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Experimental Mapping of Elastoplastic Surfaces for Sand Using 1 

Undrained Perturbations 2 

by Mohammad M. Eslami1, Daniel Pradel2, and Scott J. Brandenberg3 3 

Abstract 4 

Elastoplastic models are commonly used in modern geotechnical practice to numerically 5 

predict displacements, stresses, and pore pressures in large construction projects. These 6 

elastoplastic models use presumed functional forms for yield and plastic potential functions 7 

that are rarely obtained from experimental measurements. This research describes a simple 8 

experimental technique that can be used to obtain the slopes of the plastic potential and yield 9 

functions during shear based on the deformation theory of plasticity. The method imposes small 10 

perturbations in the direction of the stress increment by closing the drainage valve, thereby 11 

abruptly switching from drained to undrained loading conditions during plastic loading. 12 

Elastoplastic moduli are obtained immediately before and after the perturbation from the 13 

measured deviatoric stress, mean effective stress, deviatoric strains, and volumetric strains for 14 

the stress paths immediately before and immediately after closing the drain valve. During 15 

drained shear, samples were sheared while the mean effective stress was maintained constant. 16 

Combining tests performed at several confining stresses, the proposed method can map 17 

conventional isotropic yield and plastic potential surfaces and predict their evolution for a wide 18 

range of stresses. The proposed technique can also be used for kinematic yield surface and may 19 

be used to develop new and more accurate elastoplastic constitutive models.  20 
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Introduction 23 

Using numerical simulations to predict permanent deformations caused by surcharges, 24 

excavations and other similar geotechnical loading mechanisms, requires constitutive models 25 

that successfully estimate the anticipated level of irrecoverable strains. The use of numerical 26 

modelling for the design of large geotechnical projects has become widespread in recent years, 27 

especially for large infrastructure projects such as dams, tunnels, and highway embankments, 28 

as well as for deep excavations next to existing buildings. The considerable importance of 29 

modelling in the analysis and design of geo-structures was acknowledged in 2010, when it was 30 

named one of the focus areas at the Geo-Institute’s national conferences (ASCE, 2010).  31 

Constitutive models commonly implemented in finite element computer programs, such as 32 

PLAXIS (2015) or finite difference programs such as FLAC (Itasca, 2011) are generally 33 

elastoplastic in nature and use single or dual isotropic yield surfaces. As illustrated in Fig. 1, 34 

commonly used models exhibit significant differences in the treatment of yield surfaces and 35 

plastic potential surfaces. The simplest models consist of a Mohr-Coulomb or Drucker-Prager 36 

type yield surface, with the plastic flow direction controlled by a constant dilation angle (Fig. 37 

1a). These models neglect many fundamental features of soil behavior, including plastic 38 

volumetric flow under isotropic loading conditions (i.e., do not generate irrecoverable strains 39 

in isotropic consolidation), small-strain yielding, and critical state soil mechanics. Roscoe and 40 

Schofield (1963) introduced the original Cam-clay model (Fig. 1b), which utilizes a 41 

logarithmic function to define the yield surface in the q-p′ stress invariant space, and an 42 

associated flow rule (i.e., the plastic potential surface and yield surface coincide). This model 43 

conforms to critical state soil mechanics, meaning that the failure condition is associated with 44 

zero volumetric strain rate as the plastic shear strains continue to accumulate, and it is capable 45 



of capturing consolidation behavior though its yield surface generates deviatoric strains under 46 

isotropic consolidation conditions. The modified Cam-clay model (Roscoe and Burland, 1968) 47 

uses an elliptic yield surface to eliminate deviatoric strains under isotropic loading conditions. 48 

Since the formulation of these yield surfaces is isotropic, their elastic region is quite large. To 49 

improve predictions for different stress increment directions, Vermeer (1978) developed a 50 

double-hardening model for sand consisting of a nonlinear surface for deviatoric yielding (non-51 

associated) and a separate vertical surface (associated) for volumetric yielding (Fig. 1c). The 52 

formulation in Vermeer’s model is also isotropic and thus more appropriate for monotonic 53 

loading conditions. Lade and Kim developed a teardrop shaped model (Fig. 1d) that eliminated 54 

the sharp corner in Vermeer's double hardening model, and some of the associated return 55 

mapping difficulties at the cost of slightly less accurate predictions. 56 

 57 

Fig. 1. Examples of yield surfaces, f = 0, used for geotechnical applications (a) Mohr-Coulomb and 58 
Drucker-Prager; (b) Original and modified Cam-clay (Roscoe and Schofield, 1963 and Roscoe and 59 

