δ5 bp Jump 1 
3 4 

  A206V (GCG→GTG)  Jump 1-2 coding (113-211/951 nt) Δ99bp Jump 2   5 

  
coding (668/951 nt) 

duplication 21bp 
Jump 2-3 

wild type Jump 3 
  10 

ygaZ 
coding (529-532/738 nt) 

IS5 
Jump 2 

coding (307-316/738 nt) Δ10 bp post Jump 3 
3 3 

  E49* (GAA→TAA) Jump 3       9 

 
2807900 19bp x 2 

post Jump 

3   
  

iap 
coding (98‑ 101/1038 

nt) IS5 

post Jump 

2/3   
 6, 9 

metL 
coding (1338/2433 nt) 

Δ1bp 
Jump 2-3 

A798E (GCG→GAG)  Jump 3 
1 10 

ygeW S200R (AGC→CGC) Jump 1     2 5, 9 
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Table 3.3 - Phenotypic data from clones isolated from the final flask of each 

experiment 

 

Strain 
Growth Rate 

(hr-1) 

Glucose Uptake 

Rate 
(mmol gDW-1 hr-1) 

Acetate 
Production 

Rate (mmol 

gDW-1 hr-1) 

Biomass 

Yield (gDW 
gGlc-1) 

Fold 
Increase 

vs. wild-

type 

Population/Clone 

Growth Rate 

Wild-type K-

12 MG1655 
0.69±0.02 8.59±1.42 3.91±1.14 0.44±0.07 - - 

Exp. 3 0.98±0.02 13.51±1.15 8.43±2.17 0.40±0.04 1.42 1.03 

Exp. 4 0.96±<0.01 12.19±0.68 7.89±1.88 0.44±0.02 1.39 1.02 

Exp. 6 0.93±0.01 12.77±0.85 7.11±1.51 0.40±0.03 1.34 1.07 

Exp. 7* 1.01±0.04 13.13±1.29 5.12±0.57 0.43±0.06 1.46 1.10 

Exp. 7A* 0.97±<0.01 11.01±0.79 3.97±0.98 0.49±0.03 1.41 1.14 

Exp. 7B* 0.92±0.02 10.43±0.62 2.36±0.54 0.49±0.03 1.33 1.20 

Exp. 8 0.89±0.01 12.59±1.01 5.05±0.40 0.39±0.03 1.29 1.11 

Exp. 9 0.92±0.02 13.13±0.59 6.99±0.48 0.39±0.02 1.33 1.10 

Exp. 10 0.95±0.01 13.98±1.11 9.27±1.76 0.38±0.03 1.38 1.07 

* denotes hypermutator strain, Exp. – experiment 



50 

 

 

 

 

Table 3.4 - Key Mutations in Validation ALE 

 

Genetic Region Starting Strain Mutation Occurrences Experiment(s) 

pyrE/rph 
rpoB E546V 

Δ82bp deletion 1 2 

Δ1bp deletion 1 3 

rpoB E672K Δ82bp deletion 3 4,5,6 

rpoB pyrE/rph 
A679V (GCA→GTA) 1 8 

V857E (GTG→GAG) 1 9 

hns/tdk pyrE/rph intergenic (-75/-522) IS1 1 9 

metL rpoB E546V W424* (TGG→TAG) 1 1 
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3.6 Figures 

 

Figure 3.1: Fitness trajectories for E. coli populations evolved on glucose minimal 

media. Shown is a plot of the fitness (i.e., the growth rate) of the independently 

evolved experiments versus the number of cumulative cell divisions (CCD). The strain 

indicated with a dashed line was classified as a hypermutator. The insert shows the 

growth rates of the initial four flasks of batch growth in each experiment. Overall, the 

fitness of the hypermutator population outpaced the non-mutators. 
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Figure 3.2: Phenotypic properties of evolved strains. 

Clones isolated from the last flask of the experiments (i.e., endpoint strains of non-

mutators) and three hypermutator strains were characterized phenotypically. (A) A 

plot of biomass yield versus glucose uptake rate (UR) (see Methods for calculations). 

The isoclines indicate different growth rates. Of all measured phenotypic traits for the 

evolved strains, the correlations between (B) glucose uptake rate and acetate 

production rate (PR), and (C) biomass yield and acetate production rate were the 

strongest. The percent of carbon from glucose being secreted in the form of acetate 

increased in all of the non-mutator endpoint strains (18-22%) except for one (13%), as 

compared to wild-type (15%). This percent decreased for all of the hypermutator 

strains (8-13%). 
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Figure 3.3: The fitness trajectories of ALE experiments 3, 4, 7, and 10 along with 

identified jump regions and resequencing data. 

Shown is the fitness increases over the course of the evolution as a function of 

cumulative cell divisions (CCD) and the jump regions (grey boxes) identified using 

the outlined algorithm. Arrows indicate where colonies were isolated and resequenced. 

Mutations are categorized by color: those which occurred and were found in each 

subsequent colony resequencing (green), those which appear in colonies from multiple 

flasks but not consecutively (blue), and those which were only found in one particular 

clone and not in subsequent clones (black). Further, genetic mutations that replace a 

previously identified  mutation in the same gene are marked with an asterisk.  All of 

the mutations from the hypermutator strain that arose in experiment 7 are not shown 

(more than 135 total mutations). 
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Figure 3.4: Fitness Trajectory for the Validation ALE 

Shown is a plot of the validation ALE where three unique starting strains were 

evolved in biological triplicate, each harboring one of the following mutations: rpoB 

E546V, rpoB E672K, and pyrE/rph Δ82bp. The increase in fitness is shown as a 

function of the cumulative cell divisions (CCD). The insert shows the unsmoothed and 

filtered growth rates of the beginning of the experiment to show any possible 

physiological adaptation that is characteristic of ALE experiments. A smoothing spline 

will often obscure such abrupt changes. 
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Figure 3.5: Causal Mutation Analysis 

Shown is a bar graph of the physiologically adapted growth rates of strains harboring 

key mutations identified in this work. The error bars represent 95% confidence 

intervals from three biological replicates.  This shows that the mutation in metL and 

the IS1 insertion between hns/tdk are causal in the presence of the additional mutations 

shown. The strain with metL also had one additional mutation, but this was not 

observed in any other sequenced metL mutant from the ALE experiment. It is clear 

from the fastest growing mutant, with growth 1.3 fold higher than the wild-type, how 

significantly the pyrE/rph and rpoB mutations can affect growth rate. 
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Figure 3.6: Commonly differentially expressed genes 

(A) The number of differentially expressed genes (with respect to the wild-type strain) 

common across evolved strains is indicated. Increased and decreased expression genes 

are counted separately to ensure the direction of change is conserved across strains. 

The y-axis indicates the number of genes differentially expressed in exactly the 

number of strains indicated on the x-axis. From this, 448 increased and 383 decreased 

genes are identified as common to at least 6 strains, whereas one would expect no 

genes in common to all six by random chance. (B) The commonly differentially 

expressed genes’ functions are interrogated using annotated Clusters of Orthologous 

Groups (COGs). COGs over-represented in either the up-regulated or down-regulated 

gene sets were identified with a hypergeometric test (p<0.05; see Methods). The 

percentage and number of genes for the identified COGs is indicated in the bar chart. 