Burland, 1968); (c) Vermeer’s Double hardening model (Vermeer, 1978); (d) Tear drop shaped surface 60 
from Lade and Kim (1988), (e) Cam-clay bubble model (Al-Tabbaa and Muir Wood (1989), and              61 

(f) Drucker-Prager type kinematic hardening surfaces, Poorooshasb and Pietruszczak (1985), Dafalias 62 
and Manzari (2004), and SANISAND (Taiebat and Dafalias, 2008) 63 



Yield surfaces that exhibit isotropic hardening, such as those in Figs. 1b, c, and d result in a 64 

large elastic region after significant yielding, rending the models inappropriate for reverse or 65 

cyclic loading conditions. To more accurately model cyclic behavior, Mróz et al. (1979) 66 

proposed a modeling technique based on kinematic hardening, that translates and rotates during 67 

loading, generally within the context of a larger bounding surface that exhibits isotropic and/or 68 

kinematic hardening (Fig. 1e). Examples include the Cam-clay bubble model developed by Al-69 

Tabbaa and Muir Wood (1989) for clays (Fig. 1e) in which a small “bubble” yield surface 70 

moves inside of an isotropic bounding surface. Both the yield and bounding surfaces have the 71 

shape of the modified Cam-clay model. A similar approach for sands includes the Dafalias and 72 

Manzari (2004) model, that utilizes a small Drucker-Prager type yield surface, along with a 73 

Drucker-Prager type bounding surface, critical state line, and dilatancy surface (Fig. 1f). The 74 

model lacks a volumetric cap, and therefore exhibits only elastic volumetric strains upon 75 

loading at a constant stress ratio. Taiebat and Dafalias (2008) developed a SANISAND model 76 

that uses a rounded yield surface in conjunction with a Drucker-Prager type bounding surface 77 

that permits plastic volumetric strains upon loading at constant stress ratio (Fig. 1f). Since 78 

kinematic plasticity models often utilize an isotropic bounding surface formulation, and are 79 

often calibrated using monotonic tests, the yielding and plastic flow during monotonic loading 80 

is important to understand. 81 

Interestingly, although the shape of their yield surfaces are notably different, all these models 82 

have been shown, by their authors, to produce reasonable predictions for monotonic 83 

conventional laboratory tests. It suggests that the input parameters can be tuned to compensate 84 

for differences between the experimental and theoretical yield surfaces and flow rules. The 85 

appropriateness of the slope of the yield surface is nevertheless very important for the accurate 86 

predictions of problems involving more complex stress paths. For instance, if a normally 87 

consolidated soil is subject to plastic shear loading followed by a significant increase in pore 88 



water pressure under sustained shear, the predicted behavior during the initial stress increment 89 

would be: 90 

• Elastic according to Cam-clay (Fig. 1b) and conventional Cap (e.g., Baladi and Rohani, 91 

1979) models; 92 

• Plastic according to Double hardening, Dafalias and Poorooshasb models (Figs. 1c and 93 

1d), which would result in irrecoverable strains.  94 

• Elastic or plastic depending on the stress level according to models having tear-drop 95 

shaped surfaces (Fig. 1e).  96 

Experimental Studies to Measure Yield and Plastic Potential Surfaces 97 

Although numerous expressions have been proposed for the yield surface (f = 0) and plastic 98 

potential (g = 0) by geotechnical researchers, there are relatively few experimental studies that 99 

have attempted to determine their actual shape. Previous experimental studies can be classified 100 

according to the following categories: 101 

1. Tests containing cycles of loading, unloading and reloading (e.g., Poorooshasb et al., 102 

1966 and 1967, Poorooshasb, 1971, Tatsuoka and Ishihara, 1974, Tatsuoka and 103 

Molenkamp, 1983, Pradel et al., 1990, Yasufuku et al., 1991, and Nawir et al., 2003), 104 

as exemplified in Fig. 2; 105 

2. Acoustic emission tests (e.g., Tanimoto et al., 1986); 106 

3. Tests in which the strain path is suddenly changed and plastic strains, slopes as well as 107 

moduli are calculated (e.g., Pradel and Lade, 1990, Kuwano and Jardine, 2007);   108 



 109 

Fig. 2. Test with cycles of loading and unloading used for the determination of the yield surface 110 

Generally, studies belonging to the first group have been used to investigate what Tatsuoka 111 

(2006) describes as “large-scale shear yielding”, and have produced open-type yield surfaces 112 

with shapes that are similar to the ones in Figs. 1c and 1e. Size and mode of shearing can affect 113 

the yield surfaces as cautioned in Tatsuoka and Molenkamp (1983). More recent studies by 114 

Nawir et al. (2003) have focused on viscous effects by imposing distinct strain rates during 115 

cycles of loading and reloading. The method is powerful, however, the tests necessary tend to 116 

be numerous, complex, and require careful interpretation. Interpretation can be especially 117 

difficult when: 118 

• The mean effective stress, p′, increases significantly, which results in both shear and 119 

volumetric yielding mechanisms according to double hardening models (Fig. 1c);  120 

• The unloading cycles produce large loops and irrecoverable strains; 121 

• Yielding occurs near the failure line and mobilizes large strains.  122 

The use of acoustic emissions to determine the shape of the yield surface requires not only 123 

specialized equipment (e.g., Tanimoto and Tanaka, 1986), but also requires sufficient noise 124 

generated by slippage and/or crushing of soil particles to accurately differentiate ambient noise 125 

from the acoustic emissions generated by yielding. Hence, the contributions from this 126 

methodology have been relatively limited. 127 



The third methodology was used by Kuwano and Jardine (2007) to study kinematic yielding 128 

and Pradel and Lade (1990) to study the conditions leading to static liquefaction of saturated 129 

and partly saturated sands at a specific state of stress. Both studies involved a large number of 130 

tests. For example, Pradel and Lade (1990) used a total of four triaxial tests from which moduli 131 

were measured to obtain the slopes of the yield and plastic potential surfaces at a single point 132 

in the q - p′  plane. Hence, the applicability of these methods to a wide range of stresses is 133 

generally not practical.  134 

The main purpose of the present study is to extend the work by Pradel and Lade (1990) to 135 

experimentally obtain the slopes of the yield and plastic potential surfaces. This method is 136 

based on the incremental formulation of the deformation (or flow) theory of plasticity, and 137 

incorporates short undrained perturbations during a drained triaxial test with a vertical stress 138 

path. The tests can be performed on a traditional triaxial compression testing device without 139 

the need for specialized equipment, which makes the method attractive for routine use. 140 

Incremental Formulation and Theoretical Background 141 

The deformation theory of plasticity (e.g., Jones, 2009 and Wood, 1990) postulates that strains 142 

can be decomposed into elastic (fully recoverable) and plastic (irrecoverable) components. For 143 

a time-independent material this postulate is expressed incrementally as in Eq. 1. 144 

e p
ij ij ijd d dε ε ε= +  (1) 

The theory of plasticity also postulates that a boundary exists in the stress space between elastic 145 

and plastic behavior. This boundary, namely the yield surface, is defined by a mathematical 146 

function, f, that describes a convex surface in the six-dimensional stress space as ( ) 0ijf σ = . 147 

During loading (yielding), the direction of the plastic strain increments is perpendicular to a 148 

plastic potential surface, defined by a mathematical function, g, as ( ) 0ijg σ = . Plastic loading 149 



resulting from an effective stress increment, dσij, results in the plastic strain increment given 150 

in Eq. 2 (Pradel and Lade, 1990). 151 
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Where, h, is the plastic hardening modulus (which is a function of hardening variables such as 152 

void ratio, previous stress history, stress and strain invariants, etc.). 153 

In most elastoplastic models, the surfaces f and g are expressed in terms of invariants, and for 154 

conventional triaxial compression tests these surfaces can be defined uniquely in terms of the 155 

stress invariants provided in Eq. 3. Where p′ is mean effective stress and q is the deviatoric 156 

stress. 157 
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Similarly, the volumetric and deviatoric strain invariants are defined as: 158 
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Elastic deviatoric and volumetric and strains can be computed using G and K, the elastic shear 159 

and bulk moduli using Eqs. 5 (a) and (b), respectively. 160 
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The introduction of local linear approximations for the yield surface (e.g., f = q –µ.p′ – If  = 0) 161 

and plastic potential (e.g., g = q –ηpp.p′ – Ig  = 0), adopted from Fig. 3, into equation (2) 162 

provides the expressions provided in Eqs. (6a) and (6b), for the deviatoric and volumetric 163 

strains during plastic loading, respectively. Note that the If and Ig are intercepts of the slope of 164 

the yield surface and the plastic potential with the y-axis in Fig. 3. 165 
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Where µ and ηpp are tangent slopes of the yield and plastic potential surfaces in the q - p′ plane 166 

at the current stress point, shown in Fig. 3. As presented by Pradel and Lade (1990), the total 167 

strains are obtained by summing the elastic and plastic strain increments, provided in Eq. 7. 168 
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 169 

Fig. 3. Schematic representation of the yield surface, plastic potential and the gradients to these surfaces 170 
and the plastic strain increment at point P in the triaxial space 171 