Asterisk indicates over-represented. 
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Figure 3.7: Comparison of genome-scale modeling predictions and categorization 

of commonly differentially expressed genes. 

(A) The commonly differentially expressed genes were compared to a gene 

classification obtained by a genome-scale model of E. coli (38). Growth rate is 

optimized in the same glucose aerobic batch conditions as used in the ALE 

experiment. Simulation results can be used as an additional characterization of gene 

content (x-axis). Overall, differentially expressed genes are more enriched in the set of 

genes predicted to enable an optimal growth phenotype (top). Furthermore, within the 

differentially expressed set of genes, those which increased in expression versus wild-

type are enriched within the predicted set of genes which enable an optimal growth 

phenotype (bottom). (B) Using the combination of in silico predicted genes and COGS 

for categorization, subsets of genes could be identified which enabled the observed 

optimal states of the evolved strains on the pathway level. 
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4.1 Adaptive Laboratory Evolution 

Adaptive laboratory evolution (ALE) has been performed in vitro for decades 

and the field is expanding. The basic principles governing ALE experiments are easily 

understood across a breadth of disciplines, which has led to its adoption in many 

laboratories (1, 2). The recent growth in the use of ALE can be attributed to the ease of 

access and decreasing costs of genome sequencing (3-5). Falling sequencing costs 

have led to the increased investigation of genomic, transcriptomic, and fluxomic 

changes over the course of evolution (5). While the analysis of ALE experiments has 

grown, the manner in which the ALE experiments themselves are performed has 

remained relatively ad hoc. The most commonly employed techniques are chemostat 

adaptation and batch culture adaptation, with batch culture adaptation being more 

popular as it is easily expanded and does not require setting up complex machinery (3, 

6).  

A primary attribute of any ALE experiment is the selection pressure imposed 

on the culture. The selection pressure (i.e., exponential growth, biomass yield, 

stationary phase, or lag phase) is responsible for the outcome of the evolution study (4, 

7-10). For example, in a 24hr batch culture ALE experiment with fast growing 

bacteria, the culture is subjected to alternating environments of feast and famine. At 

the beginning of the batch there are excess nutrients but inevitably, within 24hrs, the 

nutrients are consumed and stationary phase is reached. Because of this alternating 

environment, the selection pressure is complex (e.g., stationary phase fitness, lag 

phase duration, and growth rate all contribute) (9). This complexity often confounds 

the analysis depending on the application. To alleviate complexity, the cells can be 
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kept in one phase (e.g. exponential phase) to mitigate most of the alternating selection 

and focus selection specifically on growth rate. The desired outcome of the experiment 

would dictate the ideal selection pressure to be imposed and thereby the experimental 

design, but the difference between the two designs is non trivial. 

There are several parameters that affect the outcome of a batch culture ALE 

experiment. A primary parameter involved is the passage size (11-13). Specifically, 

passage size determines how much of the population is allowed to propagate to each 

subsequent batch culture. This is an integral parameter. If a beneficial mutation occurs, 

but is lost when the bottleneck is imposed, the rate of evolution can be slowed or even 

halted. Since smaller passage sizes can hinder the rate of evolution, it is often easier to 

perform a batch culture ALE under alternating environments of feast and famine 

where a change in passage size only effects the duration of growth and stationary 

phases. However, if the application requires exponential phase passaging, a change in 

passage size also changes the time when the culture must be passaged. Because of this, 

the passage size is often dictated by an individual’s schedule. Typically, the time in 

between passaging can be no shorter than ~12hrs. Consequentially, as the culture 

adapts and begins to grow faster, the passage size must be decreased. As an example, a 

previous study adapting E. coli to glycerol started with a passage size of 

approximately 100µL and by experiment’s end was less than 0.1µL (14). A more in-

depth retrospective analysis revealed similar trends where passage amounts were 

significantly decreased (14-18). In these studies, the bottleneck became so small that 

the calculated number of cells being passed was on the order of 10
1
 or even 

occasionally 10
0
. The chance of capturing a beneficial mutation, when only passing 
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10
1
 cells from a culture of millions, is practically null over a reasonable timeframe. At 

this point, continuing the experiment is futile. The question then becomes at what 

point is the passage size too low?  

Passage size can have a large impact on the trajectory of an ALE experiment. 

This can be seen in the comparison of two studies that evolved wild-type E. coli K-12 

MG1655 on M9 glucose minimal media (7, 18). One study (7) used a consistent 

passage size of 800µL on an automated platform. The second study (18) was done “by 

hand” and had widely varying passage sizes that were considerably smaller than the 

automated study. The outcomes of the ALE experiments were quite distinct. The final 

growth rates achieved were 1.00±0.24 hr
-1

 and 0.79±.01 hr
-1

 in the consistent and 

variable passage size studies, respectively. The apparent lack of fitness achieved in 

variable passage study was not due to a lack of available beneficial mutations (as the 

same strains and culturing conditions were used), but rather insufficient experimental 

design to find and fix them in a reasonable amount of time. Understanding why these 

two outcomes differ is imperative to the efficient design of ALE experiments. 

Theoretical studies have looked at the effect of passage size on batch culture 

adaptation and resulted in varying predictions of an ideal passage size depending on 

the model used (19, 20). The ideal passage sizes calculated are ideal from a 

mathematical standpoint. This essentially gives the best chance for various mutations 

of different selective advantages to fix themselves in a population. The values 

calculated are relatively large (13.5% and 20%)(19, 20). As mentioned previously, a 

larger passage necessitates an increase in resources. More specifically, the resources 

required increase exponentially with passage size, yet the gains slowly diminish. This 
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work thus focuses on examining the diminishing returns in the context of the desired 

result and the resources available. We set out to examine the impact of the key ALE 

parameter: passage size. To address this, we created an in silico evolutionary model 

that simulates the dynamics of capturing and fixing beneficial mutations in the context 

of an exponentially-passed batch culture ALE experiment. After building the model, 

we parameterize it using a combination of 30 independent ALE experiments of E. coli 

on glycerol minimal media across five different passage sizes (10%, 1%, 0.1%, 0.01%, 

and 0.001%). Using the parameterized model, we investigated the biological 

consequences of changing passage sizes and how close to optimal a given experiment 

is. With this knowledge, an experiment can be designed to fit the desired outcome, 

giving consideration to the resources required to achieve it, and the feasibility of 

performing such an experiment. 
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4.2 Materials and Methods 

4.2.1 Adaptive Laboratory Evolution 

Adaptive laboratory evolutions were started from wild-type E. coli strain 

MG1655 (ATCC47076) glycerol frozen stock and grown up overnight in 15mL 

magnetically stirred 0.2% glycerol M9 minimal media supplemented with trace 

elements. The magnet was stirred at 1150rpm, sufficient for completely aerobic 

growth. 30 experiments were started from 150µL aliquots from the overnight pre-

culture. The experiments were subsequently grown in identical vessels and media as 

the pre-culture. Culture optical densities at 600nm (OD) were monitored over the 

course of each batch culture. When the culture reached an OD of 0.300 (±10%) as 

measured by a plate-reader with 100µL sample volume in a 96 well flat bottom 

microplate, an aliquot was taken and passed to a new batch culture filled with sterile 

media. An OD of 0.300 was chosen to preclude reaching stationary phase in any of the 

cultures and ensures OD measurements have not begun to saturate. Growth rates of 

each culture were determined using OD measurements taken over the lifetime of each 

batch culture.  