Experimental Application  172 

During loading equation (7) provides two equations that are derived from the five elastoplastic 173 

material properties: G, K, h, µ, and ηpp. Though Eq. 7 is strictly applicable at a single point, it 174 

is approximately valid for small stress increments within the region where the linearized form 175 

is approximately equivalent to the surfaces. To measure these properties, first the elastic 176 

moduli, G and K, are measured using small volumetric and deviatoric load paths, or another 177 

suitable means such as bender element tests. Because G and K depend on p′ for soil, 178 

maintaining a constant value of p′ is advantageous during shearing. To measure h, µ, and ηpp, 179 

a triaxial compression test (as illustrated in Fig. 4) is performed using the following steps:  180 

1. A vertical stress path is first applied under drained loading conditions (points A to B in 181 

Fig. 4), and values of dεq, dεv, and dq are measured;  182 

2. The drain valve is closed to provide a small undrained perturbation (e.g., between points 183 

B to C in Fig. 4), and values of dεq, dq, and dp′ are measured.  184 

3. The drain valve is slowly opened (at point C). 185 

The process described above is repeated at multiple points along the stress path. 186 

  187 

Fig. 4. Stress path of drained p′ constant triaxial test with a short undrained portion (note that the scale 188 
of the horizontal axis has been stretched for illustrative purposes) 189 



During the drained shearing phase, values of h and ηpp are computed using Eqs. 8 and 9, 190 

respectively, which are obtained by solving Eq. 7 with dp′ = 0.  191 
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The value of µ is solved from the undrained loading phase using Eq. 10, obtained after making 192 

appropriate substitutions into the portion of Eq. 7 corresponding to dεq (i.e., the top line in the 193 

equation), and using the value of h from Eq. 8.  194 
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Note that dεv = 0 for undrained loading (i.e., the bottom line of Eq. 7) provides an expression 195 

for a residual that should equal zero, and therefore provides a means of assessing the quality of 196 

the measurements. The resulting residual equation is given by Eq. 11. 197 

10 R pp ppdq dp
h K h
η µ η− ⋅ 

≈ = + + 
 

 (11) 

 198 

Experimental Results 199 

A GCTS STX-50 pneumatic triaxial device was utilized to perform the experiments presented 200 

herein. The device is equipped with an internal load cell so that friction between the piston and 201 

the bushing is not included in the vertical force measurement. Vertical displacements were 202 

measured using an LVDT mounted on the piston outside of the cell. Volume change was 203 

measured by a differential pressure transducer measuring the difference in pressure between 204 

the top and bottom of the burette. The stock burettes that come with the device have a diameter 205 



of 17.4 mm, which is rather large. To enhance the accuracy of the volume change 206 

measurements, a smaller burette with a diameter of 6.3 mm was installed on the device. Pore 207 

pressure was measured using a pressure transducer installed between the bottom of the 208 

specimen and the valve on the line coming out of the cell. This position avoids errors in volume 209 

change arising from volumetric compliance of the plastic tubes connecting the specimen to the 210 

burettes.  211 

The cylindrical specimens had a height of 150mm and a diameter of 71mm. The rubber latex 212 

membranes used were 0.5mm thick. The top and bottom platens of the triaxial apparatus were 213 

not lubricated, which may contribute to experimental errors due to shear stresses on the top and 214 

bottom surfaces. Membrane penetration was not measured, but is expected to be small because 215 

the sand is fine relative to the membrane thickness. More detailed documentation on laboratory 216 

procedures are provided in Eslami (2017). 217 

The triaxial test configuration utilized herein is fairly standard, and can be replicated in many 218 

laboratories. This makes the procedure presented herein approachable for routine application. 219 

The influence of measurement errors is quantified by calculating confidence limits on the 220 

computed plasticity parameters. The confidence limits include the influence of measurement 221 

noise on the computed quantities. More advanced measurement techniques, such as internal 222 

displacement or strain measurements, lubricated top and bottom caps, or image analysis of the 223 

surface displacement field could improve the data quality, thereby reducing the range of the 224 

confidence limits. Although these techniques are common in Japanese laboratories they are less 225 

common in the US and other countries, and were not applied in the current study. 226 

The experimental results derived from this study are curated, published (Eslami et al. 2017), 227 

and available for re-use in DesignSafe-CI, a platform for natural hazards research (Rathje et 228 

al., 2017). The interactive data curation and publication pipelines permits assigning categories 229 



to data to represent the primary processes of engineering experiments (Esteva et al., 2016). The 230 

dataset contains the experimental data, as well as more detailed documentation on laboratory 231 

procedures. A Jupyter notebook is also included to facilitate visualization of the data. 232 

Tested Material and Sample Preparation 233 

The material tested was a clean “Orange County Silica sand-mesh 60”, with a mean grain size 234 

D50, of 0.3 mm, a coefficient of uniformity Cu = 2 and a coefficient of curvature Cc = 1.24. This 235 

sand classifies as SP according to the Unified Soil Classification System (ASTM D2487). The 236 

minimum and maximum void ratios for the sand were emin = 0.792 and emax = 0.958. The slope 237 

of the yield surface depends on the measurement of pore pressure change during small 238 

undrained perturbations. To enhance the pore pressure response, the specimens were prepared 239 

as loose as possible. A plastic tube with a fine mesh at the bottom was first inserted into the 240 

specimen mold with the mesh resting on the bottom porous stone. The outside diameter of the 241 

tube was slightly smaller than the inside diameter of the triaxial mold. Dry sand was then placed 242 

into the plastic tube, and the tube was raised very slowly so that the sand particles were 243 

pluviated at essentially zero drop-height. The average void ratio of the dry samples prior to 244 

consolidation was 0.955, which corresponds to a relative density of about 2% prior to testing. 245 

The samples were subsequently isotropically consolidated, which caused the relative density 246 

to increase slightly but still remain under 10%. Samples were flushed with CO2 prior to 247 

saturation with de-aired water, and back pressure saturation was used to achieve B-values 248 

larger than 95%. The average saturated unit weight of the samples was 18.1 kN/m3, and their 249 

dry unit weight was on average 13.3 kN/m3.  250 

Elastic Moduli 251 

To measure the elastic bulk modulus, K, a specimen was isotropically consolidated to 100 kPa, 252 

and the cell pressure was then cyclically reduced to 80 kPa and increased to 100 kPa while the 253 



volume change was recorded using a differential pressure transducer. The bulk modulus was 254 

computed using Eq. 5b. This process was repeated as the specimen was isotropically 255 

consolidated to 200, 300, 400, 300, 200, and 100 kPa. The resulting bulk modulus values are 256 

plotted in Fig. 5. A least-squares regression was performed to relate bulk modulus to mean 257 

effective stress, as indicated in Eq. 12a, where pa = 101.325 kPa.  258 

To measure shear modulus, two methods were considered. First, the Young’s modulus, E, was 259 

measured by imposing 0.01% amplitude cyclic axial strain cycles, computing the slope by least 260 

squares regression, and subsequently computing shear modulus as G = 3KE/(9K-E), in 261 

accordance with homogeneous isotropic linear elasticity theory, where the measured values of 262 

K and E corresponding to each consolidation pressure were used. This method is not 263 

particularly accurate because (1) the cyclic strain amplitude is large enough that the measured 264 

response is a combination of elastic and plastic behavior, and separating the two responses 265 

requires additional assumptions, and (2) sensor noise contributed significantly to the 266 

measurements because 0.01% is close to the resolution limit for the load cell and LVDT. 267 

Therefore, the shear modulus was measured using bender elements embedded in the sand using 268 

a custom-made consolidation ring. Vertical pressures were applied to the sand, the source 269 

bender element was excited by a step wave function, and the travel time was selected based on 270 

the received signal following procedures outlined by Brandenberg et al. (2008). The bender 271 

element excitations are very small strain, and therefore act in the elastic region of the soil. The 272 

measurements were then regressed to obtain Eq. 12(b). The adopted values of the shear 273 

modulus are shown in Eq. 12b and Figure 5. 274 
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 277 

Fig. 5. Measurements of elastic moduli experiment: (a) bulk modulus measurements and adopted 278 
correlation, (b) Shear modulus measurements and correlation 279 

 280 

Shear Testing 281 

Testing was conducted for mean effective consolidation stress values of p′ = 100, 150, 200, 282 

250, 300, 350 and 400 kPa, and the resulting stress paths are plotted in Fig. 6. Constant mean 283 

effective stress conditions were obtained using stress-controlled loading and by decreasing the 284 

cell pressure as follows: ∆σ3 = - q /3. A computer control system was utilized to achieve the 285 

desired stress path. During drained loading, the drain tap connected to the specimen was 286 

periodically closed to impose a small undrained loading perturbation on the specimen. These 287 

perturbations manifest as sudden changes in p′ apparent in Fig. 6. The drain tap was left closed 288 

until adequate pore pressure response had been recorded, and subsequently re-opened very 289 

slowly to proceed with drained loading. Approximately 20 to 25 perturbations were imposed 290 

on each specimen. The perturbations resulted in a small reduction in p′ at low stress ratios 291 

where the specimens were contractive. However, the specimens became slightly dilative at 292 

stress ratios (q / p’) higher than about Md = 1.3 (Fig. 6a).  293 



Note that Md is the stress ratio at the transition from contractive to dilative behavior. The tests 294 

reached deviatoric strains of 10%, at which point the deviatoric stress and void ratio were still 295 

changing as deviatoric strain increased, indicating that the specimens did not reach a critical 296 

state condition. The stress ratio at a strain of 10% was M = q / p′ = 1.4, which is associated with 297 

a friction angle of φ = 34°, where M = 6sin φ/(3-sinφ) .  298 

The values of dq/dp′, dεq/dp′, dεq/dq, and dεv/dq required to solve for h, ηpp, and µ using Eqs. 299 