4.2.2 Media 

All cultures were grown in 0.2% glycerol M9 minimal media. The media 

consisted of 0.2% glycerol by volume, 0.1mM CaCl2, 2.0mM MgSO4, Trace element 

solution and M9 salts. 4000X Trace element solution consisted of 27g/L FeCl3*6H2O, 

2g/L ZnCl2*4H2O, 2g/L CoCl2*6H2O, 2g/L NaMoO4*2H2O, 1g/L CaCl2*H2O, 1.3g/L 

CuCl2*6H2O, 0.5g/L H3BO3, and Concentrated HCl dissolved in ddH2O and sterile 
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filtered. 10x M9 Salts solution consisted of 68g/L Na2HPO4 anhydrous, 30g/L 

KH2PO4, 5g/L NaCl, and 10g/L NH4Cl dissolved ddH2O and autoclaved. Final 

concentrations in the media were 1x. 

4.2.3 DNA Sequencing 

Genomic DNA was isolated using Macherey-Nagel NucleoSpin® Tissue kit. 

The quality of DNA was assessed with UV absorbance ratios using a Nano drop. DNA 

was quantified using Qubit dsDNA High Sensitivity assay. Paired-end resequencing 

libraries were generated using Illumina’s Nextera XT kit with 700 pg of input DNA 

total. Sequences were obtained using an Illumina Miseq with a MiSeq 600 cycle 

reagent kit v3. The breseq pipeline version 0.23 with bowtie2 was used to map 

sequencing reads and identify mutations relative to the E. Coli K12 MG1655 genome 

(NCBI accession NC_000913.2) (21). All samples had an average mapped coverage of 

at least 25x. 

4.2.4 Computer Modeling 

Modeling of simulations was computed using MATAB 2015b on a Windows 7 

professional platform. The BMR was computed by a maximum likelihood estimation. 

It was calculated for making a transition from State 1 to State 2 and State 2 to State 3 

for passage sizes of 0.01% and 0.001%. These passage size were chosen as they were 

the only ones that showed a distribution of states achieved. The transition from State 1 

to State 2 was capped at 20 days to give a maximally distributed data set. The 

transition from State 2 to State 3 was started by assuming that State 2 was already 

achieved. Thus, the length of time simulated was started based of when State 2 was 

achieved. This was variable for different experiments. 
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A value of 1.55x10
12

 cells·L
-1

· OD600nm
 -1

 was used to estimate the number of 

cells in a culture for a given OD600nm with a 1 cm path length cuvette for the purposes 

of ALEsim. A standard curve relating the ODs measured in the plate reader with a 

100µL sample volume in a 96 well flat bottom microplate to the OD measured with a 

1 cm cuvette to obtain a ratio of 3.15 for equivalent measurements between the two. 

The biomass (grams of dry weight) per OD600nm per volume was calculated by filtering 

known volumes of cultures at specific ODs though 0.22µm filters. The filters were 

weighed before and after filtering and drying to obtain the total dry weight of the 

culture. The differences in these values was used to calculate ratio of 0.45·gDW L
-

1
·OD600nm

-1
. The dry mass per cell has previously been reported as 2.9×10

-13
gDW·cell 

(22). The quotient of these two values gives our final conversion factor of 1.55x10
12

 

cells·L
-1

·OD
-1

 to estimate the cell counts of cultures at various ODs and volumes. 
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4.3 Results 

4.3.1 Modeling the ALE process 

ALEsim is a model built on the basic principles of exponential growth in order 

to understand the dynamics of ALE. The scope of ALEsim is to predict the observed 

growth rate in each batch culture of an ALE experiment while allowing individual 

cells to change their growth rate when dividing (i.e., a proxy for receiving a beneficial 

mutation). The observed population growth rate is different from a clonal growth rate 

in that each batch culture of an ALE experiment is a population of multiple clones 

with varying growth rates. Figure 4.1 provides a workflow of the modeling process. 

Each in silico experiment begins with a clonal inoculation of a strain with a given 

growth rate. A population of mixed phenotypes can be used in this framework, but 

here the starting population will be assumed to be isogenic with the same phenotypic 

behavior. This organism is allowed to replicate according to an exponential growth 

function. During each cell division event, there is a probability that it will mutate and 

start a new lineage with a mutated growth rate. This new lineage is allowed to grow 

alongside the parent strain according to exponential growth, but with its mutated 

growth rate. The new lineage is itself allowed to continue mutating in the simulation.  

Mutated growth rates in ALEsim must be constrained to remain biologically 

meaningful, i.e., growth rates that are of magnitudes that remain plausible. These rates 

are determined empirically by the user, as done here from the parameterization 

experiment (see section below). The growth rates can be constrained to allow various 

types of epistasis. For example, if two distinct growth rates are allowed, there is a 
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possibility that a single cell line could mutate twice and receive both of these 

mutations. ALEsim employs the flexibility to define the type of epistasis between 

these two mutations, if any epistasis at all is to occur. Similarly, an order to the 

mutations accumulated can be set, as certain mutations can be beneficial only in the 

presence of a pre-existing mutation. As the population of cells continues to replicate 

and mutate, their total cell count naturally increases. When the cell count reaches a 

given threshold, a simple random sample of cells is used to inoculate the next batch 

culture. The threshold corresponds to a target cell count at which to passage the cells 

to the next batch culture. The number of cells taken is determined by the passage size, 

which is a percentage of the total culture volume. After this sample is computed, a 

new batch culture is started with the chosen cells and corresponding growth rates. 

Figure 4.2 provides the key parameters of the model. 

In using the basic principles of microbial growth and the brute for nature of 

forcing competition, many of the fundamental attributes of natural selection 

intrinsically contained in the simulation. This includes clonal interference which is 

integral to asexual evolution. ALEsim can be used to model a system where two local 

maxima are possible but the greater maximum can only be found by first acquiring a 

mutation that is initially suboptimal compared to other possible single beneficial 

mutations. The experimental parameters can be modulated to potentially find an 

experiment design that would find the desired optimum or both. 

Given the stochastic nature of many steps in the model, the results are non-

deterministic. Stochasticity is incorporated into the model in three ways: i) when a cell 

mutates its growth rate, ii) what growth rate a cell mutates to, and iii) what sample of 
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cells are propagated to a subsequent batch culture. The simulation is then run multiple 

times to capture the dynamics of the stochasticity (23). 

For a simulation to be biologically meaningful using the developed model, 

there are three types of parameter sets that must be determined. The first set of 

parameters is experimental: batch culture size, passage size, passage optical density 

(or cell count), and length of experiment. These can be set based on the desired 

experimental setup. The optical density is used as a proxy for cell count when 

mimicking an experimental design in ALEsim. It is understood that for E. coli the 

relationship between OD and cell count is not constant over a range of growth rates. 

Though not constant the relationship is known (24). Using an OD to cell count factor 

as a function of growth rate is possible with ALEsim but incurs a marked increase in 

simulation time over a constant. Identical simulations but only varying the constant 

show that the difference between the most extreme differences in OB to cell count 

factors only yielded a 10% difference in outcomes. Thus using a constant average 

value for the range of growth rates expected was determine to be sufficient 

considering the benefit in computation time.The second set of parameters is the 

statistical parameters: random number seed and the number of identical experiments to 

run. The random number seed is set by the native random number generator. The 

number of parallel simulations to run is determined by the statistical power needed. 

Depending on the magnitudes and complexities of the parameters set, the number of 

simulations can vary drastically. For the results shown here, 500 simulations were 

computed unless otherwise stated. It was found that after 500 simulations there was no 

appreciable difference in the means or spread of the distribution of results calculated 
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when combined with another set of 500. The third set of parameters is biological: 

beneficial mutation rate (BMR) and allowed increases in growth rate. This set of 

parameters must be derived experimentally. Intuitively, these parameters can be 

different for different strains, conditions, and can even change along the course of a 

single experiment (25, 26). As long as the values determined are biologically 

meaningful, generalizations about the ALE process can be concluded. 

Alternative models of evolution and adaption have been developed to 

understand the dynamics of evolution. These types of mathematical models capture 

various aspects of adaptation including selection, drift, and clonal interference (27-29). 

Classically, this has been a target of the field of population genetics (30-32). An 

expansion of the Fisher model was developed by Wahl et. al. which conceptually 

relates to ALEsim in that it targets the question of passage sizes (33). However, 

ALEsim deviates from the classical mathematical approach and employs the use of an 

in silico organism that can then replicate, mutate, and evolve. Simulations here are 

carried out in brute force where they are allowed to grow under the conditions laid out 

by the user. The advantage of such a method is that the experimental and biological 

parameters can be strictly controlled over the course of an experiment. The resulting 

simulation is able to more closely mimic the conditions of an actual laboratory 

evolution experiment in its entirety where parameters are not always constant 

throughout. This approach differs from the use of a digital organism in that it is an 

attempt to model specific biology instead of general evolutionary dynamics which 

allows for direct modeling of the ALE experiment as would be performed in a 

laboratory (34). 
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4.3.2 Parameterization of ALEsim by evolving E. coli on Glycerol Minimal Media 

The two biological parameters, BMR and allowed increase in growth rate, 

were determined using 30 independent cultures of Escherichia coli K-12 MG1655 

evolved in 15mL of 0.2% glycerol M9 minimal media until a stable growth rate was 

observed in most experiments (38 days). One experiment only lasted 23 days after it 

was restarted due to contamination. The 30 experiments were separated into five 

groups of six passage sizes and each group was evolved under identical conditions 

except for the passage size. The passage sizes used were 10%, 1%, 0.1%, 0.01%, and 

0.001% of the culture size (15mL). The growth rate of each experiment was monitored 

over the course of the experiment using optical density measurements as a proxy for 

cell count (Figure 4.3). 

Allowed increases in growth rate were determined by identifying jumps in 

growth rates from the fitness trajectories. A spline was fit to the growth rate of each 

experiment and significant increases in growth rate were identified as discussed 

previously (7). The resulting jumps in growth rates showed that the plateaus in growth 

occurred at specific values (Figure 4.3, 4.4). These plateaus are identified as State 1, 2, 

3A, and 3B. State 3 was split into two sub-states since there is an obvious distinction 

between the lower and upper growth rates but there is no obvious gap between them. 

This gap is most likely obscured since the difference between the growth rates is fairly 

small and noise in the measurements can bleed into any gap that might exist. Figure 

4.4 groups the jumps in fitness observed by their transition between states. Contrary to 

the conclusion of other ALE experiments, the largest jump in fitness was not observed 

first but actually followed a smaller jump. This yields an allowed increase in growth 
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rate that can be used to constrain ALEsim. In simulations run here, the growth rates 

allowed were set to the mean of the range of each state. 

The BMR can be calculated by fitting ALEsim to the distribution of the end 

states. Passage sizes of 10% - 0.1% did not show any appreciable variation between 

states, thus only the experiments with passage sizes of 0.01% and 0.001% were used 

for fitting. ALEsim was fit by performing simulations that only allowed for a single 

jump from one state to another. Multi-state jumps and two sequential jumps were not 

allowed. This simplification skews the BMR calculation to only include beneficial 

mutations that were able to fix themselves. There is a potential that other beneficial 

mutations are possible, but were not observed due to either clonal interference or 

genetic drift (35). As observed in the fitness trajectories for passage sizes of 0.01% 

and 0.001%, not all experiments were able to make jumps to occupy all the states. For 

instance, with a passage size of 0.01%, only 4 of 6 experiments were able to make the 

transition from State 2 to State 3 by experiment’s end. In simulation, the same 

propensity to distribute among the various end states is observed. The distribution 

observed in simulation is highly dependent on the supply of beneficial mutations 

captured by the BMR parameter. Thus, the BMR can be fit to yield the same 

distribution across states as observed experimentally. The BMR was computed using 

transitions from both State 2 to State 3 and from State 1 to State 2. Since all 

experiments made the transition from State 1 to State 2, the distribution was used at 

the day 20 mark where a distribution existed. The 95% confidence interval for the 

BMR was calculated by fitting the BMR to the 95% confidence interval of the 

experimental distribution of states. The results yielded a BMR of 10
-6.9

-10
-8.4
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mutations per cell division. The confidence interval was determined by a maximum 

likelihood estimate as implemented in the binofit function in MATLAB. 

4.3.3 Retrospective Validation of ALEsim 

ALEsim and the derived parameters were analyzed using two previously 

performed ALE experiments on glucose (7, 18) and a legacy experiment on glycerol 

(14). The outcomes of the two glucose experiments yielded disparate final growth 

rates despite identical strains and media (E. coli K-12 MG1655 in M9 glucose 

minimal media), 1.00±0.24 and 0.79±.01, respectively. The only differences between 

the experiments were three experimental parameters: batch culture volumes (250 mL 

vs. 25 mL), optical densities when passed (variable vs. OD600nm 1.2), and passage sizes 

(variable vs. 800µL) in the Charusanti et al. (18) and the LaCroix et al. (7) studies, 

respectively. ALEsim was constrained to allow only the jumps in growth rates 

observed in these studies and then simulated the expected fitness trajectories for the 

two different experimental parameters. The results showed that the difference in the 

final growth rates achieved can be sufficiently explained by the differences in 

experimental design only (Figure 4.5). Furthermore, when simulating a legacy dataset 

for evolving E. coli on glycerol minimal media, ALEsim was able to successfully 

predict that all experiments (n=4) should reach fitness state 3 for the given 

experimental parameters, as reported in the study (14). The largely different outcome 

in fitness (i.e., no fitness jumps vs. a significant increase) on glucose, as well as a 

consistent prediction of fitness on a legacy glycerol dataset, further highlights the 

importance of properly designing an experiment and validates ALEsim and its 

parameterization.  
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4.3.4 ALEsim Applications 

Simulations of ALE experiments with the derived BMR and fitness states can 

allow statements to be made about optimality. The time required to see a given 

increase in fitness was simulated for a range of increases in growth rate over a range 

of passage sizes (Figure 4.6). The results show the average length of time needed to 

see a given increase in fitness fix in the population over a range of passage sizes. This 

accounts only for growth rate increases that occur from a single mutational event. 