8, 9, and 10, respectively, were obtained as illustrated in Fig. 7 for one of the perturbations 300 

conducted at a consolidation stress of 400 kPa. The quantities were first plotted versus time, 301 

and the rates of change of each quantity were computed using linear least squares regression 302 

for the load increment both the drained and undrained portions of loading. The rate dp′/dt was 303 

set to zero during drained loading and dεv/dt was set to zero for undrained loading. The desired 304 

ratios were then computed as the ratio of the rates [e.g., dq/dp′ = (dq/dt)/(dp′/dt)]. The number 305 

of data points extracted for linear least squares regression depended on the amount of 306 

nonlinearity in the soil response. Near the beginning of each test (i.e., at low stress ratio) more 307 

data points were utilized because the strains evolved more slowly than later in the test. Recall 308 

that stress control was required to maintain a vertical stress path, therefore the strain rate tended 309 

to increase with time as the soil became softer.  310 



 311 
Fig. 6. General soil behavior of 7 triaxial compression tests: (a) effective stress paths, (b) stress-strain 312 

curves, (c) void ratio vs. mean effective stress, (d) void ratio vs. deviatoric strain curves 313 

 314 



 315 
Fig. 7. Example data during one perturbation for the specimen consolidated at 400 kPa. Data quantities 316 

are (a) mean effective stress, (b) deviator stress, (c) volumetric strain, and (d) deviatoric strain. 317 

Plastic Modulus 318 

A value of plastic modulus was computed from the drained loading stages based on Eq. 8 at 319 

each point where an undrained perturbation was imposed on the specimen. The resulting plastic 320 

modulus values were subsequently normalized by 3G, and plotted in Fig. 8. Plastic modulus is 321 

known to depend on shear modulus (e.g., Dafalias and Manzari, 2004), hence normalizing the 322 

plastic modulus results in a relationship that is independent of p′. The 95% confidence limits 323 

indicate that the measurements were of poorer quality at low stress ratio than at high stress 324 

ratio. This is due to the fact that deviatoric strain increments are quite small at low stress ratio, 325 

therefore signal noise influences the measurement of h. A weighted least squares regression 326 

was performed to arrive at Eq. 13, where weights were assigned to be inversely proportional to 327 

the 95% confidence limit range.  328 
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The functional form of the expression above, assumes that plastic modulus is inversely 330 

proportional to the distance from the current point in q-p′ space to the failure line, M. This 331 

loosely follows Dafalias and Manzari (2004), with the exception that they compute plastic 332 

modulus as a function of distance to the bounding surface, which in turn depends on the state 333 

parameter. The constants 1.4 and 0.12 are analogous to the parameters Mb (the bounding or 334 

“image” stress ratio on the bounding surface) and b0 (a parameter that defines the plastic 335 

modulus at the initiation of the loading process) in Dafalias and Manzari (2004), respectively. 336 

  337 

Fig. 8. Normalized plastic modulus (h/3G) versus stress ratio (η  = q / p′ ). Vertical bars are 95% 338 
confidence limits and shaded region corresponds to ± one standard deviation of the residuals.  339 

Plastic Potential Slope 340 

The slope of the plastic potential surface, ηpp, was computed for each undrained perturbation, 341 

and the results are plotted versus the stress ratio η = q/p′ in Fig. 9. A negative slope of the 342 

plastic potential surface indicates contractive behavior, while a positive slope indicates dilation. 343 



The sand is contractive essentially over the full range of loading, and is the most highly 344 

contractive at a stress ratio near 0.4. Superposed on the data are the slopes of the plastic 345 

potential surfaces associated with the original and modified Cam-clay models (Schofield and 346 

Wroth, 1968, and Roscoe and Burland, 1968). Although the Cam-clay model was formulated 347 

for clay and not for sand, the sand tested herein appears to exhibit characteristics that are 348 

qualitatively similar to the Cam-clay model. This does not mean that the Cam-clay model is 349 

appropriate for sands because the compressibility behavior may in fact be significantly 350 

different. The original Cam-clay model has a slope that varies linearly with η , and fits the 351 

observed data reasonably well at stress ratios higher than about 0.8, but lies beneath the data at 352 

lower stress ratios. The modified Cam-clay model lies significantly below the data. A weighted 353 

least squares regression was performed on the data, resulting in the expression given in 354 

equation (14). 355 

 0.177 0.599 ln( )ppη η= − + ⋅  (14) 356 

  357 
Fig. 9. Slope of plastic potential surface, ηpp, versus effective stress ratio (η  = q / p’). Vertical bars are 358 

95% confidence limits and shaded region corresponds to ± one standard deviation of the residuals. 359 

 360 



Flow behavior is known to depend not only on stress ratio, but also on the void ratio relative to 361 

the critical state void ratio, which is commonly quantified by the state parameter ψ = e - ec. For 362 

example, the tested specimens were more highly contractive at high p' where ψ was largest 363 

(Fig. 6c). To account for the influence of soil state on plastic flow, the plastic potential surface 364 

must be a function not only of η, but also ψ. The data were therefore regressed according to 365 

the functional form in Eq. 15 (following Dafalias and Manzari 2004), with the results:                 366 

Ad = 0.61 and nd = 11.2. Since the specimens did not reach critical state, the critical state void 367 

ratio is unknown. For simplicity, the state parameter was therefore computed as the difference 368 

between the current void ratio and final void ratio for the test. Furthermore, M = 1.4 was used. 369 

 ( )exppp d dA M nη ψ η= − ⋅ ⋅ −    (15) 370 

Yield Surface Slope 371 

The slope of the yield surface is plotted versus stress ratio in Fig. 10. The yield surface is 372 

negative at low stress ratio, and increases with stress ratio becoming positive at about η = 1.1. 373 

The 95% confidence limits are larger for the yield surface slope than for the plastic potential 374 

slope because the yield surface slope calculation utilizes volumetric strain, which is a 375 

comparatively noisy measurement, and carries over measurement errors from h and ηpp. A 376 

weighted least squares regression results in Eq. 16. 377 

 0.012 0.331 ln( )µ η= + ⋅  (16) 378 

Eq. 16 differs from Eq. 14, which indicates that the sand exhibits a non-associated flow rule. 379 

For comparison, the Modified Cam-clay (M=1.4), Original Cam-clay (M = 1.4), and Drucker 380 

Prager yield surfaces are provided in Fig. 10. Note that the slope of the Drucker-Prager yield 381 

surface must be equal to the stress ratio for cohesionless material during yielding. None of 382 

these yield surfaces provide a particularly suitable match to the experimental data. 383 



  384 

Fig. 10. Slope of yield surface, µ, versus effective stress ratio (η  = q / p′ ). Vertical bars are 95% 385 
confidence limits and shaded region corresponds to ± one standard deviation of the residuals. 386 

 387 

Residuals 388 

Residuals computed using Eq. 11 are plotted in Fig. 11, and have units of volumetric strain. If 389 

the data quantities were measured perfectly, these residual values would be zero. The mean 390 

value of the residuals is 8.7e-6, and the standard deviation is 3.3e-5. These numbers are rather 391 

small compared with the measurement accuracy of the volume change sensor. For example, 392 

the noise amplitude of the volume change sensor is about 2.1e-5, which is close to the standard 393 

deviation of the residuals. This is an indication that we have extracted as much as possible from 394 

the data considering the limitations of the measurements. Any systematic errors (e.g., if the soil 395 

response were nonlinear within the range of measurements extracted for data processing) 396 

would cause these residuals to be higher than the noise levels of the volume change sensor.  397 



  398 

Figure 11. Residuals, R, computed using Eq. 13 versus effective stress ratio (η  = q/p′) 399 

 400 

Interpretation of Data  401 

The experimental data provide insights into the slopes of the yield and plastic potential 402 

functions. Equations 14, 15, and 16 provide these slopes at a particular point in stress space, 403 

and assumptions are required to sketch the yield or plastic potential surface. The simplest 404 

approach for interpreting the data is to assign a point in stress space, compute the desired slope 405 

at this point, and integrate the slope over a range of stress ratios to sketch the rest of the surface. 406 

This inherently assumes that the surfaces enclose an increasingly large elastic region as loading 407 

progresses (i.e., isotropic hardening). This assumption is similar to many traditional 408 

elastoplastic models such as Cam-clay. An example of this approach is illustrated in Fig. 12 409 

for a vertical stress path at p′ = 200 kPa, where yield surfaces are sketched at three different 410 

points along the stress path. These lines were obtained by numerically integrating Eq. 16. The 411 

shape of the surfaces is qualitatively similar to the original Cam-clay model in that the surfaces 412 

are curved and skewed to the left. The yield surfaces in Fig. 12 are drawn only in regions that 413 



lie reasonably within the bounds of experimental validation. Vectors indicating the directions 414 

of plastic flow that were measured, and computed using Eqs. 14 and 15 are also shown in Fig. 415 