Based on the passage size and length of time with no increase in growth rate, a 

conclusion about how close a population is to optimum can be made. For example, if a 

given evolution experiment has achieved a certain growth rate, µ, and has not shown 

an increase in growth rate with a passage size of 0.1% for 13 days, then there is no 

likely increase in growth rate available at greater than 0.10hr
-1

 with a single mutational 

event. 

Increasing the passage size raises the probability of capturing a beneficial 

mutation however this also leads to an inflation in the resources needed to sustain the 

experiment (Figure 4.6). For example, if an ALE experiment with a passage size of 

0.1% were being passed twice a day (every 12 hours), the same experiment with a 

passage size of 10% would need to be passed 6 times per day (every 4 hours). A single 

person can feasibly do an experiment passed every 12 hours whereas passing every 4 

hours would require coordinated effort by multiple persons or an automated platform. 

Therefore, understanding what is gained with the larger passage size is important 

before committing to such a large expenditure of resources. ALEsim can quantify the 
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gains or losses achievable with different passage sizes to help identify the ideal 

experimental setup (Figure 4.6). 

4.3.5 Mutation Frequency Analysis by Passage Size 

Clones from the endpoint populations of each independent experiment were 

isolated and resequenced. Two clones showed hypermutating tendencies. This was 

identified by the number of mutations (p<0.01) and the presence of a mutation in mutY 

or mutL. Experiments with larger passage size led to an increase in the number of 

mutations found. Mutated genetic regions were therefore grouped by passage size. 

Clones isolated from larger passage size experiments, on average, had more genetic 

regions mutated (Figure 4.7). Of all mutations identified, those in glpK were 

specifically tracked. Mutations in glpK have previously been shown to be highly 

causal as well as ubiquitous, mutating more than any other genetic region under 

glycerol growth conditions (14). Thus glpK is a good indicator of the fixation strength 

of the varying passage sizes. Consequently, there is a positive relationship between the 

fixing of glpK mutations and the passage size until saturation is reached. With the 

passage size dropped to the lowest value (0.001%), the observed fraction that fixed 

was only 0.33 (2/6). 
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4.4 Discussion 

The conceptual purpose of an ALE experiment is to move an organism towards 

a more optimal (fit) state in the presence of a selection pressure. Absolute optimality is 

difficult, if even possible, to define. It has been shown that even for a laboratory 

evolution, there is still room for evolution after 50,000 generations (36). The continual 

ability of organisms to evolve and innovate makes it difficult to analyze the results of 

an ALE experiment in the context of optimality. What is immediately apparent is that 

there are diminishing returns. As an ALE experiment progresses, the increase in 

growth rate or fitness tends to decrease in magnitude (1, 37-41). The smaller increases 

take longer lengths of time to occur and become fixed in the population. Given this 

property and the desire to understand and leverage the ALE process, ALEsim was 

built and validated through performing a control experiment. ALEsim was first 

parameterized with a set of control experiments using different passage sizes. 

Parameterization revealed a beneficial mutation rate of 10
-6.9

-10
-8.4

 mutations per cell 

division, consistent with previously reported values and distinct fitness states (25, 26). 

Validation was then carried out using additional legacy experiments and ALEsim 

proved sufficient for explaining the differences in observed experimental outcomes 

(i.e., growth rates) based on the parameters employed in each study (i.e., passage size, 

passage OD, and culture volume) (Figure 4.5). Lastly, ALEsim was applied to 

quantify tradeoffs in experimental design considerations for desired outcomes and was 

used to demonstrate how it can be leveraged for determining the key aspect of 

experiment termination.  
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The ability to optimize and design ALE experiments is possible with the 

ALEsim computational framework. Given a certain amount of resources, ALEsim can 

calculate how best to deploy them at different stages of an experiment to shorten 

project timelines and achieve desired outputs. For example, near the beginning of the 

ALE experiments, the increases in growth rates found are typically quite large. 

Because of this, a large passage size does not have an additional benefit. This is 

evident in the experiment performed here in that passage sizes of 0.1%, 1%, and 10% 

mostly reached states 1, 2, and 3A at about the same time (Figure 4.3). In planning 

future ALE experiments, the added resource usage needed to maintain an experiment 

at a 10% passage size does not appear to be justified. However, the added benefits 

become apparent when looking at the transition from state 3A to 3B. It could then be 

suggested that if the absolute optimal state is desired, the added resources of 

maintaining a 10% passage size experiment only need to be maintained after initial 

large increases in growth rate or fitness are found. This would not eliminate the 

difficulty in maintaining such an experiment, but would at least reduce the length of 

time the experiment would need to be run at such a high resource ‘burn’ rate. With 

ALEsim, these types of resource/fitness tradeoff analyses can now be calculated and 

should be leveraged in experimental design. The approach of dynamic resource 

allocation opens the door for project optimization typical of engineering process 

design. 

Knowing the distance to optimality can aid in determining when to terminate 

an ALE experiment. The typical method of determining when to stop an ALE 

experiment is to subjectively determine that no more increases in fitness are being 
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observed. However, this approach of waiting to observe a plateau in fitness can be 

artificial given a small passage size. An example of how this approach can be 

misleading is the observation that passage sizes of 0.1% and 1% showed no increase in 

growth rate after reaching state 3A for at least 15 days (Figure 4.3). However, given 

that slight increases in growth rates beyond state 3A to state 3B with a passage size of 

10% were observed, it can be concluded that state 3A is not the optimal state. Thus, if 

only a 1% passage size was used, the experiment could be terminated before finding 

state 3B. Further, it would be incorrect to compare experiments with a 10% passage 

size to a 1% passage size without understanding the context of the effects of the 

different passage sizes. Perhaps the best example of this is provided through the 

analysis of legacy ALE experiments (Figure 4.5). Two experiments with the same 

strain and media conditions yielded vastly different fitness outcomes. This difference 

is subsequently explainable within the scope of ALEsim. Therefore, having access to a 

computational framework such as ALEsim can enable the researcher to make an 

informed decision about when to terminate an experiment given the capacity and 

resources of the experimental setup and the desired/acceptable outcome. This type of 

termination analysis is laid out in Figure 4.6 and can be calculated de novo for any 

experiment given the current growth rate and passage size. It also should be noted that 

this type of analysis could result in a standard for the ALE community as one could 

state the ALEsim generated Δµ at the time of termination. 