12 at the points where the stress path intersects the yield surface. The plastic flow vectors are 416 

not tangent to the yield surfaces at these points due to the non-associated flow rule.  417 

Traditional isotropic hardening models provide reasonable predictions for monotonic loading, 418 

but results in a large elastic region that is inappropriate for cyclic loading. Models that utilize 419 

small yield surfaces that exhibit kinematic hardening are better suited to capture inelasticity in 420 

the reverse direction. For example, SANISAND (Taiebat and Dafalias, 2008) utilizes a narrow 421 

closed cone-type yield surface given by Eq. 17. This yield surface equation can be calibrated 422 

to match the experimental data by setting the parameters n and m, and solving for α and p0 that 423 

provides the desired yield surface slope at a specific point in stress space. Note that α is the 424 

rotational hardening backstress ratio, p0 is the isotropic hardening variable, m is the tangent of 425 

half the opening angle of the yield surface, and the exponent n introduces the effect of a cap-426 

like shape at the tip of the yield surface. SANISAND yield surfaces are shown in Fig. 12 for  427 

m = 0.5 and n = 20. These surfaces intersect the isotropic hardening yield surfaces at the same 428 

points and with the same slopes, and provide an alternative interpretation that is equally 429 

consistent with the experimental data. 430 

 ( )2 2 2

0

1 0
n

pf q p m p
p

α
  
 = − − − = 
   

  (17) 431 



  432 

Fig. 12. Yield and plastic potential surfaces consistent with the experimental data for a vertical stress path 433 

at p′ = 200 kPa 434 

Elastoplastic functions are known to be dependent on loading rate effects. This has been shown 435 

by experimental studies such as Nawir et al. (2003) by mapping the shear yield surface by 436 

changing the strain rate during shear, suggesting that viscous properties be considered for 437 

realistic constitutive modeling of sands. The method described herein can be useful in 438 

evaluating viscous rate effects and for further refinements in sand constitutive modelling. 439 

Conclusions 440 

This paper describes a new experimental method based on the deformation (or flow) theory of 441 

plasticity. The method was used to determine the plastic modulus, and slopes of the plastic 442 

potential and yield surfaces during monotonic shear. The proposed method involves creating, 443 

at regular intervals, small undrained perturbations by closing the drainage valve during shear 444 

for a short time, and computing slopes and moduli at the locations where these perturbations 445 



were imposed. The proposed method was applied to an experimental program consisting of 446 

triaxial tests on loose uniformly graded sand.  447 

 For ease of interpretation the specimens were sheared while maintaining a constant mean 448 

stress, p , during shear. Note that constant p tests are not a necessity for the use of the proposed 449 

method, but simplify data interpretation because the elastic properties can be assumed to be 450 

constant during shear, and simplifies the analysis described mathematically in Eq. (7).  451 

Results revealed that the plastic potential and yield surfaces are different, indicating non-452 

associated flow. Furthermore, the shape of the plastic potential surfaces was qualitatively 453 

similar in shape to the Original Cam-clay model surface (Schofield and Wroth, 1968) in that 454 

the surfaces were curved, skewed to the left, and had a zero slope near the ultimate value of the 455 

q/p’ ratio. Many constitutive models for sand, such as Poorooshasb, and Pietruszczak (1985), 456 

utilize Drucker-Prager type yield surfaces for which the slope of the yield surface is equal to 457 

the stress ratio during yield. The experimental results shown herein, do not support this type of 458 

yield surface.  459 

The methods described herein constitutes a departure from the manner in which elastoplastic 460 

constitutive models are typically calibrated to match experimental data. Typically, basic 461 

parameters such as elastic constants and critical state lines are based on measurements, and 462 

other modeling constants are adjusted to provide a reasonable match between predictions and 463 

triaxial compression experiments. However, it may not be feasible to adjust the modeling 464 

constants to match the experimental data if the underlying assumptions about the yield surface 465 

shape and flow rule are incorrect. This may result in significant errors when the stress paths 466 

imposed in a simulation differ significantly from the stress paths utilized in the experiments. 467 

The methods described herein provide a simple and expeditious experimental methodology to 468 

measure the yield surface and plastic potential surface slopes, thereby enabling identification 469 



of errors in the functional form of elastoplastic constitutive models. The method is particularly 470 

useful for the calibration of the isotropic elastoplastic models that are commonly used by 471 

designers, and for the assessment and kinematic models developed from bounding surface 472 

formulations. We hope that this procedure proves useful for future constitutive model 473 

development and refinement. 474 
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