The ability to design and carry out complicated and high resource burn ALE 

experiments is likely only feasible though automation of the ALE process. Automation 

was utilized here and in previous studies (4, 7, 42). Manual processes are often 
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hindered by researcher availability whereas machines can measure and pass around the 

clock (e.g., approximately 5-7 passages per day were performed in automated studies 

(4, 7, 42), compared to 1-2 per day manually (14, 15, 18). Thus, the ability to automate 

and optimize ALE is likely to accelerate adoption of the ALE experimental technique 

and broaden the application areas.  Furthermore, the ALEsim framework and output 

can also be used as a basis for modeling much of the legacy data currently available 

for ALE experiments which include lag, exponential, stationary, and/or stressed 

phases. As the selection pressure in such experiments is more complex and growth is 

defined by more than the growth rate parameter (e.g. lag phase duration, stationary 

phase mutation rate, growth phase transistions, etc…), ALEsim in its current format 

would have to be expanded. Nonetheless, ALEsim and it parameterization here 

demonstrates the utility of using simulated design in the ALE process and establishes a 

portable code base. 

The field of adaptive laboratory evolution is expanding, largely due to lower 

costs of next generation sequencing. Innovative applications are appearing and are 

being applied to a range of organisms (1, 3). This growth in ALE use has occurred 

without a standard operating procedure for performing and quantifying these 

experiments. Consequently, this leads to ill-defined endpoints of experiments and the 

inefficient use of resources. The ALEsim computational platform developed here 

would provide a basis with which to quantify experiments and aid in their design; 

matching the desired outcome with resources available. 
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Chapter IV, in full, is a reprint that the dissertation author was the principal 

researcher and author of.  The material has been submitted to Applied and 

Environmental Microbiology.  (LaCroix, RA, Palsson, BO, Feist AM. 2016. 

Designing Adaptive Laboratory Evolution Experiments).  
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4.5 Figures 

 

Figure 4.1 - ALEsim Flow Chart 

A workflow outlining the logical steps the simulator takes when performing a single 

simulated ALE experiment. Due to the stochastic nature of ALE experiments, in vivo 

and in silico, multiple experiments are averaged together to identify general trends. 
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Figure 4.2 - Governing Equations, Assumptions, and Parameters for ALEsim 

a) Microbe growth occurs according to an exponential growth curve where µ is the 

growth rate, t is the time elapsed, N0 is the initial cell count at t=0, and N(t) is the cell 

count at a given time, t. No lag phase or stationary phase is modeled. The total cell 

count (N(t)) is determined by the summation of exponential growth curves for all 

individual cells lines. b) Favorable mutations occur during cell growth according to a 

binomial distribution where each cell division represents one Bernoulli trial with a 

probability of success equal to the beneficial mutation rate (BMR). c) Each flask is 

modeled as a completely homogenous culture. d) The number of cells represented for 

each cell line in each inoculum is randomly chosen according to a normal distribution 

with a mean and variance equal to the number of cells represented in the flask,  

times the ratio of the flask volume, , to inoculum volume, . e-g) The 

volume of media per flask, inoculum volume, and passage optical density can be 

altered. h) The simulated ALE experiment can be stopped after a specified amount of 

time or maximum number of flasks. i) Based on the relative growth rate increases seen 

in ALE experiments, a range of allowable growth rate increases is determined. j) 

Based on matching the evolution trajectory (plot of growth rate vs. flask #) with 

varying the beneficial mutation rate (BMR), the probability of a favorable mutation is 

obtained. k) Since each ALE is based on randomly generated mutations, multiple ALE 

simulations are averaged together to get repeatable results from the same parameters. 

The number of simulations is user controlled. 
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Figure 4.3 – Fitness Trajectory of E. coli evolved on Glycerol 

The absolute growth rates of independently evolved cultures of E. coli as fitted by a 

cubic spline for all ALE experiments separated by the different passage sizes. Dashed 

lines represent regions where the spline fit is based on sparse data, and therefore not 

considered accurate. The small upturn in growth rates at the endpoint is an artifact of 

the spline interpolation and is ignored when determining endpoint growth rates. All 

except five ALE experiments reached fitness State 3. The rate at which the final 

growth rate was achieved varied. The hypermutating strain with a passage size of 10% 

reached State 3 significantly faster than all others (it possessed a mutation in mutY). 

The purple hypermutating strain was identified as a potential hypermutating strain 

based on the number of mutations fixed (p=0.003, FDR=0.087) and the presence of a 

frame shift insertion in mutL. 
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Figure 4.4 – Distribution of Fitness Increases in Glycerol ALE 

A histogram of the normalized increases in growth rate (µmax = 0.64 hr
-1

) attributed to 

each jump for the different experiments. The fitness increases were categorized by 

which state transition was made. The different passage sizes (indicated by different 

colors) did not show any significant variance in the ability to fix distinct increases in 

growth rate. A few small jumps not shown are small observed increases in fitness that 

did not jump between any of the states identified. 
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Figure 4.5 – Simulated vs Experimental Results with Large and Small Passage 

Sizes 

Two ALE experiments of E.coli MG1655 in glucose M9 minimal media were 

simulated using ALEsim. The strain and media conditions were identical in the two 

experiments. The only differences were in the culture volume (25ml vs. 250mL), 

optical density when passed (variable vs. 1.2 OD600nm), and passage volume (variable 

vs 800µL). The variable nature of the optical density when passed and the passage size 

in the latter experiment was a consequence of manually passing the culture each day. 

The former experiment employed an automated system of monitoring and passing the 

culture to maintain consistency. Despite being the same strain and conditions, the final 

fitness achieved in the two experiments were quite different. ALEsim was used to 

simulate these same experiments with the only differences being the three 

aforementioned parameters. Consequently, the ALEsim results showed that the 

differences in these parameters were sufficient to explain why the final growth rates 

were distinct.
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Figure 4.6 – Upper Bound on possible jumps in growth rates 

A. Upper bounds on possible jumps in growth rates are shown. At a given point in 

time, a jump that reaches above the upper bound is statistically infeasible from a single 

mutation, whereas jumps that stay below the line are possible. B. The upper bound on 

jumps is shown for varying passage sizes. Increasing the passage size can have a 

significant impact on the upper bound. Consequently, the time required to eliminate 

jumps of certain magnitudes can take much longer to achieve. However, as the 

passage size increases there comes a point when the returns begin to diminish such 

that passage sizes between 0.1% and 10% did not show a large difference in the time 

required to find a given jump. C. Relative amount of resources needed to perform an 

ALE experiment normalized to the lowest passage size. As the passage size is 

increased the resource usage begins to increase greatly. 
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Figure 4.7 – Genetic Analysis – By Passage Size 

A bar chart representing the observed fraction of mutations at a given passage volume. 

As a general trend, the larger the passage size, the greater the probability of a mutation 

in a given genetic region fixing in the population. A key mutation in the glpK gene is 

displayed as well as all mutations.  
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5.1 Introduction 

The classical adaptive laboratory evolution (ALE) experiment involves 

subjecting a culture to a given environment and letting it continuously grow. During 

this time beneficial mutations serendipitously accumulate and fitness is increased in 

the given conditions. Other molecular biology techniques have been used to increase 

fitness in microorganisms using various genetic engineering techniques. A 

shortcoming of direct genetic manipulations is that is requires some a priori 

knowledge of how to manipulate the organism. Such knowledge is not always 

available nor does is it necessarily lead to an optimal solution. Adaptation through 

ALE is able to sample a wider range of possibilities than would be possible through 

molecular biology techniques and further select for those that confer the greatest 

benefit. A limitation of ALE is that the genetic diversity is created during cell 

replication. Since ALE relies on seemingly random mutations, it is important that 

large quantities of these mutations are created. Achieving these large numbers of 

mutations requires sustained and robust growth. Ultimately this means that the 

conditions that the cells are presumed to adapt must already be able to sustain growth. 

Unfortunately, this is an apparent limitation of the basic technology. A potential 

method of overcoming this limitation is using variable conditions from each batch 

culture. Using the already developed ALE machine platform modules can be 

developed to expand its applications to include pathway activation of latent enzymes 

(PALE ALE) and tolerization (TALE). 
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5.2 Pathway Activation of Latent Enzymes by Adaptive Laboratory Evolution 

Adaptive laboratory evolution has proven to be a powerful tool in increasing 

the fitness of microorganisms in a given environment. What makes ALE such an 

effective tool is that it is able to compete a large number of possible genetic changes 

against each other in a single culture. Since the growth conditions are the target of 

adaptation, the strain or strains that ultimately dominate should be optimal or at least 

closer to optimal than the parent strain. This ability to select for such a large number 

of mutations in a single culturing vessel makes the process extremely efficient. A 

potential problem arises when the organism cannot natively grow in the targeted 

environment. An example would be evolving an organism to growth on a substrate 

that it natively cannot use (e.g. unique carbon, nitrogen, or sulfur source). A standard 

ALE experiment would fail in that it relies on growth to even get started. 

The possibilities of using non-native substrates are vast and include many 

industrial and scientific applications. From an industrial standpoint many of the 

resources used in biological processing can be expensive. Having the ability to create 

an organism that can use a cheaper substrate has potential to yield significant increases 

in efficiency. As an example, a strain of E. coli was evolved to try and use cellulosic 

biomass as a carbon source (1). Given the renewable and cheap nature of plant based 

biomass it is industrially desired. From a scientific standpoint there are myriad 

potential new aspects to understand. For instance there has been significant inquiry 

into underground metabolism in microorganisms. Underground metabolism is 

classified as the reactions that enzymes catalyze that are secondary to their primary 

function (2, 3). It is often the case that substrates with similar chemical structure may 
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have enzyme reactivity but only at a very low rate. This low rate makes detection and 

understanding of the underground metabolism difficult to elucidate. However, if the 

organism were able to be evolved on a substrate that would require use of the 

secondary reaction, the flux might increase enough to properly identify and 

characterize it. The need to generate these novel metabolic characteristics exists in 

both industry and the sciences. 

Previous attempts at evolving organisms to non-native substrates with varying 

degrees of success have been tried. This process has been named pathway activation 

of latent enzymes by adaptive laboratory evolution (PALE ALE). The process 

typically involves using a native substrate that is similar to the non-native substrate to 

induce growth and then over time increase the concentration of the non-native 

substrate while decreasing the concentration of the native substrate in hopes that 

enough genetic diversity is created to find this new functionality. The process can be 

logistically difficult in dealing with many different media types and has shown to have 

limited success when used (4). 

Given the limited success with previous PALE ALE attempts creating a 

process where PALE ALE can be accomplished using the ALE machine is desirable. 

The first potential benefit from using the ALE machine for PALE ALE experiments is 

simply what comes with automation, more careful monitoring of growth and the 

ability to perform action at the ideal times, especially when the ideal time-frame is 

narrow. Implementing the module using the process described in other studies is 

sufficient for these gains. Since the machine was designed to accommodate new ALE 

processes this process was straightforward and easily obtainable. The second potential 
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benefit is in the algorithm itself. With automation, the algorithm is not bound by 

waking and sleeping hours, nor does it have to make decisions at the end of one day 

about what is expected by the beginning of these next. Because of this increased 

freedom, the actual algorithm to develop genetic diversity and selection can be 

amended to yield more desirable results in a shorter amount of time. 

A primary attribute of the PALE ALE algorithm is imposing the correct 

selection pressure on the culture so that the strains that ultimately fix themselves in the 

population are those that can grow on the new substrate. Previous methods all 

employed some use of a native substrate to generate genetic diversity and then slowly 

decreased its concentration over the course of the experiment until it had disappeared. 

Though on the surface it may seem as if it could properly select for growth on the new 

substrate, it is most likely inhibitory. These experiments are passed during exponential 

phase. By virtue of the culture being in exponential phase, it implies that nutrients 

have not yet been depleted. This means that cells in the culture can increase their 

fitness by solely using the native substrate. Use of the non-native substrate can 

potentially be ignored. The only method by which cells could fix in the population is if 

they developed capabilities to grow and the non-native substrate and were able to do it 

at a faster growth rate than those still using the native substrate. It would probably be a 

reasonable assumption to assume that under many cases the non-native substrate will 

originally start out with limited growth and would be unlikely to exhibit growth that 

outpaces that of the native substrate. Using this method, while the native substrate is 

present, there is a limited chance of selecting and fixing a strain with the non-native 

substrate growth capabilities. In one study that applied this technique it was observed 
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that after two weeks the culture had very little of the native substrate left and was 

growing very poorly (5). As soon as the native substrate was removed growth on the 

non-native substrate was immediately observed. Either growth on the non-native 

substrate happened to have been conferred exactly when the native substrate was 

removed, or growth on the non-native substrate was already present and not allowed to 

fix itself in the population while the native was present. Due to these potential 

shortcomings amendments to the process would facilitate faster and more consistent 

selection for growth on the non-native substrate. 

Another aspect of performing PALE ALE experiments is choosing the native 

substrate to initiate growth before transitioning to the non-native substrate. In many 

cases the native substrate was chosen due to its similarity to the non-native substrate. 

As an example is a study which evolved E. coli onto 1-2 propanediol. They chose 

glycerol as a native substrate since it appears chemically similar to 1-2 propanediol. 

Ultimately the study was successful but the pathways used to metabolize 1-2 

propanediol were completely dissimilar to that of glycerol. This study is at least an 

example that it is possible to achieve success without the use of a similar native 

substrate but does not necessarily indicate whether glycerol was advisable or not. It is 

most likely the case that different strains and conditions lend themselves to different 

ideal non-native substrates. When choosing a non-native substrate it is important to 

keep in mind its purpose. The purpose is to generate genetic diversity by means of 

replication. Therefore an ideal substrate would be one that is easily obtainable and 

confers a significant amount of robust growth. The idea of the native substrate being 

similar is rooted in the idea that the native substrate is present while growth on the 
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non-native substrate is presumably taking place. As discussed above, this is non-ideal 

since it will disallow fixation of the strains that can grow on the non-native substrate. 

Ultimately the ideal substrate is one that simply creates large amounts of genetic 

diversity is a short amount of time. 

Given the aforementioned issue with the current methods an algorithm was 

proposed and tested for implementation on the ALE machine. The method can be 

summarized in Figure 5.1. In an effort to continue putting selection pressure on the 

culture and generate genetic diversity. This new method uses two concurrent cultures. 

The first is used to create and enrich genetic diversity and the second is to test whether 

growth is sustainable on the non-native substrate. The first culture tube is given media 

that has both the native and non-native substrate. The non-native substrate is at the 

target concentration used for growth. This concentration is constant throughout the 

entire experiment. The native substrate however is variable. A key function of this 

culture is to create genetic diversity and enrich for those that can grow on the non-

native substrate. This is accomplished by allowing the culture to reach what looks to 

be stationary phase. It is important that this stationary phase is a result of using all of 

the non-native substrate and deletion of another media component. If this is the case, 

this culture now has generated a tube full of genetic diversity and there is no non-

native substrate left to consume. The next process is simply to wait for a pre-

determined about of time in stationary phase. If any mutations arose that conferred 

growth on the non-native substrate they will begin to grow and those that are unable to 

utilize it will remain in stationary phase. Thus instead of needing the strain to have 

learned to grow on the non-native substrate and grow faster than the parent strain on 
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the native substrate. Any growth rate, no matter how slow, will allow enrichment. In 

each subsequent batch culture, the native substrate’s concentration can be altered. This 

is important as the native substrate must be the limiting factor in the media and not 

some other component. It is expected that the culture will start evolving to these 

conditions while genetic diversity is being created. Being able to lower its 

concentration ensures that if it starts using the substrate more efficiently it will still be 

the limiting factor. 

The length of time to leave the culture in this enrichment phase is a critical 

component. It is likely that once a strain is able to grow on the substrate that it will do 

so with a slow growth rate. Because of this, to see an observable enrichment in the 

culture through optical density measurement would require a considerable amount of 

time. The time may be well spent if there indeed is a strain that has conferred growth 

but there is always the possibility that this has not happened. During this enrichment 

phase, generation of genetic diversity is limited to that that is generated in stationary 

phase (6). Ideally it would be preferable to continue testing for non-native substrate 

growth while continuing to generate genetic diversity. To accomplish this, a second 

culture is used. After a modest enrichment phase the culture is first passed to a 

subsequent culture for another round of growth and enrichment, but it is also passed to 

the second culture where there is no native substrate available and only the non-native 

substrate.  Thus any growth observed in this culture is indicative of successful 

adaptation to the non-native carbon source. It may take a considerable amount of time 

to observe this growth so it is set aside from the main culture so as not to inhibit the 

evolutionary process. 



 

 

105 

Overall, the previously employed methods of adaptation to non-native 

substrates created a weak selection on the phenotype desired. Because of this 

experiments took longer than necessary and failed experiments were potentially 

artifacts of the process. The newly proposed method implemented on the ALE 

machine ensure that there is a balance between generating genetic diversity, that is 

required for evolution, and imposing the selection pressure to enrich and ultimately fix 

strains that have adapted to the non-native substrate.  

5.3 Tolerization Adaptive Laboratory Evolution 

A step beyond adaptation to a constant condition, as is typical of ALE 

experiments, is adaptation to an ever increasing stressful environment. There are a 

wide range of stresses that can be imposed upon a microorganism that range from 

chemical stress to temperature, pH, and physical stress (1, 7-10). This is of particular 

interest to those involved with industrial bioprocessing applications. Metabolic 

engineering has created myriad strains that produce economically relevant byproducts, 

often non-native ones. A particular pitfall of the process is that industrially meaning 

concentrations of these products often induce stress in the cells that create them and 

can furthermore be completely toxic to them. The concentrations necessary to be 

economically viable are often toxic and molecular biology tools often prove to be 

insufficient. A strength of ALE is that it is a blindly operating tool that does not 

require a priori knowledge of anything pertinent to the desired outcome, nor does it 

require biological discovery or understanding to reach the end goal. An algorithm was 

developed for the ALE machine to tolerize cultures to a wide range of stressors. 
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Tolerizing microorganisms suffers from the same issue that PALE ALEs do in 

that the end goal is a condition that currently does not support any growth. This lack of 

growth inhibits traditional adaptive evolution. A common method of accommodating 

this is to periodically increase the stressor over the course of the experiment. This has 

proven to be successful (11). As such the module described herein does not deviate 

from the concept significantly but rather implements a series of checks to ensure that 

growth remains robust. A significant risk when tolerizing a strain is that if the stress 

becomes too great the culture will die off. On the other hand if the stress is minimal 

the experiment is inefficient and takes longer than necessary. Ideally there would be a 

balance. Generalizing for all stressors would be impossible but ideally the module 

created will allow the researcher the latitude to adjust to various stressors. 

A preliminary version of the TALE module was implemented to ensure robust 

growth continued. It was observed that in a batch culture immediately after the 

stressor was increased growth would often be observed, however in the next batch the 

culture would die off. Intuitively, it was assumed that growth in one batch would be 

sufficient to identify it as being able to grow however this was not the case as this 

phenomenon was observed across multiple conditions and strains. As such a minimum 

rest parameter was added. The minimum rest parameter specifies the number of batch 

cultures that must show growth before it is considered growth and the stress increased 

again. This proved sufficient in ensuring robust growth in a wide range of studies. 

Additional parameters were defined to further ensure robust growth as well and a 

reasonable amount of stress. In addition to the minimum rest, these include a 
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maximum rest and upper and lower growth rate limits. These are outlined in Figure 

5.2. 
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5.4 Figures 

 

  

Figure 5.1 Pathway Activation of Latent Enzymes by Adaptive Laboratory 

Evolution (PALE ALE) Workflow. The goal of PALE ALE is to evolve an organism 

onto a non-native substrate. This workflow begins with a culture filled with media that 

has a native substrate that the organism can grow on as well as the non-native 

substrate of interest. A target optical density (OD) is defined. This is the ideal OD of 

stationary phase. This OD is important in that it must be high enough for ample 

genetic diversity to have occurred in the culture but low enough that only the native 

substrate has been depleted. If in a subsequent cultures the actual OD goes beyond the 

target OD, the native substrate concentration is reduced to accommodate. Reaching 

stationary phase with only the native substrate depleted allows for any strains that 

have mutated to use the non-native substrate to grow while all others remain stagnant. 

Ultimately this enriches them in the population. When the culture is passed to the next 

culturing vessel it is also passed to a second culture vessel where only the non-native 

substrate is available. If this tube is able to grow then it has been successfully evolved 

and the original culture is discarded. If it does not grow it is discarded and tired again 

with the next passage. 
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Figure 5.2 – TALE Algorithm Summary. The tolerization ALE employs four 

parameters to ensure that cultures are subjected to a reasonable amount of stress but do 

not crash. The first is the minimum rest. This specifies the number of batch cultures 

that must be passed to before stress can be increased again. There are no exceptions 

that allow stress to be increased until this condition is met. Next is the upper limit. 

This specifies the growth rate that if exceeded will immediately increase the stress as 

long as the minimum rest condition is met. Next is the lower limit. This specifies the 

minimum growth rate that must be met for stress to increase. Under no circumstances 

will the stress be increased if this condition is not met. Finally is the maximum rest. If 

the upper limit is not exceed after a specified number of batches, the stress will be 

increased as long as the lower limit condition is met. 
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